Sample records for pendant hydroxyl groups

  1. Materials for use as proton conducting membranes for fuel cells

    DOEpatents

    Einsla, Brian R [Blacksburg, VA; McGrath, James E [Blacksburg, VA

    2009-01-06

    A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.

  2. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  3. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes.

    PubMed

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P

    2010-08-28

    New unsymmetrical hydroxyferrocenes were synthesised from dibromoferrocene. The oxygen heteroatom was introduced via lithiation and quenching with bis-trimethylsilylperoxide followed by hydrolysis to unmask the hydroxyl functionality. The coordination chemistry of 1'-(diphenylphosphino)-1-hydroxyferrocene 2 was explored with palladium and rhodium precursors. A dinuclear palladium methyl complex with bridging ferrocenyloxo groups was obtained from the reaction between 2 and (cyclooctadiene)methylchloropalladium(II). With tetracarbonyldichlorodirhodium(I), two complexes were isolated. The major product was a bis ligand cis phosphine ligated complex with one ligand bound in a chelating mode and one with a pendant hydroxyl group. A minor product was crystallographically characterised as a dinuclear ferrocenyloxo-bridged rhodium carbonyl complex. The coordination chemistry of 2 and the corresponding phosphine oxide 3 was examined with group 4 metals and the resulting complexes examined as ethylene polymerisation catalysts. The ligands were found to bind in either a chelating fashion or with pendant phosphine donors. In all cases, low to moderately active ethylene polymerisation catalysts were found. The catalysts were very unstable and catalyst residues were observed in the isolated polymer indicating a short catalyst lifetime.

  4. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    PubMed

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  5. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  6. Green oxidations of furans--initiated by molecular oxygen--that give key natural product motifs.

    PubMed

    Montagnon, Tamsyn; Noutsias, Dimitris; Alexopoulou, Ioanna; Tofi, Maria; Vassilikogiannakis, Georgios

    2011-04-07

    In this article, we explore how changes in the positioning of pendant hydroxyl functionalities in the photooxygenation substrate dramatically alter the course of furan oxidations that are initiated by singlet oxygen; and, how these different reactivities can be harnessed through cascade reaction sequences to access, rapidly and effectively, a broad range of important natural product motifs.

  7. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  8. Poly(phenylene)-based anion exchange membrane

    DOEpatents

    Hibbs, Michael [Albuquerque, NM; Cornelius, Christopher J [Albuquerque, NM; Fujimoto, Cy H [Albuquerque, NM

    2011-02-15

    A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.

  9. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells.

    PubMed

    Seyednejad, Hajar; Vermonden, Tina; Fedorovich, Natalja E; van Eijk, Roel; van Steenbergen, Mies J; Dhert, Wouter J A; van Nostrum, Cornelus F; Hennink, Wim E

    2009-11-09

    The aim of this study was to develop new hydrophilic polyesters for tissue engineering applications. In our approach, poly(benzyloxymethyl glycolide-co-epsilon-caprolactone)s (pBHMG-CLs) were synthesized through melt copolymerization of epsilon-caprolactone (CL) and benzyl-protected hydroxymethyl glycolide (BHMG). Deprotection of the polymers yielded copolymers with pendant hydroxyl groups, poly(hydroxymethylglycolide-co-epsilon-caprolactone) (pHMG-CL). The synthesized polymers were characterized by GPC, NMR, and DSC techniques. The resulting copolymers consisting of up to 10% of HMG monomer were semicrystalline with a melting temperature above body temperature. Water contact angle measurements of polymeric films showed that increasing HMG content resulted in higher surface hydrophilicity, as evidenced from a decrease in receding contact angle from 68 degrees for PCL to 40 degrees for 10% HMG-CL. Human mesenchymal stem cells showed good adherence onto pHMG-CL films as compared to the more hydrophobic PCL surfaces. The cells survived and were able to differentiate toward osteogenic lineage on pHMG-CL surfaces. This study shows that the aforementioned hydrophilic polymers are attractive candidates for the design of scaffolds for tissue engineering applications.

  10. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.

    PubMed

    Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-08-23

    Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer.

    PubMed

    Huang, Hao; Karlsson, Christoffer; Strømme, Maria; Gogoll, Adolf; Sjödin, Martin

    2017-04-19

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows a spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an Interdigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  12. Nickel(I) and nickel(III) complexes of substituted tetraaza macrocycles formed by pulse radiolysis and electrochemistry of nickel(II) precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, P.V.; Lawrance, G.A.; Sangster, D.F.

    The square-planar nickel(II) complexes of the ligands 8-methyl-8-nitro-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 8-amino-8-methyl-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane, and 9-methyl-9-nitro-1,4,7,11-tetraazacyclotridecane (I-IV) react rapidly with hydroxyl radicals and aquated electrons (e/sub aq/). The initial transient products of these reactions decay via first-order kinetics within a few milliseconds in neutral aqueous solution at 22/degrees/C in all cases. Electronic spectra and decay rate constants, as well as formation rate constants, are reported for all transients. Reaction of the nitro-substituted complexes with e/sub aq/ led to electron addition to the nitro group rather than to the metal center; otherwise, a Ni/sup I/ transient is observed. Following reaction with OH, themore » product of the initial decay remains a Ni/sup III/ species. This is more long-lived, and stabilization of Ni/sup III/ by axial coordination of the pendant amine in II is indicated. No notable stabilization of Ni/sup I/ or Ni/sup III/ from the presence of the bicyclic azamethylene football in I-III occurs. Cyclic voltammetry in acetonitrile identified both one-electron oxidation and one-electron reduction processes for the nickel(II) complexes, as well as nitro group reduction, where this group was pendant to the macrocycle. 34 references, 3 figures, 3 tables.« less

  13. Poly(glycerol adipate) - indomethacin drug conjugates - synthesis and in vitro characterization.

    PubMed

    Wersig, T; Hacker, M C; Kressler, J; Mäder, K

    2017-10-05

    The linear biodegradable polyester poly(glycerol adipate) (PGA) was synthesized via enzymatic polycondensation using lipase B from Candida antarctica (CAL-B). Every monomer unit of PGA possesses a pendant hydroxyl group which is responsible for the hydrophilic character and moisture swelling. These OH groups were esterified to different degrees with the anti-inflammatory drug indomethacin in order to create a prodrug with a pH-sensitive linker for modified drug release. The structure of the conjugates was determined via ATR FT-IR spectroscopy, NMR spectroscopy, GPC and UV/VIS spectroscopy. The physical properties of polymers with different drug load were investigated using DSC, contact angle measurements and oscillatory rheology. Drug release was monitored over one month in vitro. A very slow, but continuous release was observed in PBS. Slightly acidic conditions and lipase activity are accelerating the indomethacin release. Therefore, poly(glycerol adipate) - indomethacin conjugates are promising prodrugs for the local sustained release of indomethacin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Polyphenylquinoxalines containing pendant phenylethynyl and ethynyl groups. [for thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1983-01-01

    Poly(phenylquinoxaline) prepolymers containing pendant phenylethynyl and ethynyl groups are disclosed along with the process for forming these polymers. Monomers and the process for producing same that are employed to prepare the polymers are also disclosed.

  15. Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.

    PubMed

    Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-10-10

    Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.

  16. Electronic and steric influences of pendant amine groups on the protonation of molybdenum bis (dinitrogen) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labios, Liezel A.; Heiden, Zachariah M.; Mock, Michael T.

    2015-05-04

    The synthesis of a series of P EtP NRR' (P EtP NRR' = Et₂PCH₂CH₂P(CH₂NRR')₂, R = H, R' = Ph or 2,4-difluorophenyl; R = R' = Ph or iPr) diphosphine ligands containing mono- and disubstituted pendant amine groups, and the preparation of their corresponding molybdenum bis(dinitrogen) complexes trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') is described. In situ IR and multinuclear NMR spectroscopic studies monitoring the stepwise addition of (HOTf) to trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes in THF at -40 °C show that the electronic and steric properties of the R and R' groups of the pendant amines influence whether the complexes are protonated atmore » Mo, a pendant amine, a coordinated N2 ligand, or a combination of these sites. For example, complexes containing mono-aryl substituted pendant amines are protonated at Mo and pendant amine to generate mono- and dicationic Mo–H species. Protonation of the complex containing less basic diphenyl-substituted pendant amines exclusively generates a monocationic hydrazido (Mo(NNH₂)) product, indicating preferential protonation of an N₂ ligand. Addition of HOTf to the complex featuring more basic diisopropyl amines primarily produces a monocationic product protonated at a pendant amine site, as well as a trace amount of dicationic Mo(NNH₂) product that contain protonated pendant amines. In addition, trans-Mo(N₂)₂(PMePh₂)₂(depe) (depe = Et₂PCH₂CH₂PEt₂) without a pendant amine was synthesized and treated with HOTf, generating a monocationic Mo(NNH₂) product. Protonolysis experiments conducted on select complexes in the series afforded trace amounts of NH₄⁺. Computational analysis of the series of trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes provides further insight into the proton affinity values of the metal center, N₂ ligand, and pendant amine sites to rationalize the differing reactivity profiles. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  17. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    PubMed Central

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  18. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization

    PubMed Central

    Bencherif, Sidi A.; Siegwart, Daniel J.; Srinivasan, Abiraman; Horkay, Ferenc; Hollinger, Jeffrey O.; Washburn, Newell R.; Matyjaszewski, Krzysztof

    2012-01-01

    A new method to prepare nanostructured hybrid hydrogels by incorporating well-defined poly(oligo (ethylene oxide) monomethyl ether methacrylate) (POEO300MA) nanogels of sizes 110–120 nm into a larger three-dimensional (3D) matrix was developed for drug delivery scaffolds for tissue engineering applications. Rhodamine B isothiocyanate-labeled dextran (RITC-Dx) or fluorescein isothiocyanate-labeled dextran (FITC-Dx)-loaded POEO300MA nanogels with pendant hydroxyl groups were prepared by activators generated electron transfer atom transfer radical polymerization (AGET ATRP) in cyclohexane inverse miniemulsion. Hydroxyl-containing nanogels were functionalized with methacrylated groups to generate photoreactive nanospheres. 1H NMR spectroscopy confirmed that polymerizable nanogels were successfully incorporated covalently into 3D hyaluronic acid-glycidyl methacrylate (HAGM) hydrogels after free radical photo-polymerization (FRP). The introduction of disulfide moieties into the polymerizable groups resulted in a controlled release of nanogels from cross-linked HAGM hydrogels under a reducing environment. The effect of gel hybridization on the macroscopic properties (swelling and mechanics) was studied. It is shown that swelling and nanogel content are independent of scaffold mechanics. In-vitro assays showed the nanostructured hybrid hydrogels were cytocompatible and the GRGDS (Gly–Arg–Gly–Asp–Ser) contained in the nanogel structure promoted cell–substrate interactions within 4 days of incubation. These nanostructured hydrogels have potential as an artificial extracellular matrix (ECM) impermeable to low molecular weight biomolecules and with controlled pharmaceutical release capability. Moreover, the nanogels can control drug or biomolecule delivery, while hyaluronic acid based-hydrogels can act as a macroscopic scaffold for tissue regeneration and regulator for nanogel release. PMID:19592087

  19. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  20. Technetium-99m and rhenium-188 complexes with one and two pendant bisphosphonate groups for imaging arterial calcification.

    PubMed

    Bordoloi, Jayanta Kumar; Berry, David; Khan, Irfan Ullah; Sunassee, Kavitha; de Rosales, Rafael Torres Martin; Shanahan, Catherine; Blower, Philip J

    2015-03-21

    The first (99m)Tc and (188)Re complexes containing two pendant bisphosphonate groups have been synthesised, based on the mononuclear M(v) nitride core with two dithiocarbamate ligands each with a pendant bisphosphonate. The structural identity of the (99)Tc and stable rhenium analogues as uncharged, mononuclear nitridobis(dithiocarbamate) complexes was determined by electrospray mass spectrometry. The (99m)Tc complex showed greater affinity for synthetic and biological hydroxyapatite, and greater stability in biological media, than the well-known but poorly-characterised and inhomogeneous bone imaging agent (99m)Tc-MDP. It gave excellent SPECT images of both bone calcification (mice and rats) and vascular calcification (rat model), but the improved stability and the availability of two pendant bisphosphonate groups conferred no dramatic advantage in imaging over the conventional (99m)Tc-MDP agent in which the bisphosphonate group is bound directly to Tc. The (188)Re complex also showed preferential uptake in bone. These tracers and the biological model of vascular calcification offer the opportunity to study the biological interpretation and clinical potential of radionuclide imaging of vascular calcification and to deliver radionuclide therapy to bone metastases.

  1. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  2. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  3. Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells

    DOEpatents

    Gering, Kevin L; Stewart, Frederick F; Wilson, Aaron D; Stone, Mark L

    2014-10-28

    An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.

  4. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  5. Unexpectedly Facile Rh(I) Catalyzed Polymerization of Ethynylbenzaldehyde Type Monomers: Synthesis of Polyacetylenes Bearing Reactive and Easy Transformable Pendant Carbaldehyde Groups.

    PubMed

    Sedláček, Jan; Havelková, Lucie; Zedník, Jiří; Coufal, Radek; Faukner, Tomáš; Balcar, Hynek; Brus, Jiří

    2017-04-01

    The chain coordination polymerization of (ethynylarene)carbaldehydes with unprotected carbaldehyde groups, namely ethynylbenzaldehydes, 1-ethynylbenzene-3,5-dicarboxaldehyde, and 3-[(4-ethynylphenyl)ethynyl]benzaldehyde, is reported for the first time. Polymerization is catalyzed with various Rh(I) catalysts and yields poly(arylacetylene)s with one or two pendant carbaldehyde groups per monomeric unit. Surprisingly, the carbaldehyde groups of the monomers do not inhibit the polymerization unlike the carbaldehyde group of unsubstituted benzaldehyde that acts as a strong inhibitor of Rh(I) catalyzed polymerization of arylacetylenes. The inhibition ability of carbaldehyde groups in (ethynylarene)carbaldehydes seems to be eliminated owing to a simultaneous presence of unsaturated ethynyl groups in (ethynylarene)carbaldehydes. The reactive carbaldehyde groups make poly[(ethynylarene)carbaldehyde]s promising for functional appreciation via various postpolymerization modifications. The introduction of photoluminescence or chirality to poly(ethynylbenzaldehyde)s via quantitative modification of their carbaldehyde groups in reaction with either photoluminescent or chiral primary amines under formation of the polymers with Schiff-base-type pendant groups is given as an example. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate.

    PubMed

    Wu, Ruizhi; Al-Azemi, Talal F; Bisht, Kirpal S

    2008-10-01

    Enantiomerically pure functional polycarbonate was synthesized from a novel seven-membered cyclic carbonate monomer derived from naturally occurring L-tartaric acid. The monomer was synthesized in three steps and screened for polymerization with four commercially available lipases from different sources at 80 degrees C, in bulk. The ring-opening polymerization (ROP) was affected by the source of the enzyme; the highest number-average molecular weight, M(n) = 15500 g/mol (PDI = 1.7; [alpha]D(20) = +77.8, T(m) = 58.8 degrees C) optically active polycarbonate was obtained with lipase Novozyme-435. The relationship between monomer conversion, reaction time, molecular weight, and molecular weight distribution were investigated for Novozyme-435 catalyzed ROP. Deprotection of the ketal groups was achieved with minimal polymer chain cleavage (M(n) = 10000 g/mol, PDI = 2.0) and resulted in optically pure polycarbonate ([alpha]D(20) = +56) bearing hydroxy functional groups. Deprotected poly(ITC) shows T(m) of 60.2 degrees C and DeltaH(f) = 69.56 J/g and similar to that of the poly(ITC), a glass transition temperature was not found. The availability of the pendant hydroxyl group is expected to enhance the biodegradability of the polymer and serves in a variety of potential biomedical applications such as polymeric drug delivery systems.

  7. Synthesis of Dendronized Poly(l-Glutamate) via Azide-Alkyne Click Chemistry

    PubMed Central

    Perdih, Peter; Kržan, Andrej; Žagar, Ema

    2016-01-01

    Poly(l-glutamate) (PGlu) was modified with a second-generation dendron to obtain the dendronized polyglutamate, P(Glu-D). Synthesized P(Glu-D) exhibited a degree of polymerization (DPn) of 46 and a 43% degree of dendronization. Perfect agreement was found between the P(Glu-D) expected structure and the results of nuclear magnetic resonance spectroscopy (NMR) and size-exclusion chromatography coupled to a multi-angle light-scattering detector (SEC-MALS) analysis. The PGlu precursor was modified by coupling with a bifunctional building block (N3-Pr-NH2) in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) coupling reagent. The second-generation polyamide dendron was prepared by a stepwise procedure involving the coupling of propargylamine to the l-lysine carboxyl group, followed by attaching the protected 2,2-bis(methylol)propionic acid (bis-MPA) building block to the l-lysine amino groups. The hydroxyl groups of the resulting second-generation dendron were quantitatively deprotected under mild acidic conditions. The deprotected dendron with an acetylene focal group was coupled to the pendant azide groups of the modified linear copolypeptide, P(Glu-N3), in a Cu(I) catalyzed azide-alkyne cycloaddition reaction to form a 1,4-disubstituted triazole. The dendronization reaction proceeded quantitatively in 48 hours in aqueous medium as confirmed by 1H NMR and Fourier transform infrared spectroscopy (FT-IR) spectroscopy. PMID:28773369

  8. Chromatographic enantioseparation by poly(biphenylylacetylene) derivatives with memory of both axial chirality and macromolecular helicity.

    PubMed

    Ishidate, Ryoma; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji; Maeda, Katsuhiro

    2017-03-01

    Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2- and 2'-positions and an alkoxycarbonyl group at the 4'-position of the biphenyl pendants (poly-Ac's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis-transoidal) poly-Ac's folded into a predominantly one-handed helical conformation accompanied by a preferred-handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main-chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly-Ac's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2- and 2'-positions of the biphenyl pendants (poly-MOM's). In the solid state, however, the helicity memory of the poly-Ac's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly-MOM when used as a chiral stationary phase for high-performance liquid chromatography. In particular, the poly-Ac-based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers. © 2017 Wiley Periodicals, Inc.

  9. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    PubMed

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  10. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575.

    PubMed

    Pickens, Lauren B; Kim, Woncheol; Wang, Peng; Zhou, Hui; Watanabe, Kenji; Gomi, Shuichi; Tang, Yi

    2009-12-09

    SF2575 1 is a tetracycline polyketide produced by Streptomyces sp. SF2575 and displays exceptionally potent anticancer activity toward a broad range of cancer cell lines. The structure of SF2575 is characterized by a highly substituted tetracycline aglycon. The modifications include methylation of the C-6 and C-12a hydroxyl groups, acylation of the 4-(S)-hydroxyl with salicylic acid, C-glycosylation of the C-9 of the D-ring with D-olivose and further acylation of the C4'-hydroxyl of D-olivose with the unusual angelic acid. Understanding the biosynthesis of SF2575 can therefore expand the repertoire of enzymes that can modify tetracyclines, and facilitate engineered biosynthesis of SF2575 analogues. In this study, we identified, sequenced, and functionally analyzed the ssf biosynthetic gene cluster which contains 40 putative open reading frames. Genes encoding enzymes that can assemble the tetracycline aglycon, as well as installing these unique structural features, are found in the gene cluster. Biosynthetic intermediates were isolated from the SF2575 culture extract to suggest the order of pendant-group addition is C-9 glycosylation, C-4 salicylation, and O-4' angelylcylation. Using in vitro assays, two enzymes that are responsible for C-4 acylation of salicylic acid were identified. These enzymes include an ATP-dependent salicylyl-CoA ligase SsfL1 and a putative GDSL family acyltransferase SsfX3, both of which were shown to have relaxed substrate specificity toward substituted benzoic acids. Since the salicylic acid moiety is critically important for the anticancer properties of SF2575, verification of the activities of SsfL1 and SsfX3 sets the stage for biosynthetic modification of the C-4 group toward structure-activity relationship studies of SF2575. Using heterologous biosynthesis in Streptomyces lividans, we also determined that biosynthesis of the SF2575 tetracycline aglycon 8 parallels that of oxytetracycline 4 and diverges after the assembly of 4-keto-anhydrotetracycline 51. The minimal ssf polyketide synthase together with the amidotransferase SsfD produced the amidated decaketide backbone that is required for the formation of 2-naphthacenecarboxamide skeleton. Additional enzymes, such as cyclases C-6 methyltransferase and C-4/C-12a dihydroxylase, were functionally reconstituted.

  11. Replacement solvents for use in chemical synthesis

    DOEpatents

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  12. Toughening of a Carbon-Fibre Composite Using Electrospun Poly(Hydroxyether of Bisphenol A) Nanofibrous Membranes Through Inverse Phase Separation and Inter-Domain Etherification

    PubMed Central

    Magniez, Kevin; Chaffraix, Thomas; Fox, Bronwyn

    2011-01-01

    The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns) of poly(hydroxyether of bisphenol A) (phenoxy) nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C) at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure) and mode II (in-plane shear failure) by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C). PMID:28824118

  13. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups.

    PubMed

    Manhart, Jakob; Ayalur-Karunakaran, Santhosh; Radl, Simone; Oesterreicher, Andreas; Moser, Andreas; Ganser, Christian; Teichert, Christian; Pinter, Gerald; Kern, Wolfgang; Griesser, Thomas; Schlögl, Sandra

    2016-12-01

    The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the 1 H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1 H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yl)oxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking ( λ >300 nm) and UV induced cleavage ( λ =254 nm) are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in "Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups" (Manhart et al., 2016) [1].

  14. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  15. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  16. Electronic Interactions of n-Doped Perylene Diimide Groups Appended to Polynorbornene Chains: Implications for Electron Transport in Organic Electronics.

    PubMed

    Nguyen, Minh T; Biberdorf, Joshua D; Holliday, Bradley J; Jones, Richard A

    2017-11-01

    A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10 -3 S cm -1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity.

    PubMed

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-21

    The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.

  18. Synthesis and Thermal Stability of Novel Poly(M-Carborane-Siloxanes) with Various Pendant Groups

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxue; Zhao, Yanyan; Wang, Cuicui; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei

    2017-10-01

    Poly(m-carborane-siloxanes) with various pendant groups (P15-P46) were synthesized via polycondensation of m-carborane-containing disilanols (1-4) and highly active bisureidosilanes (5 and 6). The obtained polymers exhibit controlled molecular weight by carefully adjusting the monomer ratio. Standard spectroscopic techniques including FTIR and NMR were utilized to characterize these polymers and satisfactory results were obtained. TGA analysis indicated that the thermal cyclization of polysiloxanes under nitrogen was greatly postponed by the incorporated m-carborane cage, since the siloxane bonds within the main chain were strengthened by the inductive effect of the latter. DSC and FTIR results confirmed that both siloxane unit and carborane cage were oxidized at elevated temperature under air, which contributed to the transformation of the polymers into the mixture of SiO2 and B2O3. Therefore, high char yield was obtained. Besides, the electronic effect of pendant groups greatly influenced the degradation behavior of m-carborane-containing polysiloxanes, having nothing to do with their position. The initial degradation temperature (T d5) increases with varying substituent in the order: CH2CH2CF3 < CH3 ≈ Ph < CH=CH2.

  19. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.

    PubMed

    Zhao, Chao; Zhao, Jun; Li, Xiaosi; Wu, Jiang; Chen, Shenfu; Chen, Qiang; Wang, Qiuming; Gong, Xiong; Li, Lingyan; Zheng, Jie

    2013-07-01

    We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid-base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  1. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups.

    PubMed

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-08

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  2. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Shdo, J. D.

    1976-01-01

    Six polyphenylquinoxalines (PPQ) containing pendant cyano (CN) groups were synthesized. The polymers were characterized in terms of inherent viscosity, glass transition temperature, softening temperature and weight loss due to aging in air at 316 C (600 F). The potential for crosslinking PPQs by trimerization of pendant CN groups was investigated. A polymer derived from 1 mole 3,3,4,4 -tetraaminobenzophenone, .2 mole p-bis(p -cyanophenoxyphenylglyoxalyl)benzene and .8 mole p-bis(phenylglyoxalyl)benzene was selected for more extensive characterization in HM-S graphite fiber-reinforced composites. Mechanical properties were determined using composites made from HM-S fiber and polymer and composites made from HM-S fiber, polymer and a potential CN group trimerization catalyst. Composite mechanical properties, inter-laminar shear strength and flexure properties, were determined over the temperature range of +21 C to 316 C.

  3. Exploring the Parameters Controlling the Crystallinity-Conductivity Correlation of PFSA Ionomers

    NASA Astrophysics Data System (ADS)

    Kusoglu, Ahmet; Shi, Shouwen; Weber, Adam

    Perfluorosulfonic-acid (PFSA) ionomers are the most commonly used solid-electrolyte in electrochemical energy devices because of their remarkable conductivity and chemical/mechanical stability, with the latter imparted by their semi-crystalline fluorocarbon backbone. PFSAs owe this unique combination of transport/stability functionalities to their phase-separated morphology of conductive hydrophilic ionic domains and the non-conductive hydrophobic backbone, which are connected via pendant chains. Thus, phase-separation is governed by fractions of backbone and ionic groups, which is controlled by the equivalent weight (EW). Therefore, EW, along with the pendant chain chemistry, directly impact the conductive vs non-conductive regions, and consequently the interrelation between transport and stability. Driven by the need to achieve higher conductivities without disrupting the crystallinity, various pendant-chain chemistries have been developed. In this talk, we will report the results of a systematic investigation on hydration, conductivity, mechanical properties and crystallinity of various types and EWs of PFSA ionomers to (i) develop a structure/property map, and (ii) identify the key parameters controlling morphology and properties. It will be discussed how the pendant-chain and backbone lengths affect the conductivity and crystallinity, respectively. Lastly, the data set will be analyzed to explore universal structure/property relationships for PFSAs.

  4. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Fei; Wang, Yangyang; Hong, Tao

    2015-07-17

    Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviationmore » from the ideal line increases upon approaching the glass transition temperature (T g). Moreover, the conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. Finally, we relate this observation to a decrease in polymer packing efficiency with an increase in fragility.« less

  5. The binding modes of carbazole derivatives with telomere G-quadruplex

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin

    2010-10-01

    It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.

  6. Phosphazene membranes for gas separations

    DOEpatents

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  7. Triazolylidene-Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal-Ligand Induced Catalytic Dehydrogenation of Amines.

    PubMed

    Valencia, Marta; Pereira, Ana; Müller-Bunz, Helge; Belderraín, Tomás R; Pérez, Pedro J; Albrecht, Martin

    2017-07-03

    Two iridium(III) complexes containing a C,N-bidentate pyridyl-triazolylidene ligand were prepared that are structurally very similar but differ in their pendant substituent. Whereas complex 1 contains a non-coordinating pyridyl unit, complex 2 has a phenyl group on the triazolylidene substituent. The presence of the basic pyridyl unit has distinct effects on the catalytic activity of the complex in the oxidative dehydrogenation of benzylic amines, inducing generally higher rates, higher selectivity towards formation of imines versus secondary amines, and notable quantities of tertiary amines when compared to the phenyl-functionalized analogue. The role of the pyridyl functionality has been elucidated from a set of stoichiometric experiments, which demonstrate hydrogen bonding between the pendant pyridyl unit and the amine protons of the substrate. Such N pyr ⋅⋅⋅H-N interactions are demonstrated by X-ray diffraction analysis, 1 H NMR, and IR spectroscopy, and suggest a pathway of substrate bond-activation that involves concerted substrate binding through the Lewis acidic iridium center and the Lewis basic pyridyl site appended to the triazolylidene ligand, in agreement with ligand-metal cooperative substrate activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fire retardant polyisocyanurate foam

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  9. INTERIOR OF THE CENTER HUT IN THE GROUPING OF FIVE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF THE CENTER HUT IN THE GROUPING OF FIVE. NOTE THE STRUCTURE'S FRAMING SYSTEM OF STEEL ARCHED RIBS AND PURLINS AND THE HISTORIC PENDANT LIGHT FIXTURES WITH GREEN AND WHITE ENAMELED SHADES. VIEW FACING SOUTHEAST - Kahului Cannery, Quonset Hut Grouping, 120 Kane Street, Kahului, Maui County, HI

  10. Enhanced electrical properties in solution-processed InGaZnO thin-film transistors by viable hydroxyl group transfer process

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk

    2018-05-01

    We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).

  11. Structural modification of poly(methyl methacrylate) by proton irradiation

    NASA Astrophysics Data System (ADS)

    Choi, H. W.; Woo, H. J.; Hong, W.; Kim, J. K.; Lee, S. K.; Eum, C. H.

    2001-01-01

    A general survey is presented on the structural modification of poly(methyl methacrylate) (PMMA) by proton implantation. The implanted PMMA films were characterized by FT-IR attenuated total reflection (FT-IR ATR), Raman, Rutherford backscattering spectroscopy (RBS), gel permeation chromatography (GPC) and surface profiling. The ion fluence of 350 keV protons ranged from 2×10 14 to 1×10 15 ions/cm 2. The IR and Raman spectra showed the reduction of peaks from the pendant group of PMMA. The change of absorption and composition was observed by UV-VIS and RBS, respectively. These results showed that the pendant group is readily decomposed and eliminated by proton irradiation. The change of molecular weight distribution was also measured by GPC and G-value of scission was estimated to be 0.67.

  12. Chemically Functionalized Conjugated Oligoelectrolyte Nanoparticles for Enhancement of Current Generation in Microbial Fuel Cells.

    PubMed

    Zhao, Cui-e; Chen, Jia; Ding, Yuanzhao; Wang, Victor Bochuan; Bao, Biqing; Kjelleberg, Staffan; Cao, Bin; Loo, Say Chye Joachim; Wang, Lianhui; Huang, Wei; Zhang, Qichun

    2015-07-08

    Water-soluble conjugated oligoelectrolyte nanoparticles (COE NPs), consisting of a cage-like polyhedral oligomeric silsesquioxanes (POSS) core equipped at each end with pendant groups (oligo(p-phenylenevinylene) electrolyte, OPVE), have been designed and demonstrated as an efficient strategy in increasing the current generation in Escherichia coli microbial fuel cells (MFCs). The as-prepared COE NPs take advantage of the structure of POSS and the optical properties of the pendant groups, OPVE. Confocal laser scanning microscopy showed strong photoluminescence of the stained cells, indicating spontaneous accumulation of COE NPs within cell membranes. Moreover, the electrochemical performance of the COE NPs is superior to that of an established membrane intercommunicating COE, DSSN+ in increasing current generation, suggesting that these COE NPs thus hold great potential to boost the performance of MFCs.

  13. Degradable Polymer with Protein Resistance in a Marine Environment.

    PubMed

    Ma, Jielin; Ma, Chunfeng; Zhang, Guangzhao

    2015-06-16

    Protein resistance is the central issue in marine antibiofouling. We have prepared poly(ε-caprolactone) (PCL)-based polyurethane with 2-(dimethylamino) ethyl methacrylate (DEM) as pendant groups by a combination of the thiol-ene click reaction and the condensation reaction. By the use of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR), we have investigated the adsorption of fibrinogen, bovine serum albumin (BSA), and lysozyme on the polymer surface. The polymer exhibits protein resistance in seawater but not in fresh water because DEM pendant groups carry net neutral charges in the former. The evaluation of antibacterial adhesion of the polymer by using Micrococcus luteus demonstrates that the polymer can effectively inhibit the settlement of marine bacteria. Our studies also show that the polymer is degradable in marine environments.

  14. Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis

    PubMed Central

    Wu, Chung-Yi; Tu, Kuan-Ju; Deng, Jin-Pei; Lo, Yu-Shiu; Wu, Chien-Hou

    2017-01-01

    The benefits of increasing the number of surface hydroxyls on TiO2 nanoparticles (NPs) are known for environmental and energy applications; however, the roles of the hydroxyl groups have not been characterized and distinguished. Herein, TiO2 NPs with abundant surface hydroxyl groups were prepared using commercial titanium dioxide (ST-01) powder pretreated with alkaline hydrogen peroxide. Through this simple treatment, the pure anatase phase was retained with an average crystallite size of 5 nm and the surface hydroxyl group density was enhanced to 12.0 OH/nm2, estimated by thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Especially, this treatment increased the amounts of terminal hydroxyls five- to six-fold, which could raise the isoelectric point and the positive charges on the TiO2 surface in water. The photocatalytic efficiency of the obtained TiO2 NPs was investigated by the photodegradation of sulforhodamine B under visible light irradiation as a function of TiO2 content, pH of solution, and initial dye concentration. The high surface hydroxyl group density of TiO2 NPs can not only enhance water-dispersibility but also promote dye sensitization by generating more hydroxyl radicals. PMID:28772926

  15. Molecular design and synthesis of functional photothermopolymers from hydroxyl benzoic acids

    NASA Astrophysics Data System (ADS)

    Tong, Xiao; Gu, Jiangnan; Wang, Liyuan; Zou, Yingquan; Yu, Shangxian

    2000-06-01

    The most applicable hydroxyl benzoic acid monomers were optimized to synthesize the thermolysis-decarboxylation polymers according to the relative results of TG analysis of hydroxyl benzoic acids, their 13C-NMR spectra analyses and their quantum chemistry calculation with AB-INITIO method. On the basis of the empirical rule -- M/A value rule, while phenols with high M/A value and hydroxyl benzoic acids were both cocondensed with formaldehyde at proper ratio, the novolak resin with carboxyl groups used as a thermal imaging material could be obtained. In the presence of an acid catalyst, such as oxalic acid, a hydroxyl benzoic acid could be additionally polymerized with divinyl benzene (DVB) to synthesize another kind of polymer with not only carboxyl groups but also phenolic hydroxyl groups. The thermal imaging mechanisms of these polymers with carboxyl groups were discussed in the paper.

  16. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.

    PubMed

    Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie

    2016-10-20

    Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.

  17. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  18. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  19. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Wu, D. Q.; He, H. P.; Lin, Z. Y.

    2004-04-01

    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and Brønsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica.

  20. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, Jr., Paul E.; Langdale, Wayne A.

    1997-01-01

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  1. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, P.E. Jr.; Langdale, W.A.

    1997-08-19

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  2. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  3. Unraveling the impact of hydroxylation on interactions of bile acid cationic lipids with model membranes by in-depth calorimetry studies.

    PubMed

    Singh, Manish; Bajaj, Avinash

    2014-09-28

    We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.

  4. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    PubMed

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  5. Xylosylation of Phenolic Hydroxyl Groups of the Monomeric Lignin Model Compounds 4-Methylguaiacol and Vanillyl Alcohol by Coriolus versicolor

    PubMed Central

    Kondo, Ryuichiro; Yamagami, Hikari; Sakai, Kokki

    1993-01-01

    When 4-methylguaiacol (MeG), a phenolic lignin model compound, was added to a culture that was inoculated with Coriolus versicolor, it was bioconverted into 2-methoxy-4-methylphenyl β-d-xyloside (MeG-Xyl). The phenolic hydroxyl group of vanillyl alcohol was much more extensively xylosylated than the alcoholic hydroxyl group. When a mixture of MeG and commercial UDP-xylose was incubated with cell extracts of mycelia, transformation of UDP-xylose into MeG-Xyl was observed. This result suggested that UDP-xylosyltransferase was involved in the xylosylation of phenolic hydroxyl groups of lignin model compounds. PMID:16348869

  6. Flow of quasi-two dimensional water in graphene channels

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  7. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA-DIC coating and PS-substrate produce improved coating stability. Subsequently, the PVA-DIC coated substrate has the maximum capacity to suppress the macrophage (RAW 264.7 cell line) adhesion and spreading, which is partly due to wavy-surface topography of hydrophilic PVA and preferential albumin binding capacity of PVA bound DIC. Our result shows that, such surfaces suppress the macrophages, even under stimulation with lipopolysaccharide (LPS). The modified tissue culture plates can be used as an in vitro tool, to study the macrophage response under low spatial cues. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. meso-4,4′-Dimeth­oxy-2,2′-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-benz­imidazole-1,3-di­yl]bis­(methyl­ene)}diphenol

    PubMed Central

    Rivera, Augusto; Quiroga, Diego; Ríos-Motta, Jaime; Kučeraková, Monika; Dušek, Michal

    2013-01-01

    The title compound, C23H30N2O4, a di-Mannich base derived from 4-meth­oxy­phenol and cis-1,2-di­amine­cyclo­hexane, has a perhydro­benzimidazolidine nucleus, in which the cyclo­hexane ring adopts a chair conformation and the heterocyclic ring has a half-chair conformation with a C—N—C—C torsion angles of −48.14 (15) and −14.57 (16)°. The mean plane of the heterocycle makes dihedral angles of 86.29 (6) and 78.92 (6)° with the pendant benzene rings. The mol­ecular structure of the title compound shows the presence of two inter­actions between the N atoms of the imidazolidine ring and the hydroxyl groups through intra­molecular O—H⋯N hydrogen bonds with graph-set motif S(6). The unobserved lone pairs of the N atoms are presumed to be disposed in a syn conformation, being only the second example of an exception to the typical ‘rabbit-ears’ effect in 1,2-di­amines. PMID:24046631

  9. Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode.

    PubMed

    Wan, Dong; Yuan, Shaojun; Li, G L; Neoh, K G; Kang, E T

    2010-11-01

    An amperometric glucose biosensor was prepared using polyaniline (PANI) and chitosan-coupled carbon nanotubes (CS-CNTs) as the signal amplifiers and glucose oxidase (GOD) as the glucose detector on a gold electrode (the Au-g-PANI-c-(CS-CNTs)-GOD biosensor). The PANI layer was prepared via oxidative graft polymerization of aniline from the gold electrode surface premodified by self-assembled monolayer of 4-aminothiophenol. CS-CNTs were covalently coupled to the PANI-modified gold substrate using glutaradehyde as a bifunctional linker. GOD was then covalently bonded to the pendant hydroxyl groups of chitosan using 1,4-carbonyldiimidazole as the bifunctional linker. The surface functionalization processes were ascertained by X-ray photoelectron spectroscopy (XPS) analyses. The field emission scanning electron microscopy (FESEM) images of the Au-g-PANI-c-(CS-CNTs) electrode revealed the formation of a three-dimensional surface network structure. The electrode could thus provide a more spatially biocompatible microenvironment to enhance the amount and biocatalytic activity of the immobilized enzyme and to better mediate the electron transfer. The resulting Au-g-PANI-c-(CS-CNTs)-GOD biosensor exhibited a linear response to glucose in the concentration range of 1-20 mM, good sensitivity (21 μA/(mM·cm(2))), good reproducibility, and retention of >80% of the initial response current after 2 months of storage.

  10. Remote Neural Pendants In A Welding-Control System

    NASA Technical Reports Server (NTRS)

    Venable, Richard A.; Bucher, Joseph H.

    1995-01-01

    Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.

