Science.gov

Sample records for pendant hydroxyl groups

  1. Crystalline structures and mesomorphic properties of gemini diammonium surfactants with a pendant hydroxyl group.

    PubMed

    Wei, Zengbin; Wei, Xilian; Sun, Dezhi; Liu, Jiuqiang; Tang, Xiaojuan

    2011-02-15

    A series of homologous crystals of gemini diammonium surfactants (GDAS) containing one hydroxyl substituted methylene spacer are prepared. The crystal structures of these compounds, namely [C(n)H(2)(n)(+1)-N(+) (CH(3))(2)-CH(2)CH(OH)CH(2)-N(+)(CH(3))(2)-C(n)H(2)(n)(+1)], are determined by single-crystal X-ray diffraction techniques, in order to have a better understanding of the structure relation between the solid and the mesophase. The hydroxyl groups enhance the hydrogen bonding interaction between neighboring compounds, and therefore the packing of GDAS in the solid state is arranged to form a herringbone-like mode. To the best of our knowledge, this is the first GDAS crystal with a herringbone-like structure. Their mesomorphic properties are investigated by differential scanning calorimetry, polarizing optical microscopy, X-ray powder diffraction, and rheological measurement. These compounds have relatively low melting points and form thermotropic mesophases over a broad temperature range, as compared to those without a hydroxyl substituted at the spacer. The rheological behavior of the smectic phases clearly reveals that hydrogen bonds exert a significant effect on the high values of moduli and viscosity. Moreover, the melting point and rheological parameters increase, conforming to the length of alkyl chains.

  2. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  3. Polyphenylquinoxalines containing pendant phenylethynyl and ethynyl groups. [for thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1983-01-01

    Poly(phenylquinoxaline) prepolymers containing pendant phenylethynyl and ethynyl groups are disclosed along with the process for forming these polymers. Monomers and the process for producing same that are employed to prepare the polymers are also disclosed.

  4. Photoconductive properties of polysilane copolymers with pendant siloxane groups

    NASA Astrophysics Data System (ADS)

    Matsukawa, Kimihiro; Tamai, Toshiyuki; Inoue, Hiroshi

    2000-07-01

    The oxygen durability of poly(methylphenylsilane) (PMPS) in photoconduction has been improved by the use of copolysilanes with disiloxane-pendant groups. X-ray photoelectron spectroscopy analysis shows that disiloxane groups of the copolysilanes accumulate on their top-most surface at a much higher concentration than the bulk disiloxane concentration. The preferential coverage of disiloxane groups on the surface evidently leads to formation of a highly oxygen durable surface. The hole drift mobility of the charge carriers in copolysilanes with 5 mol % of disiloxane-pendant groups is over 10-4 cm2 V-1 s-1 at E>105V cm-1, almost comparable to that of PMPS. It was noted that the practical Xerographic potential decay was stabilized by the copolysilanes, while PMPS deteriorated after oxygen exposure.

  5. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  6. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups

    SciTech Connect

    Fan, Fei; Wang, Yangyang; Hong, Tao; Heres, Maximilian F.; Saito, Tomonori; Sokolov, Alexei P.

    2015-07-17

    Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviation from the ideal line increases upon approaching the glass transition temperature (Tg). Moreover, the conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. Finally, we relate this observation to a decrease in polymer packing efficiency with an increase in fragility.

  7. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups

    PubMed Central

    Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E.

    2013-01-01

    Controlled release of non-steroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin (II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic towards mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved. PMID:23957612

  8. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups.

    PubMed

    Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E

    2013-10-14

    Controlled release of nonsteroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin(II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic toward mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved.

  9. Chemoselective Hydroxyl Group Transformation: An Elusive Target‡

    PubMed Central

    Trader, Darci J.; Carlson, Erin E.

    2012-01-01

    The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described. PMID:22695722

  10. Formation of Pervaporation Membranes from Polyphosphazenes Having Hydrophilic and Hydrophobic Pendant Groups: Synthesis and Characterization

    SciTech Connect

    Stewart, Frederick Forrest; Harrup, Mason Kurt; Luther, Thomas Alan; Orme, Christopher Joseph; Lash, Robert Paul

    2001-02-01

    A series of new polyphosphazene polymers were synthesized using three different pendant groups with the goal of probing structure-function relationships between pendant group substitution and polymer swelling/water flux through thin dense films. Formation of polymers with relative degrees of hydrophilicity was probed by varying the stoichiometry of the pendant groups attached to the phosphazene backbone: p-methoxyphenol, 2-(2-methoxyethoxy)ethanol, and o-allylphenol. The polymers in this study were characterized using NMR, thermal methods, and dilute solution light-scattering techniques. These techniques revealed that the polymers were amorphous high polymers (Mw = 105-107) with varying ratios of pendant groups as determined by integration of the 1H- and 31P-NMR spectra. Thin dense film membranes were solution-cast with azo-bis(cyclohexane)carbonitrile included in the matrix and crosslinked using thermal initiation.

  11. Electronic and steric influences of pendant amine groups on the protonation of molybdenum bis (dinitrogen) complexes

    SciTech Connect

    Labios, Liezel A.; Heiden, Zachariah M.; Mock, Michael T.

    2015-05-04

    The synthesis of a series of PEtPNRR' (PEtPNRR' = Et₂PCH₂CH₂P(CH₂NRR')₂, R = H, R' = Ph or 2,4-difluorophenyl; R = R' = Ph or iPr) diphosphine ligands containing mono- and disubstituted pendant amine groups, and the preparation of their corresponding molybdenum bis(dinitrogen) complexes trans-Mo(N₂)₂(PMePh₂)₂(PEtPNRR') is described. In situ IR and multinuclear NMR spectroscopic studies monitoring the stepwise addition of (HOTf) to trans-Mo(N₂)₂(PMePh₂)₂(PEtPNRR') complexes in THF at -40 °C show that the electronic and steric properties of the R and R' groups of the pendant amines influence whether the complexes are protonated at Mo, a pendant amine, a coordinated N2 ligand, or a combination of these sites. For example, complexes containing mono-aryl substituted pendant amines are protonated at Mo and pendant amine to generate mono- and dicationic Mo–H species. Protonation of the complex containing less basic diphenyl-substituted pendant amines exclusively generates a monocationic hydrazido (Mo(NNH₂)) product, indicating preferential protonation of an N₂ ligand. Addition of HOTf to the complex featuring more basic diisopropyl amines primarily produces a monocationic product protonated at a pendant amine site, as well as a trace amount of dicationic Mo(NNH₂) product that contain protonated pendant amines. In addition, trans-Mo(N₂)₂(PMePh₂)₂(depe) (depe = Et₂PCH₂CH₂PEt₂) without a pendant amine was synthesized and treated with HOTf, generating a monocationic Mo(NNH₂) product. Protonolysis experiments conducted on select complexes in the series afforded trace amounts of NH₄⁺. Computational analysis of the series of trans-Mo(N₂)₂(PMePh₂)₂(PEtPNRR') complexes provides further insight into the proton affinity values of the metal center, N₂ ligand, and pendant amine sites to rationalize

  12. Synthesis and Characteristics of Radiation Curable Polyurethanes Containing Pendant Acrylate Groups.

    DTIC Science & Technology

    1986-10-09

    the mechanical properties of electron beam . cured acrylated polyester urethanes based on toluene diisocyanate(TDI) and hydroxyethyl - methacrylate ( HEMA ...acrylate or methacrylate pendant groups are can- didates for radiation sensitive solid polymers since the acrylate groups may undergo crosslinking...acrylate com- 4ponents. Toluene diisocyanate - hydroxyethylmethacrylate (TDI- HEMA ) or isophorone diisocyanate - hydroxylethylmethacrylate (IPDI-HEHA

  13. Pyrrolidinium ionic liquid crystals with pendant mesogenic groups.

    PubMed

    Goossens, Karel; Lava, Kathleen; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Pattison, Phil; Binnemans, Koen; Cardinaels, Thomas

    2009-05-19

    New ionic liquid crystals (including ionic metallomesogens) based on the pyrrolidinium core are presented. N-Methylpyrrolidine was quaternized with different mesogenic groups connected to a flexible, omega-bromosubstituted alkyl spacer. The length of the flexible alkyl spacer between the cationic head group and the rigid mesogenic group was varied. The substituted pyrrolidinium cations were combined with bromide, bis(trifluoromethylsulfonyl)imide, tetrakis(2-thenoyltrifluoroacetonato)europate(III), and tetrabromouranyl anions. The influence of the type of mesogenic unit, the lengths of the flexible spacer and terminal alkyl chain, the size of the mesogenic group, and the type of anion on the thermotropic mesomorphic behavior was investigated. Furthermore, the phase behavior was thoroughly compared with the previously reported mesomorphism of N-alkyl-N-methylpyrrolidinium salts. Low-ordered smectic A phases of the de Vries type, smectic C phases, higher-ordered smectic F/I phases, as well as crystal smectic phases (E and G, J, H, or K) were observed and investigated by polarizing optical microscopy, differential scanning calorimetry, and powder X-ray diffraction.

  14. Fluorescent macrocyclic probes with pendant functional groups as markers of acidic organelles within live cells.

    PubMed

    Wadhavane, Prashant D; Izquierdo, M Ángeles; Lutters, Dennis; Burguete, M Isabel; Marín, María J; Russell, David A; Galindo, Francisco; Luis, Santiago V

    2014-02-07

    A new family of acidity sensitive fluorescent macrocycles has been synthesized and fully characterized. Their photophysical properties including emission quantum yield and fluorescence lifetime have been determined. The acid-base properties of the new molecules can be tuned by the incorporation of pendant functional groups. The nature of such functional groups (carboxylic acid or ester) influences dramatically the pKa of the probes, two compounds of which exhibit low values. Preliminary intracellular studies using confocal microscopy together with emission spectra of the probes from the cellular environment have shown that the synthesized fluorescent macrocycles mark the acidic organelles of RAW 264.7 macrophage cells.

  15. Chemistry and properties of imide oligomers containing pendant and terminal phenylethynyl groups

    SciTech Connect

    Smith, J.G. Jr.

    1996-12-31

    As part of a continuing effort to develop high performance/high temperature structural resins for aeronautical applications, oligomers containing latent reactive groups have been under investigation. Material requirements include ease of processability, retention of mechanical properties at elevated temperature, and no loss of mechanical properties after exposure to aircraft fluids such as hydraulic fluid, jet fuel, and cleaning fluids. The phenylethynyl group is an ideal latent reactive group. It has a relatively high cure temperature ({approximately}350{degrees}C) and a large processing window can be obtained with materials possessing the proper glass transition temperature. The thermally cured materials exhibit good retention of mechanical properties at elevated temperatures with no significant loss of properties after exposure to various solvents. To date, the phenylethynyl group has been incorporated either terminal or pendant to a variety of imide oligomers. Upon thermal cure, the phenylethynyl group undergoes chain extension, branching and/or crosslinking; however, the final cured product has not been well defined. As an extension of this work, a series of imide oligomers containing both pendant and terminal phenylethynyl groups (PTPEIs) were prepared as a means to improve retention of mechanical properties at elevated temperature while maintaining processability. The PTPEI oligomers were characterized, thermally cured and the cured polymers evaluated as unoriented thin films and adhesives. The chemistry, physical, and mechanical properties of these materials will be discussed.

  16. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik; Robertson, Gilles; Guiver, Michael

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  17. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    SciTech Connect

    Dae Sik, Kim; Yu Seung, Kim; Gilles, Robertson; Guiver, Michael D

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  18. ONE STEP BIOCATALYTIC SYNTHESIS OF LINEAR POLYESTERS WITH PENDANT HYDROXYL GROUPS. (R825338)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. A ribozyme that triphosphorylates RNA 5′-hydroxyl groups

    PubMed Central

    Moretti, Janina E.; Müller, Ulrich F.

    2014-01-01

    The RNA world hypothesis describes a stage in the early evolution of life in which RNA served as genome and as the only genome-encoded catalyst. To test whether RNA world organisms could have used cyclic trimetaphosphate as an energy source, we developed an in vitro selection strategy for isolating ribozymes that catalyze the triphosphorylation of RNA 5′-hydroxyl groups with trimetaphosphate. Several active sequences were isolated, and one ribozyme was analyzed in more detail. The ribozyme was truncated to 96 nt, while retaining full activity. It was converted to a trans-format and reacted with rates of 0.16 min−1 under optimal conditions. The secondary structure appears to contain a four-helical junction motif. This study showed that ribozymes can use trimetaphosphate to triphosphorylate RNA 5′-hydroxyl groups and suggested that RNA world organisms could have used trimetaphosphate as their energy source. PMID:24452796

  20. Technetium-99m and rhenium-188 complexes with one and two pendant bisphosphonate groups for imaging arterial calcification.

    PubMed

    Bordoloi, Jayanta Kumar; Berry, David; Khan, Irfan Ullah; Sunassee, Kavitha; de Rosales, Rafael Torres Martin; Shanahan, Catherine; Blower, Philip J

    2015-03-21

    The first (99m)Tc and (188)Re complexes containing two pendant bisphosphonate groups have been synthesised, based on the mononuclear M(v) nitride core with two dithiocarbamate ligands each with a pendant bisphosphonate. The structural identity of the (99)Tc and stable rhenium analogues as uncharged, mononuclear nitridobis(dithiocarbamate) complexes was determined by electrospray mass spectrometry. The (99m)Tc complex showed greater affinity for synthetic and biological hydroxyapatite, and greater stability in biological media, than the well-known but poorly-characterised and inhomogeneous bone imaging agent (99m)Tc-MDP. It gave excellent SPECT images of both bone calcification (mice and rats) and vascular calcification (rat model), but the improved stability and the availability of two pendant bisphosphonate groups conferred no dramatic advantage in imaging over the conventional (99m)Tc-MDP agent in which the bisphosphonate group is bound directly to Tc. The (188)Re complex also showed preferential uptake in bone. These tracers and the biological model of vascular calcification offer the opportunity to study the biological interpretation and clinical potential of radionuclide imaging of vascular calcification and to deliver radionuclide therapy to bone metastases.

  1. Synthesis and characterization of fluorinated methacrylates-based copolymers containing cross-linkable pendant groups for optical waveguides

    NASA Astrophysics Data System (ADS)

    Kim, Ho June; Kim, Kwangsok; Chin, In-Joo

    2006-02-01

    Methacrylate based copolymers containing thermal and UV cross-linkable groups were prepared, ad their optical properties were investigated. Copolymerization of octafluoropentyl methacrylate (OFPMA) with hydroxyethyl methacrylate (HEMA) was followed by reacting HEMA and methacrylic anhydride (MAAN), yielding a fluorinated copolymer with cross-linkable pendant group. The refractive indices of the copolymers before cross-linking ranged from 1.4329 to 1.4646, and those of the cross-linked copolymers varied from 1.4500 to 1.4822, depending on the fluorine content.

  2. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups.

    PubMed

    Manhart, Jakob; Ayalur-Karunakaran, Santhosh; Radl, Simone; Oesterreicher, Andreas; Moser, Andreas; Ganser, Christian; Teichert, Christian; Pinter, Gerald; Kern, Wolfgang; Griesser, Thomas; Schlögl, Sandra

    2016-12-01

    The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the (1)H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, (1)H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yl)oxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking (λ>300 nm) and UV induced cleavage (λ=254 nm) are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in "Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups" (Manhart et al., 2016) [1].

  3. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.

    PubMed

    Fuoco, Tiziana; Finne-Wistrand, Anna; Pappalardo, Daniela

    2016-04-11

    Biodegradable aliphatic polyesters such as poly(lactide) and poly(ε-caprolactone), largely used in tissue engineering applications, lack suitable functional groups and biological cues to enable interactions with cells. Because of the ubiquity of thiol groups in the biological environment and the pliability of thiol chemistry, we aimed to design and synthesize poly(ester) chains bearing pendant thiol-protected groups. To achieve this, 3-methyl-6-(tritylthiomethyl)-1,4-dioxane-2,5-dione, a lactide-type monomer possessing a pendant thiol-protected group, was synthesized. This molecule, when used as a monomer in controlled ring-opening polymerization in combination with lactide and ε-caprolactone, appeared to be a convenient "building block" for the preparation of functionalized aliphatic copolyesters, which were easily modified further. A polymeric sample bearing pyridyl disulfide groups, able to bind a cysteine-containing peptide, was efficiently obtained from a two-step modification reaction. Porous scaffolds were then prepared by blending this latter copolymer sample with poly(L-lactide-co-ε-caprolactone) followed by salt leaching. A further disulfide exchange reaction performed in aqueous medium formed porous scaffolds with covalently linked arginine-glycine-aspartic acid sequences. The scaffolds were characterized by thermal and mechanical tests, and scanning electron microscopy surface images revealed a highly porous morphology. Moreover, a cytotoxicity test indicated good cell viability.

  4. Synthesis of functionalized Pluronic-b-poly(ε-caprolactone) and the comparative study of their pendant groups on the cellular internalization behavior.

    PubMed

    Du, Zhengzhen; Zhang, Yan; Lang, Meidong

    2015-04-01

    This study focuses on the synthesis of Pluronic-b-poly(ε-caprolactone) bearing benzyl-oxycarbonylmethyl and carboxylic groups and the comparative study to investigate the influence of the different pendant groups on the cellular behavior. The functionalized Pluronic-b-poly(ε-caprolactone) bearing two kinds of pendant groups are synthesized via ring-opening polymerization of ε-caprolactone and 6-(benzyl-oxycarbonyl methyl)-ε-caprolactone and followed by deprotection respectively. The structure of the copolymers is confirmed and the polymeric micelles are formed by an emulsion/solvent evaporation technique. The critical micelle concentrations are improved compared with Pluronic F127, the morphologies of the micelles are spherical with the diameter on nano scale and good colloidal stability. The copolymers have good cytocompatibility and the comparative study reveals that cellular internalization, digesting by lysosome and intracellular distribution are affected by the pendant groups, moreover, the endocytosis pathway is determined by the pendant groups. Therefore, the definite internalization mechanism is beneficial for the design of polymeric micellar carriers to achieve intra- or extracellular modes of drug delivery and provide better access to either cell membrane or intracellular organelles.

  5. Effect of liquefaction temperature on hydroxyl groups of bio-oil from loblolly pine (Pinus taeda).

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Wu, Yonnie

    2014-10-01

    Loblolly pine was liquefied with ethylene glycol at 100, 150, 200 and 250 °C in order to analyze the effect of liquefaction temperature on hydroxyl groups of bio-oil, and to determine the source and variation of hydroxyl groups. The optimum temperature was found to be 150-200 °C. Hydroxyl number (OHN) of the bio-oil was ranged from 632 to 1430 mg KOH/g. GC-MS analysis showed that 70-90% of OHN was generated from unreacted EG. (31)P NMR analysis showed that the majority of hydroxyl groups were aliphatic, and none of the bio-oil exhibited any detectable hydroxyl groups from phenolic sources. Finally, it was found that all bio-oils were stable in terms of OHN for 2 months when stored at -10 °C.

  6. Coumarin-fused coumarin: antioxidant story from N,N-dimethylamino and hydroxyl groups.

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2015-04-08

    Two coumarin skeletons can form chromeno[3,4-c]chromene-6,7-dione by sharing with the C ═ C in lactone. The aim of the present work was to explore the antioxidant effectiveness of the coumarin-fused coumarin via six synthetic compounds containing hydroxyl and N,N-dimethylamino as the functional groups. The abilities to quench 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(+•)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical revealed that the rate constant for scavenging radicals was related to the amount of hydroxyl group in the scaffold of coumarin-fused coumarin. But coumarin-fused coumarin was able to inhibit DNA oxidations caused by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) even in the absence of hydroxyl group. In particular, a hydroxyl and an N,N-dimethylamino group locating at different benzene rings increased the inhibitory effect of coumarin-fused coumarin on AAPH-induced oxidation of DNA about 3 times higher than a single hydroxyl group, whereas N,N-dimethylamino-substituted coumarin-fused coumarin possessed high activity toward (•)OH-induced oxidation of DNA without the hydroxyl group contained. Therefore, the hydroxyl group together with N,N-dimethylamino group may be a novel combination for the design of coumarin-fused heterocyclic antioxidants.

  7. Antioxidant effectiveness generated by one or two phenolic hydroxyl groups in coumarin-substituted dihydropyrazoles.

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2013-10-01

    A cascade operation was designed to synthesize nine coumarin-substituted dihydropyrazoles with only one or two phenolic hydroxyl groups contained. Antioxidant abilities of the obtained compounds were evaluated by inhibiting 2,2'-azobis(2-amidinopropanehydrochloride) (AAPH)-, Cu2+/glutathione (GSH)-, and .OH-induced oxidation of DNA. It was found that less phenolic hydroxyl groups can enhance the abilities of coumarin-substituted dihydropyrazoles to protect DNA against the oxidation. Moreover, these coumarin-substituted dihydropyrazoles were employed to scavenge 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+.), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively. It was found that double phenolic hydroxyl groups were more beneficial for enhancing the abilities of coumarin-substituted dihydropyrazoles to quench the aforementioned radicals. Therefore, dihydropyrazole linked with coumarin exhibited powerful antioxidant effectiveness even in the case of less phenolic hydroxyl groups involved.

  8. A versatile route to polythiophenes with functional pendant groups using alkyne chemistry

    PubMed Central

    Yang, Li; Emanuelsson, Rikard; Bergquist, Jonas; Strømme, Maria; Sjödin, Martin

    2016-01-01

    A new versatile polythiophene building block, 3-(3,4-ethylenedioxythiophene)prop-1-yne (pyEDOT) (3), is prepared from glycidol in four steps in 28% overall yield. pyEDOT features an ethynyl group on its ethylenedioxy bridge, allowing further functionalization by alkyne chemistry. Its usefulness is demonstrated by a series of functionalized polythiophene derivatives that were obtained by pre- and post-electropolymerization transformations, provided by the synthetic ease of the Sonogashira coupling and click chemistry. PMID:28144339

  9. Introduction of bridging and pendant organic groups into mesoporous alumina materials.

    PubMed

    Grant, Stacy M; Woods, Stephan M; Gericke, Arne; Jaroniec, Mietek

    2011-11-01

    Incorporation of organic functionalities into soft-templated mesoporous alumina was performed via organosilane-assisted evaporation induced self-assembly using aluminum alkoxide precursors and block copolymer templates. This strategy permits one to obtain mesoporous alumina-based materials with tailorable adsorption, surface and structural properties. Isocyanurate, ethane, mercaptopropyl, and ureidopropyl-functionalized mesoporous alumina materials were synthesized with relatively high surface area and large pore volume with uniform and wormhole-like mesopores. The presence of organosilyl groups within these hybrid materials was confirmed by IR or Raman spectroscopy and their concentration was determined by elemental analysis.

  10. Cationized bovine serum albumin with pendant RGD groups forms efficient biocoatings for cell adhesion.

    PubMed

    Ng, Jeck Fei; Weil, Tanja; Jaenicke, Stephan

    2011-11-01

    Cationized bovine serum albumin (cBSA-147) has been modified by attaching the cyclic pentapeptide cRGDfK to its surface through linkers of different length. Coatings of these bioconjugates on glass surfaces were studied for their ability to stimulate cell adhesion. These chemically modified albumins combine a high number of positive charges which facilitate the initial cell adhesion to the surface with multiple Arg-Gly-Asp groups which enable focal adhesion of fibroblast cells by specific interactions with cell-surface receptors. The biocoatings are easily prepared within a few minutes by simple incubation from a dilute solution of the modified albumin. This constitutes a convenient approach for preparing surfaces for cell adhesion. Excellent focal adhesion of NIH 3T3 fibroblast cells on the biocoatings was observed. About 75% of the seeded cells attached to the cRGDfK-cBSA-147 coated surfaces, and 97% of them underwent focal adhesion. Adhering cells were able to grow and proliferate on the coated surfaces, confirming the outstanding biocompatibility of these biocoatings.

  11. Oxidoreduction of different hydroxyl groups in bile acids during their enterohepatic circulation in man

    SciTech Connect

    Bjoerkhem, I.L.; Liljeqvist, L.; Nilsell, K.; Einarsson, K.

    1986-02-01

    The extent of oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in bile acids during the enterohepatic circulation in man was studied with the use of (3 beta-/sup 3/H)-labeled deoxycholic acid and cholic acid, (7 beta-/sup 3/H)-labeled cholic acid, and (12 beta-/sup 3/H)-labeled deoxycholic acid and cholic acid. Each (/sup 3/H)-labeled bile acid was given per os to healthy volunteers, together with the corresponding (24-/sup 14/C)-labeled bile acid. The rate of oxidoreduction was calculated from the decrease in the ratio between /sup 3/H and /sup 14/C in the respective bile acid isolated from duodenal contents collected at different time intervals after administration of the labeled bile acids. The mean fractional conversion rate was found to be 0.29 day-1 for the 3 alpha-hydroxyl group in deoxycholic acid (n = 2), 0.18 day-1 for the 12 alpha-hydroxyl group in deoxycholic acid (n = 6), 0.09 day-1 for the 3 alpha-hydroxyl group in cholic acid (n = 3), 0.05 day-1 for the 7 alpha-hydroxyl group in cholic acid (n = 2), and 0.03 day-1 for the 12 alpha-hydroxyl group in cholic acid (n = 2). The extent of oxidoreduction of the 12 alpha-hydroxyl group in (12 beta-/sup 3/H)-labeled deoxycholic acid given to two patients operated with subtotal colectomy and ileostomy was markedly reduced (less than 20% of normal).

  12. Entropy Loss of Hydroxyl Groups of Balanol upon Binding to Protein Kinase A

    NASA Astrophysics Data System (ADS)

    Gidofalvi, Gergely; Wong, Chung F.; McCammon, J. Andrew

    2002-09-01

    This article describes a short project for an undergraduate to learn several techniques for computer-aided drug design. The project involves estimating the loss of the rotational entropy of the hydroxyl groups of balanol upon its binding to the enzyme protein kinase A (PKA), as the entropy loss can significantly influence PKA balanol binding affinity. This work employs semiempirical quantum mechanical techniques for estimating the potential energy curves for the rotation of the hydroxyl groups of balanol in vacuum and in PKA, and solves the Poisson equation to correct the potential energy curves for hydration effects. Statistical mechanical principles are then applied to estimate the desired entropy loss from the potential energy curves. The analysis examines the influence of hydration effects on the rotational preference of the hydroxyl groups and the significance of the rotational entropy in determining binding affinity.

  13. Unexpectedly Facile Rh(I) Catalyzed Polymerization of Ethynylbenzaldehyde Type Monomers: Synthesis of Polyacetylenes Bearing Reactive and Easy Transformable Pendant Carbaldehyde Groups.

    PubMed

    Sedláček, Jan; Havelková, Lucie; Zedník, Jiří; Coufal, Radek; Faukner, Tomáš; Balcar, Hynek; Brus, Jiří

    2017-02-23

    The chain coordination polymerization of (ethynylarene)carbaldehydes with unprotected carbaldehyde groups, namely ethynylbenzaldehydes, 1-ethynylbenzene-3,5-dicarboxaldehyde, and 3-[(4-ethynylphenyl)ethynyl]benzaldehyde, is reported for the first time. Polymerization is catalyzed with various Rh(I) catalysts and yields poly(arylacetylene)s with one or two pendant carbaldehyde groups per monomeric unit. Surprisingly, the carbaldehyde groups of the monomers do not inhibit the polymerization unlike the carbaldehyde group of unsubstituted benzaldehyde that acts as a strong inhibitor of Rh(I) catalyzed polymerization of arylacetylenes. The inhibition ability of carbaldehyde groups in (ethynylarene)carbaldehydes seems to be eliminated owing to a simultaneous presence of unsaturated ethynyl groups in (ethynylarene)carbaldehydes. The reactive carbaldehyde groups make poly[(ethynylarene)carbaldehyde]s promising for functional appreciation via various postpolymerization modifications. The introduction of photoluminescence or chirality to poly(ethynylbenzaldehyde)s via quantitative modification of their carbaldehyde groups in reaction with either photoluminescent or chiral primary amines under formation of the polymers with Schiff-base-type pendant groups is given as an example.

  14. Relative impact of 3- and 5-hydroxyl groups of cytosporone B on cancer cell viability.

    PubMed

    Xia, Zebin; Cao, Xihua; Rico-Bautista, Elizabeth; Yu, Jinghua; Chen, Liqun; Chen, Jiebo; Bobkov, Andrey; Wolf, Dieter A; Zhang, Xiao-Kun; Dawson, Marcia I

    2013-02-01

    A novel and the shortest route, thus far, for preparing cytosporone B (Csn-B) is reported. Csn-B and two analogs were used to probe the importance of hydroxyl groups at the 3- and 5-positions of the Csn-B benzene ring in inhibiting the viability of human H460 lung cancer and LNCaP prostate cancer cells, inducing H460 cell apoptosis, and interacting with the NR4A1 (TR3) ligand-binding domain (LBD). These studies indicate that Csn-B and 5-Me-Csn-B, having a phenolic hydroxyl at the 3-position of their aromatic rings, had similar activities in inhibiting cancer cell viability and in inducing apoptosis, whereas 3,5-(Me)2-Csn-B was unable to do so. These results are in agreement with ligand-binding experiments showing that the interaction with the NR4A1 LBD required the presence of the 3-hydroxyl group.

  15. Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 1. Method development.

    PubMed

    Jaoui, M; Kleindienst, T E; Lewandowski, M; Edney, E O

    2004-08-15

    In this study, a new analytical technique was developed for the identification and quantification of multifunctional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) of the multifunctional compound using an alcohol (e.g., methanol, 1-butanol) in the presence of a relatively strong Lewis acid (BF3) as a catalyst. This esterification reaction quickly and quantitatively converts carboxylic acids to their ester forms. The second step is based on silylation of the ester compounds using bis(trimethylsilyl) trifluoroacetamide (BSTFA) as the derivatizing agent. For compounds bearing ketone groups in addition to carboxylic and hydroxyl groups, a third step was used based on PFBHA derivatization of the carbonyls. Different parameters including temperature, reaction time, and effect due to artifacts were optimized. A GC/MS in EI and in methane-CI mode was used for the analysis of these compounds. The new approach was tested on a number of multifunctional compounds. The interpretation of their EI (70 eV) and CI mass spectra shows that critical information is gained leading to unambiguous identification of unknown compounds. For example, when derivatized only with BF(3)-methanol, their mass spectra comprise primary ions at m/z M.+ + 1, M.+ + 29, and M.+ - 31 for compounds bearing only carboxylic groups and M.+ + 1, M.+ + 29, M.+ - 31, and M+. - 17 for those bearing hydroxyl and carboxylic groups. However, when a second derivatization (BSTFA) was used, compounds bearing hydroxyl and carboxylic groups simultaneously show, in addition to the ions observed before, ions at m/z M.+ + 73, M.+ - 15, M.+ - 59, M.+ - 75, M.+ - 89, and 73. To the best of our knowledge, this technique describes systematically for the first time a method for identifying multifunctional oxygenated compounds containing simultaneously one or more hydroxyl and carboxylic acid groups.

  16. Pendant ancillary ligand switches off auto-oxidation of group 13 metal alkyl compounds bearing non-bulky alkyl groups.

    PubMed

    Kobrsi, Issam

    2014-01-01

    The reaction of 3,5-di-2-pyridyl-1,2,4-triazole with excess Al(CH3)3 and Ga(CH3)3 afforded (3,5-di-2-pyridyl-1,2,4-triazolate)Al(CH3)2•3Al(CH3)3 (1) and (3,5-di-2-pyridyl-1,2,4-triazolate) Ga(CH3)2•3Ga(CH3)3 (2) respectively. 1 and 2 reacted with oxygen gas to produce (CH3)2M(µ-3,5-di-2-pyridyl-1,2,4-triazolate)(µ-OCH3)M(CH3)2 (M = Al, 3; M = Ga, 4). 3 and 4 contain the non-bulky dimethylalumino moiety, yet they are indefinitely stable in the presence of oxygen gas. This increased stability towards oxygen is due to ancillary 2-pyridyl groups bonding to the metal centers producing a pseudo-trigonal pyramidal Al and Ga environments. This environment blocks oxygen from further inserting into the M-C bond. The Al-N(pyridine) and Ga-N(pyridine) bonds reported herein are extremely elongated yet inactive towards dissociation due to the chelate effect.

  17. Predicting the acidity constant of a goethite hydroxyl group from first principles

    NASA Astrophysics Data System (ADS)

    Leung, Kevin; Criscenti, Louise J.

    2012-03-01

    Accurate predictions of the acid-base behavior of hydroxyl groups at mineral surfaces are critical for understanding the trapping of toxic and radioactive ions in soil samples. In this work, we apply ab initio molecular dynamics (AIMD) simulations and potential-of-mean-force techniques to calculate the pKa of a doubly protonated oxygen atom bonded to a single Fe atom (FeIOH2) on the goethite (101) surface. Using formic acid as a reference system, pKa = 7.0 is predicted, suggesting that isolated, positively charged groups of this type are marginally stable at neutral pH. Similarities and differences between AIMD and the more empirical multi-site complexation methodology are highlighted, particularly with respect to the treatment of hydrogen bonding with water and proton sharing among surface hydroxyl groups. We also highlight the importance of an electronic structure method that can accurately predict transition metal ion properties for goethite pKa calculations.

  18. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hu, Dayong; Jin, Junhong; Yang, Shenglin; Li, Guang; Jiang, Jianming

    2010-01-01

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  19. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  20. Relative impact of 3- and 5-hydroxyl groups of cytosporone B on cancer cell viability†

    PubMed Central

    Rico-Bautista, Elizabeth; Yu, Jinghua; Chen, Liqun; Chen, Jiebo; Bobkov, Andrey; Wolf, Dieter A.; Zhang, Xiao-Kun; Dawson, Marcia I.

    2014-01-01

    A novel and the shortest route, thus far, for preparing cytosporone B (Csn-B) is reported. Csn-B and two analogs were used to probe the importance of hydroxyl groups at the 3- and 5-positions of the Csn-B benzene ring in inhibiting the viability of human H460 lung cancer and LNCaP prostate cancer cells, inducing H460 cell apoptosis, and interacting with the NR4A1 (TR3) ligand-binding domain (LBD). These studies indicate that Csn-B and 5-Me-Csn-B, having a phenolic hydroxyl at the 3-position of their aromatic rings, had similar activities in inhibiting cancer cell viability and in inducing apoptosis, whereas 3,5-(Me)2-Csn-B was unable to do so. These results are in agreement with ligand-binding experiments showing that the interaction with the NR4A1 LBD required the presence of the 3-hydroxyl group. PMID:24795803

  1. Structure-affinity relationship of flavones on binding to serum albumins: effect of hydroxyl groups on ring A.

    PubMed

    Xiao, Jianbo; Cao, Hui; Wang, Yuanfeng; Yamamoto, Koichiro; Wei, Xinlin

    2010-07-01

    Four flavones (flavone, 7-hydroxyflavone, chrysin, and baicalein) sharing the same B- and C-ring structure but a different numbers of hydroxyl groups on the A-ring were studied for their affinities for BSA and HSA. The hydroxylation on ring A of flavones increased the binding constants (K(a)) and the number of binding sites (n) between flavones and serum albumins. The affinities of 7-hydroxyflavone for BSA and HSA were about 800 times and 40 times higher than that of flavone, respectively. It appears that the optimal number of hydroxyl groups introduced to the ring A of flavones is one. As more hydroxyl groups were introduced to positions at C-5, C-6, and/or C-7 of flavones, the affinities for serum albumins decrease. The critical energy transfer distances (R(0)) between the hydroxylated flavones (1-3 OH on the ring A) and serum albumins decreased with the increasing affinities for serum albumins.

  2. Tuning the Moisture and Thermal Stability of Metal–Organic Frameworks through Incorporation of Pendant Hydrophobic Groups

    SciTech Connect

    Makal, Trevor A.; Wang, Xuan; Zhou, Hong-Cai

    2013-11-06

    An isostructural series of NbO-type porous metal–organic frameworks (MOFs) with different dialkoxy-substituents of formula Cu2(TPTC-OR) (TPTC-OR = 2',5'-di{alkyl}oxy-[1,1':4',1"-terphenyl]-3,3",5,5"-tetracarboxylate, R = Me, Et, nPr, nHex) has been synthesized and characterized. The moisture stability of the materials has been evaluated, and a new superhydrophobic porous MOF has been identified. The relationship between pendant side chain length and thermal stability has been analyzed by in situ synchrotron powder X-ray diffraction, showing decreased thermal stability as the side chain length is increased, contradictory to thermogravimetric decomposition studies. Additionally, the four materials exhibit moderate Brunauer–Emmett–Teller (BET) and Langmuir surface areas (1127–1396 m2 g–1 and 1414–1658 m2 g–1) and H2 capacity up to 1.9 wt % at 77 K and 1 bar.

  3. Metal-Chelating Polymers (MCPs) with Zwitterionic Pendant Groups Complexed to Trastuzumab Exhibit Decreased Liver Accumulation Compared to Polyanionic MCP Immunoconjugates.

    PubMed

    Liu, Peng; Boyle, Amanda J; Lu, Yijie; Adams, Jarrett; Chi, Yuechuan; Reilly, Raymond M; Winnik, Mitchell A

    2015-11-09

    Metal-chelating polymers (MCPs) can amplify the radioactivity delivered to cancer cells by monoclonal antibodies or their Fab fragments. We focus on trastuzumab (tmAb), which is used to target cancer cells that overexpress human epidermal growth factor receptor 2 (HER2). We report the synthesis and characterization of a biotin (Bi) end-capped MCP, Bi-PAm(DET-DTPA)36, a polyacrylamide with diethylenetriaminepentaacetic acid (DTPA) groups attached as monoamides to the polymer backbone by diethylenetriamine (DET) pendant groups. We compared its behavior in vivo and in vitro to a similar MCP with ethylenediamine (EDA) pendant groups (Bi-PAm(EDA-DTPA)40). These polymers were complexed to a streptavidin-modified Fab fragment of tmAb, then labeled with (111)In to specifically deliver multiple copies of (111)In to HER2+ cancer cells. Upon decay, (111)In emits γ-rays that can be used in single-photon emission computed tomography radioimaging, as well as Auger electrons that cause lethal double strand breakage of DNA. Our previous studies in Balb/c mice showed that radioimmunoconjugates (RICs) containing the Bi-PAm(EDA-DTPA)40 polymer had extremely short blood circulation time and high liver uptake and were, thus, unsuitable for in vivo studies. The polymer Bi-PAm(EDA-DTPA)40 carries negative charges on each pendant group at neutral pH and a net charge of (-1) on each pendant group when saturated with stable In(3+). To test our hypothesis that charge associated with the polymer repeat unit is a key factor affecting its biodistribution profile, we examined the biodistribution of RICs containing Bi-PAm(DET-DTPA)36. While this polymer is also negatively charged at neutral pH, it becomes a zwitterionic MCP upon saturation of the DTPA groups with stable In(3+) ions. In both nontumor bearing Balb/c mice and athymic mice implanted with HER2+ SKOV-3 human ovarian cancer tumors, we show that the zwitterionic MCP has improved biodistribution, higher blood levels of radioactivity

  4. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups.

    PubMed

    Hook, Andrew L; Scurr, David J

    2016-04-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information-rich nature of ToF-SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono-functional from multi-functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure-function relationships based upon ToF-SIMS data of polymer libraries.

  5. ToF‐SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups

    PubMed Central

    Scurr, David J.

    2016-01-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information‐rich nature of ToF‐SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono‐functional from multi‐functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure–function relationships based upon ToF‐SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd. PMID:27134321

  6. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  7. Coumestan inhibits radical-induced oxidation of DNA: is hydroxyl a necessary functional group?

    PubMed

    Xi, Gao-Lei; Liu, Zai-Qun

    2014-06-18

    Coumestan is a natural tetracycle with a C═C bond shared by a coumarin moiety and a benzofuran moiety. In addition to the function of the hydroxyl group on the antioxidant activity of coumestan, it is worth exploring the influence of the oxygen-abundant scaffold on the antioxidant activity as well. In this work, seven coumestans containing electron-withdrawing and electron-donating groups were synthesized to evaluate the abilities to trap 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(•+)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively, and to inhibit the oxidations of DNA mediated by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), respectively. It was found that all of the coumestans used herein can quench the aforementioned radicals and can inhibit (•)OH-, Cu(2+)/GSH-, and AAPH-induced oxidations of DNA. In particular, substituent-free coumestan exhibits higher ability to quench DPPH and to inhibit AAPH-induced oxidation of DNA than Trolox. In addition, nonsubstituted coumestan shows a similar ability to inhibit (•)OH- and Cu(2+)/GSH-induced oxidations of DNA relative to that of Trolox. The antioxidant effectiveness of the coumestan can be attributed to the lactone in the coumarin moiety and, therefore, a hydroxyl group may not be a necessary functional group for coumestan to be an antioxidant.

  8. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  9. Exchange of carbon-bound hydrogen atoms ortho to the hydroxyl group in tyrosine.

    PubMed

    Martin, R B; Morlino, V J

    1965-10-22

    The carbon-bound hydrogen atoms of tyrosine that exchange with solvent protons in strongly acid solutions at about 100 degrees C are not the methylene hydrogen atoms but a pair on the aromatic ring. Of the two pairs of protons on the aromatic ring, observed in the proton magnetic resonance spectra, the pair at higher field undergoes exchange in 2.4N DCI at 100 degrees C. Other hydrogen atoms, attached either to aliphatic or aromatic carbon atoms, exhibit no noticeable exchange under the same conditions. From a chemicalshift analysis the exchanging protons are assigned as those ortho to the hydroxyl group on the aromatic ring.

  10. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption.

    PubMed

    Zhong, Jun; Ji, Hua; Duan, Jiang; Tu, Haiyang; Zhang, Aidong

    2016-04-01

    This work aims at developing versatile low-biofouling polymeric coatings by using acrylic terpolymers (DOFs) that bear pendant catechol (D), oligo(ethylene glycol) (O), and perfluoroalkyl (F) groups in varying ratios. The polymers were endowed with the ability to form firmly coatings on virtually any surfaces and undergo surface microphase separation and self-assembly, as revealed by the surface enrichment of F pendants and the morphology variation from irregular solid domains to discrete crater-type aggregates of different size. The effect on protein adsorption was investigated using bovine serum albumin (BSA) and adhesive fibrinogen (Fib) as model proteins. The coating of DOF164 (low F content), which has morphology of discrete crater-type aggregates of ∼ 400 nm in size, adsorbed a least amount of protein but with a highest protein unit activity as determined by SPR and immunosorbent assay; whereas the coating of DOF1612 (high F content) showed a 12.3-fold higher adsorption capacity toward Fib. Interestingly, a 2.2-fold lower adsorption amount but with a 1.8-fold higher unit activity was found for Fib adsorbed on the DOF164 surface than on DOF250 (without F fraction), whose OEG segments being a widely recognized protein compatible material. The features of the DOF164 terpolymer presenting a robust coating ability and a minimal protein adsorption capacity while with a high protein unit activity suggest its potential application as a non-fouling surface-modifier for medical antifouling coatings and as a matrix material for selective protein immobilization and activity preservation in biosensor construction.

