Sample records for penalized regression methods

  1. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data.

    PubMed

    Abram, Samantha V; Helwig, Nathaniel E; Moodie, Craig A; DeYoung, Colin G; MacDonald, Angus W; Waller, Niels G

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks.

  3. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data

    PubMed Central

    Abram, Samantha V.; Helwig, Nathaniel E.; Moodie, Craig A.; DeYoung, Colin G.; MacDonald, Angus W.; Waller, Niels G.

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks. PMID:27516732

  4. Evaluation of Penalized and Nonpenalized Methods for Disease Prediction with Large-Scale Genetic Data.

    PubMed

    Won, Sungho; Choi, Hosik; Park, Suyeon; Lee, Juyoung; Park, Changyi; Kwon, Sunghoon

    2015-01-01

    Owing to recent improvement of genotyping technology, large-scale genetic data can be utilized to identify disease susceptibility loci and this successful finding has substantially improved our understanding of complex diseases. However, in spite of these successes, most of the genetic effects for many complex diseases were found to be very small, which have been a big hurdle to build disease prediction model. Recently, many statistical methods based on penalized regressions have been proposed to tackle the so-called "large P and small N" problem. Penalized regressions including least absolute selection and shrinkage operator (LASSO) and ridge regression limit the space of parameters, and this constraint enables the estimation of effects for very large number of SNPs. Various extensions have been suggested, and, in this report, we compare their accuracy by applying them to several complex diseases. Our results show that penalized regressions are usually robust and provide better accuracy than the existing methods for at least diseases under consideration.

  5. Robust Variable Selection with Exponential Squared Loss.

    PubMed

    Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping

    2013-04-01

    Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are [Formula: see text] and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.

  6. Robust Variable Selection with Exponential Squared Loss

    PubMed Central

    Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping

    2013-01-01

    Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are n-consistent and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods. PMID:23913996

  7. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  8. Advanced colorectal neoplasia risk stratification by penalized logistic regression.

    PubMed

    Lin, Yunzhi; Yu, Menggang; Wang, Sijian; Chappell, Richard; Imperiale, Thomas F

    2016-08-01

    Colorectal cancer is the second leading cause of death from cancer in the United States. To facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal cancer among the 90% of US residents who are considered "average risk." In this article, we investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and advanced, precancerous polyps). We use a recently completed large cohort study of subjects who underwent a first screening colonoscopy. Logistic regression models have been used in the literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. However, logistic regression may be prone to overfitting and instability in variable selection. Since most of the risk factors in our study have several categories, it was tempting to collapse these categories into fewer risk groups. We propose a penalized logistic regression method that automatically and simultaneously selects variables, groups categories, and estimates their coefficients by penalizing the [Formula: see text]-norm of both the coefficients and their differences. Hence, it encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, i.e. variable selection. We apply the penalized logistic regression method to our data. The important variables are selected, with close categories simultaneously grouped, by penalized regression models with and without the interactions terms. The models are validated with 10-fold cross-validation. The receiver operating characteristic curves of the penalized regression models dominate the receiver operating characteristic curve of naive logistic regressions, indicating a superior discriminative performance. © The Author(s) 2013.

  9. Association between Stereotactic Radiotherapy and Death from Brain Metastases of Epithelial Ovarian Cancer: a Gliwice Data Re-Analysis with Penalization

    PubMed

    Tukiendorf, Andrzej; Mansournia, Mohammad Ali; Wydmański, Jerzy; Wolny-Rokicka, Edyta

    2017-04-01

    Background: Clinical datasets for epithelial ovarian cancer brain metastatic patients are usually small in size. When adequate case numbers are lacking, resulting estimates of regression coefficients may demonstrate bias. One of the direct approaches to reduce such sparse-data bias is based on penalized estimation. Methods: A re- analysis of formerly reported hazard ratios in diagnosed patients was performed using penalized Cox regression with a popular SAS package providing additional software codes for a statistical computational procedure. Results: It was found that the penalized approach can readily diminish sparse data artefacts and radically reduce the magnitude of estimated regression coefficients. Conclusions: It was confirmed that classical statistical approaches may exaggerate regression estimates or distort study interpretations and conclusions. The results support the thesis that penalization via weak informative priors and data augmentation are the safest approaches to shrink sparse data artefacts frequently occurring in epidemiological research. Creative Commons Attribution License

  10. Reduced rank regression via adaptive nuclear norm penalization

    PubMed Central

    Chen, Kun; Dong, Hongbo; Chan, Kung-Sik

    2014-01-01

    Summary We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation method for high-dimensional multivariate regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the matrix, and it is generally non-convex under the natural restriction that the weight decreases with the singular value. However, we show that the proposed non-convex penalized regression method has a global optimal solution obtained from an adaptively soft-thresholded singular value decomposition. The method is computationally efficient, and the resulting solution path is continuous. The rank consistency of and prediction/estimation performance bounds for the estimator are established for a high-dimensional asymptotic regime. Simulation studies and an application in genetics demonstrate its efficacy. PMID:25045172

  11. Penalized regression procedures for variable selection in the potential outcomes framework

    PubMed Central

    Ghosh, Debashis; Zhu, Yeying; Coffman, Donna L.

    2015-01-01

    A recent topic of much interest in causal inference is model selection. In this article, we describe a framework in which to consider penalized regression approaches to variable selection for causal effects. The framework leads to a simple ‘impute, then select’ class of procedures that is agnostic to the type of imputation algorithm as well as penalized regression used. It also clarifies how model selection involves a multivariate regression model for causal inference problems, and that these methods can be applied for identifying subgroups in which treatment effects are homogeneous. Analogies and links with the literature on machine learning methods, missing data and imputation are drawn. A difference LASSO algorithm is defined, along with its multiple imputation analogues. The procedures are illustrated using a well-known right heart catheterization dataset. PMID:25628185

  12. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  13. A 2-step penalized regression method for family-based next-generation sequencing association studies.

    PubMed

    Ding, Xiuhua; Su, Shaoyong; Nandakumar, Kannabiran; Wang, Xiaoling; Fardo, David W

    2014-01-01

    Large-scale genetic studies are often composed of related participants, and utilizing familial relationships can be cumbersome and computationally challenging. We present an approach to efficiently handle sequencing data from complex pedigrees that incorporates information from rare variants as well as common variants. Our method employs a 2-step procedure that sequentially regresses out correlation from familial relatedness and then uses the resulting phenotypic residuals in a penalized regression framework to test for associations with variants within genetic units. The operating characteristics of this approach are detailed using simulation data based on a large, multigenerational cohort.

  14. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.

    PubMed

    Yu, Wenbao; Park, Taesung

    2014-01-01

    It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.

  15. Penalized nonparametric scalar-on-function regression via principal coordinates

    PubMed Central

    Reiss, Philip T.; Miller, David L.; Wu, Pei-Shien; Hua, Wen-Yu

    2016-01-01

    A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This paper introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call principal coordinate ridge regression, one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model. PMID:29217963

  16. Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces.

    PubMed

    Gentry, Amanda Elswick; Jackson-Cook, Colleen K; Lyon, Debra E; Archer, Kellie J

    2015-01-01

    The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated features are lacking. In this paper, we propose a method that fits an ordinal response model to predict an ordinal outcome for high-dimensional covariate spaces. Our method penalizes some covariates (high-throughput genomic features) without penalizing others (such as demographic and/or clinical covariates). We demonstrate the application of our method to predict the stage of breast cancer. In our model, breast cancer subtype is a nonpenalized predictor, and CpG site methylation values from the Illumina Human Methylation 450K assay are penalized predictors. The method has been made available in the ordinalgmifs package in the R programming environment.

  17. Integrated analysis of DNA-methylation and gene expression using high-dimensional penalized regression: a cohort study on bone mineral density in postmenopausal women.

    PubMed

    Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine

    2018-03-07

    Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.

  18. Fast function-on-scalar regression with penalized basis expansions.

    PubMed

    Reiss, Philip T; Huang, Lei; Mennes, Maarten

    2010-01-01

    Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.

  19. Interquantile Shrinkage in Regression Models

    PubMed Central

    Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.

    2012-01-01

    Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546

  20. Penalized spline estimation for functional coefficient regression models.

    PubMed

    Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan

    2010-04-01

    The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.

  1. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    PubMed

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  2. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-01-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560

  3. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

    NASA Astrophysics Data System (ADS)

    Islamiyati, A.; Fatmawati; Chamidah, N.

    2018-03-01

    The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.

  4. Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease.

    PubMed

    Abraham, Gad; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael

    2013-02-01

    A central goal of medical genetics is to accurately predict complex disease from genotypes. Here, we present a comprehensive analysis of simulated and real data using lasso and elastic-net penalized support-vector machine models, a mixed-effects linear model, a polygenic score, and unpenalized logistic regression. In simulation, the sparse penalized models achieved lower false-positive rates and higher precision than the other methods for detecting causal SNPs. The common practice of prefiltering SNP lists for subsequent penalized modeling was examined and shown to substantially reduce the ability to recover the causal SNPs. Using genome-wide SNP profiles across eight complex diseases within cross-validation, lasso and elastic-net models achieved substantially better predictive ability in celiac disease, type 1 diabetes, and Crohn's disease, and had equivalent predictive ability in the rest, with the results in celiac disease strongly replicating between independent datasets. We investigated the effect of linkage disequilibrium on the predictive models, showing that the penalized methods leverage this information to their advantage, compared with methods that assume SNP independence. Our findings show that sparse penalized approaches are robust across different disease architectures, producing as good as or better phenotype predictions and variance explained. This has fundamental ramifications for the selection and future development of methods to genetically predict human disease. © 2012 WILEY PERIODICALS, INC.

  5. Across-Platform Imputation of DNA Methylation Levels Incorporating Nonlocal Information Using Penalized Functional Regression.

    PubMed

    Zhang, Guosheng; Huang, Kuan-Chieh; Xu, Zheng; Tzeng, Jung-Ying; Conneely, Karen N; Guan, Weihua; Kang, Jian; Li, Yun

    2016-05-01

    DNA methylation is a key epigenetic mark involved in both normal development and disease progression. Recent advances in high-throughput technologies have enabled genome-wide profiling of DNA methylation. However, DNA methylation profiling often employs different designs and platforms with varying resolution, which hinders joint analysis of methylation data from multiple platforms. In this study, we propose a penalized functional regression model to impute missing methylation data. By incorporating functional predictors, our model utilizes information from nonlocal probes to improve imputation quality. Here, we compared the performance of our functional model to linear regression and the best single probe surrogate in real data and via simulations. Specifically, we applied different imputation approaches to an acute myeloid leukemia dataset consisting of 194 samples and our method showed higher imputation accuracy, manifested, for example, by a 94% relative increase in information content and up to 86% more CpG sites passing post-imputation filtering. Our simulated association study further demonstrated that our method substantially improves the statistical power to identify trait-associated methylation loci. These findings indicate that the penalized functional regression model is a convenient and valuable imputation tool for methylation data, and it can boost statistical power in downstream epigenome-wide association study (EWAS). © 2016 WILEY PERIODICALS, INC.

  6. Compound Identification Using Penalized Linear Regression on Metabolomics

    PubMed Central

    Liu, Ruiqi; Wu, Dongfeng; Zhang, Xiang; Kim, Seongho

    2014-01-01

    Compound identification is often achieved by matching the experimental mass spectra to the mass spectra stored in a reference library based on mass spectral similarity. Because the number of compounds in the reference library is much larger than the range of mass-to-charge ratio (m/z) values so that the data become high dimensional data suffering from singularity. For this reason, penalized linear regressions such as ridge regression and the lasso are used instead of the ordinary least squares regression. Furthermore, two-step approaches using the dot product and Pearson’s correlation along with the penalized linear regression are proposed in this study. PMID:27212894

  7. Variable selection in semiparametric cure models based on penalized likelihood, with application to breast cancer clinical trials.

    PubMed

    Liu, Xiang; Peng, Yingwei; Tu, Dongsheng; Liang, Hua

    2012-10-30

    Survival data with a sizable cure fraction are commonly encountered in cancer research. The semiparametric proportional hazards cure model has been recently used to analyze such data. As seen in the analysis of data from a breast cancer study, a variable selection approach is needed to identify important factors in predicting the cure status and risk of breast cancer recurrence. However, no specific variable selection method for the cure model is available. In this paper, we present a variable selection approach with penalized likelihood for the cure model. The estimation can be implemented easily by combining the computational methods for penalized logistic regression and the penalized Cox proportional hazards models with the expectation-maximization algorithm. We illustrate the proposed approach on data from a breast cancer study. We conducted Monte Carlo simulations to evaluate the performance of the proposed method. We used and compared different penalty functions in the simulation studies. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Cox Regression Models with Functional Covariates for Survival Data.

    PubMed

    Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M

    2015-06-01

    We extend the Cox proportional hazards model to cases when the exposure is a densely sampled functional process, measured at baseline. The fundamental idea is to combine penalized signal regression with methods developed for mixed effects proportional hazards models. The model is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a likelihood-based criterion such as AIC or EPIC. The model may be extended to allow for multiple functional predictors, time varying coefficients, and missing or unequally-spaced data. Methods were inspired by and applied to a study of the association between time to death after hospital discharge and daily measures of disease severity collected in the intensive care unit, among survivors of acute respiratory distress syndrome.

  9. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  10. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  11. The cross-validated AUC for MCP-logistic regression with high-dimensional data.

    PubMed

    Jiang, Dingfeng; Huang, Jian; Zhang, Ying

    2013-10-01

    We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.

  12. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  13. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  14. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE PAGES

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...

    2017-09-22

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  15. Folded concave penalized learning in identifying multimodal MRI marker for Parkinson’s disease

    PubMed Central

    Liu, Hongcheng; Du, Guangwei; Zhang, Lijun; Lewis, Mechelle M.; Wang, Xue; Yao, Tao; Li, Runze; Huang, Xuemei

    2016-01-01

    Background Brain MRI holds promise to gauge different aspects of Parkinson’s disease (PD)-related pathological changes. Its analysis, however, is hindered by the high-dimensional nature of the data. New method This study introduces folded concave penalized (FCP) sparse logistic regression to identify biomarkers for PD from a large number of potential factors. The proposed statistical procedures target the challenges of high-dimensionality with limited data samples acquired. The maximization problem associated with the sparse logistic regression model is solved by local linear approximation. The proposed procedures then are applied to the empirical analysis of multimodal MRI data. Results From 45 features, the proposed approach identified 15 MRI markers and the UPSIT, which are known to be clinically relevant to PD. By combining the MRI and clinical markers, we can enhance substantially the specificity and sensitivity of the model, as indicated by the ROC curves. Comparison to existing methods We compare the folded concave penalized learning scheme with both the Lasso penalized scheme and the principle component analysis-based feature selection (PCA) in the Parkinson’s biomarker identification problem that takes into account both the clinical features and MRI markers. The folded concave penalty method demonstrates a substantially better clinical potential than both the Lasso and PCA in terms of specificity and sensitivity. Conclusions For the first time, we applied the FCP learning method to MRI biomarker discovery in PD. The proposed approach successfully identified MRI markers that are clinically relevant. Combining these biomarkers with clinical features can substantially enhance performance. PMID:27102045

  16. Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk

    PubMed Central

    Czarnota, Jenna; Gennings, Chris; Wheeler, David C

    2015-01-01

    In evaluation of cancer risk related to environmental chemical exposures, the effect of many chemicals on disease is ultimately of interest. However, because of potentially strong correlations among chemicals that occur together, traditional regression methods suffer from collinearity effects, including regression coefficient sign reversal and variance inflation. In addition, penalized regression methods designed to remediate collinearity may have limitations in selecting the truly bad actors among many correlated components. The recently proposed method of weighted quantile sum (WQS) regression attempts to overcome these problems by estimating a body burden index, which identifies important chemicals in a mixture of correlated environmental chemicals. Our focus was on assessing through simulation studies the accuracy of WQS regression in detecting subsets of chemicals associated with health outcomes (binary and continuous) in site-specific analyses and in non-site-specific analyses. We also evaluated the performance of the penalized regression methods of lasso, adaptive lasso, and elastic net in correctly classifying chemicals as bad actors or unrelated to the outcome. We based the simulation study on data from the National Cancer Institute Surveillance Epidemiology and End Results Program (NCI-SEER) case–control study of non-Hodgkin lymphoma (NHL) to achieve realistic exposure situations. Our results showed that WQS regression had good sensitivity and specificity across a variety of conditions considered in this study. The shrinkage methods had a tendency to incorrectly identify a large number of components, especially in the case of strong association with the outcome. PMID:26005323

  17. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk.

    PubMed

    Czarnota, Jenna; Gennings, Chris; Wheeler, David C

    2015-01-01

    In evaluation of cancer risk related to environmental chemical exposures, the effect of many chemicals on disease is ultimately of interest. However, because of potentially strong correlations among chemicals that occur together, traditional regression methods suffer from collinearity effects, including regression coefficient sign reversal and variance inflation. In addition, penalized regression methods designed to remediate collinearity may have limitations in selecting the truly bad actors among many correlated components. The recently proposed method of weighted quantile sum (WQS) regression attempts to overcome these problems by estimating a body burden index, which identifies important chemicals in a mixture of correlated environmental chemicals. Our focus was on assessing through simulation studies the accuracy of WQS regression in detecting subsets of chemicals associated with health outcomes (binary and continuous) in site-specific analyses and in non-site-specific analyses. We also evaluated the performance of the penalized regression methods of lasso, adaptive lasso, and elastic net in correctly classifying chemicals as bad actors or unrelated to the outcome. We based the simulation study on data from the National Cancer Institute Surveillance Epidemiology and End Results Program (NCI-SEER) case-control study of non-Hodgkin lymphoma (NHL) to achieve realistic exposure situations. Our results showed that WQS regression had good sensitivity and specificity across a variety of conditions considered in this study. The shrinkage methods had a tendency to incorrectly identify a large number of components, especially in the case of strong association with the outcome.

  18. Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization

    PubMed Central

    Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge

    2015-01-01

    In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534

  19. Orthogonalizing EM: A design-based least squares algorithm.

    PubMed

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.

  20. Improving Cluster Analysis with Automatic Variable Selection Based on Trees

    DTIC Science & Technology

    2014-12-01

    regression trees Daisy DISsimilAritY PAM partitioning around medoids PMA penalized multivariate analysis SPC sparse principal components UPGMA unweighted...unweighted pair-group average method ( UPGMA ). This method measures dissimilarities between all objects in two clusters and takes the average value

  1. A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

    PubMed Central

    Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B

    2015-01-01

    Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050

  2. Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording

    PubMed Central

    Eliseyev, Andrey; Aksenova, Tetiana

    2016-01-01

    In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience. PMID:27196417

  3. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  4. GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA

    PubMed Central

    Zheng, Qi; Peng, Limin; He, Xuming

    2015-01-01

    Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high dimensional covariates primarily focuses on examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high dimensional setting. We employ adaptive L1 penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal. PMID:26604424

  5. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali Aldabaa, Abdalsamad Abdalsatar; Ghosh, Rakesh Kumar; Paul, Sathi; Nasim Ali, Md

    2015-05-01

    Using 108 petroleum contaminated soil samples, this pilot study proposed a new analytical approach of combining visible near-infrared diffuse reflectance spectroscopy (VisNIR DRS) and portable X-ray fluorescence spectrometry (PXRF) for rapid and improved quantification of soil petroleum contamination. Results indicated that an advanced fused model where VisNIR DRS spectra-based penalized spline regression (PSR) was used to predict total petroleum hydrocarbon followed by PXRF elemental data-based random forest regression was used to model the PSR residuals, it outperformed (R(2)=0.78, residual prediction deviation (RPD)=2.19) all other models tested, even producing better generalization than using VisNIR DRS alone (RPD's of 1.64, 1.86, and 1.96 for random forest, penalized spline regression, and partial least squares regression, respectively). Additionally, unsupervised principal component analysis using the PXRF+VisNIR DRS system qualitatively separated contaminated soils from control samples. Fusion of PXRF elemental data and VisNIR derivative spectra produced an optimized model for total petroleum hydrocarbon quantification in soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Examination of influential observations in penalized spline regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  7. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models

    PubMed Central

    Jiang, Dingfeng; Huang, Jian

    2013-01-01

    Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing the concave penalized solutions in generalized linear models. In contrast to the existing algorithms that use local quadratic or local linear approximation to the penalty function, the MMCD seeks to majorize the negative log-likelihood by a quadratic loss, but does not use any approximation to the penalty. This strategy makes it possible to avoid the computation of a scaling factor in each update of the solutions, which improves the efficiency of coordinate descent. Under certain regularity conditions, we establish theoretical convergence property of the MMCD. We implement this algorithm for a penalized logistic regression model using the SCAD and MCP penalties. Simulation studies and a data example demonstrate that the MMCD works sufficiently fast for the penalized logistic regression in high-dimensional settings where the number of covariates is much larger than the sample size. PMID:25309048

  8. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Sparse Logistic Regression for Diagnosis of Liver Fibrosis in Rat by Using SCAD-Penalized Likelihood

    PubMed Central

    Yan, Fang-Rong; Lin, Jin-Guan; Liu, Yu

    2011-01-01

    The objective of the present study is to find out the quantitative relationship between progression of liver fibrosis and the levels of certain serum markers using mathematic model. We provide the sparse logistic regression by using smoothly clipped absolute deviation (SCAD) penalized function to diagnose the liver fibrosis in rats. Not only does it give a sparse solution with high accuracy, it also provides the users with the precise probabilities of classification with the class information. In the simulative case and the experiment case, the proposed method is comparable to the stepwise linear discriminant analysis (SLDA) and the sparse logistic regression with least absolute shrinkage and selection operator (LASSO) penalty, by using receiver operating characteristic (ROC) with bayesian bootstrap estimating area under the curve (AUC) diagnostic sensitivity for selected variable. Results show that the new approach provides a good correlation between the serum marker levels and the liver fibrosis induced by thioacetamide (TAA) in rats. Meanwhile, this approach might also be used in predicting the development of liver cirrhosis. PMID:21716672

  10. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  11. A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.

    2014-04-01

    In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O(η), which is more favorable than the error convergence of the already established Dirichlet boundary condition.

  12. A novel variational Bayes multiple locus Z-statistic for genome-wide association studies with Bayesian model averaging

    PubMed Central

    Logsdon, Benjamin A.; Carty, Cara L.; Reiner, Alexander P.; Dai, James Y.; Kooperberg, Charles

    2012-01-01

    Motivation: For many complex traits, including height, the majority of variants identified by genome-wide association studies (GWAS) have small effects, leaving a significant proportion of the heritable variation unexplained. Although many penalized multiple regression methodologies have been proposed to increase the power to detect associations for complex genetic architectures, they generally lack mechanisms for false-positive control and diagnostics for model over-fitting. Our methodology is the first penalized multiple regression approach that explicitly controls Type I error rates and provide model over-fitting diagnostics through a novel normally distributed statistic defined for every marker within the GWAS, based on results from a variational Bayes spike regression algorithm. Results: We compare the performance of our method to the lasso and single marker analysis on simulated data and demonstrate that our approach has superior performance in terms of power and Type I error control. In addition, using the Women's Health Initiative (WHI) SNP Health Association Resource (SHARe) GWAS of African-Americans, we show that our method has power to detect additional novel associations with body height. These findings replicate by reaching a stringent cutoff of marginal association in a larger cohort. Availability: An R-package, including an implementation of our variational Bayes spike regression (vBsr) algorithm, is available at http://kooperberg.fhcrc.org/soft.html. Contact: blogsdon@fhcrc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22563072

  13. Polygenic scores via penalized regression on summary statistics.

    PubMed

    Mak, Timothy Shin Heng; Porsch, Robert Milan; Choi, Shing Wan; Zhou, Xueya; Sham, Pak Chung

    2017-09-01

    Polygenic scores (PGS) summarize the genetic contribution of a person's genotype to a disease or phenotype. They can be used to group participants into different risk categories for diseases, and are also used as covariates in epidemiological analyses. A number of possible ways of calculating PGS have been proposed, and recently there is much interest in methods that incorporate information available in published summary statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent question is how we can use LD information available elsewhere to supplement such analyses. To answer this question, we propose a method for constructing PGS using summary statistics and a reference panel in a penalized regression framework, which we call lassosum. We also propose a general method for choosing the value of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We also showed that lassosum achieved better prediction accuracy than simple clumping and P-value thresholding in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred. © 2017 WILEY PERIODICALS, INC.

  14. An empirical study of statistical properties of variance partition coefficients for multi-level logistic regression models

    USGS Publications Warehouse

    Li, Ji; Gray, B.R.; Bates, D.M.

    2008-01-01

    Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.

  15. Simulation Studies as Designed Experiments: The Comparison of Penalized Regression Models in the “Large p, Small n” Setting

    PubMed Central

    Chaibub Neto, Elias; Bare, J. Christopher; Margolin, Adam A.

    2014-01-01

    New algorithms are continuously proposed in computational biology. Performance evaluation of novel methods is important in practice. Nonetheless, the field experiences a lack of rigorous methodology aimed to systematically and objectively evaluate competing approaches. Simulation studies are frequently used to show that a particular method outperforms another. Often times, however, simulation studies are not well designed, and it is hard to characterize the particular conditions under which different methods perform better. In this paper we propose the adoption of well established techniques in the design of computer and physical experiments for developing effective simulation studies. By following best practices in planning of experiments we are better able to understand the strengths and weaknesses of competing algorithms leading to more informed decisions about which method to use for a particular task. We illustrate the application of our proposed simulation framework with a detailed comparison of the ridge-regression, lasso and elastic-net algorithms in a large scale study investigating the effects on predictive performance of sample size, number of features, true model sparsity, signal-to-noise ratio, and feature correlation, in situations where the number of covariates is usually much larger than sample size. Analysis of data sets containing tens of thousands of features but only a few hundred samples is nowadays routine in computational biology, where “omics” features such as gene expression, copy number variation and sequence data are frequently used in the predictive modeling of complex phenotypes such as anticancer drug response. The penalized regression approaches investigated in this study are popular choices in this setting and our simulations corroborate well established results concerning the conditions under which each one of these methods is expected to perform best while providing several novel insights. PMID:25289666

  16. Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension

    PubMed Central

    Wang, Lan; Wu, Yichao

    2012-01-01

    Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity which assumes that only a small number of covariates influence the conditional distribution of the response variable given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) it enables us to explore the entire conditional distribution of the response variable given the ultra-high dimensional covariates and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high dimensional parameter space. We introduce a novel sufficient optimality condition which relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information compared with alternative methods. PMID:23082036

  17. Robust learning for optimal treatment decision with NP-dimensionality

    PubMed Central

    Shi, Chengchun; Song, Rui; Lu, Wenbin

    2016-01-01

    In order to identify important variables that are involved in making optimal treatment decision, Lu, Zhang and Zeng (2013) proposed a penalized least squared regression framework for a fixed number of predictors, which is robust against the misspecification of the conditional mean model. Two problems arise: (i) in a world of explosively big data, effective methods are needed to handle ultra-high dimensional data set, for example, with the dimension of predictors is of the non-polynomial (NP) order of the sample size; (ii) both the propensity score and conditional mean models need to be estimated from data under NP dimensionality. In this paper, we propose a robust procedure for estimating the optimal treatment regime under NP dimensionality. In both steps, penalized regressions are employed with the non-concave penalty function, where the conditional mean model of the response given predictors may be misspecified. The asymptotic properties, such as weak oracle properties, selection consistency and oracle distributions, of the proposed estimators are investigated. In addition, we study the limiting distribution of the estimated value function for the obtained optimal treatment regime. The empirical performance of the proposed estimation method is evaluated by simulations and an application to a depression dataset from the STAR*D study. PMID:28781717

  18. Practical aspects of estimating energy components in rodents

    PubMed Central

    van Klinken, Jan B.; van den Berg, Sjoerd A. A.; van Dijk, Ko Willems

    2013-01-01

    Recently there has been an increasing interest in exploiting computational and statistical techniques for the purpose of component analysis of indirect calorimetry data. Using these methods it becomes possible to dissect daily energy expenditure into its components and to assess the dynamic response of the resting metabolic rate (RMR) to nutritional and pharmacological manipulations. To perform robust component analysis, however, is not straightforward and typically requires the tuning of parameters and the preprocessing of data. Moreover the degree of accuracy that can be attained by these methods depends on the configuration of the system, which must be properly taken into account when setting up experimental studies. Here, we review the methods of Kalman filtering, linear, and penalized spline regression, and minimal energy expenditure estimation in the context of component analysis and discuss their results on high resolution datasets from mice and rats. In addition, we investigate the effect of the sample time, the accuracy of the activity sensor, and the washout time of the chamber on the estimation accuracy. We found that on the high resolution data there was a strong correlation between the results of Kalman filtering and penalized spline (P-spline) regression, except for the activity respiratory quotient (RQ). For low resolution data the basal metabolic rate (BMR) and resting RQ could still be estimated accurately with P-spline regression, having a strong correlation with the high resolution estimate (R2 > 0.997; sample time of 9 min). In contrast, the thermic effect of food (TEF) and activity related energy expenditure (AEE) were more sensitive to a reduction in the sample rate (R2 > 0.97). In conclusion, for component analysis on data generated by single channel systems with continuous data acquisition both Kalman filtering and P-spline regression can be used, while for low resolution data from multichannel systems P-spline regression gives more robust results. PMID:23641217

  19. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Weniger, Christoph; Calore, Francesca

    2017-08-01

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (gtrsim 105) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |l|<90o and |b|<20o, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.

  20. Semiparametric regression during 2003–2007*

    PubMed Central

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2010-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800

  1. Polynomial order selection in random regression models via penalizing adaptively the likelihood.

    PubMed

    Corrales, J D; Munilla, S; Cantet, R J C

    2015-08-01

    Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, 'penalizing adaptively the likelihood' (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60,513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the 'true' model was within the set of candidates. © 2015 Blackwell Verlag GmbH.

  2. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520

  3. Integrative Analysis of “-Omics” Data Using Penalty Functions

    PubMed Central

    Zhao, Qing; Shi, Xingjie; Huang, Jian; Liu, Jin; Li, Yang; Ma, Shuangge

    2014-01-01

    In the analysis of omics data, integrative analysis provides an effective way of pooling information across multiple datasets or multiple correlated responses, and can be more effective than single-dataset (response) analysis. Multiple families of integrative analysis methods have been proposed in the literature. The current review focuses on the penalization methods. Special attention is paid to sparse meta-analysis methods that pool summary statistics across datasets, and integrative analysis methods that pool raw data across datasets. We discuss their formulation and rationale. Beyond “standard” penalized selection, we also review contrasted penalization and Laplacian penalization which accommodate finer data structures. The computational aspects, including computational algorithms and tuning parameter selection, are examined. This review concludes with possible limitations and extensions. PMID:25691921

  4. Analyzing Association Mapping in Pedigree-Based GWAS Using a Penalized Multitrait Mixed Model

    PubMed Central

    Liu, Jin; Yang, Can; Shi, Xingjie; Li, Cong; Huang, Jian; Zhao, Hongyu; Ma, Shuangge

    2017-01-01

    Genome-wide association studies (GWAS) have led to the identification of many genetic variants associated with complex diseases in the past 10 years. Penalization methods, with significant numerical and statistical advantages, have been extensively adopted in analyzing GWAS. This study has been partly motivated by the analysis of Genetic Analysis Workshop (GAW) 18 data, which have two notable characteristics. First, the subjects are from a small number of pedigrees and hence related. Second, for each subject, multiple correlated traits have been measured. Most of the existing penalization methods assume independence between subjects and traits and can be suboptimal. There are a few methods in the literature based on mixed modeling that can accommodate correlations. However, they cannot fully accommodate the two types of correlations while conducting effective marker selection. In this study, we develop a penalized multitrait mixed modeling approach. It accommodates the two different types of correlations and includes several existing methods as special cases. Effective penalization is adopted for marker selection. Simulation demonstrates its satisfactory performance. The GAW 18 data are analyzed using the proposed method. PMID:27247027

  5. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Emma; Weniger, Christoph; Calore, Francesca, E-mail: e.m.storm@uva.nl, E-mail: c.weniger@uva.nl, E-mail: francesca.calore@lapth.cnrs.fr

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (∼> 10{sup 5}) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that aremore » motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |ℓ|<90{sup o} and | b |<20{sup o}, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.« less

  6. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany

    PubMed Central

    Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun

    2017-01-01

    In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498

  7. Semiparametric time varying coefficient model for matched case-crossover studies.

    PubMed

    Ortega-Villa, Ana Maria; Kim, Inyoung; Kim, H

    2017-03-15

    In matched case-crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. This is because any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. Hence, the conditional logistic regression model is not able to detect any effects associated with the matching covariates by stratum. However, some matching covariates such as time often play an important role as an effect modification leading to incorrect statistical estimation and prediction. Therefore, we propose three approaches to evaluate effect modification by time. The first is a parametric approach, the second is a semiparametric penalized approach, and the third is a semiparametric Bayesian approach. Our parametric approach is a two-stage method, which uses conditional logistic regression in the first stage and then estimates polynomial regression in the second stage. Our semiparametric penalized and Bayesian approaches are one-stage approaches developed by using regression splines. Our semiparametric one stage approach allows us to not only detect the parametric relationship between the predictor and binary outcomes, but also evaluate nonparametric relationships between the predictor and time. We demonstrate the advantage of our semiparametric one-stage approaches using both a simulation study and an epidemiological example of a 1-4 bi-directional case-crossover study of childhood aseptic meningitis with drinking water turbidity. We also provide statistical inference for the semiparametric Bayesian approach using Bayes Factors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Separation in Logistic Regression: Causes, Consequences, and Control.

    PubMed

    Mansournia, Mohammad Ali; Geroldinger, Angelika; Greenland, Sander; Heinze, Georg

    2018-04-01

    Separation is encountered in regression models with a discrete outcome (such as logistic regression) where the covariates perfectly predict the outcome. It is most frequent under the same conditions that lead to small-sample and sparse-data bias, such as presence of a rare outcome, rare exposures, highly correlated covariates, or covariates with strong effects. In theory, separation will produce infinite estimates for some coefficients. In practice, however, separation may be unnoticed or mishandled because of software limits in recognizing and handling the problem and in notifying the user. We discuss causes of separation in logistic regression and describe how common software packages deal with it. We then describe methods that remove separation, focusing on the same penalized-likelihood techniques used to address more general sparse-data problems. These methods improve accuracy, avoid software problems, and allow interpretation as Bayesian analyses with weakly informative priors. We discuss likelihood penalties, including some that can be implemented easily with any software package, and their relative advantages and disadvantages. We provide an illustration of ideas and methods using data from a case-control study of contraceptive practices and urinary tract infection.

  9. Screening and clustering of sparse regressions with finite non-Gaussian mixtures.

    PubMed

    Zhang, Jian

    2017-06-01

    This article proposes a method to address the problem that can arise when covariates in a regression setting are not Gaussian, which may give rise to approximately mixture-distributed errors, or when a true mixture of regressions produced the data. The method begins with non-Gaussian mixture-based marginal variable screening, followed by fitting a full but relatively smaller mixture regression model to the selected data with help of a new penalization scheme. Under certain regularity conditions, the new screening procedure is shown to possess a sure screening property even when the population is heterogeneous. We further prove that there exists an elbow point in the associated scree plot which results in a consistent estimator of the set of active covariates in the model. By simulations, we demonstrate that the new procedure can substantially improve the performance of the existing procedures in the content of variable screening and data clustering. By applying the proposed procedure to motif data analysis in molecular biology, we demonstrate that the new method holds promise in practice. © 2016, The International Biometric Society.

  10. Interaction Models for Functional Regression.

    PubMed

    Usset, Joseph; Staicu, Ana-Maria; Maity, Arnab

    2016-02-01

    A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

  11. A pseudo-penalized quasi-likelihood approach to the spatial misalignment problem with non-normal data.

    PubMed

    Lopiano, Kenneth K; Young, Linda J; Gotway, Carol A

    2014-09-01

    Spatially referenced datasets arising from multiple sources are routinely combined to assess relationships among various outcomes and covariates. The geographical units associated with the data, such as the geographical coordinates or areal-level administrative units, are often spatially misaligned, that is, observed at different locations or aggregated over different geographical units. As a result, the covariate is often predicted at the locations where the response is observed. The method used to align disparate datasets must be accounted for when subsequently modeling the aligned data. Here we consider the case where kriging is used to align datasets in point-to-point and point-to-areal misalignment problems when the response variable is non-normally distributed. If the relationship is modeled using generalized linear models, the additional uncertainty induced from using the kriging mean as a covariate introduces a Berkson error structure. In this article, we develop a pseudo-penalized quasi-likelihood algorithm to account for the additional uncertainty when estimating regression parameters and associated measures of uncertainty. The method is applied to a point-to-point example assessing the relationship between low-birth weights and PM2.5 levels after the onset of the largest wildfire in Florida history, the Bugaboo scrub fire. A point-to-areal misalignment problem is presented where the relationship between asthma events in Florida's counties and PM2.5 levels after the onset of the fire is assessed. Finally, the method is evaluated using a simulation study. Our results indicate the method performs well in terms of coverage for 95% confidence intervals and naive methods that ignore the additional uncertainty tend to underestimate the variability associated with parameter estimates. The underestimation is most profound in Poisson regression models. © 2014, The International Biometric Society.

  12. A Path Algorithm for Constrained Estimation

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2013-01-01

    Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382

  13. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  14. Quantile regression via vector generalized additive models.

    PubMed

    Yee, Thomas W

    2004-07-30

    One of the most popular methods for quantile regression is the LMS method of Cole and Green. The method naturally falls within a penalized likelihood framework, and consequently allows for considerable flexible because all three parameters may be modelled by cubic smoothing splines. The model is also very understandable: for a given value of the covariate, the LMS method applies a Box-Cox transformation to the response in order to transform it to standard normality; to obtain the quantiles, an inverse Box-Cox transformation is applied to the quantiles of the standard normal distribution. The purposes of this article are three-fold. Firstly, LMS quantile regression is presented within the framework of the class of vector generalized additive models. This confers a number of advantages such as a unifying theory and estimation process. Secondly, a new LMS method based on the Yeo-Johnson transformation is proposed, which has the advantage that the response is not restricted to be positive. Lastly, this paper describes a software implementation of three LMS quantile regression methods in the S language. This includes the LMS-Yeo-Johnson method, which is estimated efficiently by a new numerical integration scheme. The LMS-Yeo-Johnson method is illustrated by way of a large cross-sectional data set from a New Zealand working population. Copyright 2004 John Wiley & Sons, Ltd.

  15. IPF-LASSO: Integrative L 1-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data

    PubMed Central

    Jiang, Xiaoyu; Fuchs, Mathias

    2017-01-01

    As modern biotechnologies advance, it has become increasingly frequent that different modalities of high-dimensional molecular data (termed “omics” data in this paper), such as gene expression, methylation, and copy number, are collected from the same patient cohort to predict the clinical outcome. While prediction based on omics data has been widely studied in the last fifteen years, little has been done in the statistical literature on the integration of multiple omics modalities to select a subset of variables for prediction, which is a critical task in personalized medicine. In this paper, we propose a simple penalized regression method to address this problem by assigning different penalty factors to different data modalities for feature selection and prediction. The penalty factors can be chosen in a fully data-driven fashion by cross-validation or by taking practical considerations into account. In simulation studies, we compare the prediction performance of our approach, called IPF-LASSO (Integrative LASSO with Penalty Factors) and implemented in the R package ipflasso, with the standard LASSO and sparse group LASSO. The use of IPF-LASSO is also illustrated through applications to two real-life cancer datasets. All data and codes are available on the companion website to ensure reproducibility. PMID:28546826

  16. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  17. Ensemble of trees approaches to risk adjustment for evaluating a hospital's performance.

    PubMed

    Liu, Yang; Traskin, Mikhail; Lorch, Scott A; George, Edward I; Small, Dylan

    2015-03-01

    A commonly used method for evaluating a hospital's performance on an outcome is to compare the hospital's observed outcome rate to the hospital's expected outcome rate given its patient (case) mix and service. The process of calculating the hospital's expected outcome rate given its patient mix and service is called risk adjustment (Iezzoni 1997). Risk adjustment is critical for accurately evaluating and comparing hospitals' performances since we would not want to unfairly penalize a hospital just because it treats sicker patients. The key to risk adjustment is accurately estimating the probability of an Outcome given patient characteristics. For cases with binary outcomes, the method that is commonly used in risk adjustment is logistic regression. In this paper, we consider ensemble of trees methods as alternatives for risk adjustment, including random forests and Bayesian additive regression trees (BART). Both random forests and BART are modern machine learning methods that have been shown recently to have excellent performance for prediction of outcomes in many settings. We apply these methods to carry out risk adjustment for the performance of neonatal intensive care units (NICU). We show that these ensemble of trees methods outperform logistic regression in predicting mortality among babies treated in NICU, and provide a superior method of risk adjustment compared to logistic regression.

  18. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    PubMed

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  19. Identifying significant gene‐environment interactions using a combination of screening testing and hierarchical false discovery rate control

    PubMed Central

    Shen, Li; Saykin, Andrew J.; Williams, Scott M.; Moore, Jason H.

    2016-01-01

    ABSTRACT Although gene‐environment (G× E) interactions play an important role in many biological systems, detecting these interactions within genome‐wide data can be challenging due to the loss in statistical power incurred by multiple hypothesis correction. To address the challenge of poor power and the limitations of existing multistage methods, we recently developed a screening‐testing approach for G× E interaction detection that combines elastic net penalized regression with joint estimation to support a single omnibus test for the presence of G× E interactions. In our original work on this technique, however, we did not assess type I error control or power and evaluated the method using just a single, small bladder cancer data set. In this paper, we extend the original method in two important directions and provide a more rigorous performance evaluation. First, we introduce a hierarchical false discovery rate approach to formally assess the significance of individual G× E interactions. Second, to support the analysis of truly genome‐wide data sets, we incorporate a score statistic‐based prescreening step to reduce the number of single nucleotide polymorphisms prior to fitting the first stage penalized regression model. To assess the statistical properties of our method, we compare the type I error rate and statistical power of our approach with competing techniques using both simple simulation designs as well as designs based on real disease architectures. Finally, we demonstrate the ability of our approach to identify biologically plausible SNP‐education interactions relative to Alzheimer's disease status using genome‐wide association study data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). PMID:27578615

  20. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany.

    PubMed

    Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun

    2015-09-01

    In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Efficient robust doubly adaptive regularized regression with applications.

    PubMed

    Karunamuni, Rohana J; Kong, Linglong; Tu, Wei

    2018-01-01

    We consider the problem of estimation and variable selection for general linear regression models. Regularized regression procedures have been widely used for variable selection, but most existing methods perform poorly in the presence of outliers. We construct a new penalized procedure that simultaneously attains full efficiency and maximum robustness. Furthermore, the proposed procedure satisfies the oracle properties. The new procedure is designed to achieve sparse and robust solutions by imposing adaptive weights on both the decision loss and the penalty function. The proposed method of estimation and variable selection attains full efficiency when the model is correct and, at the same time, achieves maximum robustness when outliers are present. We examine the robustness properties using the finite-sample breakdown point and an influence function. We show that the proposed estimator attains the maximum breakdown point. Furthermore, there is no loss in efficiency when there are no outliers or the error distribution is normal. For practical implementation of the proposed method, we present a computational algorithm. We examine the finite-sample and robustness properties using Monte Carlo studies. Two datasets are also analyzed.

  2. Comparison of the efficacies of patching and penalization therapies for the treatment of amblyopia patients

    PubMed Central

    Cabi, Cemalettin; Sayman Muslubas, Isil Bahar; Aydin Oral, Ayse Yesim; Dastan, Metin

    2014-01-01

    AIM To compare the efficacies of patching and penalization therapies for the treatment of amblyopia patients. METHODS The records of 64 eyes of 50 patients 7 to 16y of age who had presented to our clinics with a diagnosis of amblyopia, were evaluated retrospectively. Forty eyes of 26 patients who had received patching therapy and 24 eyes of 24 patients who had received penalization therapy included in this study. The latencies and amplitudes of visual evoked potential (VEP) records and best corrected visual acuities (BCVA) of these two groups were compared before and six months after the treatment. RESULTS In both patching and the penalization groups, the visual acuities increased significantly following the treatments (P<0.05). The latency measurements of the P100 wave obtained at 1.0°, 15 arc min. Patterns of both groups significantly decreased following the 6-months-treatment. However, the amplitude measurements increased (P<0.05). CONCLUSION The patching and the penalization methods, which are the main methods used in the treatment of amblyopia, were also effective over the age of 7y, which has been accepted as the critical age for the treatment of amblyopia. PMID:24967195

  3. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    PubMed

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  4. Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data.

    PubMed

    Sun, Hokeun; Wang, Shuang

    2013-05-30

    The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Bayesian Scalar-on-Image Regression with Application to Association Between Intracranial DTI and Cognitive Outcomes

    PubMed Central

    Huang, Lei; Goldsmith, Jeff; Reiss, Philip T.; Reich, Daniel S.; Crainiceanu, Ciprian M.