  11. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction

    PubMed Central

    2018-01-01

    The bioinspired incorporation of pendant proton donors into transition metal catalysts is a promising strategy for converting environmentally deleterious CO2 to higher energy products. However, the mechanism of proton transfer in these systems is poorly understood. Herein, we present a series of cobalt complexes with varying pendant secondary and tertiary amines in the ligand framework with the aim of disentangling the roles of the first and second coordination spheres in CO2 reduction catalysis. Electrochemical and kinetic studies indicate that the rate of catalysis shows a first-order dependence on acid, CO2, and the number of pendant secondary amines, respectively. Density functional theory studies explain the experimentally observed trends and indicate that pendant secondary amines do not directly transfer protons to CO2, but instead bind acid molecules from solution. Taken together, these results suggest a mechanism in which noncooperative pendant amines facilitate a hydrogen-bonding network that enables direct proton transfer from acid to the activated CO2 substrate. PMID:29632886

  12. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction.

    PubMed

    Chapovetsky, Alon; Welborn, Matthew; Luna, John M; Haiges, Ralf; Miller, Thomas F; Marinescu, Smaranda C

    2018-03-28

    The bioinspired incorporation of pendant proton donors into transition metal catalysts is a promising strategy for converting environmentally deleterious CO 2 to higher energy products. However, the mechanism of proton transfer in these systems is poorly understood. Herein, we present a series of cobalt complexes with varying pendant secondary and tertiary amines in the ligand framework with the aim of disentangling the roles of the first and second coordination spheres in CO 2 reduction catalysis. Electrochemical and kinetic studies indicate that the rate of catalysis shows a first-order dependence on acid, CO 2 , and the number of pendant secondary amines, respectively. Density functional theory studies explain the experimentally observed trends and indicate that pendant secondary amines do not directly transfer protons to CO 2 , but instead bind acid molecules from solution. Taken together, these results suggest a mechanism in which noncooperative pendant amines facilitate a hydrogen-bonding network that enables direct proton transfer from acid to the activated CO 2 substrate.

  13. The Synthesis and Structural Characterization of Graft Copolymers Composed of γ-PGA Backbone and Oligoesters Pendant Chains

    NASA Astrophysics Data System (ADS)

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna

    2017-10-01

    The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. [Figure not available: see fulltext.

  14. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups.

    PubMed

    Hook, Andrew L; Scurr, David J

    2016-04-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information-rich nature of ToF-SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C 6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono-functional from multi-functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure-function relationships based upon ToF-SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.

  15. Surface Coverage and Metallicity of ZnO Surfaces from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre; The Schleife research Group Team

    Zinc oxide (ZnO) surfaces are widely used in different applications such as catalysis, biosensing, and solar cells. These surfaces are, in many cases, chemically terminated by hydroxyl groups. In experiment, a transition of the ZnO surface electronic properties from semiconducting to metallic was reported upon increasing the hydroxyl coverage to more than approximately 80 %. The reason for this transition is not well understood yet. We report on first-principles calculations based on density functional theory for the ZnO [ 10 1 0 ] surface, taking different amounts of hydroxyl coverage into account. We calculated band structures for fully relaxed configurations and verified the existence of this transition. However, we only find the fully covered surface to be metallic. We thus explore the possibility for clustering of the surface-terminating hydroxyl groups based on total-energy calculations. We also found that the valence band maximum consists of oxygen p states from both the surface hydroxyl groups and the surface oxygen atoms of the material. The main contribution to the metallicity is found to be from the hydroxyl groups.

  16. Hydrolysis mechanisms of BNPP mediated by facial copper(II) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants.

    PubMed

    Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan

    2016-01-28

    The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts.

  17. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.

    PubMed

    Yamaguchi, Aritomo; Muramatsu, Natsumi; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-25

    The intramolecular dehydration of biomass-derived sugar alcohols d-sorbitol, d-mannitol, galactitol, xylitol, ribitol, l-arabitol, erythritol, l-threitol, and dl-threitol was investigated in high-temperature water at 523-573 K without the addition of any acid catalysts. d-Sorbitol and d-mannitol were dehydrated into isosorbide and isomannide, respectively, as dianhydrohexitol products. Galactitol was dehydrated into anhydrogalactitols; however, the anhydrogalactitols could not be dehydrated into dianhydrogalactitol products because of the orientation of the hydroxyl groups at the C-3 and C-6 positions. Pentitols such as xylitol, ribitol, and l-arabitol were dehydrated into anhydropentitols. The dehydration rates of the pentitols containing hydroxyl groups in the trans form, which remained as hydroxyl groups in the product tetrahydrofuran, were larger than those containing hydroxyl groups in the cis form because of the structural hindrance caused by the hydroxyl groups in the cis form during the dehydration process. In the case of the tetritols, the dehydration of erythritol was slower than that of threitol, which could also be explained by the structural hindrance of the hydroxyl groups. The dehydration of l-threitol was faster than that of dl-threitol, which implies that molecular clusters were formed by hydrogen bonding between the sugar alcohols in water, which could be an important factor that affects the dehydration process.

  18. Polyimides prepared from 3,5-diamino benzo trifluoride

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); St.clair, Anne K. (Inventor)

    1993-01-01

    High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide.

  19. Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sihvonen, Sarah K.; Murphy, Kelly A.; Washton, Nancy M.

    Mineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use 19F magic angle spinning nuclear magnetic resonance spectroscopy and a probemore » molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.« less

  20. Chemoselective Hydroxyl Group Transformation: An Elusive Target‡

    PubMed Central

    Trader, Darci J.; Carlson, Erin E.

    2012-01-01

    The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described. PMID:22695722

  1. 75 FR 58424 - Notice of Intent to Repatriate Cultural Items: Northwest Museum of Arts & Culture, Spokane, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... bone awl pendant, 27 dentalia beads, 4 copper pendants, 1 copper bracelet, 1 projectile point and 1 bone awl. During the period July 1939 - September 1940, funerary objects were systematically removed... abalone shell pendant, 2 scrapers, 2 bone awls, 1 piece of matting, 1 flake, 2 dentalia necklace fragments...

  2. Electroactive Polyurea Bearing Oligoaniline Pendants: Electrochromic and Anticorrosive Properties

    DTIC Science & Technology

    2014-12-26

    unlimited. Electroactive polyurea bearing oligoaniline pendants: Electrochromic and anticorrosive properties The views, opinions and/or findings contained...Park, NC 27709-2211 oligoaniline, anticorrosive surfaces, conjugated surfaces REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10...Durham, NH 03824 -2585 ABSTRACT Electroactive polyurea bearing oligoaniline pendants: Electrochromic and anticorrosive properties Report Title In this

  3. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.

    PubMed

    Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro; Kawanami, Hajime

    2017-12-14

    The hydroxyl groups of a 2,2'-bipyridine (bpy) ligand near the metal center activated the catalytic performance of the Ir complex for the dehydrogenation of formic acid at high pressure. The position of the hydroxyl groups on the ligand affected the catalytic durability for the high-pressure H 2 generation through the decomposition of formic acid. The Ir complex with a bipyridine ligand functionalized with para-hydroxyl groups shows a good durability with a constant catalytic activity during the reaction even under high-pressure conditions, whereas deactivation was observed for an Ir complex with a bipyridine ligand with ortho-hydroxyl groups (2). In the presence of high-pressure H 2 , complex 2 decomposed into the ligand and an Ir trihydride complex through the isomerization of the bpy ligand. This work provides the development of a durable catalyst for the high-pressure H 2 production from formic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 77 FR 25736 - Notice of Intent To Repatriate Cultural Items: Northwest Museum of Arts & Culture, Spokane, WA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... unassociated funerary objects are 7 beaver tooth dice, 1 bone awl pendant, 27 dentalia beads, 4 copper pendants, 1 copper bracelet, 1 projectile point, 1 bone awl, 2 scrapers, and 1 hammerstone. In the Federal... pendant, 5 scrapers, 2 bone awls, 1 piece of matting, 1 flake, 2 dentalia necklace fragments, 1 small box...

  5. Role of oxygen functional groups in reduced graphene oxide for lubrication

    PubMed Central

    Gupta, Bhavana; Kumar, Niranjan; Panda, Kalpataru; Kanan, Vigneshwaran; Joshi, Shailesh; Visoly-Fisher, Iris

    2017-01-01

    Functionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient. In this condition, PEG chains intercalate between the functionalized graphene sheets, and shear can take place between the PEG and rGO sheets. However, the friction coefficient was unaffected when hydroxyl-terminated rGO was coupled with PEG. This can be explained by the strong coupling between graphene sheets through hydroxyl units, causing the interaction of PEG with the rGO to be non- effective for lubrication. On the other hand, antiwear properties of hydroxyl-terminated rGO were significantly enhanced compared to epoxy-hydroxyl functionalized rGO due to the integrity of graphene sheet clusters. PMID:28344337

  6. NANOSENSOR FOR DETECTION OF SAXITOXIN

    EPA Science Inventory

    For the past several years, we have been investigating a class of crown ethers having a pendant fluorophore for the detection of saxitoxin (Figure 1).1-3 We have investigated several aromatic groups for the fluorescence response, including the anthracene,1,2...

  7. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  8. 76 FR 73660 - Notice of Intent To Repatriate Cultural Items: U.S. Department of Defense, Army Corps of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... bone whistle, 1 bone necklace, 2 bone combs, 1 horse tooth pendant, 1 bone gaming piece, 1 projectile..., 1 awl, 2 bear teeth, 20 beaver incisors, 6 bifaces, 3 bird bone whistles, 1 bone pendant, 1 carved antler item, 1 carved bone item, 5 copper pendants, 6 digging stick handles, 5 elk tooth beads, 1 incised...

  9. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education (13th, Paris, France, July 9-13, 1989), Volume 1.

    ERIC Educational Resources Information Center

    International Group for the Psychology of Mathematics Education.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) includes the following papers: "Transformations Accelerees de l'Education Scientifique Pendant la Revolution Francaise" (Jean Dhombres); "Building on the Knowledge of Students and Teachers" (Thomas P. Carpenter & Elizabeth…

  10. Thiaflavan scavenges radicals and inhibits DNA oxidation: a story from the ferrocene modification.

    PubMed

    Lai, Hai-Wang; Liu, Zai-Qun

    2014-06-23

    4-Thiaflavan is a sulfur-substituted flavonoid with a benzoxathiin scaffold. The aim of this work is to compare abilities of sulfur and oxygen atom, hydroxyl groups, and ferrocene moiety at different positions of 4-thiaflavan to trap radicals and to inhibit DNA oxidation. It is found that abilities of thiaflavans to trap radicals and to inhibit DNA oxidation are increased in the presence of ferrocene moiety and are further improved by the electron-donating group attaching to thiaflavan skeleton. It can be concluded that the ferrocene moiety plays the major role for thiaflavans to be antioxidants even in the absence of phenolic hydroxyl groups. On the other hand, the antioxidant effectiveness of phenolic hydroxyl groups in thiaflavans can be improved by the electron-donating group. The influences of sulfur and oxygen atoms in thiaflavans on the antioxidant property of para-hydroxyl group exhibit different manners when the thiaflavans are used to trap radicals and to inhibit DNA oxidation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study

    PubMed Central

    McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190

  12. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  13. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    PubMed

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  14. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.

    PubMed

    Fenoll, L G; Rodríguez-López, J N; Varón, R; García-Ruiz, P A; García-Cánovas, F; Tudela, J

    2000-04-01

    The relationship between the structure and activity of meta- and para-hydroxylated monophenols was studied during their tyrosinase-catalysed hydroxylation and the rate-limiting steps of the reaction mechanism were identified. The para-hydroxylated substrates permit us to study the effect of a substituent (R) in the carbon-1 position (C-1) of the benzene ring on the nucleophilic attack step, while the meta group permits a similar study of the effect on the electrophilic attack step. Substrates with a -OCH3 group on C-1, as p-hydroxyanisol (4HA) and m-hydroxyanisol (3HA), or with a -CH2OH group, as p-hydroxybenzylalcohol (4HBA) and m-hydroxybenzylalcohol (3HBA), were used because the effect of the substituent (R) size was assumed to be similar. However, the electron-donating effect of the -OCH3 group means that the carbon-4 position (C-4) is favoured for nucleophilic attack (para-hydroxylated substrates) or for electrophilic attack (meta-hydroxylated substrates). The electron-attracting effect of the -CH2OH group has the opposite effect, hindering nucleophilic (para) or electrophilic (meta) attack of C-4. The experimental data point to differences between the maximum steady-state rate (V(M)Max) of the different substrates, the value of this parameter depends on the nucleophilic and electrophilic attack. However, differences are greatest in the Michaelis constants (K(M)m), with the meta-hydroxylated substrates having very large values. The catalytic efficiency k(M)cat/K(M)m is much greater for thepara-hydroxylated substrates although it varies greatly between one substrate and the other. However, it varies much less in the meta-hydroxylated substrates since this parameter describes the power of the nucleophilic attack, which is weaker in the meta OH. The large increase in the K(M)m of the meta-hydroxylated substrates might suggest that the phenolic OH takes part in substrate binding. Since this is a weaker nucleophil than the para-hydroxylated substrates, the binding constant decreases, leading to an increase in K(M)m. The catalytic efficiency of tyrosinase on a monophenol (para or meta) is directly related to the nucleophilic power of the oxygen of the phenolic OH. The oxidation step is not limiting since if this were the case, the para and meta substrates would have the same V(M)max. The small difference between the absolute values of V(M)max suggests that the rate constants of the nucleophilic and electrophilic attacks are on the same order of magnitude.

  15. Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins† †Electronic supplementary information (ESI) available: Procedures for synthetic, spectroscopic, and electrochemical experiments. CCDC 1582750. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04682k

    PubMed Central

    Nichols, Eva M.; Derrick, Jeffrey S.; Nistanaki, Sepand K.; Smith, Peter T.

    2018-01-01

    The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input. Inspired by natural bioinorganic systems that feature precisely positioned hydrogen-bond donors in the secondary coordination sphere to direct chemical transformations occurring at redox-active metal centers, we now report the design, synthesis, and characterization of a series of iron tetraphenylporphyrin (Fe-TPP) derivatives bearing amide pendants at various positions at the periphery of the metal core. Proper positioning of the amide pendants greatly affects the electrocatalytic activity for carbon dioxide reduction to carbon monoxide. In particular, derivatives bearing proximal and distal amide pendants on the ortho position of the phenyl ring exhibit significantly larger turnover frequencies (TOF) compared to the analogous para-functionalized amide isomers or unfunctionalized Fe-TPP. Analysis of TOF as a function of catalyst standard reduction potential enables first-sphere electronic effects to be disentangled from second-sphere through-space interactions, suggesting that the ortho-functionalized porphyrins can utilize the latter second-sphere property to promote CO2 reduction. Indeed, the distally-functionalized ortho-amide isomer shows a significantly larger through-space interaction than its proximal ortho-amide analogue. These data establish that proper positioning of secondary coordination sphere groups is an effective design element for breaking electronic scaling relationships that are often observed in electrochemical CO2 reduction. PMID:29732079

  16. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    PubMed

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the distribution data derived from the simulations. The QM and MM energy profiles predict the same 2'-hydroxyl group orientation preferences. Finally, we demonstrate that the high energy of unfavorable and rarely sampled 2'-hydroxyl group orientations can be attributed to clashes between occupied orbitals.

  17. Photochemical stability of UV-screening transparent acrylic copolymers of 2-(2-hydroxy-5-vinylphenyl)-2H-benzotriazole

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Scott, G. W.; Kliger, D.; Vogl, O.

    1983-01-01

    The mechanism of photodegradation of certain hydroxyphenyl benzotriazole based ultraviolet absorbers has been investigated and a new polymerizable ultraviolet absorber in this group has been synthesized. The photoreactivity is entirely confined at the surface of polymethylmethacrylate films containing the ultraviolet absorbers as pendant groups. A mechanism involving sensitized photooxidation has been proposed to interpret the data.

  18. Metal-chelating polymers by anionic ring-opening polymerization and their use in quantitative mass cytometry.

    PubMed

    Illy, Nicolas; Majonis, Daniel; Herrera, Isaac; Ornatsky, Olga; Winnik, Mitchell A

    2012-08-13

    Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.

  19. Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.

    PubMed Central

    Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J

    1987-01-01

    The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212

  20. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch. Structures of similar age occur in intensely deformed oceanic-lithospheric and syntectonic plutonic rocks of the lower Kings River area, in Jurassic metavolcanic rocks of the Ritter Range roof pendant, and in Triassic metasedimentary rocks of the Mineral King roof pendant. The final Mesozoic deformation occurred along N. 50?-80? W. trends in both high-country roof pendants and the lower Kings River area; structures of this generation are crosscut by relatively undeformed Upper Cretaceous granitic rocks of the Cathedral Range intrusive epoch.

  1. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation ofmore » the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  2. "Leaching or not leaching": an alternative approach to antimicrobial materials via copolymers containing crown ethers as active groups.

    PubMed

    De Rosa, M; Vigliotta, G; Soriente, A; Capaccio, V; Gorrasi, G; Adami, R; Reverchon, E; Mella, M; Izzo, L

    2017-03-28

    In this work, new copolymers containing either MMA and 18C6 crown-ether pendants, or PEG, MMA and 18C6 crown-ether pendants were synthesized to test the idea that sequestering structural alkali-earth ions from the bacterial outer membrane (OM) may lead to bacterial death. The copolymers were obtained either via uncontrolled radical polymerization or ATRP; the latter approached allowed us to produce not only linear copolymers but also branched Y-like structures. After checking for the capability of complexing magnesium and calcium ions, the antimicrobial activity of all copolymers was tested placing their casted plaques in contact with pure water E. coli suspensions. All plaques adsorbed alkali-earth ions and killed bacteria, albeit with different antimicrobial efficiencies. Differences in the latter characteristic were attributed to different plaque roughness. The role of the 18C6 crown-ether pendants was elucidated by pre-saturating plaques with Mg/Ca ions, the marked reduction in antimicrobial efficiency indicating that losing the latter from OM due to surface complexation does play an important role in killing bacteria at short (<5 h) contact times. At longer times, the mode of action is instead related to the poly-cationic nature acquired by the plaques due to ion sequestering.

  3. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  4. Dissociative adsorption of a multifunctional compound on a semiconductor surface: a theoretical study of the adsorption of hydroxylamine on Ge(100).

    PubMed

    Park, Hyunkyung; Kim, Do Hwan

    2018-06-06

    The adsorption behavior of hydroxylamine on a Ge(100) surface was investigated using density functional theory (DFT) calculations. These calculations predicted that hydroxylamine, a multifunctional compound consisting of a hydroxyl group and an amine group, would initially become adsorbed through N-dative bonding, or alternatively through the hydroxyl group via O-H dissociative adsorption. An N-O dissociative reaction may also occur, mainly via N-dative molecular adsorption, and the N-O dissociative product was calculated to be the most stable of all the possible adsorption structures. The calculations furthermore indicated the formation of the N-O dissociative product from the N-dative structure to be nearly barrierless and the dissociated hydroxyl and amine groups to be bonded to two Ge atoms of adjacent Ge dimers. Simulated STM images suggested the change in electron density that would occur upon adsorption of hydroxylamine in various adsorption configurations, and specifically indicated the N-O dissociative product to have greater electron density around the amine groups, and the hydroxyl groups to mainly contribute electron density to the unoccupied electronic states.

  5. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J

    2017-04-05

    The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. 18 O and 2 H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.

  6. Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    PubMed Central

    Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.

    2003-01-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549

  7. Stiffness and strength of oxygen-functionalized graphene with vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu

    2014-11-14

    The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less

  8. Characterization and Neutralization of Recovered Lewisite Munitions

    DTIC Science & Technology

    2006-12-01

    chlorine being rated as 1.0.51 Oxidative Species Relative Oxidizing Strength* Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permnanganate ion is strongly attracted to the electrons

  9. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study

    NASA Astrophysics Data System (ADS)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2017-09-01

    Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.

  10. Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2015-01-01

    The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.

  11. Hydrogen-bond rich ionic liquids with hydroxyl cationic tails

    NASA Astrophysics Data System (ADS)

    Deng, Li; Shi, Rui; Wang, Yanting; Ou-Yang, Zhong-Can

    2013-02-01

    To investigate if the amphiphilic feature exhibited in ionic liquids (ILs) with nonpolar cationic tails still exists in ILs with polar tails, by performing molecular dynamics simulations for 1-(8-hydroxyoctyl)-3-methyl-imidazolium nitrate (COH) and 1-octyl-3-methyl-imidazolium nitrate (C8), we found that, in COH, cationic tail groups can no longer aggregate to form separated nonpolar tail domains, instead hydroxyl groups form a rich number of hydrogen bonds with other groups, indicating that the hydroxyl substituent changes the IL system from an amphiphilic liquid to a polar liquid. Due to the large amount of hydrogen bonds, COH has slower dynamics than C8.

  12. 10. Detail view of pendant lamps, laminated arch beams and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view of pendant lamps, laminated arch beams and ceiling structure, facing north - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID

  13. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  14. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    PubMed

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  15. Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups.

    PubMed

    Liu, Dong; Yu, Wenbin; Deng, Liangliang; Yuan, Weiwei; Ma, Lingya; Yuan, Peng; Du, Peixin; He, Hongping

    2016-01-01

    The structural incorporation of aluminium (Al) into diatomite is investigated by preparing several Al-diatomite composites by loading an Al precursor, hydroxyl aluminum polymer (Al13), onto the surface of diatomite and heating at various temperatures. The results indicate that Al was incorporated and implanted into the structure of diatomite by the condensation reaction of the hydroxyl groups of Al13 and diatomite, and the Si-O-Al(OH) groups were formed during the condensation reaction. Al incorporation by the condensation reaction of hydroxyl groups of Al13 with single silanols of diatomite occurred more readily than that with geminal silanols. The Al incorporation increased solid acidity of diatomite after Al incorporation. The acidity improvement was various for different types of acid sites, depending on the preparation temperature of the Al-incorporated diatomite. Both Brønsted and Lewis acid sites increased greatly after heating at 250 and 350 °C, but only L acid sites significantly improved after heating at 500 °C. These results demonstrate that the structural incorporation of Al(3+) ions into diatomite can occur by the condensation reaction of the hydroxyl groups of the Al precursors and diatomite. Moreover, the rich solid acid sites of Al-incorporated diatomite show its promising application as a solid acid catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length.

    PubMed

    Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida

    2005-01-13

    We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here.

  17. Cl⋯N weak interactions. Conformational analysis of imidazol-2-ylum heterocycles bearing N-β-chloroethyl and N-vinyl pendant groups

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Germán; Montes-Tolentino, Pedro; Sánchez-Ruiz, Sonia; Villaseñor-Granados, Tayde Osvaldo; Flores-Parra, Angelina

    2017-11-01

    Enantiomerically pure and racemic mixtures of β-chloroethylamines hydrochlorides with one and two stereogenic centres were used to synthesise 1,4-dialkyl-1,3-diimines, which in turn gave place to a series of imidazolium chlorides and tetraphenylborates bearing pendant N-β-chloroethyl substituents (sbnd CHEt-CH2Cl; sbnd CHMe-CHPhCl). Stereoselective dehydrochlorination of imidazolium compounds afforded in good yield the corresponding heterocycles bearing N-vinyl groups (-CEt=CH2; -CMe=CHPh). The volume of the N-substituents provides a steric screening of the cationic ring. The structure of the new compounds was determined by IR, mass spectra, NMR and X-ray diffraction analyses as well as DFT calculations of the optimized geometries. Uncommon stabilising intramolecular Cl⋯N weak interactions are described, together with H⋯Cl and H···π hydrogen bonds. The existence of the non-covalent weak intramolecular bonds was deduced from the X-ray diffraction analysis and confirmed by calculations of the electrostatic potential, electronic density distributions and the maps of the Laplacian functions of the electronic density.

  18. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-15

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was foundmore » in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.« less

  19. The size of the hydroxyl group and its contribution to the affinity of atropine for muscarine-sensitive acetylcholine receptors.

    PubMed Central

    Barlow, R. B.; Ramtoola, S.

    1980-01-01

    1 From measurements of the affinity constants of hydratropyltropine and its methiodide for muscarine-sensitive acetylcholine receptors in the guinea-pig ileum, the increment in log K for the hydroxyl group in atropine is 2.06 and in the methiodide it is 2.16. These effects are slightly bigger than any so far recorded with these receptors. 2 The estimate of the increment in apparent molal volume for the hydroxyl group is 1.1 cm3/mol in atropine and 1.0 cm3/mol in the methobromide. 3 The large effect of the group on affinity may be linked to its small apparent size in water as suggested in the previous paper. PMID:7470742

  20. Main-chain optically active riboflavin polymer for asymmetric catalysis and its vapochromic behavior.

    PubMed

    Iida, Hiroki; Iwahana, Soichiro; Mizoguchi, Tomohisa; Yashima, Eiji

    2012-09-12

    A novel optically active polymer consisting of riboflavin units as the main chain (poly-1) was prepared from naturally occurring riboflavin (vitamin B(2)) in three steps. The riboflavin residues of poly-1 were converted to 5-ethylriboflavinium cations (giving poly-2), which could be reversibly transformed into the corresponding 4a-hydroxyriboflavins (giving poly-2OH) through hydroxylation/dehydroxylation reactions. This reversible structural change was accompanied by a visible color change along with significant changes in the absorption and circular dichroism (CD) spectra. The nuclear Overhauser effect spectroscopy (NOESY) and CD spectra of poly-2 revealed a supramolecularly twisted helical structure with excess one-handedness through face-to-face stacking of the intermolecular riboflavinium units, as evidenced by the apparent NOE correlations between the interstrand riboflavin units and intense Cotton effects induced in the flavinium chromophore regions. The hydroxylation of poly-2 at the 4a-position proceeded in a diastereoselective fashion via chirality transfer from the induced supramolecular helical chirality assisted by the ribityl pendants, resulting in a 83:17 diastereomeric mixture of poly-2OH. The diastereoselectivity of poly-2 was remarkably higher than that of the corresponding monomeric model (64.5:35.5), indicating amplification of the chirality resulting from the supramolecular chirality induced in the stacked poly-2 backbones. The optically active poly-2 efficiently catalyzed the asymmetric organocatalytic oxidation of sulfides with hydrogen peroxide, yielding optically active sulfoxides with up to 60% enantiomeric excess (ee), whose enantioselectivity was higher than that catalyzed by the monomeric counterpart (30% ee). In addition, upon exposure to primary and secondary amines, poly-2 exhibited unique high-speed vapochromic behavior arising from the formation of 4a-amine adducts in the film.

  1. Synthetic route to meso-tetra hydrocarbyl or substituted hydrocarbyl porphyrins and derivatives

    DOEpatents

    Wijesekera, T.P.; Wagner, R.W.

    1993-08-31

    The hydroxyl group in a pyrrolic compound having in the 2-position thereof a group having the formula R(OH)CH-R is hydrocarbyl or substituted hydrocarbyl, is replaced by a group, for example a p-nitrobenzoate group, having better leaving properties than those of hydroxyl for a subsequent self-condensation and cyclization of the pyrrolic compound to form a meso-hydrocarbyl or meso-substituted hydrocarbyl porphyrin.

  2. Synthetic route to meso-tetra hydrocarbyl or substituted hydrocarbyl porphyrins and derivatives

    DOEpatents

    Wijesekera, Tilak P.; Wagner, Richard W.

    1993-01-01

    The hydroxyl group in a pyrrolic compound having in the 2-position thereof a group having the formula R(OH)CH--R is hydrocarbyl or substituted hydrocarbyl, is replaced by a group, for example a p-nitrobenzoate group, having better leaving properties than those of hydroxyl for a subsequent self-condensation and cyclization of the pyrrolic compound to form a meso-hydrocarbyl or meso-substituted hydrocarbyl porphyrin.

  3. Characterization and Neutralization of Arsenical-Based WWII Era Chemical Munition Fills

    DTIC Science & Technology

    2006-08-01

    Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen Peroxide 1.31 Perhydroxyl Radical 1.25 Permanganate 1.24 Hypobromous Acid 1.17 Chlorine...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permanganate ion is strongly attracted to the

  4. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.

    PubMed

    Marquês, Joaquim Trigo; Susana Marinho, H; de Almeida, Rodrigo Freire Martins

    2018-05-07

    This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature, with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as they can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants. Copyright © 2017. Published by Elsevier Ltd.

  5. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property

    DOE PAGES

    Seymour, Bryan T.; Wright, Roger A. E.; Parrott, Alexander C.; ...

    2017-07-03

    This paper reports on the synthesis of a series of poly(alkyl methacrylate) brush-grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs were prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant groups (containing >8 carbon atoms, such as 12, 13, 16, and 18 in this study) could be readily dispersed in poly(alphaolefin) (PAO),more » forming clear, homogeneous dispersions, and exhibited excellent stability at low and high temperatures as revealed by visual inspection and dynamic light scattering studies. Whereas poly(n-hexyl methacrylate) hairy NPs cannot be dispersed in PAO under ambient conditions or at 80 °C, interestingly, poly(2-ethylhexyl methacrylate) hairy NPs can be dispersed in PAO at 80 °C but not at room temperature, with a reversible clear-to-cloudy transition observed upon cooling. High-contact-stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in both the coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt % compared with neat PAO. Finally, the formation of a load-bearing tribofilm at the rubbing interface was confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.« less

  6. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour, Bryan T.; Wright, Roger A. E.; Parrott, Alexander C.

    This paper reports on the synthesis of a series of poly(alkyl methacrylate) brush-grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs were prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant groups (containing >8 carbon atoms, such as 12, 13, 16, and 18 in this study) could be readily dispersed in poly(alphaolefin) (PAO),more » forming clear, homogeneous dispersions, and exhibited excellent stability at low and high temperatures as revealed by visual inspection and dynamic light scattering studies. Whereas poly(n-hexyl methacrylate) hairy NPs cannot be dispersed in PAO under ambient conditions or at 80 °C, interestingly, poly(2-ethylhexyl methacrylate) hairy NPs can be dispersed in PAO at 80 °C but not at room temperature, with a reversible clear-to-cloudy transition observed upon cooling. High-contact-stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in both the coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt % compared with neat PAO. Finally, the formation of a load-bearing tribofilm at the rubbing interface was confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.« less

  7. A cluster randomized trial to determine the effectiveness of a novel, digital pendant and voice reminder platform on increasing infant immunization adherence in rural Udaipur, India.

    PubMed

    Nagar, Ruchit; Venkat, Preethi; Stone, Logan D; Engel, Kyle A; Sadda, Praneeth; Shahnawaz, Mohammed

    2017-11-18

    Five hundred thousand children under the age of 5 die from vaccine preventable diseases in India every year. More than just improving coverage, increasing timeliness of immunizations is critical to ensuring infant health in the first year of life. Novel, culturally appropriate community engagement strategies are worth exploring to close the immunization gap. In our study, a digital NFC (Near Field Communication) pendant worn on black thread and voice call reminder system was tested for the effectiveness in improving DTP3 adherence within 2 monthly camps from DTP1 administration. A cluster randomized controlled trial was conducted in which 96 village health camps were randomized to 3 arms: NFC sticker, NFC pendant, and NFC pendant with voice call reminder in local dialect. Randomization was done across 5 blocks in the Udaipur District serviced by Seva Mandir from August 2015 to April 2016. In terms of our three primary outcomes related to DTP3 adherence, point estimates show conflicting results. Two outcomes presented adherence in the control. DTP3 completion within two camps after DTP1 showed higher adherence in the Control (Sticker) (74.2%) arm compared to the Pendant (67.2%) and Pendant and Voice arms (69.3%). Likewise, the estimate for DTP3 completion within 180 days of birth in the Control (Sticker) (69.4%) arm was higher than estimates in the Pendant (57.4%) and Pendant and Voice arms (58.7%). However, one outcome displayed higher adherence in the intervention. DTP3 completion within two months from the time of registration was higher in the Pendant (37.7%) and Pendant and Voice arms (38.7%) compared to the Control (Sticker) arm (27.4%). In all primary outcomes, differences in adherence were statistically insignificant both before and after controlling for confounding factors. In terms of secondary outcomes, our results suggest that providing a necklace generated significant community discussion (H = 8.8796, df = 2, p = .0118), had strong satisfaction among users (χ2=26.039, df = 4, p < .0001), and resulted in increased visibility within families (grandmothers:χ2=34.023, df = 2, p < .0001, fathers: χ2=34.588, df = 2, p < .0001). Neither the NFC necklace nor the necklace with additional voice call reminders in the local dialect directly resulted in an increase in infant immunization timeliness through DTP3, the primary outcome. Still our process outcomes suggest that our culturally symbolic necklace has potential to be an assistive tool in immunization campaigns. Follow-on work will seek to examine whether positive behavior change towards vaccines can be fostered with earlier engagement of this platform beginning in the prenatal stage, under a continuum of care framework. Copyright © 2017. Published by Elsevier Ltd.

  8. Noise Dosimetry Survey of Land Force Occupations

    DTIC Science & Technology

    2008-12-01

    exercice de la réserve militaire à la base de Petawawa. On a demandé aux participants de porter des sonomètres intégrateurs personnels pendant...Central Area. In the training scenario, task forces were grouped under a Multi-National Brigade Headquarters, which included several groups of infantry...an artillery battery, an engineering squadron and an armoured reconnaissance squadron. Table 2 outlines the main characteristics of VG06. Figure 1

  9. Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review

    PubMed Central

    Wang, Hsing-Ju; Chen, Chih-Ping; Jeng, Ru-Jong

    2014-01-01

    Polythiophene (PT) is one of the widely used donor materials for solution-processable polymer solar cells (PSCs). Much progress in PT-based PSCs can be attributed to the design of novel PTs exhibiting intense and broad visible absorption with high charge carrier mobility to increase short-circuit current density (Jsc), along with low-lying highest occupied molecular orbital (HOMO) levels to achieve large open circuit voltage (Voc) values. A promising strategy to tailor the photophysical properties and energy levels via covalently attaching electron donor and acceptor pendants on PTs backbone has attracted much attention recently. The geometry, electron-donating capacity, and composition of conjugated pendants are supposed to be the crucial factors in adjusting the conformation, energy levels, and photovoltaic performance of PTs. This review will go over the most recent approaches that enable researchers to obtain in-depth information in the development of PTs comprising conjugated pendants for PSCs. PMID:28788575

  10. Application of PIXE to the study of Renaissance style enamelled gold jewelry

    NASA Astrophysics Data System (ADS)

    Weldon, M.; Carlson, J.; Reedy, S.; Swann, C. P.

    1996-04-01

    This study examines and compares three pieces of Renaissance style gold and enamelled jewelry owned by the Walters Art Gallery, Baltimore, MD, USA. These are a 16th century Hat Badge of Adam and Eve, a 19th century Fortitude Pendant and a Diana Pendant presumed to be of the 16th century (The Walters Art Gallery, Jewelry, Ancient to Modern (Viking, New York, 1979)), Ref. [1]. PIXE spectroscopy was applied to examine the elemental composition of the gold and of the enamels. Compositional differences, including the use of post-Renaissance colorants, were found between the enamels in separate regions of each of the three pieces. The modern colorant, chromium, was, in fact, found in all of the pieces and uranium was found in only the Diana Pendant. There are some differences in the gold purity of the three objects; there are significant differences in the solders used even within one object, the Fortitude Pendant.

  11. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.

    2017-03-01

    This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less

  12. Synthesis and photochemical properties of a novel iron-sulfur-nitrosyl cluster derivatized with the pendant chromophore protoporphyrin IX.

    PubMed

    Conrado, Christa L; Wecksler, Stephen; Egler, Christian; Magde, Douglas; Ford, Peter C

    2004-09-06

    The novel Roussin red-salt ester (PPIX-RSE) with a pendant porphyrin chromophore was prepared and investigated as a precursor for the photochemical generation of nitric oxide. PPIX-RSE has the general formula Fe(2)(NO)(4)[(mu-S,mu-S')P] (where (S,S')P is the bis(2-thiolatoethyl) diester of protoporphyrin IX. The photoexcitation of PPIX-RSE with 436- or 546-nm light in an aerated chloroform solution led to the photodecomposition of the cluster with the respective quantum yields (5.2 +/- 0.7) x 10(-4) and (2.5 +/- 0.5 x 10(-4)) and the concomitant release of NO. PPIX-RSE is a significantly more effective NO generator at longer wavelength excitation than are other Fe(2)(mu-SR)(2)(NO)(4) esters for which R is a simple alkyl group such as CH(3)CH(2)- because of the much higher absorptivity of the pendant PPIX chromophore at these wavelengths and a modestly higher quantum yield. Fluorescence intensity and lifetime data indicate that the photoexcited porphyrin of PPIX-RSE is largely quenched by the energy transfer to the Fe(2)S(2)(NO)(4) cluster's core. However, a small fraction of this emission is not quenched, and it is proposed that PPIX-RSE may exist in solution as two conformers.

  13. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  14. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin

    2017-05-01

    The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  15. Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone

    PubMed Central

    Chuang, Ting-Yun; Cheng, An-Jie; Chen, I-Ting; Lan, Tien-Yun; Huang, I-Hsuan; Shiau, Chung-Wai; Hsu, Chia-Lin; Liu, Ya-Wen; Chang, Zee-Fen; Tseng, Ping-Hui; Kuo, Jean-Cheng

    2017-01-01

    The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity. PMID:28537905

  16. Heterogeneous chain dynamics and aggregate lifetimes in precise acid-containing polyethylenes: Experiments and simulations

    DOE PAGES

    Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph; ...

    2016-11-10

    Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph

    Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less

  18. Correlating Transport with Nanostructure and Chemical Identity in Radical Polymer Conducting Glasses

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan; Rostro, Lizbeth; Baradwaj, Aditya; Hay, Martha

    2015-03-01

    Radical polymers are an emerging class of macromolecules that are composed of non-conjugated backbones which bear stable radical groups at the pendant positions. Because of these stable radical sites, these glassy materials are able to conduct charge in the solid state through a series of oxidation-reduction (redox) reactions. Importantly, the redox-active behavior is controlled by both the local chemical environment of the radical polymer groups and by the nanoscale structure of the materials. Here, we demonstrate that proper control of the pendant group chemical functionality allows for the fabrication of transparent and conducting amorphous thin films which have solid-state hole mobility and electrical conductivity values on the same order as those seen in common conjugated, semicrystalline polymer systems [e.g., poly(3-hexylthiophene) (P3HT)]. Furthermore, we show that control of the nanostructure of the materials aids in facilitating transport in these radical polymer thin films. In turn, we implement simultaneous spectroscopic and electrical characterization measurements in order to elucidate the exact mechanism of charge transport in radical polymers. Finally, we demonstrate that, because there is ready control over the molecular properties of these materials, developing bendable and stretchable transparent conducting thin films is relatively straightforward with this unique class of organic electronic materials.