  11. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  12. Inhibition of Pseudomonas aeruginosa Swarming Motility by 1-Naphthol and Other Bicyclic Compounds Bearing Hydroxyl Groups

    PubMed Central

    Oura, Hiromu; Tashiro, Yosuke; Toyofuku, Masanori; Ueda, Kousetsu; Kiyokawa, Tatsunori; Ito, Satoshi; Takahashi, Yurika; Lee, Seunguk; Nojiri, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo; Futamata, Hiroyuki

    2015-01-01

    Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa. PMID:25681177

  13. Comparison of Polyurethanes with Polyhydroxyurethanes: Effect of the Hydroxyl Group on Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Leitsch, Emily K.; Lombardo, Vince M.; Scheidt, Karl A.; Torkelson, John M.

    2014-03-01

    Polyurethanes (PUs) are commonly synthesized by rapid step-growth polymerization through the reaction of a multifunctional alcohol with a polyisocyanate. PUs can be prepared at ambient conditions utilizing a variety of starting material molecular weights and backbones, resulting in highly tunable thermal and physical properties. The urethane linkages as well as the nanophase separated morphology attainable in PU materials lead to desirable properties including elastomeric character and adhesion. The isocyanate-based monomers used in the synthesis of traditional PUs have come under increasing regulatory pressure and thus inspired the investigation of alternative routes for the formation of PU materials. We examine an alternative route to synthesize PU- the reaction of five-membered cyclic carbonate with amines. This reaction results in the formation of a urethane linkage with an adjacent alcohol group. The effects of this hydroxyl group on the thermal and mechanical properties of the resulting polymer are investigated and compared with an analogous traditional PU system.

  14. Design of Poly(L-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups.

    PubMed

    Xie, Hui; He, Man-jie; Deng, Xiao-Ying; Du, Lan; Fan, Cheng-Jie; Yang, Ke-Ke; Wang, Yu-Zhong

    2016-04-13

    A novel light-induced shape-memory material based on poly(l-lactide)-poly(ethylene glycol) copolymer is developed successfully by dangling the photoresponsive anthracene group on the PEG soft segment selectively. For synthesis strategy, the preprepared photoresponsive monomer N,N-bis(2-hydroxyethyl)-9-anthracene-methanamine (BHEAA) is first embedded into PEG chains; then, we couple this anthracene-functionalized PEG precursor with PLA precursor to result in PLA-PEG-A copolymer. The composition of target product can be well-defined by simply adjusting the feed ratio. The chemical structures of intermediate and final products are confirmed by (1)H NMR. Differential scanning calorimetry analysis of material reveals that the PEG soft segment became noncrystallizable when 4% or more BHEAA is introduced, and this feature is beneficial to the mobility of anthracene groups in polymer matrix. The static tensile tests show that the samples exhibit rubberlike mechanical properties except for the PLA-dominant one. The reversibility of [4 + 4] cycloaddition reaction between pendant anthracene groups in PLA-PEG-A film is demonstrated by UV-vis. Eventually, the light-induced shape-memory effect (LSME) is successfully realized in PLA-PEG-A. The results of cyclic photomechanical tests also reveal that the content of PLA hard segment as well as photosensitive anthracene moieties plays a crucial role in LSME.

  15. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

    SciTech Connect

    Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

    2008-09-01

    The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

  16. Synthesis, X-ray crystal structures, and phosphate ester cleavage properties of bis(2-pyridylmethyl)amine copper(II) complexes with guanidinium pendant groups.

    PubMed

    Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone

    2008-10-06

    Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.

  17. Influence of Molecular Hydrogen Diffusion on Concentration and Distribution of Hydroxyl Groups in Silica Fibers

    NASA Astrophysics Data System (ADS)

    Plotnichenko, Victor G.; Ivanov, Gennadii A.; Kryukova, Elena B.; Aksenov, Vyacheslav A.; Sokolov, Vyacheslav O.; Isaev, Victor A.

    2005-01-01

    To study the hydroxyl (OH)-group contamination mechanisms in silica-based optical fibers, the transmission spectra of substrate tubes and fiber preforms made from various types of silica glasses ("Suprasil F-300," KS-4V, and KUVI) are measured by the method of infrared Fourier spectroscopy in a wavelength region of 2-5 μm. Due to the intensity of the fundamental OH stretching vibration band, the absorption coefficient, concentration, and a distribution profile of OH groups across the aforesaid samples are calculated. It is found that using an oxyhydrogen burner in the modified chemical vapor deposition (MCVD) process of manufacturing preforms and fiber drawing, the main source of impurity OH groups can be the molecular hydrogen H2 penetrating into glass much deeper than the OH groups diffusing from the substrate tube surface. A simple model explaining the formation and diffusion of OH groups into a fiber core and cladding is proposed. It is shown that heating tubes and preforms in a flame of oxyhydrogen burner during fiber fabrication causes a significant OH-group content growth (almost by two orders of magnitude) near to the outer preform surface. Using substrate tubes made from Suprasil F-300 glass, optical fibers are fabricated having a silica core and fluorosilicate reflecting cladding with optical losses of 0.3 dB/km at 1.55 μm and a refractive-index difference between core and cladding ~ 1 . 10^-2.

  18. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  19. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  20. Non-exchanging hydroxyl groups on the surface of cellulose fibrils: The role of interaction with water.

    PubMed

    Lindh, Erik L; Bergenstråhle-Wohlert, Malin; Terenzi, Camilla; Salmén, Lennart; Furó, István

    2016-11-03

    The interaction of water with cellulose stages many unresolved questions. Here (2)H MAS NMR and IR spectra recorded under carefully selected conditions in (1)H-(2)H exchanged, and re-exchanged, cellulose samples are presented. It is shown here, by a quantitative and robust approach, that only two of the three available hydroxyl groups on the surface of cellulose fibrils are exchanging their hydrogen with the surrounding water molecules. This finding is additionally verified and explained by MD simulations which demonstrate that the (1)HO(2) and (1)HO(6) hydroxyl groups of the constituting glucose units act as hydrogen-bond donors to water, while the (1)HO(3) groups behave exclusively as hydrogen-bond acceptors from water and donate hydrogen to their intra-chain neighbors O(5). We conclude that such a behavior makes the latter hydroxyl group unreactive to hydrogen exchange with water.

  1. Novel nanostructure amino acid-based poly(amide-imide)s enclosing benzimidazole pendant group in green medium: fabrication and characterization.

    PubMed

    Mallakpour, Shadpour; Dinari, Mohammad

    2012-10-01

    In the present work, several novel optically active nanostructure poly(amide-imide)s (PAI)s were synthesized via step-growth polymerization reaction of chiral diacids based on pyromellitic dianhydride-derived dicarboxylic acids containing different natural amino acids such as L-alanine, S-valine, L-leucine, L-isoleucine, L-methionine, and L-phenylalanine with 2-(3,5-diaminophenyl)-benzimidazole under green conditions using molten tetrabutylammonium bromide. The new optically active PAIs were achieved in good yields and moderate inherent viscosity up to 0.41 dL/g. The synthesized polymers were characterized with FT-IR, (1)H-NMR, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), elemental and thermogravimetric analysis (TGA) techniques. These polymers show high solubility in organic polar solvents due to the presence of amino acid and benzimidazole pendant group at room temperature. FE-SEM results show that, these chiral nanostructured PAIs have spherical shapes and the particle size is around 20-80 nm. On the basis of TGA data, such PAIs are thermally stable and can be classified as self-extinguishing polymers. In addition due to the existence of amino acids in the polymer backbones, these macromolecules are not only optically active but also could be biodegradable and thus may well be classified under environmentally friendly materials.

  2. Extraction of Cesium by a Calix[4]arene-Crown-6 Ether Bearing a Pendant amine Group

    SciTech Connect

    Harmon, Ben; Ensor, Dale; Delmau, Laetitia Helene; Moyer, Bruce A

    2007-01-01

    The goal of this work was to evaluate the role of the amino group of 5-aminomethylcalix[4]arene-[bis-4-(2-ethylhexyl)benzo-crown-6] (AMBEHB) in the extraction of cesium from acidic and basic mixtures of sodium nitrate and other concentrated salts. The extraction of cesium from nitrate media was measured as a function of extractant concentration, nitrate concentration, cesium concentration, and pH over the range 1-13. The initial studies showed a moderate decrease in the extraction of cesium in acidic media, which indicated the binding of cesium by the calixarene-crown was weakened by the protonation of the amine group. The results also indicated that a 1:1:1 Cs-ligand-nitrate complex is formed in the organic phase. To further evaluate AMBEHB, the empirical data were mathematically modeled to determine the formation constants of the complexes formed in the organic phase. The resulting formation constants showed that the attachment of the amine group to the calixarene-crown molecule reduced the binding stability for the cesium ion upon contact with an acidic solution. This supports the hypothesis of charge repulsion as the basis for more efficient stripping of cesium via pH-switching.

  3. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  4. Regioselective inversion of the hydroxyl group in D-ribo-phytosphingosine via a cyclic sulfate and bis-sulfonate intermediate.

    PubMed

    Lee, Yun Mi; Baek, Dong Jae; Lee, Seokwoo; Kim, Deukjoon; Kim, Sanghee

    2011-01-21

    The selective synthesis of D-xylo- and D-lyxo-phytosphingosines from commercially available D-ribo-phytosphingosine is described. Thermolysis of the N-carbonyl protected cyclic sulfate led to an inversion of configuration of the proximal hydroxyl group to give the xylo-isomer, whereas the corresponding bis-sulfonate resulted in an inversion of configuration of the distal hydroxyl group to give the lyxo-isomer. This study allowed the comparison between a cyclic sulfate and a bis-sulfonate in an intramolecular substitution reaction involving a carbonyl oxygen nucleophile.

  5. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide.

    PubMed

    Peng, Qiuming; Guo, Jianxin; Zhang, Qingrui; Xiang, Jianyong; Liu, Baozhong; Zhou, Aiguo; Liu, Riping; Tian, Yongjun

    2014-03-19

    The functional groups and site interactions on the surfaces of two-dimensional (2D) layered titanium carbide can be tailored to attain some extraordinary physical properties. Herein a 2D alk-MXene (Ti3C2(OH/ONa)(x)F(2-x)) material, prepared by chemical exfoliation followed by alkalization intercalation, exhibits preferential Pb(II) sorption behavior when competing cations (Ca(II)/Mg(II)) coexisted at high levels. Kinetic tests show that the sorption equilibrium is achieved in as short a time as 120 s. Attractively, the alk-MXene presents efficient Pb(II) uptake performance with the applied sorption capacities of 4500 kg water per alk-MXene, and the effluent Pb(II) contents are below the drinking water standard recommended by the World Health Organization (10 μg/L). Experimental and computational studies suggest that the sorption behavior is related to the hydroxyl groups in activated Ti sites, where Pb(II) ion exchange is facilitated by the formation of a hexagonal potential trap.

  6. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  7. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2017-04-01

    A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.

  8. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  9. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  10. Role of hydroxyl groups on the stability and catalytic activity of Au clusters on rutile surface

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydroxyls are present as surface terminations of transition metal oxides under ambient conditions and may modify the properties of supported catalysts. We perform first-principles density functional theory calculations to investigate the role of hydroxyls on the catalytic activity of supported gold clusters on TiO{sub 2} (rutile). We find that they have a long-range effect increasing the adhesion of gold clusters on rutile. While hydroxyls make one gold atom more electronegative, a more complex charge-transfer scenario is observed on larger clusters which are important for catalytic applications. This enhances the molecular adsorption and coadsorption energies of CO and O{sub 2}, thereby increasing the catalytic activity of gold clusters for CO oxidation, consistent with reported experiments. Hydroxyls at the interface between gold and rutile surface are most important to this process, even when not directly bound to gold. As such, accurate models of catalytic processes on gold and other catalysts should include the effect of surface hydroxyls.

  11. Anaerobic Activation of p-Cymene in Denitrifying Betaproteobacteria: Methyl Group Hydroxylation versus Addition to Fumarate

    PubMed Central

    Strijkstra, Annemieke; Trautwein, Kathleen; Jarling, René; Wöhlbrand, Lars; Dörries, Marvin; Reinhardt, Richard; Drozdowska, Marta; Golding, Bernard T.; Wilkes, Heinz

    2014-01-01

    The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA. PMID:25261521

  12. Smart materials behavior in phosphates: Role of hydroxyl groups and relevance to antiwear films

    NASA Astrophysics Data System (ADS)

    Shakhvorostov, Dmitry; Müser, Martin H.; Song, Yang; Norton, Peter R.

    2009-07-01

    The elastic properties of materials under high pressure are relevant to the understanding and performance of many systems of current interest, for example, in geology and tribology. Of particular interest is the origin of the dramatic increase in modulus with increasing pressure, a response which is also called "smart materials behavior." In this context, simple phosphate-containing materials have been studied experimentally and theoretically, and the origins of this behavior have been associated with factors such as coordination of the cations and changes in the degree of polymerization and hydrogenation of the phosphate units. In the present paper we extend the former analysis on simple metal phosphate model compounds to so-called thermal films, an intermediate stage in the formation of effective antiwear films. The material was produced by heating a commercial zinc dialkyldithiophosphate (ZDDP), a common antiwear additive in lubricating oils, in poly-α-olefin base oil solutions to 150 °C, a process known to produce the thermal films. Its structure and equation of state were studied by means of x-ray diffraction and IR synchrotron radiation techniques during compression up to 25 GPa in a diamond anvil cell as well as during the subsequent decompression. As is the case for the simple metal phosphates, we find that the thermal films are relatively soft at low pressures but stiffen rapidly and ultimately amorphize irreversibly at high pressure. However, in addition to phase transformations involving cation sites occurring in the metal phosphates studied previously, thermal films undergo displacive transitions associated with instabilities of the hydroxyl groups. These results may imply that ZDDP ligands and those of the transformed materials not only affect ZDDP decomposition rate in engines but also the mechanical properties of the resulting antiwear films.

  13. Smart materials behavior in phosphates: role of hydroxyl groups and relevance to antiwear films.

    PubMed

    Shakhvorostov, Dmitry; Müser, Martin H; Song, Yang; Norton, Peter R

    2009-07-28

    The elastic properties of materials under high pressure are relevant to the understanding and performance of many systems of current interest, for example, in geology and tribology. Of particular interest is the origin of the dramatic increase in modulus with increasing pressure, a response which is also called "smart materials behavior." In this context, simple phosphate-containing materials have been studied experimentally and theoretically, and the origins of this behavior have been associated with factors such as coordination of the cations and changes in the degree of polymerization and hydrogenation of the phosphate units. In the present paper we extend the former analysis on simple metal phosphate model compounds to so-called thermal films, an intermediate stage in the formation of effective antiwear films. The material was produced by heating a commercial zinc dialkyldithiophosphate (ZDDP), a common antiwear additive in lubricating oils, in poly-alpha-olefin base oil solutions to 150 degrees C, a process known to produce the thermal films. Its structure and equation of state were studied by means of x-ray diffraction and IR synchrotron radiation techniques during compression up to 25 GPa in a diamond anvil cell as well as during the subsequent decompression. As is the case for the simple metal phosphates, we find that the thermal films are relatively soft at low pressures but stiffen rapidly and ultimately amorphize irreversibly at high pressure. However, in addition to phase transformations involving cation sites occurring in the metal phosphates studied previously, thermal films undergo displacive transitions associated with instabilities of the hydroxyl groups. These results may imply that ZDDP ligands and those of the transformed materials not only affect ZDDP decomposition rate in engines but also the mechanical properties of the resulting antiwear films.

  14. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  15. Synthesis and biological activities of NB-506 analogues: Effects of the positions of two hydroxyl groups at the indole rings.

    PubMed

    Ohkubo, M; Nishimura, T; Honma, T; Nishimura, I; Ito, S; Yoshinari, T; Suda, H A; Morishima, H; Nishimura, S

    1999-12-06

    In the course of a study of 6-N-amino-substituted analogues of NB-506 (1), a more potent anticancer drug, J-109,404 (2), in which the formyl group of NB-506 was replaced with a 1,3-dihydroxypropane group, was reported. A study of further modification in the positions of two hydroxyl groups at the indole rings of 2 resulted in the discovery of a 2,10-dihydroxy analogue, J-107,088 (3), which is a promising anticancer agent with a broader therapeutic window than J-109,404.

  16. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram

    2013-06-01

    Preparation of antibacterial polyurethane coatings from novel functional soybean oil was considered in this work. First, epoxidized soybean oil (ESBO) as a low price and widely available renewable resource raw material was subjected to the reaction with aniline using an ionic liquid as a green catalyst. The intermediate phenylamine containing polyol (SAP) was then methylated by reaction with methyl iodide to produce a polyol (QAP) with pendant dimethylphenylammonium iodide groups. To regulate the physical and mechanical properties as well as biological characteristics of final coatings, QAP was mixed with different portions of a similar soybean oil-based polyol (MSP) without quaternary ammonium groups. The mixtures were reacted with isophorone diisocyanate to produce crosslinked polyurethane coatings. Evaluation of viscoelastic properties by DMA method revealed single phase structure with Tg in the range of 50-82°C. Stress-strain analysis of the prepared polyurethanes showed initial modulus, tensile strength, and elongation at break in the ranges of 13-299 MPa, 4.5-13.8 MPa, and 16-109%, respectively. Additionally, the coatings showed good adherence to aluminum and PVC substrates. The solvent extracted samples showed excellent biocompatibility as determined by monitoring L929 fibroblast cells morphology and MTT assay. Meanwhile, very promising antibacterial properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria with bacterial reduction in the range of 83-100% was observed.

  17. Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.

    PubMed

    Murphy, C S; Parker, C J; McCague, R; Jordan, V C

    1991-03-01

    other substitutions produced either estrogenic compounds or less potent antiestrogens. The hydroxyl group appears to be critical to locate the alkyl aminoethoxy side chain in the correct position in the steroid-binding site to block estrogen action. Novel antiestrogens were identified that could have been predicted based upon earlier drug-receptor models for the ER.

  18. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy.

    PubMed

    Namai, Yoshimichi; Matsuoka, Osamu

    2005-12-22

    Structures of surface hydroxyl groups arranged on a reduced TiO2(110) surface that had line oxygen vacancies were studied using noncontact atomic force microscopy (NC-AFM). NC-AFM results revealed that by increasing the density of oxygen vacancies on the TiO2(110) surface, line oxygen vacancies were formed by removal of oxygen atoms in a bridge oxygen row on the TiO2(110) surface. After the TiO2(110) surface with the line oxygen vacancies was exposed to water, the surface showed hydroxyl chain structures that were composed of hydroxyl groups linearly arranged in a form of two rows on the line oxygen vacancies and on a neighboring bridge oxygen row. In-situ NC-AFM measurements of these surfaces exposed to water at room temperature revealed that hydroxyl chain structures were formed at the line oxygen vacancy. Annealing above 500 K was sufficient to remove the hydroxyl chain structures on the TiO2(110) surface and allowed line oxygen vacancies to reappear on the surface. The line oxygen vacancies are active sites for water dissociation. In conclusion, the formation of the hydroxyl chain structure suggests that the surface hydroxyl groups on a TiO2(110) surface can be controlled by preparing oxygen vacancy structures on the surface.

  19. Metallographic analysis of 3000-year-old Kanalski Vrh hoard pendant

    SciTech Connect

    Paulin, Andrej; Spaic, Savo; Zalar, Anton; Orel-Trampuz, Neva

    2003-11-15

    In a Late Bronze Age hoard at Kanalski Vrh in Slovenia, bronze pendants were found among numerous other artifacts. Among them a group of nine pendants of very similar compositions contained higher amounts of antimony, arsenic, nickel, cobalt, and iron, which suggested that speiss was added to bronze. Furthermore, most pendants had a silvery grey surface that differed from the common color of tin bronze, with about 13% Sn. One of the pendants was analysed by light optical and electron microscopy, Auger electron spectroscopy (AES), X-ray diffraction (XRD), and differential thermal analysis (DTA). Analyses revealed that the surface of the pendant was corroded, the copper alpha phase was eaten away, and the remaining eutectoid phase exhibited that silvery grey color. Comparison of chemical composition of the pendant and of compositions of speiss ingots found in the same hoard indicated that speisses could be used as alloying additions in making melts for casting pendants.

  20. Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids.

    PubMed

    Pensado, Alfonso S; Costa Gomes, Margarida F; Canongia Lopes, José N; Malfreyt, Patrice; Pádua, Agílio A H

    2011-08-14

    Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface.

  1. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes.

    PubMed

    Sreekanth, Vedagopuram; Bajaj, Avinash

    2013-10-10

    Interactions of synthetic phospholipids with model membranes determines the drug release capabilities of phospholipid vesicles at diseased sites. We performed 1,6-diphenyl-1,3,5-hexatriene (DPH)-based fluorescence anisotropy, Laurdan-based membrane hydration, and differential scanning calorimetry (DSC) studies to cognize the interactions of three bile acid phospholipids, lithocholic acid-phosphocholine (LCA-PC), deoxycholic acid-phosphocholine (DCA-PC), and cholic acid-phosphocholine (CA-PC) with model membranes. These studies revealed that bile acid phospholipids increases membrane fluidity in DCA-PC > CA-PC > LCA-PC order, indicating that induction of membrane fluidity is contingent on the number and positioning of free hydroxyl groups on bile acids. Similarly, DCA-PC causes maximum membrane perturbations due to the presence of a free hydroxyl group, whereas LCA-PC induces gel phase in membranes due to hydrophobic bile acid acyl chain interactions. These DCA-PC-induced membrane perturbations induce a drastic decrease in phase transition temperature (Tm) as determined by calorimetric studies, whereas doping of LCA-PC causes phase transition broadening without change in Tm. Doping of CA-PC induces membrane perturbations and membrane hydration like DCA-PC but sharpening of phase transition at higher doping suggests self-association of CA-PC molecules. Therefore these differential mode of interactions between bile acid phospholipids and model membranes would help in the future for their use in drug delivery.

  2. Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery.

    PubMed

    dos Santos, Jose-Fernando Rosa; Alvarez-Lorenzo, Carmen; Silva, Maite; Balsa, Luis; Couceiro, Jose; Torres-Labandeira, Juan-Jose; Concheiro, Angel

    2009-03-01

    The aim of this work was to develop acrylic hydrogels with high proportions of cyclodextrins maintaining the mechanical properties and the biocompatibility of the starting hydrogels, but notably improving their ability to load drugs and to control their release rate. Poly(hydroxyethylmethacrylate) hydrogels were prepared by copolymerization with glycidyl methacrylate (GMA) at various proportions and then beta-cyclodextrin (betaCD) was grafted to the network by reaction with the glycidyl groups under mild conditions. This led to networks in which the betaCDs form no part of the structural chains but they are hanging on 2-3 ether bonds through the hydroxyl groups. The pendant betaCDs did not modify the light transmittance, glass transition temperature, swelling degree, viscoelasticity, oxygen permeability, or surface contact angle of the hydrogels, but decreased their friction coefficient by 50% and improved diclofenac loading by 1300% and enhanced drug affinity 15-fold. The hydrogels were able to prevent drug leakage to a common conservation liquid for soft contact lenses (SCLs) and to sustain drug delivery in lacrimal fluid for two weeks. To summarize, the hydrogels with pendant betaCDs are particularly useful for the development of cytocompatible medicated implants or biomedical devices, such as drug-loaded SCLs.

  3. Fluoride removal mechanism of bayerite/boehmite nanocomposites: roles of the surface hydroxyl groups and the nitrate anions.

    PubMed

    Jia, Yong; Zhu, Bai-Sheng; Jin, Zhen; Sun, Bai; Luo, Tao; Yu, Xin-Yao; Kong, Ling-Tao; Liu, Jin-Huai

    2015-02-15

    Three-dimensional feather like bayerite/boehmite nanocomposites were synthesized by a facile one-pot hydrothermal method. The obtained nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The removal properties toward fluoride were investigated, including adsorption kinetics, adsorption isotherm, and influences of pH and coexisting anions. The maximal adsorption capacity was 56.80 mg g(-1) at pH 7.0, which is favorable compared to those reported in the literature using other adsorbents. The coexisting of sulfate and bicarbonate inhibited the fluoride removal especially at high concentrations. Furthermore, the removal mechanism was revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results suggest that both of the surface hydroxyl groups and the nitrate anions were participated in the ion-exchange process.

  4. Highly Active Supported Pt Nanocatalysts Synthesized by Alcohol Reduction towards Hydrogenation of Cinnamaldehyde: Synergy of Metal Valence and Hydroxyl Groups.

    PubMed

    Wang, Yanyan; He, Wanhong; Wang, Liren; Yang, Junjiao; Xiang, Xu; Zhang, Bing; Li, Feng

    2015-07-01

    The hydrogenation of α,β-unsaturated aldehydes to allylic alcohols or saturated aldehydes provides a typical example to study the catalytic effect on structure-sensitive reactions. In this work, supported platinum nanocatalysts over hydrotalcite were synthesized by an alcohol reduction method. The Pt catalyst prepared by the reduction with a polyol (ethylene glycol) outperforms those prepared with ethanol and methanol in the hydrogenation of cinnamaldehyde. The selectivity towards the C=O bond is the highest over the former, although its mean size of Pt particles is the smallest. The hydroxyl groups on hydrotalcite could act as an internally accessible promoter to enhance the selectivity towards the C=O bond. The optimal Pt catalyst showed a high activity with an initial turnover frequency (TOF) of 2.314 s(-1). This work unveils the synergic effect of metal valence and in situ promoter on the chemoselective hydrogenation, which could open up a new direction in designing hydrogenation catalysts.

  5. Influence of Hydroxyl Group Position and Temperature on Thermophysical Properties of Tetraalkylammonium Hydroxide Ionic Liquids with Alcohols

    PubMed Central

    Attri, Pankaj; Baik, Ku Youn.; Venkatesu, Pannuru; Kim, In Tae; Choi, Eun Ha

    2014-01-01

    In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15–313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (VE) and the deviation in isentropic compressibility (Δκs) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich–Kister polynomial equation. It was observed that for all studied systems, the VE and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7. PMID:24489741

  6. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups.

    PubMed

    Salian, Sumantha; Matt, Tanja; Akbergenov, Rashid; Harish, Shinde; Meyer, Martin; Duscha, Stefan; Shcherbakov, Dmitri; Bernet, Bruno B; Vasella, Andrea; Westhof, Eric; Böttger, Erik C

    2012-12-01

    The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.

  7. Stabilization of hydroxyl-group-terminated SERS-marker molecules on microAg particles by silanization.

    PubMed

    Xia, Lixin; Kim, Nam Hoon; Kim, Kwan

    2007-02-01

    Micrometer-sized Ag (microAg) powders are very efficient substrates for both the infrared and Raman spectroscopic characterization of molecular adsorbates assembled on silver. In particular, the Raman spectrum of organic monolayers on microAg powders is a surface-enhanced Raman scattering (SERS) spectrum. To use microAg powders as a core material for constructing molecular sensing/recognition units operating via SERS, it is first necessary to stabilize the SERS-marker molecules that are directly in contact with the microAg powders. One promising strategy is the fabrication of silica shells onto SERS-marker molecules, and herein we demonstrate its feasibility by choosing 4-mercaptophenol (4-MPH) as a model SERS-marker molecule. Due to the presence of the hydroxyl group of 4-MPH, silica was readily deposited onto microAg particles by the base-catalyzed hydrolysis of tetraethyl orthosilicate, and its subsequent condensation, to form a cagelike structure. The formation of silica shells was confirmed with infrared, Raman, and X-ray photoelectron spectroscopy, coupled with field emission scanning electron microscopy. We were able to tune the thickness of silica shells simply by varying the silanization reaction time.

  8. Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups.

    PubMed

    Sakai, Shinji; Khanmohammadi, Mehdi; Khoshfetrat, Ali Baradar; Taya, Masahito

    2014-10-13

    Horseradish peroxidase-catalyzed cross-linking was applied to prepare hydrogels from aqueous solutions containing chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups (denoted as Ph-chitosan and Ph-PVA, respectively). Comparing the hydrogels prepared from the solution of 1.0% (w/v) Ph-chitosan and 3.0% (w/v) Ph-PVA and that of 3.0% (w/v) Ph-chitosan and 1.0% (w/v) Ph-PVA, the gelation time of the former hydrogel was 47 s, while was 10s longer than that of the latter one. The breaking point for the former hydrogel under stretching (114% strain) was approximately twice larger than that for the latter one. The swelling ratio of the former hydrogel in saline was about half of the latter one. Fibroblastic cells did not adhere on the former hydrogel but adhered and spread on the latter one. The growth of Escherichia coli cells was fully suppressed on the latter hydrogel during 48 h cultivation.

  9. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups.

    PubMed

    Szili, Endre J; Kumar, Sunil; Smart, Roger St C; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H

    2008-07-15

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO(2), showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups.

  10. Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups.

    PubMed

    Liu, Dong; Yu, Wenbin; Deng, Liangliang; Yuan, Weiwei; Ma, Lingya; Yuan, Peng; Du, Peixin; He, Hongping

    2016-01-01

    The structural incorporation of aluminium (Al) into diatomite is investigated by preparing several Al-diatomite composites by loading an Al precursor, hydroxyl aluminum polymer (Al13), onto the surface of diatomite and heating at various temperatures. The results indicate that Al was incorporated and implanted into the structure of diatomite by the condensation reaction of the hydroxyl groups of Al13 and diatomite, and the Si-O-Al(OH) groups were formed during the condensation reaction. Al incorporation by the condensation reaction of hydroxyl groups of Al13 with single silanols of diatomite occurred more readily than that with geminal silanols. The Al incorporation increased solid acidity of diatomite after Al incorporation. The acidity improvement was various for different types of acid sites, depending on the preparation temperature of the Al-incorporated diatomite. Both Brønsted and Lewis acid sites increased greatly after heating at 250 and 350 °C, but only L acid sites significantly improved after heating at 500 °C. These results demonstrate that the structural incorporation of Al(3+) ions into diatomite can occur by the condensation reaction of the hydroxyl groups of the Al precursors and diatomite. Moreover, the rich solid acid sites of Al-incorporated diatomite show its promising application as a solid acid catalyst.

  11. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    PubMed

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the

  12. Synthesis of Air-Stable Cyclopentadienyl Fe(CO)2 (Fp) Polymers by a Host-Guest Interaction of Cyclodextrin with Air-Sensitive Fp Pendant Groups.

    PubMed

    Zhou, Na; Peng, Liao; Salgado, Shehan; Yuan, Jinying; Wang, Xiaosong

    2017-03-13

    Host-guest chemistry is used to address the challenge of the synthesis of air-stable polymers containing air-sensitive metal complexes. The complexation of the CpFe(CO)2 (Fp) pendent group with cyclodextrin (CD) molecules created air-stable poly(Fp-methylstyrene) P(CD/FpMSt). This CD complexation resulted in dimerization of the adjacent Fp groups, which was characterized by NMR, FTIR, and cyclic voltammetry (CV) analyses. P(CD/FpMSt) was soluble in DMSO and remained stable even the solution was exposed to air for months. The host-guest chemistry accounted for the improved stability, because the Fp groups decomposed upon removal of the CD molecules using competing guest molecules. The CD-complexed polymer showed light-trigged properties, including CO release and antimicrobial activity. Host-guest chemistry of air-sensitive organometallic complexes is therefore a promising technique that can be used to broaden the scope of metal-containing polymers (MCPs) with processable novel functions.

  13. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).

    PubMed

    Zhang, J S; Stanforth, R S; Pehkonen, S O

    2007-02-01

    Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but

  14. Oligo(FcDC-co-CholDEA) with ferrocene in the main chain and cholesterol as a pendant group-preparation and unusual properties.

    PubMed

    Yan, Junlin; Liu, Jing; Sun, Yuanhui; Jing, Ping; He, Panli; Gao, Di; Fang, Yu

    2010-10-21

    With ever-increasing need for thin, flexible, and functional materials in electrochemical systems, various techniques have been explored for creating materials used in fuel cells, batteries, electrochromic devices, solar cells, and sensors. In the present study, a novel ferrocene (Fc) and cholesterol (Chol)-containing oligomer, oligo(FcDC-co-CholDEA), was specially designed and prepared by putting Fc in the main chain and Chol as a side group. MALDI-TOF MS and freezing point depression measurements revealed that in average each oligomer contains three Fc units and three Chol units. Cyclic voltammetric measurements revealed that the oligomer displays superior electrochemical stability if compared with other Fc derivatives containing only one Fc unit and one or two Chol unit and with poly(ferrocenylsilane) with Fc in the main chain. In particular, the Fc-containing oligomer possesses an unusual oxidation center, of which the oxidation potential could be as high as 1.81 V. The oligomer is also superior in self-assembly, as demonstrated by forming an LB film of layered structures. Furthermore, supramolecular films with high mechanical strength in the wet state can be prepared by employing a simple solution casting method. This finding demonstrates that self-assembly is a simple but effective way to create films of potential uses in real-life applications provided proper building blocks are designed and employed.

  15. Phosphorus-nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups

    NASA Astrophysics Data System (ADS)

    Tümer, Yasemin; Asmafiliz, Nuran; Kılıç, Zeynel; Hökelek, Tuncer; Yasemin Koç, L.; Açık, Leyla; Yola, Mehmet Lütfi; Solak, Ali Osman; Öner, Yağmur; Dündar, Devrim; Yavuz, Makbule

    2013-10-01

    The gradually Cl replacement reactions of spirocyclic mono (1 and 2) and bisferrocenyl cyclotriphosphazenes (3-5) with the potassium salt of 4-hydroxy-3-methoxybenzaldehyde (potassium vanillinate) gave mono (1a-5a), geminal (gem-1b-5b), non-geminal (cis-1b, cis-5b and trans-2b-5b), tri (1c-5c) and tetra-substituted phosphazenes (1d-5d). Some phosphazenes have stereogenic P-center(s). The chirality of 4c was verified using chiral HPLC column. Electrochemical behaviors were influenced only by the number of ferrocene groups, but not the length of the amine chains and the substituent(s). The structures of the new phosphazenes were determined by FTIR, MS, 1H, 13C and 31P NMR, HSQC and HMBC spectral data. The solid-state structures of cis-1b and 4d were examined by single crystal X-ray diffraction techniques. The twelve phosphazene derivatives were screened for antimicrobial activity and the compounds 5a, cis-1b and 2c exhibited the highest antibacterial activity against G(+) and G(-) bacteria. In addition, it was found that overall gem-1b inhibited the growth of Mycobacterium tuberculosis. The compounds 1d, 2d and 4d were tested in HeLa cancer cell lines. Among these compounds, 2d had cytotoxic effect on HeLa cell in the first 48 h. Moreover, interactions between compounds 2a, gem-1b, gem-2b, cis-1b, 2c, 3c, 4c, 5c, 1d, 2d and 4d, and pBR322 plasmid DNA were investigated.

  16. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhao, Jinjin; Liu, Jinxi; Wei, Liyu; Liu, Zhenghao; Guan, Lihao; Cao, Guozhong

    2017-01-01

    Perovskite solar cells have advanced rapid in the last few years, however the thermal instability of perovskite film on ZnO nanorods (NRs) remains a big challenge limiting its commercialization. The present work demonstrated effective suppression of the decomposition of CH3NH3PbI3 perovskite through inserting a thin tin oxide (SnO2) passivation layer between ZnO NRs and perovskite films. Although X-ray photoelectron spectroscopy (XPS) results showed no distinct difference in the amount of hydroxyl groups and oxygen vacancies on the surface of ZnO NRs and ZnO@SnO2 NRs, Raman spectra suggested the hydroxyl groups might be trapped in oxygen vacancies on SnO2 surface, preventing the decomposition of CH3NH3PbI3 perovskite through reacting with the hydroxyl groups. The power conversion efficiency of perovskite solar cells was significantly increased from 6.92% to 12.17% and became hysteresis-free by applying SnO2 passivating layer between perovskite and ZnO layers.

  17. Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms.

    PubMed

    Pavelko, Roman G; Daly, Helen; Hardacre, Christopher; Vasiliev, Alexey A; Llobet, Eduard

    2010-03-20

    DRIFTS, TGA and resistance measurements have been used to study the mechanism of water and hydrogen interaction accompanied by a resistance change (sensor signal) of blank and Pd doped SnO(2). It was found that a highly hydroxylated surface of blank SnO(2) reacts with gases through bridging hydroxyl groups, whereas the Pd doped materials interact with hydrogen and water through bridging oxygen. In the case of blank SnO(2) the sensor signal maximum towards H(2) in dry air (R(0)/R(g)) is observed at approximately 345 degrees C, and towards water, at approximately 180 degrees C, which results in high selectivity to hydrogen in the presence of water vapors (minor humidity effect). In contrast, on doping with Pd the response to hydrogen in dry air and to water occurred in the same temperature region (ca. 140 degrees C) leading to low selectivity with a high effect of humidity. An increase in water concentration in the gas phase changes the hydrogen interaction mechanism of Pd doped materials, while that of blank SnO(2) is unchanged. The interaction of hydrogen with the catalyst doped SnO(2) occurs predominantly through hydroxyl groups when the volumetric concentration of water in the gas phase is higher than that of H(2) by a factor of 1000.

  18. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes.

    PubMed

    Olshyk, Viktoriya N; Melsitova, Inna V; Yurkova, Irina L

    2014-01-01

    Under condition of ROS formation in lipid membranes, free radical reactions can proceed in both hydrophobic (peroxidation of lipids, POL) and polar (free radical fragmentation) parts of the bilayer. Free-radical fragmentation is typical for the lipids containing a hydroxyl group in β-position with respect to an ester or amide bond. The present study has been undertaken to investigate free-radical transformations of phospholipids in model membranes containing lipids able to undergo fragmentation in their polar part. Liposomes from egg yolk lecithin containing saturated or monounsaturated glycero- and sphingolipids were subjected to the action of an HO* - generating system - Fe(2+)(Cu(2+))/H2O2/Asc, and the POL products were investigated. In parallel with this, the effects of monoacylglycerols and scavengers of reactive species on Fe(2+)(Cu(2+))/H2O2/Asc - mediated free-radical fragmentation of phosphatidylglycerols were studied. Hydroxyl-containing sphingolipids and glycerolipids, which undergo free-radical fragmentation under such conditions, manifested antioxidant properties in the model membranes. In the absence of HO groups in the lipid structure, the effect was either pro-oxidant or neutral. Monoacylglycerols slowed down the rate of both peroxidation in the hydrophobic part and free-radical fragmentation in the hydrophilic part of phospholipid membrane. Scavengers of reactive species inhibited the fragmentation of phosphatidylglycerol substantially. Thus, the ability of hydroxyl-containing lipids to undergo free-radical fragmentation in polar part apparently makes a substantial contribution to the mechanism of their protector action.

  19. The presence of a hydroxyl group at the C-1 atom of the transketolase substrate molecule is necessary for the enzyme to perform the transferase reaction.

    PubMed

    Meshalkina, L E; Neef, H; Tjaglo, M V; Schellenberger, A; Kochetov, G A

    1995-11-20

    Transketolase catalyzes the transfer of an aldehyde residue from keto sugars to aldo sugars. The intermediate product is dihydroxyethylthiamine pyrophosphate (DHETPP). In the absence of an acceptor substrate, the reaction is stopped at this stage and DHETPP does not undergo subsequent transformations. Pyruvate decarboxylase catalyses pyruvate decarboxylation to yield free aldehyde. The intermediate product is hydroxyethylthiamine pyrophosphate (HETPP). It differs from DHETPP only in that it has no hydroxyl at the C-2 atom of the aldehyde residue. We have shown that transketolase can bind HETPP and split the aldehyde residue from it. This fact suggests that the path of the reaction is determined by the absence (in HETPP) or presence (in DHETPP) of a hydroxyl group. In the former case the reaction will yield free aldehyde, in the latter the aldehyde residue will be transferred onto an acceptor substrate.

  20. Numerical simulations of pendant droplets

    NASA Astrophysics Data System (ADS)

    Pena, Carlos; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir; Shin, Seungwon

    2015-11-01

    We simulate the evolution of a three-dimensional pendant droplet through pinch-off using a new parallel two-phase flow solver called BLUE. The parallelization of the code is based on the technique of algebraic domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture and coalescence of fluid interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  1. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups.

    PubMed

    Zhang, Lei; Cole, Jacqueline M; Dai, Chencheng

    2014-05-28

    The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 cluster model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.

  2. Role of diaxial versus diequatorial hydroxyl groups in the tumorigenic activity of a benzo[a]pyrene bay-region diol epoxide.

    PubMed Central

    Chang, R L; Wood, A W; Conney, A H; Yagi, H; Sayer, J M; Thakker, D R; Jerina, D M; Levin, W

    1987-01-01

    Tumorigenic activities of the (7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro derivatives of benzo[a]pyrene [(+)-B[a]P diol epoxide-2] and 6-fluorobenzo[a]pyrene (6-FB[a]P diol epoxide-2) were evaluated in newborn CD-1 mice. A total dose of 14 nmol of either diol epoxide was administered to preweanling mice, and tumorigenic activity was determined when the mice were 32 to 36 weeks old. At the termination of the study, 13% of solvent-treated control mice had developed lung tumors with an average of 0.19 tumor per mouse. No other tumors were observed in control animals. (+)-B[a]P diol epoxide-2 induced pulmonary tumors in 60% of the mice with an average of 1.9 tumors per mouse, and 14% of the male mice developed hepatic tumors with an average of 0.18 tumor per mouse. In contrast, 6-FB[a]P diol epoxide-2 had no significant tumorigenic activity at the 14-nmol dose. Although both bay-region diol epoxides have the same absolute configuration, (7R,8S,9S,10R), the hydroxyl groups of (+)-B[a]P diol epoxide-2 prefer the pseudoequatorial conformation whereas the hydroxyl groups of 6-FB[a]P diol epoxide-2 prefer the pseudoaxial conformation. The tumorigenicity results reported here are the first direct demonstration that conformation of the hydroxyl groups in a bay-region diol epoxide, in addition to the documented effect of absolute configuration, is an important determinant in the tumorigenic activity of these ultimate carcinogens. PMID:3479808

  3. Selective Aromatic Hydroxylation with Dioxygen and Simple Copper Imine Complexes.

    PubMed

    Becker, Jonathan; Gupta, Puneet; Angersbach, Friedrich; Tuczek, Felix; Näther, Christian; Holthausen, Max C; Schindler, Siegfried

    2015-08-10

    The formation of a bis(μ-oxido)dicopper complex with the ligand 2-(diethylaminoethyl)-6-phenylpyridine (PPN) and its subsequent hydroxylation of the pendant phenyl group (studied earlier by Holland et al., Angew. Chem. Int. Ed.- 1999, 38, 1139-1142) has been reinvestigated to gain a better understanding of such systems in view of the development of new synthetic applications. To this end, we prepared a simple copper imine complex system that also affords selective o-hydroxylation of aromatic aldehydes by using dioxygen as the oxidant: Applying the ligand N'-benzylidene-N,N-diethylethylenediamine (BDED), salicylaldehyde was prepared in good yields and we show that this reaction also occurs through an intermediate bis-μ-oxido copper complex. The underlying reaction mechanism for the PPN-supported complex was studied at the BLYP-D/TZVP level of density functional theory and the results for representative stationary points along reaction paths of the BDED-supported complex reveal a closely related mechanistic scenario. The results demonstrate a new facile synthetic way to introduce OH groups into aromatic aldehydes.