    2013-01-01

    Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo quantification of brain pathways. These pathways often subserve specific functions, and impairment of those functions is often associated with imaging abnormalities. As a method for predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-image” regression procedure. Our procedure introduces a latent binary map that estimates the locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure yields a sparse association map that also maintains spatial continuity of predictive regions. The method is demonstrated on a simulation study and on a study of association between fractional anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients. PMID:23792220

  6. Differentiating among penal states.

    PubMed

    Lacey, Nicola

    2010-12-01

    This review article assesses Loïc Wacquant's contribution to debates on penality, focusing on his most recent book, Punishing the Poor: The Neoliberal Government of Social Insecurity (Wacquant 2009), while setting its argument in the context of his earlier Prisons of Poverty (1999). In particular, it draws on both historical and comparative methods to question whether Wacquant's conception of 'the penal state' is adequately differentiated for the purposes of building the explanatory account he proposes; about whether 'neo-liberalism' has, materially, the global influence which he ascribes to it; and about whether, therefore, the process of penal Americanization which he asserts in his recent writings is credible.

  7. REGULARIZATION FOR COX’S PROPORTIONAL HAZARDS MODEL WITH NP-DIMENSIONALITY*

    PubMed Central

    Fan, Jianqing; Jiang, Jiancheng

    2011-01-01

    High throughput genetic sequencing arrays with thousands of measurements per sample and a great amount of related censored clinical data have increased demanding need for better measurement specific model selection. In this paper we establish strong oracle properties of non-concave penalized methods for non-polynomial (NP) dimensional data with censoring in the framework of Cox’s proportional hazards model. A class of folded-concave penalties are employed and both LASSO and SCAD are discussed specifically. We unveil the question under which dimensionality and correlation restrictions can an oracle estimator be constructed and grasped. It is demonstrated that non-concave penalties lead to significant reduction of the “irrepresentable condition” needed for LASSO model selection consistency. The large deviation result for martingales, bearing interests of its own, is developed for characterizing the strong oracle property. Moreover, the non-concave regularized estimator, is shown to achieve asymptotically the information bound of the oracle estimator. A coordinate-wise algorithm is developed for finding the grid of solution paths for penalized hazard regression problems, and its performance is evaluated on simulated and gene association study examples. PMID:23066171

  8. REGULARIZATION FOR COX'S PROPORTIONAL HAZARDS MODEL WITH NP-DIMENSIONALITY.

    PubMed

    Bradic, Jelena; Fan, Jianqing; Jiang, Jiancheng

    2011-01-01

    High throughput genetic sequencing arrays with thousands of measurements per sample and a great amount of related censored clinical data have increased demanding need for better measurement specific model selection. In this paper we establish strong oracle properties of non-concave penalized methods for non-polynomial (NP) dimensional data with censoring in the framework of Cox's proportional hazards model. A class of folded-concave penalties are employed and both LASSO and SCAD are discussed specifically. We unveil the question under which dimensionality and correlation restrictions can an oracle estimator be constructed and grasped. It is demonstrated that non-concave penalties lead to significant reduction of the "irrepresentable condition" needed for LASSO model selection consistency. The large deviation result for martingales, bearing interests of its own, is developed for characterizing the strong oracle property. Moreover, the non-concave regularized estimator, is shown to achieve asymptotically the information bound of the oracle estimator. A coordinate-wise algorithm is developed for finding the grid of solution paths for penalized hazard regression problems, and its performance is evaluated on simulated and gene association study examples.

  9. Feature Grouping and Selection Over an Undirected Graph.

    PubMed

    Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping

    2012-01-01

    High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.

  10. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  11. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  12. Regularized rare variant enrichment analysis for case-control exome sequencing data.

    PubMed

    Larson, Nicholas B; Schaid, Daniel J

    2014-02-01

    Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.

  13. Hospital Characteristics Associated With Penalties in the Centers for Medicare & Medicaid Services Hospital-Acquired Condition Reduction Program.

    PubMed

    Rajaram, Ravi; Chung, Jeanette W; Kinnier, Christine V; Barnard, Cynthia; Mohanty, Sanjay; Pavey, Emily S; McHugh, Megan C; Bilimoria, Karl Y

    2015-07-28

    In fiscal year (FY) 2015, the Centers for Medicare & Medicaid Services (CMS) instituted the Hospital-Acquired Condition (HAC) Reduction Program, which reduces payments to the lowest-performing hospitals. However, it is uncertain whether this program accurately measures quality and fairly penalizes hospitals. To examine the characteristics of hospitals penalized by the HAC Reduction Program and to evaluate the association of a summary score of hospital characteristics related to quality with penalization in the HAC program. Data for hospitals participating in the FY2015 HAC Reduction Program were obtained from CMS' Hospital Compare and merged with the 2014 American Hospital Association Annual Survey and FY2015 Medicare Impact File. Logistic regression models were developed to examine the association between hospital characteristics and HAC program penalization. An 8-point hospital quality summary score was created using hospital characteristics related to volume, accreditations, and offering of advanced care services. The relationship between the hospital quality summary score and HAC program penalization was examined. Publicly reported process-of-care and outcome measures were examined from 4 clinical areas (surgery, acute myocardial infarction, heart failure, pneumonia), and their association with the hospital quality summary score was evaluated. Penalization in the HAC Reduction Program. Hospital characteristics associated with penalization. Of the 3284 hospitals participating in the HAC program, 721 (22.0%) were penalized. Hospitals were more likely to be penalized if they were accredited by the Joint Commission (24.0% accredited, 14.4% not accredited; odds ratio [OR], 1.33; 95% CI, 1.04-1.70); they were major teaching hospitals (42.3%; OR, 1.58; 95% CI, 1.09-2.29) or very major teaching hospitals (62.2%; OR, 2.61; 95% CI, 1.55-4.39; vs nonteaching hospitals, 17.0%); they cared for more complex patient populations based on case mix index (quartile 4 vs quartile 1: 32.8% vs 12.1%; OR, 1.98; 95% CI, 1.44-2.71); or they were safety-net hospitals vs non-safety-net hospitals (28.3% vs 19.9%; OR, 1.36; 95% CI, 1.11-1.68). Hospitals with higher hospital quality summary scores had significantly better performance on 9 of 10 publicly reported process and outcomes measures compared with hospitals that had lower quality scores (all P ≤ .01 for trend). However, hospitals with the highest quality score of 8 were penalized significantly more frequently than hospitals with the lowest quality score of 0 (67.3% [37/55] vs 12.6% [53/422]; P < .001 for trend). Among hospitals participating in the HAC Reduction Program, hospitals that were penalized more frequently had more quality accreditations, offered advanced services, were major teaching institutions, and had better performance on other process and outcome measures. These paradoxical findings suggest that the approach for assessing hospital penalties in the HAC Reduction Program merits reconsideration to ensure it is achieving the intended goals.

  14. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  15. Sparse High Dimensional Models in Economics

    PubMed Central

    Fan, Jianqing; Lv, Jinchi; Qi, Lei

    2010-01-01

    This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635

  16. Sieve estimation of Cox models with latent structures.

    PubMed

    Cao, Yongxiu; Huang, Jian; Liu, Yanyan; Zhao, Xingqiu

    2016-12-01

    This article considers sieve estimation in the Cox model with an unknown regression structure based on right-censored data. We propose a semiparametric pursuit method to simultaneously identify and estimate linear and nonparametric covariate effects based on B-spline expansions through a penalized group selection method with concave penalties. We show that the estimators of the linear effects and the nonparametric component are consistent. Furthermore, we establish the asymptotic normality of the estimator of the linear effects. To compute the proposed estimators, we develop a modified blockwise majorization descent algorithm that is efficient and easy to implement. Simulation studies demonstrate that the proposed method performs well in finite sample situations. We also use the primary biliary cirrhosis data to illustrate its application. © 2016, The International Biometric Society.

  17. Prophetic Granger Causality to infer gene regulatory networks.

    PubMed

    Carlin, Daniel E; Paull, Evan O; Graim, Kiley; Wong, Christopher K; Bivol, Adrian; Ryabinin, Peter; Ellrott, Kyle; Sokolov, Artem; Stuart, Joshua M

    2017-01-01

    We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring.

  18. Prophetic Granger Causality to infer gene regulatory networks

    PubMed Central

    Carlin, Daniel E.; Paull, Evan O.; Graim, Kiley; Wong, Christopher K.; Bivol, Adrian; Ryabinin, Peter; Ellrott, Kyle; Sokolov, Artem

    2017-01-01

    We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring. PMID:29211761

  19. Penalized unsupervised learning with outliers

    PubMed Central

    Witten, Daniela M.

    2013-01-01

    We consider the problem of performing unsupervised learning in the presence of outliers – that is, observations that do not come from the same distribution as the rest of the data. It is known that in this setting, standard approaches for unsupervised learning can yield unsatisfactory results. For instance, in the presence of severe outliers, K-means clustering will often assign each outlier to its own cluster, or alternatively may yield distorted clusters in order to accommodate the outliers. In this paper, we take a new approach to extending existing unsupervised learning techniques to accommodate outliers. Our approach is an extension of a recent proposal for outlier detection in the regression setting. We allow each observation to take on an “error” term, and we penalize the errors using a group lasso penalty in order to encourage most of the observations’ errors to exactly equal zero. We show that this approach can be used in order to develop extensions of K-means clustering and principal components analysis that result in accurate outlier detection, as well as improved performance in the presence of outliers. These methods are illustrated in a simulation study and on two gene expression data sets, and connections with M-estimation are explored. PMID:23875057

  20. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    PubMed

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  1. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations

    PubMed Central

    Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin

    2012-01-01

    Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351

  2. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  3. Multipollutant measurement error in air pollution epidemiology studies arising from predicting exposures with penalized regression splines

    PubMed Central

    Bergen, Silas; Sheppard, Lianne; Kaufman, Joel D.; Szpiro, Adam A.

    2016-01-01

    Summary Air pollution epidemiology studies are trending towards a multi-pollutant approach. In these studies, exposures at subject locations are unobserved and must be predicted using observed exposures at misaligned monitoring locations. This induces measurement error, which can bias the estimated health effects and affect standard error estimates. We characterize this measurement error and develop an analytic bias correction when using penalized regression splines to predict exposure. Our simulations show bias from multi-pollutant measurement error can be severe, and in opposite directions or simultaneously positive or negative. Our analytic bias correction combined with a non-parametric bootstrap yields accurate coverage of 95% confidence intervals. We apply our methodology to analyze the association of systolic blood pressure with PM2.5 and NO2 in the NIEHS Sister Study. We find that NO2 confounds the association of systolic blood pressure with PM2.5 and vice versa. Elevated systolic blood pressure was significantly associated with increased PM2.5 and decreased NO2. Correcting for measurement error bias strengthened these associations and widened 95% confidence intervals. PMID:27789915

  4. A Machine Learning Framework for Plan Payment Risk Adjustment.

    PubMed

    Rose, Sherri

    2016-12-01

    To introduce cross-validation and a nonparametric machine learning framework for plan payment risk adjustment and then assess whether they have the potential to improve risk adjustment. 2011-2012 Truven MarketScan database. We compare the performance of multiple statistical approaches within a broad machine learning framework for estimation of risk adjustment formulas. Total annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and hierarchical condition category variables. The methods included regression, penalized regression, decision trees, neural networks, and an ensemble super learner, all in concert with screening algorithms that reduce the set of variables considered. The performance of these methods was compared based on cross-validated R 2 . Our results indicate that a simplified risk adjustment formula selected via this nonparametric framework maintains much of the efficiency of a traditional larger formula. The ensemble approach also outperformed classical regression and all other algorithms studied. The implementation of cross-validated machine learning techniques provides novel insight into risk adjustment estimation, possibly allowing for a simplified formula, thereby reducing incentives for increased coding intensity as well as the ability of insurers to "game" the system with aggressive diagnostic upcoding. © Health Research and Educational Trust.

  5. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

    PubMed Central

    Kim, Yoonsang; Emery, Sherry

    2013-01-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

  6. High dimensional linear regression models under long memory dependence and measurement error

    NASA Astrophysics Data System (ADS)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.

  7. Bias correction of risk estimates in vaccine safety studies with rare adverse events using a self-controlled case series design.

    PubMed

    Zeng, Chan; Newcomer, Sophia R; Glanz, Jason M; Shoup, Jo Ann; Daley, Matthew F; Hambidge, Simon J; Xu, Stanley

    2013-12-15

    The self-controlled case series (SCCS) method is often used to examine the temporal association between vaccination and adverse events using only data from patients who experienced such events. Conditional Poisson regression models are used to estimate incidence rate ratios, and these models perform well with large or medium-sized case samples. However, in some vaccine safety studies, the adverse events studied are rare and the maximum likelihood estimates may be biased. Several bias correction methods have been examined in case-control studies using conditional logistic regression, but none of these methods have been evaluated in studies using the SCCS design. In this study, we used simulations to evaluate 2 bias correction approaches-the Firth penalized maximum likelihood method and Cordeiro and McCullagh's bias reduction after maximum likelihood estimation-with small sample sizes in studies using the SCCS design. The simulations showed that the bias under the SCCS design with a small number of cases can be large and is also sensitive to a short risk period. The Firth correction method provides finite and less biased estimates than the maximum likelihood method and Cordeiro and McCullagh's method. However, limitations still exist when the risk period in the SCCS design is short relative to the entire observation period.

  8. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso.

    PubMed

    Kong, Shengchun; Nan, Bin

    2014-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.

  9. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso

    PubMed Central

    Kong, Shengchun; Nan, Bin

    2013-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses. PMID:24516328

  10. A Selective Overview of Variable Selection in High Dimensional Feature Space

    PubMed Central

    Fan, Jianqing

    2010-01-01

    High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods. PMID:21572976

  11. ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL

    PubMed Central

    Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui

    2013-01-01

    We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091

  12. ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.

    PubMed

    Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui

    2013-06-01

    We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.

  13. Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression

    PubMed Central

    Peng, Limin; Xu, Jinfeng; Kutner, Nancy

    2013-01-01

    Varying covariate effects often manifest meaningful heterogeneity in covariate-response associations. In this paper, we adopt a quantile regression model that assumes linearity at a continuous range of quantile levels as a tool to explore such data dynamics. The consideration of potential non-constancy of covariate effects necessitates a new perspective for variable selection, which, under the assumed quantile regression model, is to retain variables that have effects on all quantiles of interest as well as those that influence only part of quantiles considered. Current work on l1-penalized quantile regression either does not concern varying covariate effects or may not produce consistent variable selection in the presence of covariates with partial effects, a practical scenario of interest. In this work, we propose a shrinkage approach by adopting a novel uniform adaptive LASSO penalty. The new approach enjoys easy implementation without requiring smoothing. Moreover, it can consistently identify the true model (uniformly across quantiles) and achieve the oracle estimation efficiency. We further extend the proposed shrinkage method to the case where responses are subject to random right censoring. Numerical studies confirm the theoretical results and support the utility of our proposals. PMID:25332515

  14. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.

    PubMed

    Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel

    2011-05-09

    Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.

  15. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data

    PubMed Central

    2011-01-01

    Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689

  16. HEALER: homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS

    PubMed Central

    Wang, Shuang; Zhang, Yuchen; Dai, Wenrui; Lauter, Kristin; Kim, Miran; Tang, Yuzhe; Xiong, Hongkai; Jiang, Xiaoqian

    2016-01-01

    Motivation: Genome-wide association studies (GWAS) have been widely used in discovering the association between genotypes and phenotypes. Human genome data contain valuable but highly sensitive information. Unprotected disclosure of such information might put individual’s privacy at risk. It is important to protect human genome data. Exact logistic regression is a bias-reduction method based on a penalized likelihood to discover rare variants that are associated with disease susceptibility. We propose the HEALER framework to facilitate secure rare variants analysis with a small sample size. Results: We target at the algorithm design aiming at reducing the computational and storage costs to learn a homomorphic exact logistic regression model (i.e. evaluate P-values of coefficients), where the circuit depth is proportional to the logarithmic scale of data size. We evaluate the algorithm performance using rare Kawasaki Disease datasets. Availability and implementation: Download HEALER at http://research.ucsd-dbmi.org/HEALER/ Contact: shw070@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26446135

  17. Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling

    NASA Astrophysics Data System (ADS)

    Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong

    2016-03-01

    In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.

  18. Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2013-01-01

    Summary In cancer diagnosis studies, high-throughput gene profiling has been extensively conducted, searching for genes whose expressions may serve as markers. Data generated from such studies have the “large d, small n” feature, with the number of genes profiled much larger than the sample size. Penalization has been extensively adopted for simultaneous estimation and marker selection. Because of small sample sizes, markers identified from the analysis of single datasets can be unsatisfactory. A cost-effective remedy is to conduct integrative analysis of multiple heterogeneous datasets. In this article, we investigate composite penalization methods for estimation and marker selection in integrative analysis. The proposed methods use the minimax concave penalty (MCP) as the outer penalty. Under the homogeneity model, the ridge penalty is adopted as the inner penalty. Under the heterogeneity model, the Lasso penalty and MCP are adopted as the inner penalty. Effective computational algorithms based on coordinate descent are developed. Numerical studies, including simulation and analysis of practical cancer datasets, show satisfactory performance of the proposed methods. PMID:24578589

  19. Should Lifestyles Be a Criterion for Healthcare Rationing? Evidence from a Portuguese Survey.

    PubMed

    Borges, Ana Pinto; Pinho, Micaela

    2017-11-18

    We evaluated whether different personal responsibilities should influence the allocation healthcare resources and whether attitudes toward the penalization of risk behaviours vary among individual's sociodemographic characteristics and health related habits. A cross-sectional study. We developed an online survey and made it available on various social networks for six months, during 2015. The sample covered the population aged 18 yr and older living in Portugal and we got 296 valid answers. Respondents faced four lifestyle choices: smoking, consumption of alcoholic beverages, unhealthy diet and illegal drug use, and should decide whether each one is relevant when establishing healthcare priorities. Logistic regressions were used to explore the relation of respondents' sociodemographic characteristics and health related behaviours in the likelihood of agreeing with the patients engaged in risky behaviour deserve a lower priority. Using illegal drugs was the behaviour most penalized (65.5%) followed by heavy drinkers (61.5%) and smoking (51.0%). The slight penalization was the unhealthy dieting (29.7%). The sociodemographic characteristics had different impact in penalization of the risks' behaviours. Moreover, the respondents who support the idea that unhealthy lifestyles should have a lower priority, all strongly agreed that the smoking habit (OR=36.05; 95% CI: 8.72, 149.12), the unhealthy diets (OR=12.87; 95% CI: 3.21, 51.53), drink alcohol in excess (OR=20.51; 95% CI: 12.09, 85.46) and illegal drug use (OR=73.21; 95% CI: 9.78, 97.83) must have a lower priority in the access to healthcare. The respondents accept the notion of rationing healthcare based on lifestyles.

  20. Boosting structured additive quantile regression for longitudinal childhood obesity data.

    PubMed

    Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael

    2013-07-25

    Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.

  1. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Category-Specific Comparison of Univariate Alerting Methods for Biosurveillance Decision Support

    PubMed Central

    Elbert, Yevgeniy; Hung, Vivian; Burkom, Howard

    2013-01-01

    Objective For a multi-source decision support application, we sought to match univariate alerting algorithms to surveillance data types to optimize detection performance. Introduction Temporal alerting algorithms commonly used in syndromic surveillance systems are often adjusted for data features such as cyclic behavior but are subject to overfitting or misspecification errors when applied indiscriminately. In a project for the Armed Forces Health Surveillance Center to enable multivariate decision support, we obtained 4.5 years of out-patient, prescription and laboratory test records from all US military treatment facilities. A proof-of-concept project phase produced 16 events with multiple evidence corroboration for comparison of alerting algorithms for detection performance. We used the representative streams from each data source to compare sensitivity of 6 algorithms to injected spikes, and we used all data streams from 16 known events to compare them for detection timeliness. Methods The six methods compared were: Holt-Winters generalized exponential smoothing method (1)automated choice between daily methods, regression and an exponential weighted moving average (2)adaptive daily Shewhart-type chartadaptive one-sided daily CUSUMEWMA applied to 7-day means with a trend correction; and7-day temporal scan statistic Sensitivity testing: We conducted comparative sensitivity testing for categories of time series with similar scales and seasonal behavior. We added multiples of the standard deviation of each time series as single-day injects in separate algorithm runs. For each candidate method, we then used as a sensitivity measure the proportion of these runs for which the output of each algorithm was below alerting thresholds estimated empirically for each algorithm using simulated data streams. We identified the algorithm(s) whose sensitivity was most consistently high for each data category. For each syndromic query applied to each data source (outpatient, lab test orders, and prescriptions), 502 authentic time series were derived, one for each reporting treatment facility. Data categories were selected in order to group time series with similar expected algorithm performance: Median > 100 < Median ≤ 10Median = 0Lag 7 Autocorrelation Coefficient ≥ 0.2Lag 7 Autocorrelation Coefficient < 0.2 Timeliness testing: For the timeliness testing, we avoided artificiality of simulated signals by measuring alerting detection delays in the 16 corroborated outbreaks. The multiple time series from these events gave a total of 141 time series with outbreak intervals for timeliness testing. The following measures were computed to quantify timeliness of detection: Median Detection Delay – median number of days to detect the outbreak.Penalized Mean Detection Delay –mean number of days to detect the outbreak with outbreak misses penalized as 1 day plus the maximum detection time. Results Based on the injection results, the Holt-Winters algorithm was most sensitive among time series with positive medians. The adaptive CUSUM and the Shewhart methods were most sensitive for data streams with median zero. Table 1 provides timeliness results using the 141 outbreak-associated streams on sparse (Median=0) and non-sparse data categories. [Insert table #1 here] Data median Detection Delay, days Holt-winters Regression EWMA Adaptive Shewhart Adaptive CUSUM 7-day Trend-adj. EWMA 7-day Temporal Scan Median 0 Median 3 2 4 2 4.5 2 Penalized Mean 7.2 7 6.6 6.2 7.3 7.6 Median >0 Median 2 2 2.5 2 6 4 Penalized Mean 6.1 7 7.2 7.1 7.7 6.6 The gray shading in the table 1 indicates methods with shortest detection delays for sparse and non-sparse data streams. The Holt-Winters method was again superior for non-sparse data. For data with median=0, the adaptive CUSUM was superior for a daily false alarm probability of 0.01, but the Shewhart method was timelier for more liberal thresholds. Conclusions Both kinds of detection performance analysis showed the method based on Holt-Winters exponential smoothing superior on non-sparse time series with day-of-week effects. The adaptive CUSUM and She-whart methods proved optimal on sparse data and data without weekly patterns.

  3. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  4. Assessing Hospital Performance After Percutaneous Coronary Intervention Using Big Data.

    PubMed

    Spertus, Jacob V; T Normand, Sharon-Lise; Wolf, Robert; Cioffi, Matt; Lovett, Ann; Rose, Sherri

    2016-11-01

    Although risk adjustment remains a cornerstone for comparing outcomes across hospitals, optimal strategies continue to evolve in the presence of many confounders. We compared conventional regression-based model to approaches particularly suited to leveraging big data. We assessed hospital all-cause 30-day excess mortality risk among 8952 adults undergoing percutaneous coronary intervention between October 1, 2011, and September 30, 2012, in 24 Massachusetts hospitals using clinical registry data linked with billing data. We compared conventional logistic regression models with augmented inverse probability weighted estimators and targeted maximum likelihood estimators to generate more efficient and unbiased estimates of hospital effects. We also compared a clinically informed and a machine-learning approach to confounder selection, using elastic net penalized regression in the latter case. Hospital excess risk estimates range from -1.4% to 2.0% across methods and confounder sets. Some hospitals were consistently classified as low or as high excess mortality outliers; others changed classification depending on the method and confounder set used. Switching from the clinically selected list of 11 confounders to a full set of 225 confounders increased the estimation uncertainty by an average of 62% across methods as measured by confidence interval length. Agreement among methods ranged from fair, with a κ statistic of 0.39 (SE: 0.16), to perfect, with a κ of 1 (SE: 0.0). Modern causal inference techniques should be more frequently adopted to leverage big data while minimizing bias in hospital performance assessments. © 2016 American Heart Association, Inc.

  5. Linear regression models for solvent accessibility prediction in proteins.

    PubMed

    Wagner, Michael; Adamczak, Rafał; Porollo, Aleksey; Meller, Jarosław

    2005-04-01

    The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple and computationally much more efficient linear SVR performs comparably to nonlinear models and thus can be used in order to facilitate further attempts to design more accurate RSA prediction methods, with applications to fold recognition and de novo protein structure prediction methods.

  6. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-01

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  7. Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer.

    PubMed

    Pineda, Silvia; Van Steen, Kristel; Malats, Núria

    2017-09-01

    Integrative analyses of several omics data are emerging. The data are usually generated from the same source material (i.e., tumor sample) representing one level of regulation. However, integrating different regulatory levels (i.e., blood) with those from tumor may also reveal important knowledge about the human genetic architecture. To model this multilevel structure, an integrative-expression quantitative trait loci (eQTL) analysis applying two-stage regression (2SR) was proposed. This approach first regressed tumor gene expression levels with tumor markers and the adjusted residuals from the previous model were then regressed with the germline genotypes measured in blood. Previously, we demonstrated that penalized regression methods in combination with a permutation-based MaxT method (Global-LASSO) is a promising tool to fix some of the challenges that high-throughput omics data analysis imposes. Here, we assessed whether Global-LASSO can also be applied when tumor and blood omics data are integrated. We further compared our strategy with two 2SR-approaches, one using multiple linear regression (2SR-MLR) and other using LASSO (2SR-LASSO). We applied the three models to integrate genomic, epigenomic, and transcriptomic data from tumor tissue with blood germline genotypes from 181 individuals with bladder cancer included in the TCGA Consortium. Global-LASSO provided a larger list of eQTLs than the 2SR methods, identified a previously reported eQTLs in prostate stem cell antigen (PSCA), and provided further clues on the complexity of APBEC3B loci, with a minimal false-positive rate not achieved by 2SR-MLR. It also represents an important contribution for omics integrative analysis because it is easy to apply and adaptable to any type of data. © 2017 WILEY PERIODICALS, INC.

  8. Simulation of confined magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume penalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.

    A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analyticalmore » solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.« less

  9. Functional linear models for zero-inflated count data with application to modeling hospitalizations in patients on dialysis.

    PubMed

    Sentürk, Damla; Dalrymple, Lorien S; Nguyen, Danh V

    2014-11-30

    We propose functional linear models for zero-inflated count data with a focus on the functional hurdle and functional zero-inflated Poisson (ZIP) models. Although the hurdle model assumes the counts come from a mixture of a degenerate distribution at zero and a zero-truncated Poisson distribution, the ZIP model considers a mixture of a degenerate distribution at zero and a standard Poisson distribution. We extend the generalized functional linear model framework with a functional predictor and multiple cross-sectional predictors to model counts generated by a mixture distribution. We propose an estimation procedure for functional hurdle and ZIP models, called penalized reconstruction, geared towards error-prone and sparsely observed longitudinal functional predictors. The approach relies on dimension reduction and pooling of information across subjects involving basis expansions and penalized maximum likelihood techniques. The developed functional hurdle model is applied to modeling hospitalizations within the first 2 years from initiation of dialysis, with a high percentage of zeros, in the Comprehensive Dialysis Study participants. Hospitalization counts are modeled as a function of sparse longitudinal measurements of serum albumin concentrations, patient demographics, and comorbidities. Simulation studies are used to study finite sample properties of the proposed method and include comparisons with an adaptation of standard principal components regression. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Neutron Tomography of a Fuel Cell: Statistical Learning Implementation of a Penalized Likelihood Method

    NASA Astrophysics Data System (ADS)

    Coakley, Kevin J.; Vecchia, Dominic F.; Hussey, Daniel S.; Jacobson, David L.

    2013-10-01

    At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.

  11. Integrative Bayesian variable selection with gene-based informative priors for genome-wide association studies.

    PubMed

    Zhang, Xiaoshuai; Xue, Fuzhong; Liu, Hong; Zhu, Dianwen; Peng, Bin; Wiemels, Joseph L; Yang, Xiaowei

    2014-12-10

    Genome-wide Association Studies (GWAS) are typically designed to identify phenotype-associated single nucleotide polymorphisms (SNPs) individually using univariate analysis methods. Though providing valuable insights into genetic risks of common diseases, the genetic variants identified by GWAS generally account for only a small proportion of the total heritability for complex diseases. To solve this "missing heritability" problem, we implemented a strategy called integrative Bayesian Variable Selection (iBVS), which is based on a hierarchical model that incorporates an informative prior by considering the gene interrelationship as a network. It was applied here to both simulated and real data sets. Simulation studies indicated that the iBVS method was advantageous in its performance with highest AUC in both variable selection and outcome prediction, when compared to Stepwise and LASSO based strategies. In an analysis of a leprosy case-control study, iBVS selected 94 SNPs as predictors, while LASSO selected 100 SNPs. The Stepwise regression yielded a more parsimonious model with only 3 SNPs. The prediction results demonstrated that the iBVS method had comparable performance with that of LASSO, but better than Stepwise strategies. The proposed iBVS strategy is a novel and valid method for Genome-wide Association Studies, with the additional advantage in that it produces more interpretable posterior probabilities for each variable unlike LASSO and other penalized regression methods.

  12. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    PubMed

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  13. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.

    PubMed

    Zhu, Ying; Tan, Tuck Lee

    2016-04-15

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  15. Multilevel poisson regression modelling for determining factors of dengue fever cases in bandung

    NASA Astrophysics Data System (ADS)

    Arundina, Davila Rubianti; Tantular, Bertho; Pontoh, Resa Septiani

    2017-03-01

    Scralatina or Dengue Fever is a kind of fever caused by serotype virus which Flavivirus genus and be known as Dengue Virus. Dengue Fever caused by Aedes Aegipty Mosquito bites who infected by a dengue virus. The study was conducted in 151 villages in Bandung. Health Analysts believes that there are two factors that affect the dengue cases, Internal factor (individual) and external factor (environment). The data who used in this research is hierarchical data. The method is used for hierarchical data modelling is multilevel method. Which is, the level 1 is village and level 2 is sub-district. According exploration data analysis, the suitable Multilevel Method is Random Intercept Model. Penalized Quasi Likelihood (PQL) approach on multilevel Poisson is a proper analysis to determine factors that affecting dengue cases in the city of Bandung. Clean and Healthy Behavior factor from the village level have an effect on the number of cases of dengue fever in the city of Bandung. Factor from the sub-district level has no effect.

  16. Bayes and empirical Bayes methods for reduced rank regression models in matched case-control studies.

    PubMed

    Satagopan, Jaya M; Sen, Ananda; Zhou, Qin; Lan, Qing; Rothman, Nathaniel; Langseth, Hilde; Engel, Lawrence S

    2016-06-01

    Matched case-control studies are popular designs used in epidemiology for assessing the effects of exposures on binary traits. Modern studies increasingly enjoy the ability to examine a large number of exposures in a comprehensive manner. However, several risk factors often tend to be related in a nontrivial way, undermining efforts to identify the risk factors using standard analytic methods due to inflated type-I errors and possible masking of effects. Epidemiologists often use data reduction techniques by grouping the prognostic factors using a thematic approach, with themes deriving from biological considerations. We propose shrinkage-type estimators based on Bayesian penalization methods to estimate the effects of the risk factors using these themes. The properties of the estimators are examined using extensive simulations. The methodology is illustrated using data from a matched case-control study of polychlorinated biphenyls in relation to the etiology of non-Hodgkin's lymphoma. © 2015, The International Biometric Society.

  17. Transforming RNA-Seq data to improve the performance of prognostic gene signatures.

    PubMed

    Zwiener, Isabella; Frisch, Barbara; Binder, Harald

    2014-01-01

    Gene expression measurements have successfully been used for building prognostic signatures, i.e for identifying a short list of important genes that can predict patient outcome. Mostly microarray measurements have been considered, and there is little advice available for building multivariable risk prediction models from RNA-Seq data. We specifically consider penalized regression techniques, such as the lasso and componentwise boosting, which can simultaneously consider all measurements and provide both, multivariable regression models for prediction and automated variable selection. However, they might be affected by the typical skewness, mean-variance-dependency or extreme values of RNA-Seq covariates and therefore could benefit from transformations of the latter. In an analytical part, we highlight preferential selection of covariates with large variances, which is problematic due to the mean-variance dependency of RNA-Seq data. In a simulation study, we compare different transformations of RNA-Seq data for potentially improving detection of important genes. Specifically, we consider standardization, the log transformation, a variance-stabilizing transformation, the Box-Cox transformation, and rank-based transformations. In addition, the prediction performance for real data from patients with kidney cancer and acute myeloid leukemia is considered. We show that signature size, identification performance, and prediction performance critically depend on the choice of a suitable transformation. Rank-based transformations perform well in all scenarios and can even outperform complex variance-stabilizing approaches. Generally, the results illustrate that the distribution and potential transformations of RNA-Seq data need to be considered as a critical step when building risk prediction models by penalized regression techniques.

  18. Transforming RNA-Seq Data to Improve the Performance of Prognostic Gene Signatures

    PubMed Central

    Zwiener, Isabella; Frisch, Barbara; Binder, Harald

    2014-01-01

    Gene expression measurements have successfully been used for building prognostic signatures, i.e for identifying a short list of important genes that can predict patient outcome. Mostly microarray measurements have been considered, and there is little advice available for building multivariable risk prediction models from RNA-Seq data. We specifically consider penalized regression techniques, such as the lasso and componentwise boosting, which can simultaneously consider all measurements and provide both, multivariable regression models for prediction and automated variable selection. However, they might be affected by the typical skewness, mean-variance-dependency or extreme values of RNA-Seq covariates and therefore could benefit from transformations of the latter. In an analytical part, we highlight preferential selection of covariates with large variances, which is problematic due to the mean-variance dependency of RNA-Seq data. In a simulation study, we compare different transformations of RNA-Seq data for potentially improving detection of important genes. Specifically, we consider standardization, the log transformation, a variance-stabilizing transformation, the Box-Cox transformation, and rank-based transformations. In addition, the prediction performance for real data from patients with kidney cancer and acute myeloid leukemia is considered. We show that signature size, identification performance, and prediction performance critically depend on the choice of a suitable transformation. Rank-based transformations perform well in all scenarios and can even outperform complex variance-stabilizing approaches. Generally, the results illustrate that the distribution and potential transformations of RNA-Seq data need to be considered as a critical step when building risk prediction models by penalized regression techniques. PMID:24416353

  19. Fisher's method of scoring in statistical image reconstruction: comparison of Jacobi and Gauss-Seidel iterative schemes.

    PubMed

    Hudson, H M; Ma, J; Green, P

    1994-01-01

    Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.

  20. Evaluating large-scale propensity score performance through real-world and synthetic data experiments.

    PubMed

    Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A

    2018-06-22

    Propensity score adjustment is a popular approach for confounding control in observational studies. Reliable frameworks are needed to determine relative propensity score performance in large-scale studies, and to establish optimal propensity score model selection methods. We detail a propensity score evaluation framework that includes synthetic and real-world data experiments. Our synthetic experimental design extends the 'plasmode' framework and simulates survival data under known effect sizes, and our real-world experiments use a set of negative control outcomes with presumed null effect sizes. In reproductions of two published cohort studies, we compare two propensity score estimation methods that contrast in their model selection approach: L1-regularized regression that conducts a penalized likelihood regression, and the 'high-dimensional propensity score' (hdPS) that employs a univariate covariate screen. We evaluate methods on a range of outcome-dependent and outcome-independent metrics. L1-regularization propensity score methods achieve superior model fit, covariate balance and negative control bias reduction compared with the hdPS. Simulation results are mixed and fluctuate with simulation parameters, revealing a limitation of simulation under the proportional hazards framework. Including regularization with the hdPS reduces commonly reported non-convergence issues but has little effect on propensity score performance. L1-regularization incorporates all covariates simultaneously into the propensity score model and offers propensity score performance superior to the hdPS marginal screen.

  1. Machine learning approaches to the social determinants of health in the health and retirement study.

    PubMed

    Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David

    2018-04-01

    Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus <0.3 for all others). Across machine learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.

  2. Variable selection and model choice in geoadditive regression models.

    PubMed

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  3. Generic Feature Selection with Short Fat Data

    PubMed Central

    Clarke, B.; Chu, J.-H.

    2014-01-01

    SUMMARY Consider a regression problem in which there are many more explanatory variables than data points, i.e., p ≫ n. Essentially, without reducing the number of variables inference is impossible. So, we group the p explanatory variables into blocks by clustering, evaluate statistics on the blocks and then regress the response on these statistics under a penalized error criterion to obtain estimates of the regression coefficients. We examine the performance of this approach for a variety of choices of n, p, classes of statistics, clustering algorithms, penalty terms, and data types. When n is not large, the discrimination over number of statistics is weak, but computations suggest regressing on approximately [n/K] statistics where K is the number of blocks formed by a clustering algorithm. Small deviations from this are observed when the blocks of variables are of very different sizes. Larger deviations are observed when the penalty term is an Lq norm with high enough q. PMID:25346546

  4. Structural Analysis of Women’s Heptathlon

    PubMed Central

    Gassmann, Freya; Fröhlich, Michael; Emrich, Eike

    2016-01-01

    The heptathlon comprises the results of seven single disciplines, assuming an equal influence from each discipline, depending on the measured performance. Data analysis was based on the data recorded for the individual performances of the 10 winning heptathletes in the World Athletics Championships from 1987 to 2013 and the Olympic Games from 1988 to 2012. In addition to descriptive analysis methods, correlations, bivariate and multivariate linear regressions, and panel data regressions were used. The transformation of the performances from seconds, centimeters, and meters into points showed that the individual disciplines do not equally affect the overall competition result. The currently valid conversion formula for the run, jump, and throw disciplines prefers the sprint and jump disciplines but penalizes the athletes performing in the 800 m run, javelin throw, and shotput disciplines. Furthermore, 21% to 48% of the variance of the sum of points can be attributed to the performances in the disciplines of long jump, 200 m sprint, 100 m hurdles, and high jump. To balance the effects of the single disciplines in the heptathlon, the formula to calculate points should be reevaluated. PMID:29910260

  5. Spatially Modeling the Effects of Meteorological Drivers of PM2.5 in the Eastern United States via a Local Linear Penalized Quantile Regression Estimator.

    PubMed

    Russell, Brook T; Wang, Dewei; McMahan, Christopher S

    2017-08-01

    Fine particulate matter (PM 2.5 ) poses a significant risk to human health, with long-term exposure being linked to conditions such as asthma, chronic bronchitis, lung cancer, atherosclerosis, etc. In order to improve current pollution control strategies and to better shape public policy, the development of a more comprehensive understanding of this air pollutant is necessary. To this end, this work attempts to quantify the relationship between certain meteorological drivers and the levels of PM 2.5 . It is expected that the set of important meteorological drivers will vary both spatially and within the conditional distribution of PM 2.5 levels. To account for these characteristics, a new local linear penalized quantile regression methodology is developed. The proposed estimator uniquely selects the set of important drivers at every spatial location and for each quantile of the conditional distribution of PM 2.5 levels. The performance of the proposed methodology is illustrated through simulation, and it is then used to determine the association between several meteorological drivers and PM 2.5 over the Eastern United States (US). This analysis suggests that the primary drivers throughout much of the Eastern US tend to differ based on season and geographic location, with similarities existing between "typical" and "high" PM 2.5 levels.

  6. CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION.

    PubMed

    Wang, Lan; Kim, Yongdai; Li, Runze

    2013-10-01

    We investigate high-dimensional non-convex penalized regression, where the number of covariates may grow at an exponential rate. Although recent asymptotic theory established that there exists a local minimum possessing the oracle property under general conditions, it is still largely an open problem how to identify the oracle estimator among potentially multiple local minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown factors and is hard to estimate. To address these two challenging issues, we first prove that an easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains the oracle estimator with probability approaching one. Furthermore, we propose a high-dimensional BIC criterion and show that it can be applied to the solution path to select the optimal tuning parameter which asymptotically identifies the oracle estimator. The theory for a general class of non-convex penalties in the ultra-high dimensional setup is established when the random errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP algorithm combined with the proposed high-dimensional BIC has desirable performance in identifying the underlying sparsity pattern for high-dimensional data analysis.

  7. CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION

    PubMed Central

    Wang, Lan; Kim, Yongdai; Li, Runze

    2014-01-01

    We investigate high-dimensional non-convex penalized regression, where the number of covariates may grow at an exponential rate. Although recent asymptotic theory established that there exists a local minimum possessing the oracle property under general conditions, it is still largely an open problem how to identify the oracle estimator among potentially multiple local minima. There are two main obstacles: (1) due to the presence of multiple minima, the solution path is nonunique and is not guaranteed to contain the oracle estimator; (2) even if a solution path is known to contain the oracle estimator, the optimal tuning parameter depends on many unknown factors and is hard to estimate. To address these two challenging issues, we first prove that an easy-to-calculate calibrated CCCP algorithm produces a consistent solution path which contains the oracle estimator with probability approaching one. Furthermore, we propose a high-dimensional BIC criterion and show that it can be applied to the solution path to select the optimal tuning parameter which asymptotically identifies the oracle estimator. The theory for a general class of non-convex penalties in the ultra-high dimensional setup is established when the random errors follow the sub-Gaussian distribution. Monte Carlo studies confirm that the calibrated CCCP algorithm combined with the proposed high-dimensional BIC has desirable performance in identifying the underlying sparsity pattern for high-dimensional data analysis. PMID:24948843

  8. Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions.

    PubMed

    Liu, Hongcheng; Yao, Tao; Li, Runze; Ye, Yinyu

    2017-11-01

    This paper concerns the folded concave penalized sparse linear regression (FCPSLR), a class of popular sparse recovery methods. Although FCPSLR yields desirable recovery performance when solved globally, computing a global solution is NP-complete. Despite some existing statistical performance analyses on local minimizers or on specific FCPSLR-based learning algorithms, it still remains open questions whether local solutions that are known to admit fully polynomial-time approximation schemes (FPTAS) may already be sufficient to ensure the statistical performance, and whether that statistical performance can be non-contingent on the specific designs of computing procedures. To address the questions, this paper presents the following threefold results: (i) Any local solution (stationary point) is a sparse estimator, under some conditions on the parameters of the folded concave penalties. (ii) Perhaps more importantly, any local solution satisfying a significant subspace second-order necessary condition (S 3 ONC), which is weaker than the second-order KKT condition, yields a bounded error in approximating the true parameter with high probability. In addition, if the minimal signal strength is sufficient, the S 3 ONC solution likely recovers the oracle solution. This result also explicates that the goal of improving the statistical performance is consistent with the optimization criteria of minimizing the suboptimality gap in solving the non-convex programming formulation of FCPSLR. (iii) We apply (ii) to the special case of FCPSLR with minimax concave penalty (MCP) and show that under the restricted eigenvalue condition, any S 3 ONC solution with a better objective value than the Lasso solution entails the strong oracle property. In addition, such a solution generates a model error (ME) comparable to the optimal but exponential-time sparse estimator given a sufficient sample size, while the worst-case ME is comparable to the Lasso in general. Furthermore, to guarantee the S 3 ONC admits FPTAS.

  9. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  10. On self-propagating methodological flaws in performance normalization for strength and power sports.

    PubMed

    Arandjelović, Ognjen

    2013-06-01

    Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

  11. 40 CFR 33.410 - Can a recipient be penalized for failing to meet its fair share objectives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Can a recipient be penalized for failing to meet its fair share objectives? 33.410 Section 33.410 Protection of Environment ENVIRONMENTAL... penalized for failing to meet its fair share objectives? A recipient cannot be penalized, or treated by EPA...

  12. 40 CFR 33.410 - Can a recipient be penalized for failing to meet its fair share objectives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Can a recipient be penalized for failing to meet its fair share objectives? 33.410 Section 33.410 Protection of Environment ENVIRONMENTAL... penalized for failing to meet its fair share objectives? A recipient cannot be penalized, or treated by EPA...

  13. 40 CFR 33.410 - Can a recipient be penalized for failing to meet its fair share objectives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Can a recipient be penalized for failing to meet its fair share objectives? 33.410 Section 33.410 Protection of Environment ENVIRONMENTAL... penalized for failing to meet its fair share objectives? A recipient cannot be penalized, or treated by EPA...

  14. 40 CFR 33.410 - Can a recipient be penalized for failing to meet its fair share objectives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Can a recipient be penalized for failing to meet its fair share objectives? 33.410 Section 33.410 Protection of Environment ENVIRONMENTAL... penalized for failing to meet its fair share objectives? A recipient cannot be penalized, or treated by EPA...

  15. 40 CFR 33.410 - Can a recipient be penalized for failing to meet its fair share objectives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Can a recipient be penalized for failing to meet its fair share objectives? 33.410 Section 33.410 Protection of Environment ENVIRONMENTAL... penalized for failing to meet its fair share objectives? A recipient cannot be penalized, or treated by EPA...

  16. Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders.

    PubMed

    Kim, Dongchul; Kang, Mingon; Biswas, Ashis; Liu, Chunyu; Gao, Jean

    2016-08-10

    Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the limitations of standalone methods through complementary integration. Second, sparse linear regression that is penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were suggested in state of the art methods for network inference but they are not effective for a small sample size data and also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high correlation or another true regulator. We present two novel network inference methods based on the integration of three different criteria, (i) z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency between two genes, and (iii) linear regression-based feature selection. Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better performance overcoming the limitations of bootstrapping as mentioned above. In this work, there are three main contributions. First, our z score-based method to measure gene expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was applied to inferences of gene regulatory network associated with psychiatric disorders.