  19. Pervaporation of Water-Dye, Alcohol-Dye, and Water-Alcohol Mixtures Using a Polyphosphazene Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, Christopher Joseph; Harrup, Mason Kurt; Mccoy, John Dwane

    A novel phosphazene heteropolymer (HPP) was synthesized that contained three differing pendant groups: 2-(2-methoxyethoxy)ethanol (MEE), 4-methoxyphenol, and 2-allylphenol. The resulting polymer is an amorphous elastomer with good film forming properties where MEE and 4-methoxyphenol pendant groups influenced the hydrophilicity and the solvent compatibility of the polymer. Sorption studies were performed to characterize the polymer in terms of Hansen solubility parameters. Additionally, group contributions were used to predict the Hansen parameters for the polymer and these data compared favorably with the observed solubility behavior with 15 solvents that ranged from hydrocarbons to water. Homopolymers synthesized from MEE and 4-methoxyphenol were alsomore » studied for solubility revealing different behaviors with each representing a limit in hydrophilicity; MEE formed a water-soluble hydrophilic polymer and 4-methoxyphenol yielded a hydrophobic polymer. Membranes formed from HPP were characterized for use as pervaporation membranse using five different feeds: water–dye, methanol–dye, 2-propanol–dye, water–2-propanol, and water–methanol. Fluxes of methanol and isopropanol were greater than for water. For the alcohol–water separations, the alcohol was the favored permeate in all cases with higher fluxes observed for higher alcohol feed concentrations, however, separation factors declined.« less

  20. Implications of the fluorescence for the conformational analysis of polymeric profisetinidins and procyanidins

    Treesearch

    Carin A. Helfer; Joo-Sang Sun; Mark A. Matties; Wayne L. Mattice; Richard W. Hemingway; Jan P. Steynberg; Lisa A. Kelly

    1995-01-01

    The common monomeric units in the polymeric proeyanidins are catechin and epicatechin, which have a hydroxyl group at C(5). This hydroxyl group is absent in the profisetinidins. The fluorescence properties have been characterized for the profisetinidin monomer and dimers, and compared with previous results for the procyanidins. There is a measurable heterogeneity in...

  1. Implications of the fluorescence for the conformational analysis of polymeric profisentinidins and procyanidins

    Treesearch

    Carin A. Heifer; Joo-Sang Sun; Mark A. Matties; Wayne L. Mattice; Richard W. Hemingway; Jan P. Steynberg; Lisa A. Kelly

    1995-01-01

    The common monomeric units in the polymeric procyanidins are catechin and epicatechin, which have a hydroxyl group at C(5). this hydroxyl group is absent in the profisetinidins. The fluorescence properties have been characterized for the profisentinidin monomer and dimers, and compared with previous results for the procyanidins. There is a measurable heterogeneity in...

  2. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in contrast to the typical spherical TiO2.

  3. New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders.

    PubMed

    Bressy, Christine; Ngo, Van Giang; Ziarelli, Fabio; Margaillan, André

    2012-02-14

    Functionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.e., 3-(trimethoxysilyl)propylmethacrylate (MPS). Fourier transform infrared (FTIR) and solid-state (13)C and (29)Si nuclear magnetic resonance (NMR) spectroscopic investigations demonstrated that the silane coupling agent was fully hydrolyzed and linked to the hydroxyl groups already present on the particle surface through covalent and hydrogen bonds. Due to a basic catalyzed condensation of MPS with water, a siloxane layer was shown to be anchored to the nanoparticles through mono- and tridentate structures. Quantitative investigations were performed by thermogravimetric (TGA) and elemental analyses. The amount of silane linked to ZnO particles was shown to be affected by the amount of isolated hydroxyl groups available to react on the particle surface. For as-prepared ZnO nanoparticles, the number of isolated and available hydroxyl groups per square nanometer was up to 3 times higher than the one found on commercially available ZnO nanoparticles, leading to higher amounts of polymerizable silane agent linked to the surface. The MPS molecules were shown to be mainly oriented perpendicular to the oxide surface for all the as-prepared ZnO nanoparticles, whereas a parallel orientation was found for the preheated commercially ZnO nanopowders. In addition, ZnO nanoparticles were shown to be hydrophobized by the MPS treatment with water contact angles higher than 60°.

  4. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts.

    PubMed

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    To evaluate the structure-activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system.

  5. Regioselective Benzoylation of Diols and Carbohydrates by Catalytic Amounts of Organobase.

    PubMed

    Lu, Yuchao; Hou, Chenxi; Ren, Jingli; Xin, Xiaoting; Xu, Hengfu; Pei, Yuxin; Dong, Hai; Pei, Zhichao

    2016-05-17

    A novel metal-free organobase-catalyzed regioselective benzoylation of diols and carbohydrates has been developed. Treatment of diol and carbohydrate substrates with 1.1 equiv. of 1-benzoylimidazole and 0.2 equiv. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in MeCN under mild conditions resulted in highly regioselective benzoylation for the primary hydroxyl group. Importantly, compared to most commonly used protecting bulky groups for primary hydroxyl groups, the benzoyl protective group offers a new protection strategy.

  6. To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis.

    PubMed

    Giustiniano, Mariateresa; Basso, Andrea; Mercalli, Valentina; Massarotti, Alberto; Novellino, Ettore; Tron, Gian Cesare; Zhu, Jieping

    2017-03-06

    The term functionalized isocyanides refers to all those isocyanides in which a neighbouring functional group can finely tune the reactivity of the isocyano group or can be exploited in post-functionalization processes. In this manuscript, we have reviewed all the isocyanides in which the pendant functional group causes either deviation from or reinforces the normal reactivity of the isocyano group and categorized them to highlight their common features and differences. An analysis of their synthetic potential and the possible unexplored directions for future research studies is also addressed.

  7. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  8. Influence of hydroxyl groups on the biological properties of cationic polymethacrylates as gene vectors.

    PubMed

    Ma, Ming; Li, Feng; Yuan, Zhe-fan; Zhuo, Ren-xi

    2010-07-01

    In this study poly(aminoethyl methacrylate) (PAEMA), poly(3-amino-2-hydroxypropyl methacrylate) (PAHPMA), poly(2-(2-aminoethylamino)ethyl methacrylate) (PAEAEMA) and poly(3-(2-aminoethylamino) 2-hydroxypropyl methacrylate) (PAEAHPMA) were synthesized using atom transfer radical polymerization to evaluate the effect of hydroxyl groups on the relative properties of cationic polymeric gene vectors. The results of heparin displacement assays showed that PAHPMA possessed a stronger binding capacity than PAEMA. PAHPMA/DNA complexes and PAEAHPMA/DNA complexes had lower zeta potentials than those of PAEMA and PAEAEMA. MTT assay results indicated that PAHPMA and PAEAHPMA exhibited obviously lower cytotoxicities than PAEMA and PAEAEMA. Subsequently, in vitro gene transfection studies in 293T cells without serum showed that PAHPMA exhibited a lower transfection efficiency than PAEMA and PAEAHPMA/DNA complexes possessed a similar transfection efficiency to PAEAEMA/DNA complexes. Moreover, PAHPMA and PAEAHPMA retained similar transfection efficiencies in DMEM with 10% serum, but PAEMA and PAEAEMA showed slightly lower transfection efficiencies than in the absence of serum. The reason for these phenomena might be attributed to the introduction of hydroxyl groups into PAHPMA and PAEAHPMA, i.e. the existence of hydroxyl groups might increase the binding capacity to DNA and at the same time decrease the surface charge of the polymer/DNA complexes due to the formation of hydrogen bonds between the polymers and DNA. Therefore, a lower zeta potential and stronger binding ability may result in a lower gene transfection efficiency. This effect of hydroxyl groups decreased with increasing amino group density on the polymer. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2 i as performance enhancement filler particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venna, Surendar R.; Spore, Alex; Tian, Zhicheng

    Phosphazene-based polymers were synthesized by using different pendant groups such as trifluoroethoxy (TFE), phenoxy (PHO) and octafluoropentoxy (OFP). High performance methoxyethoxyethoxy/cyclohexoxy (MEE/CH) based polyphosphazene was developed for the first time in literature using a mixed-substitution method. The structural, chemical, and thermal properties of these polymers were analyzed using several techniques such as Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR). Significant differences in gas transport properties of gases have been observed between these pendant groups because of their differences in glass transition temperature and physical interaction with CO 2. For themore » first time, we report on the high performance of TFE polyphophazene based mixed matrix membranes (MMMs) using a SIFSIX-Cu-2i (SIFSIX) metal organic framework (MOF) as the filler particles. These MMMs showed a significant improvement in both CO 2 permeability and CO 2/N 2 selectivity compared to pure TFE polyphosphazene membranes. As a result, the excellent gas transport properties of these membranes make them very promising material for carbon capture applications.« less

  10. Long-Life and High-Power Binder-Free Cathode Based on One-Step Synthesis of Radical Polymers with Multi-Pendant Groups.

    PubMed

    Chen, Yaoguang; Zhang, Yangfan; Liu, Xiu; Fan, Xuliang; Bai, Bing; Yang, Kang; Liang, Zhongxin; Zhang, Zishou; Mai, Kancheng

    2018-05-16

    The main bottlenecks for the widespread application of radical polymers in organic radical batteries are poor cycling stability, due to the dissolution of radical polymers into the electrolyte, and the low efficiency of multi-step synthesis strategies. Herein, a kind of electrolyte-resistant radical polymer bearing multi-pendant groups (poly(ethylene-alt-TEMPO maleate) (PETM)) is designed and synthesized through a one-step esterification reaction to graft 4-hydroxy-2,2,6,6-teramethylpiperidinyl-1-oxy into the commercially available poly(ethylene-alt-maleic anhydride). Interestingly, PETM is hardly soluble in the ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate-based electrolyte, showing an extremely low solubility of 0.59 mg mL -1 , but is easily soluble in tetrahydrofuran and N-Methyl pyrrolidone. The derived binder-free PETM cathode exhibits nearly 100% utilization of the grafted nitroxide radicals (88 mA h g -1 ) and excellent rate capability with almost invariant capacitance from 10 C to 40 C. Significantly, the PETM cathodes retain 94% of the initial capacity after 1000 cycles, outperforming most reported radical polymer-based cathodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2 i as performance enhancement filler particles

    DOE PAGES

    Venna, Surendar R.; Spore, Alex; Tian, Zhicheng; ...

    2017-04-19

    Phosphazene-based polymers were synthesized by using different pendant groups such as trifluoroethoxy (TFE), phenoxy (PHO) and octafluoropentoxy (OFP). High performance methoxyethoxyethoxy/cyclohexoxy (MEE/CH) based polyphosphazene was developed for the first time in literature using a mixed-substitution method. The structural, chemical, and thermal properties of these polymers were analyzed using several techniques such as Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR). Significant differences in gas transport properties of gases have been observed between these pendant groups because of their differences in glass transition temperature and physical interaction with CO 2. For themore » first time, we report on the high performance of TFE polyphophazene based mixed matrix membranes (MMMs) using a SIFSIX-Cu-2i (SIFSIX) metal organic framework (MOF) as the filler particles. These MMMs showed a significant improvement in both CO 2 permeability and CO 2/N 2 selectivity compared to pure TFE polyphosphazene membranes. As a result, the excellent gas transport properties of these membranes make them very promising material for carbon capture applications.« less

  12. Switchable nanoassembly from an azobenzene-containing dye.

    PubMed

    Wang, Jing; Ha, Chang-Sik

    2011-07-01

    In this work, we investigated optical properties and the morphology of the amphiphilic azobenzene dye 1 containing hydroxyl azobenzene and C10 alkyl chains. Since the hydroxyl group on 1 has a pKa of 9.38, the deprotonation of the hydroxyl group occurs at pH > pKa (9.38) and thus the 1 nanoparticles are negatively charged. The deprotonated hydroxyl group is hydrophilic relative to the long alkyl chain that is hydrophobic, while the hydrophobic and hydrophilic parts are connected by covalent bonds. When such an azobenzene molecule 1 with both hydrophobic and hydrophilic groups exists in solution, "self-aggregation" may occur due to the hydrophobic interaction between the long alkyl chains. The scattered morphology at pH 7.0 (neutral state) and the aggregated morphology at pH 10.5 (anionic state) of 1 were demostrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM) images. Formation of supramolecular aggregation-induced vesicular-like structures are highly interesting due to the ability to respond to external triggers, pH. The pH value can be reversed by adding acid or base to the system, that is, switching the aggregation "on" and "off" can be repeated.

  13. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme.

    PubMed Central

    Fu, D J; McLaughlin, L W

    1992-01-01

    Eight modified ribozymes of 19 residues have been prepared with individual purine amino or hydroxyl groups excised. The modified ribozymes were chemically synthesized with the substitution of a single 2'-deoxyadenosine, 2'-deoxyguanosine, inosine, or purine riboside for residues G10, A11, G13, or A14. Five of the modified ribozymes cleaved the 24-mer substrate with little change in rate as monitored by simple first-order kinetics. However, deletion of the 2-amino group at G10 (replacement with inosine) or deletion of either of the 2'-hydroxyls at G10 or G13 (replacement with 2'-deoxyguanosine) resulted in ribozymes with a drastic decrease in cleavage efficiency. Increasing the concentration of the Mg2+ cofactor from 10 mM to 50 mM significantly enhanced cleavage efficiency by these three derivatives. Steady-state kinetic assays for these three ribozymes indicated that the modifications result in both an increase in Km and a decrease in kcat. These results suggest that the exocyclic amino group at-G10 and the hydroxyls at G10 and G13 are important both for ribozyme-substrate binding and for the Mg(2+)-catalyzed cleavage reaction. PMID:1570323

  14. Nature and position of functional group on thiopurine substrates influence activity of xanthine oxidase--enzymatic reaction pathways of 6-mercaptopurine and 2-mercaptopurine are different.

    PubMed

    Tamta, Hemlata; Kalra, Sukirti; Thilagavathi, Ramasamy; Chakraborti, Asit K; Mukhopadhyay, Anup K

    2007-02-01

    Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.

  15. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

    NASA Astrophysics Data System (ADS)

    Hill, Christopher K.; Hartwig, John F.

    2017-12-01

    Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

  16. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  17. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  18. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  19. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  20. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.

    PubMed

    Bullock, R Morris; Helm, Monte L

    2015-07-21

    Sustainable, carbon-neutral energy is needed to supplant the worldwide reliance on fossil fuels in order to address the persistent problem of increasing emissions of CO2. Solar and wind energy are intermittent, highlighting the need to develop energy storage on a huge scale. Electrocatalysts provide a way to convert between electrical energy generated by renewable energy sources and chemical energy in the form of chemical bonds. Oxidation of hydrogen to give two electrons and two protons is carried out in fuel cells, but the typical catalyst is platinum, a precious metal of low earth abundance and high cost. In nature, hydrogenases based on iron or iron/nickel reversibly oxidize hydrogen with remarkable efficiencies and rates. Functional models of these enzymes have been synthesized with the goal of achieving electrocatalytic H2 oxidation using inexpensive, earth-abundant metals along with a key feature identified in the [FeFe]-hydrogenase: an amine base positioned near the metal. The diphosphine ligands P(R)2N(R')2 (1,5-diaza-3,7-diphosphacyclooctane with alkyl or aryl groups on the P and N atoms) are used as ligands in Ni, Fe, and Mn complexes. The pendant amines facilitate binding and heterolytic cleavage of H2, placing the hydride on the metal and the proton on the amine. The pendant amines also serve as proton relays, accelerating intramolecular and intermolecular proton transfers. Electrochemical oxidations and deprotonations by an exogeneous amine base lead to catalytic cycles for oxidation of H2 (1 atm) at room temperature for catalysts derived from [Ni(P(Cy)2N(R')2)2](2+), Cp(C6F5)Fe(P(tBu)2N(Bn)2)H, and MnH(P(Ph)2N(Bn)2)(bppm)(CO) [bppm = (PAr(F)2)2CH2]. In the oxidation of H2 catalyzed by [Ni(P(Cy)2N(R')2)2](2+), the initial product observed experimentally is a Ni(0) complex in which two of the pendant amines are protonated. Two different pathways can occur from this intermediate; deprotonation followed by oxidation occurs with a lower overpotential than the alternate pathway involving oxidation followed by deprotonation. The Mn cation [Mn(P(Ph)2N(Bn)2)(bppm)(CO)](+) mediates the rapid (>10(4) s(-1) at -95 °C), reversible heterolytic cleavage of H2. Obtaining the optimal benefit of pendant amines incorporated into the ligand requires that the pendant amine be properly positioned to interact with a M-H or M(H2) bond. In addition, ligands are ideally selected such that the hydride-acceptor ability of the metal and the basicity of a pendant are tuned to give low barriers for heterolytic cleavage of the H-H bond and subsequent proton transfer reactions. Using these principles allows the rational design of electrocatalysts for H2 oxidation using earth-abundant metals.

  1. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts

    PubMed Central

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    Aim: To evaluate the structure–activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Materials & methods: Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Results & conclusion: Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system. PMID:26107486

  2. Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process.

    PubMed

    Cano, María Emilia; Varela, Oscar; García-Moreno, María Isabel; García Fernández, José Manuel; Kovensky, José; Uhrig, María Laura

    2017-04-18

    The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC 50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d

  4. Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.

    PubMed

    Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone

    2011-01-17

    Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions.

  5. Highly porous and mechanically strong ceramic oxide aerogels

    NASA Technical Reports Server (NTRS)

    Johnston, James C. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Fabrizio, Eve F. (Inventor)

    2012-01-01

    Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.

  6. Highly porous and mechanically strong ceramic oxide aerogels

    NASA Technical Reports Server (NTRS)

    Fabrizio, Eve F. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Johnston, James C. (Inventor)

    2010-01-01

    Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.

  7. Diffusion of hydroxyl ions from calcium hydroxide and Aloe vera pastes.

    PubMed

    Batista, Victor Eduardo de Souza; Olian, Douglas Dáquila; Mori, Graziela Garrido

    2014-01-01

    This study evaluated the diffusion through the dentinal tubules of hydroxyl ions from different calcium hydroxide (CH) pastes containing Aloe vera. Sixty single-rooted bovine teeth were used. The tooth crowns were removed, the root canals were instrumented and the specimens were assigned to 4 groups (n=15) according to the intracanal medication: Group CH/S - CH powder and saline paste; Group CH/P - CH powder and propylene glycol paste; Group CH/A - calcium hydroxide powder and Aloe vera gel paste; Group CH/A/P - CH powder, Aloe vera powder and propylene glycol paste. After placement of the root canal dressings, the teeth were sealed coronally and apically with a two-step epoxy adhesive. The teeth were placed in identified flasks containing deionized water and stored in an oven with 100% humidity at 37 °C. After 3 h, 24 h, 72 h, 7 days, 15 days and 30 days, the deionized water in the flasks was collected and its pH was measured by a pH meter. The obtained data were subjected to statistical analysis at a significance level of 5%. The results demonstrated that all pastes provided diffusion of hydroxyl ions through the dentinal tubules. The combination of Aloe vera and CH (group CH/A) provided a constant release of calcium ions. Group CH/A/P showed the highest pH at 24 and 72 h. In conclusion, the experimental pastes containing Aloe vera were able to enable the diffusion of hydroxyl ions through the dentinal tubules.

  8. Identification of the related substances of tilmicosin by liquid chromatography/ion trap mass spectrometry.

    PubMed

    Stoev, Georgi; Nazarov, Valeri

    2008-06-01

    Structures of seven impurities of the veterinary drug tilmicosin have been elucidated by multiple fragmentation with ion trap tandem mass spectrometry. All related compounds possess the main lactone ring of tilmicosin. The differences in their structures are due to the hydroxyl, mycaminose, 3,5-dimethylpiperidine and mycinose groups connected to C(3), C(5), C(6), C(14) of the lactone ring, respectively. The following compounds of the impurity profile of tilmicosin were identified: B - tilmicosin with a hydroxyl group at C(3); C - tilmicosin without a methyl group at the N-atom connected to C(3) of the mycaminose ring; D - tilmicosin with a hydroxyl group at C(6) of the mycaminose ring; E - tilmicosin with a methoxy group at C(3), F - desmicosin; G - 20-dihydrodesmicosin; and H - tilmicosin without a mycaminose ring. Isomers of the compounds B, C, D, E and H were identified by their mass chromatograms and retention times. The concentrations of the impurities varied in the range of 0.1% to 2.9%.

  9. Spectroscopic and Photochemical Properties of Water-Soluble Fullerenol

    EPA Science Inventory

    Fullerenol, a hydroxylated form of C60-fullerene, is of potential environmental and biological significance due to its buckyball structure, hydroxyl groups and high water solubility. Although fullerenol is known to be an efficient triplet photosensitizer, little is known about it...

  10. Growth of large zeolite crystals in space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

    1988-01-01

    Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

  11. [4 + 2] Cycloaddition reaction of C-aryl ketenimines with PTAD as a synthetic equivalent of dinitrogen. Synthesis of triazolocinnolines and cinnolines.

    PubMed

    Alajarin, Mateo; Bonillo, Baltasar; Marin-Luna, Marta; Vidal, Angel; Orenes, Raul-Angel

    2009-05-01

    C,C,N-Triaryl ketenimines and C-alkyl-C,N-diaryl ketenimines react with 2 equiv of PTAD to provide 1,2,4-triazolo[1,2-a]cinnolines with a pendant triazolidindione group by means of a Diels-Alder/ene sequence. The treatment of such adducts with potassium hydroxide affords 3-aminocinnolines.

  12. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    PubMed

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  13. Synthesis, X-ray crystal structures, and phosphate ester cleavage properties of bis(2-pyridylmethyl)amine copper(II) complexes with guanidinium pendant groups.

    PubMed

    Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone

    2008-10-06

    Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.

  14. 75 FR 13806 - Culturally Significant Objects Imported for Exhibition Determinations: “Loan From the Aura...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... DEPARTMENT OF STATE [Public Notice 6926] Culturally Significant Objects Imported for Exhibition Determinations: ``Loan From the Aura Collection of a Winged Figure Pendant'' SUMMARY: Notice is hereby given of... included in the exhibition ``Loan from the Aura Collection of a Winged Figure Pendant,'' imported from...

  15. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  16. Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors.

    PubMed

    Zhang, Zhenfang; Yang, Cuihong; Duan, Yajun; Wang, Yanming; Liu, Jianfeng; Wang, Lianyong; Kong, Deling

    2010-07-01

    A novel class of non-viral gene vectors consisting of low molecular weight poly(ethylene imine) (PEI) (molecular weight 800 Da) grafted onto degradable linear poly(ethylene glycol) (PEG) analogs was synthesized. First, a Michael addition reaction between poly(ethylene glycol) diacrylates (PEGDA) (molecular weight 258 Da) and d,l-dithiothreitol (DTT) was carried out to generate a linear polymer (PEG-DTT) having a terminal thiol, methacrylate and pendant hydroxyl functional groups. Five PEG-DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from 1.2:1 to 1:1.2. Then PEI (800 Da) was grafted onto the main chain of the PEG-DTTs using 1,1'-carbonyldiimidazole as the linker. The above reaction gave rise to a new class of non-viral gene vectors, (PEG-DTT)-g-PEI copolymers, which can effectively complex DNA to form nanoparticles. The molecular weights and structures of the copolymers were characterized by gel permeation chromatography, (1)H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The size of the nanoparticles was<200 nm and the surface charge of the nanoparticles, expressed as the zeta potential, was between+20 and+40 mV. Cytotoxicity assays showed that the copolymers exhibited much lower cytotoxicities than high molecular weight PEI (25 kDa). Transfection was performed in cultured HeLa, HepG2, MCF-7 and COS-7 cells. The copolymers showed higher transfection efficiencies than PEI (25 kDa) tested in four cell lines. The presence of serum (up to 30%) had no inhibitory effect on the transfection efficiency. These results indicate that this new class of non-viral gene vectors may be a promising gene carrier that is worth further investigation. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections

    NASA Astrophysics Data System (ADS)

    Zhang, Fuwu; Smolen, Justin A.; Zhang, Shiyi; Li, Richen; Shah, Parth N.; Cho, Sangho; Wang, Hai; Raymond, Jeffery E.; Cannon, Carolyn L.; Wooley, Karen L.

    2015-01-01

    In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate.In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate. Electronic supplementary information (ESI) available: Materials, experimental details, and characterization. See DOI: 10.1039/c4nr07103d

  18. DNA Binding Hydroxyl Radical Probes.

    PubMed

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  19. Brushed block copolymer micelles with pH-sensitive pendant groups for controlled drug delivery.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2013-08-01

    To investigate the effects of small aliphatic pendent groups conjugated through an acid-sensitive linker to the core of brushed block copolymer micelles on particle properties. The brushed block copolymers were synthesized by conjugating five types of 2-alkanone (2-butanone, 2-hexanone, 2-octanone, 2-decanone, and 2-dodecanone) through an acid-labile hydrazone linker to poly(ethylene glycol)-poly(aspartate hydrazide) block copolymers. Only block copolymers with 2-hexanone and 2-octanone (PEG-HEX and PEG-OCT) formed micelles with a clinically relevant size (< 50 nm in diameter), low critical micelle concentration (CMC, < 20 μM), and drug entrapment yields (approximately 5 wt.%). Both micelles degraded in aqueous solutions in a pH-dependent manner, while the degradation was accelerated in an acidic condition (pH 5.0) in comparison to pH 7.4. Despite these similar properties, PEG-OCT micelles controlled the entrapment and pH-dependent release of a hydrophobic drug most efficiently, without altering particle size, shape, and stability. The molecular weight of PEG (12 kDa vs 5 kDa) induced no change in pH-controlled drug release rates of PEG-OCT micelles. Acid-labile small aliphatic pendant groups are useful to control the entrapment and release of a hydrophobic drug physically entrapped in the core of brushed block copolymer micelles.

  20. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  1. Fragmentation characteristics of hydroxycinnamic acids in ESI-MSn by density functional theory.

    PubMed

    Yin, Zhi-Hui; Sun, Chang-Hai; Fang, Hong-Zhuang

    2017-07-01

    This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI-MS n ) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi-molecular ions ([M - H] - ) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m-phenolic hydroxyl > p-phenolic hydroxyl > o-phenolic hydroxyl; and (2) ortho effect always occurred in o-dihydroxycinnamic acids (o-diHCAs), i.e. one phenolic hydroxyl group offered H + , which combined with the other one to lose H 2 O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO 2 . The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI-MS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Mechanism and kinetics of the atmospheric degradation of 2-formylcinnamaldehyde with O3 and hydroxyl OH radicals - a theoretical study

    NASA Astrophysics Data System (ADS)

    Thangamani, D.; Shankar, R.; Vijayakumar, S.; Kolandaivel, P.

    2016-10-01

    In the present investigation, the reaction mechanism and kinetics of 2-formylcinnamaldehyde (2-FC) with O3 and hydroxyl OH radicals were studied. The reaction of 2-FC with O3 radical are initiated by the formation of primary ozonide, whereas the reaction of 2-FC with the hydroxyl OH radical are initiated by two different ways: (1). H-atom abstraction by hydroxyl OH radical from the -CHO and -CH = CHCHO group of 2-FC (2). Hydroxyl OH addition to the -CH = CHCHO group to the ring-opened 2-FC. These reactions lead to the formation of an alkyl radical. The reaction pathways corresponding to the reactions between 2-FC with O3 and hydroxyl OH radicals have been analysed using density functionals of B3LYP and M06-2X level of methods with the 6-31+G(d,p) basis set. Single-point energy calculations for the most favourable reactive species are determined by B3LYP/6-311++G(d,p) and CCSD(T)/6-31+G(d,p) levels of theory. From the obtained results, the hydroxyl OH addition at C8 position of 2-FC are most favourable than the C9 position of 2-FC. The subsequent reactions of the alkyl radicals, formed from the hydroxyl OH addition at C8 position, are analysed in detail. The individual and overall rate constant for the most favourable reactions are calculated by canonical variational transition theory with small-curvature tunnelling corrections over the temperature range of 278-350 K. The calculated theoretical rate constants are in good agreement with the available experimental data. The Arrhenius plot of the rate constants with the temperature are fitted and the atmospheric lifetimes of the 2-FC with hydroxyl OH radical reaction in the troposphere calculate for the first time, which can be applied to the study on the atmospheric implications. The condensed Fukui function has been verified for the most favourable reaction sites. This study can be regarded as an attempt to investigate the O3-initiated and hydroxyl OH-initiated reaction mechanisms of 2-FC in the atmosphere.

  3. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    PubMed

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  4. Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic

    PubMed Central

    2012-01-01

    Liquid cultures of the basidiomycetous fungus Gloeophyllum striatum were employed to study the biodegradation of pradofloxacin, a new veterinary fluoroquinolone antibiotic carrying a CN group at position C-8. After 16 days of incubation, metabolites were purified by micro-preparative high-performance liquid chromatography. Four metabolites could be identified by co-chromatography with chemically synthesized standards. The chemical structures of three compounds were resolved by 1H-nuclear magnetic resonance spectroscopy plus infrared spectroscopy in one case. All metabolites were confirmed by high resolution mass spectrometry-derived molecular formulae. They comprised compounds in which the carboxyl group or the fluorine atom had been exchanged for a hydroxyl group. Furthermore, replacement of the CN group and the intact amine moiety by a hydroxyl group as well as degradation of the amine substituent were observed. The chemical structure of a catechol-type fluoroquinolone metabolite (F-5) could be fully defined for the first time. The latter initiated a hypothetical degradation sequence providing a unique metabolite, F-13, which consisted of the cyclopropyl-substituted pyridone ring still carrying C-7 and C-8 of pradofloxacin, now linked by a double bond and substituted by a hydroxyl and the CN group, respectively. Most likely, all reactions were hydroxyl radical-driven. Metabolite F-13 proves fungal cleavage of the aromatic fluoroquinolone core for the first time. Hence, two decades after the emergence of the notion of the non-biodegradability of fluoroquinolones, fungal degradation of all key structural elements has been proven. PMID:22214407

  5. 78 FR 50104 - Notice of Inventory Completion: Anthropological Studies Center, Archaeological Collections...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... associated funerary objects are 33 bone tools; 2 bone beads; 8 bone pendants; 1 bone pendant or net gauge; 32 bone tubes; 1 bone tube/whistle; 8 bone whistles; 19 pieces modified bone of indefinite use; 4 antler... casts; 1 charcoal sample; 4,328 pieces unmodified faunal bone; 422 pieces unmodified shell; 426 pieces...

  6. 75 FR 68377 - Notice of Inventory Completion: Anthropological Studies Center, Archaeological Collections...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... basalt tool, 317 non-human bone fragments, 1 abalone shell fragment, 2 ash/soil samples, 1 groundstone, 1 quartz chunk, 3 abalone pendants and 4 olivella beads. One of the burials identified was associated with... groundstones, 2 steatite beads, 1 abalone pendant, 2 clamshell disk beads, 23 olivella beads and 2 steatite...

  7. 46 CFR 169.537 - Description of equipment for lifefloats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... type. Boathook handles must be of clear grained white ash, or equivalent, not less than 6 feet long and 11/2 inches in diameter. (b) Lifeline and pendants. The lifeline and pendants must be as furnished by... in such a way it runs freely when the life float floats away from the sinking vessel. (e) Water light...

  8. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  9. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  10. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  11. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    PubMed

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A comprehensive review of techniques for biofunctionalization of titanium

    PubMed Central

    2011-01-01

    A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO2. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin. PMID:22324003

  13. Interfacial Engineering for Low-Density Graphene Nanocomposites

    DTIC Science & Technology

    2014-07-23

    structure of polydimethylsiloxane ( PDMS ) to contain pyrene pendant groups such that it would non-covalently bind to graphene. This would allow for...high graphene loadings and conductive strain-sensitivity in PDMS . SEM images of these composites are shown here: 2 The high level of dispersion...allowed for a pristine graphene composite conductivity of 220 S/m; this is after using a membrane to induce separation between graphene-bound PDMS

  14. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    PubMed

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  16. Evaluation of newly synthesized and commercially available charged cyclomaltooligosaccharides (cyclodextrins) for capillary electrokinetic chromatography.

    PubMed

    Culha, Mustafa; Schell, Fred M; Fox, Shannon; Green, Thomas; Betts, Thomas; Sepaniak, Michael J

    2004-01-22

    A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.

  17. Pendant acid-base groups in molecular catalysts: H-bond promoters or proton relays? Mechanisms of the conversion of CO2 to CO by electrogenerated iron(0)porphyrins bearing prepositioned phenol functionalities.

    PubMed

    Costentin, Cyrille; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel

    2014-08-20

    Two derivatives of iron tetraphenylporphyrin bearing prepositioned phenolic functionalities on two of the opposed phenyl groups prove to be remarkable catalysts for the reduction of CO2 to CO when generated electrochemically at the Fe(0) oxidation state. In one case, the same substituents are present on the two other phenyls, whereas in the other the two other phenyls are perfluorinated. They are taken as examples of the possible role of pendant acid-base groups in molecular catalysis. The prepositioned phenol groups incorporated into the catalyst molecule induce strong stabilization of the initial Fe(0)CO2 adduct through H-bonding, confirmed by DFT calculations. This positive factor is partly counterbalanced by the necessity, resulting from the same stabilization, to inject an additional electron to trigger catalysis. Thanks to the preprotonation of the initial Fe(0)CO2 adduct, the potential required for this second electron transfer is not very distant from the potential at which the adduct is generated by addition of CO2 to the Fe(0) complex. The protonation step involves an internal phenolic group and the reprotonation of the phenoxide ion thus generated by added phenol. The prepositioned phenol groups thus play both the role of H-bonding stabilizers and high-concentration proton donors. They play the same role in the second electron transfer step which closes the catalytic loop concertedly with the breaking of one of the two C-O bonds of CO2 and with proton transfer. It is also remarkable that reprotonation by added phenol is concerted with the three other events.

  18. Achieving Reversible H2/H+ Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyadarshani, Nilusha; Dutta, Arnab; Ginovska-Pangovska, Bojana

    Inspired by the contribution of the protein scaffold to the efficiency with which enzymes function, we report the first molecular complex that is reversible for electrocatalytic H2 production/oxidation at room temperature in methanol. [Ni(PCy2NPhe2)2]2+ (CyPhe; PR2NR’2 = 1,5-diaza-3,7-diphosphacyclooctane, Cy=cyclohexyl, Phe=phenylalanine), shows reversible behavior in acidic methanol with peripheral phenylalanine groups providing key contributions to the catalytic behavior. The importance of the aromatic rings is implicated in achieving reversibility, based on the lack of reversibility of similar complexes, [Ni(PCy2NAmino Acid2)2]2+, containing arginine (CyArg) or glycine (CyGly). A complex with an added OH group on the ring, (CyTyr; Tyr=Tyrosine), also shows similarmore » behavior. NMR studies reveal a significantly slower rate of chair-boat isomerization for the CyPhe relative to other derivatives, suggesting that the aromatic groups provide structural control by interacting with each other, an observation supported by molecular dynamics studies. NMR studies also show extremely fast proton movement, with a proton pathway from the Ni-H through the pendant amine to the –COOH group. Further, studies of acomplex without the –COOH group, [Ni(PCy2NTym2)2]2+ (CyTym; Tym=Tyramine), are not reversible and have slow proton movement from the pendant amine, demonstrating the essential nature of the –COOH group in achieving reversibility. Finally, methanol is demonstrated to play a critical contributing role. The influence of multiple factors on reversibility for this synthetic catalyst is a demonstration of the intricate interplay between the first, second, and outer coordination spheres and resembles the complexity observed in metalloenzymes.« less

  19. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.

    PubMed

    Zheng, Dehua; Wang, Mei; Chen, Lin; Wang, Ning; Sun, Licheng

    2014-02-03

    A diiron dithiolate complex with a pendant phosphine coordinated to one of the iron centers, [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe2(CO)5}] (1), was prepared and structurally characterized. The pendant phosphine is dissociated together with a CO ligand in the presence of excess PMe3, to afford [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe(CO)2(PMe3)}2] (2). Redox reactions of 2 and related complexes were studied in detail by in situ IR spectroscopy. A series of new Fe(II)Fe(I) ([3](+) and [6](+)), Fe(II)Fe(II) ([4](2+)), and Fe(I)Fe(I) (5) complexes relevant to Hox, Hox(CO), and Hred states of the [FeFe]-hydrogenase active site were detected. Among these complexes, the molecular structures of the diferrous complex [4](2+) with the internal amine and the pendant phosphine co-coordinated to the same iron center and the triphosphine diiron complex 5 were determined by X-ray crystallography. To make a comparison, the redox reactions of an analogous complex, [(μ-SCH2)2N(CH2C6H5){Fe(CO)2(PMe3)}2] (7), were also investigated by in situ IR spectroscopy in the absence or presence of extrinsic PPh3, which has no influence on the oxidation reaction of 7. The pendant phosphine in the second coordination sphere makes the redox reaction of 2 different from that of its analogue 7.

  20. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  1. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemicalmore » shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that only one of the proton transfer processes from the hydroxyl groups involved the catalytic cycle is responsible for the isotope effects. We suggest that this step is the proton transfer from the hydroxyl group of C-1 to the peroxide of the oxytyrosinase form (E{sub ox}). After the nucleophilic attack, the incorporation of the oxygen in the benzene ring occurs by means of an electrophilic aromatic substitution mechanism in which there is no isotopic effect.« less

  2. Hydroxyl orientations in cellobiose and other polyhydroxy compounds – modeling versus experiment

    USDA-ARS?s Scientific Manuscript database

    Theoretical and experimental gas-phase studies of carbohydrates show that their hydroxyl groups are located in homodromic partial rings that resemble cooperative hydrogen bonds, albeit with long H…O distances and small O-H…O angles. On the other hand, anecdotal experience with disaccharide crystal ...

  3. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-12-31

    The hydration of an outer layer on nuclear waste glasses in known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. In addition, molecular watermore » was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. The hydrated layer on the nuclear waste glasses appears to be of relatively low water content (4 to 7% by weight) and is not substantially hydroxylated. Thus, these layers do not have many of the properties associated with gel layers.« less

  4. Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: A DFT study

    NASA Astrophysics Data System (ADS)

    Maleki, Farahnaz; Schlexer, Philomena; Pacchioni, Gianfranco

    2018-02-01

    Oxide-supported Cu nanoparticles and clusters catalyze a variety of important reactions, such as CO/CO2 hydrogenation to methanol. Recent studies demonstrate that also sub-nanometer clusters consisting of only a few atoms can actively catalyze chemical reactions. In this study, we investigate the interaction between Cu4 clusters and silica-surfaces, considering the de-hydroxylated and the fully hydroxylated α-quartz surfaces. We also considered various dopants such as Ti- and Nb-ions substitutional to Si, respectively, in order to see if an electronic change of the support has an effect on the reaction of the supported cluster. We find that hydroxyl groups can enhance the adsorption energy of the cluster, whereas the dopants have only little effects on the adsorption mode of the Cu cluster. On the fully hydroxylated surface, the cluster may react with the hydroxyl groups via reverse hydrogen spillover. Finally, we explore the reactivity of the silica-supported Cu4 cluster in terms of acetylene trimerization, for which extended Cu surfaces have shown catalytic activity. We find that this reaction should occur with activation barriers below 0.8 eV; Nb-doping of the support does not seem to produce any direct effect on the reactivity of the Cu tetramer.

  5. FTIR and 1H MAS NMR investigations on the correlation between the frequency of stretching vibration and the chemical shift of surface OH groups of solids

    NASA Astrophysics Data System (ADS)

    Brunner, Eike; Karge, H. G.; Pfeifer, H.