  4. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  5. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups.

  6. Residues of the human nuclear vitamin D receptor that form hydrogen bonding interactions with the three hydroxyl groups of 1alpha,25-dihydroxyvitamin D3.

    PubMed

    Reddy, Madhuri D; Stoynova, Ludmilla; Acevedo, Alejandra; Collins, Elaine D

    2007-03-01

    Most of the biological effects of 1,25-dihydroxyvitamin D(3) (hormone D) are mediated through the nuclear vitamin D receptor (VDR). Hormone binding induces conformational changes in VDR that enable the receptor to activate gene transcription. It is known that residues S237 and R274 form hydrogen bonds with the 1-hydroxyl group of hormone D, while residues Y143 and S278, and residues H305 and H397 form hydrogen bonds with the 3-hydroxyl and the 25-hydroxyl groups of the hormone. A series of VDR mutations were constructed (S237A, R274A, R274Q, Y143F, Y143A, S278A, H305A, and H397F; double mutants: S237A/R274A, Y143F/S278A, Y143A/S278A, and H305A/H397F). The relative binding affinities of the wild-type and variant VDRs were assessed. All of the mutants except H397F resulted in lower binding affinity compared to wild-type VDR. Binding to hormone was barely detectable in Y143F, H305A, and H305A/H397F mutants, and undetectable in mutants R274A, R274Q, Y143A, S237A/R274A, and Y143A/S278A, indicating the importance of these residues. Ability to activate gene transcription was also assessed. All of the VDR mutants, except the single mutant S278A, required higher doses of hormone D for half-maximal response. Defining the role of hormone D-VDR binding will lead to a better understanding of the vitamin D signal transduction pathway.

  7. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE PAGES

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; ...

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is themore » active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  8. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration.

    PubMed

    Natarajan, Thillai Sivakumar; Bajaj, Hari C; Tayade, Rajesh J

    2014-11-01

    The present manuscript focus on the synthesis of surface hydroxyl group enriched titanium dioxide nanotube (TNT) by hydrothermal method for preferential adsorption of methylene blue (MB) dye. The mixture of methylene blue (MB) and rhodamine B (RhB) dye was used to study the preferential adsorption nature of TNT. The synthesized TNT were characterized by various techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, and ammonia-temperature programmed desorption (NH3-TPD) analysis. Result demonstrated that enhancement in the surface area of TNT and higher number of hydroxyl group on the surface of TNT. In the binary mixture, the adsorption of MB dye was 12.9 times higher as compared to RhB dye, which clearly indicated the preferential adsorption of MB dye on TNT surface. The preferential interaction of MB on TNT is due to the electrostatic interaction between the cationic MB and negatively charged TNT surface. The preferential adsorption of MB dye was studied by applying Langmuir, Freundlich and Sips isotherm; pseudo-first and second-order kinetic model. Furthermore, the regeneration of dye adsorbed TNT was carried out by eco-friendly photocatalytic process under the irradiation of ultraviolet light.

  9. Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Mohammadi Ziarani, Ghodsi

    2015-01-01

    In this study, the photocatalytic efficiency of anatase-type TiO2 nanoparticles synthesized using the sol-gel low-temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV-light-assisted photo and NaBH4 -assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed-bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH-modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH-modified Cu/TiO2 nanoparticles.

  10. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling.

    PubMed

    Pajchel, Lukasz; Kolodziejski, Waclaw

    2013-01-01

    A series of nanocrystalline calcium hydroxyapatites was prepared by dry milling and characterized using proton and (31)P MAS NMR, TEM, and TGA methods. The samples contained stubby rod-shaped crystals, which length and width varied in the 130-30 and 95-20 nm ranges, respectively. It was confirmed that concentration of structural hydroxyl groups in nanocrystalline apatites decreases with the decreasing crystal size. In the series of the studied apatites, the decrease was from 86 to ca. 50 % in reference to stoichiometric apatite. Water was found in the surface hydrated layer and in the c-axis channels, in which compartments existed as adsorbed and structural, respectively. Molecules of the adsorbed water were capable of moving from the crystal surface into the lattice c-axis channels of apatite. This process introduced considerable structural disorder within and around those channels and reduced the content of the structural hydroxyl groups, particularly in the region underneath the apatite crystal surface.

  11. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    SciTech Connect

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; Senanayake, Sanjaya D.

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.

  12. Pyridine derivative covalently bonded on chitosan pendant chains for textile dye removal.

    PubMed

    Oliveira, Cintia S; Airoldi, Claudio

    2014-02-15

    Chitosan was chemically modified through a sequence of four reactions with immobilized 2-aminomethylpyridine at the final stage, after prior protection of amino group with benzaldehyde. The characterized biopolymers containing free amino and hydroxyl active centers on the biopolymeric structure and pyridinic nitrogen on pendant chains showed combined hydrophobic properties that can potentially favor interactions. Reactive Yellow GR and Blue RN dyes gave the maximum sorption capacities of 2.13 and 1.61 mmol g(-1), which were performed as functions of contact time, concentration and dye structure. However, biopolymer/dye interactions are governed by effective hydrogen bond and van der Waals forces for such structural adjustments. The data obtained from the concentration isotherm were applied to non-linear regressions of the Langmuir, the Freundlich and the Sips models, with the best fit to the latter model. The kinetic data was fitted to non-linear regression of pseudo-second-order, indicating that the sorption phenomena are most likely to be controlled by chemisorption process.

  13. Proton-bridge motions in amine conjugate acid ions having intramolecular hydrogen bonds to hydroxyl and amine groups.

    PubMed

    Ung, Hou U; Moehlig, Aaron R; Khodagholian, Sevana; Berden, Giel; Oomens, Jos; Morton, Thomas Hellman

    2013-02-14

    Vibrational spectra of two gaseous cations having NH···O intramolecular ionic hydrogen bonds and of nine protonated di- and polyamines having NH···N internal proton bridges, recorded using IR Multiple Photon Dissociation (IRMPD) of mass-selected ions, are reported. The band positions of hydroxyl stretching frequencies do not shift when a protonated amine becomes hydrogen bonded to oxygen. In three protonated diamines, lower frequency bands (550-650 cm(-1)) disappear upon isotopic substitution, as well as several bands in the 1100-1350 cm(-1) region. By treating the internal proton bridge as a linear triatomic, theory assigns the lowest frequency bands to N-H···N asymmetric stretches. A 2-dimensional model, based on quantization on a surface fit to points calculated using a double hybrid functional B2-P3LYP/cc-pVTZ//B3LYP/6-31G**, predicts their positions accurately. In at least one case, the conjugate acid of 1,5-cis-bis(dimethylamino)cyclooctane, a N-H···N bend shows up in the domain predicted by DFT normal mode calculations, but in most other cases the observed bands have frequencies 20-25% lower than expected for bending vibrations. Protonated Me(2)NCH(2)CMe(2)CH(2)CH(2)CH(2)NMe(2) shows three well-resolved bands at 620, 1200, and 1320 cm(-1), of which the lowest can be assigned to the asymmetric stretch. Other ions observed include doubly protonated 1,2,4,5-(Me(2)NCH(2))(4)-benzene and 1,2,4-(Me(2)NCH(2))(3)-benzene-5-CH(2)OH. Apart from the aforementioned rigid ion derived from the alicyclic diamine, the other ions enjoy greater conformational mobility, and coupling to low-frequency C-C bond torsions may account for the shift of vibrations with N-H···N character to lower frequencies. Low-barrier hydrogen bonding (LBHB) accounts for the fact that N-H···N asymmetric stretching vibrations of near linear proton bridges occur at frequencies below 650 cm(-1).

  14. Effect of hydroxyl and amino groups on electrochemiluminescence activity of tertiary amines at low tris(2,2'-bipyridyl)ruthenium(II) concentrations.

    PubMed

    Han, Shuang; Niu, Wenxin; Li, Haijuan; Hu, Lianzhe; Yuan, Yali; Xu, Guobao

    2010-04-15

    ECL of several amines containing different numbers of hydroxyl and amino groups was investigated. N-butyldiethanolamine is found to be more effective than 2-(dibutylamino)ethanol at gold and platinum electrodes, and is the most effective coreactant reported until now. Surprisingly, ECL intensities of monoamines, such as 2-(dibutylamino)ethanol and N-butyldiethanolamine, are much stronger than that of diamines including N,N,N',N'-tetrakis-(2-hydroxyethyl)-ethylenediamine and N,N,N',N'-tetrakis-(2-hydroxypropyl)ethlenediamine. The striking contrast between ECL signals of the investigated monoamines and diamines may result from more significant side reactions of diamines, such as the intramolecular side reactions between oxidative amine cation radicals and reductive amine free radicals.

  15. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    NASA Astrophysics Data System (ADS)

    Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2016-12-01

    On the basis of a Langmuir-Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir-Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir-Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  16. The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate

    NASA Astrophysics Data System (ADS)

    Yaghoubi, H.; Dayerizadeh, A.; Han, S.; Mulaj, M.; Gao, W.; Li, X.; Muschol, M.; Ma, S.; Takshi, A.

    2013-12-01

    TiO2 is a prototypical transition metal oxide with physicochemical properties that can be modified more readily through sol-gel synthesis than through other techniques. Herein, we report on the change in the density of the hydroxyl groups on the surface of synthesized surfactant-free TiO2 nanoparticles in water due to varying the pH (7.3, 8.3, 9.3 and 10.3) of the peroxotitanium complex, i.e. the amorphous sol, prior to refluxing. This resulted in colloidal solutions with differing crystallinity, nanoparticle size, optical indirect bandgaps and photocatalytic activity. It was shown that increasing the density of hydroxyl groups on TiO2 particles coupled with low-temperature annealing (90 °C) induced an anatase to rutile transformation. Increasing the pH of the peroxotitanium complex interrupted the formation of anatase phase in crystalline sol, as evidenced by intensity increases of the Raman bands at ˜822 (Ti-O-H) and 906 cm-1 (vibrational Ti-O-H) and an intensity decrease of the band at 150 cm-1 (anatase photonic Eg). Films prepared from higher pH suspensions showed lower roughness. The reaction rate constants for photo-induced self-cleaning activity of TiO2 films prepared from colloidal solutions at pH 7.3, 8.3, 9.3 and 10.3 were estimated at 0.017 s-1, 0.014 s-1, 0.007 s-1 and 0.006 s-1, respectively.

  17. Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald.

    PubMed

    de Donato, Philippe; Cheilletz, Alain; Barres, Odile; Yvon, Jacques

    2004-05-01

    An infrared (IR) study of natural deuteration is conducted on minerals containing hydroxyl groups (talc and kaolinite) and channel-water-bearing minerals (beryl and emerald). In talc, the OD valence vibration is located at 2710 cm(-1), corresponding to OD groups surrounded by 3 Mg atoms. In kaolinite, the OD valence vibrations are located at 2671 cm(-1) (inner OD group), 2712, 2706, and 2700 cm(-1) (three inner-surface OD groups). In beryl and emerald, natural deuteration of channel water is observed for the first time by infrared microspectroscopy. In beryl from Minas Gerais (Brazil), the OD profiles are characterized by four bands at 2735, 2686, 2672, and 2641 cm(-1). In emeralds from Colombia and Brazil, the OD profiles are characterized by five or four bands, respectively, at 2816, 2737, 2685, 2673, and 2641 cm(-1) (Colombia) and 2730, 2684, 2672, and 2640 cm(-1) (Brazil). The band at 2816 cm(-1) can be assigned to -OD or OD(-), and bands at 2686-2684, 2673-2672, and 2641-2640 cm(-1) can be assigned to type-I and type-II HOD molecules. The band at 2737-2730 cm(-1) is partially disturbed by combination bands of the mineral. Such OD profiles are different from those obtained by artificial deuteration at higher OD dilution.

  18. Oxidation of amino groups by hydroxyl radicals in relation to the oxidation degree of the alpha-carbon.

    PubMed

    Leitner, N Karpel Vel; Berger, P; Legube, B

    2002-07-15

    Nitrogen organic compounds constitute a large class of aqueous pollutants. These compounds include not only azoic structures, nitrogen heterocycles, and nitrous groups but also amides and amines. This work consisted in studying the OH* induced oxidation of simple primary amines in dilute aqueous solution with special attention to mineralization of the nitrogen group as a function of the nature of the alpha-carbon. H2O2/UV and gamma-irradiation processes were used for the production of OH* radicals, and the molecules studied were one alpha-amino acid i.e., glycine (HOOCCH2NH2), and two primary amides i.e., acetamide (CH3CONH2) and oxamic acid (HOOCCONH2). It was shown that the oxidation of glycine leads to the formation of ammonia, whereas the acetamide molecule is first oxidized into oxamic acid ending in complete mineralization with production of nitrates. Reaction mechanisms are proposed which account for the observed inorganic nitrogen end product depending on the oxidation degree of the carbon atoms of the molecules. It follows that the present study will allow for prediction of the fate of nitrogen resulting from the oxidation of primary amino groups by OH* radicals.

  19. Adsorption and desorption of DNA tuned by hydroxyl groups in graphite oxides-based solid extraction material.

    PubMed

    Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro

    2015-12-01

    The extraction of DNA is the most crucial method used in molecular biology. Up to date silica matrices has been widely applied as solid support for selective DNA adsorption and extraction. However, since adsorption force of SiOH functional groups is much greater than that of desorption force, the DNA extraction efficiency of silica surfaces is limited. In order to increase the DNA extraction yield, a new surface with different functional groups which possess of greater desorption property is required. In this study, we proposed cellulose/graphite oxide (GO) composite as an alternative material for DNA adsorption and extraction. GO/Cellulose composite provides the major adsorption and desorption of DNA by COH, which belongs to alkyl or phenol type of OH functional group. Compared to SiOH, COH is less polarized and reactive, therefore the composite might provide a higher desorption of DNA during the elution process. The GO/cellulose composite were prepared in spherical structure by mixing urea, cellulose, NaOH, Graphite oxide and water. The concentration of GO within the composites were controlled to be 0-4.15 wt.%. The extraction yield of DNA increased with increasing weight percentage of GO. The highest yield was achieved at 4.15 wt.% GO, where the extraction efficiency was reported as 660.4 ng/μl when applying 2M GuHCl as the binding buffer. The absorbance ratios between 260 nm and 280 nm (A260/A280) of the DNA elution was demonstrated as 1.86, indicating the extracted DNA consisted of high purity. The results proved that GO/cellulose composite provides a simple method for selective DNA extraction with high extraction efficiency of pure DNA.

  20. Mechanical vibrations of pendant liquid droplets.

    PubMed

    Temperton, Robert H; Smith, Michael I; Sharp, James S

    2015-07-01

    A simple optical deflection technique was used to monitor the vibrations of microlitre pendant droplets of deuterium oxide, formamide, and 1,1,2,2-tetrabromoethane. Droplets of different volumes of each liquid were suspended from the end of a microlitre pipette and vibrated using a small puff of nitrogen gas. A laser was passed through the droplets and the scattered light was collected using a photodiode. Vibration of the droplets resulted in the motion of the scattered beam and time-dependent intensity variations were recorded using the photodiode. These time-dependent variations were Fourier transformed and the frequencies and widths of the mechanical droplet resonances were extracted. A simple model of vibrations in pendant/sessile drops was used to relate these parameters to the surface tension, density and viscosity of the liquid droplets. The surface tension values obtained from this method were found to be in good agreement with results obtained using the standard pendant drop technique. Damping of capillary waves on pendant drops was shown to be similar to that observed for deep liquid baths and the kinematic viscosities obtained were in agreement with literature values for all three liquids studied.

  1. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work.

    PubMed

    Büttner, Lea; Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2014-06-04

    A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.

  2. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.

    PubMed

    Villota, N; Jm, Lomas; Lm, Camarero

    2017-01-01

    This paper deals with the changes of turbidity that are generated in aqueous solutions of phenol when they are oxidized by using different Fenton technologies. Results revealed that if the Fenton reaction was promoted with UV light, the turbidity that was generated in the water doubled. Alternatively, the use of ultrasonic waves produced an increase in turbidity which initially proceeded slowly, reaching intensities eight times higher than in the conventional Fenton treatment. As well, the turbidity showed a high dependence on pH. It is therefore essential to control acidity throughout the reaction. The maximum turbidity was generated when operating at pH = 2.0, and it slowly decreased with increasing to a value of pH = 3.0, at which the turbidity was the lowest. This result was a consequence of the presence of ferric ions in solution. At pH values greater than 3.5, the turbidity increased almost linearly until at pH = 5.0 reached its maximum intensity. In this range, ferrous ions may generate an additional contribution of radicals that promote the degradation of the phenol species that produce turbidity. Turbidity was enhanced at ratios R = 4.0 mol H2O2/mol C6H6O. This value corresponds to the stoichiometric ratio that leads to the production of turbidity-precursor species. Therefore, muconic acid would be a species that generate high turbidity in solution according to its isomerism. Also, the results revealed that the turbidity is not a parameter to which species contribute additively since interactions may occur among species that would enhance their individual contributions to it. Analyzing the oxidation of phenol degradation intermediates, the results showed that meta-substituted compounds (resorcinol) generate high turbidity in the wastewater. The presence of polar molecules, such as muconic acid, would provide the structural features that are necessary for resorcinol to act as a clip between two carboxylic groups, thus establishing directional

  3. Hydroxyl end groups influence in vibrational and transport properties in polymer/monomer solutions: the PEO/EG case

    NASA Astrophysics Data System (ADS)

    Crupi, V.; Faraone, A.; Majolino, D.; Migliardo, P.; Venuti, V.; Villari, V.

    A study has been made of vibrational properties in ethylene glycol (EG; H(OCH2CH2)OH) and EG monomethyl ether (EGmE; CH3(OCH2CH2)OH) in solution together with poly(ethylene oxide) (PEO; H(OCH2CH2)nOH) at different concentrations, performed by Fourier transform infrared absorbance (FT-IR) spectroscopy. The results ae compared with previous viscometry and photon correlation spectroscopy (PCS) studies, using EG dimethyl ether (EGdE; CH3(OCH2CH2)OCH3) as solvent as well. These homologous systems differ from each other in the number of OH end groups, in particular two for EG, one for EgmE and zero for EGdE. Combining analysis of the vibrational and transport properties of EG, EGmE and EGdE in solution with PEO over a wide range of concentration made it possible to check the quality (good theta or poor) of these three different solvents and the role played by the hydrogen bond in the various solute-solvent interaction mechanisms, resulting in the well known de Gennes scaling law.

  4. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution.

    PubMed

    Zhao, Lei; Sun, Zhizhong; Ma, Jun

    2009-06-01

    Comparative experiments have been performed to investigate the degradation efficiency of nitrobenzene and the removal efficiency of TOC in aqueous solution bythe processes of ceramic honeycomb supported different metals (Fe, Ni, and Zn) catalytic ozonation, indicating that the modification with metals can enhance the activity of ceramic honeycomb for the catalytic ozonation of nitrobenzene, and the loading percentage of metal and the metallicity respectively presents a positive influence on the degradation of nitrobenzene. The degradation efficiency of nitrobenzene is determined by the initiation of hydroxyl radical (*OH) according to a good linear correlation in all the processes of modified ceramic honeycomb catalytic ozonation at the different loading percentages of metals. The modification of ceramic honeycomb with metals results in the conversion of the pH at the point of zero charge (pHpzc) and the evolution of surface groups. Divergence from the conventional phenomenon, the enhancement mechanism of ozone decomposition on the modified ceramic honeycomb with metals is proposed due to the basic attractive forces of electrostatic forces or/and hydrogen bonding. Consequently, a novel relationship between the initiation of *OH and the surface-OH2+ group on the modified catalyst is established based on the synergetic effect between homogeneous and heterogeneous reaction systems.

  5. Oxidation of primary hydroxyl groups in chitooligomer by a laccase-TEMPO system and physico-chemical characterisation of oxidation products.

    PubMed

    Pei, Jicheng; Yin, Yunbei; Shen, Zhenghui; Bu, Xin; Zhang, Fangdong

    2016-01-01

    The aim of this study was to investigate the oxidation of chitooligomer by a laccase-TEMPO system which had not previously been examined. Chitooligomer was treated with laccase and TEMPO in order to evaluate the potential of a laccase-TEMPO system to improve the moisture absorption, moisture retention, and antioxidant abilities of chitooligomer. Chitooligomer was prepared by degradation of high molecular weight chitosan with hydrogen peroxide followed by oxidation using a laccase-TEMPO system. (13)C NMR and carboxylate ion content detection results indicated that the laccase-TEMPO system could selectively oxidise the C6 hydroxyl group of the chitooligomer into carboxyl group; molecular weight distribution changes suggest that the structure of the oxidised product had changed and the molecular size and molecular weight decreased with the molecules in aqueous solution having a compact structure. Oxidation of chitooligomer by a laccase-TEMPO system resulted in a significant improvement in the moisture absorption, moisture retention and antioxidant abilities. The oxidised product has potential application values in the pharmaceutical and cosmetics industries.

  6. Experimental and theoretical study of hydroxyquinolines: hydroxyl group position dependent dipole moment and charge-separation in the photoexcited state leading to fluorescence

    NASA Astrophysics Data System (ADS)

    Singh Mehata, Mohan; Singh, Ajay K.; Sinha, Ravindra Kumar

    2016-12-01

    Optical absorption and fluorescence (FL) spectra of 2-, 6-, 7-, 8-hydroxyquinolines (2-,6-,7- and 8-HQs) have been measured at room temperature in the wide range of solvents of different polarities, dielectric constant and refractive index. The ground state dipole moment (µ g) and excited state dipole moment (µ e) of 2-, 6-, 7- and 8-HQs were obtained using solvatochromic shift (SS) methods and microscopic solvent polarity parameters (MSPP). Change in the dipole moment (Δµ) between the ground and photo-excited states was estimated from SS and MSPP methods. DFT and TDDFT based theoretical calculations were performed for the ground and excited states dipole moments, and for vertical transitions. A significant enhancement in the excited state dipole moment was observed following photo-excitation. The large value of Δµ clearly indicates to the charge-separation in the photo-excited states, which in turn depends on the position of the hydroxyl group in the ring.

  7. Experimental and theoretical study of hydroxyquinolines: hydroxyl group position dependent dipole moment and charge-separation in the photoexcited state leading to fluorescence.

    PubMed

    Mehata, Mohan Singh; Singh, Ajay K; Sinha, Ravindra Kumar

    2016-11-17

    Optical absorption and fluorescence (FL) spectra of 2-, 6-, 7-, 8-hydroxyquinolines (2-,6-,7- and 8-HQs) have been measured at room temperature in the wide range of solvents of different polarities, dielectric constant and refractive index. The ground state dipole moment (µ g) and excited state dipole moment (µ e) of 2-, 6-, 7- and 8-HQs were obtained using solvatochromic shift (SS) methods and microscopic solvent polarity parameters (MSPP). Change in the dipole moment (Δµ) between the ground and photo-excited states was estimated from SS and MSPP methods. DFT and TDDFT based theoretical calculations were performed for the ground and excited states dipole moments, and for vertical transitions. A significant enhancement in the excited state dipole moment was observed following photo-excitation. The large value of Δµ clearly indicates to the charge-separation in the photo-excited states, which in turn depends on the position of the hydroxyl group in the ring.

  8. [PhSiO1.5]8,10,12 as nanoreactors for non-enzymatic introduction of ortho, meta or para-hydroxyl groups to aromatic molecules.

    PubMed

    Bahrami, Mozhgan; Zhang, Xingwen; Ehsani, Morteza; Jahani, Yousef; Laine, Richard M

    2017-03-20

    Traditional electrophilic bromination follows long established "rules": electron-withdrawing substituents cause bromination selective for meta positions, whereas electron-donating substituents favor ortho and para bromination. In contrast, in the [PhSiO1.5]8,10,12 silsesquioxanes, the cages act as bulky, electron withdrawing groups equivalent to CF3; yet bromination under mild conditions, without a catalyst, greatly favors ortho substitution. Surprisingly, ICl iodination without a catalyst favors (>90%) para substitution [p-IC6H4SiO1.5]8,10,12. Finally, nitration and Friedel-Crafts acylation and sulfonylation are highly meta selective, >80%. In principle, the two halogenation formats coupled with the traditional electrophilic reactions provide selective functionalization at each position on the aromatic ring. Furthermore, halogenation serves as a starting point for the synthesis of two structural isomers of practical utility, i.e. in drug prospecting. The o-bromo and p-iodo compounds are easily modified by catalytic cross-coupling to append diverse functional groups. Thereafter, F(-)/H2O2 treatment cleaves the Si-C bonds replacing Si with OH. This represents a rare opportunity to introduce hydroxyl groups to aromatic rings, a process not easily accomplished using traditional organic synthesis methods. The as-produced phenol provides additional opportunities for modification. Each cage can be considered a nanoreactor generating 8-12 product molecules. Examples given include syntheses of 4,2'-R,OH-stilbenes and 4,4'-R,OH-stilbenes (R = Me, CN). Unoptimized cleavage of the Br/I derivatives yields 55-85% phenol. Unoptimized cleavage of the stilbene derivatives yields 35-40% (3-5 equivalents of phenol) in the preliminary studies presented here. In contrast, meta R-phenol yields are 80% (7-10 mol per cage).

  9. Structure–activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation

    SciTech Connect

    Karwacki, Christopher J.; Ganesh, P.; Kent, Paul R. C.; Gordon, Wesley O.; Peterson, Gregory W.; Niu, Jun Jie; Gogotsi, Yury

    2013-01-01

    The effect of changes in morphology and surface hydroxyl species upon thermal treatment of zirconia on the oxidation activity of Au/ZrO2 catalyst was studied. We observed using transmission fourier transform infrared (FTIR) spectroscopy progressive changes in the presence of monodentate (type I), bidentate (type II) and hydrogen bridged species (type III) for each of the thermally treated (85 to 500 C) supports consisting of bare zirconia and Au/ZrO2 catalysts. Furthermore, structural changes in zirconia were accompanied by an increase in crystal size (7 to 58 nm) and contraction of the supports porosity (SSA 532 to 7 m2/g) with increasing thermal treatment. Deposition of gold nanoparticles under similar preparation conditions on different thermally treated zirconia resulted in changes in the mean gold cluster size, ranging from 3.7 to 5.6 nm. Changes in the surface hydroxyl species, support structure and size of the gold centers are important parameters responsible for the observed decrease (> 90 %) in CO conversion activity for the Au/ZrO2 catalysts. Density functional theory calculations provide evidence of increased CO binding to Au nanoclusters in the presence of surface hydroxyls on zirconia, which increases charge transfer at the perimeter of the gold nanocluster on zirconia support. This further helps in reducing a model CO-oxidation reaction barrier in the presence of surface hydroxyls. This work demonstrates the need to understand the structure-activity relationship of both the support and active particles for the design of catalytic materials.

  10. Structure-activity relationship of Au-ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation

    SciTech Connect

    Karwacki, Christopher J; Ganesh, Panchapakesan; Kent, P. R. C.; Gordon, Wesley O; Peterson, Gregory W; Niu, Jun Jie; Gogotsi, Yury G.

    2013-01-01

    The effect of changes in morphology and surface hydroxyl species upon thermal treatment of zirconia on the oxidation activity of Au/ZrO2 catalyst was studied. We observed using transmission Fourier transform infrared (FTIR) spectroscopy progressive changes in the presence of monodentate (type I), bidentate (type II) and hydrogen bridged species (type III) for each of the thermally treated (85 to 500 C) supports consisting of bare zirconia and Au/ZrO2 catalysts. Furthermore, structural changes in zirconia were accompanied by an increase in crystal size (7 to 58 nm) and contraction of the supports porosity (SSA 532 to 7 m2 g 1) with increasing thermal treatment. Deposition of gold nanoparticles under similar preparation conditions on different thermally treated zirconia resulted in changes in the mean gold cluster size, ranging from 3.7 to 5.6 nm. Changes in the surface hydroxyl species, support structure and size of the gold centers are important parameters responsible for the observed decrease (>90%) in CO conversion activity for the Au/ZrO2 catalysts. Density functional theory calculations provide evidence of increased CO binding to Au nanoclusters in the presence of surface hydroxyls on zirconia, which increases charge transfer at the perimeter of the gold nanocluster on zirconia support. This further helps in reducing a model CO-oxidation reaction barrier in the presence of surface hydroxyls. This work demonstrates the need to understand the structure activity relationship of both the support and active particles for the design of catalytic materials.

  11. Effects of hydroxyl group numbers on the B-ring of 5,7-dihydroxyflavones on the differential inhibition of human CYP 1A and CYP1B1 enzymes.

    PubMed

    Kim, Hyun-Jung; Lee, Sang Bum; Park, Song-Kyu; Kim, Hwan Mook; Park, Young In; Dong, Mi-Sook

    2005-10-01

    Flavonoids are polyphenols composed of two aromatic rings (A, B) and a heterocyclic ring (C). In order to determine the effects of the number of hydroxyl groups in the B-ring of the flavonoids on human cytochrome P450 (CYP) 1 family enzymes, we evaluated the inhibition of CYP1A-dependent 7-ethoxyresorufin omicron-deethylation activity by chrysin, apigenin and luteolin, using bacterial membranes that co-express human CYP1A1, CYP1A2, or CYP1B1 with human NADPH-cytochrome P450 reductase. Chrysin, which possesses no hydroxyl groups in its B-ring, exhibited the most pronounced inhibitory effects on CYP1A2-dependent EROD activity, followed by apigenin and luteolin. On the contrary, CYP1A1-mediated EROD activity was most potently inhibited by luteolin, which is characterized by two hydroxyl groups in its B-ring, followed by apigenin and chrysin. However, all of the 5,7-dihydroxyflavones were determined to similarly inhibit CYP1B1 activity. Chrysin, apigenin, and luteolin exhibited a mixed-type mode of inhibition with regard to CYP1A2, CYP1B1, and CYP1A1, with apparent Ki values of 2.4, 0.5, and 2.0 microM, respectively. These findings suggested that the number of hydroxyl groups in the B-ring of 5,7-dihydroxyflavone might have some influence on the degree to which CYP1A enzymes were inhibited, but not on the degree to which CYP1B1 enzymes were inhibited.

  12. Discovery of pyrazine carboxamide CB1 antagonists: the introduction of a hydroxyl group improves the pharmaceutical properties and in vivo efficacy of the series.

    PubMed

    Ellsworth, Bruce A; Wang, Ying; Zhu, Yeheng; Pendri, Annapurna; Gerritz, Samuel W; Sun, Chongqing; Carlson, Kenneth E; Kang, Liya; Baska, Rose A; Yang, Yifan; Huang, Qi; Burford, Neil T; Cullen, Mary Jane; Johnghar, Susan; Behnia, Kamelia; Pelleymounter, Mary Ann; Washburn, William N; Ewing, William R

    2007-07-15

    Structure-activity relationships for a series of pyrazine carboxamide CB1 antagonists are reported. Pharmaceutical properties of the series are improved via inclusion of hydroxyl-containing sidechains. This structural modification sufficiently improved ADME properties of an orally inactive series such that food intake reduction was achieved in rat feeding models. Compound 35 elicits a 46% reduction in food intake in ad libidum fed rats 4-h post-dose.

  13. Reaction of aromatic compounds with nucleophilic reagents in liquid ammonia. VIII. The origin of the oxygen atom of the hydroxy group in the products from the hydroxylation of 1-nitronaphthalene with alkali and molecular oxygen

    SciTech Connect

    Malykhin, E.V.; Shteingarts, V.D.

    1987-10-20

    In the reaction of 1-nitronaphthalene with K/sup 18/OH and /sup 16/O/sub 2/ in liquid ammonia 1-nitro-2- and 4-nitro-1-naphthols labeled with the /sup 18/O isotope in the hydroxyl group are formed. The ratio of the isomers and the content of the /sup 18/O isotope depend on the ratio of 1-nitronaphthalene and alkali, on the temperature, and on the presence of moisture in the ammonia. The amount of the /sup 18/O isotope in the hydroxylation products indicates that in contrast to the analogous reaction of nitrobenzene and its derivatives the hydroxy function of the products in this case is formed not only from the alkali but also to a significant degree form the oxygen of the O/sub 2/.

  14. Thermodynamic and structural properties of Eu3+ complexes of a new 12-membered tetraaza macrocycle containing pyridine and N-glutaryl groups as pendant arms: characterization of three complexing successive phases.

    PubMed

    Moreau, Juliette; Pierrard, Jean-Claude; Rimbault, Jean; Guillon, Emmanuel; Port, Marc; Aplincourt, Michel

    2007-04-28

    A new polyazamacrocyclic ligand (called pctga) containing pyridine and N-glutaryl arms has been synthesized as a potential agent for MRI (magnetic resonance imaging). Three series of successive complexes formed with Eu(3+) were characterized by at least two of the following methods: potentiometry, EXAFS or luminescence spectrometry. In the immediate complexes [EuH(h)(pctga)(H2O)6](h-3)+**, the metal ion is bound to the oxygen atoms of the three internal carboxylate groups and to six water molecules. As the lanthanide moves into the macrocyclic cavity, these species rapidly evolve into the intermediate metastable complexes [EuH(h)(pctga)(H2O)4](h-3)+*. The formation of two new bonds with the nitrogen atoms of the tetraazamacrocycle decreased the number of coordinated water molecules to four. In the final thermodynamically stable complexes [EuH(h)(pctga)(H2O)(2)](h-3)+, the pctga is bound to the europium(III) in a heptadentate manner, via the four nitrogen atoms of the tetraazamacrocycle and the three oxygen atoms of the internal carboxylate groups. The coordination number of the metal ion is completed to nine with two inner-sphere water molecules. The mean hydration numbers were calculated from the values of the bimolecular quenching constant k(q) of the luminescence species. The thermodynamic parameters corresponding to the protonation constants of the ligand and to the formation constants of the various intermediate and final complexes were determined from potentiometric measurements. They show that the complex species have some specific thermodynamic and structural properties inherent to the N-glutaryl groups and to the pyridine cycle. The insertion of this aromatic substructure rigidifies the ligand and sensibly diminishes the value of the overall formation constant (log beta(110) = 18.66(5)). This whole study allows us to propose a complexation mechanism for the system Eu(3+)/pctga in solution which is a mixture of the ones determined for the ligands dota and

  15. Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group.

    PubMed

    Kakuda, Saya; Peterson, Ryan L; Ohkubo, Kei; Karlin, Kenneth D; Fukuzumi, Shunichi

    2013-05-01

    A copper complex, [(PV-tmpa)Cu(II)](ClO4)2 (1) [PV-tmpa = bis(pyrid-2-ylmethyl){[6-(pivalamido)pyrid-2-yl]methyl}amine], acts as a more efficient catalyst for the four-electron reduction of O2 by decamethylferrocene (Fc*) in the presence of trifluoroacetic acid (CF3COOH) in acetone as compared with the corresponding copper complex without a pivalamido group, [(tmpa)Cu(II)](ClO4)2 (2) (tmpa = tris(2-pyridylmethyl)amine). The rate constant (k(obs)) of formation of decamethylferrocenium ion (Fc*(+)) in the catalytic four-electron reduction of O2 by Fc* in the presence of a large excess CF3COOH and O2 obeyed first-order kinetics. The k(obs) value was proportional to the concentration of catalyst 1 or 2, whereas the k(obs) value remained constant irrespective of the concentration of CF3COOH or O2. This indicates that electron transfer from Fc* to 1 or 2 is the rate-determining step in the catalytic cycle of the four-electron reduction of O2 by Fc* in the presence of CF3COOH. The second-order catalytic rate constant (k(cat)) for 1 is 4 times larger than the corresponding value determined for 2. With the pivalamido group in 1 compared to 2, the Cu(II)/Cu(I) potentials are -0.23 and -0.05 V vs SCE, respectively. However, during catalytic turnover, the CF3COO(-) anion present readily binds to 2 shifting the resulting complex's redox potential to -0.35 V. The pivalamido group in 1 is found to inhibit anion binding. The overall effect is to make 1 easier to reduce (relative to 2) during catalysis, accounting for the relative k(cat) values observed. 1 is also an excellent catalyst for the two-electron two-proton reduction of H2O2 to water and is also more efficient than is 2. For both complexes, reaction rates are greater than for the overall four-electron O2-reduction to water, an important asset in the design of catalysts for the latter.

  16. Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph2P[double bond, length as m-dash]O and Ph2P[double bond, length as m-dash]NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization.

    PubMed

    Rad'kova, Natalia Yu; Tolpygin, Aleksei O; Rad'kov, Vasily Yu; Khamaletdinova, Nadia M; Cherkasov, Anton V; Fukin, Georgi K; Trifonov, Alexander A

    2016-11-22

    A series of new tridentate amidines 2-[Ph2P[double bond, length as m-dash]X]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-R2C6H3) (X = O, R = iPr (1); X = S, R = Me (2); X = NPh, R = Me (3); X = N(2,6-Me2C6H3), R = Me (4)) bearing various types of donor Ph2P[double bond, length as m-dash]X groups in a pendant chain was synthesized. Bis(alkyl) complexes {2-[Ph2P[double bond, length as m-dash]X]C6H4NC(tBu)N(2,6-R2C6H3)}Ln(CH2SiMe3)2 (Ln = Y, X = O, R = iPr (5); Ln = Er, X = O, R = iPr (6); Ln = Lu, X = O, R = iPr (7); Ln = Y, X = NPh, R = Me (8); Ln = Lu, X = NPh, R = Me (9); Ln = Lu, X = N(2,6-Me2C6H3), R = Me (10)) were prepared using alkane elimination reactions of 1, 3 and 4 with Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in toluene and were isolated in 45 (5), 62 (6), 56 (7), 65 (8), 60 (9), and 60 (10) % yields respectively. The X-ray diffraction studies showed that complexes 6-8 are solvent free and feature intramolecular coordination of the P[double bond, length as m-dash]X (X = O, NPh) group to the lanthanide ions. The ternary systems 5-10/borate/AlR3 (borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4], AlR3 = AliBu3, AliBu2H; molar ratio = 1/1/10 or 1/1/1, toluene) proved to be active in isoprene polymerization and enable complete conversion of 1000-10 000 equivalents of the monomer into a polymer at 25 °C within 0.5-24 h affording polyisoprenes with polydispersities Mw/Mn = 1.22-3.18. A comparative study of the catalytic performance of the bis(alkyl) complexes coordinated by tridentate amidinate ligands containing different pendant donor groups demonstrated that replacement of the Ph2P[double bond, length as m-dash]O group by Ph2P[double bond, length as m-dash]NPh leads to a switch of stereoselectivity in isoprene polymerization from cis-1,4 (up to 98.5%) to trans-1,4 (up to 84.8%). And conversely introduction of methyl substituents in the 2,6 positions of the phenyl group of the Ph2P[double bond, length as m-dash]NPh fragment allows us to restore the 1,4-cis

  17. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  18. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  19. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi

    2015-05-13

    Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.

  20. Pendant alkyl and aryl groups on tin control complex geometry and reactivity with H2/D2 in Pt(SnR3)2(CNBu(t))2 (R = Bu(t), Pr(i), Ph, mesityl).

    PubMed

    Koppaka, Anjaneyulu; Zhu, Lei; Yempally, Veeranna; Isrow, Derek; Pellechia, Perry J; Captain, Burjor

    2015-01-14

    The complex Pt(SnBu(t)3)2(CNBu(t))2(H)2, 1, was obtained from the reaction of Pt(COD)2 and Bu(t)3SnH, followed by addition of CNBu(t). The two hydride ligands in 1 can be eliminated, both in solution and in the solid state, to yield Pt(SnBu(t)3)2(CNBu(t))2, 2. Addition of hydrogen to 2 at room temperature in solution and in the solid state regenerates 1. Complex 2 catalyzes H2-D2 exchange in solution to give HD. The proposed mechanism of exchange involves reductive elimination of Bu(t)3SnH from 1 to afford vacant sites on the Pt center, thus facilitating the exchange process. This is supported by isolation and characterization of Pt(SnMes3)(SnBu(t)3)(CNBu(t))2, 3, when the addition of H2 to 2 was carried out in the presence of free ligand Mes3SnH (Mes = 2,4,6-Me3C6H2). Complex Pt(SnMes3)2(CNBu(t))2, 5, can be prepared from the reaction of Pt(COD)2 with Mes3SnH and CNBu(t). The exchange reaction of 2 with Ph3SnH gave Pt(SnPh3)3(CNBu(t))2(H), 6, wherein both SnBu(t)3 ligands are replaced by SnPh3. Complex 6 decomposes in air to form square planar Pt(SnPh3)2(CNBu(t))2, 7. The complex Pt(SnPr(i)3)2(CNBu(t))2, 8, was also prepared. Out of the four analogous complexes Pt(SnR3)2(CNBu(t))2 (R = Bu(t), Mes, Ph, or Pr(i)), only the Bu(t) analogue does both H2 activation and H2-D2 exchange. This is due to steric effects imparted by the bulky Bu(t) groups that distort the geometry of the complex considerably from planarity. The reaction of Pt(COD)2 with Bu(t)3SnH and CO gas afforded trans-Pt(SnBu(t)3)2(CO)2, 9. Compound 9 can be converted to 2 by replacement of the CO ligands with CNBu(t) via the intermediate Pt(SnBu(t)3)2(CNBu(t))2(CO), 10.