  17. Extending the Distributed Lag Model framework to handle chemical mixtures.

    PubMed

    Bello, Ghalib A; Arora, Manish; Austin, Christine; Horton, Megan K; Wright, Robert O; Gennings, Chris

    2017-07-01

    Distributed Lag Models (DLMs) are used in environmental health studies to analyze the time-delayed effect of an exposure on an outcome of interest. Given the increasing need for analytical tools for evaluation of the effects of exposure to multi-pollutant mixtures, this study attempts to extend the classical DLM framework to accommodate and evaluate multiple longitudinally observed exposures. We introduce 2 techniques for quantifying the time-varying mixture effect of multiple exposures on an outcome of interest. Lagged WQS, the first technique, is based on Weighted Quantile Sum (WQS) regression, a penalized regression method that estimates mixture effects using a weighted index. We also introduce Tree-based DLMs, a nonparametric alternative for assessment of lagged mixture effects. This technique is based on the Random Forest (RF) algorithm, a nonparametric, tree-based estimation technique that has shown excellent performance in a wide variety of domains. In a simulation study, we tested the feasibility of these techniques and evaluated their performance in comparison to standard methodology. Both methods exhibited relatively robust performance, accurately capturing pre-defined non-linear functional relationships in different simulation settings. Further, we applied these techniques to data on perinatal exposure to environmental metal toxicants, with the goal of evaluating the effects of exposure on neurodevelopment. Our methods identified critical neurodevelopmental windows showing significant sensitivity to metal mixtures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics

    PubMed Central

    Hadjicharalambous, Myrianthi; Lee, Jack; Smith, Nicolas P.; Nordsletten, David A.

    2014-01-01

    The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce incompressibility and compressibility in models of cardiac mechanics. In this paper we show how both formulations may be equivalently thought of as a weakly penalized system derived from the statically condensed Perturbed Lagrangian formulation, which may be directly discretized maintaining the simplicity of penalty formulations with the convergence characteristics of LM techniques. A modified Shamanskii–Newton–Raphson scheme is introduced to enhance the nonlinear convergence of the weakly penalized system and, exploiting its equivalence, modifications are developed for the penalty form. Focusing on accuracy, we proceed to study the convergence behavior of these approaches using different interpolation schemes for both a simple test problem and more complex models of cardiac mechanics. Our results illustrate the well-known influence of locking phenomena on the penalty approach (particularly for lower order schemes) and its effect on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization of the weakly penalized form produces similar convergence behavior to mixed formulations while avoiding the use of an additional variable. Combining a simple structure which allows the solution of computationally challenging problems with good convergence characteristics, the weakly penalized form provides an accurate and efficient alternative to incompressibility and compressibility in cardiac mechanics. PMID:25187672

  19. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.

    PubMed

    Hadjicharalambous, Myrianthi; Lee, Jack; Smith, Nicolas P; Nordsletten, David A

    2014-06-01

    The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce incompressibility and compressibility in models of cardiac mechanics. In this paper we show how both formulations may be equivalently thought of as a weakly penalized system derived from the statically condensed Perturbed Lagrangian formulation, which may be directly discretized maintaining the simplicity of penalty formulations with the convergence characteristics of LM techniques. A modified Shamanskii-Newton-Raphson scheme is introduced to enhance the nonlinear convergence of the weakly penalized system and, exploiting its equivalence, modifications are developed for the penalty form. Focusing on accuracy, we proceed to study the convergence behavior of these approaches using different interpolation schemes for both a simple test problem and more complex models of cardiac mechanics. Our results illustrate the well-known influence of locking phenomena on the penalty approach (particularly for lower order schemes) and its effect on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization of the weakly penalized form produces similar convergence behavior to mixed formulations while avoiding the use of an additional variable. Combining a simple structure which allows the solution of computationally challenging problems with good convergence characteristics, the weakly penalized form provides an accurate and efficient alternative to incompressibility and compressibility in cardiac mechanics.

  20. Race Making in a Penal Institution.

    PubMed

    Walker, Michael L

    2016-01-01

    This article provides a ground-level investigation into the lives of penal inmates, linking the literature on race making and penal management to provide an understanding of racial formation processes in a modern penal institution. Drawing on 135 days of ethnographic data collected as an inmate in a Southern California county jail system, the author argues that inmates are subjected to two mutually constitutive racial projects--one institutional and the other microinteractional. Operating in symbiosis within a narrative of risk management, these racial projects increase (rather than decrease) incidents of intraracial violence and the potential for interracial violence. These findings have implications for understanding the process of racialization and evaluating the effectiveness of penal management strategies.

  1. Use of atropine penalization to treat amblyopia in UK orthoptic practice.

    PubMed

    Piano, Marianne; O'Connor, Anna R; Newsham, David

    2014-01-01

    To compare clinical practice patterns regarding atropine penalization use by UK orthoptists to the current evidence base and identify any existing barriers against use of AP as first-line treatment. An online survey was designed to assess current practice patterns of UK orthoptists using atropine penalization. They were asked to identify issues limiting their use of atropine penalization and give opinions on its effectiveness compared to occlusion. Descriptive statistics and content analysis were applied to the results. Responses were obtained from 151 orthoptists throughout the United Kingdom. The main perceived barriers to use of atropine penalization were inability to prescribe atropine and supply difficulties. However, respondents also did not consider atropine penalization as effective as occlusion in treating amblyopia, contrary to recent research findings. Patient selection criteria and treatment administration largely follow current evidence. More orthoptists use atropine penalization as first-line treatment than previously reported. Practitioners tend to closely follow the current evidence base when using atropine penalization, but reluctance in offering it as first-line treatment or providing a choice for parents between occlusion and atropine still remains. This may result from concerns regarding atropine's general efficacy, side effects, and risk of reverse amblyopia. Alternatively, as demonstrated in other areas of medicine, it may reflect the inherent delay of research findings translating to clinical practice changes. Copyright 2014, SLACK Incorporated.

  2. Estimation of Noise Properties for TV-regularized Image Reconstruction in Computed Tomography

    PubMed Central

    Sánchez, Adrian A.

    2016-01-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR. PMID:26308968

  3. Estimation of noise properties for TV-regularized image reconstruction in computed tomography.

    PubMed

    Sánchez, Adrian A

    2015-09-21

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  4. Estimation of noise properties for TV-regularized image reconstruction in computed tomography

    NASA Astrophysics Data System (ADS)

    Sánchez, Adrian A.

    2015-09-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128× 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  5. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification.

    PubMed

    Fan, Jianqing; Feng, Yang; Jiang, Jiancheng; Tong, Xin

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.

  6. Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

    PubMed Central

    Feng, Yang; Jiang, Jiancheng; Tong, Xin

    2015-01-01

    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing. PMID:27185970

  7. This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.

    PubMed

    Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M

    2012-03-01

    Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.

  8. Consistent model identification of varying coefficient quantile regression with BIC tuning parameter selection

    PubMed Central

    Zheng, Qi; Peng, Limin

    2016-01-01

    Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a BIC-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure. PMID:28008212

  9. Robust Gaussian Graphical Modeling via l1 Penalization

    PubMed Central

    Sun, Hokeun; Li, Hongzhe

    2012-01-01

    Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775

  10. Bayesian feature selection for high-dimensional linear regression via the Ising approximation with applications to genomics.

    PubMed

    Fisher, Charles K; Mehta, Pankaj

    2015-06-01

    Feature selection, identifying a subset of variables that are relevant for predicting a response, is an important and challenging component of many methods in statistics and machine learning. Feature selection is especially difficult and computationally intensive when the number of variables approaches or exceeds the number of samples, as is often the case for many genomic datasets. Here, we introduce a new approach--the Bayesian Ising Approximation (BIA)-to rapidly calculate posterior probabilities for feature relevance in L2 penalized linear regression. In the regime where the regression problem is strongly regularized by the prior, we show that computing the marginal posterior probabilities for features is equivalent to computing the magnetizations of an Ising model with weak couplings. Using a mean field approximation, we show it is possible to rapidly compute the feature selection path described by the posterior probabilities as a function of the L2 penalty. We present simulations and analytical results illustrating the accuracy of the BIA on some simple regression problems. Finally, we demonstrate the applicability of the BIA to high-dimensional regression by analyzing a gene expression dataset with nearly 30 000 features. These results also highlight the impact of correlations between features on Bayesian feature selection. An implementation of the BIA in C++, along with data for reproducing our gene expression analyses, are freely available at http://physics.bu.edu/∼pankajm/BIACode. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Variable Selection with Prior Information for Generalized Linear Models via the Prior LASSO Method.

    PubMed

    Jiang, Yuan; He, Yunxiao; Zhang, Heping

    LASSO is a popular statistical tool often used in conjunction with generalized linear models that can simultaneously select variables and estimate parameters. When there are many variables of interest, as in current biological and biomedical studies, the power of LASSO can be limited. Fortunately, so much biological and biomedical data have been collected and they may contain useful information about the importance of certain variables. This paper proposes an extension of LASSO, namely, prior LASSO (pLASSO), to incorporate that prior information into penalized generalized linear models. The goal is achieved by adding in the LASSO criterion function an additional measure of the discrepancy between the prior information and the model. For linear regression, the whole solution path of the pLASSO estimator can be found with a procedure similar to the Least Angle Regression (LARS). Asymptotic theories and simulation results show that pLASSO provides significant improvement over LASSO when the prior information is relatively accurate. When the prior information is less reliable, pLASSO shows great robustness to the misspecification. We illustrate the application of pLASSO using a real data set from a genome-wide association study.

  12. 7 CFR 1484.73 - Are Cooperators penalized for failing to make required contributions?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Are Cooperators penalized for failing to make... Cooperators penalized for failing to make required contributions? A Cooperator's contribution requirement is specified in the Cooperator program allocation letter. If a Cooperator fails to contribute the amount...

  13. 7 CFR 1484.73 - Are Cooperators penalized for failing to make required contributions?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Are Cooperators penalized for failing to make... Cooperators penalized for failing to make required contributions? A Cooperator's contribution requirement is specified in the Cooperator program allocation letter. If a Cooperator fails to contribute the amount...

  14. 7 CFR 1484.73 - Are Cooperators penalized for failing to make required contributions?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Are Cooperators penalized for failing to make... Cooperators penalized for failing to make required contributions? A Cooperator's contribution requirement is specified in the Cooperator program allocation letter. If a Cooperator fails to contribute the amount...

  15. 7 CFR 1484.73 - Are Cooperators penalized for failing to make required contributions?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Are Cooperators penalized for failing to make... § 1484.73 Are Cooperators penalized for failing to make required contributions? A Cooperator's contribution requirement is specified in the Cooperator program allocation letter. If a Cooperator fails to...

  16. 7 CFR 1484.73 - Are Cooperators penalized for failing to make required contributions?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Are Cooperators penalized for failing to make... § 1484.73 Are Cooperators penalized for failing to make required contributions? A Cooperator's contribution requirement is specified in the Cooperator program allocation letter. If a Cooperator fails to...

  17. [Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].

    PubMed

    Cermeño Zambrano, Fernando G De J

    2002-01-01

    The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise.

  18. A powerful and flexible approach to the analysis of RNA sequence count data.

    PubMed

    Zhou, Yi-Hui; Xia, Kai; Wright, Fred A

    2011-10-01

    A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean-variance relationships provides a flexible testing regimen that 'borrows' information across genes, while easily incorporating design effects and additional covariates. We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean-variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary data are available at Bioinformatics online.

  19. [The clinical predictors of heteroaggressive behaviour of the women serving sentence in penitentiary].

    PubMed

    Shaklein, K N; Bardenshtein, L M; Demcheva, N K

    To identify clinical predictors of heteroaggressive behavior. Three hundreds and three women serving sentence in a penal colony were examined using clinical, neurologic and statistical methods. The main group consisted of 225 women with heteroaggressive behavior, the control group included 78 women without aggressive behavior. Differences between the main and control groups in the structure of mental disorders and key syndromes were revealed. The authors conclude that the states with elements of dysphoria, dysthymia, decompensation of personality disorders, which are defined in the various forms of mental pathology, are the most significant predictors of heteroaggressive behavior in women in the penal colony.

  20. Oracle estimation of parametric models under boundary constraints.

    PubMed

    Wong, Kin Yau; Goldberg, Yair; Fine, Jason P

    2016-12-01

    In many classical estimation problems, the parameter space has a boundary. In most cases, the standard asymptotic properties of the estimator do not hold when some of the underlying true parameters lie on the boundary. However, without knowledge of the true parameter values, confidence intervals constructed assuming that the parameters lie in the interior are generally over-conservative. A penalized estimation method is proposed in this article to address this issue. An adaptive lasso procedure is employed to shrink the parameters to the boundary, yielding oracle inference which adapt to whether or not the true parameters are on the boundary. When the true parameters are on the boundary, the inference is equivalent to that which would be achieved with a priori knowledge of the boundary, while if the converse is true, the inference is equivalent to that which is obtained in the interior of the parameter space. The method is demonstrated under two practical scenarios, namely the frailty survival model and linear regression with order-restricted parameters. Simulation studies and real data analyses show that the method performs well with realistic sample sizes and exhibits certain advantages over standard methods. © 2016, The International Biometric Society.

  1. 27 CFR 19.957 - Instructions to compute bond penal sum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Instructions to compute bond penal sum. 19.957 Section 19.957 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Fuel Use Bonds § 19.957 Instructions to compute bond penal sum. (a) Medium plants. To find the required...

  2. Use of a machine learning framework to predict substance use disorder treatment success

    PubMed Central

    Kelmansky, Diana; van der Laan, Mark; Sahker, Ethan; Jones, DeShauna; Arndt, Stephan

    2017-01-01

    There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed. PMID:28394905

  3. Use of a machine learning framework to predict substance use disorder treatment success.

    PubMed

    Acion, Laura; Kelmansky, Diana; van der Laan, Mark; Sahker, Ethan; Jones, DeShauna; Arndt, Stephan

    2017-01-01

    There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed.

  4. Patch-based image reconstruction for PET using prior-image derived dictionaries

    NASA Astrophysics Data System (ADS)

    Tahaei, Marzieh S.; Reader, Andrew J.

    2016-09-01

    In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.

  5. Structured functional additive regression in reproducing kernel Hilbert spaces.

    PubMed

    Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen

    2014-06-01

    Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application.

  6. 49 CFR 26.47 - Can recipients be penalized for failing to meet overall goals?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Can recipients be penalized for failing to meet... Goals, Good Faith Efforts, and Counting § 26.47 Can recipients be penalized for failing to meet overall... rule, because your DBE participation falls short of your overall goal, unless you have failed to...

  7. 43 CFR 4170.2-1 - Penal provisions under the Taylor Grazing Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Penal provisions under the Taylor Grazing Act. 4170.2-1 Section 4170.2-1 Public Lands: Interior Regulations Relating to Public Lands (Continued...-EXCLUSIVE OF ALASKA Penalties § 4170.2-1 Penal provisions under the Taylor Grazing Act. Under section 2 of...

  8. 38 CFR 14.560 - Procedure where violation of penal statutes is involved including those offenses coming within...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Procedure where violation of penal statutes is involved including those offenses coming within the purview of the Assimilative... where violation of penal statutes is involved including those offenses coming within the purview of the...

  9. 38 CFR 14.560 - Procedure where violation of penal statutes is involved including those offenses coming within...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Procedure where violation of penal statutes is involved including those offenses coming within the purview of the Assimilative... where violation of penal statutes is involved including those offenses coming within the purview of the...

  10. 38 CFR 14.560 - Procedure where violation of penal statutes is involved including those offenses coming within...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Procedure where violation of penal statutes is involved including those offenses coming within the purview of the Assimilative... where violation of penal statutes is involved including those offenses coming within the purview of the...

  11. 38 CFR 14.560 - Procedure where violation of penal statutes is involved including those offenses coming within...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Procedure where violation of penal statutes is involved including those offenses coming within the purview of the Assimilative... where violation of penal statutes is involved including those offenses coming within the purview of the...

  12. 38 CFR 14.560 - Procedure where violation of penal statutes is involved including those offenses coming within...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Procedure where violation of penal statutes is involved including those offenses coming within the purview of the Assimilative... where violation of penal statutes is involved including those offenses coming within the purview of the...

  13. Conventional occlusion versus pharmacologic penalization for amblyopia.

    PubMed

    Li, Tianjing; Shotton, Kate

    2009-10-07

    Amblyopia is defined as defective visual acuity in one or both eyes without demonstrable abnormality of the visual pathway, and is not immediately resolved by wearing glasses. To assess the effectiveness and safety of conventional occlusion versus atropine penalization for amblyopia. We searched CENTRAL, MEDLINE, EMBASE, LILACS, the WHO International Clinical Trials Registry Platform, preference lists, science citation index and ongoing trials up to June 2009. We included randomized/quasi-randomized controlled trials comparing conventional occlusion to atropine penalization for amblyopia. Two authors independently screened abstracts and full text articles, abstracted data, and assessed the risk of bias. Three trials with a total of 525 amblyopic eyes were included. One trial was assessed as having a low risk of bias among these three trials, and one was assessed as having a high risk of bias.Evidence from three trials suggests atropine penalization is as effective as conventional occlusion. One trial found similar improvement in vision at six and 24 months. At six months, visual acuity in the amblyopic eye improved from baseline 3.16 lines in the occlusion and 2.84 lines in the atropine group (mean difference 0.034 logMAR; 95% confidence interval (CI) 0.005 to 0.064 logMAR). At 24 months, additional improvement was seen in both groups; but there continued to be no meaningful difference (mean difference 0.01 logMAR; 95% CI -0.02 to 0.04 logMAR). The second trial reported atropine to be more effective than occlusion. At six months, visual acuity improved 1.8 lines in the patching group and 3.4 lines in the atropine penalization group, and was in favor of atropine (mean difference -0.16 logMAR; 95% CI -0.23 to -0.09 logMAR). Different occlusion modalities were used in these two trials. The third trial had inherent methodological flaws and limited inference could be drawn.No difference in ocular alignment, stereo acuity and sound eye visual acuity between occlusion and atropine penalization was found. Although both treatments were well tolerated, compliance was better in atropine. Atropine penalization costs less than conventional occlusion. The results indicate that atropine penalization is as effective as conventional occlusion. Both conventional occlusion and atropine penalization produce visual acuity improvement in the amblyopic eye. Atropine penalization appears to be as effective as conventional occlusion, although the magnitude of improvement differed among the three trials. Atropine penalization can be used as first line treatment for amblyopia.

  14. On the advancement of therapeutic penality: therapeutic authority, personality science and the therapeutic community.

    PubMed

    McBride, Ruari-Santiago

    2017-09-01

    In this article I examine the advancement of therapeutic penality in the UK, a penal philosophy that reimagines prison policy, practices and environments utilising psychological knowledge. Adopting a historical approach, I show how modern therapeutic penality is linked to the emergence of personality science in the nineteenth century and the development of the democratic therapeutic community (DTC) model in the twentieth century. I outline how at the turn of the twenty-first century a catalytic event generated a moral panic that led the British government to mobilise psychological knowledge and technologies in an attempt to manage dangerous people with severe personality disorder. Tracing subsequent developments, I argue psychological ways of talking, thinking and acting have obtained unparalleled salience in domains of penality and, in turn, radically transformed the conditions of imprisonment. © 2017 Foundation for the Sociology of Health & Illness.

  15. Penalized gaussian process regression and classification for high-dimensional nonlinear data.

    PubMed

    Yi, G; Shi, J Q; Choi, T

    2011-12-01

    The model based on Gaussian process (GP) prior and a kernel covariance function can be used to fit nonlinear data with multidimensional covariates. It has been used as a flexible nonparametric approach for curve fitting, classification, clustering, and other statistical problems, and has been widely applied to deal with complex nonlinear systems in many different areas particularly in machine learning. However, it is a challenging problem when the model is used for the large-scale data sets and high-dimensional data, for example, for the meat data discussed in this article that have 100 highly correlated covariates. For such data, it suffers from large variance of parameter estimation and high predictive errors, and numerically, it suffers from unstable computation. In this article, penalized likelihood framework will be applied to the model based on GPs. Different penalties will be investigated, and their ability in application given to suit the characteristics of GP models will be discussed. The asymptotic properties will also be discussed with the relevant proofs. Several applications to real biomechanical and bioinformatics data sets will be reported. © 2011, The International Biometric Society No claim to original US government works.

  16. A Penalized Robust Method for Identifying Gene-Environment Interactions

    PubMed Central

    Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Xie, Yang; Ma, Shuangge

    2015-01-01

    In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model mis-specification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications. PMID:24616063

  17. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    PubMed Central

    2010-01-01

    Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters. PMID:21034451

  18. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    NASA Astrophysics Data System (ADS)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.

  19. School Crime Handbook. Summary of California Penal and Civil Laws Pertaining to Crimes Committed against Persons or Property on School Grounds.

    ERIC Educational Resources Information Center

    California State Office of the Attorney General, Sacramento.

    This handbook was prepared to ensure that, as required by section 626.1 of the California Penal Code in 1984, "students, parents, and all school officials and employees have access to a concise, easily understandable summary of California penal and civil law pertaining to crimes committed against persons or property on school grounds."…

  20. A powerful and flexible approach to the analysis of RNA sequence count data

    PubMed Central

    Zhou, Yi-Hui; Xia, Kai; Wright, Fred A.

    2011-01-01

    Motivation: A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean–variance relationships provides a flexible testing regimen that ‘borrows’ information across genes, while easily incorporating design effects and additional covariates. Results: We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean–variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. Availability: An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq Contact: yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21810900

  1. Critical evaluation of methods to incorporate entropy loss upon binding in high-throughput docking.

    PubMed

    Salaniwal, Sumeet; Manas, Eric S; Alvarez, Juan C; Unwalla, Rayomand J

    2007-02-01

    Proper accounting of the positional/orientational/conformational entropy loss associated with protein-ligand binding is important to obtain reliable predictions of binding affinity. Herein, we critically examine two simplified statistical mechanics-based approaches, namely a constant penalty per rotor method, and a more rigorous method, referred to here as the partition function-based scoring (PFS) method, to account for such entropy losses in high-throughput docking calculations. Our results on the estrogen receptor beta and dihydrofolate reductase proteins demonstrate that, while the constant penalty method over-penalizes molecules for their conformational flexibility, the PFS method behaves in a more "DeltaG-like" manner by penalizing different rotors differently depending on their residual entropy in the bound state. Furthermore, in contrast to no entropic penalty or the constant penalty approximation, the PFS method does not exhibit any bias towards either rigid or flexible molecules in the hit list. Preliminary enrichment studies using a lead-like random molecular database suggest that an accurate representation of the "true" energy landscape of the protein-ligand complex is critical for reliable predictions of relative binding affinities by the PFS method. Copyright 2006 Wiley-Liss, Inc.

  2. $L^1$ penalization of volumetric dose objectives in optimal control of PDEs

    DOE PAGES

    Barnard, Richard C.; Clason, Christian

    2017-02-11

    This work is concerned with a class of PDE-constrained optimization problems that are motivated by an application in radiotherapy treatment planning. Here the primary design objective is to minimize the volume where a functional of the state violates a prescribed level, but prescribing these levels in the form of pointwise state constraints leads to infeasible problems. We therefore propose an alternative approach based on L 1 penalization of the violation that is also applicable when state constraints are infeasible. We establish well-posedness of the corresponding optimal control problem, derive first-order optimality conditions, discuss convergence of minimizers as the penalty parametermore » tends to infinity, and present a semismooth Newton method for their efficient numerical solution. Finally, the performance of this method for a model problem is illustrated and contrasted with an alternative approach based on (regularized) state constraints.« less

  3. MO-DE-207A-10: One-Step CT Reconstruction for Metal Artifact Reduction by a Modification of Penalized Weighted Least-Squares (PWLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J

    Purpose: Metal objects create severe artifacts in kilo-voltage (kV) CT image reconstructions due to the high attenuation coefficients of high atomic number objects. Most of the techniques devised to reduce this artifact utilize a two-step approach, which do not reliably yield the qualified reconstructed images. Thus, for accuracy and simplicity, this work presents a one-step reconstruction method based on a modified penalized weighted least-squares (PWLS) technique. Methods: Existing techniques for metal artifact reduction mostly adopt a two-step approach, which conduct additional reconstruction with the modified projection data from the initial reconstruction. This procedure does not consistently perform well due tomore » the uncertainties in manipulating the metal-contaminated projection data by thresholding and linear interpolation. This study proposes a one-step reconstruction process using a new PWLS operation with total-variation (TV) minimization, while not manipulating the projection. The PWLS for CT reconstruction has been investigated using a pre-defined weight, based on the variance of the projection datum at each detector bin. It works well when reconstructing CT images from metal-free projection data, which does not appropriately penalize metal-contaminated projection data. The proposed work defines the weight at each projection element under the assumption of a Poisson random variable. This small modification using element-wise penalization has a large impact in reducing metal artifacts. For evaluation, the proposed technique was assessed with two noisy, metal-contaminated digital phantoms, against the existing PWLS with TV minimization and the two-step approach. Result: The proposed PWLS with TV minimization greatly improved the metal artifact reduction, relative to the other techniques, by watching the results. Numerically, the new approach lowered the normalized root-mean-square error about 30 and 60% for the two cases, respectively, compared to the two-step method. Conclusion: A new PWLS operation shows promise for improving metal artifact reduction in CT imaging, as well as simplifying the reconstructing procedure.« less

  4. Structured functional additive regression in reproducing kernel Hilbert spaces

    PubMed Central

    Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen

    2013-01-01

    Summary Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application. PMID:25013362

  5. Relationship between Training Programs being Offered in State and Federal Penal Institutions and the Unfilled Job Openings in the Major Occupations in the United States.

    ERIC Educational Resources Information Center

    Torrence, John Thomas

    Excluding military installations, training programs in state and federal penal institutions were surveyed, through a mailed checklist, to test the hypotheses that (1) training programs in penal institutions were not related to the unfilled job openings by major occupations in the United States, and (2) that training programs reported would have a…

  6. [Penal treatment and rehabilitation of the convict in the new Penal Code of San Marino. Juridical and criminological aspects].

    PubMed

    Sclafani, F; Starace, A

    1978-01-01

    The Republic of San Marino adopted a new Penal Code which came into force on Ist January 1975; it replaced the former one of 15th Sept. 1865. After having stated the typical aspects of the Penal Procedure System therein enforceable, the Authors examine the rules concerning criminal responsibility and the danger of committing new crimes. They point out and criticize the relevant contradictions. In explaining the measures regarding punishment and educational rehabilitation provided for by the San Marino's legal system, the Authors later consider them from a juridical and criminological viewpoint. If some reforms must be approved (for example: biopsychical inquiry on the charged person, probation, week-end imprisonments, fines according to the incomes of the condemned, etc.). the Authors stress that some legal provisions may appear useless and unrealistic when one considers the environmental conditions of the little Republic. The Authors conclude that Penal Procedure Law is not in accordance with Penal Law and, consequently, they hope that a new reform will be grounded on the needs arising from the crimes perpetrated in loco. It shall be, however, necessary to plan a co-ordination among the two Codes within a framework of de-criminalization of many acts which are now punishable as crime.

  7. Bayesian LASSO, scale space and decision making in association genetics.

    PubMed

    Pasanen, Leena; Holmström, Lasse; Sillanpää, Mikko J

    2015-01-01

    LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four problems that need special attention: (i) controlling false positives, (ii) multiple comparisons, (iii) collinearity among explanatory variables, and (iv) the choice of the tuning parameter that controls the amount of shrinkage and the sparsity of the estimates. The particular application considered is association genetics, where LASSO regression can be used to find links between chromosome locations and phenotypic traits in a biological organism. However, the proposed techniques are relevant also in other contexts where LASSO is used for variable selection. We separate the true associations from false positives using the posterior distribution of the effects (regression coefficients) provided by Bayesian LASSO. We propose to solve the multiple comparisons problem by using simultaneous inference based on the joint posterior distribution of the effects. Bayesian LASSO also tends to distribute an effect among collinear variables, making detection of an association difficult. We propose to solve this problem by considering not only individual effects but also their functionals (i.e. sums and differences). Finally, whereas in Bayesian LASSO the tuning parameter is often regarded as a random variable, we adopt a scale space view and consider a whole range of fixed tuning parameters, instead. The effect estimates and the associated inference are considered for all tuning parameters in the selected range and the results are visualized with color maps that provide useful insights into data and the association problem considered. The methods are illustrated using two sets of artificial data and one real data set, all representing typical settings in association genetics.

  8. Calibration Model for Apnea-Hypopnea Indices: Impact of Alternative Criteria for Hypopneas

    PubMed Central

    Ho, Vu; Crainiceanu, Ciprian M.; Punjabi, Naresh M.; Redline, Susan; Gottlieb, Daniel J.

    2015-01-01

    Study Objective: To characterize the association among apnea-hypopnea indices (AHIs) determined using three common metrics for defining hypopnea, and to develop a model to calibrate between these AHIs. Design: Cross-sectional analysis of Sleep Heart Health Study Data. Setting: Community-based. Participants: There were 6,441 men and women age 40 y or older. Measurement and Results: Three separate AHIs have been calculated, using all apneas (defined as a decrease in airflow greater than 90% from baseline for ≥ 10 sec) plus hypopneas (defined as a decrease in airflow or chest wall or abdominal excursion greater than 30% from baseline, but not meeting apnea definitions) associated with either: (1) a 4% or greater fall in oxyhemoglobin saturation—AHI4; (2) a 3% or greater fall in oxyhemoglobin saturation—AHI3; or (3) a 3% or greater fall in oxyhemoglobin saturation or an event-related arousal—AHI3a. Median values were 5.4, 9.7, and 13.4 for AHI4, AHI3, and AHI3a, respectively (P < 0.0001). Penalized spline regression models were used to compare AHI values across the three metrics and to calculate prediction intervals. Comparison of regression models demonstrates divergence in AHI scores among the three methods at low AHI values and gradual convergence at higher levels of AHI. Conclusions: The three methods of scoring hypopneas yielded significantly different estimates of the apnea-hypopnea index (AHI), although the relative difference is reduced in severe disease. The regression models presented will enable clinicians and researchers to more appropriately compare AHI values obtained using differing metrics for hypopnea. Citation: Ho V, Crainiceanu CM, Punjabi NM, Redline S, Gottlieb DJ. Calibration model for apnea-hypopnea indices: impact of alternative criteria for hypopneas. SLEEP 2015;38(12):1887–1892. PMID:26564122

  9. A Poisson Log-Normal Model for Constructing Gene Covariation Network Using RNA-seq Data.

    PubMed

    Choi, Yoonha; Coram, Marc; Peng, Jie; Tang, Hua

    2017-07-01

    Constructing expression networks using transcriptomic data is an effective approach for studying gene regulation. A popular approach for constructing such a network is based on the Gaussian graphical model (GGM), in which an edge between a pair of genes indicates that the expression levels of these two genes are conditionally dependent, given the expression levels of all other genes. However, GGMs are not appropriate for non-Gaussian data, such as those generated in RNA-seq experiments. We propose a novel statistical framework that maximizes a penalized likelihood, in which the observed count data follow a Poisson log-normal distribution. To overcome the computational challenges, we use Laplace's method to approximate the likelihood and its gradients, and apply the alternating directions method of multipliers to find the penalized maximum likelihood estimates. The proposed method is evaluated and compared with GGMs using both simulated and real RNA-seq data. The proposed method shows improved performance in detecting edges that represent covarying pairs of genes, particularly for edges connecting low-abundant genes and edges around regulatory hubs.

  10. 45 CFR 261.15 - Can a family be penalized if a parent refuses to work because he or she cannot find child care?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Provisions Addressing Individual Responsibility? § 261.15 Can a family be penalized if a parent refuses to... parent caring for a child under age six who has a demonstrated inability to obtain needed child care, as... 45 Public Welfare 2 2011-10-01 2011-10-01 false Can a family be penalized if a parent refuses to...

  11. 45 CFR 261.15 - Can a family be penalized if a parent refuses to work because he or she cannot find child care?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Provisions Addressing Individual Responsibility? § 261.15 Can a family be penalized if a parent refuses to... parent caring for a child under age six who has a demonstrated inability to obtain needed child care, as... 45 Public Welfare 2 2013-10-01 2012-10-01 true Can a family be penalized if a parent refuses to...

  12. 45 CFR 261.15 - Can a family be penalized if a parent refuses to work because he or she cannot find child care?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Provisions Addressing Individual Responsibility? § 261.15 Can a family be penalized if a parent refuses to... parent caring for a child under age six who has a demonstrated inability to obtain needed child care, as... 45 Public Welfare 2 2012-10-01 2012-10-01 false Can a family be penalized if a parent refuses to...

  13. 45 CFR 261.15 - Can a family be penalized if a parent refuses to work because he or she cannot find child care?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Provisions Addressing Individual Responsibility? § 261.15 Can a family be penalized if a parent refuses to... parent caring for a child under age six who has a demonstrated inability to obtain needed child care, as... 45 Public Welfare 2 2010-10-01 2010-10-01 false Can a family be penalized if a parent refuses to...

  14. 45 CFR 261.15 - Can a family be penalized if a parent refuses to work because he or she cannot find child care?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Provisions Addressing Individual Responsibility? § 261.15 Can a family be penalized if a parent refuses to... parent caring for a child under age six who has a demonstrated inability to obtain needed child care, as... 45 Public Welfare 2 2014-10-01 2012-10-01 true Can a family be penalized if a parent refuses to...

  15. Bias correction for estimated QTL effects using the penalized maximum likelihood method.

    PubMed

    Zhang, J; Yue, C; Zhang, Y-M

    2012-04-01

    A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance). We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage estimation of QTL effects is discussed.

  16. Combining the Vortex Particle-Mesh method with a Multi-Body System solver for the simulation of self-propelled articulated swimmers

    NASA Astrophysics Data System (ADS)

    Bernier, Caroline; Gazzola, Mattia; Ronsse, Renaud; Chatelain, Philippe

    2017-11-01

    We present a 2D fluid-structure interaction simulation method with a specific focus on articulated and actuated structures. The proposed algorithm combines a viscous Vortex Particle-Mesh (VPM) method based on a penalization technique and a Multi-Body System (MBS) solver. The hydrodynamic forces and moments acting on the structure parts are not computed explicitly from the surface stresses; they are rather recovered from the projection and penalization steps within the VPM method. The MBS solver accounts for the body dynamics via the Euler-Lagrange formalism. The deformations of the structure are dictated by the hydrodynamic efforts and actuation torques. Here, we focus on simplified swimming structures composed of neutrally buoyant ellipses connected by virtual joints. The joints are actuated through a simple controller in order to reproduce the swimming patterns of an eel-like swimmer. The method enables to recover the histories of torques applied on each hinge along the body. The method is verified on several benchmarks: an impulsively started elastically mounted cylinder and free swimming articulated fish-like structures. Validation will be performed by means of an experimental swimming robot that reproduces the 2D articulated ellipses.

  17. Estimating the variance for heterogeneity in arm-based network meta-analysis.

    PubMed

    Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R

    2018-04-19

    Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    PubMed

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  19. Variance Component Selection With Applications to Microbiome Taxonomic Data.

    PubMed

    Zhai, Jing; Kim, Juhyun; Knox, Kenneth S; Twigg, Homer L; Zhou, Hua; Zhou, Jin J

    2018-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  20. Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas.

    PubMed

    Zu, Ke; Liu, Xiaobin; Shi, Liuhua; Tao, Ge; Loftus, Christine T; Lange, Sabine; Goodman, Julie E

    2017-07-01

    Short-term exposure to ozone has been associated with asthma hospital admissions (HA) and emergency department (ED) visits, but the shape of the concentration-response (C-R) curve is unclear. We conducted a time series analysis of asthma HAs and ambient ozone concentrations in six metropolitan areas in Texas from 2001 to 2013. Using generalized linear regression models, we estimated the effect of daily 8-hour maximum ozone concentrations on asthma HAs for all ages combined, and for those aged 5-14, 15-64, and 65+years. We fit penalized regression splines to evaluate the shape of the C-R curves. Using a log-linear model, estimated risk per 10ppb increase in average daily 8-hour maximum ozone concentrations was highest for children (relative risk [RR]=1.047, 95% confidence interval [CI]: 1.025-1.069), lower for younger adults (RR=1.018, 95% CI: 1.005-1.032), and null for older adults (RR=1.002, 95% CI: 0.981-1.023). However, penalized spline models demonstrated significant nonlinear C-R relationships for all ages combined, children, and younger adults, indicating the existence of thresholds. We did not observe an increased risk of asthma HAs until average daily 8-hour maximum ozone concentrations exceeded approximately 40ppb. Ozone and asthma HAs are significantly associated with each other; susceptibility to ozone is age-dependent, with children at highest risk. C-R relationships between average daily 8-hour maximum ozone concentrations and asthma HAs are significantly curvilinear for all ages combined, children, and younger adults. These nonlinear relationships, as well as the lack of relationship between average daily 8-hour maximum and peak ozone concentrations, have important implications for assessing risks to human health in regulatory settings. Copyright © 2017. Published by Elsevier Ltd.

  1. Comparing implementations of penalized weighted least-squares sinogram restoration

    PubMed Central

    Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick

    2010-01-01

    Purpose: A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. Methods: The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. Results: All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors’ previous penalized-likelihood implementation. Conclusions: Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes. PMID:21158306

  2. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models.

    PubMed

    Ternès, Nils; Rotolo, Federico; Michiels, Stefan

    2016-07-10

    Correct selection of prognostic biomarkers among multiple candidates is becoming increasingly challenging as the dimensionality of biological data becomes higher. Therefore, minimizing the false discovery rate (FDR) is of primary importance, while a low false negative rate (FNR) is a complementary measure. The lasso is a popular selection method in Cox regression, but its results depend heavily on the penalty parameter λ. Usually, λ is chosen using maximum cross-validated log-likelihood (max-cvl). However, this method has often a very high FDR. We review methods for a more conservative choice of λ. We propose an empirical extension of the cvl by adding a penalization term, which trades off between the goodness-of-fit and the parsimony of the model, leading to the selection of fewer biomarkers and, as we show, to the reduction of the FDR without large increase in FNR. We conducted a simulation study considering null and moderately sparse alternative scenarios and compared our approach with the standard lasso and 10 other competitors: Akaike information criterion (AIC), corrected AIC, Bayesian information criterion (BIC), extended BIC, Hannan and Quinn information criterion (HQIC), risk information criterion (RIC), one-standard-error rule, adaptive lasso, stability selection, and percentile lasso. Our extension achieved the best compromise across all the scenarios between a reduction of the FDR and a limited raise of the FNR, followed by the AIC, the RIC, and the adaptive lasso, which performed well in some settings. We illustrate the methods using gene expression data of 523 breast cancer patients. In conclusion, we propose to apply our extension to the lasso whenever a stringent FDR with a limited FNR is targeted. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Adaptive low-rank subspace learning with online optimization for robust visual tracking.

    PubMed

    Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan

    2017-04-01

    In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Compare diagnostic tests using transformation-invariant smoothed ROC curves⋆

    PubMed Central

    Tang, Liansheng; Du, Pang; Wu, Chengqing

    2012-01-01

    Receiver operating characteristic (ROC) curve, plotting true positive rates against false positive rates as threshold varies, is an important tool for evaluating biomarkers in diagnostic medicine studies. By definition, ROC curve is monotone increasing from 0 to 1 and is invariant to any monotone transformation of test results. And it is often a curve with certain level of smoothness when test results from the diseased and non-diseased subjects follow continuous distributions. Most existing ROC curve estimation methods do not guarantee all of these properties. One of the exceptions is Du and Tang (2009) which applies certain monotone spline regression procedure to empirical ROC estimates. However, their method does not consider the inherent correlations between empirical ROC estimates. This makes the derivation of the asymptotic properties very difficult. In this paper we propose a penalized weighted least square estimation method, which incorporates the covariance between empirical ROC estimates as a weight matrix. The resulting estimator satisfies all the aforementioned properties, and we show that it is also consistent. Then a resampling approach is used to extend our method for comparisons of two or more diagnostic tests. Our simulations show a significantly improved performance over the existing method, especially for steep ROC curves. We then apply the proposed method to a cancer diagnostic study that compares several newly developed diagnostic biomarkers to a traditional one. PMID:22639484

  5. N-person differential games. Part 2: The penalty method

    NASA Technical Reports Server (NTRS)

    Chen, G.; Mills, W. H.; Zheng, Q.; Shaw, W. H.

    1983-01-01

    The equilibrium strategy for N-person differential games can be found by studying a min-max problem subject to differential systems constraints. The differential constraints are penalized and finite elements are used to compute numerical solutions. Convergence proof and error estimates are given. Numerical results are also included and compared with those obtained by the dual method.

  6. Comparing implementations of penalized weighted least-squares sinogram restoration.

    PubMed

    Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick

    2010-11-01

    A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors' previous penalized-likelihood implementation. Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes.

  7. Risk Prediction Score for HIV Infection: Development and Internal Validation with Cross-Sectional Data from Men Who Have Sex with Men in China.

    PubMed

    Yin, Lu; Zhao, Yuejuan; Peratikos, Meridith Blevins; Song, Liang; Zhang, Xiangjun; Xin, Ruolei; Sun, Zheya; Xu, Yunan; Zhang, Li; Hu, Yifei; Hao, Chun; Ruan, Yuhua; Shao, Yiming; Vermund, Sten H; Qian, Han-Zhu

    2018-05-21

    Receptive anal intercourse, multiple partners, condomless sex, sexually transmitted infections (STIs), and drug/alcohol addiction are familiar factors that correlate with increased human immunodeficiency virus (HIV) risk among men who have sex with men (MSM). To improve estimation to HIV acquisition, we created a composite score using questions from routine survey of 3588 MSM in Beijing, China. The HIV prevalence was 13.4%. A risk scoring tool using penalized maximum likelihood multivariable logistic regression modeling was developed, deploying backward step-down variable selection to obtain a reduced-form model. The full penalized model included 19 sexual predictors, while the reduced-form model had 12 predictors. Both models calibrated well; bootstrap-corrected c-indices were 0.70 (full model) and 0.71 (reduced-form model). Non-Beijing residence, short-term living in Beijing, illegal drug use, multiple male sexual partners, receptive anal sex, inconsistent condom use, alcohol consumption before sex, and syphilis infection were the strongest predictors of HIV infection. Discriminating higher-risk MSM for targeted HIV prevention programming using a validated risk score could improve the efficiency of resource deployment for educational and risk reduction programs. A valid risk score can also identify higher risk persons into prevention and vaccine clinical trials, which would improve trial cost-efficiency.

  8. Accelerating cross-validation with total variation and its application to super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Ikeda, Shiro; Akiyama, Kazunori; Kabashima, Yoshiyuki

    2017-12-01

    We develop an approximation formula for the cross-validation error (CVE) of a sparse linear regression penalized by ℓ_1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.

  9. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    PubMed

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  10. Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures.

    PubMed

    Wu, Cen; Jiang, Yu; Ren, Jie; Cui, Yuehua; Ma, Shuangge

    2018-02-10

    Identification of gene-environment (G × E) interactions associated with disease phenotypes has posed a great challenge in high-throughput cancer studies. The existing marginal identification methods have suffered from not being able to accommodate the joint effects of a large number of genetic variants, while some of the joint-effect methods have been limited by failing to respect the "main effects, interactions" hierarchy, by ignoring data contamination, and by using inefficient selection techniques under complex structural sparsity. In this article, we develop an effective penalization approach to identify important G × E interactions and main effects, which can account for the hierarchical structures of the 2 types of effects. Possible data contamination is accommodated by adopting the least absolute deviation loss function. The advantage of the proposed approach over the alternatives is convincingly demonstrated in both simulation and a case study on lung cancer prognosis with gene expression measurements and clinical covariates under the accelerated failure time model. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Simpson's paradox - aggregating and partitioning populations in health disparities of lung cancer patients.

    PubMed

    Fu, P; Panneerselvam, A; Clifford, B; Dowlati, A; Ma, P C; Zeng, G; Halmos, B; Leidner, R S

    2015-12-01

    It is well known that non-small cell lung cancer (NSCLC) is a heterogeneous group of diseases. Previous studies have demonstrated genetic variation among different ethnic groups in the epidermal growth factor receptor (EGFR) in NSCLC. Research by our group and others has recently shown a lower frequency of EGFR mutations in African Americans with NSCLC, as compared to their White counterparts. In this study, we use our original study data of EGFR pathway genetics in African American NSCLC as an example to illustrate that univariate analyses based on aggregation versus partition of data leads to contradictory results, in order to emphasize the importance of controlling statistical confounding. We further investigate analytic approaches in logistic regression for data with separation, as is the case in our example data set, and apply appropriate methods to identify predictors of EGFR mutation. Our simulation shows that with separated or nearly separated data, penalized maximum likelihood (PML) produces estimates with smallest bias and approximately maintains the nominal value with statistical power equal to or better than that from maximum likelihood and exact conditional likelihood methods. Application of the PML method in our example data set shows that race and EGFR-FISH are independently significant predictors of EGFR mutation. © The Author(s) 2011.