    1992-03-01

    The study of surface hydroxyl groups of solids, especially of zeolites, belongs to the 'classical' topics of IR spectroscopy since physico-chemical information may be derived from the wavenumber (nu) OH of the stretching vibration of the different hydroxyls. On the other hand, the last decade has seen the development of high resolution solid-state NMR spectroscopy and through the use of the so-called magic-angle-spinning technique (MAS) the signals of different hydroxyl species can be resolved in the 1H NMR spectra of solids. The chemical shift (delta) H describing the position of these lines may be used as well as (nu) OH to characterize quantitatively the strength of acidity of surface OH groups of solids. In a first comparison of (nu) OH with (delta) H for several types of surface OH groups, a linear correlation between them could be found. The aim of this paper was to prove the validity of this correlation for a wide variety of hydroxyls. The IR measurements were carried out on a Perkin-Elmer FTIR spectrometer 1800 at the Fritz Haber Institute of the Max Planck Society, Berlin, and the 1H MAS NMR spectra were recorded on a Bruker MSL- 300 at the University of Leipzig.

  6. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    NASA Astrophysics Data System (ADS)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  7. Promotional effect of surface hydroxyls on electrochemical reduction of CO 2 over SnO x/Sn electrode

    DOE PAGES

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; ...

    2016-01-16

    In this study, tin oxide (SnO x) formation on tin-based electrode surfaces during CO 2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnO x in CO 2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnO x. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H 2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface.more » CO 2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO 3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H 2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H 2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO 2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnO x monolayer on the electrode under the operating conditions promotes CO 2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  8. Microbial biotransformation of bioactive flavonoids.

    PubMed

    Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo

    2015-01-01

    The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.

  10. Stratigraphy and structure of the Strawberry Mine roof pendant, central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, W.J.

    1981-01-01

    The Strawberry mine roof pendant, 90 km northeast of Fresno, Calif., is composed of a sequence of metasedimentary rocks of probable Early Jurassic age and a sequence of metaigneous rocks of middle Cretaceous age. The metasedimentary rocks are a former miogeosynclinal sequence of marl and limestone now metamorphosed to calc-silicate hornfels and marble. A pelecypod found in the calc-silicate hornfels has been tentatively identified as a Mesozoic bivalve, possibly Inoceramus pseudomytiloides of Early Jurassic age. These metasedimentary rocks are similar in lithology, structure, and gross age to the metasedimentary rocks of the Boyden Cave roof pendant and are assigned to the Lower Jurassic Kings sequence. The younger metaigneous rocks are metamorphosed shallow-in trusi ve rocks that range in composi tion from granodiorite to rhyolite. These rocks are similar in composition and age to the metavolcanic rocks of the surrounding Merced Peak quadrangle and nearby Ritter Range, and probably represent necks or dikes that were one source for the meta volcanic rocks. The roof pendant is intruded by several plutons, ranging in composition from dioritic to highly felsic, that constitute part of the granodiorite of Jackass Lakes, also M middle Cretaceous age. The contemporaneous suites of metaigneous, metavolcanic, and plutonic rocks in the region represent a middle Cretaceous period of calc-alkalic volcanism and plutonism in the central Sierra Nevada and are interpreted as part of an Andean-type volcanic-plutonic arc. Three deformations are documented in the roof pendant. The first deformation is reflected only in the metasedimentary rocks and consists of northeast-to east-west-trending folds. Similar structures occur in the Boyden Cave roof pendant and in the Calaveras Formation and represent a Middle Jurassic regional deformation. Evidence of the second deformation occurs in the metasedimentary and metaigneous rocks and consists of folds, faults, minor structures, and regional metamorphism along N. 25? W. trends. Crosscutting of these structures by the contemporaneous granodiorite of Jackass Lakes indicates that this deformation occurred simultaneously with volcanism and plutonism during the middle Cretaceous. The third deformation involved both the roof pendant and adjacent plutonic rocks and consists of folds, faults, schistosities, and regional metamorphism along N. 65? -900 W. trends. Crosscutting of similar structures in other middle Cretaceous plutonic rocks of the Merced Peak quadrangle by undeformed late Cretaceous plutonic rocks indicates a regional deformation of middle to late Cretaceous age. Structures of similar style, orientation, and age occur elsewhere in metavolcanic and plutonic rocks throughout the central Sierra Nevada.

  11. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the interaction between Tyr223 and the substrate is important for ensuring hydroxylation. These results highlight how the active site of a flavoenzyme is able to deal with the presence of multiple forms of a substrate in solution and ensure efficient hydroxylation. © 2015 FEBS.

  12. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  13. Phosphonate Pendant Armed Propylene Cross-Bridged Cyclam: Synthesis and Evaluation as a Chelator for Cu-64

    PubMed Central

    2015-01-01

    A propylene cross-bridged macrocyclic chelator with two phosphonate pendant arms (PCB-TE2P) was synthesized from cyclam. Various properties of the synthesized chelator, including Cu-complexation, Cu-complex stability, 64Cu-radiolabeling, and in vivo behavior, were studied and compared with those of a previously reported propylene cross-bridged chelator (PCB-TE2A). PMID:26617972

  14. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes

    PubMed Central

    Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

    2012-01-01

    AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

  15. An Efficient Approach to Sulfate Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Li, Xueshu; Parkin, Sean; Duffel, Michael W.; Robertson, Larry W.; Lehmler, Hans-Joachim

    2009-01-01

    Polychlorinated biphenyls (PCBs), a major class of persistent organic pollutants, are metabolized to hydroxylated PCBs. Several hydroxylated PCBs are substrates of cytosolic phase II enzymes, such as phenol and hydroxysteroid (alcohol) sulfotransferases; however, the corresponding sulfation products have not been isolated and characterized. Here we describe a straightforward synthesis of a series of ten PCB sulfate monoesters from the corresponding hydroxylated PCBs. The hydroxylated PCBs were synthesized by coupling chlorinated benzene boronic acids with appropriate brominated (chloro-)anisoles, followed by demethylation with boron tribromide. The hydroxylated PCBs were sulfated with 2,2,2-trichloroethyl chlorosulfate using DMAP as base. Deprotection with zinc powder/ammonium formate yielded the ammonium salts of the desired PCB sulfate monoesters in good yields when the sulfated phenyl ring contained no or one chlorine substituent. However, no PCB sulfate monoesters were isolated when two chlorines were present ortho to the sulfated hydroxyl group. To aid with future quantitative structure activity relationship studies, the structures of two 2,2,2-trichloroethyl-protected PCB sulfates were verified by X-ray diffraction. PMID:19345419

  16. Synthesis and Characteristics of Radiation Curable Polyurethanes Containing Pendant Acrylate Groups.

    DTIC Science & Technology

    1986-10-09

    diethoxylacetophenone (DEAP) and N - methyldiethanolamine ( MDEA ). The films were left in a vacuum oven for one week at room temperature to remove residual solvent...LF.Ol4.er6OlSECURITY CLASSIFICATION OF THIS PAGE (ohen De Knieved) -. " N SYNTHESIS AND CHARACTERIZATION OF RADIATION CURABLE POLYURETHANES CONTAINING...butanone-2, N , N dimethylacetamide (DMA), and toluene were --..- purchased from Aldrich Chemical Company, and stored over molecular sieve (type 3A

  17. Probing Competitive and Co-operative Hydroxyl and Ammonium Hydrogen-Bonding Directed Epoxidations.

    PubMed

    Brambilla, Marta; Brennan, Méabh B; Csatayová, Kristína; Davies, Stephen G; Fletcher, Ai M; Kennett, Alice M R; Lee, James A; Roberts, Paul M; Russell, Angela J; Thomson, James E

    2017-10-06

    The diastereoselectivities and rates of epoxidation (upon treatment with Cl 3 CCO 2 H then m-CPBA) of a range of cis- and trans-4-aminocycloalk-2-en-1-ol derivatives (containing five-, six-, and seven-membered rings) have been investigated. In all cases where the two potential directing groups can promote epoxidation on opposite faces of the ring scaffold, evidence of competitive epoxidation pathways, promoted by hydrogen-bonding to either the in situ formed ammonium moiety or the hydroxyl group, was observed. In contrast to the relative directing group abilities already established for the six-membered ring system (NHBn ≫ OH > NBn 2 ), an N,N-dibenzylammonium moiety appeared more proficient than a hydroxyl group at directing the stereochemical course of the epoxidation reaction in a five- or seven-membered system. In the former case, this was rationalized by the drive to minimize torsional strain in the transition state being coupled with assistance from hydrogen-bonding to the ammonium moiety. In the latter case, this was ascribed to the steric bulk of the ammonium moiety disfavoring conformations in which hydrogen-bonding to the hydroxyl group results in direction of the epoxidation to the syn face. In cases where the two potential directing groups can promote epoxidation on the same face of the ring scaffold, an enhancement of epoxidation diastereoselectivity was not observed, while introduction of a second, allylic heteroatom to the substrate results in diminishment of the rate of epoxidation in all cases. Presumably, reduction of the nucleophilicity of the olefin by the second, inductively electron-withdrawing heteroatom is the dominant factor, and any assistance to the epoxidation reaction by the potential to form hydrogen-bonds to two directing groups rather than one is clearly unable to overwhelm it.

  18. Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte.

    PubMed

    Fenoy, Gonzalo E; Giussi, Juan M; von Bilderling, Catalina; Maza, Eliana M; Pietrasanta, Lía I; Knoll, Wolfgang; Marmisollé, Waldemar A; Azzaroni, Omar

    2018-05-15

    We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Role of monomer sequence and backbone chemistry in polypeptoid copolymers for marine antifouling coatings

    NASA Astrophysics Data System (ADS)

    Patterson, Anastasia; Wenning, Brandon; Rizis, Georgios; Calabrese, David; Finlay, John; Franco, Sofia; Clare, Anthony; Kramer, Edward; Ober, Christopher; Segalman, Rachel

    The design rules elucidated in this work suggest that antifouling coatings bearing pendant peptoid side chains perform better overall in marine fouling tests than those with peptide side chains, with extremely low attachment of N. incerta and high removal of U. linza. This difference in performance is likely due to the lack of a hydrogen bond donor in the peptoid backbone. Furthermore, we show that the bulk polymer material of these hierarchical coatings (based on PEO or PDMS) plays a key role in determining both surface presentation and fouling release performance. We demonstrate these trends utilizing a modular coating based on a triblock copolymer consisting of polystyrene and a vinyl-containing midblock, to which sequence-defined pendant oligomers (peptides or peptoids with sequences of oligo-PEO and fluoroalkyl groups) are attached via thiol-ene ``click'' chemistry. Surface presentation was analyzed with X-ray photoelectron spectroscopy and captive bubble water contact angle, and antifouling performance was evaluated with attachment and removal bioassays of the marine macroalga U. linza and diatom N. incerta. NSF GRFP and ONR PECASE.

  20. Effects of Structural Variations on the Cellular Response and Mechanical Properties of Biocompatible, Biodegradable, and Porous Smectic Liquid Crystal Elastomers.

    PubMed

    Sharma, Anshul; Mori, Taizo; Mahnen, Cory J; Everson, Heather R; Leslie, Michelle T; Nielsen, Alek D; Lussier, Laurent; Zhu, Chenhui; Malcuit, Christopher; Hegmann, Torsten; McDonough, Jennifer A; Freeman, Ernest J; Korley, LaShanda T J; Clements, Robert J; Hegmann, Elda

    2017-02-01

    The authors report on series of side-chain smectic liquid crystal elastomer (LCE) cell scaffolds based on star block-copolymers featuring 3-arm, 4-arm, and 6-arm central nodes. A particular focus of these studies is placed on the mechanical properties of these LCEs and their impact on cell response. The introduction of diverse central nodes allows to alter and custom-modify the mechanical properties of LCE scaffolds to values on the same order of magnitude of various tissues of interest. In addition, it is continued to vary the position of the LC pendant group. The central node and the position of cholesterol pendants in the backbone of ε-CL blocks (alpha and gamma series) affect the mechanical properties as well as cell proliferation and particularly cell alignment. Cell directionality tests are presented demonstrating that several LCE scaffolds show cell attachment, proliferation, narrow orientational dispersion of cells, and highly anisotropic cell growth on the as-synthesized LCE materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, K.; Ben, H.; Muzzy, J.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oilsmore » range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.« less

  2. Hydroxyl Ion Diffusion through Radicular Dentine When Calcium Hydroxide Is Used under Different Conditions

    PubMed Central

    Cai, Michael; Castro Salgado, Jacqueline

    2018-01-01

    Calcium hydroxide’s anti-bacterial action relies on high pH. The aim here was to investigate hydroxyl ion diffusion through dentine under different conditions. Teeth were divided into control (n = 4) and four experimental groups (n = 10): Group 1—no medicament; Group 2—Calmix; Group 3—Calmix/Ledermix; Group 4—Calasept Plus/Ledermix; Group 5—Pulpdent/smear layer. Deep (inner dentine) and shallow (outer dentine) cavities were cut into each root. pH was measured in these cavities for 12 weeks. The inner and outer dentine pH in Group 2 was significantly higher than all groups. Inner dentine pH in Group 3 was slightly higher than that in Group 4 initially but subsequently comparable. After Day 2, Group 5 had significantly lower pH than Groups 3 and 4. The outer dentine pH in Group 3 started higher than that in Groups 4 and 5, but by Day 28 the difference was insignificant. The time for the inner dentine to reach maximum pH was one week for Group 2 and four weeks for Groups 3 and 4. The time for the outer dentine to reach maximum pH was eight weeks for all experimental groups. Mixing different Ca(OH)2 formulations with Ledermix gave similar hydroxyl ion release but pH and total diffusion was lower than Ca(OH)2 alone. The smear layer inhibited diffusion. PMID:29342093

  3. ipso-Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate Sulfonamide Antibiotics

    PubMed Central

    Ricken, Benjamin; Cichocka, Danuta; Parisi, Martina; Lenz, Markus; Wyss, Dominik; Martínez-Lavanchy, Paula M.; Müller, Jochen A.; Shahgaldian, Patrick; Tulli, Ludovico G.; Kohler, Hans-Peter E.; Kolvenbach, Boris A.

    2013-01-01

    Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us. PMID:23835177

  4. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    PubMed Central

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  5. Hydroetching of high surface area ceramics using moist supercritical fluids

    DOEpatents

    Fryxell, Glen; Zemanian, Thomas S.

    2004-11-02

    Aerogels having a high density of hydroxyl groups and a more uniform pore size with fewer bottlenecks are described. The aerogel is exposed to a mixture of a supercritical fluid and water, whereupon the aerogel forms a high density of hydroxyl groups. The process also relaxes the aerogel into a more open uniform internal structure, in a process referred to as hydroetching. The hydroetching process removes bottlenecks from the aerogels, and forms the hydrogels into more standard pore sizes while preserving their high surface area.

  6. Production of Hydrogen by Electrocatalysis: Making the H-H Bond by Combining Protons and Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.

    2014-03-25

    Generation of hydrogen by reduction of two protons by two electrons can be catalysed by molecular electrocatalysts. Determination of the thermodynamic driving force for elimination of H2 from molecular complexes is important for the rational design of molecular electrocatalysts, and allows the design of metal complexes of abundant, inexpensive metals rather than precious metals (“Cheap Metals for Noble Tasks”). The rate of H2 evolution can be dramatically accelerated by incorporating pendant amines into diphosphine ligands. These pendant amines in the second coordination sphere function as protons relays, accelerating intramolecular and intermolecular proton transfer reactions. The thermodynamics of hydride transfer frommore » metal hydrides and the acidity of protonated pendant amines (pKa of N-H) contribute to the thermodynamics of elimination of H2; both of the hydricity and acidity can be systematically varied by changing the substituents on the ligands. A series of Ni(II) electrocatalysts with pendant amines have been developed. In addition to the thermochemical considerations, the catalytic rate is strongly influenced by the ability to deliver protons to the correct location of the pendant amine. Protonation of the amine endo to the metal leads to the N-H being positioned appropriately to favor rapid heterocoupling with the M-H. Designing ligands that include proton relays that are properly positioned and thermodynamically tuned is a key principle for molecular electrocatalysts for H2 production as well as for other multi-proton, multi-electron reactions important for energy conversions. The research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  7. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-07-02

    Sucralose is an artificial sweetener persistently present in wastewater treatment plant effluents and aquatic environments impacted by human activity. It has a potential to accumulate in the water cycle due to its resistance to common water and wastewater treatment processes. This study examined UV/H2O2 advanced oxidation and found that hydroxyl substitution of the chlorine atoms on the sucralose molecule can form a carbohydrate consisting of fructose and sugar alcohol, very similar to environmentally benign sucrose. The second-order reaction rate constant for loss of parent molecule via reaction with hydroxyl radical was determined to be (1.56 ± 0.03)·10(9) M(-1)s(-1). The degradation pathway involves substitution of a single chlorine by a hydroxyl group, with cyclic moiety being a preferential site for initial dechlorination. Further reaction leads to full dechlorination of the molecule, presumably via hydroxyl group substitution as well. No direct photolysis by UV wavelengths above 200 nm was observed. Because of its photostability when exposed to UV wavelengths ≥200 nm, known stability with ozone, limits of quantification by mass spectrometry close to or below environmental concentrations (<5 μg/L) without preconcentration, and otherwise stable nature, sucralose can be used as an in situ hydroxyl radical probe for UV-based and ozone-based AOP processes. As a compound safe for human consumption, sucralose makes a suitable full scale hydroxyl radical probe fit even for drinking water treatment plant applications. Its main drawback as a probe is lack of UV detection and as a result a need for mass spectrometry analysis.

  8. Role of oxygen functional groups for structure and dynamics of interfacial water on low rank coal surface: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin

    2018-07-01

    Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.

  9. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  10. Norbornene-constrained cyclic peptides with hairpin architecture: design, synthesis, conformation, and membrane ion transport.

    PubMed

    Ranganathan, D; Haridas, V; Kurur, S; Nagaraj, R; Bikshapathy, E; Kunwar, A C; Sarma, A V; Vairamani, M

    2000-01-28

    A novel family of hairpin cyclic peptides has been designed on the basis of the use of norbornene units as the bridging ligands. The design is flexible with respect to the choice of an amino acid, the ring size, and the nature of the second bridging ligand as illustrated here with the preparation of a large number of norborneno cyclic peptides containing a variety of amino acids in ring sizes varying from 12- to 29-membered, with the choice of the second bridging ligand being a rigid norbornene (11, 13a,b), an adamantane unit (7a,b and 8), or a flexible cystine residue (4a,b and 10). The presence of built-in handles (as protected COOH groups) permits the attachment of a variety of subunits as shown here with the ligation of Leu-Leu, Val-Val, or Aib-Aib pendants in 4b, 7b, and 13b, respectively. This novel class of constrained cyclic peptides are demonstrated to adopt beta-sheet- or hairpin-like conformation as shown by (1)H NMR and CD spectra. Membrane ion-transport studies have shown that the norborneno cyclic peptides 4b and 7b containing Leu-Leu or Val-Val pendants symmetrically placed on the exterior of the ring show high efficiency and selectivity in the transport of specifically monovalent cations. This property can be attributed to the hairpin-like architecture induced by the norbornene unit since the bis-adamantano peptide 15 containing two pairs of Leu-Leu pendants on the exterior is able to transport both monovalent (Na(+), K(+)) and divalent (Mg(2+)/Ca(2+)) cations.

  11. Comparison of the lateral retention forces on sessile and pendant water drops on a solid surface

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael; Whitehead, Taylor; Irwin, George M.

    2015-06-01

    We present a simple experiment that demonstrates how a water drop hanging from a Plexiglas surface (pendant drop) experiences a lateral retention force that is comparable to, and in some cases larger than, the lateral retention force on a drop resting on top of the surface (sessile drop). The experiment also affords a simple demonstration of the Coriolis effect in two dimensions.

  12. Phase behavior in quaternary ammonium ionic liquid-propanol solutions: Hydrophobicity, molecular conformations, and isomer effects

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki

    2017-07-01

    In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.

  13. Monoanionic 99mTc-tricarbonyl-aminopolycarboxylate complexes with uncharged pendant groups: Radiosynthesis and evaluation as potential renal tubular tracers.

    PubMed

    Lipowska, Malgorzata; Klenc, Jeffrey; Jarkas, Nashwa; Marzilli, Luigi G; Taylor, Andrew T

    2017-04-01

    99m Tc(CO) 3 -nitrilotriacetic acid, 99m Tc(CO) 3 (NTA), is a new renal tubular agent with pharmacokinetic properties comparable to those of 131 I-OIH but the clearance of 99m Tc(CO) 3 (NTA) and 131 I-OIH is still less than the clearance of PAH, the gold standard for the measurement of effective renal plasma flow. At physiological pH, dianionic 99m Tc(CO) 3 (NTA) has a mononegative inner metal-coordination sphere and a mononegative uncoordinated carboxyl group. To evaluate alternate synthetic approaches, we assessed the importance of an uncoordinated carboxyl group, long considered essential for tubular transport, by evaluating the pharmacokinetics of three analogs with the 99m Tc(CO) 3 (NTA) metal-coordination sphere but with uncharged pendant groups. 99m Tc(CO) 3 complexes with N-(2-acetamido)iminodiacetic acid (ADA), N-(2-hydroxyethyl)iminodiacetic acid (HDA) and N-(fluoroethyl)iminodiacetic acid (FEDA) were prepared using a tricarbonyl kit and isolated by HPLC. The pharmacokinetics were evaluated in Sprague-Dawley rats, with 131 I-OIH as an internal control; urine was analyzed for metabolites. Plasma protein binding and erythrocyte uptake were determined from the 10min blood samples. Re(CO) 3 (FEDA), the analog of 99m Tc(CO) 3 (FEDA), was prepared and characterized. 99m Tc(CO) 3 (ADA), 99m Tc(CO) 3 (HDA) and 99m Tc(CO) 3 (FEDA) were efficiently prepared as a single species with high radiochemical purities (>99%). These new monoanionic 99m Tc(CO) 3 tracers with uncharged dangling groups all showed rapid blood clearance and high specificity for renal excretion. Activity in the urine, as a percent of 131 I-OIH at 10 and 60min, was 96% and 99% for ADA, 96% and 100% for HDA, and 100% and 99% for FEDA, respectively. Each new tracer was excreted unchanged in the urine. The Re(CO) 3 (FEDA) structure adds compelling evidence that such 99m Tc(CO) 3 (NTA) analogs have metal-coordination spheres identical to that of 99m Tc(CO) 3 (NTA). New tracers lacking the negatively charged pendant carboxyl group previously thought to be essential for rapid renal extraction, 99m Tc(CO) 3 (ADA), 99m Tc(CO) 3 (HDA) and 99m Tc(CO) 3 (FEDA), exhibit pharmacokinetics in rats comparable to those of 99m Tc(CO) 3 (NTA) and 131 I-OIH. Furthermore, these encouraging results in rats warrant evaluation of this new tracer type in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  15. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  16. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO2 at environment relevant concentration.

    PubMed

    Wu, Wei; Shan, Guoqiang; Xiang, Qian; Zhang, Yinqing; Yi, Shujun; Zhu, Lingyan

    2017-10-01

    Large volume production and application of nano-TiO 2 make it inevitably release to natural waters and its environmental behaviors would be affected by natural organic matters. In this study, the mechanisms of humic acid (HA) affecting the photocatalytic performance of nano-TiO 2 were elucidated by using three HA fractions from the same source but with different polarities. Bulk HA was fractionated on a silica gel column to get three fractions with polarity increasing in the order of FA, FB and FC. FA was fulvic acid-like while FB and FC were humic acid-like. All the three fractions (at 0.1 mg/L) promoted the generation of hydroxyl radicals (OHs) by nano-TiO 2 , and thus in turn facilitated the photocatalytic degradation of bispheol A (BPA). FA and FC displayed a stronger promotion effect than FB and the bulk HA. Online in situ flow cell ATR-FTIR and XPS analyses indicated that HA fractions could form charge-transfer complex with nano-TiO 2 surface through the phenolic hydroxyl and carboxylic groups, which favored the separation of photogenerated electron-hole pairs. Through step methylation experiments, it was verified that the phenolic hydroxyl and carboxylic groups of HA fractions played important roles in promoting the photocatalytic performance of nano-TiO 2 , and the effect of carboxylic group was more significant than the phenolic hydroxyl group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ethyl 4-(4-hydroxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

    PubMed Central

    Das, Ushati; Chheda, Shardul B.; Pednekar, Suhas R.; Karambelkar, Narendra P; Guru Row, T. N.

    2008-01-01

    There are three formula units in the asymmetric unit of the title compound, C14H16N2O4·H2O. Mol­ecules are linked by N—H⋯O hydrogen bonds into dimers with the common R 2 2(8) graph-set motif. Between dimers, single N—H⋯O hydrogen bonds are formed between the other N—H group of each pyrimidine ring and the hydroxyl groups. The water mol­ecules accept O—H⋯O hydrogen bonds from the hydroxyl groups and donate hydrogen bonds to the ester groups. PMID:21581452

  18. [Effect of the steroid molecule structure on the direction of its hydroxylation by the fungus Curvularia lunata].

    PubMed

    Andriushina, V A; Iaderets, V V; Stytsenko, T S; Druzhinina, A V; Voĭshvillo, N E

    2013-01-01

    The main and side products of hydroxylation by the C. lunata VKPM F-981 mycelium of fourteen delta(4)-3-ketosteroids of the estrane, androstane, and pregnane series and six of their delta(5)-3beta-hydroxy analogues were identified by H1 PMR spectroscopy and comparison with standard samples. The obtained experimental data are considered in terms of the triangular model of the enzyme-substrate interaction. The dependence of the direction of hydroxylation of steroid molecules and the orientation of hydroxy groups on the structure of the initial substrate was revealed.

  19. Radical Polymerization of Diene Hydrocarbons in a Presence of Peroxide of Hydrogen and Solvent. 1. Effectiveness of Initiation and Rate of Expansion H2O2 during Oligomerization in Metallic Equipment

    DTIC Science & Technology

    1990-04-10

    the hydroxyl groups. These are liquid oligobutadienes of brand R-15M and R-45M (firm "Sinclair Retgochemical Suc."/OSA) [5, 6, 10] and hydroxyl... ionic mechanism. Most promising, in view of simplicity and cheapness, is considered the I DOC - 90010000 PAGE - method of the radical polymerization of...Initiators of polimerization in this method are the hydroxyl radicals, which are generated during the homolytic decomposition of peroxide of hydrogen PDO

  20. DOTA analogues with a phosphinate-iminodiacetate pendant arm: modification of the complex formation rate with a strongly chelating pendant.

    PubMed

    Procházková, Soňa; Kubíček, Vojtěch; Böhmová, Zuzana; Holá, Kateřina; Kotek, Jan; Hermann, Petr

    2017-08-08

    The new ligand H 6 do3aP ida combines the macrocyclic DOTA-like cavity and the open-chain iminodiacetate group connected through a coordinating phosphinate spacer. Its acid-base and coordination properties in solution were studied by potentiometry. Thermodynamic coordination characteristics of both chelating units are similar to those reported for H 4 dota and iminodiacetic acid themselves, respectively, so, macrocyclic and iminodiacetate units behave independently. The formation kinetics of the Ce(iii)-H 6 do3aP ida complex was studied by UV-Vis spectrophotometry. Various out-of-cage intermediates were identified with 1 : 1, 1 : 2 and 2 : 1 ligand-to-metal ratios. The presence of the strongly coordinating iminodiacetate group significantly slows down the metal ion transfer into the macrocyclic cavity and, so, the formation of the in-cage complex is two orders of magnitude slower than that reported for the Ce(iii)-H 4 dota system. The kinetic inertness of the [Ce(do3aP ida )] 3- complex towards acid-assisted dissociation is comparable to that of the [Ce(dota)] - complex. The coordination modes of the ligand are demonstrated in the solid-state structure of [Cu 4 (do3aP ida )(OH)(H 2 O) 4 ]Cl·7.5H 2 O.

  1. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; ...

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  2. Sources and composition of submicron organic mass in marine aerosol particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  3. Sources and composition of submicron organic mass in marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater organic mass hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production.

  4. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging.

    PubMed

    Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung

    2015-08-07

    Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.

  5. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  6. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  7. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  8. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological catalysis and the RNA world.

  9. Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution.

    PubMed

    Al-Omari, Saleh; Ali, Ahmad

    2009-03-01

    Comparative spectroscopic study including the photosensitizers of pyropheophorbide methyl ester (PPME) and pyropheophorbide a (PPa) was performed to study their photodynamic activity. The investigated photosensitizers in a homogeneous system of dimethylformamide (DMF) are not photostable upon irradiation. The photobleaching efficiency of PPa is higher than that of PPME. Combining these results with the data obtained by measuring the singlet oxygen quantum yield and the hydroxyl group generation, it was revealed that the photobleaching efficiency could be correlated with the singlet oxygen quantum yield and the hydroxyl group production of the photosensitizer.

  10. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect.

    PubMed

    Abel, Silvestre Bongiovanni; Yslas, Edith I; Rivarola, Claudia R; Barbero, Cesar A

    2018-03-23

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer's nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH < 4) are able to absorb near infrared radiation (NIR) creating a photothermal effect in an aqueous medium. Thus, multifunctional nanoparticles are obtained. The application of NIR on a F-PANI-NPs dispersion in contact with Pseudomonas aeruginosa causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  11. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect

    NASA Astrophysics Data System (ADS)

    Bongiovanni Abel, Silvestre; Yslas, Edith I.; Rivarola, Claudia R.; Barbero, Cesar A.

    2018-03-01

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer’s nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH < 4) are able to absorb near infrared radiation (NIR) creating a photothermal effect in an aqueous medium. Thus, multifunctional nanoparticles are obtained. The application of NIR on a F-PANI-NPs dispersion in contact with Pseudomonas aeruginosa causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  12. Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Li, Zhenjun; Smith, R. Scott

    2014-04-16

    Understanding hydrogen formation on TiO2 surfaces is of great importance as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups have been studied using temperature pro-grammed desorption on reduced, hydroxylated, and oxidized TiO2(110) surfaces. The results from OD-labeled glycols demon-strate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups. The yield is controlled by a combi-nation of glycol coverage, steric hindrance, TiO2(110) order and the amount of subsurface charge. Combined, these results show that proximal pairs of hydroxyl aligned glycol moleculesmore » and subsurface charge are required to maximize the yield of this redox reaction. These findings highlight the importance of geometric and electronic effects in hydrogen formation from adsorbates on TiO2(110).« less

  13. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  14. Interactions of Kraft lignin and wheat gluten during biomaterial processing: evidence for the role of phenolic groups.

    PubMed

    Kaewtatip, Kaewta; Menut, Paul; Auvergne, Remi; Tanrattanakul, Varaporn; Morel, Marie-Helene; Guilbert, Stephane

    2010-04-14

    The chemical interactions between Kraft lignin and wheat gluten under processing conditions were investigated by determining the extent of the protein network formation. To clarify the role of different chemical functions found in lignin, the effect of Kraft lignin was compared with that of an esterified lignin, in which hydroxyl groups had been suppressed by esterification, and with a series of simple aromatics and phenolic structures with different functionalities (conjugated double bonds, hydroxyl, carboxylic acid, and aldehyde). The protein solubility was determined by using the Kjeldahl method. The role of the hydroxyl function was assessed by the significantly lower effect of esterified lignin. The importance of the phenolic radical scavenging structure is evidenced by the effect of guaiacol, which results in a behavior similar to that of the Kraft lignin. In addition, the significant effect of conjugated double bonds on gluten reactivity, through nucleophilic addition, was demonstrated.

  15. Effect of acetylated wood flour or coupling agent on moisture, UV, and biological resistance of extruded woodfiber-plastic composites

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons

    2006-01-01

    Although moisture sorption in woodfiber-thermoplastic composites (WPCs) is slower than in unmodified solid wood, it still affects strength and ultimately results in decay of the material in moist outdoor exposure conditions. Chemical modification of the hydroxyl groups of wood with acetic anhydride esterifies the hydroxyl making the wood more hydrophobic and...

  16. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari

    Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less

  17. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy

    DOE PAGES

    Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari; ...

    2017-09-07

    Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less

  18. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus japonicus Scales.

    PubMed

    Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen

    2018-06-15

    Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.

  19. Protective effect of D-002, a mixture of beeswax alcohols, against indomethacin-induced gastric ulcers and mechanism of action.

    PubMed

    Pérez, Yohani; Oyárzabal, Ambar; Mas, Rosa; Molina, Vivian; Jiménez, Sonia

    2013-01-01

    D-002, a mixture of higher aliphatic beeswax alcohols, produces gastroprotective and antioxidant effects. To investigate the gastroprotective effect of D-002 against indomethacin-induced ulcers, oxidative variables and myeloperoxidase (MPO) activity in the rat gastric mucosa were examined. Rats were randomized into six groups: a negative vehicle control and five indomethacin (50 mg/kg) treated groups, comprising a positive control, three groups treated orally with D-002 (5, 25 and 100 mg/kg) and one group with omeprazole 20 mg/kg intraperitoneally (ip). The contents of malondialdehyde (MDA), protein carbonyl groups (PCG), hydroxyl radical generation and catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and MPO enzyme activities in the rat gastric mucosa were assessed. Indomethacin increased the content of MDA and PCG, the generation of *OH radical and MPO enzyme activity, while it decreased the CAT, GSH-PX and SOD activities as compared to the negative controls. D-002 (5-100 mg/kg) significantly and dose-dependently reduced indomethacin-induced ulceration to 75 %. Also, D-002 decreased the content of MDA and PCG, the generation of hydroxyl radicals and MPO activity as compared to the positive controls. The highest dose of D-002 (100 mg/kg) increased significantly GSH-PX and SOD activities, while all doses used increased CAT activities. Omeprazole 20 mg/kg, the reference drug, reduced significantly the ulcers (93 %), MDA and PCG, the generation of hydroxyl radicals and MPO activity, and increased the CAT, GSH-PX and SOD activities. D-002 treatment produced gastroprotective effects against indomethacin-induced gastric ulceration, which can be related to the reduction of hydroxyl radical generation, lipid peroxidation, protein oxidation and MPO activity, and to the increase of the antioxidant enzymes activities in the rat gastric mucosa.

  20. Dielectric Properties of Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Simpson, J. O.; Farmer, B. L.

    1997-01-01

    Molecular modeling and dielectric measurements are being used to identify mechanisms governing piezoelectric behavior in polyimides such as dipole orientation during poling, as well as degree of piezoelectricity achievable. Molecular modeling on polyimides containing pendant, polar nitrile (CN) groups has been completed to determine their remanent polarization. Experimental investigation of their dielectric properties evaluated as a function of temperature and frequency has substantiated numerical predictions. With this information in hand, we are then able to suggest changes in the molecular structures, which will then improve upon the piezoelectric response.

  1. Stereoselective Total Synthesis of Radiolabeled Artemisinin (Qinghaosu).

    DTIC Science & Technology

    Our previous total synthesis of (+)- artemisinin has been optimized from 18 to 11 steps. The final two steps in the sequence are: 1) alkylation of a...product (+)- artemisinin . The first step was repeated utilizing carbon-14 methyl iodide and the sequence completed as before to afford the desired...carbon-14labeled (+)- artemisinin . The label resides in the methyl group pendant from the lactone ring (ring D), the position of attachment being C-9, the carbon atom being C-16. Keywords: Antimalarials. (aw)

  2. Novel high contrast electrochromic polymer materials based on 3,4-propylenedioxythiophene

    NASA Astrophysics Data System (ADS)

    Sahoo, Rabindra; Mishra, Sarada P.; Kumar, Anil; Sindhu, S.; Narasimha Rao, K.; Gopal, E. S. R.

    2007-09-01

    Mono and di allyl and napthyl substituted 3,4-propylenedioxythiophenes were synthesized and polymerized electrochemically. All the monomers were characterized for their molecular structures, and the polymers were characterized for their electrochemical properties. The disubstituted derivatives showed higher contrast than the corresponding mono substituted derivatives. The allyl substituted polymers showed higher contrast and faster switching time than corresponding napthyl substituted derivatives. The presence of the allyl group as the pendant can be used for further functionalization of the polymer.

  3. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  4. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE PAGES

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    2016-06-02

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  5. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study.

    PubMed

    Feliks, Mikolaj; Ullmann, G Matthias

    2012-06-21

    A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis.

  6. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives.

    PubMed

    Oyama, Takahiro; Yoshimori, Atsushi; Takahashi, Satoshi; Yamamoto, Tetsuya; Sato, Akira; Kamiya, Takanori; Abe, Hideaki; Abe, Takehiko; Tanuma, Sei-Ichi

    2017-07-01

    So far, many inhibitors of tyrosinase have been discovered for cosmetic and clinical agents. However, the molecular mechanisms underlying the inhibition in the active site of tyrosinase have not been well understood. To explore this problem, we examined here the inhibitory effects of 4'-hydroxylation and methoxylation of phenylbenzoic acid (PBA) isomers, which have a unique scaffold to inhibit mushroom tyrosinase. The inhibitory effect of 3-PBA, which has the most potent inhibitory activity among the isomers, was slightly decreased by 4'-hydroxylation and further decreased by 4'-methoxylation against mushroom tyrosinase. Surprisingly, 4'-hydroxylation but not methoxylation of 2-PBA appeared inhibitory activity. On the other hand, both 4'-hydroxylation and methoxylation of 4-PBA increased the inhibitory activity against mushroom tyrosinase. In silico docking analyses using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid or 4'-hydroxyl group of PBA derivatives could chelate with cupric ions in the active site of mushroom tyrosinase, and that the interactions of Asn260 and Phe264 in the active site with the adequate-angled biphenyl group are involved in the inhibitory activities of the modified PBAs, by parallel and T-shaped π-π interactions, respectively. Furthermore, Arg268 could fix the angle of the aromatic ring of Phe264, and Val248 is supposed to interact with the inhibitors as a hydrophobic manner. These results may enhance the structural insight into mushroom tyrosinase for the creation of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. RNA Structural Analysis by Evolving SHAPE Chemistry

    PubMed Central

    Spitale, Robert C.; Flynn, Ryan A.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2017-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2’-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2’ hydroxyl group flexibility. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (Selective 2’ Hydroxyl Acylation and Primer Extension). Herein we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being used to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merger of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function. PMID:25132067

  8. Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride

    NASA Astrophysics Data System (ADS)

    Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David

    2018-06-01

    In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.

  9. Selective aminolysis of acetylated lignin: Toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene.

    PubMed

    Ye, Dezhan; Kong, Jinfeng; Gu, Shaojin; Zhou, Yingshan; Huang, Caoxing; Xu, Weilin; Zhang, Xi

    2018-03-01

    Even with outstanding radical capturing ability, the utilization of lignin as a natural antioxidant in polypropylene (PP) still has been pended. Usually, the compatibility of its blends is improved based on the reaction of hydroxyl content, thus leading to the decreasing content of phenolic hydroxyl (Ph-OH) group and inferior thermal-oxidative stability of lignin blends. Here, the selective aminolysis of acetylated Kraft lignin (pyr-KL) was investigated, which structures were characterized using FTIR, 31 P-NMR and GPC. The Ph-OH group of acetylated KL could be released by the addition of pyrrolidine; however the aliphatic hydroxyl group is still blocked. With the control of reaction conditions, the highest oxidation induction time of pyr-KL/PP (0.5wt% loading) reaches up to 22.6min, almost 2.6 times than that of pure PP. More importantly, the mechanical properties of PP were also maintained under the loading of pyr-KL, which is much better than that of curde KL/PP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Metal-ion interactions with carbohydrates. Crystal structure and FT-IR study of the SmCl3-ribose complex.