  1. Unusual cyclic terpenoids with terminal pendant prenyl moieties: from occurrence to synthesis.

    PubMed

    Kulcitki, Veaceslav; Harghel, Petru; Ungur, Nicon

    2014-12-01

    The paper reviews the known examples of cyclic terpenoids produced from open chain polyenic precursors by an "unusual" biosynthetic pathway, involving selective electrophilic attack on an internal double bond followed by cyclization. The resulting compounds possess cyclic backbones with pendant terminal prenyl groups. Synthetic approaches applied for the synthesis of such specifically functionalized compounds are also discussed, as well as biological activity of reported representatives.

  2. Crosslinking of aromatic polyamides via pendant propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.

    1980-01-01

    Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.

  3. A new method for immediate derivatization of hydroxyl groups by fluoroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography-mass spectrometry.

    PubMed

    Řimnáčová, L; Hušek, P; Šimek, P

    2014-04-25

    A new method has been described for efficient derivatization of secondary alicyclic hydroxyl groups in steroids by alkyl chloroformates (RCFs). Cholesterol, an essential human sterol and a steroid precursor in eukaryotic cells, was used as a model for treatment with various RCFs in an aqueous and non-aqueous environment. While the cholesterol hydroxyl group did not react completely with any of the tested RCFs reagents in the former case, trifluoroethyl chloroformate (TFECF) or heptafluorobutyl chloroformate (HFBCF) fully converts cholesterol and related metabolites into the corresponding mixed carbonates under anhydrous conditions in seconds. The acylation reaction was combined with liquid-liquid microextraction (LLME) between isooctane and acetonitrile phase. The sample preparation requires just a stepwise addition of 50μl isooctane with 5μl of a pyridine catalyst, 100μl acetonitrile and 100μl isooctane with dissolved 5μl of the fluoroalkyl chloroformate reagent to a dried sample. The protocol developed in this study was successfully tested for GC-MS analysis of 12 important model steroids and four main tocopherols. Each analyte provided a single peak with excellent GC separation properties, well defined EI spectra containing diagnostic fragment ions suitable for their identification and quantitation. The new method was further validated for the determination of six diagnostic non-cholesterol sterols and four main tocopherols in human serum and in amniotic fluid. Satisfactory data were obtained in terms of calibration, quantitation limits (for sterols and tocopherols, 0.05 and 0.15μg/ml, respectively), within-run precision (0.9-19.5%) and between-run precision (0.2-19.0%), accuracy (82-115%) and recovery (90-110%). The validated method was successfully applied to GC-MS analysis of the analytes in woman sera and amniotic fluids and the results are well-comparable with those reported by other authors. The presented work demonstrates for the first time

  4. Stability of a pendant droplet in gas metal arc welding

    SciTech Connect

    Murray, P.E.

    1998-07-01

    The authors develop a model of metal transfer in gas metal arc welding and compute the critical mass of a pendant droplet in order to ascertain the size and frequency of droplets detaching from the consumable metal electrode. These results are used to predict the mode of metal transfer for a range of voltage and current encompassing free flight transfer, and the transition between globular and spray transfer. This model includes an efficient method to compute the stability of a pendant droplet and the location of the liquid bridge connecting the primary droplet and the residual liquid remaining after detachment of the primary droplet.

  5. Communications: Wall free capillarity and pendant drop removal.

    PubMed

    Hong, Siang-Jie; Chang, Feng-Ming; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2010-04-28

    When a sessile drop encounters a pendant drop through a hole, it is generally anticipated that they will coalesce and flow downward due to gravity. However, like "wall-free" capillarity, we show that the pendant drop may be sucked up by a sliding drop instantaneously if the radius of the curvature of the former is smaller than that of the later. This phenomenon can be explained by Laplace-Young equation and convective Ostwald ripening. Our results indicate that superhydrophilic perforated surface can be used as an effective way for the removal of small droplets adhering to the inner walls of microchannel systems.

  6. The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal.

    PubMed

    Shylesh, Sankaranarayanapillai; Hanna, David; Gomes, Joseph; Canlas, Christian G; Head-Gordon, Martin; Bell, Alexis T

    2015-02-01

    The catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups. DFT analysis of the reaction pathway indicates that, for weak Brønsted acid groups, such as Si--OH, the rate-limiting step is C--C bond formation, whereas for stronger Brønsted acid groups, such as Ti and Al, hydrolysis of iminium species produced upon C--C bond formation is the rate-limiting step. Theoretical analysis shows further that the apparent activation energy decreases with increasing Brønsted acidity of the M--OH groups, consistent with experimental observation.

  7. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group.

    PubMed

    Zeng, Liudan; Ma, Huimin; Pan, Shangxia; You, Jing; Zhang, Gan; Yu, Zhiqing; Sheng, Guoying; Fu, Jiamo

    2016-08-01

    Triclosan (TCS), a frequently used antimicrobial agent in pharmaceuticals and personal care products, exerts liver tumor promoter activities in mice. Previous work showed high-dose TCS (1.25-10μM) induced global DNA hypomethylation in HepG2 cells. However, whether or how tumor suppressor gene methylation changed in HepG2 cells after low-dose and long-term TCS exposure is still unknown. We investigate here the effects and mechanisms of DNA methylation of global DNA(GDM), repetitive genes, and liver tumor suppressor gene (p16) after exposing HepG2 cells to low-dose TCS (0.625-5nM)for two weeks using HPLC-MS/MS, Methylight, Q-MSP, Pyrosequencing, and Massarray methods. We found that low-dose TCS exposure decreased repetitive elements LINE-1 methylation levels, but not global DNA methylation, through down-regulating DNMT1 (DNA methyltransferase 1) and MeCP2 (methylated DNA binding domain) expression, and up-regulating 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. Interestingly, low-dose TCS elevated p16 gene methylation and inhibited p16 expression, which were not observed in high-dose (10μM) group. Meanwhile, methyl-triclosan could not induce these two types of DNA methylation changes, suggesting the involvement of hydroxyl in TCS-mediated DNA methylation changes. Collectively, our results suggested low concentrations of TCS adversely affected HepG2 cells through DNA methylation dysregulation, and hydroxyl group in TCS played an important role in the effects. This study provided a better understanding on hepatotoxicity of TCS at environmentally relevant concentrations through epigenetic pathway.

  8. Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions.

    PubMed

    Zhang, Shiguo; Qi, Xiujuan; Ma, Xiangyuan; Lu, Liujin; Deng, Youquan

    2010-03-25

    The polarity of a series of ionic liquids (ILs) based on hydroxyethyl-imidazolium moiety with various anions ([PF(6)], [NTf(2)], [ClO(4)], [DCA], [NO(3)], [AC], and [Cl]) and their corresponding nonhydroxyl ILs was investigated by solvatochromic dyes and fluorescence probe molecules. Most of the nonhydroxyl ILs exhibit anion-independent polarity with similar E(T)(30) in the narrow range of 50.7-52.6 kcal/mol, except [EMIm][AC] (49.7 kcal/mol). However, the polarity of the hydroxyl ILs covers a rather wide range (E(T)(30) = 51.2-61.7 kcal/mol) and is strongly anion-dependent. According to their E(T)(30) or E(T)(33) values, the hydroxyl ILs can be further classified into the following three groups: (Iota) acetate-based hydroxyl ILs [HOEMIm][AC] exhibit polarity scale (E(T)(30) = 51.2 kcal/mol) similar to short chain alcohol and fall in the range of the nonhydroxyl ILs; (II) Hydroxyl ILs containing anions [NO(3)], [DCA], and [Cl] exhibit comparable polarity (E(T)(30) = 55.5-56.9 kcal/mol), moderately higher than those of their nonhydroxyl ILs; (III) Hydroxyl ILs containing anions [PF(6)], [NTf(2)], and [ClO(4)] possess unusual "hyperpolarity" (E(T)(30) = 60.3-61.7 kcal/mol) close to protic ILs and water. Kamlet-Taft parameters and density functional theory calculations indicated that the greatly expanded range of polarity of hydroxyl ILs is correlated to an intramolecular synergistic solvent effect of the ionic hydrogen-bonded HBD/HBA complexes generated by intrasolvent HBD/HBA association between the anions and the hydroxyl group on cations, wherein hydroxyl group exhibits a significant differentiating effect on the strength of H-bonding and thus the polarity. Spiropyran-merocyanine equilibrium acted as a model polarity-sensitive reaction indeed shows obviously polarity-dependent solvatochromism, photochromism, and thermal reversion in hydroxyl ILs.

  9. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  10. Hydrolysis mechanisms of BNPP mediated by facial copper(II) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants.

    PubMed

    Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan

    2016-01-28

    The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts.

  11. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA

  12. Experimental Investigation of Pendant and Sessile Drops in Microgravity

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Qiang; Brutin, David; Liu, Qiu-Sheng; Wang, Yang; Mourembles, Alexandre; Xie, Jing-Chang; Tadrist, Lounes

    2010-09-01

    The experiments regarding the contact angle behavior of pendant and sessile evaporating drops were carried out in microgravity environment. All the experiments were performed in the Drop Tower of Beijing, which could supply about 3.6 s of microgravity (free-fall) time. In the experiments, firstly, drops were injected to create before microgravity. The wettability at different surfaces, contact angles dependance on the surface temperature, contact angle variety in sessile and pendant drops were measured. Different influence of the surface temperature on the contact angle of the drops were found for different substrates. To verify the feasibility of drops creation in microgravity and obtain effective techniques for the forthcoming satellite experiments, we tried to inject liquid to create bigger drop as soon as the drop entering microgravity condition. The contact angle behaviors during injection in microgravity were also obtained.

  13. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA.

    PubMed

    Simonović, Miljan; Steitz, Thomas A

    2008-11-01

    The last step in ribosome-catalyzed protein synthesis is the hydrolytic release of the newly formed polypeptide from the P-site bound tRNA. Hydrolysis of the ester link of the peptidyl-tRNA is stimulated normally by the binding of release factors (RFs). However, an unacylated tRNA or just CCA binding to the ribosomal A site can also stimulate deacylation under some nonphysiological conditions. Although the sequence of events is well described by biochemical studies, the structural basis of the mechanism underlying this process is not well understood. Two new structures of the large ribosomal subunit of Haloarcula marismortui complexed with a peptidyl-tRNA analog in the P site and two oligonucleotide mimics of unacylated tRNA, CCA and CA, in the A site show that the binding of either CA or CCA induces a very similar conformational change in the peptidyl-transferase center as induced by aminoacyl-CCA. However, only CCA positions a water molecule appropriately to attack the carbonyl carbon of the peptidyl-tRNA and stabilizes the proper orientation of the ester link for hydrolysis. We, thus, conclude that both the ability of the O3'-hydroxyl group of the A-site A76 to position the water and the A-site CCA induced conformational change of the PTC are critical for the catalysis of the deacylation of the peptidyl-tRNA by CCA, and perhaps, an analogous mechanism is used by RFs.

  14. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3′-hydroxyl group of A76 of the unacylated A-site tRNA

    SciTech Connect

    Simonović, Miljan; Steitz, Thomas A.

    2008-11-24

    The last step in ribosome-catalyzed protein synthesis is the hydrolytic release of the newly formed polypeptide from the P-site bound tRNA. Hydrolysis of the ester link of the peptidyl-tRNA is stimulated normally by the binding of release factors (RFs). However, an unacylated tRNA or just CCA binding to the ribosomal A site can also stimulate deacylation under some nonphysiological conditions. Although the sequence of events is well described by biochemical studies, the structural basis of the mechanism underlying this process is not well understood. Two new structures of the large ribosomal subunit of Haloarcula marismortui complexed with a peptidyl-tRNA analog in the P site and two oligonucleotide mimics of unacylated tRNA, CCA and CA, in the A site show that the binding of either CA or CCA induces a very similar conformational change in the peptidyl-transferase center as induced by aminoacyl-CCA. However, only CCA positions a water molecule appropriately to attack the carbonyl carbon of the peptidyl-tRNA and stabilizes the proper orientation of the ester link for hydrolysis. We, thus, conclude that both the ability of the O3'-hydroxyl group of the A-site A76 to position the water and the A-site CCA induced conformational change of the PTC are critical for the catalysis of the deacylation of the peptidyl-tRNA by CCA, and perhaps, an analogous mechanism is used by RFs.

  15. Hydroxyl speciation in felsic magmas

    NASA Astrophysics Data System (ADS)

    Malfait, Wim J.; Xue, Xianyu

    2014-09-01

    The hydroxyl speciation of hydrous, metaluminous potassium and calcium aluminosilicate glasses was investigated by 27Al-1H cross polarization and quantitative 1H MAS NMR spectroscopy. Al-OH is present in both the potassium and the calcium aluminosilicate glasses and its 1H NMR partial spectrum was derived from the 27Al-1H cross polarization data. For the calcium aluminosilicate glasses, the abundance of Al-OH could not be determined because of the low spectral resolution. For the potassium aluminosilicate glasses, the fraction of Al-OH was quantified by fitting its partial spectrum to the quantitative 1H NMR spectra. The degree of aluminum avoidance and the relative tendency for Si-O-Si, Si-O-Al and Al-O-Al bonds to hydrolyze were derived from the measured species abundances. Compared to the sodium, lithium and calcium systems, potassium aluminosilicate glasses display a much stronger degree of aluminum avoidance and a stronger tendency for the Al-O-Al linkages to hydrolyze. Combining our results with those for sodium aluminosilicate glasses (Malfait and Xue, 2010a), we predict that the hydroxyl groups in rhyolitic and phonolitic magmas are predominantly present as Si-OH (84-89% and 68-78%, respectively), but with a significant fraction of Al-OH (11-16% and 22-32%, respectively). For both rhyolitic and phonolitic melts, the AlOH/(AlOH + SiOH) ratio is likely smaller than the Al/(Al + Si) ratio for the lower end of the natural temperature range but may approach the Al/(Al + Si) ratio at higher temperatures.

  16. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method.

    PubMed

    Chen, Bao-Hui; Chao, Zi-Sheng; He, Hao; Huang, Chen; Liu, Ya-Juan; Yi, Wen-Jun; Wei, Xue-Ling; An, Jun-Fang

    2016-02-14

    Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite.

  17. Hydroxylated PBDEs induce developmental arrest in zebrafish

    SciTech Connect

    Usenko, Crystal Y. Hopkins, David C.; Trumble, Stephen J. Bruce, Erica D.

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  18. Polymeric Gene Carriers Bearing Pendant β-Cyclodextrin: The Relevance of Glycoside Permethylation on the "In Vitro" Cell Response.

    PubMed

    Redondo, Juan Alfonso; Martínez-Campos, Enrique; Plet, Laetitia; Pérez-Perrino, Mónica; Navarro, Rodrigo; Corrales, Guillermo; Pandit, Abhay; Reinecke, Helmut; Gallardo, Alberto; López-Lacomba, José Luis; Fernández-Mayoralas, Alfonso; Elvira, Carlos

    2016-04-01

    The incorporation of cyclodextrins (CDs) to nonviral cationic polymer vectors is very attractive due to recent studies that report a clear improvement of their cytocompatibility and transfection efficiency. However, a systematic study on the influence of the CD derivatization is still lacking. In this work, the relevance of β-CD permethylation has been addressed by preparing and evaluating two series of copolymers of the cationic N-ethyl pyrrolidine methacrylamide (EPA) and styrenic units bearing pendant hydroxylated and permethylated β-CDs (HCDSt and MeCDSt, respectively). For both cell lines, CDs permethylation shows a strong influence on plasmid DNA complexation, "in vitro" cytocompatibility and transfection efficiency of the resulting copolymers over two murine cell lines. While the incorporation of the hydroxylated CD moiety increased the cytotoxicity of the copolymers in comparison with their homopolycationic counterpart, the permethylated copolymers have shown full cytocompatibility as well as superior transfection efficiency than the controls. This behavior has been related to the different chemical nature of both units and tentatively to a different distribution of units along the polymeric chains. Cellular internalization analysis with fluorescent copo-lymers supports this behavior.

  19. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    PubMed

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-06

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude.

  20. Measurement of surface and interfacial tension using pendant drop tensiometry.

    PubMed

    Berry, Joseph D; Neeson, Michael J; Dagastine, Raymond R; Chan, Derek Y C; Tabor, Rico F

    2015-09-15

    Pendant drop tensiometry offers a simple and elegant solution to determining surface and interfacial tension - a central parameter in many colloidal systems including emulsions, foams and wetting phenomena. The technique involves the acquisition of a silhouette of an axisymmetric fluid droplet, and iterative fitting of the Young-Laplace equation that balances gravitational deformation of the drop with the restorative interfacial tension. Since the advent of high-quality digital cameras and desktop computers, this process has been automated with high speed and precision. However, despite its beguiling simplicity, there are complications and limitations that accompany pendant drop tensiometry connected with both Bond number (the balance between interfacial tension and gravitational forces) and drop volume. Here, we discuss the process involved with going from a captured experimental image to a fitted interfacial tension value, highlighting pertinent features and limitations along the way. We introduce a new parameter, the Worthington number, Wo, to characterise the measurement precision. A fully functional, open-source acquisition and fitting software is provided to enable the reader to test and develop the technique further.

  1. A Quasi-Containerless Pendant Drop Method for Surface Tension Measurements of Molten Metals and Alloys

    NASA Technical Reports Server (NTRS)

    Thiessen, David B.; Man, Kin F.

    1994-01-01

    A quasi-containerless pendant drop method for measuring the surface tension of molten metals and alloys is being developed. The technique involves melting the end of a high-purity metal rod by bombardment with an electron beam to form a pendant drop under ultra-high vacuum conditions to minimize surface contamination.

  2. Experimental verification of a pendant ice formation model

    SciTech Connect

    Szilder, K.; Forest, T.; Lozowski, E.P.

    1995-12-31

    A random walk model has been developed to predict the growth of pendant ice formations and icicles. The model allows an efficient representation of water flow along the surface, dripping from lower extremities, and freezing of water. Using a simple analysis, the microscopic model parameters are expressed as functions of the macroscopic physical conditions. To verify the random walk model, a series of laboratory experiments was conducted in an icing wind tunnel. A horizontal thin wire was exposed to vertically falling supercooled spray and the formation of icicles underneath the wire was examined. Model verification based on a comparison with the experimental results demonstrates quantitatively and qualitatively the credibility and value of this model approach. Future model development will involve the quantitative simulation of ice accretion on objects of complex geometry, such as offshore structures, ships, and transmission lines.

  3. Pendant Dynamics of Ethylene-Oxide Containing Polymers with Diverse Backbones

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua; Wang, Jing-Han Helen; Chen, Quan; Runt, James; Colby, Ralph

    In the last twenty years, a wide variety of ion conducting polymers have used ether oxygens to facilitate ion conduction, and it is therefore important to understand the dynamics of ether oxygens (EOs) when attached to different polymer backbones. Four different EO-containing polymer architectures are studied by dielectric spectroscopy to understand the backbone effect on the EO dipoles. Polysiloxanes, polyphosphazenes, polymethylmethacrylates, and a polyester ether are compared, with different EO pendant lengths for the siloxane and methylmethacrylate backbones. The flexible polysiloxanes and polyphosphazene backbones impart superior segmental mobility with a glass transition temperature 15 K lower than that of the organic backbone polymers. Short EO pendants are found to impart a lower static dielectric constant at comparable EO content as compared to longer EO pendants of either inorganic or organic backbones. The long-pendant polymethylmethacrylate polymers show two relaxations corresponding to fast EOs near the pendant tail end and slow EOs close to the slower backbone, whereas the long-pendant polysiloxane shows a single relaxation due to the siloxane backbone relaxing faster than the EO pendant. Supported by the NSF Division of Materials Research Polymers Program through Grants DMR-1404586 (RHC) and DMR-1505953 (JR).

  4. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  5. Rational design of fluorescent bioimaging probes by controlling the aggregation behavior of squaraines: a special effect of ionic liquid pendants.

    PubMed

    Wang, Wenhai; Fu, Afu; Lan, Jingbo; Gao, Ge; You, Jingsong; Chen, Lijuan

    2010-05-03

    We herein present an effective strategy to create water-soluble fluorescent bioimaging dyes by introducing the imidazolium-based ionic liquid (IL) pendants into a fluorescent skeleton. A new type of water-soluble imidazolium-anchored squaraine dye was synthesized accordingly. The relationship between the aggregate of squaraines and their fluorescent cell imaging application was elucidated in detail. Firstly, the aggregation behavior of squaraines in water solutions could be suppressed by varying the alkyl chain attached to the imidazolium unit. Secondly, the capability of cellular uptake and staining of dyes was also dramatically enhanced upon increasing the length of the paraffinic chain. These squaraine dyes displayed an excellent photostability that could permit real-time fluorescence bioimaging experiments to be monitored over a long time period with constant sample irradiation. Additionally, we designed for the first time an Fe(II)-ion probe on the basis of an attack of the hydroxyl radical to the four-membered ring of squaraine. The results demonstrated that the imidazolium-anchored squaraines could perform "naked-eye" detection of the Fe(2+) ion over a wide range of other interfering metals in aqueous media. More surprisingly, this process showed a fluorescence "turn-off" and "-on" response through the regeneration of squaraines in cells.

  6. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    SciTech Connect

    Fish, D.

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  7. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-05

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant.

  8. Copper-Catalyzed Hydroxylation of (Hetero)aryl Halides under Mild Conditions.

    PubMed

    Xia, Shanghua; Gan, Lu; Wang, Kailiang; Li, Zheng; Ma, Dawei

    2016-10-05

    The combination of Cu(acac)2 and N,N'-bis(4-hydroxyl-2,6-dimethylphenyl)oxalamide (BHMPO) provides a powerful catalytic system for hydroxylation of (hetero)aryl halides. A wide range of (hetero)aryl chlorides bearing either electron-donating or -withdrawing groups proceeded well at 130 °C, delivering the corresponding phenols and hydroxylated heteroarenes in good to excellent yields. When more reactive (hetero)aryl bromides and iodides were employed, the hydroxylation reactions completed at relatively low temperatures (80 and 60 °C, respectively) at low catalytic loadings (0.5 mol % Cu).

  9. NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.

    PubMed

    Liepinsh, E; Otting, G; Wüthrich, K

    1992-09-01

    Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI). The chemical shifts of the hydroxyl protons of serine and threonine were found to be between 5.4 and 6.2 ppm, with random-coil shifts at 4 degrees C of 5.92 ppm and 5.88 ppm, respectively, and those of tyrosine between 9.6 and 10.1 ppm, with a random-coil shift of 9.78 ppm. Since these spectral regions are virtually free of other polypeptide 1H NMR signals, cross peaks with the hydroxyl protons are usually well separated even in homonuclear two-dimensional 1H NMR spectra. To illustrate the practical use of hydroxyl proton NMR in polypeptides, the conformations of the side-chain hydroxyl groups in BPTI were characterized by measurements of nuclear Overhauser effects and scalar coupling constants involving the hydroxyl protons. In addition, hydroxyl proton exchange rates were measured as a function of pH, where simple first-order rate processes were observed for both acid- and base-catalysed exchange of all but one of the hydroxyl-bearing residues in BPTI. For the conformations of the individual Ser, Thr and Tyr side chains characterized in the solution structure with the use of hydroxyl proton NMR, both exact coincidence and significant differences relative to the corresponding BPTI crystal structure data were observed.

  10. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications

    PubMed Central

    Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon

    2015-01-01

    Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363

  11. Crystal structures of two deca-vanadates(V) with penta-aqua-manganese(II) pendant groups: (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O and [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O.

    PubMed

    Franco, Maurício P; Rüdiger, André Luis; Soares, Jaísa F; Nunes, Giovana G; Hughes, David L

    2015-02-01

    Two heterometallic deca-vanadate(V) compounds, bis-(tetra-methyl-ammonium) deca-aquadi-μ4-oxido-tetra-μ3-oxido-hexa-deca-μ2-oxido-hexa-oxidodimang-anese(II)-deca-vanadate(V) penta-hydrate, (Me4N)2[V10O28{Mn(H2O)5}2]·5H2O, A, and bis-{[tris-(hy-droxy-meth-yl)meth-yl]ammonium} deca-aquadi-μ4-oxido-tetra-μ3-oxido-hexa-deca-μ2-oxido-hexa-oxidodimanganese(II)deca-vanadate(V) dihydrate, [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O, B, have been synthesized under mild reaction conditions in an aqueous medium. Both polyanions present two [Mn(OH2)5](2+) complex units bound to the deca-vanadate cluster through oxide bridges. In A, the deca-vanadate unit has 2/m symmetry, whereas in B it has twofold symmetry. Apart from this, the main differences between A and B rest on the organic cations, tetra-methyl-ammonium and [tris-(hy-droxy-meth-yl)meth-yl]ammonium, respectively, and on the number and arrangement of the water mol-ecules of crystallization. In both compounds, the H atoms from the coordinating water mol-ecules participate in extensive three-dimensional hydrogen-bonding networks, which link the cluster units both directly and through solvent mol-ecules and, in B, through the 'tris-' cation hydroxyl groups. The cation in B also participates in N-H⋯O hydrogen bonds. A number of C-H⋯O inter-actions are also observed in both structures.

  12. Molecular modeling of the pendant chain in Nafion{reg_sign}

    SciTech Connect

    Paddison, S.J.; Zawodzinski, T.A.

    1998-03-01

    Ion transport through perfluorosulfonic acid ionomers such as Nafion{reg_sign} is controlled by both the microstructure of the polymer and the charge and water distribution in the hydrated polymer. The authors present here the results of theoretical calculations on the side chain of Nafion{reg_sign}, establishing microscopic information for the modeling of water modeling of water modeling of water and proton transport in the membrane. Optimized geometries for the trifluoromethane sulfonic acid fragment (CF{sub 3}SO{sub 3}H), the di-trifluoromethane ether fragment (CF{sub 3}OCF{sub 3}), and the side chain (CF{sub 3}{single_bond}OCF{sub 2}CF(CF{sub 3})OCF{sub 2}CF{sub 2}SO{sub 3}H) were determined by means of both ab initio Hartree Fock theory with second order Moeller-Plesset electron correlation corrections, and density functional theory with Becke`s three parameter hybrid method. Several rotational potential energy surfaces were calculated to assess chain flexibility and proton accessibility. A probe water molecule was added to each of the fragments to characterize hydrophilic sites. These calculations confirmed that the sulfonic acid group is hydrophilic and the ethers are hydrophobic. Molecular dynamics simulations were then performed on the side chain to check the conditions required to stretch the pendant chain. Thermal averages of several structural parameters assessing the flexibility and stretch of the chain were computed from selected conformations produced in the simulation and these results indicate that although the sulfonate group is free to rotate, the chain stretches little. The construction of a potential energy surface for rotation about the second ether group suggests that the side chain exists in a folded or curled up conformation. A physical continuum dielectric solvent model was used to obtain free energies of electrostatic interaction of the fragments and the full chain with the solvent.

  13. Accurate surface tension measurement of glass melts by the pendant drop method.

    PubMed

    Chang, Yao-Yuan; Wu, Ming-Ya; Hung, Yi-Lin; Lin, Shi-Yow

    2011-05-01

    A pendant drop tensiometer, coupled with image digitization technology and a best-fitting algorithm, was built to accurately measure the surface tension of glass melts at high temperatures. More than one thousand edge-coordinate points were obtained for a pendant glass drop. These edge points were fitted with the theoretical drop profiles derived from the Young-Laplace equation to determine the surface tension of glass melt. The uncertainty of the surface tension measurements was investigated. The measurement uncertainty (σ) could be related to a newly defined factor of drop profile completeness (Fc): the larger the Fc is, the smaller σ is. Experimental data showed that the uncertainty of the surface tension measurement when using this pendant drop tensiometer could be ±3 mN∕m for glass melts.

  14. Generation of hydroxyl radicals during ascites experimentally induced in broilers.

    PubMed

    Arab, H A; Jamshidi, R; Rassouli, A; Shams, G; Hassanzadeh, M H

    2006-04-01

    Increased metabolic rates, pulmonary hypertension and cardiac dysfunction are the most important features of the ascites syndrome in broiler chickens. However, the mechanism of cell injury causing the pathogenesis of the syndrome is not clearly understood. Our study aimed to examine the generation of hydroxyl radicals (OH*) in broiler chickens experiencing ascites. The hundred and fifty 1-d-old chickens were purchased from a local hatchery and reared in an open poultry house for 46 d. They were divided at random into three groups and ascites was induced in two groups by exposing them to low temperature or administration of triiodothyronine (T(3)). The third group served as control and was reared normally. Haematological, biochemical and pathological tests were used to determine the incidence of ascites: including total red blood cell (RBC), packed cell volume (PCV), release of alanine transaminase (ALT) and aspartate transaminase (AST) and ratio of right ventricular weight to total ventricular weight (RV/TV). A salicylate hydroxylation method was used to examine the generation of hydroxyl radicals (OH*) in treated groups. TWo hydroxylated salicylic acid metabolites, 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), were measured by HPLC to detect the generation of OH*. An ascites syndrome was observed in T(3) and low-temperature treated groups, as shown by necropsy changes and increases in f RBC, PCV, ALT, AST and the ratio of RV/TV. Concentrations of 2,3- and 2,5-DHBA were increased in groups experiencing ascites compared to control group. It is suggested that reactive oxygen species that is OH* ions, may be involved in the pathogenesis of the ascites syndrome in broiler chickens.

  15. 21 CFR 172.814 - Hydroxylated lecithin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.814 Hydroxylated lecithin. The food additive hydroxylated lecithin may be safely used as an emulsifier in foods in accordance with the following conditions: (a) The additive...

  16. A Novel Side-Bridged Hybrid Phosphonate/Acetate Pendant Cyclam: Synthesis, Characterization, and 64Cu Small Animal PET Imaging

    PubMed Central

    Boswell, C. Andrew; Regino, Celeste A. S.; Baidoo, Kwamena E.; Wong, Karen J.; Milenic, Diane E.; Kelley, James A.; Lai, Christopher C.; Brechbiel, Martin W.

    2008-01-01

    Copper-64 (t½ = 12.7 hr; β+: 0.653 MeV, 17.4%; β−: 0.578 MeV, 39%) is produced in a biomedical cyclotron and has applications in both imaging and therapy. Macrocyclic chelators are widely used as bifunctional chelators to bind copper radionuclides to antibodies and peptides owing to their relatively high kinetic stability. A novel side-bridged cyclam featuring both pendant acetate and phosphonate groups was synthesized using a Kabachnik-Fields approach followed by hydrobromic acid deprotection. The Cu(II) complex of the novel ligand was synthesized, radiolabeling with 64Cu was demonstrated, and in vitro (serum) stability was performed. In addition, in vivo distribution and clearance of the 64Cu-labeled complex was visualized by positron emission tomography (PET) imaging. This novel chelate may be useful in 64Cu-mediated diagnostic positron emission tomography (PET) imaging as well as targeted radiotherapeutic applications. PMID:19101152

  17. Crystal structures of two deca­vanadates(V) with penta­aqua­manganese(II) pendant groups: (NMe4)2[V10O28{Mn(H2O)5}2]·5H2O and [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O

    PubMed Central

    Franco, Maurício P.; Rüdiger, André Luis; Soares, Jaísa F.; Nunes, Giovana G.; Hughes, David L.

    2015-01-01

    Two heterometallic deca­vanadate(V) compounds, bis­(tetra­methyl­ammonium) deca­aquadi-μ4-oxido-tetra-μ3-oxido-hexa­deca-μ2-oxido-hexa­oxidodimang­anese(II)­deca­vanadate(V) penta­hydrate, (Me4N)2[V10O28{Mn(H2O)5}2]·5H2O, A, and bis­{[tris­(hy­droxy­meth­yl)meth­yl]ammonium} deca­aquadi-μ4-oxido-tetra-μ3-oxido-hexa­deca-μ2-oxido-hexa­oxidodimanganese(II)deca­vanadate(V) dihydrate, [NH3C(CH2OH)3]2[V10O28{Mn(H2O)5}2]·2H2O, B, have been synthesized under mild reaction conditions in an aqueous medium. Both polyanions present two [Mn(OH2)5]2+ complex units bound to the deca­vanadate cluster through oxide bridges. In A, the deca­vanadate unit has 2/m symmetry, whereas in B it has twofold symmetry. Apart from this, the main differences between A and B rest on the organic cations, tetra­methyl­ammonium and [tris­(hy­droxy­meth­yl)meth­yl]ammonium, respectively, and on the number and arrangement of the water mol­ecules of crystallization. In both compounds, the H atoms from the coordinating water mol­ecules participate in extensive three-dimensional hydrogen-bonding networks, which link the cluster units both directly and through solvent mol­ecules and, in B, through the ‘tris­’ cation hydroxyl groups. The cation in B also participates in N—H⋯O hydrogen bonds. A number of C—H⋯O inter­actions are also observed in both structures. PMID:25878804

  18. Regioselective and stereospecific hydroxylation of GR24 by Sorghum bicolor and evaluation of germination inducing activities of hydroxylated GR24 stereoisomers toward seeds of Striga species.

    PubMed

    Ueno, Kotomi; Ishiwa, Shunsuke; Nakashima, Hitomi; Mizutani, Masaharu; Takikawa, Hirosato; Sugimoto, Yukihiro

    2015-09-15

    Bioconversion of GR24, the most widely used synthetic strigolactone (SL), by hydroponically grown sorghum (Sorghum bicolor) and biological activities of hydroxylated GR24 stereoisomers were studied. Analysis of extracts and exudates of sorghum roots previously fed with a racemic and diastereomeric mixture of GR24, using liquid chromatography-tandem mass spectrometry with multiple reaction monitoring (MRM), confirmed uptake of GR24 and suggested its conversion to mono-hydroxylated products. Two major GR24 metabolites, 7-hydroxy-GR24 and 8-hydroxy-GR24, were identified in the root extracts and exudates by direct comparison of chromatographic behavior with a series of synthetic mono-hydroxylated GR24 analogues. Separate feeding experiments with each of the GR24 stereoisomers revealed that the hydroxylated products were derived from 2'-epi-GR24, an evidence of sterical recognition of the GR24 molecule by sorghum. Trans-4-hydroxy-GR24 isomers derived from all GR24 stereoisomers were detected in the exudates as minor metabolites. The synthetic hydroxy-GR24 isomers induced germination of Striga hermonthica in decreasing order of C-8>C-7>C-6>C-5>C-4. In contrast the stereoisomers having the same configuration of orobanchol, irrespective of position of hydroxylation, induced germination of Striga gesnerioides. The results confirm previous reports on structural requirements of SLs and ascribe a critical role to hydroxylation, but not to the position of the hydroxyl group in the AB part of the molecule, in induction of S. gesnerioides seed germination.

  19. Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl

    PubMed Central

    Chen, Jie; Zhang, Weili; Sun, Yuanyuan; Zheng, Yongping; Tang, Nujiang; Du, Youwei

    2016-01-01

    Creation of high-density localized spins in the basal plane of graphene sheet by introduction of sp3-type defects is considered to be a potential route for the realization of high-magnetization graphene. Theoretical and experimental studies confirmed that hydroxyl can be an effective sp3-type candidate for inducing robust magnetic moment. However, the artificial generation of hydroxyl groups for creating high-density spins on the basal plane of graphene sheet is very scarce. Here we demonstrate that high-content hydroxyl groups can be generated on the basal plane of graphene oxide (GO) sheet by ring opening of epoxy groups. We show that by introduction of 10.74 at.% hydroxyl groups, the density of localized spins of GO can be significantly increased from 0.4 to 5.17 μB/1000 C. Thus, this study provided an effective method to obtain graphene with high-density localized spins. PMID:27225991

  20. Bacterial metabolism of hydroxylated biphenyls.

    PubMed Central

    Higson, F K; Focht, D D

    1989-01-01

    Isolates able to grow on 3- or 4-hydroxybiphenyl (HB) as the sole carbon source were obtained by enrichment culture. The 3-HB degrader Pseudomonas sp. strain FH12 used an NADPH-dependent monooxygenase restricted to 3- and 3,3'-HBs to introduce an ortho-hydroxyl. The 4-HB degrader Pseudomonas sp. strain FH23 used either a mono- or dioxygenase to generate a 2,3-diphenolic substitution pattern which allowed meta-fission of the aromatic ring. By using 3-chlorocatechol to inhibit catechol dioxygenase activity, it was found that 2- and 3-HBs were converted by FH23 to 2,3-HB, whereas biphenyl and 4-HB were attacked by dioxygenation. 4-HB was metabolized to 2,3,4'-trihydroxybiphenyl. Neither organism attacked chlorinated HBs. The degradation of 3- and 4-HBs by these strains is therefore analogous to the metabolism of biphenyl, 2-HB, and naphthalene in the requirement for 2,3-catechol formation. PMID:2729993

  1. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  2. Evaluation and Optimization of TSNCO Method for Hydroxyl Analysis

    DTIC Science & Technology

    1985-01-01

    containing materials. The method involves the reaction of the hydroxyl group with toluenesulfonyl isocyanate and subsequent •acidimetric titrotion of the... reaction product in a nonuqueous solution. The method is rapid, selecti•., yields reproducible results, and in qIdely applicable INTRODUCTION The... reaction with p-tolupaesulfonyl isocyanate (TSNCO). Acetylation and phthalation have been used for a number of years and have been fairly well-characterized

  3. Surface studies of hydroxylated multi-wall carbon nanotubes

    SciTech Connect

    Bradley, Robert; Cassity, Kelby; Andrews, Rodney; Meier, Mark; Osbeck, Susan; Andreu, Aurik; Johnston, Colin; Crossley, Alison

    2012-01-01

    CVD grown MWCNTs, of typical diameter 5 to 50 nm and with approximately 15-20 concentric graphene layers in the multi-walls, have been surface functionalised using the Fenton hydroxylation reaction. HRTEM reveals little physical difference between the treated and untreated materials; images from both exhibit similar multi-wall structure and contain evidence for some low-level disruption of the very outermost layers. Raman spectra from the two types of nanotubes are almost identical displaying the disorder (D) peaks at approximately 1350 cm{sup -1} and graphite (G) peaks at approximately 1580 cm{sup -1}, characteristic of graphene-based carbon materials, in approximately equal intensity ratios. Equilibrium adsorption data for nitrogen at 77 K leads to BET surface areas of 60.4 m{sup 2} g{sup -1} for the untreated and 71.8 m{sup 2} g{sup -1} for the hydroxylated samples; the increase in area being due to separation of the tube-bundles during functionalization. This is accompanied by a decrease in measured porosity, mostly at high relative pressures of nitrogen, i.e. where larger (meso 2-5 nm and macro >5 nm) pores are being filled, which is consistent with an attendant loss of inter-tube capillarity. X-ray photoelectron spectroscopy (XPS) shows that hydroxylation increases the nanotube surface oxygen level from 4.3 at.% to 22.3 at.%; chemical shift data indicate that approximately 75% of that oxygen is present as hydroxyl (-OH) groups. Water vapour adsorption by the hydroxylated surfaces leads to Type II isotherms which are characteristic of relatively high numbers of hydrogen bonding interactions compared to the untreated materials which exhibit Type III curves. This difference in polar surface energy is confirmed by calorimetric enthalpies of immersion in water which are -54 mJ m{sup -2} for the untreated and -192 mJ m{sup -2} for the hydroxylated materials. The treated materials therefore have significantly increased water wettability/dispersivity and a greater

  4. Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines

    SciTech Connect

    Mock, Michael T.; Pierpont, Aaron W.; Egbert, Jonathan D.; O'Hagan, Molly J.; Chen, Shentan; Bullock, R. Morris; Dougherty, William G.; Kassel, W. S.; Rousseau, Roger J.

    2015-05-18

    The first example of a mono-dinitrogen Cr0 complex, Cr(N2)(dmpe)(PPh3NBn3), 2(N2), (PPh3NBn3 = 1,5,9-tribenzyl-3,7,11-triphenyl-1,5,9-triaza-3,7,11-triphosphacyclododecane; dmpe = 1,2-bis(dimethylphosphino)ethane) containing a pentaphosphine coordination environment is described. 2(N2) is supported by a unique facially coordinating 12-membered phosphorus macrocycle containing pendant amine groups in the second coordination sphere. Treatment of 2(N2) at -78 °C with 1 equiv of [H(OEt2)2][B(C6F5)4] results in protonation of the metal center, generating the 7-coordinate Cr(II)-N2 hydride complex, [Cr(H)(N2)(dmpe)(PPh3NBn3)][B(C6F5)4], [2(H)(N2)]+. Treatment of 2(15N2) with excess triflic acid at -50 °C afforded a trace amount of 15NH4+ from the reduction of the coordinated 15N2 ligand (electrons originate from Cr). Augmenting the acid reactivity studies, electronic structure calculations evaluated the pKa values of three sites of 2(N2) (metal center, pendant amine, and N2 ligand) to elucidate possible Cr-NxHy intermediates involved in the N2 reduction pathways from the protonation of 2(N2). This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  5. Enhancement of 4-electron O2 reduction by a Cu(ii)-pyridylamine complex via protonation of a pendant pyridine in the second coordination sphere in water.

    PubMed

    Kotani, Hiroaki; Yagi, Tomomi; Ishizuka, Tomoya; Kojima, Takahiko

    2015-09-07

    We have synthesised a novel copper(ii) complex with a pyridine pendant as a proton relay port for electrocatalytic 4e(-) reduction of O2 in water. The enhancement of the electrocatalytic O2 reduction via protonation of the pyridine pendant is demonstrated in comparison with a copper(ii) complex without the pyridine pendant.

  6. Polythiophenes based on pyrene as pendant group: Synthesis, structural characterization and luminescent properties

    NASA Astrophysics Data System (ADS)

    González-Juárez, E.; Güizado-Rodríguez, M.; Barba, V.; Melgoza-Ramírez, M.; Rodríguez, M.; Ramos-Ortíz, G.; Maldonado, J. L.

    2016-01-01

    Novel polythiophenes (PTs) derived from 3-alkylthiophenes (R = hexyl, octyl) and a thiophene functionalized with pyrene chromophore were synthesized. A homopolymer and copolymers were obtained by using different stoichiometric ratios, and their photophysical properties were investigated. Physicochemically characterized by FT-IR, 1H NMR, UV-vis, DSC-TGA and GPC as well as fluorescence spectroscopy, the new PTs reached moderate molecular weight distributions, exhibited good thermal properties and were easily processable for depositing films of satisfactory optical quality with third-order nonlinear optical susceptibilities of approximately 10-12 esu. The new PTs showed absorption and emission bands ranging from 346 to 430 nm, and from 450 to 570 nm, respectively, with quantum yields between 0.07 and 0.25. In addition, nanoparticles were obtained from the PTs by using the mini-emulsion technique. Their spectroscopic characteristics and morphology were determined by means of UV-vis spectroscopy and SEM analysis.