  12. New developments on the homogenization of Canadian daily temperature data

    NASA Astrophysics Data System (ADS)

    Vincent, Lucie A.; Wang, Xiaolan L.

    2010-05-01

    Long-term and homogenized surface air temperature datasets had been prepared for the analysis of climate trends in Canada (Vincent and Gullett 1999). Non-climatic steps due to instruments relocation/changes and changes in observing procedures were identified in the annual mean of the daily maximum and minimum temperatures using a technique based on regression models (Vincent 1998). Monthly adjustments were derived from the regression models and daily adjustments were obtained from an interpolation procedure using the monthly adjustments (Vincent et al. 2002). Recently, new statistical tests have been developed to improve the power of detecting changepoints in climatological data time series. The penalized maximal t (PMT) test (Wang et al. 2007) and the penalized maximal F (PMF) test (Wang 2008b) were developed to take into account the position of each changepoint in order to minimize the effect of unequal and small sample size. A software package RHtestsV3 (Wang and Feng 2009) has also been developed to implement these tests to homogenize climate data series. A recursive procedure was developed to estimate the annual cycle, linear trend, and lag-1 autocorrelation of the base series in tandem, so that the effect of lag-1 autocorrelation is accounted for in the tests. A Quantile Matching (QM) algorithm (Wang 2009) was also developed for adjusting Gaussian daily data so that the empirical distributions of all segments of the detrended series match each other. The RHtestsV3 package was used to prepare a second generation of homogenized temperatures in Canada. Both the PMT test and the PMF test were applied to detect shifts in monthly mean temperature series. Reference series was used in conducting a PMT test. Whenever possible, the main causes of the shifts were retrieved through historical evidence such as the station inspection reports. Finally, the QM algorithm was used to adjust the daily temperature series for the artificial shifts identified from the respective monthly mean series. These procedures were applied to homogenize daily maximum and minimum temperatures recorded at 336 stations across Canada. During the presentation, the procedures will be summarized and their application will be illustrated throughout the provision of selected examples. References Vincent, L.A., X. Zhang, B.R. Bonsal and W.D. Hogg, 2002: Homogenization of daily temperatures over Canada. J. Climate, 15, 1322-1334. Vincent, L.A., and D.W. Gullett, 1999: Canadian historical and homogeneous temperature datasets for climate change analyses. Int. J. Climatol., 19, 1375-1388. Vincent, L.A., 1998: A technique for the identification of inhomogeneities in Canadian temperature series. J. Climate, 11, 1094-1104. Wang, X. L., 2009: A quantile matching adjustment algorithm for Gaussian data series. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. 5 pp. [Available online at http://cccma.seos.uvic.ca/ETCCDMI/software.shtml]. Wang X. L. and Y. Feng, 2009: RHtestsV3 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. 26 pp. [Available online at http://cccma.seos.uvic.ca/ETCCDMI/software.shtml]. Wang, X. L., 2008a: Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 2423-2444. Wang, X. L., 2008b: Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. J. Atmos. Oceanic Tech., 25 (No. 3), 368-384. DOI:10.1175/2007/JTECHA982.1. Wang, X. L., Q. H. Wen, and Y. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol., 46 (No. 6), 916-931. DOI:10.1175/JAM2504.1

  13. Shape optimization of self-avoiding curves

    NASA Astrophysics Data System (ADS)

    Walker, Shawn W.

    2016-04-01

    This paper presents a softened notion of proximity (or self-avoidance) for curves. We then derive a sensitivity result, based on shape differential calculus, for the proximity. This is combined with a gradient-based optimization approach to compute three-dimensional, parameterized curves that minimize the sum of an elastic (bending) energy and a proximity energy that maintains self-avoidance by a penalization technique. Minimizers are computed by a sequential-quadratic-programming (SQP) method where the bending energy and proximity energy are approximated by a finite element method. We then apply this method to two problems. First, we simulate adsorbed polymer strands that are constrained to be bound to a surface and be (locally) inextensible. This is a basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material science). Several examples of minimizing curve shapes on a variety of surfaces are shown. An advantage of the method is that it can be much faster than using molecular dynamics for simulating polymer strands on surfaces. Second, we apply our proximity penalization to the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications of this method could be for generating good initial guesses to a more accurate (but expensive) knot-tightening algorithm.

  14. Predicting non-familial major physical violent crime perpetration in the U.S. Army from administrative data

    PubMed Central

    Rosellini, Anthony J.; Monahan, John; Street, Amy E.; Heeringa, Steven G.; Hill, Eric D.; Petukhova, Maria; Reis, Ben Y.; Sampson, Nancy A.; Bliese, Paul; Schoenbaum, Michael; Stein, Murray B.; Ursano, Robert; Kessler, Ronald C.

    2016-01-01

    BACKGROUND Although interventions exist to reduce violent crime, optimal implementation requires accurate targeting. We report the results of an attempt to develop an actuarial model using machine learning methods to predict future violent crimes among U.S. Army soldiers. METHODS A consolidated administrative database for all 975,057 soldiers in the U.S. Army in 2004-2009 was created in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). 5,771 of these soldiers committed a first founded major physical violent crime (murder-manslaughter, kidnapping, aggravated arson, aggravated assault, robbery) over that time period. Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build an actuarial model for these crimes separately among men and women using machine learning methods (cross-validated stepwise regression; random forests; penalized regressions). The model was then validated in an independent 2011-2013 sample. RESULTS Key predictors were indicators of disadvantaged social/socio-economic status, early career stage, prior crime, and mental disorder treatment. Area under the receiver operating characteristic curve was .80-.82 in 2004-2009 and .77 in a 2011-2013 validation sample. 36.2-33.1% (male-female) of all administratively-recorded crimes were committed by the 5% of soldiers having highest predicted risk in 2004-2009 and an even higher proportion (50.5%) in the 2011-2013 validation sample. CONCLUSIONS Although these results suggest that the models could be used to target soldiers at high risk of violent crime perpetration for preventive interventions, final implementation decisions would require further validation and weighing of predicted effectiveness against intervention costs and competing risks. PMID:26436603

  15. Integrative Analysis of Prognosis Data on Multiple Cancer Subtypes

    PubMed Central

    Liu, Jin; Huang, Jian; Zhang, Yawei; Lan, Qing; Rothman, Nathaniel; Zheng, Tongzhang; Ma, Shuangge

    2014-01-01

    Summary In cancer research, profiling studies have been extensively conducted, searching for genes/SNPs associated with prognosis. Cancer is diverse. Examining the similarity and difference in the genetic basis of multiple subtypes of the same cancer can lead to a better understanding of their connections and distinctions. Classic meta-analysis methods analyze each subtype separately and then compare analysis results across subtypes. Integrative analysis methods, in contrast, analyze the raw data on multiple subtypes simultaneously and can outperform meta-analysis methods. In this study, prognosis data on multiple subtypes of the same cancer are analyzed. An AFT (accelerated failure time) model is adopted to describe survival. The genetic basis of multiple subtypes is described using the heterogeneity model, which allows a gene/SNP to be associated with prognosis of some subtypes but not others. A compound penalization method is developed to identify genes that contain important SNPs associated with prognosis. The proposed method has an intuitive formulation and is realized using an iterative algorithm. Asymptotic properties are rigorously established. Simulation shows that the proposed method has satisfactory performance and outperforms a penalization-based meta-analysis method and a regularized thresholding method. An NHL (non-Hodgkin lymphoma) prognosis study with SNP measurements is analyzed. Genes associated with the three major subtypes, namely DLBCL, FL, and CLL/SLL, are identified. The proposed method identifies genes that are different from alternatives and have important implications and satisfactory prediction performance. PMID:24766212

  16. A TVSCAD approach for image deblurring with impulsive noise

    NASA Astrophysics Data System (ADS)

    Gu, Guoyong; Jiang, Suhong; Yang, Junfeng

    2017-12-01

    We consider image deblurring problem in the presence of impulsive noise. It is known that total variation (TV) regularization with L1-norm penalized data fitting (TVL1 for short) works reasonably well only when the level of impulsive noise is relatively low. For high level impulsive noise, TVL1 works poorly. The reason is that all data, both corrupted and noise free, are equally penalized in data fitting, leading to insurmountable difficulty in balancing regularization and data fitting. In this paper, we propose to combine TV regularization with nonconvex smoothly clipped absolute deviation (SCAD) penalty for data fitting (TVSCAD for short). Our motivation is simply that data fitting should be enforced only when an observed data is not severely corrupted, while for those data more likely to be severely corrupted, less or even null penalization should be enforced. A difference of convex functions algorithm is adopted to solve the nonconvex TVSCAD model, resulting in solving a sequence of TVL1-equivalent problems, each of which can then be solved efficiently by the alternating direction method of multipliers. Theoretically, we establish global convergence to a critical point of the nonconvex objective function. The R-linear and at-least-sublinear convergence rate results are derived for the cases of anisotropic and isotropic TV, respectively. Numerically, experimental results are given to show that the TVSCAD approach improves those of the TVL1 significantly, especially for cases with high level impulsive noise, and is comparable with the recently proposed iteratively corrected TVL1 method (Bai et al 2016 Inverse Problems 32 085004).

  17. Examination of wrist and hip actigraphy using a novel sleep estimation procedure☆

    PubMed Central

    Ray, Meredith A.; Youngstedt, Shawn D.; Zhang, Hongmei; Robb, Sara Wagner; Harmon, Brook E.; Jean-Louis, Girardin; Cai, Bo; Hurley, Thomas G.; Hébert, James R.; Bogan, Richard K.; Burch, James B.

    2014-01-01

    Objective Improving and validating sleep scoring algorithms for actigraphs enhances their usefulness in clinical and research applications. The MTI® device (ActiGraph, Pensacola, FL) had not been previously validated for sleep. The aims were to (1) compare the accuracy of sleep metrics obtained via wrist- and hip-mounted MTI® actigraphs with polysomnographic (PSG) recordings in a sample that included both normal sleepers and individuals with presumed sleep disorders; and (2) develop a novel sleep scoring algorithm using spline regression to improve the correspondence between the actigraphs and PSG. Methods Original actigraphy data were amplified and their pattern was estimated using a penalized spline. The magnitude of amplification and the spline were estimated by minimizing the difference in sleep efficiency between wrist- (hip-) actigraphs and PSG recordings. Sleep measures using both the original and spline-modified actigraphy data were compared to PSG using the following: mean sleep summary measures; Spearman rank-order correlations of summary measures; percent of minute-by-minute agreement; sensitivity and specificity; and Bland–Altman plots. Results The original wrist actigraphy data showed modest correspondence with PSG, and much less correspondence was found between hip actigraphy and PSG. The spline-modified wrist actigraphy produced better approximations of interclass correlations, sensitivity, and mean sleep summary measures relative to PSG than the original wrist actigraphy data. The spline-modified hip actigraphy provided improved correspondence, but sleep measures were still not representative of PSG. Discussion The results indicate that with some refinement, the spline regression method has the potential to improve sleep estimates obtained using wrist actigraphy. PMID:25580202

  18. Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation

    ERIC Educational Resources Information Center

    Busing, Frank M. T. A.; Groenen, Patrick J. K.; Heiser, Willem J.

    2005-01-01

    Multidimensional unfolding methods suffer from the degeneracy problem in almost all circumstances. Most degeneracies are easily recognized: the solutions are perfect but trivial, characterized by approximately equal distances between points from different sets. A definition of an absolutely degenerate solution is proposed, which makes clear that…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J.V.

    The published work on exact penalization is indeed vast. Recently this work has indicated an intimate relationship between exact penalization, Lagrange multipliers, and problem stability or calmness. In the present work we chronicle this development within a simple idealized problem framework, wherein we unify, extend, and refine much of the known theory. In particular, most of the foundations for constrained optimization are developed with the aid of exact penalization techniques. Our approach is highly geometric and is based upon the elementary subdifferential theory for distance functions. It is assumed that the reader is familiar with the theory of convex setsmore » and functions. 54 refs.« less

  20. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.

    PubMed

    Yavorska, Olena O; Burgess, Stephen

    2017-12-01

    MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  1. [Application of Mass Spectrometry to the Diagnosis of Cancer--Chairman's Introductory Remarks].

    PubMed

    Yatomi, Yutaka

    2015-09-01

    In this symposium, the latest application of mass spectrometry to laboratory medicine, i.e., to the early diagnosis of cancer, was introduced. Dr. Masaru YOSHIDA, who has been using metabolome analysis to discover biomarker candidates for gastroenterological diseases, presented an automated early diagnosis system for early stages of colon cancer based on metabolome analysis and using a minute amount of blood. On the other hand, Dr. Sen TAKEDA, who has developed a new approach by employing both mass spectrometry and machine-learning for cancer diagnosis, presented a device for the clinical diagnosis of cancer using probe electrospray ionization (PESI) and machine-learning called the dual penalized logistic regression machine (dPLRM).

  2. A penalized framework for distributed lag non-linear models.

    PubMed

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  3. Development of the IBSAL-SimMOpt Method for the Optimization of Quality in a Corn Stover Supply Chain

    DOE PAGES

    Chavez, Hernan; Castillo-Villar, Krystel; Webb, Erin

    2017-08-01

    Variability on the physical characteristics of feedstock has a relevant effect on the reactor’s reliability and operating cost. Most of the models developed to optimize biomass supply chains have failed to quantify the effect of biomass quality and preprocessing operations required to meet biomass specifications on overall cost and performance. The Integrated Biomass Supply Analysis and Logistics (IBSAL) model estimates the harvesting, collection, transportation, and storage cost while considering the stochastic behavior of the field-to-biorefinery supply chain. This paper proposes an IBSAL-SimMOpt (Simulation-based Multi-Objective Optimization) method for optimizing the biomass quality and costs associated with the efforts needed to meetmore » conversion technology specifications. The method is developed in two phases. For the first phase, a SimMOpt tool that interacts with the extended IBSAL is developed. For the second phase, the baseline IBSAL model is extended so that the cost for meeting and/or penalization for failing in meeting specifications are considered. The IBSAL-SimMOpt method is designed to optimize quality characteristics of biomass, cost related to activities intended to improve the quality of feedstock, and the penalization cost. A case study based on 1916 farms in Ontario, Canada is considered for testing the proposed method. Analysis of the results demonstrates that this method is able to find a high-quality set of non-dominated solutions.« less

  4. Development of the IBSAL-SimMOpt Method for the Optimization of Quality in a Corn Stover Supply Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Hernan; Castillo-Villar, Krystel; Webb, Erin

    Variability on the physical characteristics of feedstock has a relevant effect on the reactor’s reliability and operating cost. Most of the models developed to optimize biomass supply chains have failed to quantify the effect of biomass quality and preprocessing operations required to meet biomass specifications on overall cost and performance. The Integrated Biomass Supply Analysis and Logistics (IBSAL) model estimates the harvesting, collection, transportation, and storage cost while considering the stochastic behavior of the field-to-biorefinery supply chain. This paper proposes an IBSAL-SimMOpt (Simulation-based Multi-Objective Optimization) method for optimizing the biomass quality and costs associated with the efforts needed to meetmore » conversion technology specifications. The method is developed in two phases. For the first phase, a SimMOpt tool that interacts with the extended IBSAL is developed. For the second phase, the baseline IBSAL model is extended so that the cost for meeting and/or penalization for failing in meeting specifications are considered. The IBSAL-SimMOpt method is designed to optimize quality characteristics of biomass, cost related to activities intended to improve the quality of feedstock, and the penalization cost. A case study based on 1916 farms in Ontario, Canada is considered for testing the proposed method. Analysis of the results demonstrates that this method is able to find a high-quality set of non-dominated solutions.« less

  5. Consumer Education. An Introductory Unit for Inmates in Penal Institutions.

    ERIC Educational Resources Information Center

    Schmoele, Henry H.; And Others

    This introductory consumer education curriculum outline contains materials designed to help soon-to-be-released prisoners to develop an awareness of consumer concerns and to better manage their family lives. Each of the four units provided includes lesson objectives, suggested contents, suggested teaching methods, handouts, and tests. The unit on…

  6. Assessing Multiple Choice Question (MCQ) Tests--A Mathematical Perspective

    ERIC Educational Resources Information Center

    Scharf, Eric M.; Baldwin, Lynne P.

    2007-01-01

    The reasoning behind popular methods for analysing the raw data generated by multiple choice question (MCQ) tests is not always appreciated, occasionally with disastrous results. This article discusses and analyses three options for processing the raw data produced by MCQ tests. The article shows that one extreme option is not to penalize a…

  7. Fast Spatial Resolution Analysis of Quadratic Penalized Least-Squares Image Reconstruction With Separate Real and Imaginary Roughness Penalty: Application to fMRI.

    PubMed

    Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A

    2018-02-01

    Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.

  8. Bias correction in the hierarchical likelihood approach to the analysis of multivariate survival data.

    PubMed

    Jeon, Jihyoun; Hsu, Li; Gorfine, Malka

    2012-07-01

    Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.

  9. Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir

    An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less

  10. Generalized Scalar-on-Image Regression Models via Total Variation.

    PubMed

    Wang, Xiao; Zhu, Hongtu

    2017-01-01

    The use of imaging markers to predict clinical outcomes can have a great impact in public health. The aim of this paper is to develop a class of generalized scalar-on-image regression models via total variation (GSIRM-TV), in the sense of generalized linear models, for scalar response and imaging predictor with the presence of scalar covariates. A key novelty of GSIRM-TV is that it is assumed that the slope function (or image) of GSIRM-TV belongs to the space of bounded total variation in order to explicitly account for the piecewise smooth nature of most imaging data. We develop an efficient penalized total variation optimization to estimate the unknown slope function and other parameters. We also establish nonasymptotic error bounds on the excess risk. These bounds are explicitly specified in terms of sample size, image size, and image smoothness. Our simulations demonstrate a superior performance of GSIRM-TV against many existing approaches. We apply GSIRM-TV to the analysis of hippocampus data obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset.

  11. Adaptive rival penalized competitive learning and combined linear predictor model for financial forecast and investment.

    PubMed

    Cheung, Y M; Leung, W M; Xu, L

    1997-01-01

    We propose a prediction model called Rival Penalized Competitive Learning (RPCL) and Combined Linear Predictor method (CLP), which involves a set of local linear predictors such that a prediction is made by the combination of some activated predictors through a gating network (Xu et al., 1994). Furthermore, we present its improved variant named Adaptive RPCL-CLP that includes an adaptive learning mechanism as well as a data pre-and-post processing scheme. We compare them with some existing models by demonstrating their performance on two real-world financial time series--a China stock price and an exchange-rate series of US Dollar (USD) versus Deutschmark (DEM). Experiments have shown that Adaptive RPCL-CLP not only outperforms the other approaches with the smallest prediction error and training costs, but also brings in considerable high profits in the trading simulation of foreign exchange market.

  12. Assessment of Blood Glucose Control in the Pediatric Intensive Care Unit: Extension of the Glycemic Penalty Index toward Children and Infants

    PubMed Central

    Van Herpe, Tom; Gielen, Marijke; Vanhonsebrouck, Koen; Wouters, Pieter J; Van den Berghe, Greet; De Moor, Bart; Mesotten, Dieter

    2011-01-01

    Background: The glycemic penalty index (GPI) is a measure to assess blood glucose (BG) control in critically ill adult patients but needs to be adapted for children and infants. Method: The squared differences between a clinical expertise penalty function and the corresponding polynomial function are minimized for optimization purposes. The average of all penalties (individually assigned to all BG readings) represents the patient-specific GPI. Results: Penalization in the hypoglycemic range is more severe than in the hyperglycemic range as the developing brains of infants and children may be more vulnerable to hypoglycemia. Similarly, hypoglycemia is also more heavily penalized in infants than in children. Conclusions: Extending the adult GPI toward the age-specific GPI is an important methodological step. Long-term clinical studies are needed to determine the clinically acceptable GPI cut-off level. PMID:21527105

  13. NCAA Penalizes Fewer Teams than Expected

    ERIC Educational Resources Information Center

    Sander, Libby

    2008-01-01

    This article reports that the National Collegiate Athletic Association (NCAA) has penalized fewer teams than it expected this year over athletes' poor academic performance. For years, officials with the NCAA have predicted that strikingly high numbers of college sports teams could be at risk of losing scholarships this year because of their…

  14. The Role of the Environmental Health Specialist in the Penal and Correctional System

    ERIC Educational Resources Information Center

    Walker, Bailus, Jr.; Gordon, Theodore J.

    1976-01-01

    Implementing a health and hygiene program in penal systems necessitates coordinating the entire staff. Health specialists could participate in facility planning and management, policy formation, and evaluation of medical care, housekeeping, and food services. They could also serve as liaisons between correctional staff and governmental or…

  15. The Change Grid and the Active Client: Challenging the Assumptions of Change Agentry in the Penal Process.

    ERIC Educational Resources Information Center

    Klofas, John; Duffee, David E.

    1981-01-01

    Reexamines the assumptions of the change grid regarding the channeling of masses of clients into change strategies programs. Penal organizations specifically select and place clients so that programs remain stable, rather than sequence programs to meet the needs of clients. (Author)

  16. 27 CFR 19.246 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Strengthening bonds. 19... Strengthening bonds. In all cases when the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new...

  17. A hybrid approach to survival model building using integration of clinical and molecular information in censored data.

    PubMed

    Choi, Ickwon; Kattan, Michael W; Wells, Brian J; Yu, Changhong

    2012-01-01

    In medical society, the prognostic models, which use clinicopathologic features and predict prognosis after a certain treatment, have been externally validated and used in practice. In recent years, most research has focused on high dimensional genomic data and small sample sizes. Since clinically similar but molecularly heterogeneous tumors may produce different clinical outcomes, the combination of clinical and genomic information, which may be complementary, is crucial to improve the quality of prognostic predictions. However, there is a lack of an integrating scheme for clinic-genomic models due to the P ≥ N problem, in particular, for a parsimonious model. We propose a methodology to build a reduced yet accurate integrative model using a hybrid approach based on the Cox regression model, which uses several dimension reduction techniques, L₂ penalized maximum likelihood estimation (PMLE), and resampling methods to tackle the problem. The predictive accuracy of the modeling approach is assessed by several metrics via an independent and thorough scheme to compare competing methods. In breast cancer data studies on a metastasis and death event, we show that the proposed methodology can improve prediction accuracy and build a final model with a hybrid signature that is parsimonious when integrating both types of variables.

  18. Iterative raw measurements restoration method with penalized weighted least squares approach for low-dose CT

    NASA Astrophysics Data System (ADS)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu

    2014-03-01

    Statistical iterative reconstruction and post-log data restoration algorithms for CT noise reduction have been widely studied and these techniques have enabled us to reduce irradiation doses while maintaining image qualities. In low dose scanning, electronic noise becomes obvious and it results in some non-positive signals in raw measurements. The nonpositive signal should be converted to positive signal so that it can be log-transformed. Since conventional conversion methods do not consider local variance on the sinogram, they have difficulty of controlling the strength of the filtering. Thus, in this work, we propose a method to convert the non-positive signal to the positive signal by mainly controlling the local variance. The method is implemented in two separate steps. First, an iterative restoration algorithm based on penalized weighted least squares is used to mitigate the effect of electronic noise. The algorithm preserves the local mean and reduces the local variance induced by the electronic noise. Second, smoothed raw measurements by the iterative algorithm are converted to the positive signal according to a function which replaces the non-positive signal with its local mean. In phantom studies, we confirm that the proposed method properly preserves the local mean and reduce the variance induced by the electronic noise. Our technique results in dramatically reduced shading artifacts and can also successfully cooperate with the post-log data filter to reduce streak artifacts.

  19. Historical HIV incidence modelling in regional subgroups: use of flexible discrete models with penalized splines based on prior curves.

    PubMed

    Greenland, S

    1996-03-15

    This paper presents an approach to back-projection (back-calculation) of human immunodeficiency virus (HIV) person-year infection rates in regional subgroups based on combining a log-linear model for subgroup differences with a penalized spline model for trends. The penalized spline approach allows flexible trend estimation but requires far fewer parameters than fully non-parametric smoothers, thus saving parameters that can be used in estimating subgroup effects. Use of reasonable prior curve to construct the penalty function minimizes the degree of smoothing needed beyond model specification. The approach is illustrated in application to acquired immunodeficiency syndrome (AIDS) surveillance data from Los Angeles County.

  20. In comparative perspective: The effects of incarceration abroad on penal subjectivity among prisoners in Lithuania

    PubMed Central

    Slade, Gavin; Vaičiūnienė, Rūta

    2017-01-01

    This article looks at how global flows of people and policies affect penal subjectivity among prisoners in Lithuania. Those who had previously been incarcerated abroad perceive their punishment in Lithuania’s reforming penal system in comparative terms. We find that international prison experience may either diminish or increase the sense of the severity of the current punishment. Respondents often felt more comfortable in a familiar culture of punishment in Lithuania that emphasizes autonomy and communality. Moreover, internationalized prisoners perceive prison reform emulating West European models as a threat to this culture and are able to articulate comparative critiques of this reform and contest its effects. PMID:29568238

  1. Setting the Standard. International Forum on Education in Penal Systems Conference Proceedings (Adelaide, Australia, April 5-7, 1998).

    ERIC Educational Resources Information Center

    Semmens, Bob, Ed.; Cook, Sandy, Ed.

    This document contains 19 papers presented at an international forum on education in penal systems. The following papers are included: "Burning" (Craig W.J. Minogue); "The Acquisition of Cognitive Skills as a Means of Recidivism Reduction: A Former Prisoner's Perspective" (Trevor Darryl Doherty); "CEA (Correctional…

  2. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Strengthening bonds. 24... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a...

  3. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Strengthening bonds. 24... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a...

  4. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Strengthening bonds. 24... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a...

  5. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Strengthening bonds. 24... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a...

  6. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Strengthening bonds. 24... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a...

  7. Crime and Punishment: Are Copyright Violators Ever Penalized?

    ERIC Educational Resources Information Center

    Russell, Carrie

    2004-01-01

    Is there a Web site that keeps track of copyright Infringers and fines? Some colleagues don't believe that copyright violators are ever penalized. This question was asked by a reader in a question and answer column of "School Library Journal". Carrie Russell is the American Library Association's copyright specialist, and she will answer selected…

  8. Estimating the prevalence of 26 health-related indicators at neighbourhood level in the Netherlands using structured additive regression.

    PubMed

    van de Kassteele, Jan; Zwakhals, Laurens; Breugelmans, Oscar; Ameling, Caroline; van den Brink, Carolien

    2017-07-01

    Local policy makers increasingly need information on health-related indicators at smaller geographic levels like districts or neighbourhoods. Although more large data sources have become available, direct estimates of the prevalence of a health-related indicator cannot be produced for neighbourhoods for which only small samples or no samples are available. Small area estimation provides a solution, but unit-level models for binary-valued outcomes that can handle both non-linear effects of the predictors and spatially correlated random effects in a unified framework are rarely encountered. We used data on 26 binary-valued health-related indicators collected on 387,195 persons in the Netherlands. We associated the health-related indicators at the individual level with a set of 12 predictors obtained from national registry data. We formulated a structured additive regression model for small area estimation. The model captured potential non-linear relations between the predictors and the outcome through additive terms in a functional form using penalized splines and included a term that accounted for spatially correlated heterogeneity between neighbourhoods. The registry data were used to predict individual outcomes which in turn are aggregated into higher geographical levels, i.e. neighbourhoods. We validated our method by comparing the estimated prevalences with observed prevalences at the individual level and by comparing the estimated prevalences with direct estimates obtained by weighting methods at municipality level. We estimated the prevalence of the 26 health-related indicators for 415 municipalities, 2599 districts and 11,432 neighbourhoods in the Netherlands. We illustrate our method on overweight data and show that there are distinct geographic patterns in the overweight prevalence. Calibration plots show that the estimated prevalences agree very well with observed prevalences at the individual level. The estimated prevalences agree reasonably well with the direct estimates at the municipal level. Structured additive regression is a useful tool to provide small area estimates in a unified framework. We are able to produce valid nationwide small area estimates of 26 health-related indicators at neighbourhood level in the Netherlands. The results can be used for local policy makers to make appropriate health policy decisions.

  9. GWASinlps: Nonlocal prior based iterative SNP selection tool for genome-wide association studies.

    PubMed

    Sanyal, Nilotpal; Lo, Min-Tzu; Kauppi, Karolina; Djurovic, Srdjan; Andreassen, Ole A; Johnson, Valen E; Chen, Chi-Hua

    2018-06-19

    Multiple marker analysis of the genome-wide association study (GWAS) data has gained ample attention in recent years. However, because of the ultra high-dimensionality of GWAS data, such analysis is challenging. Frequently used penalized regression methods often lead to large number of false positives, whereas Bayesian methods are computationally very expensive. Motivated to ameliorate these issues simultaneously, we consider the novel approach of using nonlocal priors in an iterative variable selection framework. We develop a variable selection method, named, iterative nonlocal prior based selection for GWAS, or GWASinlps, that combines, in an iterative variable selection framework, the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of nonlocal priors. The hallmark of our method is the introduction of 'structured screen-and-select' strategy, that considers hierarchical screening, which is not only based on response-predictor associations, but also based on response-response associations, and concatenates variable selection within that hierarchy. Extensive simulation studies with SNPs having realistic linkage disequilibrium structures demonstrate the advantages of our computationally efficient method compared to several frequentist and Bayesian variable selection methods, in terms of true positive rate, false discovery rate, mean squared error, and effect size estimation error. Further, we provide empirical power analysis useful for study design. Finally, a real GWAS data application was considered with human height as phenotype. An R-package for implementing the GWASinlps method is available at https://cran.r-project.org/web/packages/GWASinlps/index.html. Supplementary data are available at Bioinformatics online.

  10. The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity.

    PubMed

    Wardenaar, K J; van Loo, H M; Cai, T; Fava, M; Gruber, M J; Li, J; de Jonge, P; Nierenberg, A A; Petukhova, M V; Rose, S; Sampson, N A; Schoevers, R A; Wilcox, M A; Alonso, J; Bromet, E J; Bunting, B; Florescu, S E; Fukao, A; Gureje, O; Hu, C; Huang, Y Q; Karam, A N; Levinson, D; Medina Mora, M E; Posada-Villa, J; Scott, K M; Taib, N I; Viana, M C; Xavier, M; Zarkov, Z; Kessler, R C

    2014-11-01

    Although variation in the long-term course of major depressive disorder (MDD) is not strongly predicted by existing symptom subtype distinctions, recent research suggests that prediction can be improved by using machine learning methods. However, it is not known whether these distinctions can be refined by added information about co-morbid conditions. The current report presents results on this question. Data came from 8261 respondents with lifetime DSM-IV MDD in the World Health Organization (WHO) World Mental Health (WMH) Surveys. Outcomes included four retrospectively reported measures of persistence/severity of course (years in episode; years in chronic episodes; hospitalization for MDD; disability due to MDD). Machine learning methods (regression tree analysis; lasso, ridge and elastic net penalized regression) followed by k-means cluster analysis were used to augment previously detected subtypes with information about prior co-morbidity to predict these outcomes. Predicted values were strongly correlated across outcomes. Cluster analysis of predicted values found three clusters with consistently high, intermediate or low values. The high-risk cluster (32.4% of cases) accounted for 56.6-72.9% of high persistence, high chronicity, hospitalization and disability. This high-risk cluster had both higher sensitivity and likelihood ratio positive (LR+; relative proportions of cases in the high-risk cluster versus other clusters having the adverse outcomes) than in a parallel analysis that excluded measures of co-morbidity as predictors. Although the results using the retrospective data reported here suggest that useful MDD subtyping distinctions can be made with machine learning and clustering across multiple indicators of illness persistence/severity, replication with prospective data is needed to confirm this preliminary conclusion.

  11. Smooth individual level covariates adjustment in disease mapping.

    PubMed

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Predicting non-familial major physical violent crime perpetration in the US Army from administrative data.

    PubMed

    Rosellini, A J; Monahan, J; Street, A E; Heeringa, S G; Hill, E D; Petukhova, M; Reis, B Y; Sampson, N A; Bliese, P; Schoenbaum, M; Stein, M B; Ursano, R J; Kessler, R C

    2016-01-01

    Although interventions exist to reduce violent crime, optimal implementation requires accurate targeting. We report the results of an attempt to develop an actuarial model using machine learning methods to predict future violent crimes among US Army soldiers. A consolidated administrative database for all 975 057 soldiers in the US Army in 2004-2009 was created in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). Of these soldiers, 5771 committed a first founded major physical violent crime (murder-manslaughter, kidnapping, aggravated arson, aggravated assault, robbery) over that time period. Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build an actuarial model for these crimes separately among men and women using machine learning methods (cross-validated stepwise regression, random forests, penalized regressions). The model was then validated in an independent 2011-2013 sample. Key predictors were indicators of disadvantaged social/socioeconomic status, early career stage, prior crime, and mental disorder treatment. Area under the receiver-operating characteristic curve was 0.80-0.82 in 2004-2009 and 0.77 in the 2011-2013 validation sample. Of all administratively recorded crimes, 36.2-33.1% (male-female) were committed by the 5% of soldiers having the highest predicted risk in 2004-2009 and an even higher proportion (50.5%) in the 2011-2013 validation sample. Although these results suggest that the models could be used to target soldiers at high risk of violent crime perpetration for preventive interventions, final implementation decisions would require further validation and weighing of predicted effectiveness against intervention costs and competing risks.

  13. Will hypertension performance measures used for pay-for-performance programs penalize those who care for medically complex patients?

    PubMed

    Petersen, Laura A; Woodard, Lechauncy D; Henderson, Louise M; Urech, Tracy H; Pietz, Kenneth

    2009-06-16

    There is concern that performance measures, patient ratings of their care, and pay-for-performance programs may penalize healthcare providers of patients with multiple chronic coexisting conditions. We examined the impact of coexisting conditions on the quality of care for hypertension and patient perception of overall quality of their health care. We classified 141 609 veterans with hypertension into 4 condition groups: those with hypertension-concordant (diabetes mellitus, ischemic heart disease, dyslipidemia) and/or -discordant (arthritis, depression, chronic obstructive pulmonary disease) conditions or neither. We measured blood pressure control at the index visit, overall good quality of care for hypertension, including a follow-up interval, and patient ratings of satisfaction with their care. Associations between condition type and number of coexisting conditions on receipt of overall good quality of care were assessed with logistic regression. The relationship between patient assessment and objective measures of quality was assessed. Of the cohort, 49.5% had concordant-only comorbidities, 8.7% had discordant-only comorbidities, 25.9% had both, and 16.0% had none. Odds of receiving overall good quality after adjustment for age were higher for those with concordant comorbidities (odds ratio, 1.78; 95% confidence interval, 1.70 to 1.87), discordant comorbidities (odds ratio, 1.32; 95% confidence interval, 1.23 to 1.41), or both (odds ratio, 2.25; 95% confidence interval, 2.13 to 2.38) compared with neither. Findings did not change after adjustment for illness severity and/or number of primary care and specialty care visits. Patient assessment of quality did not vary by the presence of coexisting conditions and was not related to objective ratings of quality of care. Contrary to expectations, patients with greater complexity had higher odds of receiving high-quality care for hypertension. Subjective ratings of care did not vary with the presence or absence of comorbid conditions. Our findings should be reassuring to those who care for the most medically complex patients and are concerned that they will be penalized by performance measures or patient ratings of their care.

  14. Optimal Multiple Surface Segmentation With Shape and Context Priors

    PubMed Central

    Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong

    2014-01-01

    Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309

  15. 36 CFR 1200.16 - Will I be penalized for misusing the official seals and logos?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... misusing the official seals and logos? 1200.16 Section 1200.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES OFFICIAL SEALS Penalties for Misuse of NARA Seals and Logos § 1200.16 Will I be penalized for misusing the official seals and logos? (a) Seals. (1) If you...

  16. 36 CFR 1200.16 - Will I be penalized for misusing the official seals and logos?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... misusing the official seals and logos? 1200.16 Section 1200.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES OFFICIAL SEALS Penalties for Misuse of NARA Seals and Logos § 1200.16 Will I be penalized for misusing the official seals and logos? (a) Seals. (1) If you...

  17. 27 CFR 24.148 - Penal sums of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Penal sums of bonds. 24.148 Section 24.148 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Vinegar Plant Bond, TTB F 5510.2 Not less than the tax on all wine on hand, in transit, or unaccounted for...

  18. [Assisted reproduction and artificial insemination and genetic manipulation in the Criminal Code of the Federal District, Mexico].

    PubMed

    Brena Sesma, Ingrid

    2004-01-01

    The article that one presents has for purpose outline and comment on the recent modifications to the Penal Code for the Federal District of México which establish, for the first time, crimes related to the artificial procreation and to the genetic manipulation. Also one refers to the interaction of the new legal texts with the sanitary legislation of the country. Since it will be stated in some cases they present confrontations between the penal and the sanitary reglamentation and some points related to the legality or unlawfulness of a conduct that stayed without the enough development. These lacks will complicate the application of the new rules of the Penal Code of the Federal District.

  19. Madness and crime: Zefinha, the longest confined woman in Brazil.

    PubMed

    Diniz, Debora; Brito, Luciana

    2016-01-01

    Living in a forensic hospital for the last 38 years, Josefa da Silva is the longest female inhabitant surviving the penal and psychiatric regime in Brazil. This paper analyses dossier, judicial proceedings, interviews and photographs about her. The psychiatric report is the key component of the medical and penal doubling of criminal insanity. Twelve psychiatric reports illustrate three time frames of the court files: abnormality, danger, and abandonment. The psychiatric authority over confinement has moved from discipline to security, and from disciplinary security to social assistance. In the arrangement between the penal and psychiatric powers, the judge recognizes the medical authority over the truth of insanity. It is the medicine of the reasons for Zefinha's internment that altered over the decades.

  20. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    NASA Astrophysics Data System (ADS)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  1. Evaluating statistical approaches to leverage large clinical datasets for uncovering therapeutic and adverse medication effects.

    PubMed

    Choi, Leena; Carroll, Robert J; Beck, Cole; Mosley, Jonathan D; Roden, Dan M; Denny, Joshua C; Van Driest, Sara L

    2018-04-18

    Phenome-wide association studies (PheWAS) have been used to discover many genotype-phenotype relationships and have the potential to identify therapeutic and adverse drug outcomes using longitudinal data within electronic health records (EHRs). However, the statistical methods for PheWAS applied to longitudinal EHR medication data have not been established. In this study, we developed methods to address two challenges faced with reuse of EHR for this purpose: confounding by indication, and low exposure and event rates. We used Monte Carlo simulation to assess propensity score (PS) methods, focusing on two of the most commonly used methods, PS matching and PS adjustment, to address confounding by indication. We also compared two logistic regression approaches (the default of Wald vs. Firth's penalized maximum likelihood, PML) to address complete separation due to sparse data with low exposure and event rates. PS adjustment resulted in greater power than propensity score matching, while controlling Type I error at 0.05. The PML method provided reasonable p-values, even in cases with complete separation, with well controlled Type I error rates. Using PS adjustment and the PML method, we identify novel latent drug effects in pediatric patients exposed to two common antibiotic drugs, ampicillin and gentamicin. R packages PheWAS and EHR are available at https://github.com/PheWAS/PheWAS and at CRAN (https://www.r-project.org/), respectively. The R script for data processing and the main analysis is available at https://github.com/choileena/EHR. leena.choi@vanderbilt.edu. Supplementary data are available at Bioinformatics online.

  2. Estimation of spline function in nonparametric path analysis based on penalized weighted least square (PWLS)

    NASA Astrophysics Data System (ADS)

    Fernandes, Adji Achmad Rinaldo; Solimun, Arisoesilaningsih, Endang

    2017-12-01

    The aim of this research is to estimate the spline in Path Analysis-based on Nonparametric Regression using Penalized Weighted Least Square (PWLS) approach. Approach used is Reproducing Kernel Hilbert Space at sobolev space. Nonparametric path analysis model on the equation y1 i=f1.1(x1 i)+ε1 i; y2 i=f1.2(x1 i)+f2.2(y1 i)+ε2 i; i =1 ,2 ,…,n Nonparametric Path Analysis which meet the criteria of minimizing PWLS min fw .k∈W2m[aw .k,bw .k], k =1 ,2 { (2n ) -1(y˜-f ˜ ) TΣ-1(y ˜-f ˜ ) + ∑k =1 2 ∑w =1 2 λw .k ∫aw .k bw .k [fw.k (m )(xi) ] 2d xi } is f ˜^=Ay ˜ with A=T1(T1TU1-1∑-1T1)-1T1TU1-1∑-1+V1U1-1∑-1[I-T1(T1TU1-1∑-1T1)-1T1TU1-1∑-1] columnalign="left">+T2(T2TU2-1∑-1T2)-1T2TU2-1∑-1+V2U2-1∑-1[I1-T2(T2TU2-1∑-1T2) -1T2TU2-1∑-1

  3. Genetic prediction of type 2 diabetes using deep neural network.

    PubMed

    Kim, J; Kim, J; Kwak, M J; Bajaj, M

    2018-04-01

    Type 2 diabetes (T2DM) has strong heritability but genetic models to explain heritability have been challenging. We tested deep neural network (DNN) to predict T2DM using the nested case-control study of Nurses' Health Study (3326 females, 45.6% T2DM) and Health Professionals Follow-up Study (2502 males, 46.5% T2DM). We selected 96, 214, 399, and 678 single-nucleotide polymorphism (SNPs) through Fisher's exact test and L1-penalized logistic regression. We split each dataset randomly in 4:1 to train prediction models and test their performance. DNN and logistic regressions showed better area under the curve (AUC) of ROC curves than the clinical model when 399 or more SNPs included. DNN was superior than logistic regressions in AUC with 399 or more SNPs in male and 678 SNPs in female. Addition of clinical factors consistently increased AUC of DNN but failed to improve logistic regressions with 214 or more SNPs. In conclusion, we show that DNN can be a versatile tool to predict T2DM incorporating large numbers of SNPs and clinical information. Limitations include a relatively small number of the subjects mostly of European ethnicity. Further studies are warranted to confirm and improve performance of genetic prediction models using DNN in different ethnic groups. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Wavefield reconstruction inversion with a multiplicative cost function

    NASA Astrophysics Data System (ADS)

    da Silva, Nuno V.; Yao, Gang

    2018-01-01

    We present a method for the automatic estimation of the trade-off parameter in the context of wavefield reconstruction inversion (WRI). WRI formulates the inverse problem as an optimisation problem, minimising the data misfit while penalising with a wave equation constraining term. The trade-off between the two terms is balanced by a scaling factor that balances the contributions of the data-misfit term and the constraining term to the value of the objective function. If this parameter is too large then it implies penalizing for the wave equation imposing a hard constraint in the inversion. If it is too small, then this leads to a poorly constrained solution as it is essentially penalizing for the data misfit and not taking into account the physics that explains the data. This paper introduces a new approach for the formulation of WRI recasting its formulation into a multiplicative cost function. We demonstrate that the proposed method outperforms the additive cost function when the trade-off parameter is appropriately scaled in the latter, when adapting it throughout the iterations, and when the data is contaminated with Gaussian random noise. Thus this work contributes with a framework for a more automated application of WRI.

  5. Penalized maximum likelihood simultaneous longitudinal PET image reconstruction with difference-image priors.

    PubMed

    Ellis, Sam; Reader, Andrew J

    2018-04-26

    Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example, to observe and quantitate changes in functional behaviour in tumors after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalizing voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high-activity lesions. Here, we present two additional novel longitudinal difference-image priors and evaluate their performance using two-dimesional (2D) simulation studies and a three-dimensional (3D) real dataset case study. We have previously proposed a simultaneous difference-image-based penalized maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have (a) low entropy (DE-PML), and (b) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D-simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumor datasets and compared to standard maximum likelihood expectation-maximization (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumor behaviour, and interscan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard reconstructions with increased counts levels. In tumor regions, each method produces subtly different results in terms of preservation of tumor quantitation and reconstruction root mean-squared error (RMSE). In particular, in the two-scan simulations, the DE-PML method produced tumor means in close agreement with MLEM reconstructions, while the DTV-PML method produced the lowest errors due to noise reduction within the tumor. Across a range of tumor responses and different numbers of scans, similar results were observed, with DTV-PML producing the lowest errors of the three priors and DE-PML producing the lowest bias. Similar improvements were observed in the reconstructions of the real longitudinal datasets, although imperfect alignment of the two PET images resulted in additional changes in the difference image that affected the performance of the proposed methods. Reconstruction of longitudinal datasets by penalizing difference images between pairs of scans from a data series allows for noise reduction in all reconstructed images. An appropriate choice of penalty term and penalty strength allows for this noise reduction to be achieved while maintaining reconstruction performance in regions of change, either in terms of quantitation of mean intensity via DE-PML, or in terms of tumor RMSE via DTV-PML. Overall, improving the image quality of longitudinal datasets via simultaneous reconstruction has the potential to improve upon currently used methods, allow dose reduction, or reduce scan time while maintaining image quality at current levels. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Estimating the intensity of ward admission and its effect on emergency department access block.