    PubMed

    Lu, Yan; Guo, Jianyu

    2006-04-10

    A single-crystal of SmCl3.C5H10O5.5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is alpha-D-ribopyranose in the 4C1 conformation and the other one is beta-D-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the D-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.

  11. Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.

    PubMed

    Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai

    2017-01-01

    In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.

  12. Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells.

    PubMed

    Arisaka, Akio; Mogaki, Rina; Okuro, Kou; Aida, Takuzo

    2018-02-21

    We developed dendritic caged molecular glues ( Caged Glue-R) as tags for nucleus-targeted drug delivery, whose multiple guanidinium ion (Gu + ) pendants are protected by an anionic photocleavable unit (butyrate-substituted nitroveratryloxycarbonyl; BA NVOC). Negatively charged Caged Glue-R hardly binds to anionic biomolecules because of their electrostatic repulsion. However, upon exposure of Caged Glue-R to UV light or near-infrared (NIR) light, the BA NVOC groups of Caged Glue-R are rapidly detached to yield an uncaged molecular glue ( Uncaged Glue-R) that carries multiple Gu + pendants. Because Gu + forms a salt bridge with PO 4 - , Uncaged Glue-R tightly adheres to anionic biomolecules such as DNA and phospholipids in cell membranes by a multivalent salt-bridge formation. When tagged with Caged Glue-R, guests can be taken up into living cells via endocytosis and hide in endosomes. However, when the Caged Glue-R tag is photochemically uncaged to form Uncaged Glue-R, the guests escape from the endosome and migrate into the cytoplasm followed by the cell nucleus. We demonstrated that quantum dots (QDs) tagged with Caged Glue-R can be delivered efficiently to cell nuclei eventually by irradiation with light.

  13. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    PubMed

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  14. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.

    PubMed

    Chen, Xiangyang; Jing, Yuanyuan; Yang, Xinzheng

    2016-06-20

    Inspired by the active-site structure of the [NiFe] hydrogenase, we have computationally designed the iron complex [P(tBu) 2 N(tBu) 2 )Fe(CN)2 CO] by using an experimentally ready-made diphosphine ligand with pendant amines for the hydrogenation of CO2 to methanol. Density functional theory calculations indicate that the rate-determining step in the whole catalytic reaction is the direct hydride transfer from the Fe center to the carbon atom in the formic acid with a total free energy barrier of 28.4 kcal mol(-1) in aqueous solution. Such a barrier indicates that the designed iron complex is a promising low-cost catalyst for the formation of methanol from CO2 and H2 under mild conditions. The key role of the diphosphine ligand with pendent amine groups in the reaction is the assistance of the cleavage of H2 by forming a Fe-H(δ-) ⋅⋅⋅H(δ+) -N dihydrogen bond in a fashion of frustrated Lewis pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. NMR and X-ray studies of isomeric 22,23-dihydroxy stigmastanes

    NASA Astrophysics Data System (ADS)

    Khripach, Vladimir A.; Zhabinskii, Vladimir N.; Ivanova, Galina V.; Fando, Galina P.; Tsavlovskii, Dmitrii V.; Khripach, Natalya B.; Lyakhov, Alexander S.; Misharin, Alexander Yu.

    2010-06-01

    A comparative conformational study of steroidal side chain of (22 R,23 R)- and (22 S,23 S)-dihydroxy stigmastane derivatives was performed using single crystal X-ray diffraction and NMR spectroscopy. The preferred conformation in solution was shown to be close to that in the crystal. (22 R,23 R)-Isomers typical for natural plant steroid hormones brassinosteroids adopt a conformation in which both hydroxyl groups are pointed toward unhindered α-side of the steroidal plane and can thus participate in biochemical processes. Unnatural (22 S,23 S)-counterparts exhibit a conformation with the two hydroxyl groups oriented in the opposite direction and sterically hindered by 21-methyl group and terminal side chain fragment.

  16. Induction of protein oxidation in human low density lipoprotein by the photosensitive organic hydroperoxide, N,N'-bis(2-hydroxyperoxy-2-methoxyethyl)-1,4,5,8-naphthalene-tetra-carb oxylic- diimide.

    PubMed

    Matsugo, S; Yan, L J; Han, D; Packer, L

    1995-01-05

    We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.

  17. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.

    PubMed

    Petrillo, Teodolinda; O'Donohoe, Catrina A; Howe, Nicole; Malthouse, J Paul G

    2012-08-07

    Two new inhibitors in which the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced with a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H, respectively, have been synthesized. Using these inhibitors, we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases the level of inhibitor binding 3-4-fold while a glyoxal group increases the level of binding by 500-2000-fold. We show that at pH 7.2 the effective molarities of the catalytic hydroxyl group of the active site serine are 41000-229000 and 101000-159000 for α-chymotrypsin and subtilisin Carlsberg, respectively. It is estimated that oxyanion stabilization and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low-barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pK(a) of the active site histidine, allowing it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.

  18. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding.

    PubMed

    Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J

    2011-10-26

    We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.

  19. UCST-Type Thermoresponsive Polymers in Synthetic Lubricating Oil Polyalphaolefin (PAO)

    DOE PAGES

    Fu, Wenxin; Bai, Wei; Jiang, Sisi; ...

    2018-02-20

    Here, this article reports a family of UCST-type thermoresponsive polymers, poly(alkyl methacrylate)s with an appropriate alkyl pendant length, in an industrially important non-volatile organic liquid polyalphaolefin (PAO). The cloud point (CP) can be readily tuned over a wide temperature range by changing the alkyl pendant length; at a concentration of 1 wt% and similar polymer molecular weights, the CP varies linearly with the (average) number of carbon atoms in the alkyl pendant. PAO solutions of ABA triblock copolymers, composed of a PAO-philic middle block and thermoresponsive outer blocks with appropriate block lengths, undergo thermoreversible sol-gel transitions at sufficiently high concentrations.more » The discovery of thermoresponsive polymers in PAO makes it possible to explore new applications by utilizing PAO’s unique characteristics such as thermal stability, non-volatility, superior lubrication properties, etc. Lastly, two examples are presented: thermoresponsive physical gels for control of optical transmittance and injectable gel lubricants.« less

  20. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    PubMed

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  1. Alkaline earth metallocenes coordinated with ester pendants: synthesis, structural characterization, and application in metathesis reactions.

    PubMed

    Li, Heng; Zhang, Wen-Xiong; Xi, Zhenfeng

    2013-09-16

    A variety of ester-substituted cyclopentadiene derivatives have been synthesized by one-pot reactions of 1,4-dilithio-1,3-butadienes, CO, and acid chlorides. Direct deprotonation of the ester-substituted cyclopentadienes with Ae[N(SiMe3 )2 ]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single-crystal X-ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply-substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half-sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply-substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition-metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. UCST-Type Thermoresponsive Polymers in Synthetic Lubricating Oil Polyalphaolefin (PAO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wenxin; Bai, Wei; Jiang, Sisi

    Here, this article reports a family of UCST-type thermoresponsive polymers, poly(alkyl methacrylate)s with an appropriate alkyl pendant length, in an industrially important non-volatile organic liquid polyalphaolefin (PAO). The cloud point (CP) can be readily tuned over a wide temperature range by changing the alkyl pendant length; at a concentration of 1 wt% and similar polymer molecular weights, the CP varies linearly with the (average) number of carbon atoms in the alkyl pendant. PAO solutions of ABA triblock copolymers, composed of a PAO-philic middle block and thermoresponsive outer blocks with appropriate block lengths, undergo thermoreversible sol-gel transitions at sufficiently high concentrations.more » The discovery of thermoresponsive polymers in PAO makes it possible to explore new applications by utilizing PAO’s unique characteristics such as thermal stability, non-volatility, superior lubrication properties, etc. Lastly, two examples are presented: thermoresponsive physical gels for control of optical transmittance and injectable gel lubricants.« less

  3. Detection of surface mobility of poly (2, 3, 4, 5, 6-pentafluorostyrene) films by in situ variable-temperature ToF-SIMS and contact angle measurements.

    PubMed

    Fu, Yi; Lau, Yiu-Ting R; Weng, Lu-Tao; Ng, Kai-Mo; Chan, Chi-Ming

    2014-10-01

    Poly (2, 3, 4, 5, 6-pentafluorostyrene) (5FPS) was prepared by bulk radical polymerization. The spin-cast films of this polymer were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) at various temperatures ranging from room temperature to 120°C. Principal component analysis (PCA) of the ToF-SIMS data revealed a transition temperature (T(T)) at which the surface structure of 5FPS was rearranged. A comparison between the results of the PCA of ToF-SIMS spectra obtained on 5FPS and polystyrene (PS) indicate that the pendant groups of 5FPS and PS moved in exactly opposite directions as the temperature increased. More pendant groups of 5FPS and PS migrated from the bulk to the surface and verse versa, respectively, as the temperature increased. These results clearly support the view that the abrupt changes in the normalized principal component 1 value was caused by the surface reorientation of the polymers and not by a change in the ion fragmentation mechanism at temperatures above the T(T). Contact angle measurement, which is another extremely surface sensitive technique, was used to monitor the change in the surface tension as a function of temperature. A clear T(T) was determined by the contact angle measurements. The T(T) values determined by contact angle measurements and ToF-SIMS were very similar. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity.

    PubMed

    Mira, Lurdes; Fernandez, M Tereza; Santos, Marta; Rocha, Rui; Florêncio, M Helena; Jennings, Keith R

    2002-11-01

    The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe3+) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfill these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu2+ additionally at the ortho-catechol group, the chelating site for catechin with Cu2+ at pH 7.4. Chelation studies of Fe3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe3+, complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe3+ at pH 5.5, suggesting that flavonoids reduce Fe3+ to Fe2+ before association.

  5. Field, petrologic and detrital zircon study of the Kings sequence and Calaveras complex, Southern Lake Kaweah Roof Pendant, Tulare County, California

    NASA Astrophysics Data System (ADS)

    Buchen, Christopher T.

    U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.

  6. Riccardin C derivatives as anti-MRSA agents: structure-activity relationship of a series of hydroxylated bis(bibenzyl)s.

    PubMed

    Sawada, Hiromi; Okazaki, Miki; Morita, Daichi; Kuroda, Teruo; Matsuno, Kenji; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2012-12-15

    Members of a series of macrocyclic bis(bibenzyl) riccardin-class derivatives were found to exhibit antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Structure-activity relationship (SAR) studies were conducted, focusing on the number and position of the hydroxyl groups. The minimum essential structure for anti-MRSA activity was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Preparation of linear hydroxy substituted polyphosphazenes. [flame retardant polyurethane foam

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1978-01-01

    The synthesis of partially hydroxy-substituted phosphazene prepolymers amenable to processing into cellular, flexible polyurethane foams was investigated. Factors determined include (1) the environment of the hydroxyl group; (2) the ease of the hexachlorocyclotriphosphazene polymerization; (3) the nature of the nonreactive substituents; and (4) the mode of introduction of the hydroxyl entity. The specific approaches taken, the rationale of the selections made, and the results are discussed.

  8. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity.

    PubMed

    Kolet, Swati P; Haldar, Saikat; Niloferjahan, Siddiqui; Thulasiram, Hirekodathakallu V

    2014-07-01

    Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Coq6 Is Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Ozeir, Mohammad; Pelosi, Ludovic; Ismail, Alexandre; Mellot-Draznieks, Caroline; Fontecave, Marc; Pierrel, Fabien

    2015-01-01

    The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway. PMID:26260787

  10. Evolution of Functional Groups during Pyrolysis Oil Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stankovikj, Filip; Tran, Chi-Cong; Kaliaguine, Serge

    In this paper, we examine the evolution of functional groups (carbonyl, carboxyl, phenol, and hydroxyl) during stabilization at 100–200 °C of two typical wood derived pyrolysis oils from BTG and Amaron in a batch reactor over Ru/C catalyst for 4h. An aqueous and an oily phase were obtained. The content of functional groups in both phases were analyzed by GC/MS, 31P-NMR, 1H-NMR, elemental analysis, KF titration, carbonyl groups by Faix, Folin – Ciocalteu method and UV-Fluorescence. The consumption of hydrogen was between 0.007 and 0.016 g/g oil, and 0.001-0.020 g of CH4/g of oil, 0.005-0.016 g of CO2/g oil andmore » 0.03-0.10 g H2O/g oil were formed. The content of carbonyl, hydroxyl, and carboxyl groups in the volatile GC-MS detectable fraction decreased (80, 65, and ~70% respectively), while their behavior in the total oil and hence in the non-volatile fraction was more complex. The carbonyl groups initially decreased having minimum at ~125-150°C and then increased, while the hydroxyl groups had reversed trend. This might be explained by initial hydrogenation of the carbonyl groups to form hydroxyls, followed by continued dehydration reactions at higher temperatures that may increase their content. The 31P-NMR was on the limit of its sensitivity for the carboxylic groups to precisely detect changes in the non-volatile fraction, however the more precise titration method showed that the concentration of carboxylic groups in the non-volatile fraction remains constant with increased stabilization temperature. The UV-Fluorescence results show that repolymerization increases with temperature. ATR-FTIR method coupled with deconvolution of the region between 1490 and 1850 cm-1 showed to be a good tool for following the changes in carbonyl groups and phenols of the stabilized pyrolysis oils. The deconvolution of the IR bands around 1050 and 1260 cm-1 correlated very well with the changes in the 31P-NMR silent O groups (likely ethers). Most of the H2O formation could be explained from the significant reduction of these silent O groups (from 12% in the fresh oils, to 6 to 2% in the stabilized oils) most probably belonging to ethers.« less

  11. Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications.

    PubMed Central

    Williams, D M; Pieken, W A; Eckstein, F

    1992-01-01

    The importance of the 2'-hydroxyl group of several guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. Five ribozymes in which single guanosine residues were substituted with 2'-amino-, 2'-fluoro-, or 2'-deoxyguanosine were chemically synthesized. The comparison of the catalytic activity of the three 2' modifications at a specific position allows conclusions about the functional role of the parent 2'-hydroxyl group. Substitutions of nonconserved nucleotides within the ribozyme caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, when either of the guanosines within the single-stranded loop between stem I and stem II of the ribozyme was replaced by 2'-deoxyguanosine or 2'-fluoro-2'-deoxyguanosine, the catalytic activities of the resulting ribozymes were reduced by factors of at least 150. The catalytic activities of the corresponding ribozymes containing 2'-amino-2'-deoxyguanosine substitutions at these positions, however, were both reduced by factors of 15. These effects resulted from decreases in the respective kcat values, whereas variations in the Km values were comparatively small. A different pattern of reactivity of the three 2' modifications was observed at the guanosine immediately 3' to stem II of the ribozyme. Whereas both 2'-deoxyguanosine and 2'-amino-2'-deoxyguanosine at this position showed catalytic activity similar to that of the unmodified ribozyme, the activity of the corresponding 2'-fluoro-2'-deoxyguanosine-containing ribozyme was reduced by a factor of 15. The implications of these substitution-specific reactivities on the functional role of the native 2'-hydroxyl groups are discussed. Images PMID:1736306

  12. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi

    2015-05-13

    Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.

  13. The 4′-Hydroxyl Group of Resveratrol Is Functionally Important for Direct Activation of PPARα

    PubMed Central

    Takizawa, Yoshie; Nakata, Rieko; Fukuhara, Kiyoshi; Yamashita, Hiroshi; Kubodera, Hideo; Inoue, Hiroyasu

    2015-01-01

    Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα). Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP) in vivo indicate that the 4′-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 μM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE) and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 μM) than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 μM), both of which has only 4′-hydroxyl group, indicating that this 4′-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 μM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo. PMID:25798826

  14. Elucidation of hydroxyl groups-antioxidant relationship in mono- and dihydroxyflavones based on O-H bond dissociation enthalpies.

    PubMed

    Treesuwan, Witcha; Suramitr, Songwut; Hannongbua, Supa

    2015-06-01

    Radical scavenging potential is the key to anti-oxidation of hydroxyflavones which generally found in fruits and vegetables. The objective of this work was to investigate the influence of hydroxyl group on the O-H bond dissociation enthalpies (BDE) from a series of mono- and dihydroxyflavones. Calculation at the B3LYP/6-31G(d,p) level reveals the important roles of an additional one hydroxyl group to boost the BDE of hydroxyflavones that were a stabilization of the generated radicals through attractive H-bond interactions, an ortho- and para-dihydroxyl effect, and a presence of the 3-OH in dihydroxyflavones. On the other hand, the meta-dihydroxyl effect and range-hydroxyl effect especially associated with the either 5-OH or 8-OH promoted greater BDE. Results did not only confirm that dihydroxyflavones had lower BDE than monohydroxyflavones but also suggest the selective potent hydroxyflavone molecules that are the 6'-hydroxyflavone (for monohydroxyflavone) and the 5',6'-, 7,8- and 3',4'-dihydroxyflavone which the corresponding radical preferable generated at C6'-O•, C8-O• and C4'-O•, respectively. Electron distribution was limited only over the two connected rings of hydroxyflavones while the expansion distribution into C-ring could be enhanced if the radical was formed especially for the 2',3'- and 5',6'dihydroxyflavone radicals. The delocalized bonds were strengthened after radical was generated. However the 5-O• in 5,6-dihydroxyflavone and the 3-O• in 3,6'-dihydroxyflavone increased the bond order at C4-O11 which might interrupt the conjugated delocalized bonds at the keto group.

  15. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Lance; Beste, Ariana; Chen, Banghao

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of noncalcined nanocubes arise from kinetically trapped subsurface $-$OH.« less

  16. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE PAGES

    Gill, Lance; Beste, Ariana; Chen, Banghao; ...

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of noncalcined nanocubes arise from kinetically trapped subsurface $-$OH.« less

  17. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    PubMed

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Nitrite-Scavenging Properties of Catechol, Resorcinol, and Hydroquinone: A Comparative Study on Their Nitration and Nitrosation Reactions.

    PubMed

    Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang

    2016-10-14

    The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.

  19. μ-Carbonato-bis­(bis­{2-[(diethyl­amino)­meth­yl]phen­yl}bis­muth(III))

    PubMed Central

    Soran, Albert P.; Nema, Mihai G.; Breunig, Hans J.; Silvestru, Cristian

    2011-01-01

    The mol­ecular structure of the title compound, [Bi2(C11H16N)4(CO3)], consists of a symmetrically bridging carbonato group which binds two [2-Et2NCH2C6H4]2Bi units that are crystallographically related via a twofold rotation axis bis­ecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bis­muth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)2CO3 system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi—N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intra­molecular inter­action [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intra­molecular N→Bi inter­actions per metal atom are considered, the overall coordination geometry at bis­muth becomes distorted square-pyramidal [(C,N)2BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intra­molecular Bi⋯O inter­actions are also present [3.796 (8)–4.020 (9) Å]. Inter­molecular associations through weak η6⋯Bi inter­actions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supra­molecular association. PMID:21522836

  20. Energetic features of copper and lead sorption by innovative aminoalcohol-functionalized cobalt phyllosilicates.

    PubMed

    Melo, Maurício Alves; Airoldi, Claudio

    2010-11-14

    Inorganic-organic cobalt phyllosilicate hybrids were synthesized by the sol-gel procedure under mild non-hydrothermal conditions with a silicon precursor, formed through individual reactions between the silane 3-glycidoxypropyltriethoxysilane and the aminoalcohols ethanol- or diethanolamine. These procedures generated talc-like phyllosilicates containing pendant organic chains with nitrogen and oxygen basic centres located in the interlamellar region. For organofunctionalized phyllosilicates the lamellar structure obtained through the sol-gel method was confirmed by X-ray powder diffraction, while elemental analysis indicated that the densities of the organic groups attached to the new matrices were 3.31 ± 0.05 and 3.08 ± 0.07 mmol g(-1) for hybrids functionalized with ethanol- and diethanolamines, respectively. Infrared spectroscopy and nuclear magnetic resonance in the solid state for (13)C and (29)Si showed that the organic groups are indeed covalently bonded to the inorganic structures and the process of functionalization did not affect the original structures of the silylating agents employed. The thermally stable hybrids presented well-formed particles with a homogeneous distribution of cobalt and nitrogen atoms. Their abilities for copper removal from aqueous solutions gave maximum capacities of sorption of 2.01 ± 0.11 and 2.55 ± 0.15 mmol g(-1) for phyllosilicates containing ethanol- and diethanolamine groups, respectively. For lead sorption the values of 2.59 ± 0.11 and 2.43 ± 0.12 mmol g(-1) were found for this same sequence. These sorption data were adjusted to the non-linear regression of the Langmuir equation. Energetic features related to the interactions between the cations and the pendant basic centres were determined through calorimetric titrations. The acid-basic interactions reflect the spontaneity of the reactions, which are also enthalpically and entropically favourable for these chelating processes at the solid-liquid interface.

  1. Layered inorganic/organic mercaptopropyl pendant chain hybrid for chelating heavy cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macedo, Thais R.; Petrucelli, Giovanni C.; Pinto, Alane A.

    2011-12-15

    Graphical abstract: Crystalline lamellar silicate RUB-18 was immobilized with mercaptopropyl groups at the surface and then used as support for cadmium and lead removal from aqueous solutions. Highlights: Black-Right-Pointing-Pointer Synthetic methodology requires intercalation. Black-Right-Pointing-Pointer Organofunctionalized ilerite compound as sorbent. Black-Right-Pointing-Pointer Active mercaptopropyl groups remove cations. Black-Right-Pointing-Pointer High maximum sorption capacity for cadmium. -- Abstract: Heavy metal sorbents with uptake capacities for divalent cadmium and lead cation removal from aqueous solutions have been synthesized by grafting mercaptopropyltrimethoxysilane onto the surface of two different precursors obtained from lamellar ilerite, its acidic and the cetyltrimethylammonium exchanged forms. The organofunctionalization was carried out bymore » two different procedures: reflux and solvent evaporation methodologies. Elemental analysis data based on carbon content gave 1.37 and 3.53 mmol of organic pendant groups per gram of hybrid by the reflux method, when starting from acidic ilerite and the surfactant form. X-ray diffraction corroborated the maintenance of the original crystallinity. Infrared spectroscopy and nuclear magnetic resonance for {sup 29}Si and {sup 13}C nuclei are in agreement with the success of the proposed method. The sulfur basic centers attached to the lamellar structure are used to coordinate both cations at the solid/liquid interface. The isotherms were obtained through the batchwise process and the experimental data were adjusted to the Freundlich model. The maximum sorption capacities of 5.55 and 5.12 mmol g{sup -1} for lead and 6.10 and 7.10 mmol g{sup -1} for cadmium were obtained for organofunctionalized ilerite and its surfactant form, synthesized by reflux methodology. This behavior suggested that these hybrids could be employed as promising sorbents with a polluted system.« less

  2. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram of adsorbent.

  3. μ-Carbonato-bis-(bis-{2-[(diethyl-amino)-meth-yl]phen-yl}bis-muth(III)).

    PubMed

    Soran, Albert P; Nema, Mihai G; Breunig, Hans J; Silvestru, Cristian

    2011-01-12

    The mol-ecular structure of the title compound, [Bi(2)(C(11)H(16)N)(4)(CO(3))], consists of a symmetrically bridging carbonato group which binds two [2-Et(2)NCH(2)C(6)H(4)](2)Bi units that are crystallographically related via a twofold rotation axis bis-ecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bis-muth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)(2)CO(3) system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi-N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intra-molecular inter-action [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intra-molecular N→Bi inter-actions per metal atom are considered, the overall coordination geometry at bis-muth becomes distorted square-pyramidal [(C,N)(2)BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intra-molecular Bi⋯O inter-actions are also present [3.796 (8)-4.020 (9) Å]. Inter-molecular associations through weak η(6)⋯Bi inter-actions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supra-molecular association.

  4. Variation in Optoelectronic Properties of Azo Dye-Sensitized TiO 2 Semiconductor Interfaces with Different Adsorption Anchors: Carboxylate, Sulfonate, Hydroxyl and Pyridyl Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng

    2014-05-28

    The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 clustermore » model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.« less

  5. Catalytic Hydroxylation of Polyethylenes

    PubMed Central

    2017-01-01

    Polyolefins account for 60% of global plastic consumption, but many potential applications of polyolefins require that their properties, such as compatibility with polar polymers, adhesion, gas permeability, and surface wetting, be improved. A strategy to overcome these deficiencies would involve the introduction of polar functionalities onto the polymer chain. Here, we describe the Ni-catalyzed hydroxylation of polyethylenes (LDPE, HDPE, and LLDPE) in the presence of mCPBA as an oxidant. Studies with cycloalkanes and pure, long-chain alkanes were conducted to assess precisely the selectivity of the reaction and the degree to which potential C–C bond cleavage of a radical intermediate occurs. Among the nickel catalysts we tested, [Ni(Me4Phen)3](BPh4)2 (Me4Phen = 3,4,7,8,-tetramethyl-1,10-phenanthroline) reacted with the highest turnover number (TON) for hydroxylation of cyclohexane and the highest selectivity for the formation of cyclohexanol over cyclohexanone (TON, 5560; cyclohexanol/(cyclohexanone + ε-caprolactone) ratio, 10.5). The oxidation of n-octadecane occurred at the secondary C–H bonds with 15.5:1 selectivity for formation of an alcohol over a ketone and 660 TON. Consistent with these data, the hydroxylation of various polyethylene materials by the combination of [Ni(Me4Phen)3](BPh4)2 and mCPBA led to the introduction of 2.0 to 5.5 functional groups (alcohol, ketone, alkyl chloride) per 100 monomer units with up to 88% selectivity for formation of alcohols over ketones or chloride. In contrast to more classical radical functionalizations of polyethylene, this catalytic process occurred without significant modification of the molecular weight of the polymer that would result from chain cleavage or cross-linking. Thus, the resulting materials are new compositions in which hydroxyl groups are located along the main chain of commercial, high molecular weight LDPE, HDPE, and LLDPE materials. These hydroxylated polyethylenes have improved wetting properties and serve as macroinitiators to synthesize graft polycaprolactones that compatibilize polyethylene–polycaprolactone blends. PMID:28852704

  6. Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces.

    PubMed

    Kwon, Hyuk-Min; Paxson, Adam T; Varanasi, Kripa K; Patankar, Neelesh A

    2011-01-21

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual "collision" where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  7. Rapid Deceleration-Driven Wetting Transition during Pendant Drop Deposition on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.; Patankar, Neelesh A.

    2011-01-01

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual “collision” where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  8. Chemoselective, Stereospecific, and Living Polymerization of Polar Divinyl Monomers by Chiral Zirconocenium Catalysts.

    PubMed

    Vidal, Fernando; Gowda, Ravikumar R; Chen, Eugene Y-X

    2015-07-29

    This contribution reports the first chemoselective, stereospecific, and living polymerization of polar divinyl monomers, enabled by chiral ansa-zirconocenium catalysts through an enantiomorphic-site controlled coordination-addition polymerization mechanism. Silyl-bridged-ansa-zirconocenium ester enolate 2 has been synthesized and structurally characterized, but it exhibits low to negligible activity and stereospecificity in the polymerization of polar divinyl monomers including vinyl methacrylate (VMA), allyl methacrylate (AMA), 4-vinylbenzyl methacrylate (VBMA), and N,N-diallyl acrylamide (DAA). In contrast, ethylene-bridged-ansa-zirconocenium ester enolate 1 is highly active and stereospecific in the polymerization of such monomers including AMA, VBMA, and DAA. The polymerization by 1 is perfectly chemoselective for all four polar divinyl monomers, proceeding exclusively through conjugate addition across the methacrylic C═C bond, while leaving the pendant C═C bonds intact. The polymerization of DAA is most stereospecific and controlled, producing essentially stereoperfect isotactic PDAA with [mmmm] > 99%, M(n) matching the theoretical value (thus a quantitative initiation efficiency), and a narrow molecular weight distribution (Đ = 1.06-1.16). The stereospecificity is slightly lower for the AMA polymerization but still leading to highly isotactic poly(allyl methacrylate) (PAMA) with 95-97% [mm]. The polymerization of VBMA is further less stereospecific, affording PVBMA with 90-94% [mm], while the polymerization VMA is least stereospecific. Several lines of evidence from both homo- and block copolymerization results have demonstrated living characteristics of the AMA polymerization by 1. Mechanistic studies of this polymerization have yielded a monometallic coordination-addition polymerization mechanism involving the eight-membered chelating intermediate. Post-functionalization of isotactic polymers bearing the pendant vinyl group on every repeating unit via the thiol-ene "click" reaction achieves a full conversion of all the pendant double bonds to the corresponding thioether bonds. Photocuring of such isotactic polymers is also successful, producing an elastic material readily characterizable by dynamic mechanical analysis.

  9. Elastohydrodynamics of farm-based blends comprising amphiphilic oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils contain non-polar hydrocarbon chains and polar ester groups (and possibly also other functional groups such as hydroxyl groups in castor oil). The presence of polar and non-polar groups within the same molecule gives vegetable oil amphiphilic character. The density, refractive index, ...

  10. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films

    PubMed Central

    Sledge, Samiyyah M.; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria; Michael, Heidi; Dennis, Emily K.; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-01-01

    Purpose The inhibition of the rate of evaporation (Revap) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit Revap. Methods Revap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11–24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. Results The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 µm2. All of the surface lipids were ordered. Revap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. Revap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence Revap over an estimated average thickness range of 0.69 to >6.9 µm. Revap of human tears and buffer with and without human meibum (34.4 µm thick) was not significantly different. Revap of human tears was not significantly different from buffer. Conclusions Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit Revap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit Revap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits Revap of tears. PMID:27395776

  11. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  12. Adsorption behaviour of hydrogarnet for humic acid

    NASA Astrophysics Data System (ADS)

    Maeda, Hirotaka; Kurosaki, Yuichi; Nakayama, Masanobu; Ishida, Emile Hideki; Kasuga, Toshihiro

    2018-04-01

    Discharge of humic acid (HA) in aqueous environments is a key health and aesthetic issue. The present work investigates the use of hydrogarnet as a novel adsorbent for HA. Hydrogarnet was hydrothermally synthesized with different solvents to control the chemical composition. Hydrogarnet with three types of chemical compositions had better adsorption properties for HA than hydrogarnet with a single chemical composition. Controlling the chemical composition of hydrogarnet increased the number of hydroxyl groups and the overall binding energy of the system, leading to changes in the zeta potential. The enhancement of these adsorption properties is related to the increased numbers of hydroxyl groups on the surface and their diverse binding energies.

  13. A Novel Mechanism of Sugar Selection Utilized by a Human X-family DNA Polymerase†

    PubMed Central

    Brown, Jessica A.; Fiala, Kevin A.; Fowler, Jason D.; Sherrer, Shanen M.; Newmister, Sean A.; Dyum, Wade W.; Suo, Zucai

    2009-01-01

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2′-hydroxyl group and the bulky side chain of an active site residue. Here, we demonstrated that human DNA polymerase λ used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2′-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such a steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2′ position. PMID:19900463

  14. Hydration and rotational diffusion of levoglucosan in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Corezzi, S.; Sassi, P.; Paolantoni, M.; Comez, L.; Morresi, A.; Fioretto, D.

    2014-05-01

    Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.

  15. Rheological and Thermal Properties of Bio-based Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Dumitrascu, Adina; Zhang, Tracy; Smith, Patrick

    Hyperbranched poly(ester)s (HBPEs) of designed molecular structures and targeted molecular weight can be prepared from a variety of multi-functional acids and alcohols. These polymers find application in the areas of coatings and rheology modifiers for coatings. These functional polymers can be synthesized in variety of architectures, possessing either hydroxyl or carboxyl reactive end-groups suitable for the attachment of active entities. The rheological characteristics as related to variation in molecular structure were determined using cone and plate or couette geometries. Viscosities of the HBPEs were found to be near Newtonian. HB polymers permit the control of Tg that is not as readily attained with linear polymers. Accordingly, Tg and viscosity are affected little as a function of Mw but vary dramatically with the nature of the end-groups, are highly dependent on hydrogen bonding of the hydroxyl end groups, and decrease dramatically with the incorporation of aliphatic end-caps. The thermal properties and the degradation characteristics of the HBPEs were determined. Thermal degradation of the hydroxyl-terminal HBPEs is initiated by dehydrative ether formation (crosslinking) while decarboxylation is the initial decomposition event for the carboxyl-terminal polymers. Midland, MI Campus.

  16. Defining space around conducting polymers: reversible protonic doping of a canopied polypyrrole.

    PubMed

    Lee, Dongwhan; Swager, Timothy M

    2003-06-11

    A canopy-shaped pyrrole derivative 2 was prepared, in which a sterically demanding pendant group is juxtaposed to the pyrrole fragment to minimize interstrand pi-pi stacking interactions in the resulting polymer. Anodic polymerization of 2 afforded highly conductive poly(2), the electronic structure of which was probed by various spectroelectrochemical techniques. A limited charge delocalization within poly(2) translates into a well-defined conductivity profile, properties important for resistivity-based sensing. Notably, the bulk conductivity was precisely modulated by a rapid and reversible deprotonation and reprotonation of the polymer backbone.

  17. Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua

    Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.

  18. Pharmacophore mapping in the laulimalide series: total synthesis of a vinylogue for a late-stage metathesis diversification strategy.

    PubMed

    Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L

    2006-08-31

    An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.

  19. Concepts for Injectable Nanoparticles for In Vivo Removal of Overdose Toxins from Blood

    DTIC Science & Technology

    2002-01-01

    Amitriptyline Bupivacaine Antiarrhythmic Antidepressant Anesthetic where X = aminoalkyl (similar to VX) o X II X CH3H3C NH C=O X • Initially, the research...basic due to an aminoalkyl group pendant to a benzene ring. It will be demonstrated that the pi electron density in at least bupivacaine is high...Science & Technology Attenuation of The Cardiotoxic Effects of Bupivacaine in Guinea Pig Isolated Heart by Macroemulsion 1 2 3 4 5 6 Q R S In te rv al

  20. Crosslinking of aromatic polyamides via pendant propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.

    1980-01-01

    Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.

  1. Comments on the interaction of materials with atomic oxygen

    NASA Technical Reports Server (NTRS)

    Torre, Larry P.; Pippin, H. Gary

    1987-01-01

    An explanation of the relative resistance of various materials to attack by atomic oxygen is presented. Data from both ground based and on-orbit experiments is interpreted. The results indicate the importance of bond strengths, size and structure of pendant groups, and fluorination to the resistance of certain polymers to atomic oxygen. A theory which provides a partial explanation of the degradation of materials in low Earth orbit due to surface recombination of oxygen atoms is also included. Finally, a section commenting on mechanisms of material degradation is provided.

  2. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, Richard H.

    1998-01-01

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.

  3. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, R.H.

    1998-11-10

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.

  4. Reactivity of formic acid (HCOOD and DCOOH) at uranium and UO 2.0 surfaces

    NASA Astrophysics Data System (ADS)

    Manner, William L.; Lloyd, Jane A.; Paffett, Mark T.

    1999-10-01

    Interactions of DCOOH and HCOOD with uranium and UO 2.0 surfaces have been examined using surface-specific techniques of thermal desorption mass spectroscopy (TDMS), X-ray photoelectron spectroscopy (XPS), and static secondary ion mass spectroscopy (SSIMS). On the clean uranium surface, formate is the predominant product following formic acid adsorption at 100 K. A wide range of products is observed after annealing to 200 K, including formate, hydroxyl, O ads, and H ads (D ads) groups. Adsorbed formate decomposes by 300 K increasing the concentration of the remaining surface products. Surface-adsorbed carbon following TDMS measurements remains as the carbide, as indicated from XPS and SSIMS measurements. The only gaseous species created in high yields from the clean surface upon annealing are H 2, HD, and D 2. On the oxide surface (UO 2.0), adsorbed formate groups are more stable toward dissociation in comparison with the clean uranium surface. Between 100 and 300 K the predominant species on the UO 2.0 surface are surface formate and hydroxyl groups. Hydroxyl groups react between 300 and 350 K to release water from the surface. Adsorbed formate groups decompose between 400 and 500 K to release CO and H 2CO (D 2CO) groups from the oxide surface. Carbon was not detected on the oxide surface by XPS or SSIMS after annealing to 500 K, indicating that all carbon-containing species either desorb in the form of CO-containing products or migrate into the surface.

  5. Possible existence of convective currents in surfactant bulk solution in experimental pendant-bubble dynamic surface tension measurements.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2009-02-03

    Traditionally, surfactant bulk solutions in which dynamic surface tension (DST) measurements are conducted using the pendant-bubble apparatus are assumed to be quiescent. Consequently, the transport of surfactant molecules in the bulk solution is often modeled as being purely diffusive when analyzing the experimental pendant-bubble DST data. In this Article, we analyze the experimental pendant-bubble DST data of the alkyl poly (ethylene oxide) nonionic surfactants, C12E4 and C12E6, and demonstrate that both surfactants exhibit "superdiffusive" adsorption kinetics behavior with characteristics that challenge the traditional assumption of a quiescent surfactant bulk solution. In other words, the observed superdiffusive adsorption behavior points to the possible existence of convection currents in the surfactant bulk solution. The analysis presented here involves the following steps: (1) constructing an adsorption kinetics model that corresponds to the fastest rate at which surfactant molecules adsorb onto the actual pendant-bubble surface from a quiescent solution, (2) predicting the DST behaviors of C12E4 and C12E6 at several surfactant bulk solution concentrations using the model constructed in step 1, and (3) comparing the predicted DST profiles with the experimental DST profiles. This comparison reveals systematic deviations for both C12E4 and C12E6 with the following characteristics: (a) the experimental DST profiles exhibit adsorption kinetics behavior, which is faster than the predicted fastest rate of surfactant adsorption from a quiescent surfactant bulk solution at time scales greater than 100 s, and (b) the experimental DST profiles and the predicted DST behaviors approach the same equilibrium surface tension values. Characteristic (b) indicates that the cause of the observed systematic deviations may be associated with the adsorption kinetics mechanism adopted in the model used rather than with the equilibrium behavior. Characteristic (a) indicates that the actual surfactant bulk solution in which the DST measurement was conducted, most likely, cannot be considered to be quiescent at time scales greater than 100 s. Accordingly, the observed superdiffusive adsorption behavior is interpreted as resulting from convection currents present in a nonquiescent surfactant bulk solution. Convection currents accelerate the surfactant adsorption process by increasing the rate of surfactant transport in the bulk solution. The systematic nature of the deviations observed between the predicted DST profiles and the experimental DST behavior for C12E4 and C12E6 suggests that the nonquiescent nature of the surfactant bulk solution may be intrinsic to the experimental pendant-bubble DST measurement approach. To validate this possibility, we identified generic features in the experimental DST data when DST measurements are conducted in a nonquiescent surfactant bulk solution, and the DST measurements are analyzed assuming that the surfactant bulk solution is quiescent. An examination of the DST literature reveals that these identified generic features are quite general and are observed in the experimental DST data of several other surfactants (decanol, nonanol, C10E8, C14E8, C12E8, and C10E4) measured using the pendant-bubble apparatus.