  7. ATR-IR spectroscopy of pendant NH2 groups on silica involved in the Knoevenagel condensation.

    PubMed

    Wirz, Ronny; Ferri, Davide; Baiker, Alfons

    2006-04-11

    The liquid-phase Knoevenagel condensation between benzaldehyde and ethyl cyanoacetate catalyzed by aminopropyl-modified silica has been investigated using in situ attenuated total reflection infrared (ATR-IR) spectroscopy. The aim of the work was to demonstrate the different levels of information on the reaction mechanism that can be achieved by operating the spectroscopic cell in the absence and in the presence of a solvent, in flow-through and stop-flow modes and in combination with concentration modulation spectroscopy. The reaction mechanism involves the formation of an imine intermediate whose existence has been verified in situ by combining in one experiment continuous and stop-flow operations. Identical information has been gained more elegantly using concentration modulation spectroscopy, which additionally provided information on the possible origin of the solvent effect observed in the Knoevenagel reaction. Faster production and consumption of the imine intermediate was observed in cyclohexane solvent than in toluene. Identification of other species evolving on the catalyst surface and monitoring of the effluents of the spectroscopic cell provided some insight in possible catalyst deactivation.

  8. Adamantyl-Substituted Retinoid-Derived Molecules That Interact with the Orphan Nuclear Receptor Small Heterodimer Partner: Effects of Replacing the 1-Adamantyl or Hydroxyl Group on Inhibition of Cancer Cell Growth, Induction of Cancer Cell Apoptosis, and Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Activity

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin; Jiang, Tao; Ye, Mao; Fontana, Joseph A.; Farhana, Lulu; Patel, Bhaumik; Xue, Li Ping; Bhuiyan, Mohammad; Pellicciari, Roberto; Macchiarulo, Antonio; Nuti, Roberto; Zhang, Xiao-Kun; Han, Young-Hoon; Tautz, Lutz; Hobbs, Peter D.; Jong, Ling; Waleh, Nahid; Chao, Wan-ru; Feng, Gen-Sheng; Pang, Yuhong; Su, Ying

    2014-01-01

    (E)-4-[3-(1-Adamantyl)-4′-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces the cell-cycle arrest and apoptosis of leukemia and cancer cells. Studies demonstrated that 3-Cl-AHPC bound to the atypical orphan nuclear receptor small heterodimer partner (SHP). Although missing a DNA-binding domain, SHP heterodimerizes with the ligand-binding domains of other nuclear receptors to repress their abilities to induce or inhibit gene expression. 3-Cl-AHPC analogues having the 1-adamantyl and phenolic hydroxyl pharmacophoric elements replaced with isosteric groups were designed, synthesized, and evaluated for their inhibition of proliferation and induction of human cancer cell apoptosis. Structure–anticancer activity relationship studies indicated the importance of both groups to apoptotic activity. Docking of 3-Cl-AHPC and its analogues to an SHP computational model that was based on the crystal structure of ultraspiracle complexed with 1-stearoyl-2-palmitoylglycero-3-phosphoethanolamine suggested why these 3-Cl-AHPC groups could influence SHP activity. Inhibitory activity against Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp-2) was also assessed. The most active Shp-2 inhibitor was found to be the 3′-(3,3-dimethylbutynyl) analogue of 3-Cl-AHPC. PMID:18759424

  9. Stratigraphy and structure of the Strawberry Mine roof pendant, central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, W.J.

    1981-01-01

    The Strawberry mine roof pendant, 90 km northeast of Fresno, Calif., is composed of a sequence of metasedimentary rocks of probable Early Jurassic age and a sequence of metaigneous rocks of middle Cretaceous age. The metasedimentary rocks are a former miogeosynclinal sequence of marl and limestone now metamorphosed to calc-silicate hornfels and marble. A pelecypod found in the calc-silicate hornfels has been tentatively identified as a Mesozoic bivalve, possibly Inoceramus pseudomytiloides of Early Jurassic age. These metasedimentary rocks are similar in lithology, structure, and gross age to the metasedimentary rocks of the Boyden Cave roof pendant and are assigned to the Lower Jurassic Kings sequence. The younger metaigneous rocks are metamorphosed shallow-in trusi ve rocks that range in composi tion from granodiorite to rhyolite. These rocks are similar in composition and age to the metavolcanic rocks of the surrounding Merced Peak quadrangle and nearby Ritter Range, and probably represent necks or dikes that were one source for the meta volcanic rocks. The roof pendant is intruded by several plutons, ranging in composition from dioritic to highly felsic, that constitute part of the granodiorite of Jackass Lakes, also M middle Cretaceous age. The contemporaneous suites of metaigneous, metavolcanic, and plutonic rocks in the region represent a middle Cretaceous period of calc-alkalic volcanism and plutonism in the central Sierra Nevada and are interpreted as part of an Andean-type volcanic-plutonic arc. Three deformations are documented in the roof pendant. The first deformation is reflected only in the metasedimentary rocks and consists of northeast-to east-west-trending folds. Similar structures occur in the Boyden Cave roof pendant and in the Calaveras Formation and represent a Middle Jurassic regional deformation. Evidence of the second deformation occurs in the metasedimentary and metaigneous rocks and consists of folds, faults, minor structures, and

  10. Ln(iii)-complexes of a DOTA analogue with an ethylenediamine pendant arm as pH-responsive PARACEST contrast agents.

    PubMed

    Krchová, T; Gálisová, A; Jirák, D; Hermann, P; Kotek, J

    2016-02-28

    A novel macrocyclic DO3A derivative containing a linear diamine pendant arm, H3do3aNN, was prepared and its protonation and complexation properties were studied by means of potentiometry. It determined ligand consecutive protonation constants log K(An) = 12.62, 10.28, 9.67, 8.30, 3.30 and 1.58 and stability constants of selected lanthanide (Eu(iii), Yb(iii)) complexes log K(EuL) = 23.16 and log KYbL = 22.76. The complexes could be protonated on the pendant amino group(s) with log K(HLM) ≈ 5.6 and log K(H2LM) ≈ 4.8. Solution structures of both complexes were studied by NMR spectroscopy. The study revealed that the complex species exist exclusively in the form of twisted-square-antiprismatic (TSA) isomers. The complexes show significant pH dependence of the Chemical Exchange Saturation Transfer (CEST) between their amino groups and the bulk water molecules in the pH range of 5-8. Thus, the pH dependence of the magnetization transfer ratio of CEST signals can be used for pH determination using magnetic resonance imaging techniques in a pH range relevant for in vivo conditions.

  11. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A.; Hogle, Richard E.

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  12. Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere.

    PubMed

    Delgado, Mayra; Ziegler, Joshua M; Seda, Takele; Zakharov, Lev N; Gilbertson, John D

    2016-01-19

    A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).

  13. An analysis of the sensitivity of pendant drops and liquid bridges to measure the interfacial tension

    NASA Astrophysics Data System (ADS)

    Ferrera, C.; Montanero, J. M.; Cabezas, M. G.

    2007-12-01

    Drop shape techniques, such as axisymmetric drop shape analysis, provide accurate measurements of the interfacial tension from images of pendant drops for a wide variety of experimental conditions. However, these techniques are known to fail when dealing with nearly spherical drop shapes, which may occur, for instance, when working with interfaces between liquids of similar densities and/or under microgravity. We analyzed the advantages of using liquid bridges close to the minimum volume stability limit instead of pendant drops to measure the interfacial tension under different experimental conditions. First, the sensitivity of both configurations to a variation of the interfacial tension is studied numerically as a function of the volume for several Bond numbers B. The results indicate that a liquid bridge close to the minimum volume stability limit is generally more sensitive than a pendant drop of the same volume, especially for small values of the density difference across the interface and/or gravity. This suggests that the use of liquid bridges may extend the range of applicability of drop shape techniques. To explore this possibility, synthetic images of both pendant drops and liquid bridges were generated and then processed by TIFA-AI. The results demonstrated that the use of liquid bridges enhances the range of Bond numbers for which drop shape techniques work satisfactorily. More specifically, similar accuracy is obtained from both configurations for B ~ 10-1, while the use of liquid bridges yields much better results for B ~ 10-2. Finally, experiments were conducted to partially validate the analysis based on synthetic images. Good agreement was found between the values determined from the real and synthetic images.

  14. Hydroxyl radical oxidation of feruloylated arabinoxylan.

    PubMed

    Bagdi, Attila; Tömösközi, Sándor; Nyström, Laura

    2016-11-05

    Feruloylated arabinoxylan (AX) has a unique capacity to form covalent gels in the presence of certain oxidizing agents. The present study demonstrates that hydroxyl radical oxidation does not provoke ferulic acid dimerization and thus oxidative gelation. We studied the hydroxyl radical mediated oxidation of an alkali-extracted AX preparation (purity: 92g/100g dry matter) that showed gel-forming capability upon peroxidase/hydrogen peroxide treatment. Hydroxyl radicals were produced with ascorbate-driven Fenton reaction and the radical formation was monitored with electron paramagnetic resonance, using a POBN/EtOH spin trapping system. Oxidation was carried out at different catalytic concentrations of iron (50 and 100μM) and at different temperatures (20°C, 50°C, and 80°C). It was demonstrated that hydroxyl radical oxidation does not provoke gel formation, but viscosity decrease in AX solution, which suggests polymer degradation. Furthermore, it was demonstrated that hydroxyl radical formation in AX solution can be initiated merely by increasing temperature.

  15. Hydroxyl radical scavengers inhibit lymphocyte mitogenesis.

    PubMed Central

    Novogrodsky, A; Ravid, A; Rubin, A L; Stenzel, K H

    1982-01-01

    Agents that are known to be scavengers of hydroxyl radicals inhibit lymphocyte mitogenesis induced by phorbol myristate acetate (PMA) to a greater extent than they inhibit mitogenesis induced by concanavalin A or phytohemagglutinin. These agents include dimethyl sulfoxide, benzoate, thiourea, dimethylurea, tetramethylurea, L-tryptophan, mannitol, and several other alcohols. Their inhibitory effect is not associated with cytotoxicity. The hydroxyl radical scavengers do not inhibit PMA-dependent amino acid transport in T cells or PMA-induced superoxide production by monocytes. Thus, they do not inhibit the primary interaction of PMA with responding cells. Treatment of peripheral blood mononuclear cells with PMA increased cellular guanylate cyclase in most experiments, and dimethyl sulfoxide tended to inhibit this increase. In addition to inhibition of PMA-induced mitogenesis, hydroxyl radical scavengers markedly inhibited the activity of lymphocyte activating factor (interleukin 1). The differential inhibition of lymphocyte mitogenesis induced by different mitogens appears to be related to the differential macrophage requirements of the mitogens. The data suggest that hydroxyl radicals may be involved in mediating the triggering signal for lymphocyte activation. Some of the hydroxyl radical scavengers are inducers of cellular differentiation,. nd it is possible that their differentiating activity is related to their ability to scavenge free radicals. PMID:6122209

  16. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    SciTech Connect

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A.; Gámez-Corrales, R.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  17. Electron stimulated hydroxylation of a metal supported silicate film.

    PubMed

    Yu, Xin; Emmez, Emre; Pan, Qiushi; Yang, Bing; Pomp, Sascha; Kaden, William E; Sterrer, Martin; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Goikoetxea, Itziar; Wlodarczyk, Radoslaw; Sauer, Joachim

    2016-02-07

    Water adsorption on a double-layer silicate film was studied by using infrared reflection-absorption spectroscopy, thermal desorption spectroscopy and scanning tunneling microscopy. Under vacuum conditions, small amounts of silanols (Si-OH) could only be formed upon deposition of an ice-like (amorphous solid water, ASW) film and subsequent heating to room temperature. Silanol coverage is considerably enhanced by low-energy electron irradiation of an ASW pre-covered silicate film. The degree of hydroxylation can be tuned by the irradiation parameters (beam energy, exposure) and the ASW film thickness. The results are consistent with a generally accepted picture that hydroxylation occurs through hydrolysis of siloxane (Si-O-Si) bonds in the silica network. Calculations using density functional theory show that this may happen on Si-O-Si bonds, which are either parallel (i.e., in the topmost silicate layer) or vertical to the film surface (i.e., connecting two silicate layers). In the latter case, the mechanism may additionally involve the reaction with a metal support underneath. The observed vibrational spectra are dominated by terminal silanol groups (ν(OD) band at 2763 cm(-1)) formed by hydrolysis of vertical Si-O-Si linkages. Film dehydroxylation fully occurs only upon heating to very high temperatures (∼ 1200 K) and is accompanied by substantial film restructuring, and even film dewetting upon cycling hydroxylation/dehydroxylation treatment.

  18. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines

    SciTech Connect

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM; Helm, Monte L.; Appel, Aaron M.

    2014-09-05

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  19. Synthesis and characterization of thermally stable aromatic polyamides and poly(1,3,4-oxadiazole-amide)s nanoparticles containing pendant substituted bezamides

    PubMed Central

    2013-01-01

    Background The introduction of pendent bulky groups along the polymer backbone results in a less ordered polymer matrix and increases the solubility characteristics without affecting thermal properties. The inclusion of chromogenic chemical moieties in the chains can give rise to the luminescent converter material which permits the preparation of materials with potential applications. Aromatic polymers containing heterocyclic rings in the main chain are known for their high thermal resistance, good hydrolytic stability, low dielectric and tough mechanical properties. There is currently much research directed towards the discovery of new blue light-emitting polymers, with characteristics of high efficiency and high reliability. Herein, we describe the preparation of aromatic polyamides and poly (1,3,4-oxadiazole-amide)s nanoparticles with pendant structures comprised of m- and p-acetoxybenzamide groups, where the acetoxybenzamide groups act as signaling units due to their fluorescent and chromogenic characteristics. Results Aromatic polyamides and poly(1,3,4-oxadiazole-amide)s nanoparticles with pendant structures comprised of m- and p-acetoxybenzamide groups were successfully prepared and characterized using different analytical methods. Most polyamides were obtained as well-separated spherical nanoparticles while aramide containing pyridine produced aggregated particles attributed to the molecular self assembly via H-bond directed organization of molecular precursors. The thermal behavior of all polymers exhibited two major thermal decompositions due to the subsequent breakage of the acetoxy group in the lateral chain and cleavage of the main amide bonds. Photoluminescence studies revealed that the blue emissions for the polyamide derived from benzidine were blue-shifted (shifted to a lower wavelength) compared to that of polyamides containing flexible linkages. Conclusions We report the synthesis of aromatic polyamides and poly(1,3,4-oxadiazole

  20. Hydroxylated PBDEs induce developmental arrest in zebrafish.

    PubMed

    Usenko, Crystal Y; Hopkins, David C; Trumble, Stephen J; Bruce, Erica D

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24-28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis.

  1. 21 CFR 172.814 - Hydroxylated lecithin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... label of the food additive container shall bear, in addition to the other information required by the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydroxylated lecithin. 172.814 Section 172.814 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  2. Targeted acylation for all the hydroxyls of (+)-catechin and evaluation of their individual contribution to radical scavenging activity.

    PubMed

    Hong, Shan; Liu, Songbai

    2016-04-15

    The reactivity profile of all the hydroxyl groups in (+)-catechin towards acylation and their respective contribution to radical scavenging activity were systematically explored in this work. Selective acylation of the hydroxyls on different rings was carried out employing either a basic or acidic activation strategy. Monoacylation of B ring was achieved effectively with the aid of dimethyltin dichloride. Monoacylation of A ring was accomplished by sequential protection and deprotection of B and C rings. Based on specific acylation of all the individual hydroxyls of (+)-catechins, the structure radical scavenging activity relationship of each hydroxyl of (+)-catechin was established. It was demonstrated that the vicinal phenolic hydroxyls on B ring played the most important role in the ABTS radical scavenging activity and those on A and C rings made a much smaller contribution. This study has laid solid groundwork for further modification of the catechins and improvement of their properties.

  3. 153Sm and 166Ho complexes with tetraaza macrocycles containing pyridine and methylcarboxylate or methylphosphonate pendant arms.

    PubMed

    Marques, Fernanda; Guerra, Krassimira P; Gano, Lurdes; Costa, Judite; Campello, M Paula; Lima, Luís M P; Delgado, Rita; Santos, Isabel

    2004-10-01

    A set of tetraaza macrocycles containing pyridine and methylcarboxylate (ac(3)py14) or methylphosphonate (MeP(2)py14 and P(3)py14) pendant arms were prepared and their stability constants with La(3+), Sm(3+), Gd(3+) and Ho(3+) determined by potentiometry at 25 degrees C and 0.10 M ionic strength in NMe(4)NO(3). The metal:ligand ratio for (153)Sm and (166)Ho and for ac(3)py14, MeP(2)py14 and P(3)py14, as well as the pH of the reaction mixtures, were optimized to achieve a chelation efficiency higher than 98%. These radiocomplexes are hydrophilic and have a significant plasmatic protein binding. In vitro stability was studied in physiological solutions and in human serum. All complexes are stable in saline and PBS, but 20% of radiochemical impurities were detected after 24 h of incubation in serum. Biodistribution studies in mice indicated a slow rate of clearance from blood and muscle, a high and rapid liver uptake and a very slow rate of total radioactivity excretion. Some bone uptake was observed for complexes with MeP(2)py14 and P(3)py14, which was enhanced with time and the number of methylphosphonate groups. This biological profile supports the in vitro instability found in serum and is consistent with the thermodynamic stability constants found for these complexes.

  4. Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption.

    PubMed

    Sipponen, Mika Henrikki; Pihlajaniemi, Ville; Littunen, Kuisma; Pastinen, Ossi; Laakso, Simo

    2014-10-01

    A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available.

  5. From surfactant adsorption kinetics to asymmetric nanomembrane mechanics: pendant drop experiments with subphase exchange.

    PubMed

    Ferri, James K; Kotsmar, Csaba; Miller, Reinhard

    2010-12-15

    Adsorption equilibrium is the state in which the chemical potential of each species in the interface and bulk is the same. Dynamic phenomena at fluid-fluid interfaces in the presence of surface active species are often probed by perturbing an interface or adjoining bulk phase from the equilibrium state. Many methods designed for studying kinetics at fluid-fluid interfaces focus on removing the system from equilibrium through dilation or compression of the interface. This modifies the surface excess concentration Γ(i) and allows the species distribution in the bulk C(i) to respond. There are only a few methods available for studying fluid-fluid interfaces which seek to control C(i) and allow the interface to respond with changes to Γ(i). Subphase exchange in pendant drops can be achieved by the injection and withdrawal of liquid into a drop at constant volumetric flow rate R(E) during which the interfacial area and drop volume V(D) are controlled to be approximately constant. This can be accomplished by forming a pendant drop at the tip of two coaxial capillary tubes. Although evolution of the subphase concentration C(i)(t) is dictated by extrinsic factors such as R(E) and V(D), complete subphase exchange can always be attained when a sufficient amount of liquid is used. This provides a means to tailor driving forces for adsorption and desorption in fluid-fluid systems and in some cases, fabricate interfacial materials of well-defined composition templated at these interfaces. The coaxial capillary pendant drop (CCPD) method opens a wide variety of experimental possibilities. Experiments and theoretical frameworks are reviewed for the study of surfactant exchange kinetics, macromolecular adsorption equilibrium and dynamics, as well as the fabrication of a wide range of soft surface materials and the characterization of their mechanics. Future directions for new experiments are also discussed.

  6. Coalescence of pendant droplets on an inclined super-hydrophobic substrate

    NASA Astrophysics Data System (ADS)

    Sikarwar, Basant Singh; Khanderkar, Sameer; Muralidhar, K.

    2013-07-01

    Dynamics of micro droplets, coalescence underneath an inclined hydrophobic surface is explored, experimentally as well as computationally. Such a situation often arises during dropwise condensation, atmospheric dew formation, condensation in green houses, and metal vapor condensation during enrichment process, etc. Coalescence induced instability in the pendant mode is an effective means of passively enhancing heat transfer coefficient during dropwise condensation. Inclined substrates have natural advantages in terms of rendering effective passive sweeping of drops from the substrate, thereby exposing fresh preferred sites for renucleation. As compared to coalescences of sessile droplets, pendant mode induces flow instabilities at a much faster rate, thereby enhancing the associated heat/ mass transport characteristics. Against this background, the present study reports an experiment involving the coalescence of water drops in pendant mode on an inclined hydrophobic copper substrate of size 20 mm × 20 mm × 2 mm. The substrate has been prepared by developing a monolayer of n-octadecanethiol on it by chemical action. This work focuses on fundamental understanding of the mechanism of drop coalescence underneath an inclined super-hydrophobic substrate to provide aid in controlling and promoting dropwise mode of condensation in order to increase efficiency of condenser or to aid in enrichment of heavy liquid metals in closed vacuum condition. The coalescence process gets initiated by the extra available surface energy which gets released in the process. Immediately afterwards, the process of oscillating free surface formed during the coalescence is limited by viscous and inertia forces. The free surface oscillations can last ˜ 10 to 100 milliseconds, depending on the size of droplets and their thermophysical properties. Depending on the local wettability, size of drops which are coalescing, substrate inclination and pinning/de-pinning behavior, droplet instability

  7. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.

    PubMed

    O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris

    2011-09-14

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in

  8. Compound pendant drop tensiometry for interfacial tension measurement at zero bond number.

    PubMed

    Neeson, Michael J; Chan, Derek Y C; Tabor, Rico F

    2014-12-30

    A widely used method to determine the interfacial tension between fluids is to quantify the pendant drop shape that is determined by gravity and interfacial tension forces. Failure of this method for small drops or small fluid density differences is a critical limitation in microfluidic applications and when only small fluid samples are available. By adding a small spherical particle to the interface to apply an axisymmetric deformation, both the particle density and the interfacial tension can be simultaneously and precisely determined, providing an accurate and elegant solution to a long-standing problem.

  9. Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen

    SciTech Connect

    O'Hagan, Molly; Shaw, Wendy J.; Raugei, Simone; Chen, Shentan; Yang, Jenny Y.; Kilgore, Uriah J.; DuBois, Daniel L.; Bullock, R. Morris

    2011-05-19

    Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO₂ to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(PCy₂NBn₂H)₂]²⁺ (PCy₂NBn₂ = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(PCy₂NBn₂H)₂]²⁺, which have N–H bonds but no Ni–H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10⁴ to 10⁵ s⁻¹ at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG = 11–12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation

  10. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. Scott; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; DuBois, M. Rakowski

    2010-01-01

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. Finally, the turnover rate of 50 s-1 under 1.0 atm H2 at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H2 oxidation catalyst.

  11. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines.

    PubMed

    Yang, Jenny Y; Chen, Shentan; Dougherty, William G; Kassel, W Scott; Bullock, R Morris; DuBois, Daniel L; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; Rakowski DuBois, M

    2010-12-07

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(P(Cy)(2)N(t-Bu)(2))(2)](2+) has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turnover rate of 50 s(-1) under 1.0 atm H(2) at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H(2) oxidation catalyst.

  12. Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability.

    PubMed

    Huguet, Carme; Fietz, Susanne; Rosell-Melé, Antoni; Daura, Xavier; Costenaro, Lionel

    2017-02-16

    Archaeal tetraether membrane lipids span the whole membrane width and present two C40 isoprenoid chains bound by two glycerol groups (or one glycerol and calditol). These lipids confer stability and maintain the membrane fluidity in mesophile to extremophile environments, making them very attractive for biotechnological applications. The isoprenoid lipid composition in archaeal membranes varies with temperature, which has placed these lipids in the focus of paleo-climatological studies for over a decade. Non-hydroxylated isoprenoid archaeal lipids are typically used as paleo-thermometry proxies, but recently identified hydroxylated (OH) derivatives have also been proposed as temperature proxies. The relative abundance of hydroxylated lipids increases at lower temperatures, but the physiological function of the OH moiety remains unknown. Here we present molecular dynamics simulations of membranes formed by the acyclic glycerol-dialkyl-glycerol-tetraether caldarchaeol (GDGT-0), the most widespread archaeal core lipid, and its mono-hydroxylated variant (OH-GDGT-0) to better understand the physico-chemical properties conferred to the membrane by this additional moiety. The molecular dynamics simulations indicate that the additional OH group forms hydrogen bonds mainly with the sugar moieties of neighbouring lipids and with water molecules, effectively increasing the size of the polar headgroups. The hydroxylation also introduces local disorder that propagates along the entire alkyl chains, resulting in a slightly more fluid membrane. These changes would help to maintain trans-membrane transport in cold environments, explaining why the relative abundance of hydroxylated Archaea lipids increases at lower temperatures. The in silico approach aids to understand the underlying physiological mechanisms behind the hydroxylated lipid based paleo-thermometer recently proposed.

  13. Hydroxyl radical generation by red tide algae.

    PubMed

    Oda, T; Akaike, T; Sato, K; Ishimatsu, A; Takeshita, S; Muramatsu, T; Maeda, H

    1992-04-01

    The unicellular marine phytoplankton Chattonella marina is known to have toxic effects against various living marine organisms, especially fishes. However, details of the mechanism of the toxicity of this plankton remain obscure. Here we demonstrate the generation of superoxide and hydroxyl radicals from a red tide unicellular organism, C. marina, by using ESR spectroscopy with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and N-t-butyl-alpha-phenylnitrone (PBN), and by using the luminol-enhanced chemiluminescence response. The spin-trapping assay revealed productions of spin adduct of superoxide anion (O2-) (DMPO-OOH) and that of hydroxyl radical (.OH) (DMPO-OH) in the algal suspension, which was not observed in the ultrasonic-ruptured suspension. The addition of superoxide dismutase (500 U/ml) almost completely inhibited the formation of both DMPO-OOH and DMPO-OH, and carbon-centered radicals were generated with the disappearance of DMPO-OH after addition of 5% dimethyl sulfoxide (Me2SO) and 5% ethanol. Furthermore, the generation of methyl and methoxyl radicals, which are thought to be produced by the reaction of hydroxyl radical and Me2SO under aerobic condition, was identified using spin trapping with a combination of PBN and Me2SO. Luminol-enhanced chemiluminescence assay also supported the above observations. These results clearly indicate that C. marina generates and releases the superoxide radical followed by the production of hydroxyl radical to the surrounding environment. The velocity of superoxide generation by C. marina was about 100 times faster than that by mammalian phagocytes per cell basis. The generation of oxygen radical is suggested to be a pathogenic principle in the toxication of red tide to susceptible aquaculture fishes and may be directly correlated with the coastal pollution by red tide.

  14. STM and HREELS investigation of gas phase silanization on hydroxylated Si(100)

    NASA Astrophysics Data System (ADS)

    Fan, C.; Lopinski, G. P.

    2010-06-01

    The gas phase anhydrous reaction of glycidoxypropyldimethylethoxysilane (GPDMES) with a model hydroxylated surface has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM). Water dissociation on the clean reconstructed (2 × 1)-Si(100) surface was used to create an atomically flat surface with ~ 0.5 ML of hydroxyl groups. Exposure of this surface to GPDMES at room temperature under vacuum was found to lead to formation of covalent Si-O-Si bonds although high exposures (6 × 10 8 L) were required for saturation. STM images at the early stages of reaction indicate that the reaction occurs randomly on the surface with no apparent clustering. The STM images together with semi-empirical (AM1) calculations provide evidence for hydrogen bonding interactions between the oxygen atoms in the molecule and surface hydroxyl groups at low coverage.

  15. Probing RNA folding by hydroxyl radical footprinting.

    PubMed

    Costa, Maria; Monachello, Dario

    2014-01-01

    In recent years RNA molecules have emerged as central players in the regulation of gene expression. Many of these noncoding RNAs possess well-defined, complex, three-dimensional structures which are essential for their biological function. In this context, much effort has been devoted to develop computational and experimental techniques for RNA structure determination. Among available experimental tools to investigate the higher-order folding of structured RNAs, hydroxyl radical probing stands as one of the most informative and reliable ones. Hydroxyl radicals are oxidative species that cleave the nucleic acid backbone solely according to the solvent accessibility of individual phosphodiester bonds, with no sequence or secondary structure specificity. Therefore, the cleavage pattern obtained directly reflects the degree of protection/exposure to the solvent of each section of the molecule under inspection, providing valuable information about how these different sections interact together to form the final three-dimensional architecture. In this chapter we describe a robust, accurate and very sensitive hydroxyl radical probing method that can be applied to any structured RNA molecule and is suitable to investigate RNA folding and RNA conformational changes induced by binding of a ligand.

  16. Identification of hydroxylated metabolites of hexabromocyclododecane in wildlife and 28-days exposed Wistar rats.

    PubMed

    Brandsma, Sicco H; Van der Ven, Leo T M; De Boer, Jacob; Leonards, Pim E G

    2009-08-01

    We studied the presence of hydroxylated metabolites of hexabromocyclododecane (HBCD) in three wildlife species (tern egg, seal, and flounder) and in Wistar rats exposed to 30 and 100 mg HBCD/kg bw/day for 28 days. A nondestructive extraction, fractionation, and cleanup method was developed to separate the hydroxylated HBCD metabolites from the biotic sample matrix. Four different groups of hydroxylated HBCD metabolites were identified in rat adipose, liver, lung, and muscle tissues by liquid and gas chromatography (LC and GC) combined with mass spectrometry (MS): monohydroxy metabolites of HBCD, pentabromocyclododecene (PBCDe), tetrabromocyclododecene (TBCDe), and dihydroxy-HBCD. Dihydroxy-PBCDe was identified by GC-MS but could not be confirmed by LCMS. Debromination of HBCD to PBCDe was another metabolic pathway observed. In tern eggs from the Western Scheldt the monohydroxy-HBCD was found and in the blubber of harbor seal (Wadden Sea) the monohydroxy metabolites of HBCD and PBCDe were found. No hydroxylated metabolites were detected in the tissue of flounder (Wadden Sea). To our knowledge, this is the first study to identify different hydroxylated metabolite groups of HBCD in rat and wildlife samples.

  17. "Bicontinuous cubic" liquid crystalline materials from discotic molecules: a special effect of paraffinic side chains with ionic liquid pendants.

    PubMed

    Alam, Md Akhtarul; Motoyanagi, Jin; Yamamoto, Yohei; Fukushima, Takanori; Kim, Jungeun; Kato, Kenichi; Takata, Masaki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Aida, Takuzo

    2009-12-16

    Triphenylene (TP) derivatives bearing appropriate paraffinic side chains with imidazolium ion-based ionic liquid (IL) pendants were unveiled to display a phase diagram with liquid crystalline (LC) mesophases of bicontinuous cubic (Cub(bi)) and hexagonal columnar (Col(h)) geometries. While their phase transition behaviors are highly dependent on the length of the side chains and the size of the ionic liquid pendants, TPs with hexadecyl side chains exclusively form a Cub(bi) LC assembly over an extremely wide temperature range of approximately 200 degrees C from room temperature when the anions of the IL pendants are relatively small. Wide-angle X-ray diffraction analysis suggested that the Cub(bi) LC mesophase contains pi-stacked columnar TP arrays with a plane-to-plane separation of approximately 3.5 A. Consistently, upon laser flash photolysis, it showed a transient microwave conductivity comparable to that of a Col(h) LC reference.

  18. Investigating Hydroxyl at Asteroid 951 Gaspra

    NASA Astrophysics Data System (ADS)

    Granahan, James C.

    2015-11-01

    Recent investigations [Granahan, 2011; 2014] of Galileo Near Infrared Mapping Spectrometer (NIMS) observations of asteroid 951 Gaspra have detected an infrared absorption feature near 2.8 micrometers. These were detected in NIMS data acquired by the Galileo spacecraft on October 29, 1991 at wavelengths ranging from 0.7 - 5.2 micrometers [Carlson et al., 1992]. This abstract presents a summary of the investigation to identify the material creating the 2.8 micrometer spectral absorption feature. The current best match for the observed 951 Gaspra feature is the phyllosilicate bound hydroxyl signature present in a thermally desiccated QUE 99038 carbonaceous chondrite as measured by Takir et al. [2013].The 951 Gaspra absorption feature has been compared to a variety of hydroxyl bearing signatures. Many phyllosilicates, hydroxyl bearing minerals, have absorption minima at different positions (2.7 or 2.85 micrometers). It also differs from similar absorptions in a potential R chondrite analog, LAP 04840. The spectra LAP 04840 has a 2.7 micrometer feature due to biotite and a 2.9 micrometer feature due to adsorbed water [Klima et al., 2007]. 2.8 micrometer absorption minima have been found for adsorbed hydroxyl on the Moon [McCord et al., 2011] and various carbonaceous chondrites [Calvin and King, 1997; Takir et al., 2013]. The best match, with a minimum Euclidean distance difference to the 951 Gaspra feature, is found in the spectrum of QUE 99038 [Takir et al., 2013]. This spectrum is the product of an infrared measurement of a sample that had its adsorbed water baked off and removed in a vacuum chamber. The remaining hydroxyl in the sample belongs to a mixture of phyllosilicates dominated by the presence of cronstedtite.References: Calvin, W. M., and T. V. King (1997), Met. Planet. Sci., 32, 693-702. Carlson, R. W., et al. (1992), Bull. American Astro. Soc., 24, 932. Granahan, J. C. (2011), Icarus, 213, 265-272. Granahan, J. C. (2014), 45th LPSC, #1092. Klima, R., C. et

  19. Hydroxyl radical mediated DNA base modification by manmade mineral fibres.

    PubMed Central

    Leanderson, P; Söderkvist, P; Tagesson, C

    1989-01-01

    Manmade mineral fibres (MMMFs) were examined for their ability to hydroxylate 2-deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OH-dG), a reaction that is mediated by hydroxyl radicals. It appeared that (1) catalase and the hydroxyl radical scavengers, dimethylsulphoxide and sodium benzoate, inhibited the hydroxylation, whereas Fe2+ and H2O2 potentiated it; (2) pretreatment of MMMFs with the iron chelator, deferoxamine, or with extensive heat (200-400 degrees C), attenuated the hydroxylation; (3) the hydroxylation obtained by various MMMFs varied considerably; (4) there was no apparent correlation between the hydroxylation and the surface area of different MMMFs, although increasing the surface area of a fibre by crushing it increased its hydroxylating capacity; and (5) there was good correlation between the hydroxylation of dG residues in DNA and the hydroxylation of pure dG in solution for the 16 different MMMFs investigated. These findings indicate that MMMFs cause a hydroxyl radical mediated DNA base modification in vitro and that there is considerable variation in the reactivity of different fibre species. The DNA modifying ability seems to depend on physical or chemical characteristics, or both, of the fibre. PMID:2765416

  20. Hydroxylation of organic polymer surface: method and application.

    PubMed

    Yang, Peng; Yang, Wantai

    2014-03-26

    It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl

  1. Dinuclear manganese(II) complexes of hexaazamacrocycles bearing N-benzoylated pendant separated by aromatic spacers: Antibacterial, DNA interaction, cytotoxic and molecular docking studies.

    PubMed

    Arthi, P; Shobana, S; Srinivasan, P; Prabhu, D; Arulvasu, C; Kalilur Rahiman, A

    2015-12-01

    Three new homodinuclear manganese(II) complexes of the type [Mn2L(1-3)(ClO4)(H2O)](ClO4)3 (1-3) have been synthesized via cyclocondensation of terephthalaldehyde with three different benzoylated pendants in the presence of manganese(II) perchlorate and characterized by spectroscopic methods. Cyclic voltammetric investigation of complexes (1-3) depict two quasi-reversible one electron reduction processes in the cathodic potential region (E(1)pc=-0.73 to-0.83 V, E(2)pc=-1.31 to -1.40 V) and two quasi-reversible one electron oxidation processes in the anodic potential region (E(1)pa=1.03 to 1.10 V, E(2)pa=1.69 to 1.77 V). Electronic absorption spectra of the complexes suggested tetrahedral geometry around the central metal ion. The observed low magnetic moment values (μeff, 5.60-5.68 B.M.) of the complexes indicate the presence of an antiferromagnetic spin-exchange interaction between two metal centers, which was also supported by the broad EPR signal. All the compounds were tested for antibacterial activity against Gram (-ve) and Gram (+ve) bacterial strains. The binding studies of complexes with CT-DNA suggested minor-groove mode of interaction. Molecular docking studies were carried out in order to find the binding affinity of complexes with DNA and protein EGFR Kinase. The complexes are stabilized by additional electrostatic and van der Waals interaction with the DNA, and support minor groove mode of binding. The cleavage activity of complexes on pBR322 plasmid DNA displays efficient activity through a mechanistic pathway involving hydroxyl radicals. The cytotoxicity of complexes 2 and 3 have been tested against human liver adenocarcinoma (HepG2) cell line. Nuclear-chromatin cleavage has also been observed with propidium iodide (PI) staining and alkaline single-cell gel electrophoresis (comet assay) techniques.

  2. Development of a Concise Synthesis of Ouabagenin and Hydroxylated Corticosteroid Analogues

    PubMed Central

    2016-01-01

    The natural product ouabagenin is a complex cardiotonic steroid with a highly oxygenated skeleton. This full account describes the development of a concise synthesis of ouabagenin, including the evolution of synthetic strategy to access hydroxylation at the C19 position of a steroid skeleton. In addition, approaches to install the requisite butenolide moiety at the C17 position are discussed. Lastly, methodology developed in this synthesis has been applied in the generation of novel analogues of corticosteroid drugs bearing a hydroxyl group at the C19 position. PMID:25594682

  3. Hydroxyl orientations in cellobiose and other polyhydroxy compounds – modeling versus experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theoretical and experimental gas-phase studies of carbohydrates show that their hydroxyl groups are located in homodromic partial rings that resemble cooperative hydrogen bonds, albeit with long H…O distances and small O-H…O angles. On the other hand, anecdotal experience with disaccharide crystal ...

  4. Highly efficient synthesis of phenols by copper-catalyzed hydroxylation of aryl iodides, bromides, and chlorides.

    PubMed

    Yang, Kai; Li, Zheng; Wang, Zhaoyang; Yao, Zhiyi; Jiang, Sheng

    2011-08-19

    8-Hydroxyquinolin-N-oxide was found to be a very efficient ligand for the copper-catalyzed hydroxylation of aryl iodides, aryl bromides, or aryl chlorides under mild reaction conditions. This methodology provides a direct transformation of aryl halides to phenols and to alkyl aryl ethers. The inexpensive catalytic system showed great functional group tolerance and excellent selectivity.

  5. DFT STUDY OF ALPHA-MALTOSE: INFLUENCE OF HYDROXYL ORIENTATIONS ON THE GLYCOSIDIC BOND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The result of DFT geometry optimization of 68 unique alpha-maltose conformers at the B3LYP/6-311++G** level of theory is described. Particular attention is paid to the hydroxyl group rotational positions and their influence on the glycosidic bond dihedral angles. The orientation of lone pair elect...

  6. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    DOE PAGES

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; ...

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon themore » ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.« less

  7. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    SciTech Connect

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon the ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.

  8. Plutonium Uptake By Brucite And Hydroxylated Periclase

    SciTech Connect

    Farr, J.D.; Neu, M.P.; Schulze, R.K.; Honeyman, B.D.

    2009-06-02

    Batch adsorption experiments and spectroscopic investigations consistently show that aqueous Pu(IV) is quickly removed from solution and becomes incorporated in a brucite or hydroxylated MgO surface to a depth of at least 50 nm, primarily as Pu(IV) within a pH range of 8.5--12.5, and is unaffected by the presence of the organic ligand, citrate. X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) and Rutherford backscattering spectroscopy (RBS) were used to estimate Pu penetration depth and provide information about its chemical state.

  9. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  10. Double-strand DNA cleavage by copper complexes of 2,2'-dipyridyl with guanidinium/ammonium pendants.

    PubMed

    He, Juan; Hu, Ping; Wang, Yu-Jia; Tong, Ming-Liang; Sun, Hongzhe; Mao, Zong-Wan; Ji, Liang-Nian

    2008-06-28

    Two ligands with guanidinium/ammonium groups were synthesized and their copper complexes, [Cu(L1)Cl2](ClO4)2.H2O (1) and [Cu(L2)Cl2](ClO4)2 (2) (L1 = 5,5'-di[1-(guanidyl)methyl]-2,2'-bipyridyl cation and L2 = 5,5'-di[1-(amino)methyl]-2,2'-bipyridyl cation), were prepared to serve as nuclease mimics. X-Ray analysis revealed that Cu(II) ion in 1 has a planar square CuN2Cl2-configuration. The shortest distance between the nitrogen of guanidinium and copper atoms is 6.5408(5) A, which is coincident with that of adjacent phosphodiesters in DNA (ca. 6 A). In the absence of reducing agent, supercoiled plasmid DNA cleavage by the complexes were performed and their hydrolytic mechanisms were demonstrated with radical scavengers and T4 ligase. The pseudo-Michaelis-Menten kinetic parameters (kcat, KM) were calculated to be 4.42 h(-1), 7.46 x 10(-5) M for 1, and 4.21 h(-1), 1.07 x 10(-4) M for 2, respectively. The result shows that their cleavage efficiency is about 10-fold higher than the simple analogue [Cu(bipy)Cl2] (3) (0.50 h(-1), 3.5 x 10(-4) M). The pH dependence of DNA cleavage by 1 and its hydroxide species in solution indicates that mononuclear [Cu(L1)(OH)(H2O)]3+ ion is the active species. Highly effective DNA cleavage ability of is attributed to the effective cooperation of the metal moiety and two guanidinium pendants with the phosphodiester backbone of nucleic acid.

  11. Proton and Electron Additions to Iron (II) Dinitrogen Complexes Containing Pendant Amines

    SciTech Connect

    Heiden, Zachariah M.; Chen, Shentan; Labios, Liezel AN; Bullock, R. Morris; Walter, Eric D.; Tyson, Elizabeth L.; Mock, Michael T.

    2014-03-10

    We describe a single site cis-(H)FeII-N2 complex, generated by the protonation of an iron-carbon bond of a "reduced" iron complex, that models key aspects of proposed protonated intermediates of the E4 state of nitrogenase. The influence on N2 binding from the addition of protons to the pendant amine sites in the second coordination sphere is described. Furthermore, the addition of electrons to the protonated complexes results in H2 loss. The mechanism of H2 loss is explored to draw a parallel to the origin of H2 loss (homolytic or heterolytic) and the nature of N2 coordination in intermediates of the E4 state of nitrogenase.

  12. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  13. Cooperative assembly of Zn cross-linked artificial tripeptides with pendant hydroxyquinoline ligands.