    PubMed

    Luo, Wei; Cao, Jiguo; Gallagher, Marcus; Wiles, Janet

    2013-07-10

    Emergency department access block is an urgent problem faced by many public hospitals today. When access block occurs, patients in need of acute care cannot access inpatient wards within an optimal time frame. A widely held belief is that access block is the end product of a long causal chain, which involves poor discharge planning, insufficient bed capacity, and inadequate admission intensity to the wards. This paper studies the last link of the causal chain-the effect of admission intensity on access block, using data from a metropolitan hospital in Australia. We applied several modern statistical methods to analyze the data. First, we modeled the admission events as a nonhomogeneous Poisson process and estimated time-varying admission intensity with penalized regression splines. Next, we established a functional linear model to investigate the effect of the time-varying admission intensity on emergency department access block. Finally, we used functional principal component analysis to explore the variation in the daily time-varying admission intensities. The analyses suggest that improving admission practice during off-peak hours may have most impact on reducing the number of ED access blocks. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Machine Learning Algorithms for prediction of regions of high Reynolds Averaged Navier Stokes Uncertainty

    NASA Astrophysics Data System (ADS)

    Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    In spite of their deficiencies, RANS models represent the workhorse for industrial investigations into turbulent flows. In this context, it is essential to provide diagnostic measures to assess the quality of RANS predictions. To this end, the primary step is to identify feature importances amongst massive sets of potentially descriptive and discriminative flow features. This aids the physical interpretability of the resultant discrepancy model and its extensibility to similar problems. Recent investigations have utilized approaches such as Random Forests, Support Vector Machines and the Least Absolute Shrinkage and Selection Operator for feature selection. With examples, we exhibit how such methods may not be suitable for turbulent flow datasets. The underlying rationale, such as the correlation bias and the required conditions for the success of penalized algorithms, are discussed with illustrative examples. Finally, we provide alternate approaches using convex combinations of regularized regression approaches and randomized sub-sampling in combination with feature selection algorithms, to infer model structure from data. This research was supported by the Defense Advanced Research Projects Agency under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).

  8. Detection of multiple perturbations in multi-omics biological networks.

    PubMed

    Griffin, Paula J; Zhang, Yuqing; Johnson, William Evan; Kolaczyk, Eric D

    2018-05-17

    Cellular mechanism-of-action is of fundamental concern in many biological studies. It is of particular interest for identifying the cause of disease and learning the way in which treatments act against disease. However, pinpointing such mechanisms is difficult, due to the fact that small perturbations to the cell can have wide-ranging downstream effects. Given a snapshot of cellular activity, it can be challenging to tell where a disturbance originated. The presence of an ever-greater variety of high-throughput biological data offers an opportunity to examine cellular behavior from multiple angles, but also presents the statistical challenge of how to effectively analyze data from multiple sources. In this setting, we propose a method for mechanism-of-action inference by extending network filtering to multi-attribute data. We first estimate a joint Gaussian graphical model across multiple data types using penalized regression and filter for network effects. We then apply a set of likelihood ratio tests to identify the most likely site of the original perturbation. In addition, we propose a conditional testing procedure to allow for detection of multiple perturbations. We demonstrate this methodology on paired gene expression and methylation data from The Cancer Genome Atlas (TCGA). © 2018, The International Biometric Society.

  9. Civil commitment and the criminal insanity plea in Israeli law.

    PubMed

    Toib, Josef A

    2008-01-01

    In Israeli jurisprudence there is a substantial difference towards mentally ill patients between the civil and penal law systems that goes well beyond differences required by their separate objectives. Mentally ill people dangerous to others due to their illness belong in the hospital, not in the community or in jail. The data gathered especially for this paper make it hard to escape the conclusion that contemporary practice in Israel does not accord with this objective. On the civil front, inaccuracy in predicting who is dangerous may lead to involuntary commitment of people who are not dangerous. On the criminal side, too few people are sent to the hospital in Israel and correspondingly too many to jail. Comparison with US data and practice shows that on the civil side prediction has been improved by using actuarial methods, while on the penal side more up to date definitions of mental illness have been adopted. Whatever the appropriate solution for Israel, surely the first requirement is recognition of the problem.

  10. Drag and drop simulation: from pictures to full three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Iollo, Angelo

    2014-11-01

    We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.

  11. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA

    PubMed Central

    Garcia, Ramon I.; Ibrahim, Joseph G.; Zhu, Hongtu

    2009-01-01

    We consider the variable selection problem for a class of statistical models with missing data, including missing covariate and/or response data. We investigate the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and propose a unified model selection and estimation procedure for use in the presence of missing data. We develop a computationally attractive algorithm for simultaneously optimizing the penalized likelihood function and estimating the penalty parameters. Particularly, we propose to use a model selection criterion, called the ICQ statistic, for selecting the penalty parameters. We show that the variable selection procedure based on ICQ automatically and consistently selects the important covariates and leads to efficient estimates with oracle properties. The methodology is very general and can be applied to numerous situations involving missing data, from covariates missing at random in arbitrary regression models to nonignorably missing longitudinal responses and/or covariates. Simulations are given to demonstrate the methodology and examine the finite sample performance of the variable selection procedures. Melanoma data from a cancer clinical trial is presented to illustrate the proposed methodology. PMID:20336190

  12. Biosignature Discovery for Substance Use Disorders Using Statistical Learning.

    PubMed

    Baurley, James W; McMahan, Christopher S; Ervin, Carolyn M; Pardamean, Bens; Bergen, Andrew W

    2018-02-01

    There are limited biomarkers for substance use disorders (SUDs). Traditional statistical approaches are identifying simple biomarkers in large samples, but clinical use cases are still being established. High-throughput clinical, imaging, and 'omic' technologies are generating data from SUD studies and may lead to more sophisticated and clinically useful models. However, analytic strategies suited for high-dimensional data are not regularly used. We review strategies for identifying biomarkers and biosignatures from high-dimensional data types. Focusing on penalized regression and Bayesian approaches, we address how to leverage evidence from existing studies and knowledge bases, using nicotine metabolism as an example. We posit that big data and machine learning approaches will considerably advance SUD biomarker discovery. However, translation to clinical practice, will require integrated scientific efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Scientific Misconduct in India: Causes and Perpetuation.

    PubMed

    Patnaik, Pratap R

    2016-08-01

    Along with economic strength, space technology and software expertise, India is also a leading nation in fraudulent scientific research. The problem is worsened by vested interests working in concert for their own benefits. These self-promoting cartels, together with biased evaluation methods and weak penal systems, combine to perpetuate scientific misconduct. Some of these issues are discussed in this commentary, with supporting examples and possible solutions.

  14. Metabolomics method to comprehensively analyze amino acids in different domains.

    PubMed

    Gu, Haiwei; Du, Jianhai; Carnevale Neto, Fausto; Carroll, Patrick A; Turner, Sally J; Chiorean, E Gabriela; Eisenman, Robert N; Raftery, Daniel

    2015-04-21

    Amino acids play essential roles in both metabolism and the proteome. Many studies have profiled free amino acids (FAAs) or proteins; however, few have connected the measurement of FAA with individual amino acids in the proteome. In this study, we developed a metabolomics method to comprehensively analyze amino acids in different domains, using two examples of different sample types and disease models. We first examined the responses of FAAs and insoluble-proteome amino acids (IPAAs) to the Myc oncogene in Tet21N human neuroblastoma cells. The metabolic and proteomic amino acid profiles were quite different, even under the same Myc condition, and their combination provided a better understanding of the biological status. In addition, amino acids were measured in 3 domains (FAAs, free and soluble-proteome amino acids (FSPAAs), and IPAAs) to study changes in serum amino acid profiles related to colon cancer. A penalized logistic regression model based on the amino acids from the three domains had better sensitivity and specificity than that from each individual domain. To the best of our knowledge, this is the first study to perform a combined analysis of amino acids in different domains, and indicates the useful biological information available from a metabolomics analysis of the protein pellet. This study lays the foundation for further quantitative tracking of the distribution of amino acids in different domains, with opportunities for better diagnosis and mechanistic studies of various diseases.

  15. Machine Learning EEG to Predict Cognitive Functioning and Processing Speed Over a 2-Year Period in Multiple Sclerosis Patients and Controls.

    PubMed

    Kiiski, Hanni; Jollans, Lee; Donnchadha, Seán Ó; Nolan, Hugh; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B; Whelan, Robert

    2018-05-01

    Event-related potentials (ERPs) show promise to be objective indicators of cognitive functioning. The aim of the study was to examine if ERPs recorded during an oddball task would predict cognitive functioning and information processing speed in Multiple Sclerosis (MS) patients and controls at the individual level. Seventy-eight participants (35 MS patients, 43 healthy age-matched controls) completed visual and auditory 2- and 3-stimulus oddball tasks with 128-channel EEG, and a neuropsychological battery, at baseline (month 0) and at Months 13 and 26. ERPs from 0 to 700 ms and across the whole scalp were transformed into 1728 individual spatio-temporal datapoints per participant. A machine learning method that included penalized linear regression used the entire spatio-temporal ERP to predict composite scores of both cognitive functioning and processing speed at baseline (month 0), and months 13 and 26. The results showed ERPs during the visual oddball tasks could predict cognitive functioning and information processing speed at baseline and a year later in a sample of MS patients and healthy controls. In contrast, ERPs during auditory tasks were not predictive of cognitive performance. These objective neurophysiological indicators of cognitive functioning and processing speed, and machine learning methods that can interrogate high-dimensional data, show promise in outcome prediction.

  16. A penalized quantitative structure-property relationship study on melting point of energetic carbocyclic nitroaromatic compounds using adaptive bridge penalty.

    PubMed

    Al-Fakih, A M; Algamal, Z Y; Lee, M H; Aziz, M

    2018-05-01

    A penalized quantitative structure-property relationship (QSPR) model with adaptive bridge penalty for predicting the melting points of 92 energetic carbocyclic nitroaromatic compounds is proposed. To ensure the consistency of the descriptor selection of the proposed penalized adaptive bridge (PBridge), we proposed a ridge estimator ([Formula: see text]) as an initial weight in the adaptive bridge penalty. The Bayesian information criterion was applied to ensure the accurate selection of the tuning parameter ([Formula: see text]). The PBridge based model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], the Y-randomization test, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of PBridge for the training dataset outperforms the other methods used. PBridge shows the highest [Formula: see text] of 0.959, [Formula: see text] of 0.953, [Formula: see text] of 0.949 and [Formula: see text] of 0.959, and the lowest [Formula: see text] and [Formula: see text]. For the test dataset, PBridge shows a higher [Formula: see text] of 0.945 and [Formula: see text] of 0.948, and a lower [Formula: see text] and [Formula: see text], indicating its better prediction performance. The results clearly reveal that the proposed PBridge is useful for constructing reliable and robust QSPRs for predicting melting points prior to synthesizing new organic compounds.

  17. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection.

    PubMed

    Brankov, Jovan G

    2013-10-21

    The channelized Hotelling observer (CHO) has become a widely used approach for evaluating medical image quality, acting as a surrogate for human observers in early-stage research on assessment and optimization of imaging devices and algorithms. The CHO is typically used to measure lesion detectability. Its popularity stems from experiments showing that the CHO's detection performance can correlate well with that of human observers. In some cases, CHO performance overestimates human performance; to counteract this effect, an internal-noise model is introduced, which allows the CHO to be tuned to match human-observer performance. Typically, this tuning is achieved using example data obtained from human observers. We argue that this internal-noise tuning step is essentially a model training exercise; therefore, just as in supervised learning, it is essential to test the CHO with an internal-noise model on a set of data that is distinct from that used to tune (train) the model. Furthermore, we argue that, if the CHO is to provide useful insights about new imaging algorithms or devices, the test data should reflect such potential differences from the training data; it is not sufficient simply to use new noise realizations of the same imaging method. Motivated by these considerations, the novelty of this paper is the use of new model selection criteria to evaluate ten established internal-noise models, utilizing four different channel models, in a train-test approach. Though not the focus of the paper, a new internal-noise model is also proposed that outperformed the ten established models in the cases tested. The results, using cardiac perfusion SPECT data, show that the proposed train-test approach is necessary, as judged by the newly proposed model selection criteria, to avoid spurious conclusions. The results also demonstrate that, in some models, the optimal internal-noise parameter is very sensitive to the choice of training data; therefore, these models are prone to overfitting, and will not likely generalize well to new data. In addition, we present an alternative interpretation of the CHO as a penalized linear regression wherein the penalization term is defined by the internal-noise model.

  18. Linear models to perform treaty verification tasks for enhanced information security

    DOE PAGES

    MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; ...

    2016-11-12

    Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less

  19. Linear models to perform treaty verification tasks for enhanced information security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.

    Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less

  20. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    PubMed

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  1. Linear models to perform treaty verification tasks for enhanced information security

    NASA Astrophysics Data System (ADS)

    MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; Hilton, Nathan R.; Marleau, Peter A.

    2017-02-01

    Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.

  2. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Jamie A., E-mail: jamie.dean@icr.ac.uk; Wong, Kee H.; Gay, Hiram

    Purpose: Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue–sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. Methods and Materials: FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogrammore » data. The reduced dose data were input into functional logistic regression models (functional partial least squares–logistic regression [FPLS-LR] and functional principal component–logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate–response associations, assessed using bootstrapping. Results: The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/−0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/−0.96, 0.79/−0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. Conclusions: FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling.« less

  3. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  4. Improving stability of prediction models based on correlated omics data by using network approaches.

    PubMed

    Tissier, Renaud; Houwing-Duistermaat, Jeanine; Rodríguez-Girondo, Mar

    2018-01-01

    Building prediction models based on complex omics datasets such as transcriptomics, proteomics, metabolomics remains a challenge in bioinformatics and biostatistics. Regularized regression techniques are typically used to deal with the high dimensionality of these datasets. However, due to the presence of correlation in the datasets, it is difficult to select the best model and application of these methods yields unstable results. We propose a novel strategy for model selection where the obtained models also perform well in terms of overall predictability. Several three step approaches are considered, where the steps are 1) network construction, 2) clustering to empirically derive modules or pathways, and 3) building a prediction model incorporating the information on the modules. For the first step, we use weighted correlation networks and Gaussian graphical modelling. Identification of groups of features is performed by hierarchical clustering. The grouping information is included in the prediction model by using group-based variable selection or group-specific penalization. We compare the performance of our new approaches with standard regularized regression via simulations. Based on these results we provide recommendations for selecting a strategy for building a prediction model given the specific goal of the analysis and the sizes of the datasets. Finally we illustrate the advantages of our approach by application of the methodology to two problems, namely prediction of body mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome study (DILGOM) and prediction of response of each breast cancer cell line to treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.

  5. Applications of machine learning and data mining methods to detect associations of rare and common variants with complex traits.

    PubMed

    Lu, Ake Tzu-Hui; Austin, Erin; Bonner, Ashley; Huang, Hsin-Hsiung; Cantor, Rita M

    2014-09-01

    Machine learning methods (MLMs), designed to develop models using high-dimensional predictors, have been used to analyze genome-wide genetic and genomic data to predict risks for complex traits. We summarize the results from six contributions to our Genetic Analysis Workshop 18 working group; these investigators applied MLMs and data mining to analyses of rare and common genetic variants measured in pedigrees. To develop risk profiles, group members analyzed blood pressure traits along with single-nucleotide polymorphisms and rare variant genotypes derived from sequence and imputation analyses in large Mexican American pedigrees. Supervised MLMs included penalized regression with varying penalties, support vector machines, and permanental classification. Unsupervised MLMs included sparse principal components analysis and sparse graphical models. Entropy-based components analyses were also used to mine these data. None of the investigators fully capitalized on the genetic information provided by the complete pedigrees. Their approaches either corrected for the nonindependence of the individuals within the pedigrees or analyzed only those who were independent. Some methods allowed for covariate adjustment, whereas others did not. We evaluated these methods using a variety of metrics. Four contributors conducted primary analyses on the real data, and the other two research groups used the simulated data with and without knowledge of the underlying simulation model. One group used the answers to the simulated data to assess power and type I errors. Although the MLMs applied were substantially different, each research group concluded that MLMs have advantages over standard statistical approaches with these high-dimensional data. © 2014 WILEY PERIODICALS, INC.

  6. [Fragments Woven into a Whole: A New Approach to the Diagnosis of Cancer through Mass Spectrometry and Machine-Learning].

    PubMed

    Takeda, Sen; Yoshimura, Kentaro; Tanabe, Kunio

    2015-09-01

    Conventionally, a definitive diagnosis of cancer is derived from histopathological diagnostics based on morphological criteria that are difficult to standardize on a quantifiable basis. On the other hand, while molecular tumor markers and blood biochemical profiles give quantitative values evaluated by objective criteria, these parameters are usually generated by deductive methods such as peak extraction. Therefore, some of the data that may contain useful information on specimens are discarded. To overcome the disadvantages of these methods, we have developed a new approach by employing both mass spectrometry and machine-learning for cancer diagnosis. Probe electrospray ionization (PESI) is a derivative of electrospray ionization that uses a fine acupuncture needle as a sample picker as well as an ion emitter for mass spectrometry. This method enables us to ionize very small tissue samples up to a few pico liters in the presence of physiological concentrations of inorganic salts, without the need for any sample pretreatment. Moreover, as this technique makes it possible to ionize all components with minimal suppression effects, we can retrieve much more molecular information from specimens. To make the most of data enriched with lipid compounds and substances with lower molecular weights such as carbohydrates, we employed machine-learning named the dual penalized logistic regression machine (dPLRM). This method is completely different from pattern-matching in that it discriminates categories by projecting the spectral data into a mathematical space with very high dimensions, where final judgment is made. We are now approaching the final clinical trial to validate the usefulness of our system.

  7. Computer method for identification of boiler transfer functions

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1971-01-01

    An iterative computer method is described for identifying boiler transfer functions using frequency response data. An objective penalized performance measure and a nonlinear minimization technique are used to cause the locus of points generated by a transfer function to resemble the locus of points obtained from frequency response measurements. Different transfer functions can be tried until a satisfactory empirical transfer function to the system is found. To illustrate the method, some examples and some results from a study of a set of data consisting of measurements of the inlet impedance of a single tube forced flow boiler with inserts are given.

  8. 45 CFR 286.150 - Can a family, with a child under age 6, be penalized because a parent refuses to work because (s...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... penalized because a parent refuses to work because (s)he cannot find child care? 286.150 Section 286.150... a parent refuses to work because (s)he cannot find child care? (a) If the individual is a single custodial parent caring for a child under age six, the Tribe may not reduce or terminate assistance based on...

  9. 45 CFR 286.150 - Can a family, with a child under age 6, be penalized because a parent refuses to work because (s...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... penalized because a parent refuses to work because (s)he cannot find child care? 286.150 Section 286.150... a parent refuses to work because (s)he cannot find child care? (a) If the individual is a single custodial parent caring for a child under age six, the Tribe may not reduce or terminate assistance based on...

  10. 45 CFR 286.150 - Can a family, with a child under age 6, be penalized because a parent refuses to work because (s...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... penalized because a parent refuses to work because (s)he cannot find child care? 286.150 Section 286.150... a parent refuses to work because (s)he cannot find child care? (a) If the individual is a single custodial parent caring for a child under age six, the Tribe may not reduce or terminate assistance based on...

  11. 45 CFR 286.150 - Can a family, with a child under age 6, be penalized because a parent refuses to work because (s...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... penalized because a parent refuses to work because (s)he cannot find child care? 286.150 Section 286.150... a parent refuses to work because (s)he cannot find child care? (a) If the individual is a single custodial parent caring for a child under age six, the Tribe may not reduce or terminate assistance based on...

  12. 45 CFR 286.150 - Can a family, with a child under age 6, be penalized because a parent refuses to work because (s...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... penalized because a parent refuses to work because (s)he cannot find child care? 286.150 Section 286.150... a parent refuses to work because (s)he cannot find child care? (a) If the individual is a single custodial parent caring for a child under age six, the Tribe may not reduce or terminate assistance based on...

  13. Law No. 91, Amendment to the Penal Code, 5 September 1987.

    PubMed

    1989-01-01

    This Law replaces Article 398 of the Iraq Penal Code with the following language: "If a sound contract of marriage has been made between a perpetrator of one of the crimes mentioned in this chapter and the victim, it shall be a legal extenuating excuse for the purpose of implementing the provisions of Articles (130 and 131) of the Penal Code. If the marriage contract has been terminated by a divorce issued by the husband without a legitimate reason, or by a divorce passed by the court for such reasons related [to] a mistake or a misconduct of the husband, three years before the expiry of the sentence of the action, then, the punishment shall be reconsidered with a view to intensifying it due to a request from the public prosecution, the victim herself, or any interested person." Among the crimes mentioned in the chapter referred to in Article 398 is rape.

  14. Postcolonial penality: Liberty and repression in the shadow of independence, India c. 1947

    PubMed Central

    Brown, Mark

    2016-01-01

    This article reports primary archival data on the colonial penal history of British India and its reconfiguration into the postcolonial Indian state. It introduces criminologists to frameworks through which postcolonial scholars have sought to make sense of the continuities and discontinuities of rule across the colonial/postcolonial divide. The article examines the postcolonial life of one example of colonial penal power, known as the criminal tribes policy, under which more than three million Indian subjects of British rule were restricted in their movements, subject to a host of administrative rules and sometimes severe punishments, sequestered in settlements and limited in access to legal redress. It illustrates how at the birth of the postcolonial Indian state, encompassing visions of a liberal, unfettered and free life guaranteed in a new Constitution and charter of Fundamental Rights, freedom for some was to prove as elusive as citizens as it had been as subjects. PMID:28503082

  15. Postcolonial penality: Liberty and repression in the shadow of independence, India c. 1947.

    PubMed

    Brown, Mark

    2017-05-01

    This article reports primary archival data on the colonial penal history of British India and its reconfiguration into the postcolonial Indian state. It introduces criminologists to frameworks through which postcolonial scholars have sought to make sense of the continuities and discontinuities of rule across the colonial/postcolonial divide. The article examines the postcolonial life of one example of colonial penal power, known as the criminal tribes policy, under which more than three million Indian subjects of British rule were restricted in their movements, subject to a host of administrative rules and sometimes severe punishments, sequestered in settlements and limited in access to legal redress. It illustrates how at the birth of the postcolonial Indian state, encompassing visions of a liberal, unfettered and free life guaranteed in a new Constitution and charter of Fundamental Rights, freedom for some was to prove as elusive as citizens as it had been as subjects.

  16. Sparse generalized linear model with L0 approximation for feature selection and prediction with big omics data.

    PubMed

    Liu, Zhenqiu; Sun, Fengzhu; McGovern, Dermot P

    2017-01-01

    Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L 1 , SCAD and MC+. However, none of the existing algorithms optimizes L 0 , which penalizes the number of nonzero features directly. In this paper, we develop a novel sparse generalized linear model (GLM) with L 0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L 0 optimization directly. Even though the original L 0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms ( L 0 ADRIDGE) for L 0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. The developed Software L 0 ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge.

  17. Variable selection in discrete survival models including heterogeneity.

    PubMed

    Groll, Andreas; Tutz, Gerhard

    2017-04-01

    Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is based on a combination of ridge and lasso type penalties that are tailored to the case of discrete survival. The performance is studied in simulation studies and an application to the birth of the first child.

  18. Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.

    PubMed

    Rios, Anthony; Kavuluru, Ramakanth

    2017-11-01

    The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to predict psychiatric symptom severity scores. This paper summarizes our methods, results, and experiences based on our participation in the second track of the shared task. Classical methods of text classification usually fall into one of three problem types: binary, multi-class, and multi-label classification. In this effort, we study ordinal regression problems with text data where misclassifications are penalized differently based on how far apart the ground truth and model predictions are on the ordinal scale. Specifically, we present our entries (methods and results) in the N-GRID shared task in predicting research domain criteria (RDoC) positive valence ordinal symptom severity scores (absent, mild, moderate, and severe) from psychiatric notes. We propose a novel convolutional neural network (CNN) model designed to handle ordinal regression tasks on psychiatric notes. Broadly speaking, our model combines an ordinal loss function, a CNN, and conventional feature engineering (wide features) into a single model which is learned end-to-end. Given interpretability is an important concern with nonlinear models, we apply a recent approach called locally interpretable model-agnostic explanation (LIME) to identify important words that lead to instance specific predictions. Our best model entered into the shared task placed third among 24 teams and scored a macro mean absolute error (MMAE) based normalized score (100·(1-MMAE)) of 83.86. Since the competition, we improved our score (using basic ensembling) to 85.55, comparable with the winning shared task entry. Applying LIME to model predictions, we demonstrate the feasibility of instance specific prediction interpretation by identifying words that led to a particular decision. In this paper, we present a method that successfully uses wide features and an ordinal loss function applied to convolutional neural networks for ordinal text classification specifically in predicting psychiatric symptom severity scores. Our approach leads to excellent performance on the N-GRID shared task and is also amenable to interpretability using existing model-agnostic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Determination of nonlinear genetic architecture using compressed sensing.

    PubMed

    Ho, Chiu Man; Hsu, Stephen D H

    2015-01-01

    One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate that predictive models for many complex traits, including a variety of human disease susceptibilities (e.g., with additive heritability h (2)∼0.5), can be extracted from data sets comprised of n ⋆∼100s individuals, where s is the number of distinct causal variants influencing the trait. For example, given a trait controlled by ∼10 k loci, roughly a million individuals would be sufficient for application of the method.

  20. [Medical legal aspects of the requirement to report noise-induced hearing loss notified to INAIL to the judicial authorities].

    PubMed

    Salatin, Giuseppina; Mattia, C F; Morganti, M; Motta, Laura

    2006-01-01

    Law 689/81 redefined how personal lesions could be prosecuted by means of explicit mention of occupational diseases among the type of offences subject to mandatory reporting. The high prevalence of noise-induced hearing loss (NIHL) among occupational diseases has monopolized attention towards identification of a method that can define the penal limits of this occupational disease; however, up to now no single univocal approach exists. For this reason operators in this field are perplexed as to the requirement of reporting judicial authorities (J.A.). On the other hand, the great changes that have occurred in compensation of occupational diseases by INAIL (sentence 179/88 of the Constitutional Court) and the evaluation of the same in terms of biological impairment (Law D.Lgs. 38/00 and Law D.M. 12.7.00) have led to an ample and accurately assessed protection against, work-related hearing loss. From this perspective the authors analysed 52 cases of NIHL reported to INAIL. They compared the assessments made according to Law D.M. 12.7.00 and the guidelines for reporting to the J.A. according to four different methods generally used in the criminal field: Benciolini, Merluzzi, SIMLII guide lines and SIO guidelines. By stressing the need for a preliminary qualitative evaluation of NIHL in the penal report, the authors. restricted the analysis to the quantitative aspect with technically compatible graphs. Processing the data resulting from application of the different methods, led to the assumption that audiometric graphs that showed a percentage of biological impairment according to Law D.M. 12.7.00 higher than 2.40% must always be reported to the JA. For audiometric graphs that show impairment of less than 0.5% recommendations to report tare rather sporadic. For the graphs with intermediate values recommendations to report to the J.A, which are always present in at least one of the methods, are not constant, and in particular there is no linear correlation between the percent grading of biological impairment and the recommendation to report; this is probably due to a difference in concept of the various methods which reflects on the respective scale of values. On the basis of these results the authors suggest that reporting to the judicial authority can be recommended for all those cases whose quantification, according Marello's schedule, is higher than 0.5%, as these cases can, according to the penal code, supplement assessment of impairment.

  1. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Shaojie; Tang Xiangyang; School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121

    2012-09-15

    Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation ofmore » interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.« less

  2. Improving Disease Prediction by Incorporating Family Disease History in Risk Prediction Models with Large-Scale Genetic Data.

    PubMed

    Gim, Jungsoo; Kim, Wonji; Kwak, Soo Heon; Choi, Hosik; Park, Changyi; Park, Kyong Soo; Kwon, Sunghoon; Park, Taesung; Won, Sungho

    2017-11-01

    Despite the many successes of genome-wide association studies (GWAS), the known susceptibility variants identified by GWAS have modest effect sizes, leading to notable skepticism about the effectiveness of building a risk prediction model from large-scale genetic data. However, in contrast to genetic variants, the family history of diseases has been largely accepted as an important risk factor in clinical diagnosis and risk prediction. Nevertheless, the complicated structures of the family history of diseases have limited their application in clinical practice. Here, we developed a new method that enables incorporation of the general family history of diseases with a liability threshold model, and propose a new analysis strategy for risk prediction with penalized regression analysis that incorporates both large numbers of genetic variants and clinical risk factors. Application of our model to type 2 diabetes in the Korean population (1846 cases and 1846 controls) demonstrated that single-nucleotide polymorphisms accounted for 32.5% of the variation explained by the predicted risk scores in the test data set, and incorporation of family history led to an additional 6.3% improvement in prediction. Our results illustrate that family medical history provides valuable information on the variation of complex diseases and improves prediction performance. Copyright © 2017 by the Genetics Society of America.

  3. SPECT reconstruction using DCT-induced tight framelet regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej

    2015-03-01

    Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.

  4. Sociodemographic Characteristics of Pregnant Women Exposed to Domestic Violence During Pregnancy in an Iranian Setting

    PubMed Central

    Hajikhani Golchin, Nayereh Azam; Hamzehgardeshi, Zeinab; Hamzehgardeshi, Leila; Shirzad Ahoodashti, Mahboobeh

    2014-01-01

    Background: Domestic violence refers to any type of physical, sexual, and psychological abuse enforced in the setting of familial relationships. Domestic violence has a significant relationship with poor outcome among pregnant women. Success in resolving this social phenomenon rests on accurate assessment of the society and the factors associated with violence in that specific community. Objectives: The present study was conducted to assess the demographic characteristics of pregnant women exposed to different types of domestic violence during pregnancy in Iranian setting. Patients and Methods: This is a descriptive-analytic, cross-sectional study. Sampling was done with convenience sampling method. in the current study, 301 pregnant women aged 15-45 years of Iranian nationality who were referred to the hospital for delivery or abortion, regardless of the gestational age, were selected as the subjects. Data collection tools consisted of a sociodemographic questionnaire and a violence checklist. Violence was assessed using Revised Conflict Tactics Scale (CTS2). Data were analyzed using descriptive and analytic statistics on SPSS version 16 (SPSS, Chicago, IL, USA) and STATA version 10. The characteristics of the participants were presented as mean ± SD or number and percentage. Differences between variables were determined by the χ2 test, and multivariate logistic regression. P < 0.05 was considered significant. Results: According to the findings, 34.56% of participants had experienced psychological violence, 28.24% physical violence, and 3.65% sexual violence. Multivariate logistic regression revealed a statistically significant relationship only in the case of physical violence and history of penal conviction for partner (Adjusted Odds Ratio (AOR) = 12.60) and a patriarchal household (AOR = 16.75). Conclusions: As domestic violence is greatly influenced by the customs and cultures of each community, no single strategy can be adopted to resolve it universally. Simultaneously, it is necessary to adopt comprehensive measures to control factors associated with domestic violence in the healthcare, judiciary, and the educational systems in order to prevent and curb this social challenge. PMID:24910784

  5. Optimizing Preprocessing and Analysis Pipelines for Single-Subject FMRI. I. Standard Temporal Motion and Physiological Noise Correction Methods

    PubMed Central

    Churchill, Nathan W.; Oder, Anita; Abdi, Hervé; Tam, Fred; Lee, Wayne; Thomas, Christopher; Ween, Jon E.; Graham, Simon J.; Strother, Stephen C.

    2016-01-01

    Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or “pipeline”) in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. PMID:21455942

  6. ["Integrity" in the healthcare system : Recognize and avoid risks: on dealing with the Association of Statutory Health Insurance Physicians and the public prosecutors office].

    PubMed

    Wohlgemuth, Martin; Heinrich, Julia

    2018-05-24

    This article describes the introduction of the law to combat corruption in the healthcare system. The effects of the introduced penal regulations on the delivery of medical services is critically scrutinized and the associated procedures as well as indications for the course of action are presented. Knowledge of the relevant regulations and types of procedure is decisive for the penal, social legislative and professional conduct risk minimization.

  7. To Amend Certain Federal Statutes to Enhance the Effectiveness of Job Training Programs in Penal Institutions. Hearing before the Subcommittee on Labor Standards of the Committee on Education and Labor, House of Representatives, Ninety-Fourth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    A hearing before the subcommittee on labor standards was held to receive testimony on a bill, H.R. 2715, to amend Federal statutes to improve the effectiveness of job training programs in penal institutions. H.R. 2715, sponsored by Congressman Albert H. Quie of Minnesota, would permit the distribution in interstate commerce of goods produced by…

  8. Religious counseling in the penal context: strategies of trust and establishment of trusting relationships in a context of distrust.

    PubMed

    Brandner, Tobias

    2013-06-01

    The paper describes how distrust shapes the network of relationships between the different agents in the penal context, among inmates, between inmates and their family, between inmates and staff, between counselors and staff, and between inmates and counselors, and discusses how counseling strategies need to be adjusted to counter the effects of the institutional and biographical context of distrust. The paper is based on many years of participation and observation in the context of Hong Kong.

  9. Postmolar gestational trophoblastic neoplasia: beyond the traditional risk factors.

    PubMed

    Bakhtiyari, Mahmood; Mirzamoradi, Masoumeh; Kimyaiee, Parichehr; Aghaie, Abbas; Mansournia, Mohammd Ali; Ashrafi-Vand, Sepideh; Sarfjoo, Fatemeh Sadat

    2015-09-01

    To investigate the slope of linear regression of postevacuation serum hCG as an independent risk factor for postmolar gestational trophoblastic neoplasia (GTN). Multicenter retrospective cohort study. Academic referral health care centers. All subjects with confirmed hydatidiform mole and at least four measurements of β-hCG titer. None. Type and magnitude of the relationship between the slope of linear regression of β-hCG as a new risk factor and GTN using Bayesian logistic regression with penalized log-likelihood estimation. Among the high-risk and low-risk molar pregnancy cases, 11 (18.6%) and 19 cases (13.3%) had GTN, respectively. No significant relationship was found between the components of a high-risk pregnancy and GTN. The β-hCG return slope was higher in the spontaneous cure group. However, the initial level of this hormone in the first measurement was higher in the GTN group compared with in the spontaneous recovery group. The average time for diagnosing GTN in the high-risk molar pregnancy group was 2 weeks less than that of the low-risk molar pregnancy group. In addition to slope of linear regression of β-hCG (odds ratio [OR], 12.74, confidence interval [CI], 5.42-29.2), abortion history (OR, 2.53; 95% CI, 1.27-5.04) and large uterine height for gestational age (OR, 1.26; CI, 1.04-1.54) had the maximum effects on GTN outcome, respectively. The slope of linear regression of β-hCG was introduced as an independent risk factor, which could be used for clinical decision making based on records of β-hCG titer and subsequent prevention program. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second-order PQL mixed logistic regression.

    PubMed

    Candel, Math J J M; Van Breukelen, Gerard J P

    2010-06-30

    Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.

  11. Structured penalties for functional linear models-partially empirical eigenvectors for regression.

    PubMed

    Randolph, Timothy W; Harezlak, Jaroslaw; Feng, Ziding

    2012-01-01

    One of the challenges with functional data is incorporating geometric structure, or local correlation, into the analysis. This structure is inherent in the output from an increasing number of biomedical technologies, and a functional linear model is often used to estimate the relationship between the predictor functions and scalar responses. Common approaches to the problem of estimating a coefficient function typically involve two stages: regularization and estimation. Regularization is usually done via dimension reduction, projecting onto a predefined span of basis functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified approach that directly incorporates geometric structure into the estimation process by exploiting the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the components in the regression are 'partially empirical' and the framework is provided by the generalized singular value decomposition (GSVD). The form of the penalized estimation is not new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the joint influence of the penalty and predictors on the bias, variance and performance of the estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate the concepts.

  12. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali, Md Nasim; Majumdar, K; Ray, D P

    2014-07-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Hospitals with higher nurse staffing had lower odds of readmissions penalties than hospitals with lower staffing.

    PubMed

    McHugh, Matthew D; Berez, Julie; Small, Dylan S

    2013-10-01

    The Affordable Care Act's Hospital Readmissions Reduction Program (HRRP) penalizes hospitals based on excess readmission rates among Medicare beneficiaries. The aim of the program is to reduce readmissions while aligning hospitals' financial incentives with payers' and patients' quality goals. Many evidence-based interventions that reduce readmissions, such as discharge preparation, care coordination, and patient education, are grounded in the fundamentals of basic nursing care. Yet inadequate staffing can hinder nurses' efforts to carry out these processes of care. We estimated the effect that nurse staffing had on the likelihood that a hospital was penalized under the HRRP. Hospitals with higher nurse staffing had 25 percent lower odds of being penalized compared to otherwise similar hospitals with lower staffing. Investment in nursing is a potential system-level intervention to reduce readmissions that policy makers and hospital administrators should consider in the new regulatory environment as they examine the quality of care delivered to US hospital patients.

  14. Hospitals With Higher Nurse Staffing Had Lower Odds Of Readmissions Penalties Than Hospitals With Lower Staffing

    PubMed Central

    McHugh, Matthew D.; Berez, Julie; Small, Dylan S.

    2015-01-01

    The Affordable Care Act’s Hospital Readmissions Reduction Program (HRRP) penalizes hospitals based on excess readmission rates among Medicare beneficiaries. The aim of the program is to reduce readmissions while aligning hospitals’ financial incentives with payers’ and patients’ quality goals. Many evidence-based interventions that reduce readmissions, such as discharge preparation, care coordination, and patient education, are grounded in the fundamentals of basic nursing care. Yet inadequate staffing can hinder nurses’ efforts to carry out these processes of care. We estimated the effect that nurse staffing had on the likelihood that a hospital was penalized under the HRRP. Hospitals with higher nurse staffing had 25 percent lower odds of being penalized compared to otherwise similar hospitals with lower staffing. Investment in nursing is a potential system-level intervention to reduce readmissions that policy makers and hospital administrators should consider in the new regulatory environment as they examine the quality of care delivered to US hospital patients. PMID:24101063

  15. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  16. SU-C-207-05: A Comparative Study of Noise-Reduction Algorithms for Low-Dose Cone-Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S; Yao, W

    2015-06-15

    Purpose: To study different noise-reduction algorithms and to improve the image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low-dose cone-beam CT, the reconstructed image is contaminated with excessive quantum noise. In this study, three well-developed noise reduction algorithms namely, a) penalized weighted least square (PWLS) method, b) split-Bregman total variation (TV) method, and c) compressed sensing (CS) method were studied and applied to the images of a computer–simulated “Shepp-Logan” phantom and a physical CATPHAN phantom. Up to 20% additive Gaussian noise was added to the Shepp-Logan phantom. The CATPHAN phantom was scannedmore » by a Varian OBI system with 100 kVp, 4 ms and 20 mA. For comparing the performance of these algorithms, peak signal-to-noise ratio (PSNR) of the denoised images was computed. Results: The algorithms were shown to have the potential in reducing the noise level for low-dose CBCT images. For Shepp-Logan phantom, an improvement of PSNR of 2 dB, 3.1 dB and 4 dB was observed using PWLS, TV and CS respectively, while for CATPHAN, the improvement was 1.2 dB, 1.8 dB and 2.1 dB, respectively. Conclusion: Penalized weighted least square, total variation and compressed sensing methods were studied and compared for reducing the noise on a simulated phantom and a physical phantom scanned by low-dose CBCT. The techniques have shown promising results for noise reduction in terms of PSNR improvement. However, reducing the noise without compromising the smoothness and resolution of the image needs more extensive research.« less

  17. Influence of a Character-Based App on Children's Learning of Nutritional Information: Should Apps Be Served with a Side of Media Characters?

    PubMed Central

    Richmond, Elana M.; Brunick, Kaitlin L.; Wright, Charlotte A.; Calvert, Sandra L.

    2018-01-01

    Abstract Objective: Childhood obesity is a health issue in the United States, associated with marketing practices in which media characters are often used to sell unhealthy products. This study examined exposure to a socially contingent touch-screen gaming app, which replied immediately, reliably, and accurately to children's actions. Children's recall of nutritional content and their liking of the character were assessed. Materials and Methods: Four- and five-year-old children (N = 114) received no-exposure, single-exposure, or repeated-exposure to a character-based iPad app rewarding healthy and penalizing unhealthy behaviors. Children reported how much they liked the character and recalled healthy and unhealthy items from the app. An ordinary least squares regression was conducted on how much children liked the character by condition. Poisson regressions were conducted on the number of items recalled by condition alone, and in an interacted model of treatment condition by liking the character. Results: Children liked the character more in the repeated app-exposure condition than in the control group (P = 0.018). Children in the repeated and single app-exposure conditions recalled more healthy (P < 0.001) and unhealthy (P < 0.001) items than the control group. Within treatment conditions, liking the character increased recall of healthy items in the single app-exposure compared to the repeated app-exposure condition (P = 0.005). Conclusions: Results revealed that repeated exposure increased children's learning of nutritional information and liking of the character. The results contribute to our understanding of how to deliver effective nutrition information to young children in a new venue, a gaming app. PMID:29364706

  18. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease.

    PubMed

    Moradi, Elaheh; Hallikainen, Ilona; Hänninen, Tuomo; Tohka, Jussi

    2017-01-01

    Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  19. Trends in stratospheric ozone profiles using functional mixed models

    NASA Astrophysics Data System (ADS)

    Park, A.; Guillas, S.; Petropavlovskikh, I.

    2013-11-01

    This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates - month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen-Palm flux - on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.

  20. Medicare's Hospital Readmissions Reduction Program in Surgery May Disproportionately Affect Minority-serving Hospitals.

    PubMed

    Shih, Terry; Ryan, Andrew M; Gonzalez, Andrew A; Dimick, Justin B

    2015-06-01

    To project readmission penalties for hospitals performing cardiac surgery and examine how these penalties will affect minority-serving hospitals. The Hospital Readmissions Reduction Program will potentially expand penalties for higher-than-predicted readmission rates to cardiac procedures in the near future. The impact of these penalties on minority-serving hospitals is unknown. We examined national Medicare beneficiaries undergoing coronary artery bypass grafting in 2008 to 2010 (N = 255,250 patients, 1186 hospitals). Using hierarchical logistic regression, we calculated hospital observed-to-expected readmission ratios. Hospital penalties were projected according to the Hospital Readmissions Reduction Program formula using only coronary artery bypass grafting readmissions with a 3% maximum penalty of total Medicare revenue. Hospitals were classified into quintiles according to proportion of black patients treated. Minority-serving hospitals were defined as hospitals in the top quintile whereas non-minority-serving hospitals were those in the bottom quintile. Projected readmission penalties were compared across quintiles. Forty-seven percent of hospitals (559 of 1186) were projected to be assessed a penalty. Twenty-eight percent of hospitals (330 of 1186) would be penalized less than 1% of total Medicare revenue whereas 5% of hospitals (55 of 1186) would receive the maximum 3% penalty. Minority-serving hospitals were almost twice as likely to be penalized than non-minority-serving hospitals (61% vs 32%) and were projected almost triple the reductions in reimbursement ($112 million vs $41 million). Minority-serving hospitals would disproportionately bear the burden of readmission penalties if expanded to include cardiac surgery. Given these hospitals' narrow profit margins, readmission penalties may have a profound impact on these hospitals' ability to care for disadvantaged patients.

  1. The "other" side of labor reform: accounts of incarceration and resistance in the Straits Settlements penal system, 1825-1873.

    PubMed

    Pieris, Anoma

    2011-01-01

    The rhetoric surrounding the transportation of prisoners to the Straits Settlements and the reformative capacity of the penal labor regime assumed a uniform subject, an impoverished criminal, who could be disciplined and accordingly civilized through labor. Stamford Raffles, as lieutenant governor of Benkulen, believed that upon realizing the advantages of the new colony, criminals would willingly become settlers. These two colonial prerogatives of labor and population categorized transportees into laboring classes where their exploitation supposedly brought mutual benefit. The colonized was collectively homogenized as a class of laborers and evidence to the contrary, of politically challenging and resistant individuals was suppressed. This paper focuses on two prisoners who were incriminated during the anti-colonial rebellions of the mid-nineteenth century and were transported to the Straits Settlements. Nihal Singh, a political prisoner from Lahore, was incarcerated in isolation to prevent his martyrdom and denied the supposed benefits of labor reform. Conversely, Tikiri Banda Dunuwille, a lawyer from Ceylon was sent to labor in Melaka as a form of humiliation. Tikiri’s many schemes to evade labor damned him in the eyes of the authorities. The personal histories of these two individuals expose how colonial penal policy recognized and manipulated individual differences during a time of rising anti-colonial sentiment. The experiences of these prisoners, the response of their communities and the voices of their descendents offer us a very different entry point into colonial penal history.

  2. EM Adaptive LASSO—A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes

    PubMed Central

    Mallick, Himel; Tiwari, Hemant K.

    2016-01-01

    Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice. PMID:27066062

  3. EM Adaptive LASSO-A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes.

    PubMed

    Mallick, Himel; Tiwari, Hemant K

    2016-01-01

    Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice.