  6. Self-Employment among Same-Sex and Opposite-Sex Couples in Canada.

    PubMed

    Waite, Sean; Denier, Nicole

    2016-05-01

    This study presents novel evidence on the relationship between sexual orientation and self-employment. Using data from the 2001 and 2006 Census of Canada and the 2011 Canadian National Household Survey, we explore the propensity for self-employment among same- and opposite-sex couples. We examine the demographic, human capital, and family characteristics of coupled gay men and lesbians relative to their coupled heterosexual counterparts to offer potential mechanisms generating differences in rates of self-employment. Our analysis further considers occupational variability in the likelihood of self-employment. We find that gay men are less likely and lesbians more likely than heterosexuals to be self-employed; however, there is significant variation across occupations. Gay men are more likely to be self-employed in arts and culture, sales and service, and natural and applied sciences, but less likely in business, finance, and health-related occupations. Lesbians are much more likely to be self-employed in health-related occupations, natural and applied sciences, and arts and culture. Marriage and having children are significant predictors of self-employment for coupled heterosexual women but not lesbians. Cette étude présente des évidences empiriques concernant la relation entre l'orientation sexuelle et le travail indépendant. Utilisant des données provenant du Recensement du Canada de 2001 et de 2006, ainsi que l'Enquête nationale auprès des ménages (ENM) de 2011, nous explorons la tendance du travail indépendant parmi les couples de même sexe et ceux de sexe opposé. Ainsi, nous examinons les caractéristiques démographiques, du capital humain et familiales des couples gais et lesbiens par rapport à leurs homologues hétérosexuels, afin de démontrer une corrélation entre l'orientation sexuelle et la probabilité d'être travailleur indépendant - une causation qui nous semble évident et que nous analysons plus en profondeur. Nous concluons d'ailleurs que les hommes gais sont moins probables - et les lesbiennes plus probables - d'être travailleurs indépendants que les hétérosexuels. Cependant, il existe des variantes significatives entre les différentes occupations. Les hommes homosexuels tendent plutôt à être travailleurs indépendants dans les domaines des arts et de la culture, la vente et les services, ainsi que les sciences pures et les sciences naturelles. Par contre, ils le sont moins dans les domaines des affaires, de la finance et des domaines reliés à la santé. De leur côté, les femmes homosexuelles tendent plutôt à être travailleuses indépendantes dans les domaines reliés à la santé, aux sciences pures et aux sciences naturelles, ainsi qu'aux arts et la culture. Finalement, le fait d'être marié et d'avoir des enfants sont des indicateurs significatifs du travail indépendant pour les femmes en couples hétérosexuels, mais pas pour les lesbiennes. © 2016 Canadian Sociological Association/La Société canadienne de sociologie.

  7. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship.

    PubMed

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C

    2010-04-19

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship. BP (1 microM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1-200 microM) or vehicle. The purified DNA was analyzed by (32)P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC(50) = 16 microM) > epicatechin gallate (24 microM) > epigallocatechin (146 microM) > epicatechin (462 microM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC(50) = 4 microM) and pentagalloglucose (IC(50) = 26 microM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 microM) in the presence of test compounds (200 microM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography-mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups.

  8. Effect of Green Tea Catechins and Hydrolyzable Tannins on Benzo[a]pyrene-Induced DNA Adducts and Structure–Activity Relationship

    PubMed Central

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C.

    2016-01-01

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)–DNA adducts and the possible structure–activity relationship. BP (1 μM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1–200 μM) or vehicle. The purified DNA was analyzed by 32P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC50 = 16 μM) > epicatechin gallate (24 μM) > epigallocatechin (146 μM) > epicatechin (462 μM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC50 = 4 μM) and pentagalloglucose (IC50 = 26 μM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 μM) in the presence of test compounds (200 μM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography–mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP–DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups. PMID:20218540

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4 H 6 O 6 ) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysismore » in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4 H 4 O 6 ) and three C 3 fragmentation products (C 3 H 4 O 4 , C 3 H 2 O 4 , and C 3 H 2 O 5 ). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4 H 4 O 6 ), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C ), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  10. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    PubMed

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  11. Salt permeation and exclusion in hydroxylated and functionalized silica pores.

    PubMed

    Leung, Kevin; Rempe, Susan B; Lorenz, Christian D

    2006-03-10

    We use combined ab initio molecular dynamics (AIMD), grand canonical Monte Carlo, and molecular dynamics techniques to study the effect of pore surface chemistry and confinement on the permeation of salt into silica nanopore arrays filled with water. AIMD shows that 11.6 A diameter hydroxylated silica pores are relatively stable in water, whereas amine groups on functionalized pore surfaces abstract silanol protons, turning into NH3+. Free energy calculations using an ab initio parametrized force field show that the hydroxylated pores strongly attract Na+ and repel Cl- ions. Pores lined with NH3+ have the reverse surface charge polarity. Finally, studies of ions in carbon nanotubes suggest that hydration of Cl- is more strongly frustrated by pure confinement effects than Na+.

  12. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    PubMed

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in homogeneous catalysts and enzymes in general, with specific implications for the proton channel in the Ni-Fe hydrogenase enzyme.

  13. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli

    Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, formingmore » a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance Computing Center of Tianjin University is acknowledged for providing services to the computing cluster. CC acknowledges the support of 24 China Scholarship Council (CSC). QG acknowledges the support of NSF-CBET program (Award no. CBET-1438440). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.« less

  14. Energy transfer in PPV-based conjugated polymers: a defocused widefield fluorescence microscopy study.

    PubMed

    Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M

    2014-04-21

    Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.

  15. Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).

    PubMed

    Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E

    2017-12-13

    Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

  16. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages.

    PubMed

    Khorsand, Behnoush; Lapointe, Gabriel; Brett, Christopher; Oh, Jung Kwon

    2013-06-10

    Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.

  17. Structure-activity relationship of carbamate-linked cationic lipids bearing hydroxyethyl headgroup for gene delivery.

    PubMed

    Zhi, Defu; Zhang, Shubiao; Qureshi, Farooq; Zhao, Yinan; Cui, Shaohui; Wang, Bing; Chen, Huiying; Yang, Baoling; Zhao, Defeng

    2013-12-01

    A novel series of carbamate-linked cationic lipids containing hydroxyl headgroup were synthesized and included in formulations for transfection assays. The DNA-lipid complexes were characterized for their ability to bind DNA, their size, ζ-potential and cytotoxicity. Compared with our previously reported cationic transfection lipid DDCDMA lacking the hydroxyl group and the commercially available, these cationic liposomes exhibited relatively higher transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds.

    PubMed

    Baschieri, Andrea; Pulvirenti, Luana; Muccilli, Vera; Amorati, Riccardo; Tringali, Corrado

    2017-07-26

    Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (k inh ) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the k inh value, being 2.4 × 10 5 M -1 s -1 and 3.3 × 10 5 M -1 s -1 for the mono and the dihydroxy derivatives respectively (k inh of magnolol is 6.1 × 10 4 M -1 s -1 ). The di-methoxylated derivative is less reactive than magnolol (k inh = 1.1 × 10 4 M -1 s -1 ), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 10 4 M -1 s -1 ). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.

  19. Conformational analyses of 2,3-dihydroxypropanoic acid as a function of solvent and ionization state as determined by NMR spectroscopy.

    PubMed

    Drake, Michael D; Harsha, Alex K; Terterov, Sergei; Roberts, John D

    2006-03-01

    Vicinal (1)H--(1)H coupling constants were used to determine the conformational preferences of 2,3-dihydroxypropanoic acid (1) (DL-glyceric acid) in various solvents and its different carboxyl ionization states. The stereospecific assignments of J(12) and J(13) were confirmed through the point-group substitution of the C-3 hydrogen with deuterium, yielding rac-(2SR,3RS)-[3-(2)H]-1, and the observation of only J(13) in the (1)H NMR spectra. While hydrogen bonding and steric strain may be expected to drive the conformational equilibrium, their role is overshadowed by a profound gauche effect between the vicinal hydroxyl groups that mimics other substituted ethanes, such as 1,2-ethanediol and 1,2-difluoroethane. At low pH, the conformational equilibrium is heavily weighted toward the gauche-hydroxyl rotamers with a range of 81% in DMSO-d(6) to 92% in tert-butyl alcohol-d(10). At high pH, the equilibrium exhibits a larger dependence upon the polarity and solvating capability of the medium, although the gauche effect still dominates in D(2)O, 1,4-dioxane-d(8), methanol-d(4), and ethanol-d(6) (96, 89, 85, and 83% gauche-hydroxyls respectively). The observed preference for the gauche-hydroxyl rotamers is believed to stem primarily from hyperconjugative sigma(C--H) --> sigma*(C--OH) interactions.

  20. Modulating optical properties of graphene oxide: role of prominent functional groups.

    PubMed

    Johari, Priya; Shenoy, Vivek B

    2011-09-27

    To modulate the electronic and optical properties of graphene oxide via controlled deoxidation, a proper understanding of the role of the individual functional group in determining these properties is required. We, therefore, have performed ab initio density functional theory based calculations to study the electronic and optical properties of model structures of graphene oxide with different coverages and compositions. In particular, we considered various concentrations of major functional groups like epoxides, hydroxyls, and carbonyls, which mainly consititute the graphene oxide and the reduced graphene oxide. Our calculated electron energy loss spectra (EELS) demonstrate the π plasmon peak to be less sensitive, while π + σ plasmon is found to have a significant blue shift of about 1.0-3.0 eV, when the concentration of epoxy and hydroxyl functional groups in graphene oxide vary from 25% to 75%. However, the increase in carbonyl groups in the center of the graphene sheet creates holes, which lead to the red shift of the EELS. In the case of 37.5% of oxygen-to-carbon ratio, we find the π plasmon peak to be shifted by roughly 1.0 eV as compared to that of the pristine graphene. Our results agree well with the experimental findings which suggest a blue shift in the EELS of graphene oxide and an absorption feature due to a π electron transition of the carbonyl groups at a lower energy than that of epoxy and hydroxyl groups. We also show that the increase in the width of the hole created by the carbonyl groups significantly decreases the optical gap and opens the band gap, and thus, we argue that reduced graphene oxide with mostly carbonyl groups could be a useful material for developing tunable opto-electronic nanodevices. © 2011 American Chemical Society

  1. Stereocontrolled intramolecular iron-mediated diene/olefin cyclocoupling

    NASA Astrophysics Data System (ADS)

    Dorange, Ismet B.

    A methodology for stereocontrol during the intramolecular coupling between cyclohexadiene-Fe(CO)3 complexes and pendant alkenes is presented. Introduction of a methoxy group at the C(3) position of the diene moiety controls pre- and post-cyclization rearrangements of the diene Fe(CO)3 unit, allowing the preparation of spirolactams with defined relative stereochemistry and with a cyclohexenone framework, thus making this reaction a potentially valuable tool for the construction of quaternary carbon centers.* A new methodology for the formation of tricarbonyl(cyclohexadienyl)ketone iron complexes was also developed. This method involves the coupling of a Grignard reagent with an acyl mesylate iron complex, giving rise to ketone derivatives in excellent yields. The possibility of intramolecular coupling between diene-Fe(CO)3 complexes and homoallylic olefin was demonstrated. The stereospecific formation of spiroketones occurred in excellent yields under thermal conditions, but appeared to be limited to the simpler, less substituted pendant alkenes. The control of the stereochemical outcome of these spirocyclization was achieved using the "C(3) substitution method" previously described. The same trends were observed in these series. Also illustrated in these studies is the extension of this spirocoupling to the formation of a spiro[5.5]undecane framework. It is the first time that this framework has been accessed using this intramolecular coupling.* *Please refer to dissertation for diagram.

  2. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications

    PubMed Central

    Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon

    2015-01-01

    Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363

  3. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films.

    PubMed

    Sledge, Samiyyah M; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria L; Michael, Heidi; Dennis, Emily K; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-10-01

    The inhibition of the rate of evaporation (R evap ) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit R evap . R evap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11-24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 μm 2 . All of the surface lipids were ordered. R evap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. R evap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence R evap over an estimated average thickness range of 0.69 to >6.9 μm. R evap of human tears and buffer with and without human meibum (34.4 μm thick) was not significantly different. R evap of human tears was not significantly different from buffer. Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit R evap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit R evap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits R evap of tears. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2017-04-01

    A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.

  5. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects.

    PubMed

    Yamaori, Satoshi; Yamazaki, Hiroshi; Iwano, Shunsuke; Kiyotani, Kazuma; Matsumura, Keiko; Honda, Goro; Nakagawa, Kazuko; Ishizaki, Takashi; Kamataki, Tetsuya

    2004-04-01

    The purpose of this study was to evaluate a contribution of polymorphic cytochrome P450 (CYP) 3A5 to the oxidation of diltiazem, midazolam and testosterone by liver microsomes from Japanese subjects. Twenty-seven liver samples were classified into three groups according to the CYP3A5 genotypes; CYP3A5(*)1/(*)1 (n=3), (*)1/(*)3 (n=12) and (*)3/(*)3 (n=12). The results of genotyping and immunochemical quantitation of CYP3A5 protein showed a good accordance between the CYP3A5 genotype and CYP3A5 content but not CYP3A4 content in liver microsomes. The expression levels of hepatic CYP3A5 protein ranged from 20 to 60% of the sum of CYP3A4 and CYP3A5 contents in subjects with at least one wild type allele ((*)1). The CYP3A5 contents correlated well with liver microsomal activities of diltiazem N-demethylation, midazolam 1'- and 4-hydroxylations and testosterone 6beta-hydroxylation among subjects carrying at least one (*)1 allele. In addition, the correlation coefficients of CYP3A5 contents with the rates of diltiazem N-demethylation, midazolam 1'-hydroxylation and testosterone 6beta- hydroxylation were higher than those of CYP3A4, although the value of CYP3A5 with the midazolam 4-hydroxylation rate was similar to that of CYP3A4. Kinetic analyses revealed a biphasic diltiazem N-demethylation in liver microsomes from subjects carrying the (*)1 allele. The apparent V(max)/K(m) values for recombinant CYP3A5 indicated the greater contributions to diltiazem N-demethylation and midazolam 1'-hydroxylation as compared with CYP3A4. These results suggest that polymorphic CYP3A5 contributes markedly to the drug oxidations, particularly diltiazem N-demethylation, midazolam 1'- hydroxylation and testosterone 6beta-hydroxylation by liver microsomes from Japanese subjects.

  6. Effect of Bovine Serum Albumin Treatment on the Aging and Activity of Antibodies in Paper Diagnostics.

    PubMed

    Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil

    2018-01-01

    Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks under various conditions with a series of RH. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups within paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude-regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.

  7. Effect of Bovine Serum Albumin Treatment on the Aging and Activity of Antibodies in Paper Diagnostics

    NASA Astrophysics Data System (ADS)

    Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil

    2018-05-01

    Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks at room temperature and under different RH conditions. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups with paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude – regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.

  8. Removal behaviors of sulfamonomethoxine and its degradation intermediates in fresh aquaculture wastewater using zeolite/TiO2 composites.

    PubMed

    Nomura, Youhei; Fukahori, Shuji; Fukada, Haruhisa; Fujiwara, Taku

    2017-10-15

    Removal efficiencies of sulfamonomethoxine (SMM) and its degradation intermediates formed by treatment with zeolite/TiO 2 composites through adsorption and photocatalysis were investigated in fresh aquaculture wastewater (FAWW). Coexistent substances in the FAWW showed no inhibitory effects against SMM adsorption. Although coexistent substances in the FAWW inhibited the photocatalytic decomposition of SMM, the composites mitigated the inhibition, possibly because of concentration of SMM on their surface by adsorption. LC/MS/MS analyses revealed that hydroxylation of amino phenyl and pyrimidinyl portions, transformation of the amino group in the amino phenyl portion into a nitroso group, and substitution of the methoxy group with a hydroxyl group occurring in the initial reaction resulted in the formation of various intermediates during the photocatalysis of SMM. All detected intermediates had a ring structure, and almost all intermediates disappeared at the same time SMM was completely decomposed. Ph-OH formed by hydroxylation of the phenyl portion was detected upon decomposition of SMM during photocatalysis. The removal of Ph-OH by the composites proceeded more rapidly than that by TiO 2 alone under ultraviolet irradiation. The SMM and Ph-OH were completely degraded by the composites within 30min, showing that the zeolite/TiO 2 composites were effective in removing SMM and its intermediates from FAWW. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives

    PubMed Central

    Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony

    2013-01-01

    Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907

  10. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase.

    PubMed

    Brown, Jessica A; Fiala, Kevin A; Fowler, Jason D; Sherrer, Shanen M; Newmister, Sean A; Duym, Wade W; Suo, Zucai

    2010-01-15

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2'-hydroxyl group and the bulky side chain of an active-site residue. In this study, we demonstrated that human DNA polymerase lambda used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2'-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2'-position. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Photoactivatable Rhodamine Spiroamides and Diazoketones Decorated with "Universal Hydrophilizer" or Hydroxyl Groups.

    PubMed

    Roubinet, Benoit; Bischoff, Matthias; Nizamov, Shamil; Yan, Sergey; Geisler, Claudia; Stoldt, Stefan; Mitronova, Gyuzel Y; Belov, Vladimir N; Bossi, Mariano L; Hell, Stefan W

    2018-05-11

    Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor superresolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-L-alanyl - beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The superresolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N,N,N',N'-tetramethyl rhodamine.

  12. The effects of certain glycols, substituted glycols and related organic solvents on the thermal stability of soluble collagen

    PubMed Central

    Hart, G. J.; Russell, A. E.; Cooper, D. R.

    1971-01-01

    The effects of a number of related diols, substituted diols and glycerol on the thermal stability of acid-soluble calf skin collagen were investigated. Thermal transition temperatures were determined by optical rotation measurement. Short-chain diols with terminal hydroxyl groups, i.e. ethylene glycol and propane-1,3-diol, stabilized the protein at all accessible concentrations. Stabilization was also observed with glycerol and diethylene glycol. Higher homologues in the diol series produced various effects, as did hydroxyl-group positional isomerism. Monoalkyl substitution of diols progressively lowered the denaturation temperature of collagen. Results are discussed in relation to possible mechanisms of perturbant action. PMID:5169191

  13. H-Bonding Networks in Sugar Alcohols: Identifying Glucophores?

    NASA Astrophysics Data System (ADS)

    Alonso, E. R.; Mata, Santiago; Cabezas, Carlos; Peña, Isabel; Alonso, José L.

    2016-06-01

    The conformational behaviour of sorbitol and dulcitol has been investigated for the first time using a combination of chirped pulse Fourier transform microwave spectroscopy (CP-FTMW) coupled with a laser ablation (LA) source. The observed conformers have been found to be overstabilised by cooperative networks of intramolecular hydrogen bonds between vicinal hydroxyl groups stretching throughout the whole molecule. A common structural signature - involving hydroxyl groups in the H-bond - has been characterized and ascribed to the glucophore's AH and B sites in accordance with Shallenberger's old proposal. R. S. Shallenberger, T. E. Acree, Nature, 1967, 216, 480-482 R. S. Shallenberger, T. E. Acree, C. Y. Lee, Nature, 1969, 221, 555-556

  14. Methemoglobinemia Hemotoxicity of Some Antimalarial 8-Aminoquinoline Analogues and Their Hydroxylated Derivatives: Density Functional Theory Computation of Ionization Potentials.

    PubMed

    Ding, Yuanqing; Liu, Haining; Tekwani, Babu L; Nanayakkara, N P Dhammika; Khan, Ikhlas A; Walker, Larry A; Doerksen, Robert J

    2016-07-18

    The administration of primaquine (PQ), an essential drug for the treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose an electron) of the metabolites generated by antimalarial 8-aminoquinoline (8-AQ) drugs like PQ has been believed to be correlated in part to this methemoglobinemia hemotoxicity: the lower the IP of an 8-AQ derivative, the higher the concentration of methemoglobin generated. In this work, demethoxylated primaquine (AQ02) was employed as a model, by intensive computation at the B3LYP-SCRF(PCM)/6-311++G**//B3LYP/6-31G** level in water, to study the effects of hydroxylation at various positions on the ionization potential. Compared to the parent AQ02, the IPs of AQ02's metabolites hydroxylated at N1', C5, and C7 were lower by 61, 30, and 19 kJ/mol, respectively, while differences in the IP relative to PQ were small for hydroxylation at all other positions. The C6 position, at which the IP of the hydroxylated metabolite was greater than that of AQ02, by 2 kJ/mol, was found to be unique. Several literature and proposed 8-AQ analogues were studied to evaluate substituent effects on their potential to generate methemoglobin, with the finding that hydroxylations at N1' and C5 contribute the most to the potential hemotoxicity of PQ-based antimalarials, whereas hydroxylation at C7 has little effect. Phenoxylation at C5 in PQ-based 8-AQs can block the hydroxylation at C5 and reduce the potential for methemoglobin generation, while -CF3 and chlorines attached to the phenolic ring can further reduce the risk. The H-shift at N1' during the cationization of hydroxylated metabolites of 8-AQs sharply decreased their IPs, but this effect can be significantly reduced by the introduction of an electron-withdrawing group to the quinoline core. The results and this approach may be utilized for the design of safer antimalarial 8-AQ analogues.

  15. Supramolecular structures on silica surfaces and their adsorptive properties.

    PubMed

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  16. Surface segregation of additives on SnO 2 based powders and their relationship with macroscopic properties

    NASA Astrophysics Data System (ADS)

    Pereira, Gilberto J.; Castro, Ricardo H. R.; Hidalgo, Pilar; Gouvêa, Douglas

    2002-07-01

    Surface properties of ceramic powders frequently play an important role in producing high-quality, high-performance, and reliable ceramic products. These properties are related to the surface bond types and interactions with the surroundings. Oxide surfaces generally contain adsorbed hydroxyl groups and modifications in the chemical composition of the surface may be studied by infrared spectroscopy. In this work, we prepared SnO 2 containing Fe or Mg ions by organic chemical route derived from Pechini's method. The prepared powders were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic electrophoretic mobility and surface area determination. Results demonstrated that the studied additives segregate onto the oxide surface and modify the hydroxyl IR bands of the adsorbed hydroxyl groups. These surface modifications change some macroscopic properties of the powder such as the isoelectric point (IEP) in aqueous suspensions and the final specific surface area. The increase of the surface area with additive concentration is supposedly due to the reduction of surface energy of the powders when additives segregate on the powder surface.

  17. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  18. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  19. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  20. Diastereoselective Additions of Allylmetal Reagents to Free and Protected syn-α,β-Dihydroxyketones Enable Efficient Synthetic Routes to Methyl Trioxacarcinoside A

    PubMed Central

    Smaltz, Daniel J.; Švenda, Jakub

    2012-01-01

    Two routes to the 2,6-dideoxysugar methyl trioxacarcinoside A are described. Each was enabled by an apparent α-chelation-controlled addition of an allylmetal reagent to a ketone substrate containing a free α-hydroxyl group and a β-hydroxyl substituent, either free or protected as the corresponding di-tert-butylmethyl silyl ether. Both routes provide practical access to gram-quantities of trioxacarcinose A in a form suitable for glycosidic coupling reactions. PMID:22404560

  1. Functional Analysis of Cytochrome P450s Involved in Streptovaricin Biosynthesis and Generation of Anti-MRSA Analogues.

    PubMed

    Liu, Yuanzhen; Chen, Xu; Li, Zhengyuan; Xu, Wei; Tao, Weixin; Wu, Jie; Yang, Jian; Deng, Zixin; Sun, Yuhui

    2017-10-20

    The streptovaricins, chemically related to the rifamycins, are highly effective antibacterial agents, particularly against mycobacteria. Herein, a bioassay-guided investigation of Streptomyces spectabilis CCTCC M2017417 has led to the characterization of streptovaricins as potent compounds against methicillin-resistant Staphylococcus aureus (MRSA). We identified the streptovaricin biosynthetic gene cluster from S. spectabilis CCTCC M2017417 based on genomic sequencing and bioinformatic analysis. Targeted in-frame deletion of five cytochrome P450 genes (stvP1-P5) resulted in the identification of four new streptovaricin analogues and revealed the functions of these genes as follows: stvP1, stvP4, and stvP5 are responsible for the hydroxylation of C-20, Me-24, and C-28, respectively. stvP2 is possibly involved in formation of the methylenedioxy bridge, and stvP3, a conserved gene found in the biosynthetic cluster for naphthalenic ansamycins, might be related to the formation of a naphthalene ring. Biochemical verification of the hydroxylase activity of StvP1, StvP4, and StvP5 was performed, and StvP1 showed unexpected biocatalytic specificity and promiscuity. More importantly, anti-MRSA studies of streptovaricins and derivatives revealed significant structure-activity relationships (SARs): The hydroxyl group at C-28 plays a vital role in antibacterial activity. The hydroxyl group at C-20 substantially enhances activity in the absence of the methoxycarbonyl side chain at C-24, which can increase the activity regardless of the presence of a hydroxyl group at C-20. The inner lactone ring between C-21 and C-24 shows a positive effect on activity. This work provides meaningful information on the SARs of streptovaricins and demonstrates the utility of the engineering of streptovaricins to yield novel anti-MRSA molecules.

  2. Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling.

    PubMed Central

    Thanki, N.; Rao, J. K.; Foundling, S. I.; Howe, W. J.; Moon, J. B.; Hui, J. O.; Tomasselli, A. G.; Heinrikson, R. L.; Thaisrivongs, S.; Wlodawer, A.

    1992-01-01

    The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure. PMID:1304383

  3. Antioxidant Properties of Kynurenines: Density Functional Theory Calculations

    PubMed Central

    2016-01-01

    Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. PMID:27861556

  4. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE PAGES

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; ...

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO 2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO 2-x(111) at varying Ce³⁺ concentrations (CeO 1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria.more » Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  5. Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface.

    PubMed

    Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan

    2010-01-07

    In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.

  6. Compositions and methods for hydrocarbon functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.

    Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

  7. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor. PMID:22403541

  8. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  9. Control of intramolecular π-π stacking interaction in cationic iridium complexes via fluorination of pendant phenyl rings.

    PubMed

    He, Lei; Ma, Dongxin; Duan, Lian; Wei, Yongge; Qiao, Juan; Zhang, Deqiang; Dong, Guifang; Wang, Liduo; Qiu, Yong

    2012-04-16

    Intramolecular π-π stacking interaction in one kind of phosphorescent cationic iridium complexes has been controlled through fluorination of the pendant phenyl rings on the ancillary ligands. Two blue-green-emitting cationic iridium complexes, [Ir(ppy)(2)(F2phpzpy)]PF(6) (2) and [Ir(ppy)(2)(F5phpzpy)]PF(6) (3), with the pendant phenyl rings on the ancillary ligands substituted with two and five fluorine atoms, respectively, have been synthesized and compared to the parent complex, [Ir(ppy)(2)(phpzpy)]PF(6) (1). Here Hppy is 2-phenylpyridine, F2phpzpy is 2-(1-(3,5-difluorophenyl)-1H-pyrazol-3-yl)pyridine, F5phpzpy is 2-(1-pentafluorophenyl-1H-pyrazol-3-yl)-pyridine, and phpzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine. Single crystal structures reveal that the pendant phenyl rings on the ancillary ligands stack to the phenyl rings of the ppy ligands, with dihedral angles of 21°, 18°, and 5.0° between least-squares planes for complexes 1, 2, and 3, respectively, and centroid-centroid distances of 3.75, 3.65, and 3.52 Å for complexes 1, 2, and 3, respectively, indicating progressively reinforced intramolecular π-π stacking interactions from complexes 1 to 2 and 3. Compared to complex 1, complex 3 with a significantly reinforced intramolecular face-to-face π-π stacking interaction exhibits a significantly enhanced (by 1 order of magnitude) photoluminescent efficiency in solution. Theoretical calculations reveal that in complex 3 it is unfavorable in energy for the pentafluorophenyl ring to swing by a large degree and the intramolecular π-π stacking interaction remains on the lowest triplet state. © 2012 American Chemical Society

  10. Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lam, Jacky W. Y.; Qin, Anjun; Li, Zhen; Liu, Jianzhao; Sun, Jingzhi; Dong, Yuping; Tang, Ben Zhong

    2007-09-01

    Hexaphenylsilole (HPS) was functionalized by two amino (A 2) groups, giving a new silole derivative of 1,1-bis[4-(diethylaminomethyl)phenyl]-2,3,4,5-tetraphenylsilole (A 2HPS) that is capable of detecting explosives, biomacromolecules and pH changes. A 2HPS is nonemissive when molecularly dissolved but becomes highly luminescent when aggregated. The emission of its nanoaggregates is quenched by picric acid with a high Ksv value (˜1.7 × 10 5 M -1). A 2HPS can dissolve in acidic aqueous media, due to the transformation of its amino groups to ammonium-salts. The resultant nonemissive aqueous solution is turned on by increasing its pH value or adding protein or DNA.

  11. Identification of compounds inhibiting the C-S lyase activity of a cell extract from a Staphylococcus sp. isolated from human skin.

    PubMed

    Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R

    2013-12-01

    The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.

  12. In vivo transport of three radioactive [18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1.

    PubMed

    Tran, Thu M; Hampton, Carissa S; Brossard, Tom W; Harmata, Michael; Robertson, J David; Jurisson, Silvia S; Braun, David M

    2017-06-01

    Sucrose transporter (SUT) proteins translocate sucrose across cell membranes; however, mechanistic aspects of sucrose binding by SUTs are not well resolved. Specific hydroxyl groups in sucrose participate in hydrogen bonding with SUT proteins. We previously reported that substituting a radioactive fluorine-18 [ 18 F] at the C-6' position within the fructosyl moiety of sucrose did not affect sucrose transport by the maize (Zea mays) ZmSUT1 protein. To determine how 18 F substitution of hydroxyl groups at two other positions within sucrose, the C-1' in the fructosyl moiety or the C-6 in the glucosyl moiety, impact sucrose transport, we synthesized 1'-[F 18 ]fluoro-1'-deoxysucrose and 6-[F 18 ]fluoro-6-deoxysucrose ([ 18 F]FDS) analogs. Each [ 18 F]FDS derivative was independently introduced into wild-type or sut1 mutant plants, which are defective in sucrose phloem loading. All three (1'-, 6'-, and 6-) [ 18 F]FDS derivatives were efficiently and equally translocated, similarly to carbon-14 [ 14 C]-labeled sucrose. Hence, individually replacing the hydroxyl groups at these positions within sucrose does not interfere with substrate recognition, binding, or membrane transport processes, and hydroxyl groups at these three positions are not essential for hydrogen bonding between sucrose and ZmSUT1. [ 18 F]FDS imaging afforded several advantages compared to [ 14 C]-sucrose detection. We calculated that 1'-[ 18 F]FDS was transported at approximately a rate of 0.90 ± 0.15 m.h-1 in wild-type leaves, and at 0.68 ± 0.25 m.h-1 in sut1 mutant leaves. Collectively, our data indicated that [ 18 F]FDS analogs are valuable tools to probe sucrose-SUT interactions and to monitor sucrose transport in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  14. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    PubMed

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  15. In vitro metabolism studies of desoxy-methyltestosterone (DMT) and its five analogues, and in vivo metabolism of desoxy-vinyltestosterone (DVT) in horses.

    PubMed

    Kwok, Wai Him; Kwok, Karen Y; Leung, David K K; Leung, Gary N W; Wong, Colton H F; Wong, Jenny K Y; Wan, Terence S M

    2015-08-01

    The positive findings of norbolethone in 2002 and tetrahydrogestrinone in 2003 in human athlete samples confirmed that designer steroids were indeed being abused in human sports. In 2005, an addition to the family of designer steroids called 'Madol' [also known as desoxy-methyltestosterone (DMT)] was seized by government officials at the US-Canadian border. Two years later, a positive finding of DMT was reported in a mixed martial arts athlete's sample. It is not uncommon that doping agents used in human sports would likewise be abused in equine sports. Designer steroids would, therefore, pose a similar threat to the horseracing and equestrian communities. This paper describes the in vitro metabolism studies of DMT and five of its structural analogues with different substituents at the 17α position (RH, ethyl, vinyl, ethynyl and 2 H 3 -methyl). In addition, the in vivo metabolism of desoxy-vinyltestosterone (DVT) in horses will be presented. The in vitro studies revealed that the metabolic pathways of DMT and its analogues occurred predominantly in the A-ring by way of a combination of enone formation, hydroxylation and reduction. Additional biotransformation involving hydroxylation of the 17α-alkyl group was also observed for DMT and some of its analogues. The oral administration experiment revealed that DVT was extensively metabolised and the parent drug was not detected in urine. Two in vivo metabolites, derived respectively from (1) hydroxylation of the A-ring and (2) di-hydroxylation together with A-ring double-bond reduction, could be detected in urine up to a maximum of 46 h after administration. Another in vivo metabolite, derived from hydroxylation of the A-ring with additional double-bond reduction and di-hydroxylation of the 17α-vinyl group, could be detected in urine up to a maximum of 70 h post-administration. All in vivo metabolites were excreted mainly as glucuronides and were also detected in the in vitro studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Regioselective Synthesis of Cellulose Ester Homopolymers

    Treesearch

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  17. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper mantle, and if they form connected networks as observed for some natural samples, regionally high electrical conductivities could be produced. It has been recently proposed that the transition zone is probably a major reservoir for fluorine in the mantle, due to the significant dissolution of fluorine in wadsleyite and ringwoodite and the coupled incorporation with hydroxyl groups. As such, geophysically-resolved high electrical conductivities in the transition zone may be accounted for by fluorine in the dominant minerals, rather than by hydroxyl groups. The results of this work would stimulate a wide scope of future studies on the deep fluorine cycle, the deep water cycle and the geodynamical properties of the mantle.

  18. Microbial transformations of diosgenin by the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Wu, Guang-Wei; Gao, Jin-Ming; Shi, Xin-Wei; Zhang, Qiang; Wei, Shao-Peng; Ding, Kan

    2011-10-28

    Microbial transformation of diosgenin (3β-hydroxy-5-spirostene) using white-rot fungus Coriolus versicolor afforded four previously unreported polyhydroxylated steroids, 25(R)-spirost-5-en-3β,7α,15α,21-tetraol (5), 25(R)-spirost-5-en-3β,7β,12β,21-tetrol (6), (25R)-spirost-5-en-3β,7α,12β,21-tetraol (7), and (25R)-spirost-5-en-3β,7β,11α,21-tetraol (8), along with three known congeners, 25(R)-spirost-5-en-3β,7β-diol (2), 25(R)-spirost-5-en-3β,7β,21-triol (3), and 25(R)-spirost-5-en-3β,7β,12β-triol (4). These structures were elucidated by 1D and 2D NMR as well as HR-ESIMS analysis. In addition, we provide evidence for two new microbial hydroxylations of diosgenin: C-21 primary carbon hydroxylation and C-15 hydroxylation. The 3β-hydroxyl group and double bond in the B-ring of diosgenin were found to be important structural determinants for their activity.

  19. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  20. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  1. Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients.

    PubMed

    Orellana, Myriam; Rodrigo, Ramón; Varela, Nelson; Araya, Julia; Poniachik, Jaime; Csendes, Attila; Smok, Gladys; Videla, Luis A

    2006-01-01

    The aim of the present study was to test the hypothesis that induction of cytochrome P450 2E1 (CYP2E1) in the liver of patients with non-alcoholic fatty liver disease (NAFLD) is correlated both with the in vivo activity of the cytochrome and with the development of liver injury. For this purpose, the liver content of CYP2E1 was determined by Western blot and the CYP2E1 activity by the in vivo hydroxylation of chlorzoxazone (CLZ). The study groups were obese women with an average body mass index (BMI) of 40.3kg/m(2), who underwent therapeutic gastroplasty or gastrectomy with a gastro-jejunal anastomosis. Further, the hepatic histology was determined to establish the pathological score grouping the subjects into three categories: control, steatosis and steatohepatitis. The liver CYP2E1 content and the CLZ hydroxylation of obese patients with steatosis and, particularly, with steatohepatitis were significantly higher than controls and correlated positively with both the severity of the liver damage. These data provide evidence that CYP2E1 would be involved in the mechanism of liver injury found in obese NAFLD patients. Also, the correlation between liver CYP2E1 content and in vivo CLZ hydroxylation would validate the latter as a reliable indicator of liver injury in NAFLD, thus providing a simple and not invasive method to study these patients.

  2. Measurement of Surface Interfacial Tension as a Function of Temperature Using Pendant Drop Images

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Kumar, Ranganathan; Cho, Hyoung J.

    2011-10-01

    Accurate and reliable measurements of surface tension at the interface of immiscible phases are crucial to understanding various physico-chemical reactions taking place between those. Based on the pendant drop method, an optical (graphical)-numerical procedure was developed to determine surface tension and its dependency on the surrounding temperature. For modeling and experimental verification, chemically inert and thermally stable perfluorocarbon (PFC) oil and water was used. Starting with geometrical force balance, governing equations were derived to provide non-dimensional parameters which were later used to extract values for surface tension. Comparative study verified the accuracy and reliability of the proposed method.

  3. PYRAMID ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Armstrong, Augustus K.; Scott, Douglas F.

    1984-01-01

    A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.

  4. Fluorinated poly(ether sulfone) ionomers with disulfonated naphthyl pendants for proton exchange membrane applications

    NASA Astrophysics Data System (ADS)

    Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen

    2018-06-01

    Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.

  5. Fluorinated poly(ether sulfone) ionomers with disulfonated naphthyl pendants for proton exchange membrane applications

    NASA Astrophysics Data System (ADS)

    Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen

    2018-05-01

    Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  7. Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Charles J.; Egbert, Jonathan D.; Chen, Shentan

    2014-04-28

    Treatment of trans-[W(N2)2(dppe)(PEtNMePEt)] (dppe = Ph2PCH2CH2PPh2; PEtNMePEt = Et2PCH2N(Me)CH2PEt2) with three equivalents of tetrafluoroboric acid (HBF4∙Et2O) at -78 °C generated the seven-coordinate tungsten hydride trans-[W(N2)2(H)(dppe)(PEtNMePEt)][BF4]. Depending on the temperature of the reaction, protonation of a pendant amine is also observed, affording trans-[W(N2)2(H)(dppe)(PEtNMe(H)PEt)][BF4]2, with formation of the hydrazido complex, [W(NNH2)(dppe)(PEtNMe(H)PEt)][BF4]2, as a minor product. Similar product mixtures were obtained using triflic acid (HOTf). Upon acid addition to the carbonyl analogue, cis-[W(CO)2(dppe)(PEtNMePEt)], the seven-coordinate carbonyl-hydride complex, trans-[W(CO)2(H)(dppe)(PEtN(H)MePEt)][OTf]2 was generated. The mixed diphosphine complex without the pendant amine in the ligand backbone, trans-[W(N2)2(dppe)(depp)] (depp = Et2P(CH2)3PEt2), was synthesized and treated with HBF4∙Et2O, selectivelymore » generating a hydrazido complex, [W(NNH2)(F)(dppe)(depp)][BF4]. Computational analysis was used to probe proton affinity of three sites of protonation, the metal, pendant amine, and N2 ligand in these complexes. Room temperature reactions with 100 equivalents of HOTf produced NH4+ from reduction of the N2 ligand (electrons come from W). The addition of 100 equivalents HOTf to trans-[W(N2)2(dppe)(PEtNMePEt)] afforded 0.88 ± 0.02 equivalents NH4+, while 0.36 ± 0.02 equivalents of NH4+was formed upon treatment of trans-[W(N2)2(dppe)(depp)], the complex without the pendant amine. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  8. Paleoclimate and Paleoecology of Central Utah during the Past ≈200,000 Years from Soil Carbonate Pendants

    NASA Astrophysics Data System (ADS)

    Huth, T.; Cerling, T. E.; Fernandez, D. P.; Mackey, G. N., III; Bowling, D. R.; Marchetti, D. W.; Passey, B. H.