    PubMed

    Zhang, Meng; Gallagher, Joy A; Coppock, Matthew B; Pantzar, Lisa M; Williams, Mary Elizabeth

    2012-11-05

    An artificial peptide with three pendant hydroxyquinoline (hq) ligands on a palindromic backbone was designed and used to form multimetallic assemblies. Reaction of the tripeptide with zinc acetate led to a highly fluorescent tripeptide duplex with three Zn(II) coordinative cross-links. The binding process was monitored using spectrophotometric absorbance and emission titrations; NMR spectroscopy and mass spectrometry confirmed the identity and stoichiometry of the product structure. Titrations monitoring duplex formation of the zinc-tripeptide structure had a sigmoidal shape, equilibrium constant larger than the monomeric analogue, and a Hill coefficient >1, all of which indicate positive cooperativity. Photophysical characterization of the quantum yield, excited state lifetime, and polarization anisotropy are compared with the monometallic zinc-hq analogue. A higher than expected quantum yield for the trimetallic complex suggests a structure in which the central chromophore is shielded from solvent by π-stacking with neighboring Zn(II) complexes.

  14. Hydrogen Oxidation Catalysis by a Nickel Diphosphine Complex with Pendant tert-Butyl Amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. S.; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Rakowski DuBois, Mary

    2010-11-09

    A bis-diphosphine nickel complex with t-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turn-over rate of 50 s 1 under 1.0 atm H2 at a potential of –0.77 V vs the ferrocene couple is 5 times faster than the rate reported heretofore for any other molecular H2 oxidation catalyst. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. Computational resources were provided by the Environmental Molecular Science Laboratory (EMSL) and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

  15. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    SciTech Connect

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Measurement of interfacial tension by use of pendant drop video techniques

    SciTech Connect

    Herd, M.D.; Thomas, C.P.; Bala, G.A.; Lassahn, G.D.

    1993-09-01

    This report describes an instrument to measure the interfacial tension (IFT) of aqueous surfactant solutions and crude oil. The method involves injection of a drop of fluid (such as crude oil) into a second immiscible phase to determine the IFT between the two phases. The instrument is composed of an AT-class computer, optical cell, illumination, video camera and lens, video frame digitizer board, monitor, and software. The camera displays an image of the pendant drop on the monitor, which is then processed by the frame digitizer board and non-proprietary software to determine the IFT. Several binary and ternary phase systems were taken from the literature and used to measure the precision and accuracy of the instrument in determining IFTs. A copy of the software program is included in the report. A copy of the program on diskette can be obtained from the Energy Science and Technology Software Center, P.O. Box 1020, Oak Ridge, TN 37831-1020. The accuracy and precision of the technique and apparatus presented is very good for measurement of IFTs in the range from 72 to 10{sup {minus}2} mN/m, which is adequate for many EOR applications. With modifications to the equipment and the numerical techniques, measurements of ultralow IFTs (<10{sup {minus}3} mN/m) should be possible as well as measurements at reservoir temperature and pressure conditions. The instrument has been used at the Idaho National Engineering Laboratory to support the research program on microbial enhanced oil recovery. Measurements of IFTs for several bacterial supernatants and unfractionated acid precipitates of microbial cultures containing biosurfactants against medium to heavy crude oils are reported. These experiments demonstrate that the use of automated video imaging of pendant drops is a simple and fast method to reliably determine interfacial tension between two immiscible liquid phases, or between a gas and a liquid phase.

  17. Measurement of interfacial tension by use of pendant drop video techniques

    NASA Astrophysics Data System (ADS)

    Herd, Melvin D.; Thomas, Charles P.; Bala, Gregory A.; Lassahn, Gordon D.

    1993-09-01

    This report describes an instrument to measure the interfacial tension (IFT) of aqueous surfactant solutions and crude oil. The method involves injection of a drop of fluid (such as crude oil) into a second immiscible phase to determine the IFT between the two phases. The instrument is composed of an AT-class computer, optical cell, illumination, video camera and lens, video frame digitizer board, monitor, and software. The camera displays an image of the pendant drop on the monitor, which is then processed by the frame digitizer board and non-proprietary software to determine the IFT. Several binary and ternary phase systems were taken from the literature and used to measure the precision and accuracy of the instrument in determining IFT's. A copy of the software program is included in the report. A copy of the program on diskette can be obtained from the Energy Science and Technology Software Center, P.O. Box 1020, Oak Ridge, TN 37831-1020. The accuracy and precision of the technique and apparatus presented is very good for measurement of IFT's in the range from 72 to 10(exp -2) mN/m, which is adequate for many EOR applications. With modifications to the equipment and the numerical techniques, measurements of ultralow IFT's (less than 10(exp -3) mN/m) should be possible as well as measurements at reservoir temperature and pressure conditions. The instrument has been used at the Idaho National Engineering Laboratory to support the research program on microbial enhanced oil recovery. Measurements of IFT's for several bacterial supernatants and unfractionated acid precipitates of microbial cultures containing biosurfactants against medium to heavy crude oils are reported. These experiments demonstrate that the use of automated video imaging of pendant drops is a simple and fast method to reliably determine interfacial tension between two immiscible liquid phases, or between a gas and a liquid phase.

  18. Global tropospheric hydroxyl distribution, budget and reactivity

    NASA Astrophysics Data System (ADS)

    Lelieveld, Jos; Gromov, Sergey; Pozzer, Andrea; Taraborrelli, Domenico

    2016-10-01

    The self-cleaning or oxidation capacity of the atmosphere is principally controlled by hydroxyl (OH) radicals in the troposphere. Hydroxyl has primary (P) and secondary (S) sources, the former mainly through the photodissociation of ozone, the latter through OH recycling in radical reaction chains. We used the recent Mainz Organics Mechanism (MOM) to advance volatile organic carbon (VOC) chemistry in the general circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry) and show that S is larger than previously assumed. By including emissions of a large number of primary VOC, and accounting for their complete breakdown and intermediate products, MOM is mass-conserving and calculates substantially higher OH reactivity from VOC oxidation compared to predecessor models. Whereas previously P and S were found to be of similar magnitude, the present work indicates that S may be twice as large, mostly due to OH recycling in the free troposphere. Further, we find that nighttime OH formation may be significant in the polluted subtropical boundary layer in summer. With a mean OH recycling probability of about 67 %, global OH is buffered and not sensitive to perturbations by natural or anthropogenic emission changes. Complementary primary and secondary OH formation mechanisms in pristine and polluted environments in the continental and marine troposphere, connected through long-range transport of O3, can maintain stable global OH levels.

  19. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer.

    PubMed

    Wang, Weiwei; Deng, Liandong; Liu, Shasha; Li, Xu; Zhao, Xiumei; Hu, Renjie; Zhang, Jianhua; Han, Haijie; Dong, Anjie

    2012-11-01

    The convenient and precise fabrication of drug-hydrogel formulations with satisfactory degradability and a well-controlled drug release profile are crucial factors for injectable hydrogel formulations in clinical applications. Here a new injectable thermosensitive hydrogel formed from poly(ε-caprolactone) (PCL)-poly(ethylene glycol)-poly(ε-caprolactone) amphiphilicco-polymers with 1,4,8-trioxa[4.6]spiro-9-undecanone (TOSUO) moieties incorporated in the poly(ε-caprolactone) (PCL)block (PECT) was constructed to provide a route to tailor the degradation and drug release behavior. The effect of hydrophilic cyclic ether moieties on the degradation of and drug release by PECT hydrogels were evaluated in vitro and in vivo. The results indicated that a freeze-dried powder of paclitaxel-loaded PECT nanoparticles rapidly dissolved in water at ambient temperature with slightly shaking and formed a stable injectable in situ drug-hydrogel formulation at body temperature, which is convenient for clinical operations because it avoids the need for pre-quenching or long-term incubation. The paclitaxel distribution was also more quantitative and homogeneous on entrapping paclitaxel in PECT nanoparticles. Further, the small number of pendant cyclic ether groups in PCL could decrease the cystallinity and hydrophobicity and, as a result, the in vitro and in vivo retention time of PECT hydrogels and the release of entrapped paclitaxel could be tuned from a few weeks to months by varying the amount of PTOSUO in the hydrophobic block. Significantly, paclitaxel-loaded PECT nanoparticles and free paclitaxel could be simultaneously released during the in vitro paclitaxel release from PECT hydrogels. A histopathological evaluation indicated that in vivo injected PECT hydrogels produced only a modest inflammatory response. Thus pendant cyclic ether modification of PCL could be an effective way to achieve the desired degradation and drug release profiles of amphiphilicco

  20. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  1. Evidence for hydroxyl radical generation during lipid (linoleate) peroxidation.

    PubMed

    Frenette, Mathieu; Scaiano, Juan C

    2008-07-30

    The autoxidation of methyl linoleate in benzene at 37 degrees C by peroxyl radicals was found to generate hydroxyl radicals (.OH) from a secondary oxidation mechanism. The yield of hydroxyl radicals (approximately 2%) was determined by trapping these reactive radicals with benzene to give phenol. We propose that alphaC-H hydrogen abstraction from lipid hydroperoxides, the main autoxidation products, is the source of hydroxyl radicals.

  2. Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.

    PubMed

    Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone

    2011-01-17

    Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA

  3. Ultraviolet irradiation-induced substitution of fluorine with hydroxyl radical for mass spectrometric analysis of perfluorooctane sulfonyl fluoride.

    PubMed

    Wang, Peng; Tang, Xuemei; Huang, Lulu; Kang, Jie; Zhong, Hongying

    2016-01-28

    A rapid and solvent free substitution reaction of a fluorine atom in perfluorooctane sulfonyl fluoride (PFOSF) with a hydroxyl radical is reported. Under irradiation of ultraviolet laser on semiconductor nanoparticles or metal surfaces, hydroxyl radicals can be generated through hole oxidization. Among all fluorine atoms of PFOSF, highly active hydroxyl radicals specifically substitute the fluorine of sulfonyl fluoride functional group. Resultant perfluorooctane sulfonic acid is further ionized through capture of photo-generated electrons that switch the neutral molecules to negatively charged odd electron hypervalent ions. The unpaired electron subsequently initiates α O-H bond cleavage and produces perfluorooctane sulfonate negative ions. Hydroxyl radical substitution and molecular dissociation of PFOSF have been confirmed by masses with high accuracy and resolution. It has been applied to direct mass spectrometric imaging of PFOSF adsorbed on surfaces of plant leaves.

  4. Evidence that phenylalanine hydroxylation rates are overestimated in neonatal subjects receiving total parenteral nutrition with a high phenylalanine content.

    PubMed

    House, J D; Thorpe, J M; Wykes, L J; Pencharz, P B; Ball, R O

    1998-04-01

    Recent publications have indicated that the parenterally fed neonate has a substantial ability to hydroxylate phenylalanine. Examination of these data suggests that, at high phenylalanine intakes, estimated rates of hydroxylation exceed rates of intake. This implies significant net tissue breakdown. However, the quantitative validity of the estimates of phenylalanine hydroxylation cannot be assessed without nitrogen balance data. We have recently developed a parenterally fed neonatal piglet model and have used this to study aromatic amino acid metabolism in piglets fed different amino acid solutions. Reappraisal of the data from these studies has allowed us to estimate both phenylalanine hydroxylation and tissue protein accretion. Piglets were parenterally fed Vamin [292 micromol of Phe x kg(-1) x h(-1), 26 micromol of Tyr x kg(-1) x h(-1)], Vaminolact + Phe [VLP, 277 micromol of Phe x kg(-1) x h(-1), 26 micromol Tyr x kg(-1) x h(-1)], or Vaminolact + glycyl-L-tyrosine [VLGT, 152 micromol of Phe x kg(-1) x h(-1), 159 micromol of Tyr x kg(-1) x h(-1)] for 8 d. Nitrogen balance was measured over the last 5 study d, and aromatic amino acid kinetics were determined using a primed continuous infusion of L-[1-4C]phenylalanine on d 8. Average body protein gain, derived from nitrogen balance, was 11 g x kg(-1) x d(-1). For the Vamin and VLP groups, the rates of phenylalanine hydroxylation were estimated to be 139 and 90% of intake, respectively. However, phenylalanine hydroxylation was only 16% of intake for the VLGT group. In view of the tissue protein accretion data, it appears that the rate of phenylalanine hydroxylation may be overestimated in neonates fed high phenylalanine parenteral nutrition. The extent to which the parenterally fed neonate can adapt to a high phenylalanine intake, by increasing the rate of phenylalanine hydroxylation, remains to be determined.

  5. Hydroxylation of progesterone by some Trichoderma species.

    PubMed

    El-Kadi, I A; Mostafa, M Eman

    2004-01-01

    Thirty-three isolates belonging to six species of the genus Trichoderma were tested for the ability to hydroxylate progesterone to 11alpha-, 11beta-, 11alpha,17alpha- and 6beta, 17alpha-derivatives, and epicortisol. T. aureoviride, T. harzianum, T. polysporum and T. pseudokoningii produced 11alpha-hydroxyprogesterone. T. harzianum and T. hamatum can form only the 11beta-isomer. T. koningii and T. hamatum produced 11alpha-, 11beta-, 11alpha,17alpha- and 6beta,11alpha-hydroxy derivatives. 11alpha, 11beta, 6beta,11alpha- and 11alpha,17alpha-hydroxyprogesterones and epicortisol are produced by T. aureoviride and T. pseudokoningii. Cortisol was produced only when the medium was fortified by 10 g/L peptone. This is the first record of conversion of progesterone to mono-, di- and trihydroxyprogesterones by these Trichoderma species.

  6. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  7. Effects of hydroxylation and silanization on the surface properties of ZnO nanowires.

    PubMed

    García Núñez, C; Sachsenhauser, M; Blashcke, B; García Marín, A; Garrido, Jose A; Pau, Jose L

    2015-03-11

    Silanization is commonly used to form bonds between inorganic materials and biomolecules as a step in the surface preparation of solid-state biosensors. This work investigates the effects of silanization with amino-propyldiethoxymethylsilane on hydroxylated sidewalls of zinc oxide (ZnO) nanowires (NWs). The surface properties and electrical characteristics of NWs are analyzed by different techniques after their hydroxylation and later silanization. Contact angle measurements reveal a stronger hydrophobic behavior after silanization, and X-ray photoelectron spectroscopy (XPS) results show a reduction of the surface dipole induced by the replacement of the hydroxyl group with the amine terminal group. The lower work function obtained after silanization in contact potential measurements corroborates the attenuation of the surface dipole observed in XPS. Furthermore, the surface band bending of NWs is determined from surface photovoltage measurements upon irradiation with UV light, yielding a 0.5 eV energy in hydroxylated NWs, and 0.18 eV, after silanization. From those results, a reduction in the surface state density of 3.1 × 10(11) cm(-2) is estimated after silanization. The current-voltage (I-V) characteristics measured in a silanized single NW device show a reduction of the resistance, due to the enhancement of the conductive volume inside the NW, which also improves the linearity of the I-V characteristic.

  8. An NADPH and FAD dependent enzyme catalyzes hydroxylation of flavonoids in position 8.

    PubMed

    Halbwirth, Heidrun; Stich, Karl

    2006-06-01

    Yellow flavonols contribute to flower pigmentation in Asteraceae. In contrast to common flavonols, they show additional hydroxyl groups in position 6 and/or 8 of the aromatic A-ring in addition to the basic 5,7-hydroxylation pattern. An enzyme introducing a hydroxyl group in position 8 of flavonols and flavones was demonstrated for the first time with enzyme preparations from petals of Chrysanthemum segetum. Flavanones, dihydroflavonols and glucosylated flavonols and flavones were not accepted as substrates. The enzyme was localized in the microsomal fraction and uses NADPH and FAD as cofactors. Experiments with carbon monoxide/blue light and with antibodies specific for cytochrome P450 reductase did not indicate the involvement of a classical cytochrome P450 dependent monooxygenase in the reaction. Thus, the flavonoid 8-hydroxylase represents a novel type of hydroxylating enzyme in the flavonoid pathway. Apart from flavonoid 8-hydroxylase activity, the presence of all enzymes involved in the formation of flavonoid 7-O-glucosides in C. segetum was demonstrated. The pathway leading to 8-hydroxyflavonoids in C. segetum has been derived from enzyme activities and substrate specificities observed.

  9. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  10. Poly(hydroxyl urethane) compositions and methods of making and using the same

    SciTech Connect

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  11. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study

    PubMed Central

    McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190

  12. Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands With Pendant Amines

    SciTech Connect

    Welch, Kevin D.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.; Bullock, R. Morris

    2010-10-01

    Addition of the pendant amine ligand PNRP (PNRP = Et2PCH2NRCH2PEt2; R = Me, Ph, n-Bu) to Mn(CO)5Br gives fac-Mn(PNRP)(CO)3Br. Photolysis of fac-Mn(PNRP)(CO)3Br with dppm [dppm = 1,2-bis(diphenylphosphino)methane] provides mixed bis(diphosphine) complexes, trans-Mn(PNRP)(dppm)(CO)(Br). Reaction of trans-Mn(PNRP)(dppm)(CO)(Br) with LiAlH4 leads to trans-Mn(PNRP)(dppm)(CO)(H). The crystal structure of trans-Mn(PNMeP)(dppm)(CO)(H) determined by x-ray diffraction shows an unusual distortion of the Mn-H towards one C-H of the dppm ligand, resulting in an H Mn CO angle of 155(1)° and C H • • • H Mn distance of 2.10(3) Å. Mn(P2PhN2Bn)(dppm)(CO)(H) [P2PhN2Bn = 1, 5-diphenyl-3,7-dibenzyl-1,5-diaza-3,7-diphosphacyclooctane] can be prepared in a similar manner; its structure has one chelate ring in a chair conformation and the second in a boat conformation. The boat-conformer ring directs the nitrogen of the ring towards the carbonyl ligand, and the N • • • C distance between one N of the P2PhN2Bn ligand and CO is 3.171(4) Å, indicating a weak interaction between the N of the pendant amine and the CO ligand. Reaction of NaBArF4 (ArF = = 3,5-bis(trifluoromethyl)phenyl) with Mn(P P)(dppm)(CO)(Br) produces the cations [Mn(P P)(dppm)(CO)]+. The crystal structure of [Mn(PNMeP)(dppm)(CO)][BArF4] shows two very weak agostic interactions between C-H bonds on the phenyl ring and the Mn. The cationic complexes [Mn(P P)(dppm)(CO)]+ react with H2 to form dihydrogen complexes [Mn(H2)(P P)(dppm)(CO)]+ (Keq = 1 - 90 atm-1 in fluorobenzene, for a series of different P P ligands). Similar equilibria with N2 produce [Mn(N2)(P P)(dppm)(CO)]+ (Keq generally 1-3.5 atm-1 in fluorobenzene). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Thermochemical and Mechanistic Studies of Electrocatalytic Hydrogen Production by Cobalt Complexes Containing Pendant Amines

    SciTech Connect

    Wiedner, Eric S.; Appel, Aaron M.; DuBois, Daniel L.; Bullock, R. Morris

    2013-12-16

    Two cobalt(tetraphosphine) complexes [Co(PnC-PPh22NPh2)(CH3CN)](BF4)2 with a tetradentate phosphine ligand (PnC-PPh22NPh2 = 1,5-diphenyl-3,7-bis((diphenylphosphino)alkyl)-1,5-diaza-3,7-diphosphacyclooctane; alkyl = (CH2)2, n = 2 (L2); (CH2)3, n = 3 (L3)) have been studied for electrocatalytic hydrogen production using 1:1 [(DMF)H]+:DMF. A turnover frequency of 980 s–1 with an overpotential of 1210 mV was measured for [CoII(L2)(CH3CN)]2+, and a turnover frequency of 980 s–1 with an overpotential of 930 mV was measured for [CoII(L3)(CH3CN)]2+. Addition of water increases the turnover frequency of [CoII(L2)(CH3CN)]2+ to 19,000 s–1. The catalytic wave for each of these complexes occurs at the reduction potential of the corresponding HCoIII complex. Comprehensive thermochemical studies of [CoII(L2)(CH3CN)]2+ and [CoII(L3)(CH3CN)]2+ and species derived from them by addition/removal of protons/electrons were carried out using values measured experimentally and calculated using DFT. Notably, HCoI(L2) and HCoI(L2) were found to be remarkably strong hydride donors, with HCoI(L2) being a better hydride donor than BH4-. Mechanistic studies of these catalysts reveal that H2 formation can occur by protonation of a HCoII intermediate, and that the pendant amines of these complexes facilitate proton delivery to the cobalt center. The rate-limiting step for catalysis is a net intramolecular isomerization of the protonated pendant amine from the non-productive exo-isomer to the productive endo isomer. We thank Dr. Shentan Chen for many helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources were provided at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the

  14. Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Hofzumahaus, A.; Rohrer, F.; Bohn, B.; Brauers, T.; Dorn, H.-P.; Häseler, R.; Holland, F.; Kaminski, M.; Li, X.; Lu, K.; Nehr, S.; Tillmann, R.; Wegener, R.; Wahner, A.

    2013-12-01

    Most pollutants in the Earth's atmosphere are removed by oxidation with highly reactive hydroxyl radicals. Field measurements have revealed much higher concentrations of hydroxyl radicals than expected in regions with high loads of the biogenic volatile organic compound isoprene. Different isoprene degradation mechanisms have been proposed to explain the high levels of hydroxyl radicals observed. Whether one or more of these mechanisms actually operates in the natural environment, and the potential impact on climate and air quality, has remained uncertain. Here, we present a complete set of measurements of hydroxyl and peroxy radicals collected during isoprene-oxidation experiments carried out in an atmospheric simulation chamber, under controlled atmospheric conditions. We detected significantly higher concentrations of hydroxyl radicals than expected based on model calculations, providing direct evidence for a strong hydroxyl radical enhancement due to the additional recycling of radicals in the presence of isoprene. Specifically, our findings are consistent with the unimolecular reactions of isoprene-derived peroxy radicals postulated by quantum chemical calculations. Our experiments suggest that more than half of the hydroxyl radicals consumed in isoprene-rich regions, such as forests, are recycled by these unimolecular reactions with isoprene. Although such recycling is not sufficient to explain the high concentrations of hydroxyl radicals observed in the field, we conclude that it contributes significantly to the oxidizing capacity of the atmosphere in isoprene-rich regions.

  15. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  16. Petroleum films exposed to sunlight produce hydroxyl radical.

    PubMed

    Ray, Phoebe Z; Tarr, Matthew A

    2014-05-01

    Sunlight exposed oil films on seawater or pure water produced substantial amounts of hydroxyl radical as a result of irradiation. Oil was collected from the surface of the Gulf of Mexico following the Deepwater Horizon spill and exposed to simulated sunlight in thin films over water. Photochemical production of hydroxyl radical was measured with benzoic acid as a selective chemical probe in the aqueous layer. Total hydroxyl radical formation was studied using high benzoic acid concentrations and varying exposure time. The total amount of hydroxyl radical produced in 24 h irradiations of thin oil films over Gulf of Mexico water and pure water were 3.7×10(-7) and 4.2×10(-7) moles respectively. Steady state concentrations of hydroxyl radical were measured using a competition kinetics approach. Hydroxyl radical concentrations of 1.2×10(-16) to 2.4×10(-16) M were observed for seawater and pure water under oil films. Titanium dioxide (TiO2) nanomaterials were added to the system in an effort to determine if the photocatalyst would enhance oil photodegradation. The addition of TiO2 nanoparticles dramatically changed the observed formation rate of hydroxyl radical in the systems with NP water at pH 3, showing increased formation rate in many cases. With photocatalyst, the steady state concentration of radical decreased, predominantly due to an increase in the hydroxyl radical scavenging rate with oxide present. This study illustrates that oil is a strong and important source of hydroxyl radical when exposed to sunlight. The fate of oil and other dissolved species following oil spills will be heavily dependent on the formation and fate of hydroxyl radical.

  17. Glutathione conjugation of busulfan produces a hydroxyl radical-trapping dehydroalanine metabolite.

    PubMed

    Peer, Cody J; Younis, Islam R; Leonard, Stephen S; Gannett, Peter M; Minarchick, Valerie C; Kenyon, Allison J; Rojanasakul, Yon; Callery, Patrick S

    2012-12-01

    The Phase 2 drug metabolism of busulfan yields a glutathione conjugate that undergoes a β-elimination reaction. The elimination product is an electrophilic metabolite that is a dehydroalanine-containing tripeptide, γ-glutamyldehydroalanylglycine (EdAG). In the process, glutathione lacks thiol-related redox properties and gains a radical scavenging dehydroalanine group. EdAG scavenged hydroxyl radical generated in the Fenton reaction in a concentration-dependent manner was monitored by electron paramagnetic resonance (EPR) spectroscopy. The apparent rate of hydroxyl radical scavenging was in the same range as published values for known antioxidants, including N-acyl dehydroalanines. A captodatively stabilized carbon-centered radical intermediate was spin trapped in the reaction of EdAG with hydroxyl radical. The proposed structure of a stable product in the Fenton reaction with EdAG was consistent with that of a γ-glutamylserylglycyl dimer. Observation of the hydroxyl trapping properties of EdAG suggests that the busulfan metabolite EdAG may contribute to or mitigate redox-related cytotoxicity associated with the therapeutic use of busulfan, and reaffirms indicators that support a role in free radical biology for dehydroalanine-containing peptides and proteins.

  18. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    PubMed

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  19. The effect of hydroxylation on CNT to form Chitosan-CNT composites: A DFT study

    NASA Astrophysics Data System (ADS)

    Yu, Rui; Ran, Maofei; Wen, Jie; Sun, Wenjing; Chu, Wei; Jiang, Chengfa; He, Zhiwei

    2015-12-01

    The effect of types of CNTs (pristine and hydroxylated) on the synthesis of Chitosan-CNT (CS-CNT) composites was investigated theoretically. The adsorption energy (Eads) of CS on the pristine CNT and hydroxylated CNTs (CNT-OHn, n = 1-6) as well as the structural and electronic properties of said composites have been investigated. Results show that the adsorption of CS on CNT and CNT-OHn is thermodynamically favored. The Eads of CS on CNTs was calculated to be -20.387 kcal/mol from electrostatic interactions. For CS adsorbed into CNT-OHn, Eads ranges from -20.612 to -37.567 kcal/mol. Hydroxyl groups on CNT are the main adsorption sites for CS loading onto CNT-OHn via hydrogen-bond interactions. The CS-CNT-OH3 is the most sable composite among tested complexes. The energy gap (ΔEgap) of CS-CNT-OH3 was calculated less than pristine CNT and CNT-OH3, indicative of the composites being more reactive than that of pristine CNTs and CNT-OH3. It was proved that CS can transfer electron to the hydroxylated CNTs, thus overcoming the drawbacks of CNTs being chemically inert.

  20. Glutathione – Hydroxyl Radical Interaction: A Theoretical Study on Radical Recognition Process

    PubMed Central

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G.; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2×1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH•, guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from −42.4 to −27.8 kJ/mol and from −21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels. PMID:24040010

  1. Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds

    PubMed Central

    Stern, Avital; Guidotti, Matteo; Shaubi, Eleonora; Popov, Mary; Linder, Charles; Heldman, Eliahu; Grinberg, Sarina

    2014-01-01

    Two bolaamphiphilic compounds with identical acetylcholine (ACh) head groups, but with different lengths of an alkyl chain pendant adjacent to the head group, as well as differences between their hydrophobic skeleton, were investigated for their ability to self-assemble into vesicles that release their encapsulated content upon hydrolysis of their head groups by acetylcholinesterase (AChE). One of these bolaamphiphiles, synthesized from vernolic acid, has an alkyl chain pendant of five methylene groups, while the other, synthesized from oleic acid, has an alkyl chain pendant of eight methylene groups. Both bolaamphiphiles formed stable spherical vesicles with a diameter of about 130 nm. The ACh head groups of both bolaamphiphiles were hydrolyzed by AChE, but the hydrolysis rate was significantly faster for the bolaamphiphile with the shorter aliphatic chain pendant. Likewise, upon exposure to AChE, vesicles made from the bolaamphiphile with the shorter alkyl chain pendant released their encapsulated content faster than vesicles made from the bolaamphiphile with the longer alkyl chain pendant. Our results suggest that the steric environment around the ACh head group of bolaamphiphiles is a major factor affecting the hydrolysis rate of the head groups by AChE. Attaching an alkyl chain to the bolaamphiphile near the ACh head group allows self-assembled vesicles to form with a controlled release rate of the encapsulated materials, whereas shorter alkyl chains enable a faster head group hydrolysis, and consequently faster release, than longer alkyl chains. This principle may be implemented in the design of bolaamphiphiles for the formation of vesicles for drug delivery with desired controlled release rates. PMID:24531296

  2. Oxo-anion recognition by mono- and bisurea pendant-arm macrocyclic complexes.

    PubMed

    Boiocchi, Massimo; Licchelli, Maurizio; Milani, Michele; Poggi, Antonio; Sacchi, Donatella

    2015-01-05

    The novel macrocyclic copper(II) complexes [2](2+) and [3](2+), carrying one or two (nitrophenyl)urea fragments appended to an azacyclam or diazacyclam framework, exploit the hydrogen-bond-forming abilities of the urea subunits, along with the metal-ligand interaction, in the recognition of anionic species. Equilibrium studies in acetonitrile performed on [2](2+) and [3](2+) show that (nitrophenyl)urea pendant arms strongly interact with anionic species such as carboxylates and phosphates, which display both coordinating tendencies toward copper(II) and good affinity toward urea subunits. Stability constants of the adducts are considerably higher than those determined for the interaction of the same anions with a "plain urea" reference compound, confirming the synergistic action of metallomacrocyclic and urea subunits. Complex [2](2+) forms 1:1 adducts with acetate, benzoate, hydrogendiphosphate, and dihydrogen phosphate, while complex [3](2+) interacts with the same anions according to both 1:1 and 1:2 stoichiometries, with the exception of hydrogendiphosphate, which forms only the 1:1 adduct with a distinctly high association constant (log K > 7). Spectrophotometric investigations suggest that oxoanionic species interact with the complexes according to a "bridged" mode, inducing the macrocyclic systems to adopt a scorpionate-like conformation, as confirmed by crystallographic studies on the [3](2+)/succinate adduct.

  3. Poly(arylene ether ketone) carrying hyperquaternized pendants: Preparation, stability and conductivity

    NASA Astrophysics Data System (ADS)

    Shen, Kunzhi; Zhang, Zhenpeng; Zhang, Haibo; Pang, Jinhui; Jiang, Zhenhua

    2015-08-01

    A new strategy to synthesize comb-shaped poly(arylene ether ketone) ionomers with hyperquaternized pendants was detailed in this work. Poly(arylene ether ketone) with electron-rich phenyl rings on the side chain was copolymerized. These electron-rich phenyl rings which could be chloromethylated and serve as precursors to cationic sites, are introduced during monomer synthesis. After chloromethylation and quaternization on the side chain, these resulting anion exchange membranes exhibit high conductivities and good dimensional stability, which benefit from the side chain type structure. The highest chloride conductivity of 0.047 S cm-1 was observed in PAEK-QTPM-30 (IEC = 1.58 mmol g-1) and swelling ratio is 31.7% at 80 °C. The structural properties of the synthesized poly(arylene ether ketone)s were investigated by 1H NMR spectroscopy. The anion exchange membranes showed excellent thermal stability up to 200 °C under nitrogen and good chemical stability for high conductivity after treating in alkaline condition up to 30 days. These membranes were studied by IEC, water uptake, dimensional stability. The nano-phase separation from ionic aggregation was confirmed by SAXS. This work implies a viable strategy to improve the performance of anion exchange membranes.

  4. Unprecedented sugar-dependent in vivo antitumor activity of carbohydrate-pendant cis-diamminedichloroplatinum(II) complexes.

    PubMed

    Mikata, Y; Shinohara, Y; Yoneda, K; Nakamura, Y; Brudziñska, I; Tanase, T; Kitayama, T; Takagi, R; Okamoto, T; Kinoshita, I; Doe, M; Orvig, C; Yano, S

    2001-12-03

    Eight carbohydrate-pendant platinum(II) complexes have been synthesized from carbohydrate-diamine conjugates. D-Glucose, D-mannose, D-galactose, D-xylose, and L-glucose are attached to the dichloroplatinum(II) moiety by 1,3- or 1,2-diaminopropane chelates through with an O-glycoside bond. All the carbohydrate moieties reduced the toxicity inherent with platinum(II) complexes.

  5. Tectonic implications of REE, Th, and Sc analyses of metamorphosed mudstones, Boyden Cave roof pendant, Sierra Nevada, California

    SciTech Connect

    Hanson, A.D.; Girty, G.H. . Dept. of Geological Sciences)

    1993-04-01

    The Boyden Cave pendant is subdivided into an eastern sequence, chaotic unit, and western sequence. The western sequence has an outcrop width of about 2.5 km and consists of a metasandstone unit, calcsilicate schist unit, andalusite biotite schist unit, and marble unit all metamorphosed to amphibolite grade. Because of complex structural relationships, the stratigraphic thicknesses of these four units are unknown. Psammites within the metasandstone unit, on average, are composed of 85.5 [+-] 4.2% quartz, 8.1 [+-] 4.6% total feldspar, 4.8 [+-] 2.8% white mica, 1.4 [+-] 1.3% biotite, and 0.1 [+-] 0.2% epidote (N = 17). The authors analyzed 10 mudstone samples for major, trace, and REEs from the metasandstone and andalusite biotite schist units of the Boyden Cave pendant. Chondrite-normalized REE distribution patterns exhibit LREE-enrichment trends, and Eu anomalies that vary from 0.61 to 0.86, and average 0.69. Such patterns are characteristic of mudstones composed of continentally derived detritus and are consistent with the complete absence of volcanic material. A similar set of geochemical data was collected from the proposed correlative miogeoclinal units in the Nopah Range, SE California. REE distribution patterns for mudstones from the Stirling Quartzite Wood Canyon Formation, and Carrara Formation exhibit LREE-enrichment trends and Eu anomalies that vary from 0.65 to 0.75, and average 0.68. REE distribution patterns for samples collected from the Boyden Cave and Nopah Range are nearly identical in all aspects. On a La-Th-Sc diagram, data from the mudstones in the Boyden Cave pendant cluster with data from the Nopah Range. Thus, the authors conclude that their data are consistent with the proposed correlations suggested by R.A. Schweickert and M.M. Lahren, and that the western sequence of the Boyden Cave pendant may represent a displaced fragment of the Cordilleran miogeocline.

  6. Summation solute hydrogen bonding acidity values for hydroxyl substituted flavones determined by NMR spectroscopy.

    PubMed

    Whaley, William L; Okoso-amaa, Ekua M; Womack, Cody L; Vladimirova, Anna; Rogers, Laura B; Risher, Margaret J; Abraham, Michael H

    2013-01-01

    The flavonoids are a structurally diverse class of natural products that exhibit a broad spectrum of biochemical activities. The flavones are one of the most studied flavonoid subclasses due to their presence in dietary plants and their potential to protect human cells from reactive oxygen species (ROS). Several flavone compounds also mediate beneficial actions by direct binding to protein receptors and regulatory enzymes. There is current interest in using Quantitative Structure Activity Relationships (QSARs) to guide drug development based on flavone lead structures. This approach is most informative when it involves the use of accurate physical descriptors. The Abraham summation solute hydrogen bonding acidity (A) is a descriptor in the general solvation equation. It defines the tendency of a molecule to act as a hydrogen bond donor, or acid, when surrounded by solvent molecules that are hydrogen bonding acceptors, or bases. As a linear free energy relationship, it is useful for predicting the absorption and uptake of drug molecules. A previously published method, involving nuclear magnetic resonance (NMR) spectroscopy, was used to evaluate A for the monohydroxyflavones (MHFs). Values of A ranged from 0.02, for 5-hydroxyflavone, to 0.69 for 4'-hydroxyflavone. The ability to examine separate NMR signals for individual hydroxyl groups allowed the investigation of intramolecular interactions between functional groups. The value of A for the position 7 hydroxyl group of 7-hydroxyflavone was 0.67. The addition of a position 5 hydroxyl group (in 5,7-dihydroxyflavone) increased the value of A for the position 7 hydroxyl group to 0.76. Values of A for MHFs were also calculated by the program ACD-Absolve and these agreed well with values measured by NMR. These results should facilitate more accurate estimation of the values of A for structurally complex flavones with pharmacological activities.

  7. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions.

    PubMed

    Bussonnière, A; Baudoin, M; Brunet, P; Matar, O Bou

    2016-05-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.

  8. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions

    NASA Astrophysics Data System (ADS)

    Bussonnière, A.; Baudoin, M.; Brunet, P.; Matar, O. Bou

    2016-05-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.

  9. Hydroxyl Emission in the Westbrook Nebula

    NASA Astrophysics Data System (ADS)

    Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca

    2016-06-01

    CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.

  10. Vertical Distribution of Vibrationally Excited Hydroxyl

    NASA Astrophysics Data System (ADS)

    Grygalashvyly, Mykhaylo; Becker, Erich; Sonnemann, Gerd

    2016-04-01

    Knowledge about the vertical distribution of the vibrationally excited states of hydroxyl (OH*) is important for the interpretation of airglow measurements with respect to dynamical processes in the mesopause region. We derive an approximate analytical expression for the distribution of OH* that highlights the dependence on atomic oxygen and temperature. In addition, we use an advanced numerical model for the formation and relaxation of OH* and investigate the distributions of the different vibrationally exited states of OH*. For the production of OH*, the model includes the reaction of atomic hydrogen with ozone, as well as the reaction of atomic oxygen with hydroperoxy radicals. As loss processes we include 1) deactivation by atomic oxygen, molecular oxygen, and molecular nitrogen, 2) spontaneous emission, and 3) loss due to chemical reaction with atomic oxygen. All these processes take the dependence on the vibrational number into account. The quenching by molecular and atomic oxygen is parameterized by a multi-quantum relaxation scheme. This diagnostic model for OH* has been implemented as part of a chemistry-transport model that is driven by the dynamics simulated with the KMCM (Kühlungsborn Mechanistic general Circulation Model). Numerical results confirm that emission from excited states with higher vibrational number is weaker and emanates from higher altitudes. In addition we find that the OH*-peak altitudes depend significantly on season and latitude. This behavior is mainly controlled by the corresponding variations of atomic oxygen and temperature, as is also confirmed by the aforementioned approximate theory.

  11. Bifunctional cyclam-based ligands with phosphorus acid pendant moieties for radiocopper separation: thermodynamic and kinetic studies.

    PubMed

    Paúrová, Monika; Havlíčková, Jana; Pospíšilová, Aneta; Vetrík, Miroslav; Císařová, Ivana; Stephan, Holger; Pietzsch, Hans-Jürgen; Hrubý, Martin; Hermann, Petr; Kotek, Jan

    2015-03-16

    Two macrocyclic ligands based on cyclam with trans-disposed N-methyl and N-(4-aminobenzyl) substituents as well as two methylphosphinic (H2L1) or methylphosphonic (H4L2) acid pendant arms were synthesised and investigated in solution. The ligands form stable complexes with transition metal ions. Both ligands show high thermodynamic selectivity for divalent copper over nickel(II) and zinc(II)-K(CuL) is larger than K(Ni/ZnL) by about seven orders of magnitude. Complexation is significantly faster for the phosphonate ligand H4L2, probably due to the stronger coordination ability of the more basic phosphonate groups, which efficiently bind the metal ion in an "out-of-cage" complex and thus accelerate its "in-cage" binding. The rate of Cu(II) complexation by the phosphinate ligand H2L1 is comparable to that of cyclam itself and its derivatives with non-coordinating substituents. Acid-assisted decomplexation of the copper(II) complexes is relatively fast (τ1/2 = 44 and 42 s in 1 M aq. HClO4 at 25 °C for H2L1 and H4L2, respectively). This combination of properties is convenient for selective copper removal/purification. Thus, the title ligands were employed in the preparation of ion-selective resins for radiocopper(II) separation. Glycidyl methacrylate copolymer beads were modified with the ligands through a diazotisation reaction. The separation ability of the modified polymers was tested with cold copper(II) and non-carrier-added (64)Cu in the presence of a large excess of both nickel(II) and zinc(II). The experiments exhibited high overall separation efficiency leading to 60-70% recovery of radiocopper with high selectivity over the other metal ions, which were originally present in 900-fold molar excess. The results showed that chelating resins with properly tuned selectivity of their complexing moieties can be employed for radiocopper separation.

  12. Stable Mn(2+), Cu(2+) and Ln(3+) complexes with cyclen-based ligands functionalized with picolinate pendant arms.

    PubMed

    Rodríguez-Rodríguez, Aurora; Garda, Zoltán; Ruscsák, Erika; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Lima, Luís M P; Beyler, Maryline; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos

    2015-03-21

    In this study we present the results of the equilibrium, dissociation kinetics, DFT and X-ray crystallographic studies performed on the complexes of metal ions of biomedical importance (Mn(2+), Cu(2+) and Gd(3+)) formed with octadentate ligands based on a cyclen platform incorporating two picolinate pendant arms (dodpa(2-) and Medodpa(2-)). The stability constants of the complexes were accessed by multiple methods (pH-potentiometry, direct and competition UV-vis spectrophotometry and (1)H-relaxometry). The stability constants of the complexes formed with dodpa(2-) and Medodpa(2-) do not differ significantly (e.g. log K[Mn(dodpa)] = 17.40 vs. log K[Mn(Medodpa)] = 17.46, log K[Cu(dodpa)] = 24.34-25.17 vs. log K[Cu(Medodpa)] = 24.74 and log K[Gd(dodpa)](+) = 17.27 vs. log K[Gd(Medodpa)](+) = 17.59), which indicates that the steric hindrance brought by the methyl groups has no significant effect on the stability of the complexes. The stability constants of the Mn(2+) complexes formed with the cyclen dipicolinates were found to be ca. 3 log K units higher than those determined for the complex of the cyclen monopicolinate (dompa(-)), which indicates that the second picolinate moiety attached to the backbone of the macrocycle is very likely coordinated to the Mn(2+) ion. However, the stability of the [Cu(dodpa)] and [Cu(Medodpa)] complexes agrees well with the stability constant of [Cu(dompa)](+), in line with the hexadentate coordination around the metal ion observed in the X-ray structure of [Cu(Medodpa)]. The [Gd(dodpa)](+) and [Gd(Medodpa)](+) complexes display a fairly high kinetic inertness, as the rate constants of acid catalysed dissociation (k1 = 2.5(4) × 10(-3) and 8.3(4) × 10(-4) M(-1) s(-1) for [Gd(dodpa)](+) and [Gd(Medodpa)](+), respectively) are smaller than the value reported for [Gd(do3a)] (k1 = 2.5 × 10(-2) M(-1) s(-1)). The [Mn(dodpa)] complex was found to be more inert than [Mn(Medodpa)]. The results of the diffusion-ordered NMR

  13. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution.