  4. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

    PubMed Central

    Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010

  5. Airport technology international 1993

    NASA Astrophysics Data System (ADS)

    Papagiorcopulo, George

    The present survey of developments in airport technologies and their management discusses airport extensions and upgradings, airport developments in China, polluter penalization, airport effects on environments, European ground-handling methods, ATC in Europe, EC duty-free sales at airports, and the privatization of airport security. Also discussed are airport advertising, new alternatives in air-cargo handling, ATC training, taxi-guidance systems, and the reduction of fuel consumption and emissions on the ground. (No individual items are abstracted in this volume)

  6. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  7. Penalized weighted least-squares approach for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Karhunen-Loeve (KL) transform can be used to de-correlate the signal among the neighboring views. In each KL component, a penalized weighted least-squares (PWLS) objective function can be constructed and optimal sinogram can be estimated by minimizing the objective function, followed by filtered backprojection (FBP) for CT image reconstruction. In this work, we compared the KL-PWLS method with an iterative image reconstruction algorithm, which uses the Gauss-Seidel iterative calculation to minimize the PWLS objective function in image domain. We also compared the KL-PWLS with an iterative sinogram smoothing algorithm, which uses the iterated conditional mode calculation to minimize the PWLS objective function in sinogram space, followed by FBP for image reconstruction. Phantom experiments show a comparable performance of these three PWLS methods in suppressing the noise-induced artifacts and preserving resolution in reconstructed images. Computer simulation concurs with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS noise reduction may have the advantage in computation for low-dose CT imaging, especially for dynamic high-resolution studies.

  8. A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.

    PubMed

    Mignotte, Max

    2010-06-01

    This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.

  9. Identification of cascade water tanks using a PWARX model

    NASA Astrophysics Data System (ADS)

    Mattsson, Per; Zachariah, Dave; Stoica, Petre

    2018-06-01

    In this paper we consider the identification of a discrete-time nonlinear dynamical model for a cascade water tank process. The proposed method starts with a nominal linear dynamical model of the system, and proceeds to model its prediction errors using a model that is piecewise affine in the data. As data is observed, the nominal model is refined into a piecewise ARX model which can capture a wide range of nonlinearities, such as the saturation in the cascade tanks. The proposed method uses a likelihood-based methodology which adaptively penalizes model complexity and directly leads to a computationally efficient implementation.

  10. The Patient Protection and Affordable Care Act's provisions regarding medical loss ratios and quality: evidence from Texas.

    PubMed

    Quast, Troy

    2013-01-01

    The Patient Protection and Affordable Care Act (PPACA) includes a provision that penalizes insurance companies if their Medical Loss Ratio (MLR) falls below a specified threshold. The MLR is roughly measured as the ratio of health care expenses to premiums paid by enrollees. I investigate whether there is a relationship between MLRs and the quality of care provided by insurance companies. I employ a ten-year sample of market-level financial data and quality variables for Texas insurers, as well as relevant control variables, in regression analyses that utilize insurer and market fixed effects. Of the 15 quality measures, only one has a statistically significant relationship with the MLR. For this measure, the relationship is negative. Although the MLR provision may provide incentives for insurance companies to lower premiums, this sample does not suggest that there is likely to be a beneficial effect on quality.

  11. Edge-Preserving Image Smoothing Constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) of Hyperspectral Data.

    PubMed

    Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril

    2018-03-01

    This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.

  12. Pharmacological therapy for amblyopia

    PubMed Central

    Singh, Anupam; Nagpal, Ritu; Mittal, Sanjeev Kumar; Bahuguna, Chirag; Kumar, Prashant

    2017-01-01

    Amblyopia is the most common cause of preventable blindness in children and young adults. Most of the amblyopic visual loss is reversible if detected and treated at appropriate time. It affects 1.0 to 5.0% of the general population. Various treatment modalities have been tried like refractive correction, patching (both full time and part time), penalization and pharmacological therapy. Refractive correction alone improves visual acuity in one third of patients with anisometropic amblyopia. Various drugs have also been tried of which carbidopa & levodopa have been popular. Most of these agents are still in experimental stage, though levodopa-carbidopa combination therapy has been widely studied in human amblyopes with good outcomes. Levodopa therapy may be considered in cases with residual amblyopia, although occlusion therapy remains the initial treatment choice. Regression of effect after stoppage of therapy remains a concern. Further studies are therefore needed to evaluate the full efficacy and side effect profile of these agents. PMID:29018759

  13. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and discussions section, and showed effectiveness of proposed thin-plate based nonparametric regression method.

  14. [Penal and non-penal legislative policy in relation to human biotechnology].

    PubMed

    Romeo Casabona, Carlos María

    2007-01-01

    The Spanish legislator has introduced a set of legislative novelties in the field of human biotechnology or is about to do so. This will be done either through the reform of some laws or through the approval of new laws, that is, without previous regulatory references available. The greater part of these novelties turn on research with cells or cell lines of human origin, specifically those from human embryos and through the use of diverse techniques, such as reproductive cloning and non-reproductive ('therapeutic') cloning.

  15. Novel approaches to assess the quality of fertility data stored in dairy herd management software.

    PubMed

    Hermans, K; Waegeman, W; Opsomer, G; Van Ranst, B; De Koster, J; Van Eetvelde, M; Hostens, M

    2017-05-01

    Scientific journals and popular press magazines are littered with articles in which the authors use data from dairy herd management software. Almost none of such papers include data cleaning and data quality assessment in their study design despite this being a very critical step during data mining. This paper presents 2 novel data cleaning methods that permit identification of animals with good and bad data quality. The first method is a deterministic or rule-based data cleaning method. Reproduction and mutation or life-changing events such as birth and death were converted to a symbolic (alphabetical letter) representation and split into triplets (3-letter code). The triplets were manually labeled as physiologically correct, suspicious, or impossible. The deterministic data cleaning method was applied to assess the quality of data stored in dairy herd management from 26 farms enrolled in the herd health management program from the Faculty of Veterinary Medicine Ghent University, Belgium. In total, 150,443 triplets were created, 65.4% were labeled as correct, 17.4% as suspicious, and 17.2% as impossible. The second method, a probabilistic method, uses a machine learning algorithm (random forests) to predict the correctness of fertility and mutation events in an early stage of data cleaning. The prediction accuracy of the random forests algorithm was compared with a classical linear statistical method (penalized logistic regression), outperforming the latter substantially, with a superior receiver operating characteristic curve and a higher accuracy (89 vs. 72%). From those results, we conclude that the triplet method can be used to assess the quality of reproduction data stored in dairy herd management software and that a machine learning technique such as random forests is capable of predicting the correctness of fertility data. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The penology of racial innocence: the erasure of racism in the study and practice of punishment.

    PubMed

    Murakawa, Naomi; Beckett, Katherine

    2010-01-01

    In post–civil rights America, the ascendance of “law-and-order” politics and “postracial” ideology have given rise to what we call the penology of racial innocence. The penology of racial innocence is a framework for assessing the role of race in penal policies and institutions, one that begins with the presumption that criminal justice is innocent of racial power until proven otherwise. Countervailing sociolegal changes render this framework particularly problematic. On the one hand, the definition of racism has contracted in antidiscrimination law and in many social scientific studies of criminal justice, so that racism is defined narrowly as intentional and causally discrete harm. On the other hand, criminal justice institutions have expanded to affect historically unprecedented numbers of people of color, with penal policies broadening in ways that render the identification of racial intent and causation especially difficult. Analyses employing the penology of racial innocence examine the ever-expanding criminal justice system with limited definitions of racism, ultimately contributing to the erasure of racial power. Both racism and criminal justice operate in systemic and serpentine ways; our conceptual tools and methods, therefore, need to be equally systemic and capacious.

  17. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  18. Decree amending and adding various provisions to the Penal Code for the Federal District with respect to local jurisdiction and to the Penal Code for the whole Republic with respect to federal jurisdiction, 29 December 1988. [Selected provisions].

    PubMed

    1989-01-01

    Mexico's decree amending and adding various provisions to the penal code for the federal district, with respect to local jurisdiction, and to the penal code for the whole republic, with respect to federal jurisdiction, December 29, 1988, among other things, amends the penal code to strengthen provisions relating to sex crimes. Among the provisions are the following: anyone procuring or facilitating the corruption of a minor (under 18) or a person lacking capacity, by means of sexual acts, or who induces him to engage in begging, drunkenness, drug addiction, or some other vice; to form part of an unlawful association; or to commit whatever crimes will be imprisoned for 3-8 years and subjected to a fine. The sentence shall be enhanced if the minor or incapacitated person forms a habit due to repeated acts of corruption. Whoever encourages or facilitates a person's engaging in prostitution or obtains or delivers a person for the purpose of prostitution will be imprisoned for 2-9 years and fined. Pandering will be punished with imprisonment for 2-9 years and a fine. Whoever, without consent and without the purpose of achieving intercourse, performs on her a sexual act with lascivious intent, or forces her to perform it, will be sentenced to "15 days to 1 year's or to 10-40 days' community service work." If physical or moral violence is used, the penalty will be 2-7 years imprisonment. Performing the above act on a person under age 12 or on someone unable to resist increases the punishment. Whoever uses physical or moral violence to have intercourse with a person of whatever sex shall be imprisoned 8-14 years; using an object other than a penis either vaginally or anally on either a male or a female will result in imprisonment of 1-5 years. If the victim is under age 12, unable to resist, or if 2 or more persons commit the crime, an enhanced punishment will result.

  19. Color TV: total variation methods for restoration of vector-valued images.

    PubMed

    Blomgren, P; Chan, T F

    1998-01-01

    We propose a new definition of the total variation (TV) norm for vector-valued functions that can be applied to restore color and other vector-valued images. The new TV norm has the desirable properties of 1) not penalizing discontinuities (edges) in the image, 2) being rotationally invariant in the image space, and 3) reducing to the usual TV norm in the scalar case. Some numerical experiments on denoising simple color images in red-green-blue (RGB) color space are presented.

  20. On the existence of maximum likelihood estimates for presence-only data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.

    2015-01-01

    It is important to identify conditions for which maximum likelihood estimates are unlikely to be identifiable from presence-only data. In data sets where the maximum likelihood estimates do not exist, penalized likelihood and Bayesian methods will produce coefficient estimates, but these are sensitive to the choice of estimation procedure and prior or penalty term. When sample size is small or it is thought that habitat preferences are strong, we propose a suite of estimation procedures researchers can consider using.

  1. MURDER IN TAMIL NADU(A Study of Murder Trials of 1968)1

    PubMed Central

    Somasundaram, O.

    1980-01-01

    SUMMARY The murder trials of 1968 in Tamil Nadu totalling 526 are studied and assessed on the pattern of the U. K. Home Office study. The results showed that there were six psychotic murderers, 16 murderers who attempted suicide, 483 ‘normal’ male murderers, 20 female murderers and 6 youthful murderers. Age, sex, method of killing and motives of the murderers are discussed. The implications of the study with reference to the penal institutions and prevention of crime are dealt with. PMID:22058483

  2. Awareness of female students attending higher educational institutions toward legalization of safe abortion and associated factors, Harari Region, Eastern Ethiopia: a cross sectional study.

    PubMed

    Geleto, Ayele; Markos, Jote

    2015-03-17

    Unsafe abortion has been recognized as an important public health problem in the world. It accounts for 14% of all maternal deaths in sub-Saharan African countries. In Ethiopia, 32% of all maternal deaths are accounted to unsafe abortion. Taking the problem of unsafe abortion into consideration, the penal code of Ethiopia was amended in 2005, to permit safe abortion under a set of circumstances. However, lack of awareness on the revised penal code is a major barrier that hinders women to seek safe abortion. The aim of this study is to assess awareness of female students attending higher educational institutions toward legalization of safe abortion and associated factors in Harari region, eastern Ethiopia. Institution-based descriptive cross sectional study was conducted among 762 female students who are attending five higher educational institutions in Harari Region. Systematic sampling method was used to identify study participants from randomly selected colleges. Self administered structured questionnaire was used to collect data. Data were entered in to Epi Info version 6.04 and analyzed by SPSS version 17.0 statistical packages. Frequency, percentage and ratio were used to describe variables. Multivariable logistic regression analysis was done to control confounders and odds ratio with 95% confidence interval was used to identify factors associated with awareness of female students to legalization of abortion. 762 study participants completed the survey questionnaire making the response rate 90.2%. Only 272 (35.7%) of the respondents reported that they have good awareness about legalization of safe abortion. Studying other fields than health and medicine [AOR 0.48; 95%CI (0.23, 0.85)], being the only child for their family [AOR 0.28; 95%CI (0.13, 0.86)], having no boy friend [AOR 0.34; 95%CI (0.12, 0.74)], using family planning [AOR 0.50; 95%CI (0.13 and 0.86)], being 25 years or older [AOR 1.64; 95%CI (1.33, 2.80)] were significantly associated with awareness of female students to legalization of safe abortion. Only slightly more than a third of the study participants, 35.7% have good awareness of legalization of safe abortion. Strengthening information dissemination regarding legalization of safe abortion is required for female reproductive age group in general and higher institution female students in particular.

  3. A three-dimensional topology optimization model for tooth-root morphology.

    PubMed

    Seitz, K-F; Grabe, J; Köhne, T

    2018-02-01

    To obtain the root of a lower incisor through structural optimization, we used two methods: optimization with Solid Isotropic Material with Penalization (SIMP) and Soft-Kill Option (SKO). The optimization was carried out in combination with a finite element analysis in Abaqus/Standard. The model geometry was based on cone-beam tomography scans of 10 adult males with healthy bone-tooth interface. Our results demonstrate that the optimization method using SIMP for minimum compliance could not adequately predict the actual root shape. The SKO method, however, provided optimization results that were comparable to the natural root form and is therefore suitable to set up the basic topology of a dental root.

  4. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    PubMed

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  5. A premodern legacy: the "easy" criminalization of homosexual acts between women in the Finnish Penal Code of 1889.

    PubMed

    Löfström, J

    1998-01-01

    Homosexual acts between women were criminalized in Finland in the 1889 Penal Code which also criminalized men's homosexual acts for the first time explicitly in Finnish legislation. The inclusion of women in the Penal Code took place without much ado. In the article it is argued that the uncomplicated juxtaposing of men and women was due to the legacy of a cultural pattern where man and woman, as categories, were not in an all-pervasive polarity to each other, for example, in sexual subjectivity. A cultural pattern of low gender polarization was typical of preindustrial rural culture, and it can help us apprehend also certain other features in contemporary Finnish social and political life, for example, women obtaining a general franchise and eligibility for the parliament first in the world, in 1906. A modern image of "public man" and "private woman" was only making its way in Finnish society; hence, there was not much anxiety at women's entry in politics, or, for that matter, at their potential for (homo)sexual subjectivity becoming recognized publicly in criminal law.

  6. [Forensic-psychiatric assessment of pedophilia].

    PubMed

    Nitschke, J; Osterheider, M; Mokros, A

    2011-09-01

    The present paper illustrates the approach of a forensic psychiatric expert witness regarding the assessment of pedophilia. In a first step it is inevitable to differentiate if the defendant is suffering from pedophilia or if the alleged crime might have been committed because of other motivations (antisociality, sexual activity as redirection, impulsivity). A sound diagnostic assessment is indispendable for this task. In a second step the level of severity needs to be gauged in order to clarify whether the requirement of the entry criteria of §§ 20, 21 of the German penal code are fulfilled. In a third step, significant impairments of self-control mechanisms need to be elucidated. The present article reviews indicators of such impairments regarding pedophilia. With respect to a mandatory treatment order (§ 63 German penal code) or preventive detention (§ 66 German penal code) the legal prognosis of the defendant needs to be considered. The present paper gives an overview of the current state of risk assessment research and discusses the transfer to an individual prognosis critically. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.

    PubMed

    Lambert, B; Weynans, L; Bergmann, M

    2018-03-01

    The lubrication forces are short-range hydrodynamic interactions essential to describe suspension of the particles. Usually, they are underestimated in direct numerical simulations of particle-laden flows. In this paper, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in an incompressible Navier-Stokes flow. Corrections are made locally on the surface of the interacting particles without any assumption on the global particle shape. The numerical model has been validated against experimental data and performs as well as existing numerical models that are limited to spherical particles.

  9. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  10. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  11. Identification of boiler inlet transfer functions and estimation of system parameters

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1972-01-01

    An iterative computer method is described for identifying boiler transfer functions using frequency response data. An objective penalized performance measure and a nonlinear minimization technique are used to cause the locus of points generated by a transfer function to resemble the locus of points obtained from frequency response measurements. Different transfer functions can be tried until a satisfactory empirical transfer function of the system is found. To illustrate the method, some examples and some results from a study of a set of data consisting of measurements of the inlet impedance of a single tube forced flow boiler with inserts are given.

  12. Molecular Classification Substitutes for the Prognostic Variables Stage, Age, and MYCN Status in Neuroblastoma Risk Assessment.

    PubMed

    Rosswog, Carolina; Schmidt, Rene; Oberthuer, André; Juraeva, Dilafruz; Brors, Benedikt; Engesser, Anne; Kahlert, Yvonne; Volland, Ruth; Bartenhagen, Christoph; Simon, Thorsten; Berthold, Frank; Hero, Barbara; Faldum, Andreas; Fischer, Matthias

    2017-12-01

    Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables. A cohort of 695 neuroblastoma patients was divided into a discovery set (n=75) for multigene predictor generation, a training set (n=411) for risk score development, and a validation set (n=209). Relevant prognostic variables were identified by stepwise multivariable L1-penalized least absolute shrinkage and selection operator (LASSO) Cox regression, followed by backward selection in multivariable Cox regression, and then integrated into a novel risk score. The variables stage, age, MYCN status, and two multigene predictors, NB-th24 and NB-th44, were selected as independent prognostic markers by LASSO Cox regression analysis. Following backward selection, only the multigene predictors were retained in the final model. Integration of these classifiers in a risk scoring system distinguished three patient subgroups that differed substantially in their outcome. The scoring system discriminated patients with diverging outcome in the validation cohort (5-year event-free survival, 84.9±3.4 vs 63.6±14.5 vs 31.0±5.4; P<.001), and its prognostic value was validated by multivariable analysis. We here propose a translational strategy for developing risk assessment systems based on hazard ratios of relevant prognostic variables. Our final neuroblastoma risk score comprised two multigene predictors only, supporting the notion that molecular properties of the tumor cells strongly impact clinical courses of neuroblastoma patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Anatomically-Aided PET Reconstruction Using the Kernel Method

    PubMed Central

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-01-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization (EM) algorithm. PMID:27541810

  14. Anatomically-aided PET reconstruction using the kernel method.

    PubMed

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  15. Anatomically-aided PET reconstruction using the kernel method

    NASA Astrophysics Data System (ADS)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-09-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  16. Clinical and Vitamin Response to a Short-Term Multi-Micronutrient Intervention in Brazilian Children and Teens: From Population Data to Interindividual Responses.

    PubMed

    Mathias, Mariana Giaretta; Coelho-Landell, Carolina de Almeida; Scott-Boyer, Marie-Pier; Lacroix, Sébastien; Morine, Melissa J; Salomão, Roberta Garcia; Toffano, Roseli Borges Donegá; Almada, Maria Olímpia Ribeiro do Vale; Camarneiro, Joyce Moraes; Hillesheim, Elaine; de Barros, Tamiris Trevisan; Camelo-Junior, José Simon; Campos Giménez, Esther; Redeuil, Karine; Goyon, Alexandre; Bertschy, Emmanuelle; Lévêques, Antoine; Oberson, Jean-Marie; Giménez, Catherine; Carayol, Jerome; Kussmann, Martin; Descombes, Patrick; Métairon, Slyviane; Draper, Colleen Fogarty; Conus, Nelly; Mottaz, Sara Colombo; Corsini, Giovanna Zambianchi; Myoshi, Stephanie Kazu Brandão; Muniz, Mariana Mendes; Hernandes, Lívia Cristina; Venâncio, Vinícius Paula; Antunes, Lusania Maria Greggi; da Silva, Rosana Queiroz; Laurito, Taís Fontellas; Rossi, Isabela Ribeiro; Ricci, Raquel; Jorge, Jéssica Ré; Fagá, Mayara Leite; Quinhoneiro, Driele Cristina Gomes; Reche, Mariana Chinarelli; Silva, Paula Vitória Sozza; Falquetti, Letícia Lima; da Cunha, Thaís Helena Alves; Deminice, Thalia Manfrin Martins; Tambellini, Tâmara Hambúrguer; de Souza, Gabriela Cristina Arces; de Oliveira, Mariana Moraes; Nogueira-Pileggi, Vicky; Matsumoto, Marina Takemoto; Priami, Corrado; Kaput, Jim; Monteiro, Jacqueline Pontes

    2018-03-01

    Micronutrients are in small amounts in foods, act in concert, and require variable amounts of time to see changes in health and risk for disease. These first principles are incorporated into an intervention study designed to develop new experimental strategies for setting target recommendations for food bioactives for populations and individuals. A 6-week multivitamin/mineral intervention is conducted in 9-13 year olds. Participants (136) are (i) their own control (n-of-1); (ii) monitored for compliance; (iii) measured for 36 circulating vitamin forms, 30 clinical, anthropometric, and food intake parameters at baseline, post intervention, and following a 6-week washout; and (iv) had their ancestry accounted for as modifier of vitamin baseline or response. The same intervention is repeated the following year (135 participants). Most vitamins respond positively and many clinical parameters change in directions consistent with improved metabolic health to the intervention. Baseline levels of any metabolite predict its own response to the intervention. Elastic net penalized regression models are identified, and significantly predict response to intervention on the basis of multiple vitamin/clinical baseline measures. The study design, computational methods, and results are a step toward developing recommendations for optimizing vitamin levels and health parameters for individuals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of rubella-specific humoral immunity following two doses of MMR vaccine using proteome microarray technology

    PubMed Central

    Haralambieva, Iana H.; Gibson, Michael J.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Warner, Nathaniel D.; Grill, Diane E.

    2017-01-01

    Introduction//Background The lack of standardization of the currently used commercial anti-rubella IgG antibody assays leads to frequent misinterpretation of results for samples with low/equivocal antibody concentration. The use of alternative approaches in rubella serology could add new information leading to a fuller understanding of rubella protective immunity and neutralizing antibody response after vaccination. Methods We applied microarray technology to measure antibodies to all rubella virus proteins in 75 high and 75 low rubella virus-specific antibody responders after two MMR vaccine doses. These data were used in multivariate penalized logistic regression modeling of rubella-specific neutralizing antibody response after vaccination. Results We measured antibodies to all rubella virus structural proteins (i.e., the glycoproteins E1 and E2 and the capsid C protein) and to the non-structural protein P150. Antibody levels to each of these proteins were: correlated with the neutralizing antibody titer (p<0.006); demonstrated differences between the high and the low antibody responder groups (p<0.008); and were components of the model associated with/predictive of vaccine-induced rubella virus-specific neutralizing antibody titers (misclassification error = 0.2). Conclusion Our study supports the use of this new technology, as well as the use of antibody profiles/patterns (rather than single antibody measures) as biomarkers of neutralizing antibody response and correlates of protective immunity in rubella virus serology. PMID:29145521

  18. Risk Factors for School Dropout in a Sample of Juvenile Offenders

    PubMed Central

    Fernández-Suárez, Asunción; Herrero, Juan; Pérez, Beatriz; Juarros-Basterretxea, Joel; Rodríguez-Díaz, Francisco J.

    2016-01-01

    Backgrounds: The high rates of school dropout worldwide and their relevance highlight the need for a close study of its causes and consequences. Literature has suggested that school dropout might be explained by multiple causes at different levels (individual, family, school, and neighborhood). The aim of the current study is to examine the relation between individual (defiant attitude, irresponsibility, alcohol abuse, and illegal drugs use), family (educational figure absent and parental monitoring), school factors (truancy and school conflict) and school dropout. Method: Judicial files of all juvenile offenders (218 males and 46 females) with a judicial penal measure in Asturias (Spain) in the year 2012 were examined. Multivariate logistic regression analyses were performed to estimate the relationships between school dropout and individual, family and school variables. Results: As for the individual characteristics, results showed that school dropouts were more irresponsible than non-dropouts. Also they had higher rates of illegal drug use and alcohol abuse. Moreover, lack of parental monitoring emerged as a key predictive factor of school dropout, beyond the type of family structure in terms of the presence of both or only one educational figure. Finally, school factors did not show a significant relationship to school dropout. Conclusions: These findings indicate that school dropout is a multidimensional process. School and family policies that emphasize the role of parental monitoring and prevent alcohol and substance abuse are recommended. PMID:28082934

  19. Risk Factors for School Dropout in a Sample of Juvenile Offenders.

    PubMed

    Fernández-Suárez, Asunción; Herrero, Juan; Pérez, Beatriz; Juarros-Basterretxea, Joel; Rodríguez-Díaz, Francisco J

    2016-01-01

    Backgrounds: The high rates of school dropout worldwide and their relevance highlight the need for a close study of its causes and consequences. Literature has suggested that school dropout might be explained by multiple causes at different levels (individual, family, school, and neighborhood). The aim of the current study is to examine the relation between individual (defiant attitude, irresponsibility, alcohol abuse, and illegal drugs use), family (educational figure absent and parental monitoring), school factors (truancy and school conflict) and school dropout. Method: Judicial files of all juvenile offenders (218 males and 46 females) with a judicial penal measure in Asturias (Spain) in the year 2012 were examined. Multivariate logistic regression analyses were performed to estimate the relationships between school dropout and individual, family and school variables. Results: As for the individual characteristics, results showed that school dropouts were more irresponsible than non-dropouts. Also they had higher rates of illegal drug use and alcohol abuse. Moreover, lack of parental monitoring emerged as a key predictive factor of school dropout, beyond the type of family structure in terms of the presence of both or only one educational figure. Finally, school factors did not show a significant relationship to school dropout. Conclusions : These findings indicate that school dropout is a multidimensional process. School and family policies that emphasize the role of parental monitoring and prevent alcohol and substance abuse are recommended.

  20. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states.

    PubMed

    Kloog, Itai; Nordio, Francesco; Coull, Brent A; Schwartz, Joel

    2012-11-06

    Satellite-derived aerosol optical depth (AOD) measurements have the potential to provide spatiotemporally resolved predictions of both long and short-term exposures, but previous studies have generally shown moderate predictive power and lacked detailed high spatio- temporal resolution predictions across large domains. We aimed at extending our previous work by validating our model in another region with different geographical and metrological characteristics, and incorporating fine scale land use regression and nonrandom missingness to better predict PM(2.5) concentrations for days with or without satellite AOD measures. We start by calibrating AOD data for 2000-2008 across the Mid-Atlantic. We used mixed models regressing PM(2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We used inverse probability weighting to account for nonrandom missingness of AOD, nested regions within days to capture spatial variation in the daily calibration, and introduced a penalization method that reduces the dimensionality of the large number of spatial and temporal predictors without selecting different predictors in different locations. We then take advantage of the association between grid-cell specific AOD values and PM(2.5) monitoring data, together with associations between AOD values in neighboring grid cells to develop grid cell predictions when AOD is missing. Finally to get local predictions (at the resolution of 50 m), we regressed the residuals from the predictions for each monitor from these previous steps against the local land use variables specific for each monitor. "Out-of-sample" 10-fold cross-validation was used to quantify the accuracy of our predictions at each step. For all days without AOD values, model performance was excellent (mean "out-of-sample" R(2) = 0.81, year-to-year variation 0.79-0.84). Upon removal of outliers in the PM(2.5) monitoring data, the results of the cross validation procedure was even better (overall mean "out of sample"R(2) of 0.85). Further, cross validation results revealed no bias in the predicted concentrations (Slope of observed vs predicted = 0.97-1.01). Our model allows one to reliably assess short-term and long-term human exposures in order to investigate both the acute and effects of ambient particles, respectively.

  1. Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling.

    PubMed

    Nakas, Christos T; Schütz, Narayan; Werners, Marcus; Leichtle, Alexander B

    2016-01-01

    Electronic Health Record (EHR) data can be a key resource for decision-making support in clinical practice in the "big data" era. The complete database from early 2012 to late 2015 involving hospital admissions to Inselspital Bern, the largest Swiss University Hospital, was used in this study, involving over 100,000 admissions. Age, sex, and initial laboratory test results were the features/variables of interest for each admission, the outcome being inpatient mortality. Computational decision support systems were utilized for the calculation of the risk of inpatient mortality. We assessed the recently proposed Acute Laboratory Risk of Mortality Score (ALaRMS) model, and further built generalized linear models, generalized estimating equations, artificial neural networks, and decision tree systems for the predictive modeling of the risk of inpatient mortality. The Area Under the ROC Curve (AUC) for ALaRMS marginally corresponded to the anticipated accuracy (AUC = 0.858). Penalized logistic regression methodology provided a better result (AUC = 0.872). Decision tree and neural network-based methodology provided even higher predictive performance (up to AUC = 0.912 and 0.906, respectively). Additionally, decision tree-based methods can efficiently handle Electronic Health Record (EHR) data that have a significant amount of missing records (in up to >50% of the studied features) eliminating the need for imputation in order to have complete data. In conclusion, we show that statistical learning methodology can provide superior predictive performance in comparison to existing methods and can also be production ready. Statistical modeling procedures provided unbiased, well-calibrated models that can be efficient decision support tools for predicting inpatient mortality and assigning preventive measures.

  2. The geology of the Penal/Barrackpore field, onshore Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, B.L.

    1991-03-01

    The Penal/Barrackpore field was discovered in 1938 and is located in the southern subbasin of onshore Trinidad. It is one of a series of northeast-southwest trending en echelon middle Miocene anticlinal structures that was later accentuated by late Pliocene transpressional folding. The middle Miocene Herrera and Karamat turbiditic sandstones are the primary reservoir rock in the subsurface anticline of the Penal/Barrackpore field. These turbidites were sourced from the north and deposited within the marls and clays of the Cipero Formation. The Karamat sandstones are followed in vertical stratigraphic succession by the shales and boulder beds of the Lengua formation, themore » turbidites and deltaics of the lower and middle Cruse, and the deltaics of the upper Cruse, the Forest, and the Morne L'Enfer formations. Relative movement of the South American and Caribbean plates climaxed in the middle Miocene compressive tectonic event and produced an imbricate pattern of southward-facing basement-involved thrusts. The Pliocene deltaics were sourced by erosion of Miocene highs to the north and the South American landmass to the south. These deltaics exhibit onlap onto the preexisting Miocene highs. The late Pliocene transpression also coincides with the onset of oil migration along faults, diapirs, and unconformities from the Cretaceous Naparima Hill source. The Lengua Formation and the upper Forest clays are considered effect seals. Hydrocarbon trapping is structurally and stratigraphically controlled, with structure being the dominant trapping mechanism. Ultimate recoverable reserves for the Penal/Barrackpore field are estimated at 127.9 MMBO and 628.8 bcf. The field is presently owned and operated by the Trinidad and Tobago Oil Company Limited (TRINTOC).« less

  3. HIV counselling in prisons.

    PubMed

    Curran, L; McHugh, M; Nooney, K

    1989-01-01

    HIV presents particular problem in penal establishments: the nature of the population; conditions in prison; media attention and misinformation; the possibility of transmission within and beyond the prison population; the extra issues that apply to female prisoners. These are discussed in the context of prison policy regarding HIV and the broad strategic approach which is being adopted to manage the problem of HIV within penal institutions. Counselling has a key role in the overall strategy. Pre- and post-test counselling with prisoners is described and the particular problems presented by inmates are discussed and illustrated by reference to case histories. Developments in counselling provision for inmates are outlined.

  4. Gender Norms in Portuguese College Students' Judgments in Familial Homicides: Bad Men and Mad Women.

    PubMed

    Saavedra, Luísa; Cameira, Miguel; Rebelo, Ana Sofia; Sebastião, Cátia

    2015-05-08

    The gender of the offender has been proved to be an important factor in judicial sentencing. In this study, we analyze the judgments of College students regarding perpetrators of familial homicides to evaluate the presence of these gender norms and biases in the larger society. The sample included 303 college students (54.8% female) enrolled in several social sciences and engineering courses. Participants were asked to read 12 vignettes based on real crimes taken from Portuguese newspapers. Half were related to infanticide, and half were related to intimate partner homicide. The sex of the offender was orthogonally manipulated to the type of crime. The results show that gender had an important impact on sentences, with males being more harshly penalized by reasons of perversity and women less penalized by reason of mental disorders. In addition, filicide was more heavily penalized than was intimate partner homicide. The results also revealed a tendency toward a retributive conception of punishment. We discuss how gender norms in justice seem to be embedded in society as well as the need for intervention against the punitive tendency of this population. © The Author(s) 2015.

  5. Medico-legal implications of mobbing. A false accusation of psychological harassment at the workplace.

    PubMed

    Jarreta, Begoña Martínez; García-Campayo, Javier; Gascón, Santiago; Bolea, Miguel

    2004-12-02

    Mobbing, or psychological harassment at the workplace, is usually defined as a situation in which a person or a group of people engage in extreme psychological violence against another person. In Spain, the number of reports for mobbing has increased extraordinarily in the last years. The reports are increasing dramatically not only before the Labour Courts, but also before the Civil Courts, with claims for damages, and before the Penal Court for offences causing physical or moral injury, etc., since at the present time this figure is not typified as an offence in the Spanish Penal Code. The high degree of complexity of this situation has given rise to frequent misuse of the term and to a number of false accusations of mobbing. A recent European Parliament Resolution on harassment at the workplace addressed the devastating consequences of false accusations. In this paper we present a case in which the "false" victim was mentally ill (paranoia) but succeed in generating an extreme dangerous environment of great harassment against the "false" assailants that were "falsely" accused of mobbing. Forensic diagnosis of the psychiatric disorder suffered by the "false" victim was essential to clarify the issue at the Penal Court.

  6. [Euthanasia - an attempt to organize issue].

    PubMed

    Kirmes, Tomasz; Wilk, Mateusz; Chowaniec, Czesław

    This article is an attempt to complete and holistically discuss problem of euthanasia, especially its ethical and legal aspects, comparing to Polish law. The subject of euthanasia arouse interest of the society because it touches one of the most important aspects of life, which is the death. Even bigger emotions are aroused amongst physicians. They are forced to put on the line the life as biggest value on the one side and autonomy of human being on the other. It also touches the empathy for suffering. The euthanasia was divided into three forms: active euthanasia, passive euthanasia and assisted suicide. Any form of euthanasia is illegal in Poland according to both the Penal Code and Code of Medical Ethics. Range of possible penal consequences perpetrator is very wide from waiver of punishment to life imprisonment and it comes from different penal qualification of the euthanasia. Qualification of the euthanasia is based on terms of intent of perpetrator's act, request of patient, strong empathy for suffering if the patient and decision based on up-to-date medical knowledge. It is valuable to mention "do-not-resuscitate" DNR procedure, which in case of medical futility is legally accepted in Poland, but in other form may be qualified as passive euthanasia.

  7. Mental health/illness and prisons as place: frontline clinicians׳ perspectives of mental health work in a penal setting.

    PubMed

    Wright, Nicola; Jordan, Melanie; Kane, Eddie

    2014-09-01

    This article takes mental health and prisons as its two foci. It explores the links between social and structural aspects of the penal setting, the provision of mental healthcare in prisons, and mental health work in this environment. This analysis utilises qualitative interview data from prison-based fieldwork undertaken in Her Majesty׳s Prison Service, England. Two themes are discussed: (1) the desire and practicalities of doing mental health work and (2) prison staff as mental health work allies. Concepts covered include equivalence, training, ownership, informal communication, mental health knowledge, service gatekeepers, case identification, and unmet need. Implications for practice are (1) the mental health knowledge and understanding of prison wing staff could be appraised and developed to improve mental healthcare and address unmet need. Their role as observers and gatekeepers could be considered. (2) The realities of frontline mental health work for clinicians in the penal environment should be embraced and used to produce and implement improved policy and practice guidance, which is in better accord with the actuality of the context - both socially and structurally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Improved Variable Selection Algorithm Using a LASSO-Type Penalty, with an Application to Assessing Hepatitis B Infection Relevant Factors in Community Residents

    PubMed Central

    Guo, Pi; Zeng, Fangfang; Hu, Xiaomin; Zhang, Dingmei; Zhu, Shuming; Deng, Yu; Hao, Yuantao

    2015-01-01

    Objectives In epidemiological studies, it is important to identify independent associations between collective exposures and a health outcome. The current stepwise selection technique ignores stochastic errors and suffers from a lack of stability. The alternative LASSO-penalized regression model can be applied to detect significant predictors from a pool of candidate variables. However, this technique is prone to false positives and tends to create excessive biases. It remains challenging to develop robust variable selection methods and enhance predictability. Material and methods Two improved algorithms denoted the two-stage hybrid and bootstrap ranking procedures, both using a LASSO-type penalty, were developed for epidemiological association analysis. The performance of the proposed procedures and other methods including conventional LASSO, Bolasso, stepwise and stability selection models were evaluated using intensive simulation. In addition, methods were compared by using an empirical analysis based on large-scale survey data of hepatitis B infection-relevant factors among Guangdong residents. Results The proposed procedures produced comparable or less biased selection results when compared to conventional variable selection models. In total, the two newly proposed procedures were stable with respect to various scenarios of simulation, demonstrating a higher power and a lower false positive rate during variable selection than the compared methods. In empirical analysis, the proposed procedures yielding a sparse set of hepatitis B infection-relevant factors gave the best predictive performance and showed that the procedures were able to select a more stringent set of factors. The individual history of hepatitis B vaccination, family and individual history of hepatitis B infection were associated with hepatitis B infection in the studied residents according to the proposed procedures. Conclusions The newly proposed procedures improve the identification of significant variables and enable us to derive a new insight into epidemiological association analysis. PMID:26214802

  9. Flow Structures and Efficiency of Swimming Fish school: Numerical Study

    NASA Astrophysics Data System (ADS)

    Yatagai, Yuzuru; Hattori, Yuji

    2013-11-01

    The flow structure and energy-saving mechanism in fish school is numerically investigated by using the volume penalization method. We calculate the various patterns of configuration of fishes and investigate the relation between spatial arrangement and the performance of fish. It is found that the down-stream fish gains a hydrodynamic advantage from the upstream wake shed by the upstream fish. The most efficient configuration is that the downstream fish is placed in the wake. It reduces the drag force of the downstream fish in comparison with that in solo swimming.

  10. Laboratory studies of scales for measuring helicopter noise

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1982-01-01

    The adequacy of the effective perceived noise level (EPNL) procedure for rating helicopter noise annoyance was investigated. Recordings of 89 helicopters and 30 fixed wing aircraft (CTOL) flyover sounds were rated with respect to annoyance by groups of approximately 40 subjects. The average annoyance scores were transformed to annoyance levels defined as the equally annoying sound levels of a fixed reference sound. The sound levels of the test sounds were measured on various scales, with and without corrections for duration, tones, and impulsiveness. On average, the helicopter sounds were judged equally annoying to CTOL sounds when their duration corrected levels are approximately 2 dB higher. Multiple regression analysis indicated that, provided the helicopter/CTOL difference of about 2 dB is taken into account, the particular linear combination of level, duration, and tone corrections inherent in EPNL is close to optimum. The results reveal no general requirement for special EPNL correction terms to penalize helicopter sounds which are particularly impulsive; impulsiveness causes spectral and temporal changes which themselves adequately amplify conventionally measured sound levels.

  11. Testing goodness of fit in regression: a general approach for specified alternatives.

    PubMed

    Solari, Aldo; le Cessie, Saskia; Goeman, Jelle J

    2012-12-10

    When fitting generalized linear models or the Cox proportional hazards model, it is important to have tools to test for lack of fit. Because lack of fit comes in all shapes and sizes, distinguishing among different types of lack of fit is of practical importance. We argue that an adequate diagnosis of lack of fit requires a specified alternative model. Such specification identifies the type of lack of fit the test is directed against so that if we reject the null hypothesis, we know the direction of the departure from the model. The goodness-of-fit approach of this paper allows to treat different types of lack of fit within a unified general framework and to consider many existing tests as special cases. Connections with penalized likelihood and random effects are discussed, and the application of the proposed approach is illustrated with medical examples. Tailored functions for goodness-of-fit testing have been implemented in the R package global test. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Identification of usual interstitial pneumonia pattern using RNA-Seq and machine learning: challenges and solutions.

    PubMed

    Choi, Yoonha; Liu, Tiffany Ting; Pankratz, Daniel G; Colby, Thomas V; Barth, Neil M; Lynch, David A; Walsh, P Sean; Raghu, Ganesh; Kennedy, Giulia C; Huang, Jing

    2018-05-09

    We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia (UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited sample size, biological and technical sample heterogeneity, and reagent and assay batch effects. We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~ 0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity of 88% in the test set. We demonstrated that the suggested methodologies appropriately addressed challenges of the sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust classifier leveraging RNA sequencing for the classification of UIP.

  13. SLOPE—ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION

    PubMed Central

    Bogdan, Małgorzata; van den Berg, Ewout; Sabatti, Chiara; Su, Weijie; Candès, Emmanuel J.

    2015-01-01

    We introduce a new estimator for the vector of coefficients β in the linear model y = Xβ + z, where X has dimensions n × p with p possibly larger than n. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to minb∈ℝp12‖y−Xb‖ℓ22+λ1|b|(1)+λ2|b|(2)+⋯+λp|b|(p),where λ1 ≥ λ2 ≥ … ≥ λp ≥ 0 and |b|(1)≥|b|(2)≥⋯≥|b|(p) are the decreasing absolute values of the entries of b. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ1 procedures such as the Lasso. Here, the regularizer is a sorted ℓ1 norm, which penalizes the regression coefficients according to their rank: the higher the rank—that is, stronger the signal—the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300] procedure (BH) which compares more significant p-values with more stringent thresholds. One notable choice of the sequence {λi} is given by the BH critical values λBH(i)=z(1−i⋅q/2p), where q ∈ (0, 1) and z(α) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH provably controls FDR at level q. Moreover, it also appears to have appreciable inferential properties under more general designs X while having substantial power, as demonstrated in a series of experiments running on both simulated and real data. PMID:26709357

  14. Bayesian inference of Calibration curves: application to archaeomagnetism

    NASA Astrophysics Data System (ADS)

    Lanos, P.

    2003-04-01

    The range of errors that occur at different stages of the archaeomagnetic calibration process are modelled using a Bayesian hierarchical model. The archaeomagnetic data obtained from archaeological structures such as hearths, kilns or sets of bricks and tiles, exhibit considerable experimental errors and are typically more or less well dated by archaeological context, history or chronometric methods (14C, TL, dendrochronology, etc.). They can also be associated with stratigraphic observations which provide prior relative chronological information. The modelling we describe in this paper allows all these observations, on materials from a given period, to be linked together, and the use of penalized maximum likelihood for smoothing univariate, spherical or three-dimensional time series data allows representation of the secular variation of the geomagnetic field over time. The smooth curve we obtain (which takes the form of a penalized natural cubic spline) provides an adaptation to the effects of variability in the density of reference points over time. Since our model takes account of all the known errors in the archaeomagnetic calibration process, we are able to obtain a functional highest-posterior-density envelope on the new curve. With this new posterior estimate of the curve available to us, the Bayesian statistical framework then allows us to estimate the calendar dates of undated archaeological features (such as kilns) based on one, two or three geomagnetic parameters (inclination, declination and/or intensity). Date estimates are presented in much the same way as those that arise from radiocarbon dating. In order to illustrate the model and inference methods used, we will present results based on German archaeomagnetic data recently published by a German team.

  15. Optimal Design for the Precise Estimation of an Interaction Threshold: The Impact of Exposure to a Mixture of 18 Polyhalogenated Aromatic Hydrocarbons

    PubMed Central

    Yeatts, Sharon D.; Gennings, Chris; Crofton, Kevin M.

    2014-01-01

    Traditional additivity models provide little flexibility in modeling the dose–response relationships of the single agents in a mixture. While the flexible single chemical required (FSCR) methods allow greater flexibility, its implicit nature is an obstacle in the formation of the parameter covariance matrix, which forms the basis for many statistical optimality design criteria. The goal of this effort is to develop a method for constructing the parameter covariance matrix for the FSCR models, so that (local) alphabetic optimality criteria can be applied. Data from Crofton et al. are provided as motivation; in an experiment designed to determine the effect of 18 polyhalogenated aromatic hydrocarbons on serum total thyroxine (T4), the interaction among the chemicals was statistically significant. Gennings et al. fit the FSCR interaction threshold model to the data. The resulting estimate of the interaction threshold was positive and within the observed dose region, providing evidence of a dose-dependent interaction. However, the corresponding likelihood-ratio-based confidence interval was wide and included zero. In order to more precisely estimate the location of the interaction threshold, supplemental data are required. Using the available data as the first stage, the Ds-optimal second-stage design criterion was applied to minimize the variance of the hypothesized interaction threshold. Practical concerns associated with the resulting design are discussed and addressed using the penalized optimality criterion. Results demonstrate that the penalized Ds-optimal second-stage design can be used to more precisely define the interaction threshold while maintaining the characteristics deemed important in practice. PMID:22640366

  16. On testing an unspecified function through a linear mixed effects model with multiple variance components

    PubMed Central

    Wang, Yuanjia; Chen, Huaihou

    2012-01-01

    Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801

  17. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    PubMed

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  18. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.