    2016-12-01

    Understanding the magnitude and duration of past climate events is essential to make accurate predictions about how global climate will vary over the next century. Quantitative paleoclimate records from arid regions are difficult to obtain, often present complex growth histories, and have poor chronologic dating relative to marine sediment archives. Pendants, which are several centimeter thick coatings of soil carbonate formed on the bottoms of boulders, represent a novel source for soil and climate records in arid areas. We developed two high resolution stable isotope paleorecords (C and O) from pendants collected in Utah at Torrey and the University of Utah Rio Mesa research station ≈200 km east of Torrey. The pendants are dense, finely laminated, and formed at >20 cm depth. They were dated by the cosmogenic 3He, U/Th, and radiocarbon methodologies. The pendants have nearly identical C isotope records with a roughly sinusoidal shape. The most negative values (-4‰ VPDB) occur during what we tentatively identify through radiocarbon dates as the Younger Dryas. Plants using the C4 photosynthetic pathway dominate through both records, as demonstrated by δ13C values of -4 to -1‰ (≈70-100% C4 plants). The consistency between these two records meets theoretical expectations that the sites, which sit at similar latitudes, should show similar changes in paleoecology and paleoclimate through time. The oxygen isotope record at Rio Mesa is dynamic and does not match the Torrey record. It ranges from -7 to -13‰ (VPDB) and shows a consistent increase towards the present. At 11 cal yr BP there is a 1.5‰ spike in the record. These patterns are in strong contrast to the Torrey record, which stays between -8 and -9‰ for the entirety of the record. The Torrey record can be reasonably explained through isotopic effects caused by factors like ocean temperature, glaciation extent, and temperature of calcite formation. However, these factors are inadequate to explain the long-term 6‰ and short-term 1.5‰ shifts observed in the Rio Mesa record. The C isotope records indicate both sites experienced similar paleoclimate, which argues against, for example, differences in rainfall amount or intensity. Instead, these data may point to a regional, long-term change in water source or seasonality of calcite or progressive soil erosion.

  9. Adsorption of natural dissolved organic matter at the oxide/water interface

    USGS Publications Warehouse

    Davis, James A.

    1982-01-01

    Natural organic matter is readily adsorbed by alumina and kaolinite in the pH range of natural waters. Adsorption occurs by complex formation between surface hydroxyls and the acidic functional groups of the organic matter. Oxides with relatively acidic surface hydroxyls, e.g. silica, do not react strongly with the organic matter. Under conditions typical for natural waters, almost complete surface coverage by adsorbed organic matter may be expected for alumina, hydrous iron oxides and the edge sites of aluminosilicates. Potentiometric titration and electrophoresis indicate that most of the acidic functional groups of the adsorbed organic matter are neutralized by protons from solution. The organic coating is expected to have a great influence on subsequent adsorption of inorganic cations and anions.

  10. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  11. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds

    PubMed Central

    2013-01-01

    Background Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. Results SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. Conclusions In conclusion, the structures of good anti radical and antioxidant phenols and anilines are defined. The obtained good correlations imply that measuring anti DPPH activity can be used as a simple predictive test for the anti hydroxyl and peroxyl radical, and antioxidant activities. Kinetic measurements showed that strong antioxidants with high activity have also high reaction rates indicating that factors stabilizing the phenoxyl radicals lower also the activation energy of the hydrogen transfer process. PMID:23497653

  12. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    PubMed Central

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA prodrug design. PMID:24328955

  13. Importance of Unimolecular HO 2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol

    DOE PAGES

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    2016-07-09

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this paper investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4H 6O 6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time)more » coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4H 4O 6) and three C 3 fragmentation products (C 3H 4O 4, C 3H 2O 4, and C 3H 2O 5). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4H 4O 6), the major reaction product. While in general, C–C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). Finally, these results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  14. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  15. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    PubMed

    Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  16. Nanostructure and surface activation of mayenite (12CaO·7Al2O3) ceramics via femtosecond laser irradiation in solvents

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Hirano, Minami; Omura, Takuya; Shimizu, Masahiro; Takaishi, Taigo; Hirao, Kazuyuki

    2017-07-01

    Mayenite (12CaO·7Al2O3) is a highly interesting functional material due to the wide variety of its possible future applications. In this study, we used femtosecond laser irradiation in several solvents with varying polarities to increase the specific surface area of 12CaO·7Al2O3 ceramics and reduce their particle size without any structural degradation or loss of crystallinity. We observed that when femtosecond laser irradiation was applied to solvents bearing hydroxyl groups, a smaller particle size was obtained with the particle size decreasing as the polarity of the solvent increased. Using infrared spectroscopy, we confirmed the presence of hydroxyl and carbonyl surface functional groups at the surface of 12CaO·7Al2O3 ceramics after femtosecond laser irradiation. This is attributed to the direct chemical bonds breaking of the solvent via multiphoton ionization and/or tunneling ionization, followed by the Coulomb explosion and the subsequent production of ions that are adsorbed on the surfaces of 12CaO·7Al2O3 ceramics. Femtosecond laser irradiation in polar solvents with hydroxyl groups can reduce the particle size and increase the specific surface area without degradation or loss of crystallinity of 12CaO·7Al2O3 ceramics. Additionally, this method can be used for the surface modification and introduction of functional groups on the 12CaO·7Al2O3 ceramics surface.

  17. Where and What Is Pristine Marine Aerosol?

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter, 48:v-x, doi10.1080/02786826.2013.879979, 2014a. Frossard, A.A., L.M. Russell, M.S. Long, S.M. Burrows, S.M. Elliot, T.S. Bates, and P.K. Quinn, "Sources and Composition of Submicron Organic Mass in Marine Aerosol Particles," Journal of Geophysical Research - Atmospheres, submitted 2014b.

  18. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety.

    PubMed

    Soukup, Ondrej; Dolezal, Rafael; Malinak, David; Marek, Jan; Salajkova, Sarka; Pasdiorova, Marketa; Honegr, Jan; Korabecny, Jan; Nachtigal, Petr; Nachon, Florian; Jun, Daniel; Kuca, Kamil

    2016-02-15

    In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew

    2016-09-19

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less

  20. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite.

    PubMed

    Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li

    2018-05-07

    Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

  1. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation.

    PubMed

    Park, Yeong-Joon; Song, Ho-Jun; Kim, In; Yang, Hong-So

    2007-04-01

    In this study, we characterized the surface of oxide film formed on titanium metal through the use of thermal treatment and investigated the effect of surface characteristics on the bioactivity of titanium. The as-received sample group was prepared by polishing and cleaning CP-Ti as a control group, and thermally oxidized sample groups were prepared by heat treating at 530, 600, 700, 800, 900, and 1000 degrees C respectively. Micro-morphology, crystalline structure, chemical composition, and binding state were evaluated using FE-SEM, XRD, and XPS. The bioactivity of sample groups was investigated by observing the degree of calcium phosphate formation from immersion testing in MEM. The surface characterization tests showed that hydroxyl group content in titanium oxide film was increased, as the density of titanium atoms was high and the surface area was large. In MEM immersion test, initial calcium phosphate formation was dependent upon the thickness of titanium oxide, and resultant calcium phosphate formation depended on the content of the hydroxyl group of the titanium oxide film surface.

  2. 2,3-trans-3,4-trans-3,4-Dihydroxy-L-proline: An amino acid in toxic peptides of Amanita virosa mushrooms

    PubMed Central

    Buku, A.; Faulstich, H.; Wieland, T.; Dabrowski, J.

    1980-01-01

    Among the four possible stereoisomers of 3,4-dihydroxy-L-proline,2,3-trans-3,4-trans-3,4-dihydroxy-L-proline (IV) had not been found in nature previously. It has now been detected as a component of virotoxins, toxic peptides of Amanita virosa mushrooms. Because periodate failed to effect an oxidative glycol splitting reaction, the two hydroxyl groups in positions 3 and 4 were expected to be in a trans configuration. Furthermore, the formation of a 4-lactone on treatment with acids pointed to the carboxyl group and the hydroxyl group at position 4 being in a cis configuration. These results are in agreement with structure IV only. Final proof for structure IV was given by NMR spectroscopy and direct comparison with the 2,3-cis-3,4-trans-3,4-dihydroxy-L-proline isomer. PMID:16592813

  3. Structure-anti-MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives.

    PubMed

    Sawada, Hiromi; Onoda, Kenji; Morita, Daichi; Ishitsubo, Erika; Matsuno, Kenji; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2013-12-15

    We synthesized a series of macrocyclic bis(bibenzyl) derivatives, including riccardin-, isoplagiochin- and marchantin-class structures, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The structure-activity relationships and the results of molecular dynamics simulations indicated that bis(bibenzyl)s with potent anti-MRSA activity commonly have a 4-hydroxyl group at the D-benzene ring and a 2-hydroxyl group at the C-benzene ring in the hydrophilic part of the molecule, and an unsubstituted phenoxyphenyl group in the hydrophobic part of the molecule containing the A-B-benzene rings. Pharmacological characterization of the bis(bibenzyl) derivatives and 2-phenoxyphenol fragment 25, previously proposed as the minimum structure of riccardin C 1 for anti-MRSA activity, indicated that they have different action mechanisms: the bis(bibenzyl)s are bactericidal, while 25 is bacteriostatic, showing only weak bactericidal activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms.

    PubMed

    Legentil, Laurent; Cabezas, Yari; Tasseau, Olivier; Tellier, Charles; Daligault, Franck; Ferrières, Vincent

    2017-07-21

    Koenigs-Knorr glycosylation of acceptors with more than one free hydroxyl group by 2,3,5,6-tetrabenzoyl galactofuranosyl bromide was performed using diphenylborinic acid 2-aminoethyl ester (DPBA) as inducer of regioselectivity. High regioselectivity for the glycosylation on the equatorial hydroxyl group of the acceptor was obtained thanks to the transient formation of a borinate adduct of the corresponding 1,2-cis diol. Nevertheless formation of orthoester byproducts hampered the efficiency of the method. Interestingly electron-withdrawing groups on O-6 or on C-1 of the acceptor displaced the reaction in favor of the desired galactofuranosyl containing disaccharide. The best yield was obtained for the furanosylation of p-nitrophenyl 6-O-acetyl mannopyranoside. Precursors of other disaccharides, found in the glycocalix of some pathogens, were synthesized according to the same protocol with yields ranging from 45 to 86%. This is a good alternative for the synthesis of biologically relevant glycoconjugates.

  5. Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.

    2017-05-01

    The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.

  6. Effect of Agitation in Alkalization Process on the Characteristics of Sodium Carboxymethyl Sago and Cassava Starches

    NASA Astrophysics Data System (ADS)

    Titi, C. S.; Fachrudin, R.; Ruriani, E.; Yuliasih, I.

    2018-05-01

    Sodium carboxymethyl starch (Sodium CMS) is a modified starch prepared by two successive processes, alkalization and etherification. Alkalization will change the activated hydroxyl group of starch to more reactive alkoxide (St-O-), and then carboxymethyl group will substitute the hydroxyl group into sodium CMS. This research investigated the effect of agitation (1000 rpm of stirring and 4000 rpm of homogenization) in alkalization process to the modification of native starch into sodium CMS. Cassava and sago starches were mixed with sodium hydroxide (1.8 and 1.9 moles per mole anhydrous glucose units). The combination of NaOH and homogenizing gave the highest degrees of substitution for cassava (DS 0.73) and sago (DS 0.55) starches. The sodium CMS characteristics (paste clarity, water and oil absorption capacities, solubility, swelling power) were a function of mixing method but not on the amount of NaOH used.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less

  8. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  9. Enhancing the Oxidation Stability of Polydivinylbenzene Films via Residual Pendant Vinyl Passivation

    DOE PAGES

    Lepro, Xavier; Ehrmann, Paul; Rodriguez, Jennifer; ...

    2018-01-11

    Polydivinylbenzene (PDVB) is a thermally stable, optically transparent, crosslinked polymer that until recently has been difficult to synthesize as a thin film. With the recent demonstration of initiated chemical vapor deposition (iCVD) of thin PDVB films, a renewed interest in the material properties of PDVB has developed. In particular, attention is now focused on its oxidation pathways and long-term stability under the desired application use conditions. In this paper, we report on the thermal and environmental stability of PDVB films and show that unreacted pendant vinyl groups drive polymer oxidation upon exposure to either air or light. We demonstrate thatmore » such vinyls can be effectively passivated by a simple ex-situ thermal annealing at ca. 300 °C in inert atmosphere that induces an 87% reduction of the PDVB oxidation rate in air and slows light (λ=405 nm) induced oxidation by 56%. While the thermal annealing is less effective at preventing oxidation under higher energy (λ = 365 nm) UV light, we demonstrate that this aging pathway is based on the presence of reactive oxygen species rather than traditional photo-oxidation. Finally, vinyl removal through ex-situ thermal annealing improves the chemical stability of iCVD PDVB to continuous air (over 500 days) or light (70 hours) exposure and offers a simple option to improve its environmental aging resistance which is important for long-term protective applications.« less

  10. No 129-L'exercice physique pendant la grossesse et le postpartum.

    PubMed

    Davies, Gregory A L; Wolfe, Larry A; Mottola, Michelle F; MacKinnon, Catherine

    2018-02-01

    Énoncer une directive canadienne visant à informer les fournisseurs de soins obstétricaux des répercussions, pour la mère, le fœtus et le nouveau-né, des exercices de conditionnement aerobique et musculaire pendant la grossesse. RéSULTATS ATTENDUS: Effets sur la morbidité maternelle, fœtale et néonatale et mesures de la forme physique maternelle. Une recherche sur MEDLINE des articles, publiés en anglais de 1966 à 2002, appartenant aux catégories suivantes : études sur le conditionnement aérobique et musculaire chez des femmes ne faisant pas jusque-là d'exercice et chez des femmes actives avant leur grossesse, ainsi que des études sur les répercussions du conditionnement aérobique et musculaire sur les issues précoces et tardives de la grossesse ou sur les issues néonatales; rapports de synthèse et méta-analyses portant sur l'exercice pendant la grossesse. Les résultats recueillis ont été revus par la Société des obstétriciens et gynécologues du Canada (Comité de la pratique clinique - obstétrique), avec la participation de la Société canadienne de physiologie de l'exercice, et ils ont été classés suivant les critères d'évaluation des preuves établis par le Groupe de travail canadien sur l'examen de santé périodique. VALIDATION: Cette directive a été approuvée par le Comité de pratique clinique - obstétrique de la SOGC, par le Comité exécutif et par le Conseil de la SOGC, ainsi que par le Conseil d'administration de la Société canadienne de physiologie de l'exercice. PARRAINé PAR: la Société des obstétriciens et gynécologues du Canada et par la Société canadienne de physiologie de l'exercice. Copyright © 2018. Published by Elsevier Inc.

  11. Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics.

    PubMed

    Zhao, Shuang; Luo, Xian; Li, Liang

    2016-11-01

    A key step in metabolomics is to perform accurate relative quantification of the metabolomes in comparative samples with high coverage. Hydroxyl-containing metabolites are an important class of the metabolome with diverse structures and physical/chemical properties; however, many of them are difficult to detect with high sensitivity. We present a high-performance chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) technique for in-depth profiling of the hydroxyl submetabolome, which involves the use of acidic liquid-liquid extraction to enrich hydroxyl metabolites into ethyl acetate from an aqueous sample. After drying and then redissolving in acetonitrile, the metabolite extract is labeled using a base-activated 12 C- or 13 C-dansylation reaction. A fast step-gradient LC-UV method is used to determine the total concentration of labeled metabolites. On the basis of the concentration information, a 12 C-labeled individual sample is mixed with an equal mole amount of a 13 C-labeled pool or control for relative metabolite quantification. The 12 C-/ 13 C-labeled mixtures are individually analyzed by LC-MS, and the resultant peak pairs of labeled metabolites in MS are measured for relative quantification and metabolite identification. A standard library of 85 hydroxyl compounds containing MS, retention time, and MS/MS information was constructed for positive metabolite identification based on matches of two or all three of these parameters with those of an unknown. Using human urine as an example, we analyzed samples of 1:1 12 C-/ 13 C-labeled urine in triplicate with triplicate runs per sample and detected an average of 3759 ± 45 peak pairs or metabolites per run and 3538 ± 71 pairs per sample with 3093 pairs in common (n = 9). Out of the 3093 peak pairs, 2304 pairs (75%) could be positively or putatively identified based on metabolome database searches, including 20 pairs positively identified using the dansylated hydroxyl standards library. The majority of detected metabolites were those containing hydroxyl groups. This technique opens a new avenue for the detailed characterization of the hydroxyl submetabolome in metabolomics research.

  12. Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells.

    PubMed

    Wu, Kuan-Lin; Li, Cheng-Hsuan; Chi, Yun; Clifford, John N; Cabau, Lydia; Palomares, Emilio; Cheng, Yi-Ming; Pan, Hsiao-An; Chou, Pi-Tai

    2012-05-02

    Dicarboxyterpyridine chelates with π-conjugated pendant groups attached at the 5- or 6-position of the terminal pyridyl unit were synthesized. Together with 2,6-bis(5-pyrazolyl)pyridine, these were used successfully to prepare a series of novel heteroleptic, bis-tridentate Ru(II) sensitizers, denoted as TF-11-14. These dyes show excellent performance in dye-sensitized solar cells (DSCs) under AM1.5G simulated sunlight at a light intensity of 100 mW cm(-2) in comparison with a reference device containing [Ru(Htctpy)(NCS)(3)][TBA](3) (N749), where H(3)tctpy and TBA are 4,4',4"-tricarboxy-2,2':6',2"-terpyridine and tetra-n-butylammonium cation, respectively. In particular, the sensitizer TF-12 gave a short-circuit photocurrent of 19.0 mA cm(-2), an open-circuit voltage (V(OC)) of 0.71 V, and a fill factor of 0.68, affording an overall conversion efficiency of 9.21%. The increased conjugation conferred to the TF dyes by the addition of the π-conjugated pendant groups increases both their light-harvesting and photovoltaic energy conversion capability in comparison with N749. Detailed recombination processes in these devices were probed by various spectroscopic and dynamics measurements, and a clear correlation between the device V(OC) and the cell electron lifetime was established. In agreement with several other recent studies, the results demonstrate that high efficiencies can also be achieved with Ru(II) sensitizers that do not contain thiocyanate ancillaries. This bis-tridentate, dual-carboxy anchor configuration thus serves as a prototype for future omnibearing design of highly efficient Ru(II) sensitizers suited for use in DSCs. © 2012 American Chemical Society

  13. Ligand-induced dependence of charge transfer in nanotube–quantum dot heterostructures

    DOE PAGES

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; ...

    2016-07-01

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT) – CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ~4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Finally, our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves and the electron affinity of the pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs.« less

  14. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    EPA Science Inventory

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  15. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.

    PubMed

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-02-10

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5-30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight ( M W ) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.

  16. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers

    PubMed Central

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-01-01

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836

  17. Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Trans-AT Polyketide Synthase Pathway.

    PubMed

    Mohammad, Hadi H; Connolly, Jack A; Song, Zhongshu; Hothersall, Joanne; Race, Paul R; Willis, Christine L; Simpson, Thomas J; Winn, Peter J; Thomas, Christopher M

    2018-04-16

    The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  19. Synthesis of novel benzohydrazone-oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Selvaraj, Manikandan; Rahim, Abdul; Ali, Muhammad; Siddiqui, Salman; Rahim, Fazal; Khan, Khalid Mohammed

    2015-12-01

    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Molecular interactions in nanocellulose assembly

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshiharu

    2017-12-01

    The contribution of hydrogen bonds and the London dispersion force in the cohesion of cellulose is discussed in the light of the structure, spectroscopic data, empirical molecular-modelling parameters and thermodynamics data of analogue molecules. The hydrogen bond of cellulose is mainly electrostatic, and the stabilization energy in cellulose for each hydrogen bond is estimated to be between 17 and 30 kJ mol-1. On average, hydroxyl groups of cellulose form hydrogen bonds comparable to those of other simple alcohols. The London dispersion interaction may be estimated from empirical attraction terms in molecular modelling by simple integration over all components. Although this interaction extends to relatively large distances in colloidal systems, the short-range interaction is dominant for the cohesion of cellulose and is equivalent to a compression of 3 GPa. Trends of heat of vaporization of alkyl alcohols and alkanes suggests a stabilization by such hydroxyl group hydrogen bonding to be of the order of 24 kJ mol-1, whereas the London dispersion force contributes about 0.41 kJ mol-1 Da-1. The simple arithmetic sum of the energy is consistent with the experimental enthalpy of sublimation of small sugars, where the main part of the cohesive energy comes from hydrogen bonds. For cellulose, because of the reduced number of hydroxyl groups, the London dispersion force provides the main contribution to intermolecular cohesion. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  1. CO 2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    DOE PAGES

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; ...

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ bymore » these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.« less

  2. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China.

    PubMed

    Ma, Shengtao; Ren, Guofa; Zeng, Xiangying; Yu, Zhiqiang; Sheng, Guoying; Fu, Jiamo

    2017-05-05

    A number of studies have reported on the exposure of e-waste dismantling workers to significantly high concentrations of halogenated organic pollutants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers. Such exposure can have adverse health effects. However, little information on the metabolites of these contaminants exists. In this study, we investigated PCBs levels and their hydroxylated metabolites (OH-PCB) in the serum of e-waste workers in Taizhou in eastern China. Our results indicate elevated PCB and OH-PCB levels in the serum of the workers, with medians of 443.7 and 133.9 ng/g lw, respectively. Tri- to hexachlorinated PCB congeners were the dominant homologue groups in all of the samples. 4-OH-CB107 was the predominant homologue among the hydroxylated metabolites, accounting for 88.9% of the total OH-PCB concentrations. While dietary sources (e.g., fish) appear to be an important route for PCB accumulation in non-occupational exposure groups, exposure via ingestion of house dust and inhalation of pollutants derived from the recycling of PCB-containing e-wastes may primarily contribute to the high body burden observed in the occupational groups. Since we found concentrations of metabolites higher than those of their parent compounds, further studies need to pay more attention to their bioaccumulation and toxicity.

  3. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, R. Morris; Chambers, Geoffrey M.

    2017-07-24

    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant aminemore » function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.« less

  4. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?

    PubMed

    de Visser, Sam P; Tahsini, Laleh; Nam, Wonwoo

    2009-01-01

    The catalytic activity of high-valent iron-oxo active species of heme enzymes is known to be dependent on the nature of the axial ligand trans to the iron-oxo group. In a similar fashion, experimental studies on iron-oxo porphyrin biomimetic systems have shown a significant axial ligand effect on ethylbenzene hydroxylation, with an axial acetonitrile ligand leading to phenyl hydroxylation products and an axial chloride anion giving predominantly benzyl hydroxylation products. To elucidate the fundamental factors that distinguish this regioselectivity reversal in iron-oxo porphyrin catalysis, we have performed a series of density functional theory calculations on the hydroxylation of ethylbenzene by [Fe(IV)=O(Por(+.))L] (Por = porphyrin; L = NCCH(3) or Cl(-)), which affords 1-phenylethanol and p-ethylphenol products. The calculations confirm the experimentally determined product distributions. Furthermore, a detailed analysis of the electronic differences between the two oxidants shows that their reversed regioselectivity is a result of differences in orbital interactions between the axial ligand and iron-oxo porphyrin system. In particular, three high-lying orbitals (pi*(xz), pi*(yz) and a(2u)), which are singly occupied in the reactant complex, are stabilised with an anionic ligand such as Cl(-), which leads to enhanced HOMO-LUMO energy gaps. As a consequence, reactions leading to cationic intermediates through the two-electron reduction of the metal centre are disfavoured. The aliphatic hydroxylation mechanism, in contrast, is a radical process in which only one electron is transferred in the rate-determining transition state, which means that the effect of the axial ligand on this mechanism is much smaller.

  5. Hydroxylated PBDEs induce developmental arrest in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was notmore » observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.« less

  6. Substrate Preferences in Biodesulfurization of Diesel Range Fuels by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Prince, Roger C.; Grossman, Matthew J.

    2003-01-01

    The range of sulfur compounds in fuel oil and the substrate range and preference of the biocatalytic system determine the maximum extent to which sulfur can be removed by biodesulfurization. We show that the biodesulfurization apparatus in Rhodococcus sp. strain ECRD-1 is able to attack all isomers of dibenzothiophene including those with at least four pendant carbons, with a slight preference for those substituted in the α-position. With somewhat less avidity, this apparatus is also able to attack substituted benzothiophenes with between two and seven pendant carbons. Some compounds containing sulfidic sulfur are also susceptible to desulfurization, although we have not yet been able to determine their molecular identities. PMID:14532032

  7. Hypotheses on the evolution of hyaluronan: A highly ironic acid

    PubMed Central

    Csoka, Antonei B; Stern, Robert

    2013-01-01

    Hyaluronan is a high-molecular-weight glycosaminoglycan (GAG) prominent in the extracellular matrix. Emerging relatively late in evolution, it may have evolved to evade immune recognition. Chondroitin is a more ancient GAG and a possible hyaluronan precursor. Epimerization of a 4-hydroxyl in N-acetylgalactosamine in chondroitin to N-acetylglucosamine of hyaluronan is the only structural difference other than chain length between these two polymers. The axial 4-hydroxyl group extends out perpendicular from the equatorial plane of N-acetylgalactosamine in chondroitin. We suspect that this hydroxyl is a prime target for immune recognition. Conversion of a thumbs-up hydroxyl group into a thumbs-down position in the plane of the sugar endows hyaluronan with the ability to avoid immune recognition. Chitin is another potential precursor to hyaluronan. But regardless whether of chondroitin or of chitin origin, an ancient chondroitinase enzyme sequence seems to have been commandeered to catalyze the cleavage of the new hyaluronan substrate. The evolution of six hyaluronidase-like sequences in the human genome from a single chondroitinase as found in Caenorhabditis elegans can now be traced. Confirming our previous predictions, two duplication events occurred, with three hyaluronidase-like sequences occurring in the genome of Ciona intestinalis (sea squirt), the earliest known chordate. This was probably followed by en masse duplication, with six such genes present in the genome of zebra fish onwards. These events occurred, however, much earlier than predicted. It is also apparent on an evolutionary time scale that in several species, this gene family is continuing to evolve. PMID:23315448

  8. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework

    PubMed Central

    2016-01-01

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties. PMID:27665845

  9. Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.

    PubMed

    Khelifa, Farid; Habibi, Youssef; Bonnaud, Leila; Dubois, Philippe

    2016-04-27

    The present study focuses on the use of cellulose nanocrystals (CNC) as the main constituent of a nanocomposite material and takes advantage of hydroxyl groups, characteristic of the CNC chemical structure, to thermally cross-link an epoxy resin. An original and simple approach is proposed, based on the collective sticking of CNC building blocks with the help of a DGEBA/TGPAP-based epoxy resin. Scientific findings suggest that hydroxyl groups act as a toxic-free cross-linking agent of the resin. The enhanced protection against water degradation as compared to neat CNC film and the improvement of mechanical properties of the synthesized films are attributed to a good compatibility between the CNC and the resin. Moreover, the preservation of CNC optical properties at high concentrations opens the way to applying these materials in photonic devices.

  10. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1975-01-01

    Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate to hydroxyl groups of homopolyribonucleotides is studied as a possible chemical model of biochemical aminoacylation of transfer RNA (tRNA). The effect of pH on imidazole-catalyzed transfer of phenylalanyl residues to poly(U) and poly(A) double helix strands, the number of peptide linkages and their lability to base and neutral hydroxylamine, and the nature of adenylate condensation products are investigated. The chemical model entertained exhibits a constraint by not acylating the hydroxyl groups of polyribonucleotides in a double helix. The constraint is consistent with selective biochemical aminoacylation at the tRNA terminus. Interest in imidazole as a model of histidine residue in protoenzymes participating in prebiotic aminoacyl transfer to polyribonucleotides, and in rendering the tRNA a more efficient adaptor, is indicated.

  11. Accelerated degradation of lignin by lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosporium with engineered 4-O-methyltransferase from Clarkia breweri.

    PubMed

    Pham, Le Thanh Mai; Kim, Yong Hwan

    2014-11-01

    Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Improved Stability of Proline-Derived Direct Thrombin Inhibitors through Hydroxyl to Heterocycle Replacement.

    PubMed

    Chobanian, Harry R; Pio, Barbara; Guo, Yan; Shen, Hong; Huffman, Mark A; Madeira, Maria; Salituro, Gino; Terebetski, Jenna L; Ormes, James; Jochnowitz, Nina; Hoos, Lizbeth; Zhou, Yuchen; Lewis, Dale; Hawes, Brian; Mitnaul, Lyndon; O'Neill, Kim; Ellsworth, Kenneth; Wang, Liangsu; Biftu, Tesfaye; Duffy, Joseph L

    2015-05-14

    Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

  13. Rheological Properties of Graphene Oxide/Konjac Glucomannan Sol.

    PubMed

    Zhu, Wenkun; Duan, Tao; Hu, Zuowen

    2018-05-01

    We have demonstrated there is a significant intermolecular interaction between GO and KGM that results from hydrogen bonding and physical cross-linking by studying the rheological properties of a graphene oxide/konjac glucomannan (GO/KGM) solution. When the addition of GO was 5%, the storage modulus (G') and loss modulus (G″) were only improved by 0.25%. However, G' and G″ were improved by approximately 90% and 73.4%, respectively, when the GO content was increased to 7.5%. The moduli also displayed a relationship between the power function and concentration. Furthermore, the formation mechanism of GO/KGM was investigated by Raman, FT-IR, XPS and SEM. The results suggested that hydrogen bonding and physical crosslinking are generated from the abundant carboxy and hydroxyl groups of graphene oxide and the hydroxyl groups of konjac glucomannan.

  14. Biological and nonbiological modifications of carbamates

    PubMed Central

    Knaak, James B.

    1971-01-01

    Methylcarbamate insecticides undergo hydrolysis, oxidation, dealkylation, and conjugation in animals, plants, and insects to form similar or identical products. Carbaryl is hydroxylated in biological systems to form hydroxy, dihydro-dihydroxy, and N-hydroxymethyl carbaryl and is hydrolysed to form 1-naphthol. The products are conjugated, stored, or excreted. Carbofuran is hydroxylated at the 3 position and propoxur at the 5 position to form hydroxylated derivatives. N-hydroxymethyl derivatives of these two carbamates may also be formed. Hydrolysis appears to be the major metabolic pathway of carbofuran in the animal. Aldicarb is oxidized to its sulfoxide and then hydrolysed to the oxime sulfoxide in animals and plants. Plants hydrolyse the oxime sulfoxide to form the corresponding aldehyde, which is an intermediate in the formation of 2-methyl-2-(methyl-sulfinyl)propanol. Methomyl, which is structurally similar to aldicarb, is metabolized in plants to acetonitrile, carbon dioxide, and methylamine. Bux and Meobal undergo hydrolysis and hydroxylation to form N-hydroxy methylcarbamates, as well as hydroxybutylphenyl and hydroxymethylphenyl methylcarbamates. Zectran, which contains a dimethylamino group, is converted to the methylamino, amino, and methylformamido derivatives by insects and plants. In soil and water, methylcarbamate insecticides are hydrolysed to their respective phenols or oximes. PMID:4999481

  15. Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.

    PubMed

    Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang

    2017-04-01

    In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.

  16. Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds.

    PubMed

    Freire, Rosemayre S; Morais, Selene M; Catunda-Junior, Francisco Eduardo A; Pinheiro, Diana C S N

    2005-07-01

    Some derivatives of trans-anethole [1-methoxy-4-(1-propenyl)-benzene] (1) were synthesized, by introducing hydroxyl groups in the double bond of the propenyl moiety. Two types of reactions were performed: (i) oxymercuration/demercuration that formed two products, the mono-hydroxyl derivative, 1-hydroxy-1-(4-methoxyphenyl)-propane (2) and in lesser extent the dihydroxyl derivative, 1,2-dihydroxy-1-(4-methoxyphenyl)-propane (3) and (ii) epoxidation with m-chloroperbenzoic acid that also led to the formation of two products, the dihydroxyl derivative (3) and the correspondent m-chloro-benzoic acid mono-ester, 1-hydroxy-1(4-methoxyphenyl)-2-m-chlorobenzoyl-propane (4). The structures of these compounds were confirmed mainly by mass, IR, 1H and 13C NMR spectral data. The activity of anethole and hydroxylated derivatives was evaluated using antioxidant, anti-inflammatory and gastroprotector tests. Compounds (2) and (3) were more active antioxidant agents than (1) and (4). In the anti-inflammatory assay, anethole showed lower activity than hydroxylated derivatives. Anethole and in lesser extent its derivatives 2 and 4 showed significant gastroprotector activity. All tested compounds do not alter significantly the total number of white blood cells.

  17. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.

    PubMed

    Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen

    2018-05-07

    Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .

  18. Developing cellulosic waste products as platform chemicals: protecting group chemistry of α-glucoisosaccharinic acid.

    PubMed

    Almond, Michael; Suleiman, Mustapha G; Hawkins, Matthew; Winder, Daniel; Robshaw, Thomas; Waddoups, Megan; Humphreys, Paul N; Laws, Andrew P

    2018-01-02

    Alpha and beta-glucoisosaccharinic acids ((2S,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid and (2R,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid) which are produced when cellulosic materials are treated with aqueous alkali are potentially valuable platform chemicals. Their highly functionalised carbon skeleton, with fixed chirality at C-2 and C-4, makes them ideal starting materials for use in synthesis. In order to assess the potential of these saccharinic acids as platform chemicals we have explored the protecting group chemistry of the lactone form of alpha-glucoisosaccharinic acid (α-GISAL). We report here the use of single and multiple step reaction pathways leading to the regioselective protection of the three different hydroxyl groups of α-GISAL. We report strategies for protecting the three different hydroxyl groups individually or in pairs. We also report the synthesis of a range of tri-O-protected α-GISAL derivatives where a number of the products contain orthogonal protecting groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nonfouling Characteristics of Dextran-Containing Surfaces

    PubMed Central

    Martwiset, Surangkhana; Koh, Anna E.; Chen, Wei

    2008-01-01

    Hydroxyl groups in dextrans have been selectively oxidized to aldehyde groups by sodium periodate in a controlled fashion with percentage of conversion ranging from 6% to 100%. Dextrans (10 k, 70 k, 148 k, 500 k, and 2 000 kDa) and oxidized 10 k dextrans have been successfully grafted to functionalized silicon surfaces. The effect of molecular weight on protein adsorption is not nearly as striking as that of the extent of oxidation. When ∼ 25% of the hydroxyl groups have been converted to aldehyde groups, there is negligible protein adsorption on surfaces containing the oxidized polysaccharides. Conformations of grafted polymers depend strongly on their chemical structures, i.e. the relative amounts of –OH and –CHO groups. That the dependence of the chain conformation as well as the protein resistance on the balance of the hydrogen bond donors (-OH) and the acceptors (-OH and –CHO) implies the importance of chemical structure of surface molecules, specifically the interactions between surface and surrounding water molecules on protein adsorption. Oxidized dextrans are potential poly(ethylene glycol)-alternatives for nonfouling applications. PMID:16952261

  20. 2-Pyridinyl Thermolabile Groups as General Protectants for Hydroxyl, Phosphate, and Carboxyl Functions.

    PubMed

    Brzezinska, Jolanta; Witkowska, Agnieszka; Kaczyński, Tomasz P; Krygier, Dominika; Ratajczak, Tomasz; Chmielewski, Marcin K

    2017-03-02

    Application of 2-pyridinyl thermolabile protecting groups (2-PyTPGs) for protection of hydroxyl, phosphate, and carboxyl functions is presented in this unit. Their characteristic feature is a unique removal process following the intramolecular cyclization mechanism and induced only by temperature rise. Deprotection rate of 2-PyTPGs is dependent on certain parameters, such as solvent (aqueous or non-aqueous medium), pH values, and electron distribution in a pyridine ring. The presented approach pertains not only to protecting groups but also to an advanced system of controlling certain properties of 2-pyridinyl derivatives. We improved the "chemical switch" method, allowing us to regulate the protecting group stability by inversing the electron distribution in 2-PyTPG. Together with pH values manipulation, this allows us to regulate the protecting group stability. Moreover, phosphite cyclization to oxazaphospholidine provides a very stable but easily reversible tool for phosphate protection/modifications. For all TPGs we confirmed their utility in a system of protecting groups. This concept can contribute to designing the general protecting group that could be useful in bioorganic chemistry. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Sequential and competitive adsorption of peptides at pendant PEO layers.

    PubMed

    Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Snider, Joshua L; Schilke, Karl F

    2015-06-01

    Earlier work provided direction for development of responsive drug delivery systems based on modulation of the structure, amphiphilicity, and surface density of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. In this work, we describe the sequential and competitive adsorption behavior of such peptides at pendant PEO layers. Three cationic peptides were used for this purpose: the arginine-rich, amphiphilic peptide WLBU2, a peptide chemically identical to WLBU2 but of scrambled sequence (S-WLBU2), and the non-amphiphilic peptide poly-L-arginine (PLR). Optical waveguide lightmode spectroscopy (OWLS) was used to quantify the rate and extent of peptide adsorption and elution at surfaces coated with PEO. UV spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to quantify the extent of peptide exchange during the course of sequential and competitive adsorption. Circular dichroism (CD) was used to evaluate conformational changes after adsorption of peptide mixtures at PEO-coated silica nanoparticles. Results indicated that amphiphilic peptides are able to displace adsorbed, non-amphiphilic peptides in PEO layers, while non-amphiphilic peptides were not able to displace more amphiphilic peptides. In addition, peptides of greater amphiphilicity dominated the adsorption at the PEO layer from mixtures with less amphiphilic or non-amphiphilic peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.

    PubMed

    Chen, Xiangyang; Yang, Xinzheng

    2016-03-17

    Inspired by the active site structure of [FeFe]-hydrogenase, we built a series of iron dicarbonyl diphosphine complexes with pendant amines and predicted their potentials to catalyze the hydrogenation of CO2 to methanol using density functional theory. Among the proposed iron complexes, [(P(tBu)2N(tBu)2H)FeH(CO)2(COOH)](+) (5COOH) is the most active one with a total free energy barrier of 23.7 kcal/mol. Such a low barrier indicates that 5COOH is a very promising low-cost catalyst for high-efficiency conversion of CO2 and H2 to methanol under mild conditions. For comparison, we also examined Bullock's Cp iron diphosphine complex with pendant amines, [(P(tBu)2N(tBu)2H)FeHCp(C5F4N)](+) (5Cp-C5F4N), as a catalyst for hydrogenation of CO2 to methanol and obtained a total free energy barrier of 27.6 kcal/mol, which indicates that 5Cp-C5F4N could also catalyze the conversion of CO2 and H2 to methanol but has a much lower efficiency than our newly designed iron complexes.