  14. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  15. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    SciTech Connect

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon [Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla la Mancha, Avda. Espana s and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that

  16. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans.

    PubMed

    Ge, Wei; Wolf, Alexander; Feng, Tianshu; Ho, Chia-hua; Sekirnik, Rok; Zayer, Adam; Granatino, Nicolas; Cockman, Matthew E; Loenarz, Christoph; Loik, Nikita D; Hardy, Adam P; Claridge, Timothy D W; Hamed, Refaat B; Chowdhury, Rasheduzzaman; Gong, Lingzhi; Robinson, Carol V; Trudgian, David C; Jiang, Miao; Mackeen, Mukram M; McCullagh, James S; Gordiyenko, Yuliya; Thalhammer, Armin; Yamamoto, Atsushi; Yang, Ming; Liu-Yi, Phebee; Zhang, Zhihong; Schmidt-Zachmann, Marion; Kessler, Benedikt M; Ratcliffe, Peter J; Preston, Gail M; Coleman, Mathew L; Schofield, Christopher J

    2012-12-01

    The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.

  17. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  18. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals

    PubMed Central

    Lu, Yang; Wang, AiHua; Shi, Peng; Zhang, Hui; Li, ZeSheng

    2015-01-01

    A systematic study of the antioxidation mechanisms behind hydroxyl (•OH) and hydroperoxyl (•OOH) radical scavenging activity of piceatannol (PIC) and isorhapontigenin (ISO) was carried out using density functional theory (DFT) method. Two reaction mechanisms, abstraction (ABS) and radical adduct formation (RAF), were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB) are considerable in determining the antioxidant activity of PIC and ISO. PMID:26176778

  19. Production of hydroxyl radicals by copper-containing metallothionein: roles as prooxidant.

    PubMed

    Suzuki, K T; Rui, M; Ueda, J; Ozawa, T

    1996-11-01

    Production of hydroxyl radicals by copper (Cu)-containing metallothionein (MT) and its relation to zinc (Zn) bound to MT were studied in vitro with reference to the mechanism of the Cu toxicity in the liver of LEC rats. Zn-MT prepared from the liver of Zn-injected rats was reacted with cupric ions at various Cu/Zn ratios, and the concentrations of the two metals bound to MT and in the solution, valence states of Cu in the solution, production of hydroxyl radicals were determined. Cupric ions replaced Zn in MT after being reduced by thiol groups, and MT, worked as an antioxidant. Cupric ions added to MT that did not contain Zn were reduced to cuprous ions by thiol groups in Cu-MT, and the Cu bound to MT was liberated in a form of cuprous ions. Hydroxyl radicals were produced in the presence of hydrogen peroxide in proportion to the amount of cuprous ions liberated from MT. Cu-containing MT was proposed to work as a prooxidant until all thiol groups in MT were oxidized when Zn was not present in MT. The results indicate that MT works as an antioxidant as long as Zn is present in Cu-containing MT, while it works as a prooxidant when Zn is not present by liberating 1.5 M equivalents of cuprous ions relative to cupric ions added, and hydroxyl radicals are produced in the presence of hydrogen peroxide. On the other hand, MT not bound by Cu does not work as a prooxidant throughout.

  20. Hydroxyl radical-mediated conversion of morphine to morphinone.

    PubMed

    Kumagai, Y; Ikeda, Y; Toki, S

    1992-05-01

    1. The hydroxyl radical-mediated conversion of morphine to morphinone (MO) was examined as an alternative to the enzymic reaction. 2. Hydroxyl radicals were generated by autoxidation of ascorbate in the presence of iron and EDTA. This system oxidized morphine to MO which was identified by h.p.l.c. and t.l.c. The reaction was dependent on the concentration of added Fe2+ and required the addition of ascorbate when Fe3+ was used. 3. Catalase inhibited production of MO whereas superoxide dismutase (SOD) had no effect. Addition of a large amount of H2O2 to the system resulted in a significant decrease in production of MO. No MO production was initiated by H2O2 itself. The oxidation of morphine was inhibited by typical hydroxyl radical-scavenging agents. These results indicate that morphine undergoes oxidation to MO by hydroxyl radical.

  1. Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals

    PubMed Central

    Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-01-01

    Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334

  2. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    SciTech Connect

    Saksono, Nelson; Febiyanti, Irine Ayu Utami, Nissa; Ibrahim

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  3. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Febiyanti, Irine Ayu; Utami, Nissa; Ibrahim

    2015-12-01

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H2O2 amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  4. Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: new insights into the insulin effect.

    PubMed

    Francés, Daniel E; Ronco, María T; Monti, Juan A; Ingaramo, Paola I; Pisani, Gerardo B; Parody, Juan P; Pellegrino, José M; Sanz, Paloma Martín; Carrillo, María C; Carnovale, Cristina E

    2010-05-01

    In this study, we analyzed the contribution of hydroxyl radical in the liver apoptosis mediated by hyperglycemia through the Bax-caspase pathway and the effects of insulin protection against the apoptosis induced by hyperglycemia. Male adult Wistar rats were randomized in three groups: control (C) (sodium citrate buffer, i.p.), streptozotocin (STZ)-induced diabetic (SID) (STZ 60 mg/kg body weight, i.p.), and insulin-treated SID (SID+I; 15 days post STZ injection, SID received insulin s.c., twice a day, 15 days). Rats were autopsied on day 30. In liver tissue, diabetes promoted a significant increase in hydroxyl radical production which correlated with lipid peroxidation (LPO) levels. Besides, hyperglycemia significantly increased mitochondrial BAX protein expression, cytosolic cytochrome c levels, and caspase-3 activity leading to an increase in apoptotic index. Interestingly, the treatment of diabetic rats with desferoxamine or tempol (antioxidants/hydroxyl radical scavengers) significantly attenuated the increase in both hydroxyl radical production and in LPO produced by hyperglycemia, preventing apoptosis by reduction of mitochondrial BAX and cytosolic cytochrome c levels. Insulin treatment showed similar results. The finding that co-administration of antioxidants/hydroxyl radical scavengers together with insulin did not provide any additional benefit compared with those obtained using either inhibitors or insulin alone shows that it is likely that insulin prevents oxidative stress by reducing the effects of hydroxyl radicals. Importantly, insulin significantly increased apoptosis inhibitor protein expression by induction of its mRNA. Taken together, our studies support that, at least in part, the hydroxyl radical acts as a reactive intermediate, which leads to liver apoptosis in a model of STZ-mediated hyperglycemia. A new anti-apoptosis signal for insulin is shown, given by an increase of apoptosis inhibitor protein.

  5. Adenine oxidation by pyrite-generated hydroxyl radicals.

    PubMed

    Cohn, Corey A; Fisher, Shawn C; Brownawell, Bruce J; Schoonen, Martin Aa

    2010-04-26

    Cellular exposure to particulate matter with concomitant formation of reactive oxygen species (ROS) and oxidization of biomolecules may lead to negative health outcomes. Evaluating the particle-induced formation of ROS and the oxidation products from reaction of ROS with biomolecules is useful for gaining a mechanistic understanding of particle-induced oxidative stress. Aqueous suspensions of pyrite particles have been shown to form hydroxyl radicals and degrade nucleic acids. Reactions between pyrite-induced hydroxyl radicals and nucleic acid bases, however, remain to be determined. Here, we compared the oxidation of adenine by Fenton-generated (i.e., ferrous iron and hydrogen peroxide) hydroxyl radicals to adenine oxidation by hydroxyl radicals generated in pyrite aqueous suspensions. Results show that adenine oxidizes in the presence of pyrite (without the addition of hydrogen peroxide) and that the rate of oxidation is dependent on the pyrite loading. Adenine oxidation was prevented by addition of either catalase or ethanol to the pyrite/adenine suspensions, which implies that hydrogen peroxide and hydroxyl radicals are causing the adenine oxidation. The adenine oxidation products, 8-oxoadenine and 2-hydroxyadenine, were the same whether hydroxyl radicals were generated by Fenton or pyrite-initiated reactions. Although nucleic acid bases are unlikely to be directly exposed to pyrite particles, the formation of ROS in the vicinity of cells may lead to oxidative stress.

  6. The hydroxyl radical in plants: from seed to seed.

    PubMed

    Richards, Siân L; Wilkins, Katie A; Swarbreck, Stéphanie M; Anderson, Alexander A; Habib, Noman; Smith, Alison G; McAinsh, Martin; Davies, Julia M

    2015-01-01

    The hydroxyl radical (OH(•)) is the most potent yet short-lived of the reactive oxygen species (ROS) radicals. Just as hydrogen peroxide was once considered to be simply a deleterious by-product of oxidative metabolism but is now acknowledged to have signalling roles in plant cells, so evidence is mounting for the hydroxyl radical as being more than merely an agent of destruction. Its oxidative power is harnessed to facilitate germination, growth, stomatal closure, reproduction, the immune response, and adaptation to stress. It features in plant cell death and is a key tool in microbial degradation of plant matter for recycling. Production of the hydroxyl radical in the wall, at the plasma membrane, and intracellularly is facilitated by a range of peroxidases, superoxide dismutases, NADPH oxidases, and transition metal catalysts. The spatio-temporal activity of these must be tightly regulated to target substrates precisely to the site of radical production, both to prevent damage and to accommodate the short half life and diffusive capacity of the hydroxyl radical. Whilst research has focussed mainly on the hydroxyl radical's mode of action in wall loosening, studies now extend to elucidating which proteins are targets in signalling systems. Despite the difficulties in detecting and manipulating this ROS, there is sufficient evidence now to acknowledge the hydroxyl radical as a potent regulator in plant cell biology.

  7. Hemibonding of hydroxyl radical and halide anion in aqueous solution.

    PubMed

    Yamaguchi, Makoto

    2011-12-29

    Molecular geometries and properties of the possible reaction products between the hydroxyl radical and the halide anions in aqueous solution were investigated. The formation of two-center three-electron bonding (hemibonding) between the hydroxyl radical and halide anions (Cl, Br, I) was examined by density functional theory (DFT) calculation with a range-separated hybrid (RSH) exchange-correlation functional. The long-range corrected hybrid functional (LC-ωPBE), which have given quantitatively satisfactory results for odd electron systems and excited states, was examined by test calculations for dihalogen radical anions (X(2)(-); X = Cl, Br, I) and hydroxyl radical-water clusters. Equilibrium geometries with hemibonding between the hydroxyl radical and halide anions were located by including four hydrogen-bonded water molecules. Excitation energies and oscillator strengths of σ-σ* transitions calculated by the time-dependent DFT method showed good agreement with observed values. Calculated values of the free energy of reaction on the formation of hydroxyl halide radical anion from the hydroxyl radical and halide anion were endothermic for chloride but exothermic for bromide and iodide, which is consistent with experimental values of equilibrium constants.

  8. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes.

    PubMed Central

    Doecke, C J; Veronese, M E; Pond, S M; Miners, J O; Birkett, D J; Sansom, L N; McManus, M E

    1991-01-01

    1. The metabolic interaction of phenytoin and tolbutamide in human liver microsomes was investigated. 2. Phenytoin 4-hydroxylation (mean Km 29.6 microM, n = 3) was competitively inhibited by tolbutamide (mean Ki 106.2 microM, n = 3) and tolbutamide methylhydroxylation (mean Km 85.6 microM, n = 3) was competitively inhibited by phenytoin (mean Ki 22.6 microM, n = 3). 3. A significant correlation was obtained between phenytoin and tolbutamide hydroxylations in microsomes from 18 human livers (rs = 0.82, P less than 0.001). 4. Sulphaphenazole was a potent inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values of 0.4 microM and 0.6 microM, respectively. 5. Mephenytoin was a poor inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values greater than 400 microM for both reactions. 6. Anti-rabbit P450IIC3 IgG inhibited both phenytoin and tolbutamide hydroxylations in human liver microsomes by 62 and 68%, respectively. 7. These in vitro studies are consistent with phenytoin 4-hydroxylation and tolbutamide methylhydroxylation being catalysed by the same cytochrome P450 isozyme(s) in human liver microsomes. PMID:2049228

  9. Synthesis and antioxidant capacities of hydroxyl derivatives of cinnamoylphenethylamine in protecting DNA and scavenging radicals.

    PubMed

    Yang, Yang; Song, Zhi-Guang; Liu, Zai-Qun

    2011-04-01

    Cinnamoylphenethylamine (CNPA) derivatives including feruloylphenethylamine (FRPA), caffeoylphenethylamine (CFPA), cinnamoyltyramine (CNTA), feruloyltyramine (FRTA) and caffeoyltyramine (CFTA) were synthesized in order to investigate the influence of the number and position of hydroxyl group on Cu(2+)/glutathione (GSH) and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation of DNA. The radical-scavenging properties of these CNPA derivatives were also evaluated by trapping 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonate) cationic radical (ABTS(+•)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and galvinoxyl radical. In addition, these CNPA derivatives were tested by linoleic acid (LH)-β-carotene-bleaching experiment. The chemical kinetic was employed to treat the results from AAPH-induced oxidation of DNA and gave the order of antioxidant ability as CFTA > CFPA > FRTA > FRPA. CFTA and CFPA also possessed high abilities to inhibit Cu²(+)/GSH-mediated degradation of DNA, whereas FRPA and FRTA can protect LH against the auto-oxidation efficiently. Finally, CFPA and FRPA exhibited high activity in trapping ABTS(+•), DPPH and galvinoxyl radicals. Therefore, the cinnamoyl group bearing ortho-dihydroxyl or hydroxyl with ortho-methoxyl benefited for CNPA derivatives to protect DNA, while hydroxyl in tyramine cannot enhance the radical-scavenging abilities of CNPA derivatives.

  10. ipso-Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate Sulfonamide Antibiotics

    PubMed Central

    Ricken, Benjamin; Cichocka, Danuta; Parisi, Martina; Lenz, Markus; Wyss, Dominik; Martínez-Lavanchy, Paula M.; Müller, Jochen A.; Shahgaldian, Patrick; Tulli, Ludovico G.; Kohler, Hans-Peter E.; Kolvenbach, Boris A.

    2013-01-01

    Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us. PMID:23835177

  11. Diffusion of hydroxyl ions from calcium hydroxide and Aloe vera pastes.

    PubMed

    Batista, Victor Eduardo de Souza; Olian, Douglas Dáquila; Mori, Graziela Garrido

    2014-01-01

    This study evaluated the diffusion through the dentinal tubules of hydroxyl ions from different calcium hydroxide (CH) pastes containing Aloe vera. Sixty single-rooted bovine teeth were used. The tooth crowns were removed, the root canals were instrumented and the specimens were assigned to 4 groups (n=15) according to the intracanal medication: Group CH/S - CH powder and saline paste; Group CH/P - CH powder and propylene glycol paste; Group CH/A - calcium hydroxide powder and Aloe vera gel paste; Group CH/A/P - CH powder, Aloe vera powder and propylene glycol paste. After placement of the root canal dressings, the teeth were sealed coronally and apically with a two-step epoxy adhesive. The teeth were placed in identified flasks containing deionized water and stored in an oven with 100% humidity at 37 °C. After 3 h, 24 h, 72 h, 7 days, 15 days and 30 days, the deionized water in the flasks was collected and its pH was measured by a pH meter. The obtained data were subjected to statistical analysis at a significance level of 5%. The results demonstrated that all pastes provided diffusion of hydroxyl ions through the dentinal tubules. The combination of Aloe vera and CH (group CH/A) provided a constant release of calcium ions. Group CH/A/P showed the highest pH at 24 and 72 h. In conclusion, the experimental pastes containing Aloe vera were able to enable the diffusion of hydroxyl ions through the dentinal tubules.

  12. Syntheses and Structural Characterizations of Iron(II) Complexes Containing Cyclic Diphosphine Ligands with Positioned Pendant Nitrogen Bases

    SciTech Connect

    Jacobsen, George M.; Shoemaker, R. K.; McNevin, Michael J.; Rakowski DuBois, Mary; DuBois, Daniel L.

    2007-09-24

    A series of new iron(II) complexes that contain cyclic diphosphine ligands with pendant amine bases, P2RN2R’, have been synthesized and characterized (where P2RN2R’ are substituted 1,5-diaza-3,7-diphosphacyclooctanes). These compounds include [Fe(P2PhN2Ph)(CH3CN)4](BF4)2 (1), cis-[Fe(CH3CN)2(P2PhN2Ph)2](BF4)2 (2a), cis-[Fe(CH3CN)2(P2CyN2Bz)2](BF4)2 (2b), cis-Fe(CH3CN)2(P2PhN2Bz)2](BF4)2 (2c), cis-Fe (P2PhN2Ph)2(Cl)2 (3), and trans-[HFe(CH3CN)(P2PhN2Ph)2](BF4), (4). The molecular structures of 1, 2b, and 4 have been confirmed by X-ray diffraction studies. For all complexes the cyclic diphosphine ligands contain one six-membered ring in a chair conformation and one six-membered ring in a boat conformation. For complex 4, the two rings that are in boat conformations result in N--H distances between the pendant amine nitrogens and the hydride ligand of 2.6 to 2.7 Å. Protonation of the pendant bases in complex 4 have been found to form several products. A structural assignment for a dominant protonated isomer has been assigned on the basis of 1H, 31P and 15N spectroscopic techniques. This work was supported by Grant CHE-0240106 from the National Science Foundation. D. L. D. acknowledges the support of the Office of Basic Energy Sciences of the Department of Energy, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Demonstration of hydroxyl radical generation in stunned' myocardium of intact dogs using aromatic hydroxylation of phenylalanine

    SciTech Connect

    Bolli, R.; Kaur, H.; Li, X.Y.; Triana, J.F.; Halliwell, B. Univ. of California, Davis King's College, London )

    1991-03-11

    Numerous studies have shown that postischemic myocardial dysfunction is attenuated by scavengers of hydroxyl ({sup {sm bullet}}OH) radicals and by iron chelators, suggesting an important pathogenetic role of {sup {sm bullet}}OH. However, the evidence provided by these studies is indirect. Since phenyl-alanine (PH) has been shown to react with {sup {sm bullet}}OH to form o-, m-, and p-tyrosines (TYR), the authors used aromatic hydroxylation of PH to detect {sup {sm bullet}}OH in stunned myocardium. Open-chest dogs underwent a 15-min coronary occlusion (O) followed by reperfusion (R). PH was infused i.v. starting 5 min pre-O and ending 10 min after R (n = 3) or starting at R and ending 10 min later (n = 8). TYR concentration in local coronary venous effluent plasma was measured using HPLC with electrochemical detection. No appreciable production of TYR was observed before or during O. After R, however, in all dogs there was a dramatic increase in myocardial production of o-, m-, and p-TYR which peaked at 1-3 min and ceased after 10 min. In 5 control dogs, infusion of PH without O/R did not result in any TYR production. These results provide evidence that the highly reactive {sup {sm bullet}}OH radical is produced after brief regional ischemia in the intact animal and indicate that PH may be a useful probe for measuring this species. The findings support the hypothesis that {sup {sm bullet}}OH contributes to myocardial stunning.'

  14. Synthesis and Structure of Vanadium Halide Complexes Containing Diphosphine Ligands with Pendant Amines

    SciTech Connect

    Egbert, Jonathan D.; Labios, Liezel A.; Darmon, Jonathan M.; Piro, Nicholas A.; Scott Kassel, W.; Mock, Michael T.

    2016-02-18

    A series of vanadium(III) diiodide complexes of the formula CpV(PRNR'PR)I2 (Cp = 5-C5H5; PRNR'PR = (R2PCH2)2N(R)), where R = Et, R = Me (1a), R = Ph (1b); R = Ph, R = Me (1c)) is reported. The corresponding vanadium(II) monoiodide complexes of the formula CpV(PRNR'PR)I, where R = Et, R = Me (2a), R = Ph (2b); R = Ph, R = Me (2c)) were prepared in THF by reduction of 1a-c with Zn powder. The paramagnetic complexes 1a-c and 2a-c are characterized by elemental analysis, 1H NMR spectroscopy, and by cyclic voltammetry for complexes 2b and 4b. Complexes 1c and 2a-c were also characterized in the single crystal by X-ray crystallography. We report the preparation of the vanadium(II) complexes CpV(PPh2NPh2)I (3) (PPh2NPh2 = 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) and trans-[VCl2(PEtNMePEt)2] (4a) and trans-[VCl2(PEtNPhPEt)2] (4b). These complexes represent initial coordination chemistry of vanadium complexes with PRNR'PR and PPh2NPh2 diphosphine ligands, which contain a pendant amine in the second coordination sphere. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  15. Geologic map of southwestern Sequoia National Park and vicinity, Tulare County, California, including the Mineral King metamorphic pendant

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Moore, J. G.

    2012-12-01

    From the late 1940s to the early 1990s, scientists of the U.S. Geological Survey (USGS) mapped the geology of most of Sequoia and Kings Canyon National Parks, California, and published the results as a series of 15-minute (1:62,500 scale) Geologic Quadrangles. The southwest corner of Sequoia National Park, encompassing the Mineral King and eastern edge of the Kaweah 15-minute topographic quadrangles, however, remained unfinished. At the request of the National Park Service's Geologic Resources Division (NPS-GRD), the USGS has mapped the geology of that area using 7.5-minute (1:24,000 scale) topographic bases and high-resolution ortho-imagery. With partial support from NPS-GRD, the major plutons in the map area were dated by the U-Pb zircon method with the Stanford-USGS SHRIMP-RG ion microprobe. Highlights include: (1) Identification of the Early Cretaceous volcano-plutonic suite of Mineral King (informally named), consisting of three deformed granodiorite plutons and the major metarhyolite tuffs of the Mineral King metamorphic pendant. Members of the suite erupted or intruded at 130-140 Ma (pluton ages: this study; rhyolite ages: lower-intercept concordia from zircon results of Busby-Spera, 1983, Princeton Ph.D. thesis, and from Klemetti et al., 2011, AGU abstract) during the pause of igneous activity between emplacement of the Jurassic and Cretaceous Sierran batholiths. (2) Some of the deformation of the Mineral King metamorphic pendant is demonstrably Cretaceous, with evidence including map-scale folding of Early Cretaceous metarhyolite tuff, and an isoclinally folded aplite dike dated at 98 Ma, concurrent with the large 98-Ma granodiorite of Castle Creek that intruded the Mineral King pendant on the west. (3) A 21-km-long magmatic synform within the 99-100 Ma granite of Coyote Pass that is defined both by inward-dipping mafic inclusions (enclaves) and by sporadic, cm-thick, sharply defined mineral layering. The west margin of the granite of Coyote Pass overlies

  16. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations.

  17. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    PubMed

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  18. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals.

    PubMed

    Gao, Yuxian; Li, Rongtan; Chen, Shilong; Luo, Liangfeng; Cao, Tian; Huang, Weixin

    2015-12-21

    Reduction behaviors, oxygen vacancies and hydroxyl groups play decisive roles in the surface chemistry and catalysis of oxides. Employing isothermal H2 reduction we simultaneously reduced CeO2 nanocrystals with different morphologies, created oxygen vacancies and produced hydroxyl groups. The morphology of CeO2 nanocrystals was observed to strongly affect the reduction process and the resultant oxygen vacancy structure. The resultant oxygen vacancies are mainly located on the surfaces of CeO2 cubes and rods but in the subsurface/bulk of CeO2 octahedra. The reactivity of isolated bridging hydroxyl groups on CeO2 nanocrystals was found to depend on the local oxygen vacancy concentration, in which they reacted to produce water at low local oxygen vacancy concentrations but to produce both water and hydrogen with increasing local oxygen vacancy concentration. These results reveal a morphology-dependent interplay among the reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals, which deepens the fundamental understanding of the surface chemistry and catalysis of CeO2.

  19. Lethal hydroxyl radical accumulation by a lactococcal bacteriocin, lacticin Q.

    PubMed

    Li, Mengqi; Yoneyama, Fuminori; Toshimitsu, Nayu; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2013-08-01

    The antimicrobial mechanism of a lactococcal bacteriocin, lacticin Q, can be described by the toroidal pore model without any receptor. However, lacticin Q showed different degrees of activity (selective antimicrobial activity) against Gram-positive bacteria even among related species. The ability of lacticin Q to induce pore formation in liposomes composed of lipids from different indicator strains indicated that its selective antimicrobial activity could not be attributed only to membrane lipid composition. We investigated the accumulation of deleterious hydroxyl radicals after exposure to lacticin Q as a contributing factor to cell death in the indicator strains. When lacticin Q of the same concentration as the MIC or minimum bactericidal concentration was added to the indicator cultures, high levels of hydroxyl radical accumulation were detected. Treatment with hydroxyl radical scavengers, thiourea and 2,2'-bipyridyl, decreased the levels of hydroxyl radical accumulation and recovered cell viability. These results suggest that, with or without pore formation, the final antimicrobial mechanism of lacticin Q is the accumulation of hydroxyl radicals, which varies by strain, resulting in the selective antimicrobial activity of lacticin Q.

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  1. Lethal Hydroxyl Radical Accumulation by a Lactococcal Bacteriocin, Lacticin Q

    PubMed Central

    Li, Mengqi; Yoneyama, Fuminori; Toshimitsu, Nayu; Zendo, Takeshi; Nakayama, Jiro

    2013-01-01

    The antimicrobial mechanism of a lactococcal bacteriocin, lacticin Q, can be described by the toroidal pore model without any receptor. However, lacticin Q showed different degrees of activity (selective antimicrobial activity) against Gram-positive bacteria even among related species. The ability of lacticin Q to induce pore formation in liposomes composed of lipids from different indicator strains indicated that its selective antimicrobial activity could not be attributed only to membrane lipid composition. We investigated the accumulation of deleterious hydroxyl radicals after exposure to lacticin Q as a contributing factor to cell death in the indicator strains. When lacticin Q of the same concentration as the MIC or minimum bactericidal concentration was added to the indicator cultures, high levels of hydroxyl radical accumulation were detected. Treatment with hydroxyl radical scavengers, thiourea and 2,2′-bipyridyl, decreased the levels of hydroxyl radical accumulation and recovered cell viability. These results suggest that, with or without pore formation, the final antimicrobial mechanism of lacticin Q is the accumulation of hydroxyl radicals, which varies by strain, resulting in the selective antimicrobial activity of lacticin Q. PMID:23733459

  2. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  3. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions: experimental and theoretical studies.

    PubMed

    Minakata, Daisuke; Song, Weihua; Crittenden, John

    2011-07-15

    With concerns about emerging contaminants increasing, advanced oxidation processes have become attractive technologies because of potential mineralization of these contaminants via radical involved reactions that are induced by highly reactive hydroxyl radical. Considering the expensive and time-consuming experimental studies of degradation intermediates and byproduct, there is a need to develop a first-principles computer-based kinetic model that predict reaction pathways and associated reaction rate constants. In this study, we measured temperature-dependent hydroxyl radical reaction rate constants for a series of haloacetate ions and obtained their Arrhenius kinetic parameters. We found a linear correlation between these reaction rate constants and theoretically calculated aqueous-phase free energies of activation. To understand the quantitative effects on entropy of solvation due to solvent water molecules, we calculate each portion of the entropic energies that contribute to the overall aqueous phase entropy of activation; cavity formation is a dominant portion. For the series of reactions of hydroxyl radical with carboxylate ions, the increase in the entropy of activation during the solvation process is approximately 10-15 cal mol(-1)K(-1) because of interactions with solvent water molecules and the transition state. Finally, charge distribution analysis for the aqueous-phase reactions of hydroxyl radical with acetate/haloacetate ions reveals that in the aqueous phase, the degree of polarizability at the transition state is less substantial than those that are in the gaseous phase resulting in a high charge density. In the presence of electronegative halogenated functional groups, the transition state is less polarized and hydrogen bonding interactions are expected to be weaker.

  4. Hydroxyl and water molecule orientations in trypsin: Comparison to molecular dynamics structures

    SciTech Connect

    McDowell, R.S.; Kossiakoff, A.A.

    1994-12-31

    A comparison is presented of experimentally observed hydroxyl and water hydrogens in trypsin determined from neutron density maps with the results of a 140ps molecular dynamics (MD) simulation. Experimental determination of hydrogen and deuterium atom positions in molecules as large as proteins is a unique capability of neutron diffraction. The comparison addresses the degree to which a standard force-field approach can adequately describe the local electrostatic and van der Waals forces that determine the orientations of these hydrogens. Neutron densities, derived from 2.1{Angstrom} D{sub 2}O-H{sub 2}O difference Fourier maps, provide a database of 27 well-ordered hydroxyl hydrogens. Most of the simulated hydroxyl orientations are within a standard deviation of the experimentally-observed positions, including several examples in which both the simulation and the neutron density indicate that a hydroxyl group is shifted from a {open_quote}standard{close_quote} rotamer. For the most highly ordered water molecules, the hydrogen distributions calculated from the trajectory were in good agreement with neutron density; simulated water molecules that displayed multiple hydrogen bonding networks had correspondingly broadened neutron density profiles. This comparison was facilitated by development of a method to construct a pseudo 2{Angstrom} density map based on the hydrogen atom distributions from the simulation. The degree of disorder of internal water molecules is shown to result primarily from the electrostatic environment surrounding that water molecule as opposed to the cavity size available to the molecule. A method is presented for comparing the discrete observations sampled in a dynamics trajectory with the time- averaged data obtained from X-ray or neutron diffraction studies. This method is particularly useful for statically-disordered water molecules, in which the average location assigned from a trajectory may represent a site of relatively low occupancy.

  5. Enantioselective aliphatic hydroxylations of racemic 1-hydroxy-3-methylcholanthrene by rat liver microsomes.

    PubMed

    Shou, M G; Yang, S K

    1990-01-01

    Enantiomeric pairs of 1-hydroxy-3-hydroxymethylcholanthrene (1-OH-3-OHMC), 3-methylcholanthrene (3MC) trans- and cis-1,2-diols, and 1-hydroxy-3-methylcholanthrene (1-OH-3MC) were resolved by HPLC using a covalently bonded (R)-N-(3,5-dinitrobenzoyl)phenylglycine chiral stationary phase (Pirkle type 1A) column. The absolute configuration of an enantiomeric 3MC trans-1,2-diol was established by the exciton chirality CD method following conversion to a bis-p-N,N-dimethylaminobenzoate. Incubation of an enantiomeric 1-OH-3MC with rat liver microsomes resulted in the formation of enantiomeric 3MC trans- and cis-1,2-diols; the absolute configurations of the enantiomeric 1-OH-3MC and 3MC cis-1,2-diol were established on the basis of the absolute configuration of an enantiomeric 3MC trans-1,2-diol. Absolute configurations of enantiomeric 1-OH-3-OHMC were determined by comparing their CD spectra with those of enantiomeric 1-OH-3MC. The relative amount of three aliphatic hydroxylation products formed by rat liver microsomal metabolism of racemic 1-OH-3MC was 1-OH-3-OHMC greater than 3MC cis-1,2-diol greater than 3MC trans-1,2-diol. Enzymatic hydroxylation at C2 of racemic 1-OH-3MC was enantioselective toward the 1S-enantiomer over the 1R-enantiomer (approximately 3/1); hydroxylation at the C3-methyl group was enantioselective toward the 1R-enantiomer over the 1S-enantiomer (approximately 58/42). Rat liver microsomal C2-hydroxylation of racemic 1-OH-3MC resulted in a 3MC trans-1,2-diol with a (1S,2S)/(1R,2R) ratio of 63/37 and a 3MC cis-1,2-diol with a (1S,2R)/(1R,2S) ratio of 12/88, respectively.

  6. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    PubMed

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis.

  7. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    DOE PAGES

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; ...

    2016-01-16

    In this study, tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react withmore » the hydroxyl, forming a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  8. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    SciTech Connect

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; Liu, Xiao; Wang, Hua; Mei, Donghai; Ge, Qingfeng

    2016-11-01

    Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance Computing

  9. Hydroxyl radical-induced formation of highly oxidized organic compounds

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipilä, Mikko; Kulmala, Markku; Ehn, Mikael

    2016-12-01

    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.

  10. Hydroxyl radical-induced formation of highly oxidized organic compounds

    PubMed Central

    Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipilä, Mikko; Kulmala, Markku; Ehn, Mikael

    2016-01-01

    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere. PMID:27910849

  11. Identification, Synthesis, and Biological Evaluation of Metabolites of the Experimental Cancer Treatment Drugs Indotecan (LMP400) and Indimitecan (LMP776) and Investigation of Isomerically Hydroxylated Indenoisoquinoline Analogues as Topoisomerase I Poisons

    PubMed Central

    Cinelli, Maris A.; Reddy, P.V. Narasimha; Lv, Peng-Cheng; Liang, Jian-Hua; Chen, Lian; Agama, Keli; Pommier, Yves; van Breemen, Richard B.; Cushman, Mark

    2012-01-01

    Hydroxylated analogues of the anticancer topoisomerase I (Top1) inhibitors indotecan (LMP400) and indimitecan (LMP76) have been prepared because: 1) a variety of potent Top1 poisons are known that contain strategically placed hydroxyl groups, which provides a clear rationale for incorporating them in the present case, and 2) the hydroxylated compounds could conceivably serve as synthetic standards for the identification of metabolites. Indeed, incubating LMP400 and LMP776 with human liver microsomes resulted in two major metabolites of each drug, which had HPLC retention times and mass fragmentation patterns identical to the synthetic standards. The hydroxylated indotecan and indimitecan metabolites and analogues were tested as Top1 poisons and for antiproliferative activity in a variety of human cancer cell cultures, and in general were found to be very potent. Differences in activity resulting from the placement of the hydroxyl group are explained by molecular modeling analyses. PMID:23215354

  12. Hydroxyl Radical Dosimetry for High Flux Hydroxyl Radical Protein Footprinting Applications Using a Simple Optical Detection Method.

    PubMed

    Xie, Boer; Sharp, Joshua S

    2015-11-03

    Hydroxyl radical protein footprinting (HRPF) by fast photochemical oxidation of proteins (FPOP) is a powerful benchtop tool used to probe protein structure, interactions, and conformational changes in solution. However, the reproducibility of all HRPF techniques is limited by the ability to deliver a defined concentration of hydroxyl radicals to the protein. This ability is impacted by both the amount of radical generated and the presence of radical scavengers in solution. In order to compare HRPF data from sample to sample, a hydroxyl radical dosimeter is needed that can measure the effective concentration of radical that is delivered to the protein, after accounting for both differences in hydroxyl radical generation and nonanalyte radical consumption. Here, we test three radical dosimeters (Alexa Fluor 488, terepthalic acid, and adenine) for their ability to quantitatively measure the effective radical dose under the high radical concentration conditions of FPOP. Adenine has a quantitative relationship between UV spectrophotometric response, effective hydroxyl radical dose delivered, and peptide and protein oxidation levels over the range of radical concentrations typically encountered in FPOP. The simplicity of an adenine-based dosimeter allows for convenient and flexible incorporation into FPOP applications, and the ability to accurately measure the delivered radical dose will enable reproducible and reliable FPOP across a variety of platforms and applications.

  13. Mechanisms of hydroxyl radical-induced contraction of rat aorta.

    PubMed

    Li, Jianfeng; Li, Wenyan; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2004-09-19

    The present study was designed to investigate the effects of hydroxyl radicals (*OH), generated via the Fe2+-mediated Fenton reaction, on isolated rat aortic rings with and without endothelium. In the absence of any vasoactive agent, generation of *OH alone elicited an endothelium-independent contraction in rat aortic rings in a concentration-dependent manner. Hydroxyl radical-induced contractions of denuded rat aortic rings appeared, however, to be slightly stronger than those on intact rat aortic rings. The contractile responses to *OH were neither reversible nor reproducible in the same ring; even small concentrations of *OH radicals resulted in tachyphylaxis. Removal of extracellular calcium ions (Ca2+) or buffering intracellular Ca2+ with 10 microM acetyl methyl ester of bis(o-aminophenoxy) ethane-N,N,N',N',-tetraacetic acid (BAPTA-AM) significantly attenuated the contractile actions of *OH radicals. The presence of 1 microM staurosporine, 1 microM bisindolylmaleimide I, 1 microM Gö6976 [inhibitor of protein kinase C (PKC)], 2 microM PD-980592 (inhibitor of ERK), 10 microM genistein, and 1 microM wortmannin significantly inhibited the contractions induced by *OH. Proadifen (10 microM), on the other hand, significantly potentiated the hydroxyl radical-induced contractions. Exposure of primary cultured aortic smooth muscle cells to *OH produced significant, rapid rises of intracellular free Ca2+ ([Ca2+]i). Several, specific antagonists of possible endogenously formed vasoconstrictors did not inhibit or attenuate either hydroxyl radical-induced contractions or the elevation of [Ca2+]i. Our new results suggest that hydroxyl radical-triggered contractions on rat aortic rings are Ca2+-dependent. Several intracellular signal transduction systems seem to play some role in hydroxyl radical-induced vasoconstriction of rat aortic rings.

  14. Beta Hydroxylation of Glycolipids from Ustilago maydis and Pseudozyma flocculosa by an NADPH-Dependent β-Hydroxylase▿

    PubMed Central

    Teichmann, Beate; Lefebvre, François; Labbé, Caroline; Bölker, Michael; Linne, Uwe; Bélanger, Richard R.

    2011-01-01

    Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation. PMID:21926207

  15. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-04-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV-vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved.

  16. Detection of adsorbed water and hydroxyl on the Moon.

    PubMed

    Clark, Roger N

    2009-10-23

    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  17. Detection of adsorbed water and hydroxyl on the moon

    USGS Publications Warehouse

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  18. Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations

    NASA Technical Reports Server (NTRS)

    Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.

    1986-01-01

    The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.

  19. Identification of hydroxyl protons, determination of their exchange dynamics, and characterization of hydrogen bonding in a microcrystallin protein.

    PubMed

    Agarwal, Vipin; Linser, Rasmus; Fink, Uwe; Faelber, Katja; Reif, Bernd

    2010-03-10

    Heteronuclear correlation experiments employing perdeuterated proteins enable the observation of all hydroxyl protons in a microcrystalline protein by MAS solid-state NMR. Dipolar-based sequences allow magnetization transfers that are >50 times faster compared to scalar-coupling-based sequences, which significantly facilitates their assignment. Hydroxyl exchange rates were measured using EXSY-type experiments. We find a biexponential decay behavior for those hydroxyl groups that are involved in side chain-side chain C-O-H...O horizontal lineC hydrogen bonds. The quantification of the distances between the hydroxyl proton and the carbon atoms in the hydrogen-bonding donor as well as acceptor group is achieved via a REDOR experiment. In combination with X-ray data and isotropic proton chemical shifts, availability of (1)H,(13)C distance information can aid in the quantitative description of the geometry of these hydrogen bonds. Similarly, correlations between backbone amide proton and carbonyl atoms are observed, which will be useful in the analysis of the registry of beta-strand arrangement in amyloid fibrils.

  20. Sum Frequency Vibrational Spectroscopy (SFVS) of Water and Hydroxyls on the Corundum (1-102) surface: Acid-base properties from direct observation of protonation states

    NASA Astrophysics Data System (ADS)

    Waychunas, G.; Sung, J.; Shen, R.

    2010-12-01

    SFVS is a powerful tool for quantitative measurement of protonated functional groups on mineral surfaces. We demonstrate this for the Corundum (1-102) interface where the orientation and nature of surface hydroxyls on the dry neutral surface can be obtained and compared with Crystal Truncation Rod (CTR) models for the surface termination and most likely functional groups, effectively allowing testing of such models. A scheme for describing the hydrogen bonding among these protonated groups is found to be consistent with surface symmetry and the particular vibrational frequencies observed. The addition of water to the interface alters the hydrogen bonding of the hydroxyls and introduces water-functional group hydrogen bonding. Direct measurement of the SFVS hydroxyl and water band amplitudes can be used to test expected pKa values, and hence link acid-base properties to precise molecular surface entities. The analysis methodology can be applied to analogous nanoparticle surfaces, though with some limitations.

  1. Mn2+ complexes with 12-membered pyridine based macrocycles bearing carboxylate or phosphonate pendant arm: crystallographic, thermodynamic, kinetic, redox, and 1H/17O relaxation studies.

    PubMed

    Drahoš, Bohuslav; Kotek, Jan; Císařová, Ivana; Hermann, Petr; Helm, Lothar; Lukeš, Ivan; Tóth, Éva

    2011-12-19

    Mn(2+) complexes represent an alternative to Gd(3+) chelates which are widely used contrast agents in magnetic resonance imaging. In this perspective, we investigated the Mn(2+) complexes of two 12-membered, pyridine-containing macrocyclic ligands bearing one pendant arm with a carboxylic acid (HL(1), 6-carboxymethyl-3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene) or a phosphonic acid function (H(2)L(2), 6-dihydroxyphosphorylmethyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene). Both ligands were synthesized using nosyl or tosyl amino-protecting groups (starting from diethylenetriamine or tosylaziridine). The X-ray crystal structures confirmed a coordination number of 6 for Mn(2+) in their complexes. In aqueous solution, these pentadentate ligands allow one free coordination site for a water molecule. Potentiometric titration data indicated a higher basicity for H(2)L(2) than that for HL(1), related to the electron-donating effect of the negatively charged phosphonate group. According to the protonation sequence determined by (1)H and (31)P pH-NMR titrations, the first two protons are attached to macrocyclic amino groups whereas the subsequent protonation steps occur on the pendant arm. Both ligands form thermodynamically stable complexes with Mn(2+), with full complexation at physiological pH and 1:1 metal to ligand ratio. The kinetic inertness was studied via reaction with excess of Zn(2+) under various pHs. The dissociation of MnL(2) is instantaneous (at pH 6). For MnL(1), the dissociation is very fast (k(obs) = 1-12 × 10(3) s(-1)), much faster than that for MnDOTA, MnNOTA, or the Mn(2+) complex of the 15-membered analogue. It proceeds exclusively via the dissociation of the monoprotonated complex, without any influence of Zn(2+). In aqueous solution, both complexes are air-sensitive leading to Mn(3+) species, as evidenced by UV-vis and (1)H NMRD measurements and X-ray crystallography. Cyclic voltammetry gave low oxidation peak

  2. Bacterial adhesion to hydroxyl- and methyl-terminated alkanethiol self-assembled monolayers.

    PubMed Central

    Wiencek, K M; Fletcher, M

    1995-01-01

    The attachment of bacteria to solid surfaces is influenced by substratum chemistry, but to determine the mechanistic basis of this relationship, homogeneous, well-defined substrata are required. Self-assembled monolayers (SAMs) were constructed from alkanethiols to produce a range of substrata with different exposed functional groups, i.e., methyl and hydroxyl groups and a series of mixtures of the two. Percentages of hydroxyl groups in the SAMs and substratum wettability were measured by X-ray photoelectron spectroscopy and contact angles of water and hexadecane, respectively. SAMs exhibited various substratum compositions and wettabilities, ranging from hydrophilic, hydroxyl-terminated monolayers to hydrophobic, methyl-terminated monolayers. The kinetics of attachment of an estuarine bacterium to these surfaces in a laminar flow chamber were measured over periods of 120 min. The initial rate of net adhesion, the number of cells attached after 120 min, the percentage of attached cells that adsorbed or desorbed between successive measurements, and the residence times of attached cells were quantified by phase-contrast microscopy and digital image processing. The greatest numbers of attached cells occurred on hydrophobic surfaces, because (i) the initial rates of adhesion and the mean numbers of cells that attached after 120 min increased with the methyl content of the SAM and the contact angle of water and (ii) the percentage of cells that desorbed between successive measurements (ca. 2 min) decreased with increasing substratum hydrophobicity. With all surfaces, 60 to 80% of the cells that desorbed during the 120-min exposure period had residence times of less than 10 min, suggesting that establishment of firm adhesion occurred quickly on all of the test surfaces. PMID:7721687

  3. A Stable Isotope Study of Fluid-Rock Interactions in the Saddlebag Lake Roof Pendant, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Lojasiewicz, I.; Hartman, S. M.; Holk, G. J.; Paterson, S. R.