    PubMed

    Zou, Meng; Liu, Zhaoqi; Zhang, Xiang-Sun; Wang, Yong

    2015-10-15

    In prognosis and survival studies, an important goal is to identify multi-biomarker panels with predictive power using molecular characteristics or clinical observations. Such analysis is often challenged by censored, small-sample-size, but high-dimensional genomic profiles or clinical data. Therefore, sophisticated models and algorithms are in pressing need. In this study, we propose a novel Area Under Curve (AUC) optimization method for multi-biomarker panel identification named Nearest Centroid Classifier for AUC optimization (NCC-AUC). Our method is motived by the connection between AUC score for classification accuracy evaluation and Harrell's concordance index in survival analysis. This connection allows us to convert the survival time regression problem to a binary classification problem. Then an optimization model is formulated to directly maximize AUC and meanwhile minimize the number of selected features to construct a predictor in the nearest centroid classifier framework. NCC-AUC shows its great performance by validating both in genomic data of breast cancer and clinical data of stage IB Non-Small-Cell Lung Cancer (NSCLC). For the genomic data, NCC-AUC outperforms Support Vector Machine (SVM) and Support Vector Machine-based Recursive Feature Elimination (SVM-RFE) in classification accuracy. It tends to select a multi-biomarker panel with low average redundancy and enriched biological meanings. Also NCC-AUC is more significant in separation of low and high risk cohorts than widely used Cox model (Cox proportional-hazards regression model) and L1-Cox model (L1 penalized in Cox model). These performance gains of NCC-AUC are quite robust across 5 subtypes of breast cancer. Further in an independent clinical data, NCC-AUC outperforms SVM and SVM-RFE in predictive accuracy and is consistently better than Cox model and L1-Cox model in grouping patients into high and low risk categories. In summary, NCC-AUC provides a rigorous optimization framework to systematically reveal multi-biomarker panel from genomic and clinical data. It can serve as a useful tool to identify prognostic biomarkers for survival analysis. NCC-AUC is available at http://doc.aporc.org/wiki/NCC-AUC. ywang@amss.ac.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics

    NASA Astrophysics Data System (ADS)

    Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.

    2018-02-01

    We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.

  20. Risk Factors for Sporadic Domestically Acquired Campylobacter Infections in Norway 2010–2011: A National Prospective Case-Control Study

    PubMed Central

    Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line

    2015-01-01

    Background Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. Methods A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. Results A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Conclusions Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to protect and maintain the quality of water from small-scale water supply systems. PMID:26431341

  1. Reduction of Metal Artifact in Single Photon-Counting Computed Tomography by Spectral-Driven Iterative Reconstruction Technique

    PubMed Central

    Nasirudin, Radin A.; Mei, Kai; Panchev, Petar; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Fiebich, Martin; Noël, Peter B.

    2015-01-01

    Purpose The exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR). Method The proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods. Results Decomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms. Conclusion It is demonstrated that the combination of the additional information from Spectral CT and statistical reconstruction can significantly improve image quality, especially streaking artifacts caused by the presence of materials with high atomic numbers. PMID:25955019

  2. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models

    PubMed Central

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A.; Valdés-Hernández, Pedro A.; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A.

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods, Quality Measures and Visualization Routines are freely available in a public website. PMID:29200994

  3. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    PubMed

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods, Quality Measures and Visualization Routines are freely available in a public website.

  4. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, H; Xing, L; Liang, Z

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern formore » each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.« less

  5. Psychic trauma as cause of death.

    PubMed

    Terranova, C; Snenghi, R; Thiene, G; Ferrara, S D

    2011-01-01

    of study Psychic trauma is described as the action of 'an emotionally overwhelming factor' capable of causing neurovegetative alterations leading to transitory or persisting bodily changes. The medico-legal concept of psychic trauma and its definition as a cause in penal cases is debated. The authors present three cases of death after psychic trauma, and discuss the definition of cause within the penal ambit of identified 'emotionally overwhelming factors'. The methodological approach to ascertainment and criterion-based assessment in each case involved the following phases: (1) examination of circumstantial evidence, clinical records and documentation; (2) autopsy; (3) ascertainment of cause of death; and (4) ascertainment of psychic trauma, and its coexisting relationship with the cause of death. The results and assessment of each of the three cases are discussed from the viewpoint of the causal connotation of psychic trauma. In the cases presented, psychic trauma caused death, as deduced from assessment of the type of externally caused emotional insult, the subjects' personal characteristics and the circumstances of the event causing death. In cases of death due to psychic trauma, careful methodological ascertainment is essential, with the double aim of defining 'emotionally overwhelming factors' as a significant cause of death from the penal point of view, and of identifying the responsibility of third parties involved in the death event and associated dynamics of homicide.

  6. Penalized weighted least-squares approach for multienergy computed tomography image reconstruction via structure tensor total variation regularization.

    PubMed

    Zeng, Dong; Gao, Yuanyuan; Huang, Jing; Bian, Zhaoying; Zhang, Hua; Lu, Lijun; Ma, Jianhua

    2016-10-01

    Multienergy computed tomography (MECT) allows identifying and differentiating different materials through simultaneous capture of multiple sets of energy-selective data belonging to specific energy windows. However, because sufficient photon counts are not available in each energy window compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise and strong streak artifacts. To address the particular challenge, this work presents a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization, which is henceforth referred to as 'PWLS-STV' for simplicity. Specifically, the STV regularization is derived by penalizing higher-order derivatives of the desired MECT images. Thus it could provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation (TV) regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Extensive experiments with a digital XCAT phantom and meat specimen clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of both quantitative and visual quality evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Carmosino, M. L.; Breves, E. A.; Ozanne, M. V.; Clegg, S. M.; Wiens, R. C.

    2012-04-01

    A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the response variables as possible while avoiding multicollinearity between principal components. When the selected number of principal components is projected back into the original feature space of the spectra, 6144 correlation coefficients are generated, a small fraction of which are mathematically significant to the regression. In contrast, the lasso models require only a small number (< 24) of non-zero correlation coefficients (β values) to determine the concentration of each of the ten major elements. Causality between the positively-correlated emission lines chosen by the lasso and the elemental concentration was examined. In general, the higher the lasso coefficient (β), the greater the likelihood that the selected line results from an emission of that element. Emission lines with negative β values should arise from elements that are anti-correlated with the element being predicted. For elements except Fe, Al, Ti, and P, the lasso-selected wavelength with the highest β value corresponds to the element being predicted, e.g. 559.8 nm for neutral Ca. However, the specific lines chosen by the lasso with positive β values are not always those from the element being predicted. Other wavelengths and the elements that most strongly correlate with them to predict concentration are obviously related to known geochemical correlations or close overlap of emission lines, while others must result from matrix effects. Use of the lasso technique thus directly informs our understanding of the underlying physical processes that give rise to LIBS emissions by determining which lines can best represent concentration, and which lines from other elements are causing matrix effects.

  8. A Novel Approach to Prenatal Measurement of the Fetal Frontal Lobe Using Three-Dimensional Sonography

    PubMed Central

    Brown, Steffen A.; Hall, Rebecca; Hund, Lauren; Gutierrez, Hilda L.; Hurley, Timothy; Holbrook, Bradley D.; Bakhireva, Ludmila N.

    2017-01-01

    Objective While prenatal 3D ultrasonography results in improved diagnostic accuracy, no data are available on biometric assessment of the fetal frontal lobe. This study was designed to assess feasibility of a standardized approach to biometric measurement of the fetal frontal lobe and to construct frontal lobe growth trajectories throughout gestation. Study Design A sonographic 3D volume set was obtained and measured in 101 patients between 16.1 and 33.7 gestational weeks. Measurements were obtained by two independent raters. To model the relationship between gestational age and each frontal lobe measurement, flexible linear regression models were fit using penalized regression splines. Results The sample contained an ethnically diverse population (7.9% Native Americans, 45.5% Hispanic/Latina). There was high inter-rater reliability (correlation coefficients: 0.95, 1.0, and 0.87 for frontal lobe length, width, and height; p-values < 0.001). Graphs of the growth trajectories and corresponding percentiles were estimated as a function of gestational age. The estimated rates of frontal lobe growth were 0.096 cm/week, 0.247 cm/week, and 0.111 cm/week for length, width, and height. Conclusion To our knowledge, this is the first study to examine fetal frontal lobe growth trajectories through 3D prenatal ultrasound examination. Such normative data will allow for future prenatal evaluation of a particular disease state by 3D ultrasound imaging. PMID:29075046

  9. A Novel Approach to Prenatal Measurement of the Fetal Frontal Lobe Using Three-Dimensional Sonography.

    PubMed

    Brown, Steffen A; Hall, Rebecca; Hund, Lauren; Gutierrez, Hilda L; Hurley, Timothy; Holbrook, Bradley D; Bakhireva, Ludmila N

    2017-01-01

    While prenatal 3D ultrasonography results in improved diagnostic accuracy, no data are available on biometric assessment of the fetal frontal lobe. This study was designed to assess feasibility of a standardized approach to biometric measurement of the fetal frontal lobe and to construct frontal lobe growth trajectories throughout gestation. A sonographic 3D volume set was obtained and measured in 101 patients between 16.1 and 33.7 gestational weeks. Measurements were obtained by two independent raters. To model the relationship between gestational age and each frontal lobe measurement, flexible linear regression models were fit using penalized regression splines. The sample contained an ethnically diverse population (7.9% Native Americans, 45.5% Hispanic/Latina). There was high inter-rater reliability (correlation coefficients: 0.95, 1.0, and 0.87 for frontal lobe length, width, and height; p-values < 0.001). Graphs of the growth trajectories and corresponding percentiles were estimated as a function of gestational age. The estimated rates of frontal lobe growth were 0.096 cm/week, 0.247 cm/week, and 0.111 cm/week for length, width, and height. To our knowledge, this is the first study to examine fetal frontal lobe growth trajectories through 3D prenatal ultrasound examination. Such normative data will allow for future prenatal evaluation of a particular disease state by 3D ultrasound imaging.

  10. Protein Structure Prediction with Evolutionary Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.; Krasnogor, N.; Pelta, D.A.

    1999-02-08

    Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.

  11. [Incest--forensic genetic approach].

    PubMed

    Raczek, Ewa

    2012-01-01

    The paper presents intimate relationships between biologically and legally close relatives, complicated in the social, culture and religion perspective. (art. 201 of the Penal Code), but it chiefly addresses problems associated with giving opinion on the fatherhood towards the incestuous child. The report calls for a broader interest in this issue from expert witnesses in forensic genetics, as well as encourages them to publish examples taken from their own professional experience that may unquestionably be helpful to other practitioners in this field and above all will lead to extending educational methods related to widely understood DNA analysis in giving an opinion on arguable fatherhood.

  12. MO-G-17A-07: Improved Image Quality in Brain F-18 FDG PET Using Penalized-Likelihood Image Reconstruction Via a Generalized Preconditioned Alternating Projection Algorithm: The First Patient Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Beattie, B; Humm, J

    2014-06-15

    Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1stmore » order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved with clinical OSEM reconstructions.« less

  13. SU-F-18C-13: Low-Dose X-Ray CT Reconstruction Using a Hybrid First-Order Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L; Lin, W; Jin, M

    2014-06-15

    Purpose: To develop a novel reconstruction method for X-ray CT that can lead to accurate reconstruction at significantly reduced dose levels combining low X-ray incident intensity and few views of projection data. Methods: The noise nature of the projection data at low X-ray incident intensity was modeled and accounted by the weighted least-squares (WLS) criterion. The total variation (TV) penalty was used to mitigate artifacts caused by few views of data. The first order primal-dual (FOPD) algorithm was used to minimize TV in image domain, which avoided the difficulty of the non-smooth objective function. The TV penalized WLS reconstruction wasmore » achieved by alternated FOPD TV minimization and projection onto convex sets (POCS) for data fidelity constraints. The proposed FOPD-POCS method was evaluated using the FORBILD jaw phantom and the real cadaver head CT data. Results: The quantitative measures, root mean square error (RMSE) and contrast-to-noise ratio (CNR), demonstrate the superior denoising capability of WLS over LS-based TV iterative reconstruction. The improvement of RMSE (WLS vs. LS) is 15%∼21% and that of CNR is 17%∼72% when the incident counts per ray are ranged from 1×10{sup 5} to 1×10{sup 3}. In addition, the TV regularization can accurately reconstruct images from about 50 views of the jaw phantom. The FOPD-POCS reconstruction reveals more structural details and suffers fewer artifacts in both the phantom and real head images. The FOPD-POCS method also shows fast convergence at low X-ray incident intensity. Conclusion: The new hybrid FOPD-POCS method, based on TV penalized WLS, yields excellent image quality when the incident X-ray intensity is low and the projection views are limited. The reconstruction is computationally efficient since the FOPD minimization of TV is applied only in the image domain. The characteristics of FOPD-POCS can be exploited to significantly reduce radiation dose of X-ray CT without compromising accuracy for diagnosis or treatment planning.« less

  14. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    PubMed

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  15. Molecular diversity management strategies for building and enhancement of diverse and focused lead discovery compound screening collections.

    PubMed

    Schuffenhauer, A; Popov, M; Schopfer, U; Acklin, P; Stanek, J; Jacoby, E

    2004-12-01

    This publication describes processes for the selection of chemical compounds for the building of a high-throughput screening (HTS) collection for drug discovery, using the currently implemented process in the Discovery Technologies Unit of the Novartis Institute for Biomedical Research, Basel Switzerland as reference. More generally, the currently existing compound acquisition models and practices are discussed. Our informatics, chemistry and biology-driven compound selection consists of two steps: 1) The individual compounds are filtered and grouped into three priority classes on the basis of their individual structural properties. Substructure filters are used to eliminate or penalize compounds based on unwanted structural properties. The similarity of the structures to reference ligands of the main proven druggable target families is computed, and drug-similar compounds are prioritized for the following diversity analysis. 2) The compounds are compared to the archive compounds and a diversity analysis is performed. This is done separately for the prioritized, regular and penalized compounds with increasingly stringent dissimilarity criterion. The process includes collecting vendor catalogues and monitoring the availability of samples together with the selection and purchase decision points. The development of a corporate vendor catalogue database is described. In addition to the selection methods on a per single molecule basis, selection criteria for scaffold and combinatorial chemistry projects in collaboration with compound vendors are discussed.

  16. What is the impact of a clinically related readmission measure on the assessment of hospital performance?

    PubMed

    Khouri, Roger K; Hou, Hechuan; Dhir, Apoorv; Andino, Juan J; Dupree, James M; Miller, David C; Ellimoottil, Chad

    2017-11-28

    The Hospital Readmission Reduction Program (HRRP) penalizes hospitals for high all-cause unplanned readmission rates. Many have expressed concern that hospitals serving patient populations with more comorbidities, lower incomes, and worse self-reported health status may be disproportionately penalized by readmissions that are not clinically related to the index admission. The impact of including clinically unrelated readmissions on hospital performance is largely unknown. We sought to determine if a clinically related readmission measure would significantly alter the assessment of hospital performance. We analyzed Medicare claims for beneficiaries in Michigan admitted for pneumonia and joint replacement from 2011 to 2013. We compared each hospital's 30-day readmission rate using specifications from the HRRP's all-cause unplanned readmission measure to values calculated using a clinically related readmission measure. We found that the mean 30-day readmission rates were lower when calculated using the clinically related readmission measure (joint replacement: all-cause 5.8%, clinically related 4.9%, p < 0.001; pneumonia: all cause 12.5%, clinically related 11.3%, p < 0.001)). The correlation of hospital ranks using both methods was strong (joint replacement: 0.95 (p < 0.001), pneumonia: 0.90 (p < 0.001)). Our findings suggest that, while greater specificity may be achieved with a clinically related measure, clinically unrelated readmissions may not impact hospital performance in the HRRP.

  17. [Criminal implication of sponsoring in medicine: legal ramifactions and recommendations].

    PubMed

    Mahnken, A H; Theilmann, M; Bolenz, M; Günther, R W

    2005-08-01

    As a consequence of the so-called "Heart-Valve-Affair" in 1994, the German public became aware of the potential criminal significance of industrial sponsoring and third-party financial support in medicine. Since 1997, when the German Anti-Corruption Law came into effect, the penal regulations regarding bribery and benefits for public officers were tightened. Due to the lack of explicit and generally accepted guidelines in combination with regional differences of jurisdiction, there is a lingering uncertainty regarding the criminal aspects of third-party funding and industrial sponsoring. The aim of this review is to summarize the penal and professional implications of third-party funding and sponsoring in medicine including recent aspects of jurisdiction. The currently available recommendations on this issue are introduced.

  18. Functional Generalized Structured Component Analysis.

    PubMed

    Suk, Hye Won; Hwang, Heungsun

    2016-12-01

    An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.

  19. Multivariate random regression analysis for body weight and main morphological traits in genetically improved farmed tilapia (Oreochromis niloticus).

    PubMed

    He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing

    2017-11-02

    Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.

  20. Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster

    2017-03-01

    Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

  1. Evaluating Imputation Algorithms for Low-Depth Genotyping-By-Sequencing (GBS) Data

    PubMed Central

    2016-01-01

    Well-powered genomic studies require genome-wide marker coverage across many individuals. For non-model species with few genomic resources, high-throughput sequencing (HTS) methods, such as Genotyping-By-Sequencing (GBS), offer an inexpensive alternative to array-based genotyping. Although affordable, datasets derived from HTS methods suffer from sequencing error, alignment errors, and missing data, all of which introduce noise and uncertainty to variant discovery and genotype calling. Under such circumstances, meaningful analysis of the data is difficult. Our primary interest lies in the issue of how one can accurately infer or impute missing genotypes in HTS-derived datasets. Many of the existing genotype imputation algorithms and software packages were primarily developed by and optimized for the human genetics community, a field where a complete and accurate reference genome has been constructed and SNP arrays have, in large part, been the common genotyping platform. We set out to answer two questions: 1) can we use existing imputation methods developed by the human genetics community to impute missing genotypes in datasets derived from non-human species and 2) are these methods, which were developed and optimized to impute ascertained variants, amenable for imputation of missing genotypes at HTS-derived variants? We selected Beagle v.4, a widely used algorithm within the human genetics community with reportedly high accuracy, to serve as our imputation contender. We performed a series of cross-validation experiments, using GBS data collected from the species Manihot esculenta by the Next Generation (NEXTGEN) Cassava Breeding Project. NEXTGEN currently imputes missing genotypes in their datasets using a LASSO-penalized, linear regression method (denoted ‘glmnet’). We selected glmnet to serve as a benchmark imputation method for this reason. We obtained estimates of imputation accuracy by masking a subset of observed genotypes, imputing, and calculating the sample Pearson correlation between observed and imputed genotype dosages at the site and individual level; computation time served as a second metric for comparison. We then set out to examine factors affecting imputation accuracy, such as levels of missing data, read depth, minor allele frequency (MAF), and reference panel composition. PMID:27537694

  2. Evaluating Imputation Algorithms for Low-Depth Genotyping-By-Sequencing (GBS) Data.

    PubMed

    Chan, Ariel W; Hamblin, Martha T; Jannink, Jean-Luc

    2016-01-01

    Well-powered genomic studies require genome-wide marker coverage across many individuals. For non-model species with few genomic resources, high-throughput sequencing (HTS) methods, such as Genotyping-By-Sequencing (GBS), offer an inexpensive alternative to array-based genotyping. Although affordable, datasets derived from HTS methods suffer from sequencing error, alignment errors, and missing data, all of which introduce noise and uncertainty to variant discovery and genotype calling. Under such circumstances, meaningful analysis of the data is difficult. Our primary interest lies in the issue of how one can accurately infer or impute missing genotypes in HTS-derived datasets. Many of the existing genotype imputation algorithms and software packages were primarily developed by and optimized for the human genetics community, a field where a complete and accurate reference genome has been constructed and SNP arrays have, in large part, been the common genotyping platform. We set out to answer two questions: 1) can we use existing imputation methods developed by the human genetics community to impute missing genotypes in datasets derived from non-human species and 2) are these methods, which were developed and optimized to impute ascertained variants, amenable for imputation of missing genotypes at HTS-derived variants? We selected Beagle v.4, a widely used algorithm within the human genetics community with reportedly high accuracy, to serve as our imputation contender. We performed a series of cross-validation experiments, using GBS data collected from the species Manihot esculenta by the Next Generation (NEXTGEN) Cassava Breeding Project. NEXTGEN currently imputes missing genotypes in their datasets using a LASSO-penalized, linear regression method (denoted 'glmnet'). We selected glmnet to serve as a benchmark imputation method for this reason. We obtained estimates of imputation accuracy by masking a subset of observed genotypes, imputing, and calculating the sample Pearson correlation between observed and imputed genotype dosages at the site and individual level; computation time served as a second metric for comparison. We then set out to examine factors affecting imputation accuracy, such as levels of missing data, read depth, minor allele frequency (MAF), and reference panel composition.

  3. Flexible and structured survival model for a simultaneous estimation of non-linear and non-proportional effects and complex interactions between continuous variables: Performance of this multidimensional penalized spline approach in net survival trend analysis.

    PubMed

    Remontet, Laurent; Uhry, Zoé; Bossard, Nadine; Iwaz, Jean; Belot, Aurélien; Danieli, Coraline; Charvat, Hadrien; Roche, Laurent

    2018-01-01

    Cancer survival trend analyses are essential to describe accurately the way medical practices impact patients' survival according to the year of diagnosis. To this end, survival models should be able to account simultaneously for non-linear and non-proportional effects and for complex interactions between continuous variables. However, in the statistical literature, there is no consensus yet on how to build such models that should be flexible but still provide smooth estimates of survival. In this article, we tackle this challenge by smoothing the complex hypersurface (time since diagnosis, age at diagnosis, year of diagnosis, and mortality hazard) using a multidimensional penalized spline built from the tensor product of the marginal bases of time, age, and year. Considering this penalized survival model as a Poisson model, we assess the performance of this approach in estimating the net survival with a comprehensive simulation study that reflects simple and complex realistic survival trends. The bias was generally small and the root mean squared error was good and often similar to that of the true model that generated the data. This parametric approach offers many advantages and interesting prospects (such as forecasting) that make it an attractive and efficient tool for survival trend analyses.

  4. 29 CFR 1975.5 - States and political subdivisions thereof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... penal institutions; State, county, and municipal judicial bodies; State University Boards of Trustees; State, county, and municipal public school boards and commissions; and public libraries. (2) Depending...

  5. Analyzing Test-Taking Behavior: Decision Theory Meets Psychometric Theory.

    PubMed

    Budescu, David V; Bo, Yuanchao

    2015-12-01

    We investigate the implications of penalizing incorrect answers to multiple-choice tests, from the perspective of both test-takers and test-makers. To do so, we use a model that combines a well-known item response theory model with prospect theory (Kahneman and Tversky, Prospect theory: An analysis of decision under risk, Econometrica 47:263-91, 1979). Our results reveal that when test-takers are fully informed of the scoring rule, the use of any penalty has detrimental effects for both test-takers (they are always penalized in excess, particularly those who are risk averse and loss averse) and test-makers (the bias of the estimated scores, as well as the variance and skewness of their distribution, increase as a function of the severity of the penalty).

  6. Route Flap Damping Made Usable

    NASA Astrophysics Data System (ADS)

    Pelsser, Cristel; Maennel, Olaf; Mohapatra, Pradosh; Bush, Randy; Patel, Keyur

    The Border Gateway Protocol (BGP), the de facto inter-domain routing protocol of the Internet, is known to be noisy. The protocol has two main mechanisms to ameliorate this, MinRouteAdvertisementInterval (MRAI), and Route Flap Damping (RFD). MRAI deals with very short bursts on the order of a few to 30 seconds. RFD deals with longer bursts, minutes to hours. Unfortunately, RFD was found to severely penalize sites for being well-connected because topological richness amplifies the number of update messages exchanged. So most operators have disabled it. Through measurement, this paper explores the avenue of absolutely minimal change to code, and shows that a few RFD algorithmic constants and limits can be trivially modified, with the result being damping a non-trivial amount of long term churn without penalizing well-behaved prefixes' normal convergence process.

  7. Stationary wavelet transform for under-sampled MRI reconstruction.

    PubMed

    Kayvanrad, Mohammad H; McLeod, A Jonathan; Baxter, John S H; McKenzie, Charles A; Peters, Terry M

    2014-12-01

    In addition to coil sensitivity data (parallel imaging), sparsity constraints are often used as an additional lp-penalty for under-sampled MRI reconstruction (compressed sensing). Penalizing the traditional decimated wavelet transform (DWT) coefficients, however, results in visual pseudo-Gibbs artifacts, some of which are attributed to the lack of translation invariance of the wavelet basis. We show that these artifacts can be greatly reduced by penalizing the translation-invariant stationary wavelet transform (SWT) coefficients. This holds with various additional reconstruction constraints, including coil sensitivity profiles and total variation. Additionally, SWT reconstructions result in lower error values and faster convergence compared to DWT. These concepts are illustrated with extensive experiments on in vivo MRI data with particular emphasis on multiple-channel acquisitions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, Alexey V., E-mail: alexvakimov@gmail.com, E-mail: oleg.prezhdo@rochester.edu; Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973; Long, Run

    2014-05-21

    We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrödinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fullymore » quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.« less

  9. A data-driven approach to modeling physical fatigue in the workplace using wearable sensors.

    PubMed

    Sedighi Maman, Zahra; Alamdar Yazdi, Mohammad Ali; Cavuoto, Lora A; Megahed, Fadel M

    2017-11-01

    Wearable sensors are currently being used to manage fatigue in professional athletics, transportation and mining industries. In manufacturing, physical fatigue is a challenging ergonomic/safety "issue" since it lowers productivity and increases the incidence of accidents. Therefore, physical fatigue must be managed. There are two main goals for this study. First, we examine the use of wearable sensors to detect physical fatigue occurrence in simulated manufacturing tasks. The second goal is to estimate the physical fatigue level over time. In order to achieve these goals, sensory data were recorded for eight healthy participants. Penalized logistic and multiple linear regression models were used for physical fatigue detection and level estimation, respectively. Important features from the five sensors locations were selected using Least Absolute Shrinkage and Selection Operator (LASSO), a popular variable selection methodology. The results show that the LASSO model performed well for both physical fatigue detection and modeling. The modeling approach is not participant and/or workload regime specific and thus can be adopted for other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Solving the incompressible surface Navier-Stokes equation by surface finite elements

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2018-01-01

    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

  11. Truss systems and shape optimization

    NASA Astrophysics Data System (ADS)

    Pricop, Mihai Victor; Bunea, Marian; Nedelcu, Roxana

    2017-07-01

    Structure optimization is an important topic because of its benefits and wide applicability range, from civil engineering to aerospace and automotive industries, contributing to a more green industry and life. Truss finite elements are still in use in many research/industrial codesfor their simple stiffness matrixand are naturally matching the requirements for cellular materials especially considering various 3D printing technologies. Optimality Criteria combined with Solid Isotropic Material with Penalization is the optimization method of choice, particularized for truss systems. Global locked structures areobtainedusinglocally locked lattice local organization, corresponding to structured or unstructured meshes. Post processing is important for downstream application of the method, to make a faster link to the CAD systems. To export the optimal structure in CATIA, a CATScript file is automatically generated. Results, findings and conclusions are given for two and three-dimensional cases.

  12. Sparse nonnegative matrix factorization with ℓ0-constraints

    PubMed Central

    Peharz, Robert; Pernkopf, Franz

    2012-01-01

    Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the ℓ1-norm of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the ℓ0-pseudo-norm. In this paper, we propose a framework for approximate NMF which constrains the ℓ0-norm of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches. PMID:22505792

  13. Using logistic regression modeling to predict sexual recidivism: the Minnesota Sex Offender Screening Tool-3 (MnSOST-3).

    PubMed

    Duwe, Grant; Freske, Pamela J

    2012-08-01

    This study presents the results from efforts to revise the Minnesota Sex Offender Screening Tool-Revised (MnSOST-R), one of the most widely used sex offender risk-assessment tools. The updated instrument, the MnSOST-3, contains nine individual items, six of which are new. The population for this study consisted of the cross-validation sample for the MnSOST-R (N = 220) and a contemporary sample of 2,315 sex offenders released from Minnesota prisons between 2003 and 2006. To score and select items for the MnSOST-3, we used predicted probabilities generated from a multiple logistic regression model. We used bootstrap resampling to not only refine our selection of predictors but also internally validate the model. The results indicate the MnSOST-3 has a relatively high level of predictive discrimination, as evidenced by an apparent AUC of .821 and an optimism-corrected AUC of .796. The findings show the MnSOST-3 is well calibrated with actual recidivism rates for all but the highest risk offenders. Although estimating a penalized maximum likelihood model did not improve the overall calibration, the results suggest the MnSOST-3 may still be useful in helping identify high-risk offenders whose sexual recidivism risk exceeds 50%. Results from an interrater reliability assessment indicate the instrument, which is scored in a Microsoft Excel application, has an adequate degree of consistency across raters (ICC = .83 for both consistency and absolute agreement).

  14. Landscape Effects on Reproduction of Euschistus servus (Hemiptera: Pentatomidae), a Mobile, Polyphagous, Multivoltine Arthropod Herbivore.

    PubMed

    Olson, Dawn M; Prescott, Kristina K; Zeilinger, Adam R; Hou, Suqin; Coffin, Alisa W; Smith, Coby M; Ruberson, John R; Andow, David A

    2018-06-06

    Landscape factors can significantly influence arthropod populations. The economically important brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidae), is a native mobile, polyphagous and multivoltine pest of many crops in southeastern United States and understanding the relative influence of local and landscape factors on their reproduction may facilitate population management. Finite rate of population increase (λ) was estimated in four major crop hosts-maize, peanut, cotton, and soybean-over 3 yr in 16 landscapes of southern Georgia. A geographic information system (GIS) was used to characterize the surrounding landscape structure. LASSO regression was used to identify the subset of local and landscape characteristics and predator densities that account for variation in λ. The percentage area of maize, peanut and woodland and pasture in the landscape and the connectivity of cropland had no influence on E. servus λ. The best model for explaining variation in λ included only four predictor variables: whether or not the sampled field was a soybean field, mean natural enemy density in the field, percentage area of cotton in the landscape and the percentage area of soybean in the landscape. Soybean was the single most important variable for determining E. servus λ, with much greater reproduction in soybean fields than in other crop species. Penalized regression and post-selection inference provide conservative estimates of the landscape-scale determinants of E. servus reproduction and indicate that a relatively simple set of in-field and landscape variables influences reproduction in this species.

  15. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy.

    PubMed

    Dean, Jamie A; Wong, Kee H; Gay, Hiram; Welsh, Liam C; Jones, Ann-Britt; Schick, Ulrike; Oh, Jung Hun; Apte, Aditya; Newbold, Kate L; Bhide, Shreerang A; Harrington, Kevin J; Deasy, Joseph O; Nutting, Christopher M; Gulliford, Sarah L

    2016-11-15

    Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogram data. The reduced dose data were input into functional logistic regression models (functional partial least squares-logistic regression [FPLS-LR] and functional principal component-logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate-response associations, assessed using bootstrapping. The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/-0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  17. Iterative CT reconstruction using coordinate descent with ordered subsets of data

    NASA Astrophysics Data System (ADS)

    Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.

    2016-04-01

    Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.

  18. A simplified flight-test method for determining aircraft takeoff performance that includes effects of pilot technique

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Schweikhard, W. G.

    1974-01-01

    A method for evaluating aircraft takeoff performance from brake release to air-phase height that requires fewer tests than conventionally required is evaluated with data for the XB-70 airplane. The method defines the effects of pilot technique on takeoff performance quantitatively, including the decrease in acceleration from drag due to lift. For a given takeoff weight and throttle setting, a single takeoff provides enough data to establish a standardizing relationship for the distance from brake release to any point where velocity is appropriate to rotation. The lower rotation rates penalized takeoff performance in terms of ground roll distance; the lowest observed rotation rate required a ground roll distance that was 19 percent longer than the highest. Rotations at the minimum rate also resulted in lift-off velocities that were approximately 5 knots lower than the highest rotation rate at any given lift-off distance.

  19. A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives.

    PubMed

    Algamal, Z Y; Lee, M H

    2017-01-01

    A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.

  20. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  1. Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin

    PubMed Central

    Harrill, Joshua A; Li, Zhen; Wright, Fred A; Radio, Nicholas M; Mundy, William R; Tornero-Velez, Rogelio; Crofton, Kevin M

    2008-01-01

    Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg) or permethrin (1 – 100 mg/kg) followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM) and isotonic regression (PIR) methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1) was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE) identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25%) in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of gene expression data identified branching morphogenesis as a biological process sensitive to pyrethroids and subsequent in vitro experiments confirmed this predicted effect. The novel findings regarding pyrethroid effects on branching morphogenesis indicate these compounds may act as developmental neurotoxicants that affect normal neuronal morphology. PMID:19017407

  2. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  3. [Treatment of amblyopia].

    PubMed

    von Noorden, G K

    1990-01-01

    Animal experiments have explored the structural and functional alterations of the afferent visual pathways in amblyopia and have emphasized the extraordinary sensitivity of the immature visual system to abnormal visual stimulation. The practical consequences of these experiments are obvious: early diagnosis of amblyopia and energetic occlusion therapy as early in life as possible. At the same time, measures must be taken to prevent visual deprivation amblyopia in the occluded eye. After successful treatment, alternating penalization with two pairs of spectacles is recommended. Pleoptics involves an enormous commitment in terms of time, personnel and costs. In view of the fact that the superiority of this treatment over occlusion therapy has yet to be proven, the current value of pleoptics appears dubious. Moreover, overtreated patients may end up with intractable diplopia. Diverging opinions exist with regard to the use of penalization as a primary treatment of amblyopia. We employ it only in special cases as an alternative to occlusion therapy. Visual deprivation in infancy caused by opacities of the ocular media, especially when they occur unilaterally, must be eliminated, and deprivation amblyopia must be treated without delay to regain useful vision. Brief periods of bilateral occlusion are recommended to avoid the highly amblyopiogenic imbalance between binocular afferent visual input. Future developments will hopefully include new objective methods to diagnose amblyopia in preverbal children and infants. The application of positron emission tomography is perhaps the first step in the direction of searching for new approaches to this problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Population effect model identifies gene expression predictors of survival outcomes in lung adenocarcinoma for both Caucasian and Asian patients

    PubMed Central

    Cai, Guoshuai; Xiao, Feifei; Cheng, Chao; Li, Yafang; Amos, Christopher I.; Whitfield, Michael L.

    2017-01-01

    Background We analyzed and integrated transcriptome data from two large studies of lung adenocarcinomas on distinct populations. Our goal was to investigate the variable gene expression alterations between paired tumor-normal tissues and prospectively identify those alterations that can reliably predict lung disease related outcomes across populations. Methods We developed a mixed model that combined the paired tumor-normal RNA-seq from two populations. Alterations in gene expression common to both populations were detected and validated in two independent DNA microarray datasets. A 10-gene prognosis signature was developed through a l1 penalized regression approach and its prognostic value was evaluated in a third independent microarray cohort. Results Deregulation of apoptosis pathways and increased expression of cell cycle pathways were identified in tumors of both Caucasian and Asian lung adenocarcinoma patients. We demonstrate that a 10-gene biomarker panel can predict prognosis of lung adenocarcinoma in both Caucasians and Asians. Compared to low risk groups, high risk groups showed significantly shorter overall survival time (Caucasian patients data: HR = 3.63, p-value = 0.007; Asian patients data: HR = 3.25, p-value = 0.001). Conclusions This study uses a statistical framework to detect DEGs between paired tumor and normal tissues that considers variances among patients and ethnicities, which will aid in understanding the common genes and signalling pathways with the largest effect sizes in ethnically diverse cohorts. We propose multifunctional markers for distinguishing tumor from normal tissue and prognosis for both populations studied. PMID:28426704

  5. Consent Agreement and Consent Order

    EPA Pesticide Factsheets

    Contains legal consent agreement and consent order for the assessment of a civil penality pursuant to Section 14(1) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), BioLab Inc., Conyers, GA, September 14, 1998.

  6. [Who Benefits from Forensic Psychiatric Treatment? Results of a Catamnestic Study in Swabia].

    PubMed

    Dudeck, Manuela; Franke, Irina; Bezzel, Adelheid; Otte, Stefanie; Ormanns, Norbert; Nigel, Stefanie; Segmiller, Felix; Streb, Judith

    2018-04-17

    Evaluation of treatment outcomes of forensic inpatients in the Bavarian district of Swabia (2010 - 2014). 130 inpatients were interviewed about their social reintegration, substance use and delinquency immediately after discharge from forensic psychiatry and one year after. One year after discharge 67 % of the patients referred due to substance use disorder according to § 64 of the German Penal Code were employed, 57 % were abstinent and 83 % did not reoffend. Patients who were detained due to severe mental illness according to § 63 of the German Penal Code often received inability pensions (57 %), 14 % were integrated in sheltered workshops and 100 % did not reoffend. Forensic-psychiatric treatment contributes to rehabilitation and reduces risk factors of mentally disordered offenders. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Honor crimes: review and proposed definition.

    PubMed

    Elakkary, Sally; Franke, Barbara; Shokri, Dina; Hartwig, Sven; Tsokos, Michael; Püschel, Klaus

    2014-03-01

    There is every reason to believe that honor based violence is one of the forms of domestic violence that is being practiced against females all over the world. This type of violence includes a wide range of crimes, the severest of which is honor killing. Many studies have adopted different definitions for the so-called honor killing. In this paper some of these definitions are discussed and a working definition is proposed. The scope of the problem worldwide is presented. Honor killing goes beyond ethnicity, class, and religion. It is a very old phenomenon that was practiced in ancient Rome, guided by penal codes. Some of the older as well as new penal codes are discussed concerning this matter from different regions of the world. The different efforts of international governmental and nongovernmental organizations in combating this problem are also presented.

  8. Middle Micoene sandstone reservoirs of the Penal/Barrackpore field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, B.L.

    1991-03-01

    The Penal/Barrackpore field was discovered in 1938 and is located in the southern subbasin of onshore Trinidad. The accumulation is one of a series of northeast-southwest trending en echelon middle Miocene anticlinal structures that was later accentuated by late Pliocene transpressional folding. Relative movement of the South American and Caribbean plates climaxed in the middle Miocene compressive tectonic event and produced an imbricate pattern of southward-facing basement-involved thrusts. Further compressive interaction between the plates in the late Pliocene produced a transpressive tectonic episode forming northwest-southeast oriented transcurrent faults, tear faults, basement thrust faults, lystric normal faults, and detached simple foldsmore » with infrequent diapiric cores. The middle Miocene Herrera and Karamat turbiditic sandstones are the primary reservoir rock in the subsurface anticline of the Penal/Barrackpore field. These turbidites were sourced from the north and deposited within the marls and clays of the Cipero Formation. Miocene and Pliocene deltaics and turbidites succeed the Cipero Formation vertically, lapping into preexisting Miocene highs. The late Pliocene transpression also coincides with the onset of oil migration along faults, diapirs, and unconformities from the Cretaceous Naparima Hill source. The Lengua Formation and the upper Forest clays are considered effective seals. Hydrocarbon trapping is structurally and stratigraphically controlled, with structure being the dominant trapping mechanism. Ultimate recoverable reserves for the field are estimated at 127.9 MMBo and 628.8 bcf. The field is presently owned and operated by the Trinidad and Tobago Oil Company Limited (TRINTOC).« less

  9. Treating substance abuse is not enough: comorbidities in consecutively admitted female prisoners.

    PubMed

    Mir, Jan; Kastner, Sinja; Priebe, Stefan; Konrad, Norbert; Ströhle, Andreas; Mundt, Adrian P

    2015-07-01

    Several studies have pointed to high rates of substance use disorders among female prisoners. The present study aimed to assess comorbidities of substance use disorders with other mental disorders in female prisoners at admission to a penal justice system. A sample of 150 female prisoners, consecutively admitted to the penal justice system of Berlin, Germany, was interviewed using the Mini-International Neuropsychiatric Interview (MINI). The presence of borderline personality disorder was assessed using the Structured Clinical Interview II for DSM-IV. Prevalence rates and comorbidities were calculated as percentage values and 95% confidence intervals (CIs). Ninety-three prisoners (62%; 95% CI: 54-70) had substance use disorders; n=49 (33%; 95% CI: 24-42) had alcohol abuse/dependence; n=76 (51%; 95% CI: 43-59) had illicit drug abuse/dependence; and n=53 (35%; 95% CI: 28-44) had opiate use disorders. In the group of inmates with substance use disorders, 84 (90%) had at least one other mental disorder; n=63 (68%) had comorbid affective disorders; n=45 (49%) had borderline or antisocial personality disorders; and n=41 (44%) had comorbid anxiety disorders. Female prisoners with addiction have high rates of comorbid mental disorders at admission to the penal justice system, ranging from affective to personality and anxiety disorders. Generic and robust interventions that can address different comorbid mental health problems in a flexible manner may be required to tackle widespread addiction and improve mental health of female prisoners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Working through mass incarceration: gender and the politics of prison labor from east to west.

    PubMed

    Haney, Lynne A

    2010-01-01

    This article explores the politics and practices of labor in two penal institutions for women: a maximum security facility for women in Hungary and a community‐based facility for women in California. Diverging from other accounts of imprisonment that tend to operate at either the individual or macroeconomic level, this article analyzes the concrete institutional relations of prison and complicates the assumption that they simply reflect the logic of the prison‐industrial complex. Based on years of ethnographic work in two very different penal systems, I describe variation in how prisons institute labor within and across institutions and cultures: the Hungarian facility positioned wage labor as a right and an obligation that formed the basis of women’s social relationships and ties to others, while the U.S. prison excluded wage labor from women’s lives so they could get on with the work of self‐improvement and personal healing. From the comparison, I reveal how prisons can both draw on and subvert broader social meanings assigned to women’s work, making it difficult to view prison labor as wholly exploitative or abusive. I also argue that refusing to allow female inmates to engage in wage labor can be a more profound form of punishment than requiring it of them. By juxtaposing the discourses and practices of work in two very different penal contexts, this article offers a critical reflection on the political economy of prison labor from the ground up.

  11. Occlusion properties of prosthetic contact lenses for the treatment of amblyopia.

    PubMed

    Collins, Randall S; McChesney, Megan E; McCluer, Craig A; Schatz, Martha P

    2008-12-01

    The efficacy of opaque contact lenses as occlusion therapy for amblyopia has been established in the literature. Prosthetic contact lenses use similar tints to improve cosmesis in scarred or deformed eyes and may be an alternative in occlusion therapy. To test this idea, we determined the degree of vision penalization elicited by prosthetic contact lenses and their effect on peripheral fusion. We tested 19 CIBA Vision DuraSoft 3 Prosthetic soft contact lenses with varying iris prints, underprints, and opaque pupil sizes in 10 volunteers with best-corrected Snellen distance visual acuity of 20/20 or better in each eye. Snellen visual acuity and peripheral fusion using the Worth 4-Dot test at near were measured on each subject wearing each of the 19 lenses. Results were analyzed with 3-factor analysis of variance. Mean visual acuity through the various lenses ranged from 20/79 to 20/620. Eight lenses allowed preservation of peripheral fusion in 50% or more of the subjects tested. Iris print pattern and opaque pupil size were significant factors in determining visual acuity (p < 0.05). Sufficient vision penalization can be achieved to make occlusion with prosthetic contact lenses a viable therapy for amblyopia. The degree of penalization can be varied and different iris print patterns and pupil sizes, using peripheral fusion, can be preserved with some lenses. Prosthetic contact lenses can be more cosmetically appealing and more tolerable than other amblyopia treatment modalities. These factors may improve compliance in occlusion therapy.

  12. 27 CFR 26.69 - Strengthening bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Bonds § 26.69 Strengthening bonds. In all cases where the penal sum of...

  13. Senegal: Background and U.S. Relations

    DTIC Science & Technology

    2010-08-16

    boys, often separated from their families, receive religious instruction.33 The 1999 Penal Law outlawed domestic violence and female genital ... mutilation ; however, implementation has reportedly been uneven, and both are widespread.34 Human rights organizations have criticized

  14. Vaccine mandates, public trust, and vaccine confidence: understanding perceptions is important.

    PubMed

    Widdus, Roy; Larson, Heidi

    2018-05-01

    The experience in Australia with penalizing parents who refuse to have their children vaccinated demonstrates the need to study and understand resistance to vaccination as a global phenomenon with particular local manifestations.

  15. 49 CFR 26.47 - Can recipients be penalized for failing to meet overall goals?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BY DISADVANTAGED BUSINESS ENTERPRISES IN DEPARTMENT OF TRANSPORTATION FINANCIAL ASSISTANCE PROGRAMS... attention of FTA, FHWA, or FAA, demonstrates that current trends make it unlikely that you will achieve DBE...

  16. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Liu, Yikan; Yamamoto, Masahiro

    2018-04-01

    In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.