  3. Polyesters from microorganisms.

    PubMed

    Kim, Y B; Lenz, R W

    2001-01-01

    Bacterial polyesters have been found to have useful properties for applications as thermoplastics, elastomers, and adhesives and are biodegradable and biocompatible. Poly(3-hydroxyalkanoates) (PHAs) and poly(beta-malate) are the most representative polyesters synthesized by microorganisms. PHAs containing a wide variety of repeating units can be produced by bacteria, including those containing many types of pendant functional groups which can be synthesized by microorganisms that are grown on unnatural organic substrates. Poly(beta-malate) is of interest primarily for medical applications, especially for drug delivery systems. In this chapter, the bacterial production and properties of poly(3-hydroxyalkanoates) and poly(beta-malate) are described with emphasis on the former.

  4. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  5. The preparation of new perfluoro ether fluids exhibiting excellent thermal-oxidative stabilities

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Bierschenk, Thomas R.; Juhlke, Timothy J.; Kawa, Hajima; Lagow, Richard J.

    1988-01-01

    A series of low molecular weight perfluoroalkyl ethers (PFAEs) were synthesized by direct fluorination. Viscosity-temperature properties and oxidation stabilities were determined. Viscosity-temperature correlations indicated that increases in branching and increases in the size of the branching substituent caused a deterioration in viscometric properties (i.e., an increase in ASTM slope). In addition, increasing the ratio of carbon to oxygen in these compounds also increased the ASTM slope. Preliminary oxidation stability measurements indicated that highly branched PFAE fluids (i.e., those containing quaternary carbons) may be less stable than either those containing a single trifluoromethyl pendant group or those containing no branching at all.

  6. The preparation of new perfluoroether fluids exhibiting excellent thermal-oxidative stabilities

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Bierschenk, T. R.; Juhlke, T. J.; Kawa, H.; Lagow, R. J.

    1986-01-01

    A series of low molecular weight perfluoroalkylethers (PFAE) were synthesized by direct fluorination. Viscosity-temperature properties and oxidation stabilities were determined. Viscosity-temperature correlations indicated that increases in branching and increases in the size of the branching substituent caused a deterioration in viscometric properties (i.e., an increase in ASTM slope). In addition, increasing the ratio of carbon to oxygen in these compounds also increased the ASTM slope. Preliminary oxidation stability tests indicated that highly branched PFAE fluids. (i.e., those containing quaternary carbons) may be less stable than either those containing a single trifluoromethyl pendant group or those containing no branching at all.

  7. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio.

    PubMed

    Hong, Yongsuk; Brown, Derick G

    2006-07-01

    Potentiometric titration has been conducted to systematically examine the acid-base properties of the cell surfaces of Escherichia coli K-12 and Bacillus brevis as a function of growth phase, nitrogen source (ammonium or nitrate), and carbon to nitrogen (C:N) ratio of the growth substrate. The two bacterial species revealed four distinct proton binding sites, with pK(a) values in the range of 3.08-4.05 (pK(1)), 4.62-5.57 (pK(2)), 6.47-7.30 (pK(3)), and 9.68-10.89 (pK(4)) corresponding to phosphoric/carboxylic, carboxylic, phosphoric, and hydroxyl/amine groups, respectively. Two general observations in the data are that for B. brevis the first site concentration (N(1)), corresponding to phosphoric/carboxylic groups (pK(1)), varied as a function of nitrogen source, while for E. coli the fourth site concentration (N(4)), corresponding to hydroxyl/amine groups (pK(4)), varied as a function of C:N ratio. Correspondingly, it was found that N(1) was the highest of the four site concentrations for B. brevis and N(4) was the highest for E. coli. The concentrations of the remaining sites showed little variation. Finally, comparison between the titration data and a number of cell surface compositional studies in the literature indicates one distinct difference between the two bacteria is that pK(4) of the Gram-negative E. coli can be attributed to hydroxyl groups while that of the Gram-positive B. brevis can be attributed to amine groups.

  8. Rhemium-186-monoaminemonoamidedithiol-conjugated bisphosphonate derivatives for bone pain palliation.

    PubMed

    Ogawa, Kazuma; Mukai, Takahiro; Arano, Yasushi; Otaka, Akira; Ueda, Masashi; Uehara, Tomoya; Magata, Yasuhiro; Hashimoto, Kazuyuki; Saji, Hideo

    2006-05-01

    To develop a radiopharmaceutical for the palliation of painful bone metastases based on the concept of bifunctional radiopharmaceuticals, we synthesized a bisphosphonate derivative labeled with rhenium-186 (186Re) that contains a hydroxyl group at the central carbon of its bisphosphonate structure, we attached a stable 186Re-MAMA chelate to the amino group of a 4-amino butylidene-bisphosphonate derivative [N-[2-[[4-[(4-hydroxy-4,4-diphosphonobutyl)amino]-4-oxobutyl]-2-thioethylamino]acetyl]-2-aminoethanethiolate] oxorhenium (V) (186Re-MAMA-HBP) and we investigated the effect of a hydroxyl group at the central carbon of its bisphosphonate structure on affinity for hydroxyapatite and on biodistribution by conducting a comparative study with [N-[2-[[3-(3,3-diphosphonopropylcarbamoyl)propyl]-2-thioethylamino]acetyl]-2-aminoethanethiolate] oxorhenium (V) (186Re-MAMA-BP). The precursor of 186Re-MAMA-HBP, trityl (Tr)-MAMA-HBP, was obtained by coupling a Tr-MAMA derivative to 4-amino-1-hydroxybutylidene-1,1-bisphosphonate. 186Re-MAMA-HBP was prepared by a reaction with 186ReO(4-) and SnCl2 in citrate buffer after the deprotection of the Tr groups of Tr-MAMA-HBP. After reversed-phase high-performance liquid chromatography, 186Re-MAMA-HBP had a radiochemical purity of over 95%. Compared with 186Re-MAMA-BP, 186Re-MAMA-HBP showed a greater affinity for hydroxyapatite beads in vitro and accumulated a significantly higher level in the femur in vivo. Thus, the introduction of a hydroxyl group into 186Re complex-conjugated bisphosphonates would be effective in enhancing accumulation in bones. These findings provide useful information on the design of bone-seeking therapeutic radiopharmaceuticals.

  9. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.

    PubMed

    Świzdor, Alina; Panek, Anna; Milecka-Tronina, Natalia

    2014-04-01

    Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer-Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted "normal" binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora.

    PubMed

    Echeverría, Javier; Opazo, Julia; Mendoza, Leonora; Urzúa, Alejandro; Wilkens, Marcela

    2017-04-10

    In this study, we tested eight naturally-occurring flavonoids-three flavanones and five flavones-for their possible antibacterial properties against four Gram-positive and four Gram-negative bacteria. Flavonoids are known for their antimicrobial properties, and due their structural diversity; these plant-derived compounds are a good model to study potential novel antibacterial mechanisms. The lipophilicity and the interaction of antibacterial compounds with the cell membrane define the success or failure to access its target. Therefore, through the determination of partition coefficients in a non-polar/aqueous phase, lipophilicity estimation and the quantification of the antibacterial activity of different flavonoids, flavanones, and flavones, a relationship between these parameters was assessed. Active flavonoids presented diffusion coefficients between 9.4 × 10 -10 and 12.3 × 10 -10 m²/s and lipophilicity range between 2.0 to 3.3. Active flavonoids against Gram-negative bacteria showed a narrower range of lipophilicity values, compared to active flavonoids against Gram-positive bacteria, which showed a wide range of lipophilicity and cell lysis. Galangin was the most active flavonoid, whose structural features are the presence of two hydroxyl groups located strategically on ring A and the absence of polar groups on ring B. Methylation of one hydroxyl group decreases the activity in 3- O -methylgalangin, and methylation of both hydroxyl groups caused inactivation, as shown for 3,7- O -dimethylgalangin. In conclusion, the amphipathic features of flavonoids play a crucial role in the antibacterial activity. In these compounds, hydrophilic and hydrophobic moieties must be present and could be predicted by lipophilicity analysis.

  11. Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].

    PubMed

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-10-04

    Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  12. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium--the contribution of the oxidation effect.

    PubMed

    Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T

    2015-05-20

    Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  13. Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.

    PubMed

    Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May

    Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.

  14. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups.

    PubMed

    Du, Shuming; Wang, Wenbin; Yan, Yan; Zhang, Jie; Tian, Ming; Zhang, Liqun; Wan, Xinhua

    2014-09-07

    Claisen rearrangement reaction was employed for the first time to obtain a novel PPTA bearing reactive allyl and hydroxyl groups which may act as a sizing agent of Kevlar fibers to improve the interface structure and interfacial adhesion of rubber or epoxy based composites.

  15. Flexible composite film for printed circuit board

    NASA Technical Reports Server (NTRS)

    Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.

    1982-01-01

    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.

  16. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2.

    PubMed

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S; Juknaitė, Lina; Pøhlsgaard, Jacob; Olsen, Lars; Frydenvang, Karla; Goffin, Eric; Pirotte, Bernard; Kastrup, Jette S

    2016-06-07

    The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-TΔS, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, μM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 μM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 μM, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.

    PubMed

    ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A

    2016-04-05

    We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.

  18. IR study of dickite-formamide intercalate, Al 2Si 2O 5(OH) 4-H 2NCOH

    NASA Astrophysics Data System (ADS)

    Zamama, M.; Knidiri, Mohamed

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d 001 spacing from 7.19 to 10.77 Å. It is concluded from infrared studies that hydrogen bonds are formed between CO groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm -1 and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm -1 for FAM-intercalated dickite.

  19. IR study of dickite-formamide intercalate, Al2Si2O5(OH)4-H2NCOH.

    PubMed

    Zamama, M; Knidiri, M

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d001 spacing from 7.19 to 10.77 A. It is concluded from infrared studies that hydrogen bonds are formed between C=O groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm(-1) and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm(-1) for FAM-intercalated dickite.

  20. Geologic map of southwestern Sequoia National Park and vicinity, Tulare County, California, including the Mineral King metamorphic pendant

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Moore, J. G.

    2012-12-01

    From the late 1940s to the early 1990s, scientists of the U.S. Geological Survey (USGS) mapped the geology of most of Sequoia and Kings Canyon National Parks, California, and published the results as a series of 15-minute (1:62,500 scale) Geologic Quadrangles. The southwest corner of Sequoia National Park, encompassing the Mineral King and eastern edge of the Kaweah 15-minute topographic quadrangles, however, remained unfinished. At the request of the National Park Service's Geologic Resources Division (NPS-GRD), the USGS has mapped the geology of that area using 7.5-minute (1:24,000 scale) topographic bases and high-resolution ortho-imagery. With partial support from NPS-GRD, the major plutons in the map area were dated by the U-Pb zircon method with the Stanford-USGS SHRIMP-RG ion microprobe. Highlights include: (1) Identification of the Early Cretaceous volcano-plutonic suite of Mineral King (informally named), consisting of three deformed granodiorite plutons and the major metarhyolite tuffs of the Mineral King metamorphic pendant. Members of the suite erupted or intruded at 130-140 Ma (pluton ages: this study; rhyolite ages: lower-intercept concordia from zircon results of Busby-Spera, 1983, Princeton Ph.D. thesis, and from Klemetti et al., 2011, AGU abstract) during the pause of igneous activity between emplacement of the Jurassic and Cretaceous Sierran batholiths. (2) Some of the deformation of the Mineral King metamorphic pendant is demonstrably Cretaceous, with evidence including map-scale folding of Early Cretaceous metarhyolite tuff, and an isoclinally folded aplite dike dated at 98 Ma, concurrent with the large 98-Ma granodiorite of Castle Creek that intruded the Mineral King pendant on the west. (3) A 21-km-long magmatic synform within the 99-100 Ma granite of Coyote Pass that is defined both by inward-dipping mafic inclusions (enclaves) and by sporadic, cm-thick, sharply defined mineral layering. The west margin of the granite of Coyote Pass overlies parts of the adjacent Mineral King pendant, and the pluton probably had an upward-flaring shape, with synformal layering and foliation resulting from compaction and mineral deposition (or flow sorting) at the floor of an elongate, melt-rich magma lens. The NPS-GRD has digitized the published USGS geologic quadrangles for Sequoia and Kings Canyon National Parks, and a goal is to jointly release a geologic map of the combined Parks region.

  1. Etude comparative des complications liées à l'utilisation du cathéter veineux périphérique avec et sans système clos à bouchon hépariné

    PubMed Central

    Liu, Ying Chun; Seydou, Togo; Sadio, Yéna; Liang, Tu Zheng; Ge, jin

    2015-01-01

    Introduction L'utilisation correcte du système clos à bouchon hépariné sur les cathéters périphériques pendant les perfusions est une pratique courante dans les pays développés et aussi dans plusieurs pays en développement selon un consensus international établi. Nous comparons les résultats de la formation de thrombus et de l'infection liées au cathéter veineux périphérique chez les patients ayant bénéficié de perfusion avec système clos à bouchon hépariné (groupe expérimentale) et ceux qui ont été perfusé sans bouchon hépariné (groupe témoin). Méthodes Nous avons colligé 100 patients hospitalisés pendant la période de Juillet 2014 à Décembre 2014 dans le service d'hospitalisation de chirurgie thoracique de l'hôpital du Mali qui ont été repartis en 2 groupes de 50 patients chacun pour une analyse comparative. L'observation du thrombus dans la lumière du cathéter est effectuée puis enregistré et tous les cathéters ont été repris pour réalisation de culture bactérienne au laboratoire dans les 2 groupes. Résultats Dans le groupe témoin, il existe un thrombus dans la lumière du cathéter dans 36 cas (72%) et l'examen de culture bactérienne était positif dans 90%. Tandis que dans le groupe expérimental on retrouve 3 cas (6%) de thrombose du cathéter et on note une absence de germe dans l'examen bactériologique. Conclusion L'utilisation correcte du système clos à bouchon hépariné lors des perfusions peut réduire et prévenir de façon significative les complications liées au cathéter notamment l'occlusion par thrombus, leur migration et la survenue de l'infection. PMID:26600900

  2. Middle and late quaternary oceanography and climatology of the Zaire-Congo fan and the adjacent Eastern Angola basin

    NASA Astrophysics Data System (ADS)

    Jansen, J. H. F.; Van Weering, T. C. E.; Gieles, R.; Van Iperen, J.

    La stratigraphie quaternaire du delta profond du Zaïre est établie sur la base des variations verticales des teneurs en carbonate, de l'analyse micropalaéontologique et des datations 14C et 230Th de 33 carottes. La vitesse des accumulations carbonatées et non carbonatées considérée en même temps que la conservation des carbonates nous conduit à distinguer les trois principaux facteurs à l'origine des concentrations en carbonate: production, dissolution et dilution par les particules non carbonatées. Les plus fortes productions carbonatées interviennent pendant les optima climatiques des interglaciaires tandis que les plus petites teneurs en carbonates sont probablement aussi liées à une augmentation de l'accumulation calcaire. Les fluctuations sont amplifiées par les effects de la dissolution qui est intense pendant les glaciaires et par les changements du rythme de la sédimentation terrigène. Dans la partie centrale du delta profond, un lobe de forte production carbonatée est localisé en permanence, il n'est pas associé à une zone de forte production de phytoplancton. Ce lobe est la conséquence d'un fort développement du zooplancton qui, pendant l'Holocène et les périodes interglaciaires, se multiplie à partir de cette floraison côtière de phytoplancton. Pendant les glaciaires, l'intensification de la circulation océanique déplace la zone des courants ascendants vers la latitude du delta du Zaïre. Dans deux carottes voisines de la bordure externe du plateau, une forte production en carbonates est observée entre 27 000 et 15 400 ans BP, elle est liée aux courants ascendants provoqués par l'intensification du courant de Benguela, et à une diminution de la sédimentation non carbonatée de de l'enfouissement du carbone organique à ˜ 14 500 ans BP. Une forte accumulation carbonatée se prolonge jusqu'à ˜12 500 ans BP, ce qui résulte un pic de conservation carbonatée à 14 000 ans BP qui n'est pas lié à un phénomène océanique. Une bréve intensification du compensation des carbonates et de la lysocline interviennent à des profondeurs moins grandes (4400 m et 3800 m) pendant les périodes glaciaires que de nos jours (5600 m et 4800 m). Les deux profondeurs des phases interglaciaires sont plus proches des profondeurs des phases glaciaires que de l'Holocène en fonction des dissolutions post-sédimentaires qui sont intervenues pendant les épisodes glaciaires consécutifs. L'hydrographie du Bassin de l'Angola n'apporte pas de preuves quant à des fluctuations des eaux profondes antarctiques qui auraient provoqué des cycles de dissolution des carbonates du Quaternaire de ce Bassin.

  3. Nanocomplexes of Photolabile Polyelectrolyte and Upconversion Nanoparticles for Near-Infrared Light-Triggered Payload Release.

    PubMed

    Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue

    2018-06-07

    A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.

  4. A Novel Access to Arylated and Heteroarylated Beta-Carboline Based PDE5 Inhibitors

    PubMed Central

    Ahmed, Nermin S.; Gary, Bernard D.; Piazza, Gary A.; Tinsley, Heather N.; Laufer, Stefan; Abadi, Ashraf H.

    2016-01-01

    Starting from a previously reported lead compound GR30040X (a hydantoin tetrahydro-β-carboline derivative with a 4- pyridinyl ring at C- 5), a series of structurally related tetrahydro-β-carboline derivatives were prepared. The tet-rahydro-β-carboline skeleton was fused either to a hydantoin or to a piperazindione ring, the pendant aryl group attached to C-5 or C-6 was changed to a 3, 4-dimethoxyphenyl or a 3-pyridinyl ring; different N-substituents on the terminal ring were introduced, a straight chain ethyl group, a branched tert. butyl and P-chlorophenyl group rather than n-butyl group of the lead compound. All four possible diastereomers of target tetrahydro-β-carboline derivatives were prepared, separated by column chromatography and the significance of these stereochemical manipulations was studied. Synthesized compounds were evaluated for their inhibitory effect versus PDE5. Seven hits were obtained with appreciable inhibitory activity versus PDE5 with IC50s 0.14 - 4.99 μM. PMID:21054274

  5. Antihypertensive neutral lipid

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.

    1986-01-01

    The invention relates to the discovery of a class of neutral acetylated ether-linked glycerolipids having the capacity to lower blood pressure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  6. Antihypertensive neutral lipid

    DOEpatents

    Snyder, F.L.; Blank, M.L.

    1984-10-26

    The invention relates to the discovery of a class of neutral acetylated either-linked glycerolipids having the capacity to lower blood presure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  7. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  8. Investigation of chitosan-phenolics systems as wood adhesives.

    PubMed

    Peshkova, Svetlana; Li, Kaichang

    2003-04-24

    Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins.

  9. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    PubMed

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  10. Acid-degradable and bioerodible modified polyhydroxylated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single andmore » double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.« less

  11. Knowledge-based modeling of a legume lectin and docking of the carbohydrate ligand: the Ulex europaeus lectin I and its interaction with fucose.

    PubMed

    Gohier, A; Espinosa, J F; Jimenez-Barbero, J; Carrupt, P A; Pérez, S; Imberty, A

    1996-12-01

    Ulex europaeus isolectin I is specific for fucose-containing oligosaccharide such as H type 2 trisaccharide alpha-L-Fuc (1-->2) beta-D-Gal (1-->4) beta-D-GlcNAc. Several legume lectins have been crystallized and modeled, but no structural data are available concerning such fucose-binding lectin. The three-dimensional structure of Ulex europaeus isolectin I has been constructed using seven legume lectins for which high-resolution crystal structures were available. Some conserved water molecules, as well as the structural cations, were taken into account for building the model. In the predicted binding site, the most probable locations of the secondary hydroxyl groups were determined using the GRID method. Several possible orientations could be determined for a fucose residue. All of the four possible conformations compatible with energy calculations display several hydrogen bonds with Asp-87 and Ser-132 and a stacking interaction with Tyr-220 and Phe-136. In two orientations, the O-3 and O-4 hydroxyl groups of fucose are the most buried ones, whereas two other, the O-2 and O-3 hydroxyl groups are at the bottom of the site. Possible docking modes are also studied by analysis of the hydrophobic and hydrophilic surfaces for both the ligand and the protein. The SCORE method allows for a quantitative evaluation of the complementarity of these surfaces, on the basis of molecular lipophilicity calculations. The predictions presented here are compared with known biochemical data.

  12. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC.

    PubMed

    Qiu, Wang-Ren; Sun, Bi-Qian; Xiao, Xuan; Xu, Zhao-Chun; Chou, Kuo-Chen

    2016-07-12

    Protein hydroxylation is a posttranslational modification (PTM), in which a CH group in Pro (P) or Lys (K) residue has been converted into a COH group, or a hydroxyl group (-OH) is converted into an organic compound. Closely associated with cellular signaling activities, this type of PTM is also involved in some major diseases, such as stomach cancer and lung cancer. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of P or K, which ones can be hydroxylated, and which ones cannot? With the explosive growth of protein sequences in the post-genomic age, the problem has become even more urgent. To address such a problem, we have developed a predictor called iHyd-PseCp by incorporating the sequence-coupled information into the general pseudo amino acid composition (PseAAC) and introducing the "Random Forest" algorithm to operate the calculation. Rigorous jackknife tests indicated that the new predictor remarkably outperformed the existing state-of-the-art prediction method for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for iHyd-PseCp has been established at http://www.jci-bioinfo.cn/iHyd-PseCp, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.

  13. The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate

    NASA Astrophysics Data System (ADS)

    Yaghoubi, H.; Dayerizadeh, A.; Han, S.; Mulaj, M.; Gao, W.; Li, X.; Muschol, M.; Ma, S.; Takshi, A.

    2013-12-01

    TiO2 is a prototypical transition metal oxide with physicochemical properties that can be modified more readily through sol-gel synthesis than through other techniques. Herein, we report on the change in the density of the hydroxyl groups on the surface of synthesized surfactant-free TiO2 nanoparticles in water due to varying the pH (7.3, 8.3, 9.3 and 10.3) of the peroxotitanium complex, i.e. the amorphous sol, prior to refluxing. This resulted in colloidal solutions with differing crystallinity, nanoparticle size, optical indirect bandgaps and photocatalytic activity. It was shown that increasing the density of hydroxyl groups on TiO2 particles coupled with low-temperature annealing (90 °C) induced an anatase to rutile transformation. Increasing the pH of the peroxotitanium complex interrupted the formation of anatase phase in crystalline sol, as evidenced by intensity increases of the Raman bands at ˜822 (Ti-O-H) and 906 cm-1 (vibrational Ti-O-H) and an intensity decrease of the band at 150 cm-1 (anatase photonic Eg). Films prepared from higher pH suspensions showed lower roughness. The reaction rate constants for photo-induced self-cleaning activity of TiO2 films prepared from colloidal solutions at pH 7.3, 8.3, 9.3 and 10.3 were estimated at 0.017 s-1, 0.014 s-1, 0.007 s-1 and 0.006 s-1, respectively.

  14. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production

    PubMed Central

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-01-01

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5–30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam. PMID:28787959

  15. Exploring the reaction channels between arsine and the hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.

    2017-10-01

    The aim of this study was to present the reaction mechanism channels between arsine (AsH3) and hydroxyl (OH) which was evaluated at CCSD(T)/CBS//CCSD/cc-pVTZ level. One potential channel is the hydrogen abstraction pathway (R1), leading to AsH2 and H2O products, which occurs due to the formation of an entrance complex (AsH3OH) followed by a 1,2-hydrogen shift pathway (involving the proton transfer from the arsine group to hydroxyls, with one leading to the products). Additional channels are accessed via H-elimination pathways of the entrance complexes, forming arsinous acid (AsH2OH; R2) and arsine oxide (AsH3O; R3). In this respect, R2 is the only exoergic route of the three exit channels, representing the major branching ratio at 200-1000 K and, after 2000 K, R1 increases gradually becoming the major route of this reaction. In contrast, even at 4000 K, R3 is a highly unfeasible pathway. Therefore, the information predicted here provides new insights into the neutral-neutral chemical reaction dynamics regarding the Group V hydrides. On the other side, the R2 pathway may have some potential to solve the arsine oxidation puzzle as a possible primary pathway to the arsenic-oxygen species formation.

  16. Reaction of hydroxy and carbonyl compounds with sulfur tetrafluoride. XVI. Reactions of vicinal dihydric alcohols with sulfur tetrafluoride (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burmakov, A.I.; Hassanein, S.M.; Kunshenko, B.V.

    1986-11-20

    During the action of sulfur tetrafluoride on ethanediol, d,l-1,2-propanediol, d,l-3,3,3-trifluoro-1,2-propanediol regioselective substitution of one of the hydroxyl groups by a fluorine atom occurs, depending on the electronic nature of the groups present in the molecule. The second hydroxy group in converted into a fluorosulfite group.

  17. GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity.

    PubMed

    Wright, Bernice; Watson, Kimberly A; McGuffin, Liam J; Lovegrove, Julie A; Gibbins, Jonathan M

    2015-11-01

    Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase, Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high-quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Kinetics of surface processes for Mo(CO){sub 6} on partially dehydroxylated alumina and hydroxylated alumina. Observation of Mo(CO){sub 5}(ads)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.P.; Brown, T.L.

    1995-03-15

    The adsorption of Mo(CO){sub 6} on partially dehydroxylated alumina (PDA) and hydroxylated alumina (HA) has been studied using IR and UV-vis spectroscopy. The results from these experiments suggest that the initially physisorbed Mo(CO){sub 6} coordinates to two distinct Lewis acid sites on the surface of PDA, one much more abundant than the other, with an apparent single rate constant 2.3 x 10{sup {minus}3} s{sup {minus}1} at 298 K. The Mo(CO){sub 6}(ads) in turn loses CO reversibly, with an apparent single rate constant 1.8 x 10{sup {minus}4} s{sup {minus}1} at 298 K to form Mo(CO){sub 5}(ads). Upon removal of gas phasemore » CO released in the first step, Mo(CO){sub 5}(ads) loses two additional COs to form Mo(CO){sub 3}(ads). Alternatively, on HA physisorbed Mo(CO){sub 6} undergoes nucleophilic attack by hydroxyl groups, which results in cis-labilization of a carbonyl group, leading in turn to the formation of Mo(CO){sub 5}(L), where L is a surface hydroxyl. The Mo(CO){sub 5}(L) so formed loses additional carbonyls to form a lower subcarbonyl. The decarbonylation process appears to be faster than on PDA. The experimental data indicate that there are no Al{sup 31} exposed on HA. All the observed decarbonylation processes are reversible under CO at room temperature on both HA and PDA. The addition of CO{sub 2} to the subcarbonyl on HA results in the formation of a bicarbonate, with displacement of the subcarbonyls. 24 refs., 11 figs., 1 tab.« less

  20. Comparison of Polyurethanes with Polyhydroxyurethanes: Effect of the Hydroxyl Group on Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Leitsch, Emily K.; Lombardo, Vince M.; Scheidt, Karl A.; Torkelson, John M.

    2014-03-01

    Polyurethanes (PUs) are commonly synthesized by rapid step-growth polymerization through the reaction of a multifunctional alcohol with a polyisocyanate. PUs can be prepared at ambient conditions utilizing a variety of starting material molecular weights and backbones, resulting in highly tunable thermal and physical properties. The urethane linkages as well as the nanophase separated morphology attainable in PU materials lead to desirable properties including elastomeric character and adhesion. The isocyanate-based monomers used in the synthesis of traditional PUs have come under increasing regulatory pressure and thus inspired the investigation of alternative routes for the formation of PU materials. We examine an alternative route to synthesize PU- the reaction of five-membered cyclic carbonate with amines. This reaction results in the formation of a urethane linkage with an adjacent alcohol group. The effects of this hydroxyl group on the thermal and mechanical properties of the resulting polymer are investigated and compared with an analogous traditional PU system.

  1. Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.

    2013-09-01

    The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.

  2. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  3. Electronic Structure Calculations of Ammonia Adsorption on Graphene and Graphene Oxide with Epoxide and Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Khaneja, Mamta; Jeyaprakash, B. G.

    2017-10-01

    Ammonia adsorption on graphene (G) and graphene oxide (GO) was investigated through density functional theory calculations. In the GO system, the obtained binding energy, band gap, charge transfer and electronic structure revealed that the epoxide (GO-O) and hydroxyl groups (GO-OH) in GO enhance the NH3 adsorption, which leads to the chemisorption of NH3 on GO. The dissociation of NH3 to NH2 and formation of OH was also observed when the O and H atoms were separated at 0.985 Å, 1.019 Å, 1.035 Å, and 1.044 Å for various GO systems. The maximum charge transfer value was found to be 0.054 |e| with the binding energy of 1.143 eV for GO with a single epoxide (GO-1O) group. The charge transfer from NH3 to G or GO and the bond formation in this study agree with the reported experimental results.

  4. Improved Steroids Detection and Evidence for Their Regiospecific Decompositions Using Anion Attachment Mass Spectrometry.

    PubMed

    Dumont, Quentin; Bárcenas, Mariana; Dossmann, Héloïse; Bailloux, Isabelle; Buisson, Corinne; Mechin, Nathalie; Molina, Adeline; Lasne, Françoise; Rannulu, Nalaka S; Cole, Richard B

    2016-04-05

    Nonpolar anabolic steroids are doping agents that typically do not provide strong signals by electrospray ionization-mass spectrometry (ESI-MS) owing especially to the low polarity of the functional groups present. We have investigated the addition of anions, in ammonium salt form, to anabolic steroid samples as ionization enhancers and have confirmed that lower instrumental limits of detection (as low as 10 ng/mL for fluoxymesterone-M) are obtained by fluoride anion attachment mass spectrometry, as compared to ESI(+)/(-) or atmospheric pressure photoionization (APPI)(+). Moreover, collision-induced decomposition (CID) spectra of precursor fluoride adducts of the bifunctional steroid "reduced pregnenolone" (containing two hydroxyl groups) and its d4-analogue provide evidence of regiospecific decompositions after attachment of fluoride anion to a specific hydroxyl group of the steroid. This type of charting of specific CID reaction pathways can offer value to selected reaction monitoring experiments (SRM) as it may result in a gain in selectivity in detection as well as in improvements in quantification.

  5. Synthetic tripodal receptors for carbohydrates. Pyrrole, a hydrogen bonding partner for saccharidic hydroxyls.

    PubMed

    Francesconi, Oscar; Gentili, Matteo; Roelens, Stefano

    2012-09-07

    The carbohydrate recognition properties of synthetic tripodal receptors relying on H-bonding interactions have highlighted the crucial role played by the functional groups matching saccharidic hydroxyls. Herein, pyrrole and pyridine, which emerged as two of the most effective H-bonding groups, were quantitatively compared through their isostructural substitution within the architecture of a shape-persistent bicyclic cage receptor. NMR and ITC binding studies gave for the pyrrolic receptor a 20-fold larger affinity toward octyl-β-d-glucopyranoside in CDCl(3), demonstrating the superior recognition properties of pyrrole under conditions in which differences would depend on the intrinsic binding ability of the two groups. The three-dimensional structures of the two glucoside complexes in solution were elucidated by combined NMR and molecular mechanics computational techniques, showing that the origin of the stability difference between the two closely similar complex structures resides in the ability of pyrrole to establish shorter/stronger H-bonds with the glucosidic ligand compared to pyridine.

  6. Let there be light: photo-cross-linked block copolymer nanoparticles.

    PubMed

    Roy, Debashish; Sumerlin, Brent S

    2014-01-01

    Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Intramolecular interactions in the polar headgroup of sphingosine: serinol.

    PubMed

    Loru, Donatella; Peña, Isabel; Alonso, José L; Sanz, M Eugenia

    2016-03-04

    The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum.

  8. Chemical groups and structural characterization of lignin via thiol-mediated demethylation

    Treesearch

    Lihong Hu; Hui Pan; Yonghong Zhou; Chung-Yun Hse; Chengguo Liu; Baofang Zhang; Bin Xu

    2014-01-01

    A new approach to increase the reactivity of lignin by thiol-mediated demethylation was investigated in this study. Demethylated lignin was characterized by the changes in its hydroxyl and methoxyl groups, molecular weight, and other properties using titration and spectroscopy methods including FT-IR, 1H NMR, UV,and GPC. The total...

  9. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    NASA Astrophysics Data System (ADS)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  10. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  11. Synthesis, liquid crystallinity, and chiroptical properties of sterol-containing polyacetylenes

    NASA Astrophysics Data System (ADS)

    Lam, Jacky Wing Yip; Lai, Lo Ming; Tang, Ben Zhong

    2006-08-01

    Poly(phenylacetylene)s and poly(1-alkyne)s containing chiral sterol pendant groups with molecular structures of -[HC=C-C 6H 4-CO II-R] n-, -[HC=C-C 6H 4-O(CH II) 10-CO II-R] n- and -[HC=C(CH II) mCO II-R] n-, (where R = cholesterol, stigmasterol, ergosterol and m = 2, 3, 8} are designed and synthesized. The monomers are prepared by esterifications of acetylenic acids with cholesterol, stigmasterol, and ergosterol and exhibit cholestericity at high temperatures. Polymerizations of the monomers are effected by WCl 6-Ph 4Sn, MoCl 5-Ph 4Sn, and organorhodium catalysts, giving high molecular weight (M w up to 8.0 × 10 5) polymers in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, DSC, POM, X-ray, UV, and CD analyses. All the polymers are thermally stable (greater than or equal to 300 °C). Polymers with long flexible alkyl chains form smectic and cholesteric phases at elevated temperatures. With an increase in the spacer length in poly(1-alkyne)s, the packing arrangements of the mesogenic pendants in the mesophases change from bilayer or mixed mono- and bilayer into homogeneous monolayer structures. Few poly(phenylacetylene)s show CD bands in the absorption region of the polyacetylene backbones, revealing that the main chains are helically rotating with a preferred screw sense.

  12. Tegument galactosylceramides of the cestode Spirometra mansonoides.

    PubMed

    Singh, B N; Costello, C E; Levery, S B; Walenga, R W; Beach, D H; Mueller, J F; Holz, G G

    1987-11-01

    The brush border-like surface of the tegument of the adult and the plerocercoid larva of a pseudophyllidean cestode, Spirometra mansonoides, has been shown to contain hydroxylated galactosylceramides. D-Galactosyl-N-(2-D-hydroxyoctadecanoyl)-D-phytosphingosine, D-galactosyl-N-(2-D-hydroxyoctadecanoyl)-D-dihydrosphingosine and D-galactosyl-N-(octadecanoyl)-D-phytosphingosine were identified as major glycosphingolipids in a tegumental plasma membrane fraction with associated microtriches, by combinations of chromatography (column, high performance thin-layer, gas-liquid), mass spectrometry (electron impact, field desorption, fast atom bombardment, collisionally induced decomposition) and proton nuclear magnetic resonance spectrometry. Galactosylceramides with hydroxylated long chain bases and fatty acids are known to occur in some eukaryotic microbes and in cells of vertebrate tissues exposed to plasma membrane destabilizing environments. This has led to a proposal that the capacity of hydroxylated ceramide moieties for intermolecular hydrogen bonding among themselves and with phosphoglycerides acts to stabilize the plasma membrane. Saturated fatty acyl groups in the ceramides would enhance stabilization by their orderly packing in the lipid bilayer. Consequently, the presence of such hydroxylated galactosylceramides in the tegument surface of S. mansonoides may contribute to the maintenance of its normal barrier properties in the face of the varied environmental insults encountered by the cestode in its life-cycle.

  13. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  14. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less

  15. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  16. Hydroxyl radical mediated DNA base modification by manmade mineral fibres.

    PubMed Central

    Leanderson, P; Söderkvist, P; Tagesson, C

    1989-01-01

    Manmade mineral fibres (MMMFs) were examined for their ability to hydroxylate 2-deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OH-dG), a reaction that is mediated by hydroxyl radicals. It appeared that (1) catalase and the hydroxyl radical scavengers, dimethylsulphoxide and sodium benzoate, inhibited the hydroxylation, whereas Fe2+ and H2O2 potentiated it; (2) pretreatment of MMMFs with the iron chelator, deferoxamine, or with extensive heat (200-400 degrees C), attenuated the hydroxylation; (3) the hydroxylation obtained by various MMMFs varied considerably; (4) there was no apparent correlation between the hydroxylation and the surface area of different MMMFs, although increasing the surface area of a fibre by crushing it increased its hydroxylating capacity; and (5) there was good correlation between the hydroxylation of dG residues in DNA and the hydroxylation of pure dG in solution for the 16 different MMMFs investigated. These findings indicate that MMMFs cause a hydroxyl radical mediated DNA base modification in vitro and that there is considerable variation in the reactivity of different fibre species. The DNA modifying ability seems to depend on physical or chemical characteristics, or both, of the fibre. PMID:2765416

  17. Spectroscopic investigation of phenolic groups ionization in the vipoxin neurotoxic phospholipase A 2: comparison with the X-ray structure in the region of the tyrosyl residues

    NASA Astrophysics Data System (ADS)

    Georgieva, Dessislava Nikolova; Genov, Nicolay; Rajashankar, Kanagalaghatta R.; Aleksiev, Boris; Betzel, Christian

    1998-12-01

    The neurotoxin vipoxin is the major lethal component of the venom of Vipera ammodites meridionalis, the most toxic snake in Europe. It is a complex between a toxic phospholipase A 2 (PLA 2) and a non-toxic protein inhibitor (Inh). Tyrosyl residues are involved in the catalytic site (Tyr 52 and 73) and in the substrate binding (Tyr 22). Spectroscopic studies demonstrated differences in the ionization behavior of the various phenolic hydroxyl groups in the toxic PLA 2. The tyrosyl side chains of the enzyme can be classified into three groups: (a) three phenolic hydroxyls are accessible to the solvent and titrate normally, with a p Keff=10.45; (b) three residues are partially 'buried' and participate in hydrogen bonds with neighboring functional groups. They titrate anomalously with a p Keff=12.17; (c) two tyrosines with a p Keff=13.23 are deeply 'buried' in the hydrophobic interior of PLA 2. They became accessible to the titrating agent only after alkaline denaturation of the protein molecule. The spectroscopic data are related to the X-ray structure of the vipoxin PLA 2. The refined model was investigated in the region of the tyrosyl side chains. The accessible surface area of each tyrosyl residue and each phenolic hydroxyl group was calculated. A good correlation between the spectrophotometric and the crystallographic data was observed. The ionization behavior of the phenolic groups is explained by peculiarities of the protein three-dimensional structure and the participation of tyrosines in the catalytic site hydrogen bond network. Attempts are made to assign the calculated p Keff values to individual residues. The high degree of 'exposure' on the protein surface of Tyr 22 and 75 is probably important for their function as parts of the substrate binding and pharmacological sites.

  18. Ordered hydroxyls on Ca 3Ru 2O 7(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halwidl, Daniel; Mayr-Schmölzer, Wernfried; Fobes, David

    As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is necessary to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca 3Ru 2O 7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH) ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygenmore » atom, O surf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.« less

  19. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  20. Ordered hydroxyls on Ca 3Ru 2O 7(001)

    DOE PAGES

    Halwidl, Daniel; Mayr-Schmölzer, Wernfried; Fobes, David; ...

    2017-06-20

    As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is necessary to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca 3Ru 2O 7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH) ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygenmore » atom, O surf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.« less

Top