  17. Patients' functioning as predictor of nursing workload in acute hospital units providing rehabilitation care: a multi-centre cohort study

    PubMed Central

    2010-01-01

    Background Management decisions regarding quality and quantity of nurse staffing have important consequences for hospital budgets. Furthermore, these management decisions must address the nursing care requirements of the particular patients within an organizational unit. In order to determine optimal nurse staffing needs, the extent of nursing workload must first be known. Nursing workload is largely a function of the composite of the patients' individual health status, particularly with respect to functioning status, individual need for nursing care, and severity of symptoms. The International Classification of Functioning, Disability and Health (ICF) and the derived subsets, the so-called ICF Core Sets, are a standardized approach to describe patients' functioning status. The objectives of this study were to (1) examine the association between patients' functioning, as encoded by categories of the Acute ICF Core Sets, and nursing workload in patients in the acute care situation, (2) compare the variance in nursing workload explained by the ICF Core Set categories and with the Barthel Index, and (3) validate the Acute ICF Core Sets by their ability to predict nursing workload. Methods Patients' functioning at admission was assessed using the respective Acute ICF Core Set and the Barthel Index, whereas nursing workload data was collected using an established instrument. Associations between dependent and independent variables were modelled using linear regression. Variable selection was carried out using penalized regression. Results In patients with neurological and cardiopulmonary conditions, selected ICF categories and the Barthel Index Score explained the same variance in nursing workload (44% in neurological conditions, 35% in cardiopulmonary conditions), whereas ICF was slightly superior to Barthel Index Score for musculoskeletal conditions (20% versus 16%). Conclusions A substantial fraction of the variance in nursing workload in patients with rehabilitation needs in the acute hospital could be predicted by selected categories of the Acute ICF Core Sets, or by the Barthel Index score. Incorporating ICF Core Set-based data in nursing management decisions, particularly staffing decisions, may be beneficial. PMID:21034438

  18. Predicting U.S. Army suicides after hospitalizations with psychiatric diagnoses in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)

    PubMed Central

    Kessler, Ronald C.; Warner, LTC Christopher H.; Ivany, LTC Christopher; Petukhova, Maria V.; Rose, Sherri; Bromet, Evelyn J.; Brown, LTC Millard; Cai, Tianxi; Colpe, Lisa J.; Cox, Kenneth L.; Fullerton, Carol S.; Gilman, Stephen E.; Gruber, Michael J.; Heeringa, Steven G.; Lewandowski-Romps, Lisa; Li, Junlong; Millikan-Bell, Amy M.; Naifeh, James A.; Nock, Matthew K.; Rosellini, Anthony J.; Sampson, Nancy A.; Schoenbaum, Michael; Stein, Murray B.; Wessely, Simon; Zaslavsky, Alan M.; Ursano, Robert J.

    2014-01-01

    IMPORTANCE The U.S. Army experienced a sharp rise in suicides beginning in 2004. Administrative data show that among those at highest risk are soldiers in the 12 months after inpatient treatment of a psychiatric disorder. OBJECTIVE To develop an actuarial risk algorithm predicting suicide in the 12 months after US Army soldier inpatient treatment of a psychiatric disorder to target expanded post-hospital care. DESIGN, SETTING, AND PARTICIPANTS There were 53,769 hospitalizations of active duty soldiers in 2004–2009 with ICD-9-CM psychiatric admission diagnoses. Administrative data available prior to hospital discharge abstracted from a wide range of data systems (socio81 demographic, Army career, criminal justice, medical/pharmacy) were used to predict suicides in the subsequent 12 months using machine learning methods (regression trees, penalized regressions) designed to evaluate cross-validated linear, nonlinear, and interactive predictive associations. MAIN OUTCOME Suicides of soldiers hospitalized with psychiatric disorders in the 12 months after hospital discharge. RESULTS 68 soldiers died by suicide within 12 months of hospital discharge (12.0% of all Army suicides), equivalent to 263.9 suicides/100,000 person-years compared to 18.5 suicides/100,000 person-years in the total Army. Strongest predictors included socio-demographics (male, late age of enlistment), criminal offenses (verbal violence, weapons possession), prior suicidality, aspects of prior psychiatric inpatient and outpatient treatment, and disorders diagnosed during the focal hospitalizations. 52.9% of post-hospital suicides occurred after the 5% of hospitalizations with highest predicted suicide risk (3,824.1 suicides/100,000 person years). These highest-risk hospitalizations also accounted for significantly elevated proportions of several other adverse post-hospital outcomes (unintentional injury deaths, suicide attempts, re-hospitalizations). CONCLUSIONS AND RELEVANCE The high concentration of risk of suicides and other adverse outcomes might justify targeting expanded post-hospital interventions to soldiers classified as having highest post-hospital suicide risk, although final determination requires careful consideration of intervention costs, comparative effectiveness, and possible adverse effects. PMID:25390793

  19. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  20. GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING

    PubMed Central

    Liu, Hongcheng; Yao, Tao; Li, Runze

    2015-01-01

    This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126

  1. Lossless quantum data compression with exponential penalization: an operational interpretation of the quantum Rényi entropy.

    PubMed

    Bellomo, Guido; Bosyk, Gustavo M; Holik, Federico; Zozor, Steeve

    2017-11-07

    Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.

  2. ["As we're not willing to hang and behead and not able to deport...". On Emil Kraepelin's influence on Franz von Liszt].

    PubMed

    Schmidt-Recla, A; Steinberg, H

    2008-03-01

    Emil Kraepelin started his scientific career with a pamphlet demanding complete restructure of German penal law. It is well known that Kraepelin was a recipient of Cesare Lombroso's theses on degeneration and atavism. Therefore his demand for a correctional law completely replacing penal law is easily understood. Still undiscussed however is the question of whether Kraepelin's brochure had a decisive effect on German criminal law, especially on the so-called Marburg Program of Franz von Liszt, still viewed as the first emergence of modern criminal law and policies in Germany. Examination of this shows that despite major theoretical faults, Kraepelin came to conclusions that correspond remarkably with von Liszt's. Special focus should be directed on the psychologist Wilhelm Wundt, who criticised Kraepelin's juridical attempt in a very kind yet fundamental way, and on the relationship that existed between Kraepelin and von Liszt.

  3. [Law No. 92-684 of 22 July 1992 reforming provisions of the Penal Code relating to the punishment of crimes and misdemeanors committed against persons].

    PubMed

    1992-07-23

    This Law, reformulating entirely Book II of the French Penal Code, newly criminalizes the following acts: a) sexual harassment; b) subjecting a person to work conditions or lodging contrary to human dignity because that person is in a situation of vulnerability or dependence; c) incitement of minors to engage in dangerous or illegal behavior such as excessive drinking, use of narcotics, or begging; and d) using the pictures of minors for pornographic purposes. Sexual harassment is defined as the use of orders, threats, or force to gain sexual favors by a person whose responsibilities place him in a position of authority over another person. In addition, provisions relating to the punishment of procuring have been strengthened in the new Code. Acts noted in b) above were criminalized in order to combat more forcefully the use of clandestine workers.

  4. Penalizing hospitals for chronic obstructive pulmonary disease readmissions.

    PubMed

    Feemster, Laura C; Au, David H

    2014-03-15

    In October 2014, the U.S. Centers for Medicare and Medicaid Services (CMS) will expand its Hospital Readmission Reduction Program (HRRP) to include chronic obstructive pulmonary disease (COPD). Under the new policy, hospitals with high risk-adjusted, 30-day all-cause unplanned readmission rates after an index hospitalization for a COPD exacerbation will be penalized with reduced reimbursement for the treatment of Medicare beneficiaries. In this perspective, we review the history of the HRRP, including the recent addition of COPD to the policy. We critically assess the use of 30-day all-cause COPD readmissions as an accountability measure, discussing potential benefits and then highlighting the substantial drawbacks and potential unintended consequences of the measure that could adversely affect providers, hospitals, and patients with COPD. We conclude by emphasizing the need to place the 30-day COPD readmission measure in the context of a reconceived model for postdischarge quality and review several frameworks that could help guide this process.

  5. A model for nocturnal frost formation on a wing section: Aircraft takeoff performance penalties

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1983-01-01

    The nocturnal frost formation on a wing section, to explain the hazard associated with frost during takeoff was investigated. A model of nocturnal frost formation on a wing section which predicts when the nocturnal frost will form and also its thickness and density as a function of time was developed. The aerodynamic penalities as related to the nocturnal frost formation properties were analyzed to determine how much the takeoff performance would be degraded by a specific frost layer. With an aircraft takeoff assuming equations representing a steady climbing flight, it is determined that a reduction in the maximum gross weight or a partial frost clearance and a reduction in the takeoff angle of attack is needed to neutralize drag and life penalities which are due to frost. Atmospheric conditions which produce the most hazardous frost buildup are determined.

  6. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  7. A comparison of "life threatening injury" concept in the Turkish Penal Code and trauma scoring systems.

    PubMed

    Fedakar, Recep; Aydiner, Ahmet Hüsamettin; Ercan, Ilker

    2007-07-01

    To compare accuracy and to check the suitability of the Glasgow Coma Scale (GCS), the Revised Trauma Score (RTS), the Injury Severity Score (ISS), the New Injury Severity Score (NISS) and the Trauma and Injury Severity Score (TRISS), the scoring systems widely used in international trauma studies, in the evaluation of the "life threatening injury" concept established by the Turkish Penal Code. The age, sex, type of trauma, type and localizations of wounds, GCS, RTS, ISS, NISS and TRISS values, the decision of life threatening injury of 627 trauma patients admitted to Emergency Department of the Uludag University Medical School Hospital in year 2003 were examined. A life-threatening injury was present in 35.2% of the cases examined. GCS, RTS, ISS, NISS and TRISS confirmed the decision of life threatening injury with percentages of 74.8%, 76.9%, 88.7%, 86.6% and 68.6%, respectively. The best cut-off point 14 was determined in the ISS system with 79.6% sensitivity and 93.6% specificity. All of the cases with sole linear skull fracture officially decided as life threatening injury had an ISS of 5, a NISS of 6 and the best scores of GCS (15), RTS (7.8408) and TRISS (100%). ISS and NISS appeared to be the best trauma scoring systems that can be used for the decision of life threatening injury, compared with GCS, RTS and TRISS. Thus, ISS and NISS can be acceptable for using the evaluation of the life threatening injury concept established by the Turkish Penal Code.

  8. Low-mAs X-ray CT image reconstruction by adaptive-weighted TV-constrained penalized re-weighted least-squares

    PubMed Central

    Liu, Yan; Ma, Jianhua; Zhang, Hao; Wang, Jing; Liang, Zhengrong

    2014-01-01

    Background The negative effects of X-ray exposure, such as inducing genetic and cancerous diseases, has arisen more attentions. Objective This paper aims to investigate a penalized re-weighted least-square (PRWLS) strategy for low-mAs X-ray computed tomography image reconstruction by incorporating an adaptive weighted total variation (AwTV) penalty term and a noise variance model of projection data. Methods An AwTV penalty is introduced in the objective function by considering both piecewise constant property and local nearby intensity similarity of the desired image. Furthermore, the weight of data fidelity term in the objective function is determined by our recent study on modeling variance estimation of projection data in the presence of electronic background noise. Results The presented AwTV-PRWLS algorithm can achieve the highest full-width-at-half-maximum (FWHM) measurement, for data conditions of (1) full-view 10mA acquisition and (2) sparse-view 80mA acquisition. In comparison between the AwTV/TV-PRWLS strategies and the previous reported AwTV/TV-projection onto convex sets (AwTV/TV-POCS) approaches, the former can gain in terms of FWHM for data condition (1), but cannot gain for the data condition (2). Conclusions In the case of full-view 10mA projection data, the presented AwTV-PRWLS shows potential improvement. However, in the case of sparse-view 80mA projection data, the AwTV/TV-POCS shows advantage over the PRWLS strategies. PMID:25080113

  9. Exposure-lag-response in Longitudinal Studies: Application of Distributed Lag Non-linear Models in an Occupational Cohort.

    PubMed

    Neophytou, Andreas M; Picciotto, Sally; Brown, Daniel M; Gallagher, Lisa E; Checkoway, Harvey; Eisen, Ellen A; Costello, Sadie

    2018-02-13

    Prolonged exposures can have complex relationships with health outcomes, as timing, duration, and intensity of exposure are all potentially relevant. Summary measures such as cumulative exposure or average intensity of exposure may not fully capture these relationships. We applied penalized and unpenalized distributed lag non-linear models (DLNMs) with flexible exposure-response and lag-response functions in order to examine the association between crystalline silica exposure and mortality from lung cancer and non-malignant respiratory disease in a cohort study of 2,342 California diatomaceous earth workers, followed 1942-2011. We also assessed associations using simple measures of cumulative exposure assuming linear exposure-response and constant lag-response. Measures of association from DLNMs were generally higher than from simpler models. Rate ratios from penalized DLNMs corresponding to average daily exposures of 0.4 mg/m3 during lag years 31-50 prior to the age of observed cases were 1.47 (95% confidence interval (CI) 0.92, 2.35) for lung cancer and 1.80 (95% CI: 1.14, 2.85) for non-malignant respiratory disease. Rate ratios from the simpler models for the same exposure scenario were 1.15 (95% CI: 0.89-1.48) and 1.23 (95% CI: 1.03-1.46) respectively. Longitudinal cohort studies of prolonged exposures and chronic health outcomes should explore methods allowing for flexibility and non-linearities in the exposure-lag-response. © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  10. Propensity for illegal alcohol sales to underage youth in Chicago.

    PubMed

    Toomey, Traci L; Komro, Kelli A; Oakes, J Michael; Lenk, Kathleen M

    2008-06-01

    To assess youth's ability to purchase alcohol in a city previously not assessed-Chicago, Illinois-we hired individuals aged 21 and older who appeared to be aged 18-20 (i.e., pseudo-underage buyers) to make alcohol purchase attempts without age identification in off-premise licensed alcohol establishments. We conducted two purchase attempts at each establishment across 44 community areas, resulting in a total of 652 purchase attempts. Our dependent variable was purchase attempt outcome (purchase, no purchase) and we used four categories of independent variables: characteristics of sellers, establishments, purchase attempts, and community areas. We analyzed our data using a logistic regression model, with purchase attempt outcome regressed on the independent variables. The overall purchase rate was 35.1%, ranging from 0% to 72% across community areas. Buyers were less likely to purchase alcohol in community areas that had populations with higher percentages of Hispanics (OR = 0.99; CI = 0.98, 1.0), and more likely to purchase alcohol in establishments that had more expensive beer (OR = 2.0; CI = 1.50, 2.67) and in areas with higher percentages of unemployed individuals (OR = 1.1; CI = 1.07, 1.14). Although progress has been made since the early 1990s in reducing sales to underage youth, youth still have relatively easy access to alcohol from licensed establishments. We recommend increased use of compliance checks-underage youth attempt to purchase alcohol under the supervision of enforcement agents; if alcohol is sold, the server/seller and/or license holder are penalized-which scientific studies have shown to be the most effective strategy in reducing sales to minors.

  11. [Contraception in the Roma population living in two low-income neighborhoods of Barcelona (Spain)].

    PubMed

    Asensio, Alba; Nebot, Laia; Estruga, Lluïsa; Perez, Glòria; Diez, Èlia

    2018-02-22

    To describe the knowledge and use of contraceptive methods and health services in the Roma population (Kale/Spanish Gitanos) of two low-income neighbourhoods of Barcelona (2011-2015). Mixed. Community setting. 1) Descriptive cross-sectional study. We interviewed with a questionnaire a sample of residents of childbearing age. We compared the knowledge and use of contraception and services by ethnic self-identification and sex with adjusted logistic regression models to obtain adjusted odds ratio (ORa) and 95% confidence interval (95%CI). 2) Qualitative descriptive study with ethnographic method. We interviewed 10 Roma residents and three health professionals to explore aspects of contraception, family and roles. We performed a narrative analysis of discourse from the recorded texts. 834 people participated, with an 11.8% self-identified Roma population. With regard to the non-Roma population, more Roma women used tubal ligation (ORa: 3.0; 95%CI: 1.3-7)] and implant (ORa:4.9; 95%CI: 3.1-72), and had better knowledge of IUD (ORa: 2,4; 95%CI: 1,4-4,1), tubal obstruction (ORa: 3,3; 95%CI: 1,1-9,9) and injectables (ORa: 2,4; 95%CI: 1.3-4.4). Roma men used withdrawal more frequently (ORa: 3.6; 95%CI: 1.3-10), a practice confirmed in the qualitative study. Both communities used emergency contraception and health services. In the Roma population, contraception and reproduction are in the hands of women. As abortion is culturally penalized in the Roma population, women use it, but they face it alone. Gender emerged as a cross-cutting determinant in all issues explored. In the Roma population reproductive control and contraception remain the responsibility of women. Once the family is complete, Roma women use long-term contraception. Both populations use health services. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Rule-Mining for the Early Prediction of Chronic Kidney Disease Based on Metabolomics and Multi-Source Data

    PubMed Central

    Luck, Margaux; Bertho, Gildas; Bateson, Mathilde; Karras, Alexandre; Yartseva, Anastasia; Thervet, Eric

    2016-01-01

    1H Nuclear Magnetic Resonance (NMR)-based metabolic profiling is very promising for the diagnostic of the stages of chronic kidney disease (CKD). Because of the high dimension of NMR spectra datasets and the complex mixture of metabolites in biological samples, the identification of discriminant biomarkers of a disease is challenging. None of the widely used chemometric methods in NMR metabolomics performs a local exhaustive exploration of the data. We developed a descriptive and easily understandable approach that searches for discriminant local phenomena using an original exhaustive rule-mining algorithm in order to predict two groups of patients: 1) patients having low to mild CKD stages with no renal failure and 2) patients having moderate to established CKD stages with renal failure. Our predictive algorithm explores the m-dimensional variable space to capture the local overdensities of the two groups of patients under the form of easily interpretable rules. Afterwards, a L2-penalized logistic regression on the discriminant rules was used to build predictive models of the CKD stages. We explored a complex multi-source dataset that included the clinical, demographic, clinical chemistry, renal pathology and urine metabolomic data of a cohort of 110 patients. Given this multi-source dataset and the complex nature of metabolomic data, we analyzed 1- and 2-dimensional rules in order to integrate the information carried by the interactions between the variables. The results indicated that our local algorithm is a valuable analytical method for the precise characterization of multivariate CKD stage profiles and as efficient as the classical global model using chi2 variable section with an approximately 70% of good classification level. The resulting predictive models predominantly identify urinary metabolites (such as 3-hydroxyisovalerate, carnitine, citrate, dimethylsulfone, creatinine and N-methylnicotinamide) as relevant variables indicating that CKD significantly affects the urinary metabolome. In addition, the simple knowledge of the concentration of urinary metabolites classifies the CKD stage of the patients correctly. PMID:27861591

  13. Human rights protections and HIV prevalence among MSM who sell sex: Cross-country comparisons from a systematic review and meta-analysis.

    PubMed

    Oldenburg, Catherine E; Perez-Brumer, Amaya G; Reisner, Sari L; Mayer, Kenneth H; Mimiaga, Matthew J; Hatzenbuehler, Mark L; Bärnighausen, Till

    2018-04-01

    Laws and policies can affect the HIV risk of key populations through a number of direct and indirect pathways. We investigated the association between HIV prevalence among men who engage in transactional sex and language in the penal code protecting sexual minorities, including men who have sex with men (MSM), and sex workers. HIV prevalence among men who engage in transactional sex was assessed through meta-analysis of published literature and country surveillance reports. Meta-regression was used to determine the association between HIV prevalence and protective laws for sexual minorities and sex workers. Sixty-six reports representing 28 countries and 31,924 individuals were included in the meta-analysis. Controlling for multiple study- and country-level variables, legal protection for sexual minorities was associated with a 10.9% (95% CI: 3.8-18.0%) and sex workers associated with a 7.0% (95% CI: 1.3-12.8%) decrease in country-level HIV prevalence among men who engage in transactional sex. Laws that seek to actively protect sex workers and MSM may be necessary to decrease HIV risk for this key population.

  14. The impact of community context on children's health and nutritional status in China.

    PubMed

    Lei, Lei

    2017-04-01

    The link between community environment and individual health outcomes has been widely documented in Western literature, but little is known about whether community context influences children's health over and above individual characteristics in developing countries. This study examines how community socioeconomic status (SES) influences children's self-rated health and nutritional status in urban and rural China and explores whether the effects of community SES vary by a child's gender and family background. Using data from the China Family Penal Studies in 2010, this study focuses on children aged 10-15 years old living in 261 urban neighborhoods and 293 rural villages in China. Multilevel regression models are estimated to examine the effect of community SES on the probability of reporting poor/fair health and nutritional status measured by height for age while controlling for individual and family characteristics. The results suggest that community SES has a positive and curvilinear effect on children's health and nutritional status in urban China, and it only positively influences children's nutrition in rural China. Community SES has a stronger effect for boys than for girls, and for children in poorer families and families with lower levels of parental involvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Magnet® Hospital Recognition Linked to Lower Central Line-Associated Bloodstream Infection Rates

    PubMed Central

    Barnes, Hilary; Rearden, Jessica; McHugh, Matthew D.

    2016-01-01

    Central-line-associated bloodstream infections (CLABSI) are among the deadliest heathcare-associated infections, with an estimated 12–25% mortality rate. In 2014, the Centers for Medicare and Medicaid Services (CMS) began to penalize hospitals for poor performance with respect to selected hospital-acquired conditions, including CLABSI. A structural factor associated with high-quality nursing care and better patient outcomes is The Magnet Recognition Program®. The purpose of this study was to explore the relationship between Magnet status and hospital CLABSI rates. We used propensity score matching to match Magnet and non-Magnet hospitals with similar hospital characteristics. In a matched sample of 291 Magnet hospitals and 291 non-Magnet hospitals, logistic regression models were used to examine whether there was a link between Magnet status and CLABSI rates. Both before and after matching, Magnet hospital status was associated with better (lower than the national average) CLABSI rates (OR = 1.60, 95% CI: 1.10, 2.33 after matching). While established programs such as Magnet recognition are consistently correlated with high-quality nursing work environments and positive patient outcomes, additional research is needed to determine whether Magnet designation produces positive patient outcomes or rewards existing excellence. PMID:26809115

  16. Encoding Dissimilarity Data for Statistical Model Building.

    PubMed

    Wahba, Grace

    2010-12-01

    We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.

  17. Participatory Practices in Adult Education.

    ERIC Educational Resources Information Center

    Campbell, Pat, Ed.; Burnaby, Barbara, Ed.

    Participatory education is a collective effort in which the participants are committed to building a just society through individual and socieoeconomic transformation and to ending domination through changing power relations. This book describes participatory practices in many environments, including educational and penal institutions,…

  18. Office Skills: Measuring Typewriting Output.

    ERIC Educational Resources Information Center

    Petersen, Lois E.; Kruk, Leonard B.

    1978-01-01

    The advent of word processing centers has provided typewriting teachers with an alternative measurement system that, instead of penalizing errors, grades students according to Usable Lines Produced (ULP). The ULP system is job-oriented and promotes realistic office standards in typewriting productivity. (MF)

  19. Senegal: Background and U.S. Relations

    DTIC Science & Technology

    2012-02-20

    press, and assembly; corruption and impunity; rape, domestic violence, sexual harassment of and discrimination against women; female genital mutilation ...Senegal’s Budget Process is Transparent [UNCLASSIFIED],” May 4, 2010. 23 The 1999 Penal Law outlawed domestic violence and female genital mutilation , and

  20. A Simple Method for Deriving the Confidence Regions for the Penalized Cox’s Model via the Minimand Perturbation†

    PubMed Central

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496

  1. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

    PubMed

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.

  2. Automatic and efficient methods applied to the binarization of a subway map

    NASA Astrophysics Data System (ADS)

    Durand, Philippe; Ghorbanzadeh, Dariush; Jaupi, Luan

    2015-12-01

    The purpose of this paper is the study of efficient methods for image binarization. The objective of the work is the metro maps binarization. the goal is to binarize, avoiding noise to disturb the reading of subway stations. Different methods have been tested. By this way, a method given by Otsu gives particularly interesting results. The difficulty of the binarization is the choice of this threshold in order to reconstruct. Image sticky as possible to reality. Vectorization is a step subsequent to that of the binarization. It is to retrieve the coordinates points containing information and to store them in the two matrices X and Y. Subsequently, these matrices can be exported to a file format 'CSV' (Comma Separated Value) enabling us to deal with them in a variety of software including Excel. The algorithm uses quite a time calculation in Matlab because it is composed of two "for" loops nested. But the "for" loops are poorly supported by Matlab, especially in each other. This therefore penalizes the computation time, but seems the only method to do this.

  3. Sinogram restoration in computed tomography with an edge-preserving penalty

    PubMed Central

    Little, Kevin J.; La Rivière, Patrick J.

    2015-01-01

    Purpose: With the goal of producing a less computationally intensive alternative to fully iterative penalized-likelihood image reconstruction, our group has explored the use of penalized-likelihood sinogram restoration for transmission tomography. Previously, we have exclusively used a quadratic penalty in our restoration objective function. However, a quadratic penalty does not excel at preserving edges while reducing noise. Here, we derive a restoration update equation for nonquadratic penalties. Additionally, we perform a feasibility study to extend our sinogram restoration method to a helical cone-beam geometry and clinical data. Methods: A restoration update equation for nonquadratic penalties is derived using separable parabolic surrogates (SPS). A method for calculating sinogram degradation coefficients for a helical cone-beam geometry is proposed. Using simulated data, sinogram restorations are performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods are used to obtain reconstructions, and resolution-noise trade-offs are investigated. For the fan-beam geometry, a comparison is made to image-domain SPS reconstruction using the Huber penalty. The effects of varying object size and contrast are also investigated. For the helical cone-beam geometry, we investigate the effect of helical pitch (axial movement/rotation). Huber-penalty sinogram restoration is performed on 3D clinical data, and the reconstructed images are compared to those generated with no restoration. Results: We find that by applying the edge-preserving Huber penalty to our sinogram restoration methods, the reconstructed image has a better resolution-noise relationship than an image produced using a quadratic penalty in the sinogram restoration. However, we find that this relatively straightforward approach to edge preservation in the sinogram domain is affected by the physical size of imaged objects in addition to the contrast across the edge. This presents some disadvantages of this method relative to image-domain edge-preserving methods, although the computational burden of the sinogram-domain approach is much lower. For a helical cone-beam geometry, we found applying sinogram restoration in 3D was reasonable and that pitch did not make a significant difference in the general effect of sinogram restoration. The application of Huber-penalty sinogram restoration to clinical data resulted in a reconstruction with less noise while retaining resolution. Conclusions: Sinogram restoration with the Huber penalty is able to provide better resolution-noise performance than restoration with a quadratic penalty. Additionally, sinogram restoration with the Huber penalty is feasible for helical cone-beam CT and can be applied to clinical data. PMID:25735286

  4. Sinogram restoration in computed tomography with an edge-preserving penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Kevin J., E-mail: little@uchicago.edu; La Rivière, Patrick J.

    2015-03-15

    Purpose: With the goal of producing a less computationally intensive alternative to fully iterative penalized-likelihood image reconstruction, our group has explored the use of penalized-likelihood sinogram restoration for transmission tomography. Previously, we have exclusively used a quadratic penalty in our restoration objective function. However, a quadratic penalty does not excel at preserving edges while reducing noise. Here, we derive a restoration update equation for nonquadratic penalties. Additionally, we perform a feasibility study to extend our sinogram restoration method to a helical cone-beam geometry and clinical data. Methods: A restoration update equation for nonquadratic penalties is derived using separable parabolic surrogatesmore » (SPS). A method for calculating sinogram degradation coefficients for a helical cone-beam geometry is proposed. Using simulated data, sinogram restorations are performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods are used to obtain reconstructions, and resolution-noise trade-offs are investigated. For the fan-beam geometry, a comparison is made to image-domain SPS reconstruction using the Huber penalty. The effects of varying object size and contrast are also investigated. For the helical cone-beam geometry, we investigate the effect of helical pitch (axial movement/rotation). Huber-penalty sinogram restoration is performed on 3D clinical data, and the reconstructed images are compared to those generated with no restoration. Results: We find that by applying the edge-preserving Huber penalty to our sinogram restoration methods, the reconstructed image has a better resolution-noise relationship than an image produced using a quadratic penalty in the sinogram restoration. However, we find that this relatively straightforward approach to edge preservation in the sinogram domain is affected by the physical size of imaged objects in addition to the contrast across the edge. This presents some disadvantages of this method relative to image-domain edge-preserving methods, although the computational burden of the sinogram-domain approach is much lower. For a helical cone-beam geometry, we found applying sinogram restoration in 3D was reasonable and that pitch did not make a significant difference in the general effect of sinogram restoration. The application of Huber-penalty sinogram restoration to clinical data resulted in a reconstruction with less noise while retaining resolution. Conclusions: Sinogram restoration with the Huber penalty is able to provide better resolution-noise performance than restoration with a quadratic penalty. Additionally, sinogram restoration with the Huber penalty is feasible for helical cone-beam CT and can be applied to clinical data.« less

  5. Level set formulation of two-dimensional Lagrangian vortex detection methods

    NASA Astrophysics Data System (ADS)

    Hadjighasem, Alireza; Haller, George

    2016-10-01

    We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.

  6. A resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Guan, Huifeng; Anastasio, Mark A.

    2017-03-01

    It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.

  7. Incorporating User Input in Template-Based Segmentation

    PubMed Central

    Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno

    2015-01-01

    We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532

  8. Regularization destriping of remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  9. High-order Newton-penalty algorithms

    NASA Astrophysics Data System (ADS)

    Dussault, Jean-Pierre

    2005-10-01

    Recent efforts in differentiable non-linear programming have been focused on interior point methods, akin to penalty and barrier algorithms. In this paper, we address the classical equality constrained program solved using the simple quadratic loss penalty function/algorithm. The suggestion to use extrapolations to track the differentiable trajectory associated with penalized subproblems goes back to the classic monograph of Fiacco & McCormick. This idea was further developed by Gould who obtained a two-steps quadratically convergent algorithm using prediction steps and Newton correction. Dussault interpreted the prediction step as a combined extrapolation with respect to the penalty parameter and the residual of the first order optimality conditions. Extrapolation with respect to the residual coincides with a Newton step.We explore here higher-order extrapolations, thus higher-order Newton-like methods. We first consider high-order variants of the Newton-Raphson method applied to non-linear systems of equations. Next, we obtain improved asymptotic convergence results for the quadratic loss penalty algorithm by using high-order extrapolation steps.

  10. Learning free energy landscapes using artificial neural networks.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2018-03-14

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  11. Learning free energy landscapes using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Whitmer, Jonathan K.

    2018-03-01

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  12. Estimating and Identifying Unspecified Correlation Structure for Longitudinal Data

    PubMed Central

    Hu, Jianhua; Wang, Peng; Qu, Annie

    2014-01-01

    Identifying correlation structure is important to achieving estimation efficiency in analyzing longitudinal data, and is also crucial for drawing valid statistical inference for large size clustered data. In this paper, we propose a nonparametric method to estimate the correlation structure, which is applicable for discrete longitudinal data. We utilize eigenvector-based basis matrices to approximate the inverse of the empirical correlation matrix and determine the number of basis matrices via model selection. A penalized objective function based on the difference between the empirical and model approximation of the correlation matrices is adopted to select an informative structure for the correlation matrix. The eigenvector representation of the correlation estimation is capable of reducing the risk of model misspecification, and also provides useful information on the specific within-cluster correlation pattern of the data. We show that the proposed method possesses the oracle property and selects the true correlation structure consistently. The proposed method is illustrated through simulations and two data examples on air pollution and sonar signal studies. PMID:26361433

  13. THE DiskMass SURVEY. III. STELLAR KINEMATICS VIA CROSS-CORRELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W., E-mail: westfall@astro.rug.nl, E-mail: mab@astro.wisc.edu, E-mail: verheyen@astro.rug.nl

    2011-03-15

    We describe a new cross-correlation (CC) approach used by our survey to derive stellar kinematics from galaxy-continuum spectroscopy. This approach adopts the formal error analysis derived by Statler, but properly handles spectral masks. Thus, we address the primary concerns regarding application of the CC method to censored data, while maintaining its primary advantage by consolidating kinematic and template-mismatch information toward different regions of the CC function. We identify a systematic error in the nominal CC method of approximately 10% in velocity dispersion incurred by a mistreatment of detector-censored data, which is eliminated by our new method. We derive our approachmore » from first principles, and we use Monte Carlo simulations to demonstrate its efficacy. An identical set of Monte Carlo simulations performed using the well-established penalized-pixel-fitting code of Cappellari and Emsellem compares favorably with the results from our newly implemented software. Finally, we provide a practical demonstration of this software by extracting stellar kinematics from SparsePak spectra of UGC 6918.« less

  14. Effect of advanced age and vital signs on admission from an emergency department observation unit

    PubMed Central

    Caterino, Jeffrey M.; Hoover, Emily; Moseley, Mark G.

    2012-01-01

    Objectives The primary objective was to determine the relationship between advanced age and need for admission from an emergency department (ED) observation unit. The secondary objective was to determine the relationship between initial ED vital signs and admission. Methods We conducted a prospective, observational cohort study of ED patients placed in an ED-based observation unit. Multivariable penalized maximum likelihood logistic regression was used to identify independent predictors of need for hospital admission. Age was examined continuously and at a cutoff of ≥65 years. Vital signs were examined continuously and at commonly accepted cutoffs. We additionally controlled for demographics, co-morbid conditions, laboratory values, and observation protocol. Results Three hundred patients were enrolled, 12% (n=35) ≥65 years old and 11% (n=33) requiring admission. Admission rates were 2.9% (95% confidence interval [CI], 0.07-14.9%) in older adults and 12.1% (95% CI, 8.4-16.6%) in younger adults. In multivariable analysis, age was not associated with admission (odds ratio [OR] 0.30, 95% CI 0.05-1.67). Predictors of admission included: systolic pressure ≥180 mmHg (OR 4.19, 95% CI 1.08-16.30), log Charlson co-morbidity score (OR 2.93, 95% CI 1.57-5.46), and white blood cell count ≥14,000/mm3 (OR11.35, 95% CI 3.42-37.72). Conclusions Among patients placed in an ED observation unit, age ≥65 years is not associated with need for admission. Older adults can successfully be discharged from these units. Systolic pressure≥180 mmHg was the only predictive vital sign. In determining appropriateness of patients selected for an ED observation unit, advanced age should not be an automatic disqualifying criterion. PMID:22386358

  15. Using administrative data to identify U.S. Army soldiers at high-risk of perpetrating minor violent crimes

    PubMed Central

    Rosellini, Anthony J.; Monahan, John; Street, Amy E.; Hill, Eric D.; Petukhova, Maria; Reis, Ben Y.; Sampson, Nancy A.; Benedek, David M.; Bliese, Paul; Stein, Murray B.; Ursano, Robert J.; Kessler, Ronald C.

    2016-01-01

    Growing concerns exist about violent crimes perpetrated by U.S. military personnel. Although interventions exist to reduce violent crimes in high-risk populations, optimal implementation requires evidence-based targeting. The goal of the current study was to use machine learning methods (stepwise and penalized regression; random forests) to develop models to predict minor violent crime perpetration among U.S. Army soldiers. Predictors were abstracted from administrative data available for all 975,057 soldiers in the U.S. Army 2004–2009, among whom 25,966 men and 2,728 women committed a first founded minor violent crime (simple assault, blackmail-extortion-intimidation, rioting, harassment). Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build separate male and female prediction models that were then tested in an independent 2011–2013 sample. Final model predictors included young age, low education, early career stage, prior crime involvement, and outpatient treatment for diverse emotional and substance use problems. Area under the receiver operating characteristic curve was 0.79 (for men and women) in the 2004–2009 training sample and 0.74–0.82 (men-women) in the 2011–2013 test sample. 30.5–28.9% (men-women) of all administratively-recorded crimes in 2004–2009 were committed by the 5% of soldiers having highest predicted risk, with similar proportions (28.5–29.0%) when the 2004–2009 coefficients were applied to the 2011–2013 test sample. These results suggest that it may be possible to target soldiers at high-risk of violence perpetration for preventive interventions, although final decisions about such interventions would require weighing predicted effectiveness against intervention costs and competing risks. PMID:27741501

  16. Modeling the effect of operator and passenger characteristics on the fatality risk of motorcycle crashes

    PubMed Central

    Tavakoli Kashani, Ali; Rabieyan, Rahim; Besharati, Mohammad Mehdi

    2016-01-01

    Abstract: Background: In Iran more than 25% of crash fatalities belong to motorcycle operators and passengers in the recent years, from which about 20% are related to passenger fatalities. Methods: The aim of this study was to investigate the motorcycle operator and passenger characteristics as well as other contributory factors that may affect the fatality risk of motorcyclists involved in traffic crashes. To this end, motorcycle crash data between 2009 and 2012 was extracted from Iran traffic crash database and a logistic regression analysis was performed to obtain odds ratio estimates for each of the study variables. Results: The fatality risk of motorcyclists has a direct relationship with the number of pillion passengers carried. Results also indicate that the amount of increase in the likelihood of having a fatality in a motorcycles crash is considerably higher when the operator is accompanied by a male passenger of the same age. Furthermore, results showed that if the crash is occurred in the darkness, on curves, in rural areas and on highways, then the crash would be more likely to be fatal. Moreover, the head-on collisions, older operators, unlicensed operators and not using a safety helmet were found to increase the likelihood of a fatality in a motorcycle crash. Conclusions: Preventative measures such as, imposing stricter rules regarding safety helmet usage and confining the number of pillion passengers to one, might be implemented to reduce the fatality risk in motorcycle crashes. In addition, more appropriate infrastructures for penalizing offending motorcyclists could also reduce the frequency of law violations such as not wearing helmet or riding without motorcycle license, which in turn, would result into a reduction in the fatality risk of motorcycle crashes. PMID:26420217

  17. Using administrative data to identify U.S. Army soldiers at high-risk of perpetrating minor violent crimes.

    PubMed

    Rosellini, Anthony J; Monahan, John; Street, Amy E; Hill, Eric D; Petukhova, Maria; Reis, Ben Y; Sampson, Nancy A; Benedek, David M; Bliese, Paul; Stein, Murray B; Ursano, Robert J; Kessler, Ronald C

    2017-01-01

    Growing concerns exist about violent crimes perpetrated by U.S. military personnel. Although interventions exist to reduce violent crimes in high-risk populations, optimal implementation requires evidence-based targeting. The goal of the current study was to use machine learning methods (stepwise and penalized regression; random forests) to develop models to predict minor violent crime perpetration among U.S. Army soldiers. Predictors were abstracted from administrative data available for all 975,057 soldiers in the U.S. Army 2004-2009, among whom 25,966 men and 2728 women committed a first founded minor violent crime (simple assault, blackmail-extortion-intimidation, rioting, harassment). Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build separate male and female prediction models that were then tested in an independent 2011-2013 sample. Final model predictors included young age, low education, early career stage, prior crime involvement, and outpatient treatment for diverse emotional and substance use problems. Area under the receiver operating characteristic curve was 0.79 (for men and women) in the 2004-2009 training sample and 0.74-0.82 (men-women) in the 2011-2013 test sample. 30.5-28.9% (men-women) of all administratively-recorded crimes in 2004-2009 were committed by the 5% of soldiers having highest predicted risk, with similar proportions (28.5-29.0%) when the 2004-2009 coefficients were applied to the 2011-2013 test sample. These results suggest that it may be possible to target soldiers at high-risk of violence perpetration for preventive interventions, although final decisions about such interventions would require weighing predicted effectiveness against intervention costs and competing risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Correlates of sleep quality in midlife and beyond: a machine learning analysis.

    PubMed

    Kaplan, Katherine A; Hardas, Prajesh P; Redline, Susan; Zeitzer, Jamie M

    2017-06-01

    In older adults, traditional metrics derived from polysomnography (PSG) are not well correlated with subjective sleep quality. Little is known about whether the association between PSG and subjective sleep quality changes with age, or whether quantitative electroencephalography (qEEG) is associated with sleep quality. Therefore, we examined the relationship between subjective sleep quality and objective sleep characteristics (standard PSG and qEEG) across middle to older adulthood. Using cross-sectional analyses of 3173 community-dwelling men and women aged between 39 and 90 participating in the Sleep Heart Health Study, we examined the relationship between a morning rating of the prior night's sleep quality (sleep depth and restfulness) and polysomnographic, and qEEG descriptors of that single night of sleep, along with clinical and demographic measures. Multivariable models were constructed using two machine learning methods, namely lasso penalized regressions and random forests. Little variance was explained across models. Greater objective sleep efficiency, reduced wake after sleep onset, and fewer sleep-to-wake stage transitions were each associated with higher sleep quality; qEEG variables contributed little explanatory power. The oldest adults reported the highest sleep quality even as objective sleep deteriorated such that they would rate their sleep better, given the same level of sleep efficiency. Despite this, there were no major differences in the predictors of subjective sleep across the age span. Standard metrics derived from PSG, including qEEG, contribute little to explaining subjective sleep quality in middle-aged to older adults. The objective correlates of subjective sleep quality do not appear to systematically change with age despite a change in the relationship between subjective sleep quality and objective sleep efficiency. Published by Elsevier B.V.

  19. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009

    PubMed Central

    Laden, Francine; Dockery, Douglas; Schwartz, Joel

    2012-01-01

    Background: Epidemiologic studies have reported associations between fine particles (aerodynamic diameter ≤ 2.5 µm; PM2.5) and mortality. However, concerns have been raised regarding the sensitivity of the results to model specifications, lower exposures, and averaging time. Objective: We addressed these issues using 11 additional years of follow-up of the Harvard Six Cities study, incorporating recent lower exposures. Methods: We replicated the previously applied Cox regression, and examined different time lags, the shape of the concentration–response relationship using penalized splines, and changes in the slope of the relation over time. We then conducted Poisson survival analysis with time-varying effects for smoking, sex, and education. Results: Since 2001, average PM2.5 levels, for all six cities, were < 18 µg/m3. Each increase in PM2.5 (10 µg/m3) was associated with an adjusted increased risk of all-cause mortality (PM2.5 average on previous year) of 14% [95% confidence interval (CI): 7, 22], and with 26% (95% CI: 14, 40) and 37% (95% CI: 7, 75) increases in cardiovascular and lung-cancer mortality (PM2.5 average of three previous years), respectively. The concentration–response relationship was linear down to PM2.5 concentrations of 8 µg/m3. Mortality rate ratios for PM2.5 fluctuated over time, but without clear trends despite a substantial drop in the sulfate fraction. Poisson models produced similar results. Conclusions: These results suggest that further public policy efforts that reduce fine particulate matter air pollution are likely to have continuing public health benefits. PMID:22456598

  20. Association Between Hospital Penalty Status Under the Hospital Readmission Reduction Program and Readmission Rates for Target and Non-Target Conditions

    PubMed Central

    Desai, Nihar R.; Ross, Joseph S.; Kwon, Ji Young; Herrin, Jeph; Dharmarajan, Kumar; Bernheim, Susannah M.; Krumholz, Harlan M.; Horwitz, Leora I.

    2017-01-01

    Importance Readmission rates declined after announcement of the Hospital Readmission Reduction Program (HRRP), which penalizes hospitals for excess readmissions for acute myocardial infarction (AMI), heart failure (HF), and pneumonia. Objective To compare trends in readmission rates for target and non-target conditions, stratified by hospital penalty status. Design, Setting, Participants Retrospective cohort study of 48,137,102 hospitalizations of 20,351,161 Medicare fee-for-service beneficiaries over 64 years discharged between January 1, 2008 and June 30, 2015 from 3,497 hospitals. Difference interrupted time series models were used to compare trends in readmission rates by condition and penalty status. Exposure Hospital penalty status or target condition under the HRRP. Outcome 30-day risk adjusted, all-cause unplanned readmission rates for target and non-target conditions. Results In January 2008, the mean readmission rates for AMI, HF, pneumonia and non-target conditions were 21.9%, 27.5%, 20.1%, and 18.4% respectively at hospitals later subject to financial penalties (n=2,189) and 18.7%, 24.2%, 17.4%, and 15.7% at hospitals not subject to penalties (n=1,283). Between January 2008 and March 2010, prior to HRRP announcement, readmission rates were stable across hospitals (except AMI at non-penalty hospitals). Following announcement of HRRP (March 2010), readmission rates for both target and non-target conditions declined significantly faster for patients at hospitals later subject to financial penalties compared with those at non-penalized hospitals (AMI, additional decrease of −1.24 (95% CI, −1.84, −0.65) percentage points per year relative to non-penalty discharges; HF, −1.25 (−1.64, −0.65); pneumonia, −1.37 (−0.95, −1.80); non-target, −0.27 (−0.38, −0.17); p<0.001 for all). For penalty hospitals, readmission rates for target conditions declined significantly faster compared with non-target conditions (AMI: additional decline of −0.49 (−0.81, −0.16) percentage points per year relative to non-target conditions, p=0.004; HF: −0.90 (−1.18, −0.62), p<0.001; pneumonia: −0.57 (−0.92,−0.23), p<0.001). By contrast, among non-penalty hospitals, readmissions for target conditions declined similarly or more slowly compared with non-target conditions (AMI: additional increase of 0.48 (0.01, 0.95) percentage points per year, p=0.05; HF: 0.08 (−0.30, 0.46), p=0.67; pneumonia: 0.53 (0.13, 0.93), p=0.01). After HRRP implementation in October 2012, the rate of change for readmission rates plateaued (p<0.05 for all except pneumonia at non-penalty hospitals) with the greatest relative change observed among hospitals subject to financial penalty. Conclusions Patients at hospitals subject to penalties had greater reductions in readmission rates compared with those at non-penalized hospitals. Changes were greater for target conditions at penalized hospitals, but not at non-penalized hospitals. PMID:28027367

Top