    2015-12-01

    The Saddlebag Lake Pendant (SLP) is a ~ 100 km2 zone of Ordovician-Cretaceous metasedimentary and metavolcanic rocks just east of the 95-85 Ma Tuolumne Intrusive Complex (TIC) in the Sierra Nevada of central California. Western SLP and adjacent parts of TIC are affected by the Steelhead Lake Shear Zone (SLSZ), with leucogranitic dikes, abundant qz-tm veins, ductile epidote-chlorite alteration, and massive qz veins. While TIC shows uniform stable isotope values, isotope studies of other Sierra Nevada pendants evidence diversity of fluid sources: Jurassic seawater, Cretaceous magmatic fluids, metamorphic fluids, and meteoric-hydrothermal fluids. We conducted a stable isotope study of 49 samples from units across the SLSZ, focusing on the shear zone. Unlike other pendants, both δ18 O and δD values from SLSZ showed great variability, and most samples were not in isotopic equilibrium. Overall, δ18 O mineral values ranged from -1.5‰(plag) to +15.8‰(bt); mineral δD values ranged from -140‰(tm) to -67‰(bt). TIC δ18 O was +7.8 to +10.0 (plag) and +4.8 to +9.2 (tm), normal magmatic values, and δD were -105 to -75. Paleozoic and Triassic metasedimentary units had most qz δ18 O from +11.3 to +15.8, so within metamorphic range, and δD from -100 to -72 (ep and tm). Jurassic metasedimentary units (Sawmill) and Triassic metavolcanics (Koip) had largest isotopic variability: δ18 O qz from +8.1 to +14.8, plag from -1.1 to +11.8, but ep and tm between +1.3 and +9.3 and δD between -108 and -81. All lower (submagmatic) isotopic values were from a wider, possibly transtensional, part of the SLSZ, transected by Sawmill Canyon. Although TIC and many of the Paleozoic units do not show isotopic evidence for alteration, the Koip and Sawmill units were likely infiltrated by later magmatic waters, and then subjected to very localized meteoric water infiltration in the area surrounding Sawmill Canyon.

  4. Hydroxyl radical Thymine adduct induced DNA damages

    NASA Astrophysics Data System (ADS)

    Schyman, Patric; Eriksson, Leif A.; Zhang, Ru bo; Laaksonen, Aatto

    2008-06-01

    DNA damages caused by a 5-hydroxy-5,6-dihydrothymine-6-yl radical (5-OHT-6yl) abstracting a C2‧ hydrogen from a neighboring sugar (inter-H abstraction) have been theoretically investigated using hybrid DFT in gas phase and in water solution. The inter-H abstraction was here shown to be comparable in energy (24 kcal mol-1) with the intra-H abstraction in which the 5-OHT-6yl abstracts a C2‧ hydrogen from its own sugar. The effect of a neutrally or a negatively charged phosphate group was also studied and the results show no significant impact on the activation energy of the hydrogen abstraction whereas base release and strand break reactions are affected.

  5. Vanadium promotes hydroxyl radical formation by activated human neutrophils.

    PubMed

    Fickl, Heidi; Theron, Annette J; Grimmer, Heidi; Oommen, Joyce; Ramafi, Grace J; Steel, Helen C; Visser, Susanna S; Anderson, Ronald

    2006-01-01

    This study was undertaken to investigate the effects of vanadium in the +2, +3, +4, and +5 valence states on superoxide generation, myeloperoxidase (MPO) activity, and hydroxyl radical formation by activated human neutrophils in vitro, using lucigenin-enhanced chemiluminescence (LECL), autoiodination, and electron spin resonance with 5,5-dimethyl-l-pyrroline N-oxide as the spin trap, respectively. At concentrations of up to 25 microM, vanadium, in the four different valence states used, did not affect the LECL responses of neutrophils activated with either the chemoattractant, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1 microM), or the phorbol ester, phorbol 12-myristate 12-acetate (25 ng/ml). However, exposure to vanadium in the +2, +3, and +4, but not the +5, valence states was accompanied by significant augmentation of hydroxyl radical formation by activated neutrophils and attenuation of MPO-mediated iodination. With respect to hydroxyl radical formation, similar effects were observed using cell-free systems containing either hydrogen peroxide (100 microM) or xanthine/xanthine oxidase together with vanadium (+2, +3, +4), while the activity of purified MPO was inhibited by the metal in these valence states. These results demonstrate that vanadium in the +2, +3, and +4 valence states interacts prooxidatively with human neutrophils, competing effectively with MPO for hydrogen peroxide to promote formation of the highly toxic hydroxyl radical.

  6. Hydroxyl radical reactivity at the air-ice interface

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Zhao, R.; Donaldson, D. J.

    2010-01-01

    Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH) anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL) that exists at air-ice interfaces.

  7. Hydroxyl radical reactivity at the air-ice interface

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Zhao, R.; Donaldson, D. J.

    2009-10-01

    Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at the air-ice interface, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH) anthracene at the air-water interface, but no loss was observed at the air-ice interface. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL) that exists at the air-ice interface.

  8. Lysine hydroxylation of collagen in a fibroblast cell culture system

    NASA Technical Reports Server (NTRS)

    Uzawa, Katsuhiro; Yeowell, Heather N.; Yamamoto, Kazushi; Mochida, Yoshiyuki; Tanzawa, Hideki; Yamauchi, Mitsuo

    2003-01-01

    The lysine (Lys) hydroxylation pattern of type I collagen produced by human fibroblasts in culture was analyzed and compared. Fibroblasts were cultured from normal human skin (NSF), keloid (KDF), fetal skin (FDF), and skin tissues of Ehlers-Danlos syndrome type VIA and VIB patients (EDS-VIA and -VIB). The type I collagen alpha chains with or without non-helical telopeptides were purified from the insoluble matrix and analyzed. In comparison with NSFs, KDF and FDF showed significantly higher Lys hydroxylation, particularly in the telopeptide domains of both alpha chains. Both EDS-VIA and -VIB showed markedly lower Lys hydroxylation in the helical domains of both alpha chains whereas that in the telopeptides was comparable with those of NSFs. A similar profile was observed in the tissue sample of the EDS-VIB patient. These results demonstrate that the Lys hydroxylation pattern is domain-specific within the collagen molecule and that this method is useful to characterize the cell phenotypes in normal/pathological connective tissues.

  9. Hydroxyl Radical and Its Scavengers in Health and Disease

    PubMed Central

    Lipinski, Boguslaw

    2011-01-01

    It is generally believed that diseases caused by oxidative stress should be treated with antioxidants. However, clinical trials with such antioxidants as ascorbic acid and vitamin E, failed to produce the expected beneficial results. On the other hand, important biomolecules can be modified by the introduction of oxygen atoms by means of non-oxidative hydroxyl radicals. In addition, hydroxyl radicals can reduce disulfide bonds in proteins, specifically fibrinogen, resulting in their unfolding and scrambled refolding into abnormal spatial configurations. Consequences of this reaction are observed in many diseases such as atherosclerosis, cancer and neurological disorders, and can be prevented by the action of non-reducing substances. Moreover, many therapeutic substances, traditionally classified as antioxidants, accept electrons and thus are effective oxidants. It is described in this paper that hydroxyl radicals can be generated by ferric ions without any oxidizing agent. In view of the well-known damaging effect of poorly chelated iron in the human body, numerous natural products containing iron binding agents can be essential in the maintenance of human health. However, beneficial effects of the great number of phytochemicals that are endowed with hydroxyl radical scavenging and/or iron chelating activities should not be considered as a proof for oxidative stress. PMID:21904647

  10. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  11. Chemoenzymatic collective synthesis of optically active hydroxyl(methyl)tetrahydronaphthalene-based bioactive terpenoids.

    PubMed

    Batwal, Ramesh U; Argade, Narshinha P

    2015-12-14

    Starting from succinic anhydride and 2-methylanisole, a chemoenzymatic collective formal/total synthesis of several optically active tetrahydronaphthalene based bioactive natural products has been presented via advanced level common precursors; the natural product and antipode (-)/(+)-aristelegone B. Regioselective benzylic oxidations, stereoselective introduction of hydroxyl groups at the α-position of ketone moiety in syn-orientation, efficient enzymatic resolutions with high enantiomeric purity, stereoselective reductions, samarium iodide induced deoxygenations and tandem acylation-Wittig reactions without racemization and/or eliminative aromatization were the key features. An attempted diastereoselective synthesis of (±)-vallapin has also been described.

  12. Biological role of prolyl 3-hydroxylation in type IV collagen.

    PubMed

    Pokidysheva, Elena; Boudko, Sergei; Vranka, Janice; Zientek, Keith; Maddox, Kerry; Moser, Markus; Fässler, Reinhard; Ware, Jerry; Bächinger, Hans Peter

    2014-01-07

    Collagens constitute nearly 30% of all proteins in our body. Type IV collagen is a major and crucial component of basement membranes. Collagen chains undergo several posttranslational modifications that are indispensable for proper collagen function. One of these modifications, prolyl 3-hydroxylation, is accomplished by a family of prolyl 3-hydroxylases (P3H1, P3H2, and P3H3). The present study shows that P3H2-null mice are embryonic-lethal by embryonic day 8.5. The mechanism of the unexpectedly early lethality involves the interaction of non-3-hydroxylated embryonic type IV collagen with the maternal platelet-specific glycoprotein VI (GPVI). This interaction results in maternal platelet aggregation, thrombosis of the maternal blood, and death of the embryo. The phenotype is completely rescued by producing double KOs of P3H2 and GPVI. Double nulls are viable and fertile. Under normal conditions, subendothelial collagens bear the GPVI-binding sites that initiate platelet aggregation upon blood exposure during injuries. In type IV collagen, these sites are normally 3-hydroxylated. Thus, prolyl 3-hydroxylation of type IV collagen has an important function preventing maternal platelet aggregation in response to the early developing embryo. A unique link between blood coagulation and the ECM is established. The newly described mechanism may elucidate some unexplained fetal losses in humans, where thrombosis is often observed at the maternal/fetal interface. Moreover, epigenetic silencing of P3H2 in breast cancers implies that the interaction between GPVI and non-3-hydroxylated type IV collagen might also play a role in the progression of malignant tumors and metastasis.

  13. Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical.

    PubMed

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2013-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H(2)O(2) include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H(2)O(2) abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. Unfortunately, H(2)O(2) is poorly reactive in chemical terms and the second order rate constants for the H(2)O(2)-mediated PTP inactivation are ~10M(-1)s(-1), which is too slow to be compatible with the transient signaling events occurring at the physiological concentrations of H(2)O(2). We find that hydroxyl radical is produced from H(2)O(2) solutions in the absence of metal chelating agent by the Fenton reaction. We show that the hydroxyl radical is capable of inactivating the PTPs and the inactivation is active site directed, through oxidation of the catalytic Cys to sulfenic acid, which can be reduced by low molecular weight thiols. We also show that hydroxyl radical is a kinetically more efficient oxidant than H(2)O(2) for inactivating the PTPs. The second-order rate constants for the hydroxyl radical-mediated PTP inactivation are at least 2-3 orders of magnitude higher than those mediated by H(2)O(2) under the same conditions. Thus, hydroxyl radical generated in vivo may serve as a more physiologically relevant oxidizing agent for PTP inactivation. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.

  14. Functional Aromatic Poly(1,3,4-Oxadiazole-Ether)s with Benzimidazole Pendants: Synthesis, Thermal and Dielectric Studies

    PubMed Central

    Ganesh, Shimoga D.; Pai, Vasantakumar K.; Kariduraganavar, Mahadevappa Y.; Jayanna, Madhu B.

    2014-01-01

    Poly(1,3,4-oxadiazole-ether) with reactive carboxylic acid pendants was synthesized from solution polymerization via nucleophilic displacement polycondensation among 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole (BFPOx) and 4,4′-bis(4-hydroxyphenyl) valeric acid (BHPA). Without altering the polymeric segments, benzimidazole modified poly(1,3,4-oxadiazole-ether)s were prepared by varying stoichiometric ratios of 1,2-phenylenediamine. The molecular structural characterization of these polymers was achieved by, FT-IR, NMR, TGA, elemental analysis, and analytical techniques. The weight-average molecular weight of virgin polymer with carboxylic acid functionality was determined by gel permeation chromatography (GPC) and was found to be 22400 (Mw/Mn = 2.07). All the synthesized polyethers were compressed into pellets and electrical contacts were established to perform dielectric properties. PMID:27437448

  15. Equilibrium shapes and stability of nonconducting pendant drops surrounded by a conducting fluid in an electric field

    SciTech Connect

    Harris, M.T.; Basaran, O.A.

    1995-03-15

    The shapes and stability of pendant drops in the presence of an electric field is a classical problem in capillarity. This problem has been studied in great detail by numerous investigators when the drops are either perfect conductors or nonconductors and the surrounding fluid is a nonconductor. In this paper, the axisymmetric equilibrium shapes and stability of a nonconducting drop hanging from a nonconducting nozzle that is immersed in a perfectly conducting ambient fluid, a problem that has heretofore not been considered in the literature, are determined by solving the free boundary problem comprised of the Young-Laplace equation for drop shape and an integral equation for the electric field distribution. Here the free boundary problem is discretized by a hybrid technique in which the Young-Laplace equation is solved by the finite element method and the electrostatic problem solved by the boundary element method.

  16. Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction.

    PubMed

    Floyd, R A; Nagy, I

    1984-10-09

    Proline and hydroxyproline when exposed to the hydroxyl free radical generating system of ADP-Fe(II)-H2O2 yielded long-lived free radicals. An analysis of the electron paramagnetic resonance spectra of the long-lived hydroxyl free radical adducts of proline and hydroxyproline is consistent with a free electron on a nitroxyl group interacting with the nitrogen atom as well as with three separate protons. In the case of proline, nitroxide formation was observed under the influence of tert-butyl-hydroperoxide, giving a similar EPR spectrum (Lin, J.S., Tom, T.C. and Olcott, H.S. (1974) J. Agr. Food Chem. 22, 526-528); however, the hydroxyl free radical adduct of hydroxyproline has not been described yet. In the case of the proline nitroxide radical, two of the three protons involved interact with the free electron equivalently. The coupling constants for the hydroxyl free radical adduct of proline are AN = 1.58 mT, AH1 beta = AH2 beta = 2.13 mT, AH3 beta = 1.77 mT and for hydroxyproline are AN = 1.54 mT, AH1 beta = 2.56 mT, AH2 beta = 2.03 and AH3 beta = 1.51. The data are consistent with the amine nitrogen of proline and hydroxyproline being oxidized to a nitroxyl group and the free electron of the nitroxyl interacting with the beta-protons of these amino acid hydroxyl free radical adducts.

  17. Intramolecular iron-mediated C-H bond heterolysis with an assist of pendant base in a [FeFe]-hydrogenase model.

    PubMed

    Zheng, Dehua; Wang, Ning; Wang, Mei; Ding, Shengda; Ma, Chengbing; Darensbourg, Marcetta Y; Hall, Michael B; Sun, Licheng

    2014-12-03

    Although many metalloenzymes containing iron play a prominent role in biological C-H activation processes, to date iron-mediated C(sp(3))-H heterolysis has not been reported for synthetic models of Fe/S-metalloenzymes. In contrast, ample precedent has established that nature's design for reversible hydrogen activation by the diiron hydrogenase ([FeFe]-H2ase) active site involves multiple irons, sulfur bridges, a redox switch, and a pendant amine base, in an intricate arrangement to perform H-H heterolytic cleavage. In response to whether this strategy might be extended to C-H activation, we report that a [FeFe]-H2ase model demonstrates iron-mediated intramolecular C-H heterolytic cleavage via an agostic C-H interaction, with proton removal by a nearby pendant amine, affording Fe(II)-[Fe'(II)-CH-S] three-membered-ring products, which can be reduced back to 1 by Cp2Co in the presence of HBF4. The function of the pendant base as a proton shuttle was confirmed by the crystal structures of the N-protonated intermediate and the final deprotonated product in comparison with that of a similar but pendant-amine-free complex that does not show evidence of C-H activation. The mechanism of the process was backed up by DFT calculations.

  18. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J

    2017-03-24

    The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. (18)O and (2)H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.

  19. Computing Free Energy Landscapes: Application to Ni-based Electrocatalysts with Pendant Amines for H2 Production and Oxidation

    SciTech Connect

    Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; DuBois, Daniel L.; Dupuis, Michel; Rousseau, Roger J.; Raugei, Simone

    2014-01-03

    A general strategy is reported for computational exploration of catalytic pathways of molecular catalysts. Our results are based on a set of linear free energy relationships derived from extensive electronic structure calculations that permit predicting the thermodynamics of intermediates, with accuracy comparable to experimental data. The approach is exemplified with the catalytic oxidation and production of H2 by [Ni(diphosphine)2]2+ electrocatalysts with pendant amines incorporated in the second coordination sphere of the metal center. The analysis focuses upon prediction of thermodynamic properties including reduction potentials, hydride donor abilities, and pKa values of both the protonated Ni center and pendant amine. It is shown that all of these chemical properties can be estimated from the knowledge of only the two redox potentials for the Ni(II)/Ni(I) and Ni(I)/Ni(0) couples of the non-protonated complex, and the pKa of the parent primary aminium ion. These three quantities are easily accessible either experimentally or theoretically. The proposed correlations reveal intimate details about the nature of the catalytic mechanism and its dependence on chemical structure and thermodynamic conditions such as applied external voltage and species concentration. This computational methodology is applied to exploration of possible catalytic pathways, identifying low and high-energy intermediates and, consequently, possibly avoiding bottlenecks associated with undesirable intermediates in the catalytic reactions. We discuss how to optimize some of the critical reaction steps in order to favor catalytically more efficient intermediates. The results of this study highlight the substantial interplay between the various parameters characterizing the catalytic activity, and form the basis needed to optimize the performance of this class of catalysts.

  20. Ability of TiO2(110) Surface to Be Fully Hydroxylated and Fully Reduced

    SciTech Connect

    Wang, Zhitao; Garcia, Juan C.; Deskins, N. A.; Lyubinetsky, Igor

    2015-08-06

    Many TiO2 applications (e.g., in heterogeneous catalysis) involve contact with ambient atmosphere and/or water. The resulting hydroxylation can significantly alter its surface properties. While behavior of single, isolated OH species on the model metal oxide surface of rutile TiO2(110) is relatively well understood, much less is known regarding highly-hydroxylated surfaces and/or whether TiO2(110) could be fully-hydroxylated under ultra-high vacuum conditions. Here we report in situ formation of a well-ordered, fully-hydroxylated TiO2(110)-(1 x 1) surface using an enhanced photochemical approach, key parts of which are pre-dosing of water and multi-step dissociative adsorption and subsequent photolysis of the carboxylic (trimethyl acetic) acid. Combining scanning tunneling microscopy, ultra-violet photoelectron spectroscopy and density functional theory results, we show that the attained “super OH” surface is also fully-reduced, as a result of the photochemical trapping of electrons at the OH groups.

  1. CYP153A6, a Soluble P450 Oxygenase Catalyzing Terminal-Alkane Hydroxylation

    PubMed Central

    Funhoff, Enrico G.; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B.

    2006-01-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min−1 and has a regiospecificity of ≥95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from ∼20 nM to 3.7 μM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation. PMID:16816194

  2. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation.

    PubMed

    Funhoff, Enrico G; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B

    2006-07-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.

  3. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand.

    PubMed

    Zheng, Dehua; Wang, Mei; Wang, Ning; Cheng, Minglun; Sun, Licheng

    2016-01-19

    A series of pendant amine-containing [FeFe]-hydrogenase models, [X(CH2S-μ)2{Fe(CO)3}{Fe(CO)(P2(Ph)N2(Bn))}] (1H, X = CH2; 2Me, C(CH3)2; 3Et, C(CH2CH3)2; and P2(Ph)N2(Bn) = 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) with different groups at the bridgehead carbon of the S-to-S linker were synthesized. The oxidations of these complexes as well as the reverse reduction reaction were studied by cyclic voltammetry and in situ IR spectroscopy. Regardless of the bridgehead steric bulk, all three complexes demonstrate intramolecular iron-mediated C(sp(3))-H bond heterolytic cleavage with the assistance of the pendant amine base within the chelating diphosphine ligand in the two-electron oxidation process. X-ray crystallographic analysis shows that the doubly oxidized products, [1'H](+), [2'Me](+), and [3'Et](+), all have a rigid FeSC three-membered ring at the open apical site of the rotated iron center. The most noticeable difference in structures of the oxidized complexes is that the single CO ligand of the rotated Fe(P2(Ph)N2(Bn))(CO) unit in [1'H](+) and [2'Me](+) is found below the Fe···Fe vector, while in [3'Et](+) an unusually rotated Fe(P2(Ph)N2(Bn))(CO) moiety positions one of the P donors within the bidentate ligand under the Fe···Fe vector. The starting Fe(I)Fe(I) complexes can be recovered from their corresponding doubly oxidized complexes by reduction in the presence of Brönsted acid.

  4. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    PubMed

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  5. Perinatal manganese exposure and hydroxyl radical formation in rat brain.

    PubMed

    Bałasz, Michał; Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Kasperczyk, Sławomir; Nowak, Damian; Kostrzewa, Richard M; Nowak, Przemysław

    2015-01-01

    The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO(•)) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO(•) in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO(•) being an index of in vivo HO(•) generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO(•) formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO(•) in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO(•) formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a "trigger mechanism," initiating a cascade of adverse events leading to a protracted increase in

  6. The Determination of Interfacial Tension by Video Image Processing of Pendant Fluid Drops.

    DTIC Science & Technology

    1986-03-07

    polynomial smoothing (e.g. quadratic or cubic), the number of contiguous data points in the local target group , and the number of overall smoothing...performing a least squares or robust polynomial fit in the new coordinate system. The smoothed profile coordinate (i.e. midpoint of each target group ) in

  7. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers

    PubMed Central

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-01-01

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836

  8. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers.

    PubMed

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-02-15

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones' effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class.

  9. Nanoscale hydroxyl radical generation from multiphoton ionization of tryptophan.

    PubMed

    Bisby, Roger H; Crisostomo, Ana G; Botchway, Stanley W; Parker, Anthony W

    2009-01-01

    Exposure of solutions containing both tryptophan and hydrogen peroxide to a pulsed ( approximately 180 fs) laser beam at 750 nm induces luminescence characteristic of 5-hydroxytryptophan. The results indicate that 3-photon excitation of tryptophan results in photoionization within the focal volume of the laser beam. The resulting hydrated electron is scavenged by hydrogen peroxide to produce the hydroxyl radical. The latter subsequently reacts with tryptophan to form 5-hydroxytryptophan. The involvement of hydroxyl radicals is confirmed by the use of ethanol and nitrous oxide as scavengers and their effects on the fluorescence yield in this system. It is postulated that such multiphoton ionization of tryptophanyl residues in cellular proteins may contribute to the photodamage observed during imaging of cells and tissues using multiphoton microscopy.

  10. Twilight Intensity Variation of the Infrared Hydroxyl Airglow

    NASA Technical Reports Server (NTRS)

    Lowe, R. P.; Gilbert, K. L.; Niciejewski, R. J.

    1984-01-01

    The vibration rotation bands of the hydroxyl radical are the strongest features in the night airglow and are exceeded in intensity in the dayglow only by the infrared atmospheric bands of oxygen. The variation of intensity during evening twilight is discussed. Using a ground-based Fourier Transform Spectrometer (FTS), hydroxyl intensity measurements as early as 3 deg solar depression were made. Models of the twilight behavior show that this should be sufficient to provide measurement of the main portion of the twilight intensity change. The instrument was equipped with a liquid nitrogen-cooled germanium detector whose high sensitivity combined with the efficiency of the FTS technique permits spectra of the region 1.1 to 1.6 microns at high signal-to-noise to be obtained in two minutes. The use of a polarizer at the entrance aperture of the instrument reduces the intensity of scattered sunlight by a factor of at least ten for zenith observations.

  11. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities.

    PubMed

    Tehrani, Rouzbeh; Van Aken, Benoit

    2014-05-01

    Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence about the widespread dispersion of OH-PCBs in various compartments of the ecosystem has accumulated, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are, today, increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment.

  12. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  13. Hydroxylated biphenyls as tyrosinase inhibitor: A spectrophotometric and electrochemical study.

    PubMed

    Ruzza, Paolo; Serra, Pier Andrea; Fabbri, Davide; Dettori, Maria Antonietta; Rocchitta, Gaia; Delogu, Giovanna

    2017-01-27

    A small collection of C2-symmetry hydroxylated biphenyls was prepared by straightforward methods and the capability to act as inhibitors of tyrosinase has been evaluated by both spectrophotometric and electrochemical assays. Our attention was focused on the diphenolase activity of this enzyme characterized by the absence of the characteristic lag time of enzymatic reaction of its monophenolase activity. To this purpose, we evaluated the capability of tyrosinase to oxidize a natural o-diphenol substrate to o-quinone analyzing the changes in the UV-Vis spectrum of a solution of caffeic acid and the reduction of the cathodic current in a tyrosinase-biosensor, respectively. Results of both the methods were comparable. Most of the compounds possessed higher inhibitory activity compared to compound 1, a known hydroxylated biphenyl inhibitor of tyrosinase.

  14. Novel denture-cleaning system based on hydroxyl radical disinfection.

    PubMed

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  15. Treating ballast water with hydroxyl radical on introduced organisms

    NASA Astrophysics Data System (ADS)

    Zhang, Zhitao; Bai, Mindi; Xiao, Yu; Bai, Mindong; Yang, Bo; Bai, Xiyao

    2006-06-01

    With physical method of micro-gap gas discharge, a large amount of hydroxyl radical can be produced in 20t/h pilot-scale system using the ionization of O2 and H2O. In this paper, the effect of biochemistry of hydroxyl radicals on introduced organisms in ballast water was experimentally investigated. The results indicate that the contents of chlorophyl- a, chlorophyl- b, chlorophyl- c and carotenoid are decreased by 35% 64% within 8.0s and further to the lowest limit of test 5 minutes. In addition, the main reasons of cell death are the lipid peroxidation, the strong destruction to the monose, amylose, protein, DNA and RNA of cell, and damage in CAT, POD and SOD of antioxidant enzyme system.

  16. Effects of bis homoallylic and homoallylic hydroxyl substitution on the olefinic 13C resonance shifts in fatty acid methyl esters.

    PubMed

    Pfeffer, P E; Sonnet, P E; Schwartz, D P; Osman, S F; Weisleder, D

    1992-04-01

    Substitution of a hydroxyl group at the bis homoallylic position (OH group located three carbons away from the olefinic carbon) in C18 unsaturated fatty acid esters (FAE) induces a 0.73 +/- 0.05 ppm upfield and a 0.73 +/- 0.06 ppm downfield shift on the delta and epsilon olefinic 13C resonances relative to the unsubstituted FAE, respectively. If the hydroxyl group is located on the carboxyl side of the double bond of the bis homoallylic hydroxy fatty acid esters (BHAHFA), the olefinic resonances are uniformly shifted apart by [formula: see text] where delta delta dbu represents the absolute value of the double bond resonance separation in the unsubstituted FAE and 1.46 ppm is the sum of the absolute values of the delta and epsilon shift parameters. With hydroxyl substitution on the terminal methyl side of the double bond, the olefinic shift separation is equal to [formula: see text] In homoallylic (OH group located two carbons away from the olefinic carbon) substituted FAE the gamma and delta induced hydroxyl shifts for the cis double bond resonances are +3.08 and -4.63 ppm, respectively while the trans double bond parameters are +4.06 and -4.18 ppm, respectively. The double bond resonance separation in homoallylic hydroxy fatty acid esters (HAHFA) can be calculated from the formula [formula: see text] for cis and [formula: see text] for the trans case when the OH substitution is on the carboxyl side of the double bond. Conversely, when the OH resides on the terminal methyl side, the double bond shift separations for cis and trans isomers are [formula: see text] and [formula: see text] respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Hydroxyl radical scavengers inhibit human lectin-dependent cellular cytotoxicity.

    PubMed

    Melinn, M; McLaughlin, H

    1986-06-01

    The role of oxygen-derived free radicals (ODFR) in lectin-dependent cellular cytotoxicity (LDCC) in humans was investigated. The hydroxyl radical traps thiourea, methanol, ethanol and phenol were effective in inhibiting LDCC, as was DABCO, a singlet oxygen quencher. The proposed pathway of hydroxyl radical production in living cells is either an iron catalysed Haber-Weiss reaction or a Fenton reaction. The effect of inhibitors of these pathways was investigated. The superoxide anion scavengers superoxide dismutase, ferricytochrome c and Tiron were without effect. It was shown that Tiron inhibits the lucigenin-amplified chemiluminescence produced by the action of xanthine oxidase, and also the lucigenin-amplified chemiluminescence produced by activated PMN, suggesting that this agent (Tiron) scavenges intracellular superoxide anion. Catalase gave slight inhibition of LDCC only. The ferric iron chelator desferrioxamine gave no protection of the target cells, while the ferrous chelator, 1,10-phenanthroline, inhibited LDCC and partially prevented the detection of hydroxyl radicals generated by the Fe2+-H2O2 system. Cibacron blue, an agent that inhibits NAD(P)H linked enzymes, also inhibited LDCC. The cyclo-oxygenase inhibitors indomethacin and salicylate were without effect, while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) inhibited cytolysis. None of the LDCC inhibitors was cytotoxic to the effector cells or to the target cells, neither did they inhibit lymphocyte-target binding. The findings would suggest that hydroxyl radicals have a role to play in human T-cell mediated cytolysis, either as the active lytic agent or as an epiphenomenon.

  18. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  19. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  20. Immunogenicity of mitochondrial DNA modified by hydroxyl radical.

    PubMed

    Alam, Khurshid; Moinuddin; Jabeen, Suraya

    2007-05-01

    Mitochondria consume about 90 percent of oxygen used by the body, and are a particularly rich source of reactive oxygen species (ROS). In this research communication mitochondrial DNA (mtDNA) was isolated from fresh goat liver and modified in vitro by hydroxyl radical generated from UV irradiation (254 nm) of hydrogen peroxide. As a consequence of hydroxyl radical modification, mtDNA showed hyperchromicity and sensitivity to nuclease S1 digestion as compared to control mtDNA. Animals immunized with mtDNA and ROS-modified mtDNA induced antibodies as detected by direct binding and competition ELISA. The data suggest that immunogenicity of mtDNA got augmented after treatment with hydroxyl radical. IgG isolated from immune sera showed specificity for respective immunogen and cross-reaction with other nucleic acids. Binding of induced antibodies with array of antigens clearly indicates their polyspecific nature. Moreover, the polyspecificity exhibited by induced antibodies is unique in view of similar multiple antigen binding properties of naturally occurring anti-DNA antibodies derived from SLE patients.

  1. Two Structures of an N-Hydroxylating Flavoprotein Monooxygenase

    PubMed Central

    Olucha, Jose; Meneely, Kathleen M.; Chilton, Annemarie S.; Lamb, Audrey L.

    2011-01-01

    The ornithine hydroxylase from Pseudomonas aeruginosa (PvdA) catalyzes the FAD-dependent hydroxylation of the side chain amine of ornithine, which is subsequently formylated to generate the iron-chelating hydroxamates of the siderophore pyoverdin. PvdA belongs to the class B flavoprotein monooxygenases, which catalyze the oxidation of substrates using NADPH as the electron donor and molecular oxygen. Class B enzymes include the well studied flavin-containing monooxygenases and Baeyer-Villiger monooxygenases. The first two structures of a class B N-hydroxylating monooxygenase were determined with FAD in oxidized (1.9 Å resolution) and reduced (3.03 Å resolution) states. PvdA has the two expected Rossmann-like dinucleotide-binding domains for FAD and NADPH and also a substrate-binding domain, with the active site at the interface between the three domains. The structures have NADP(H) and (hydroxy)ornithine bound in a solvent-exposed active site, providing structural evidence for substrate and co-substrate specificity and the inability of PvdA to bind FAD tightly. Structural and biochemical evidence indicates that NADP+ remains bound throughout the oxidative half-reaction, which is proposed to shelter the flavin intermediates from solvent and thereby prevent uncoupling of NADPH oxidation from hydroxylated product formation. PMID:21757711

  2. The environmental formation of n-hydroxylated amines

    SciTech Connect

    Spurgeon, C.; Crosby, D. )

    1989-01-01

    Aromatic amines and nitro compounds are used extensively in many industries and because many of these compounds are known or suspected carcinogens they are becoming of increasing concern as environmental pollutants. Although the exact mechanism of the carcinogenic effects of these compounds is not yet fully understood, N-hydroxylation is regarded as an essential step. N-hydroxylated amines are known to be formed metabolically but it is not yet known if N-hydroxylation occurs in the environment or if the arylhydroxylamines are environmentally stable. The authors research focused on the environmental formation of N-hydroxylamines, specifically the formation of N-hydroxy-o-toluidine via the photooxidation in water of o-toluidine or the reduction in soil of 2-nitrotoluene. The photooxidation and reduction products were identified and the rates of formation and stabilities of the major products determined. N-hydroxy-o-toluidine was shown to be unstable in aqueous environments, oxidizing to 2-nitrosotoluene within 24 hours.

  3. 19-Hydroxylation of androgens in the rat brain.

    PubMed Central

    Hahn, E F; Miyairi, S; Fishman, J

    1985-01-01

    Aromatization of androgens in the central nervous system is linked with sexual differentiation of the brain and, thus, determines the nature of sexual behavior and the control of gonadotropin secretion. The process of aromatization, as determined in the human placenta, proceeds through two successive hydroxylations at C-19, the products of which are then virtually completely converted via a third hydroxylation at C-2 to estrogens. We now report that in the rat brain, 19-hydroxylation of androgens greatly exceeds aromatization and the 19-hydroxy- and 19-oxoandrogen products accumulate in quantities 5 times greater than the estrogens. This relationship implies that the aromatization sequence in the brain is deficient in the terminal hydroxylase, and the process is distinct from that in other tissues. The function of 19-hydroxy- and 19-oxotestosterone in the central nervous system is unknown but, unlike the reduced or aromatized metabolites of the male hormone, these substances cannot be delivered from the circulation and their presence in the brain is totally dependent on in situ formation, making them logical candidates for modulators of neuronal functions. PMID:3857612

  4. Lysyl hydroxylation in collagens from hyperplastic callus and embryonic bones.

    PubMed Central

    Lehmann, H W; Bodo, M; Frohn, C; Nerlich, A; Rimek, D; Notbohm, H; Müller, P K

    1992-01-01

    Tissue from two patients with osteogenesis imperfecta suffering from a hyperplastic callus was studied. Although collagen type I from the compact bone and the skin and fibroblast cultures of these patients showed normal lysyl hydroxylation, collagen types I, II, III and V from the callus tissue were markedly overhydroxylated. Furthermore, the overhydroxylation of lysine residues covered almost equally the entire alpha 1 (I) collagen chain, as demonstrated by the analysis of individual CNBr-derived peptides. In addition, collagen type I was isolated from femoral compact bone of 33 individuals who died between the 16th week of gestational age and 22 years. Lysyl hydroxylation rapidly decreased in both collagen alpha 1 (I) and alpha 2 (I) chains during fetal development, and only little in the postnatal period. The transient increase in lysyl hydroxylation and the involvement of various collagen types in callus tissue argue for a regulatory mechanism that may operate in bone repair and during fetal development. Images Fig. 1. Fig. 3. PMID:1546948

  5. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  6. Exploring Pd adsorption, diffusion, permeation, and nucleation on bilayer SiO2/Ru as a function of hydroxylation and precursor environment: From UHV to catalyst preparation

    NASA Astrophysics Data System (ADS)

    Pomp, Sascha; Kaden, William E.; Sterrer, Martin; Freund, Hans-Joachim

    2016-10-01

    The hydroxylation-dependent permeability of bilayer SiO2 supported on Ru(0001) was investigated by XPS and TDS studies in a temperature range of 100 K to 600 K. For this, the thermal behavior of Pd evaporated at 100 K, which results in surface and sub-surface (Ru-supported) binding arrangements, was examined relative to the extent of pre-hydroxylation. Samples containing only defect-mediated hydroxyls showed no effect on Pd diffusion through the film at low temperature. If, instead, the concentration of strongly bound hydroxyl groups and associated weakly bound water molecules was enriched by an electron-assisted hydroxylation procedure, the probability for Pd diffusion through the film is decreased via a pore-blocking mechanism. Above room temperature, all samples showed similar behavior, reflective of particle nucleation above the film and eventual agglomeration with any metal atoms initially binding beneath the film. When depositing Pd onto the same SiO2/Ru model support via adsorption of [Pd(NH3)4]Cl2 from alkaline (pH 12) precursor solution, we observe notably different adsorption and nucleation mechanisms. The resultant Pd adsorption complexes follow established decomposition pathways to produce model catalyst systems compatible with those created exclusively within UHV despite lacking the ability to penetrate the film due to the increased size of the initial Pd precursor groups.

  7. Kinetic isotope effects of peptidylglycine alpha-hydroxylating mono-oxygenase reaction.

    PubMed Central

    Takahashi, K; Onami, T; Noguchi, M

    1998-01-01

    Many bioactive polypeptides or neuropeptides possess a C-terminal alpha-amide group as a critical determinant for their optimal bioactivities. The amide functions are introduced by the sequential actions of peptidylglycine alpha-hydroxylating mono-oxygenase (PHM; EC 1.14.17.3) and peptidylamidoglycollate lyase (PAL; EC 4.3.2.5) from their glycine-extended precursors. In the present study we examined the kinetic isotope effects of the frog PHM reaction by competitive and non-competitive approaches. In the competitive approach we employed the double-label tracer method with D-Tyr-[U-14C]Val-Gly, D-Tyr-[3,4-3H]Val-[2,2-2H2]-Gly, and D-Tyr-Val-(R,S)[2-3H]Gly as substrates, and we determined the deuterium and tritium effects on Vmax/Km as 1.625+/-0.041 (mean+/-S. D.) and 2.71+/-0.16 (mean+/-S.D.), respectively. The intrinsic deuterium isotope effect (Dk) on the glycine hydroxylation reaction was estimated to be 6.5-10.0 (mean 8.1) by the method of Northrop [Northrop (1975) Biochemistry 14, 2644-2651]. In the non-competitive approach with N,N-dimethyl-1,4-phenylenediamine as a reductant, however, the deuterium effect on Vmax (DV) was approximately unity, although the deuterium effect on Vmax/Km (DV/K) was comparable to that obtained by the competitive approach. These results indicated that DV was completely masked by the presence of one or more steps much slower than the glycine hydroxylation step and that DV/K was diminished from Dk by a large forward commitment to catalysis. The addition of PAL, however, increased the apparent DV from 1.0 to 1.2, implying that the product release step was greatly accelerated by PAL. These results suggest that the product release is rate-limiting in the overall PHM reaction. The large Dk indicated that the glycine hydroxylation catalysed by PHM might proceed in a stepwise mechanism similar to that proposed for the dopamine beta-hydroxylase reaction [Miller and Klinman (1983) Biochemistry 22, 3091-3096]. PMID:9806894

  8. A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

    PubMed Central

    Dirinck, Eveline; Dirtu, Alin C.; Malarvannan, Govindan; Covaci, Adrian; Jorens, Philippe G.; Van Gaal, Luc F.

    2016-01-01

    Background: Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (HO-PCBs) interfere with thyroid hormone action both in vitro and in vivo. However, epidemiologic studies on the link between PCB exposure and thyroid function have yielded discordant results, while very few data are available for HO-PCBs. Objectives: Our study aimed at investigating the relationship between clinically available markers of thyroid metabolism and serum levels of both PCBs and HO-PCBs. Subjects and Methods: In a group of 180 subjects, thyroid-stimulating hormone (TSH) and free thyroxin (fT4), 29 PCBs (expressed both in lipid weight and in wet weight) and 18 HO-PCBs were measured in serum. Results: In regression models, adjusted for gender, age, current smoking behavior, BMI and total lipid levels, serum levels of 3HO-PCB118 and 3HO-PCB180, and PCB95lw, PCB99lw and PCB149lw were independent, significant predictors of fT4. A stepwise, multiple regression with gender, age, current smoking behavior, BMI and total lipid levels and all five previously identified significant compounds retained age, BMI, PCB95lw, PCB99lw and 3HO-PCB180 as significant predictors of fT4. TSH levels were not predicted by serum levels of any of the PCBs or HO-PCBs. Conclusions: Our study indicates that in vivo, circulating fT4 levels can be linked to serum levels of several PCBs and hydroxylated PCB metabolites. PMID:27089353

  9. A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores

    NASA Astrophysics Data System (ADS)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-05-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.

  10. A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores

    PubMed Central

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-01-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix. PMID:27194462

  11. Degradation mechanism of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals in homogeneous UV/H₂O₂ process.

    PubMed

    He, Xuexiang; Zhang, Geshan; de la Cruz, Armah A; O'Shea, Kevin E; Dionysiou, Dionysios D

    2014-04-15

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometry. Various byproducts identified indicated three common reaction pathways: hydroxyl addition (+16 Da), alcoholic oxidation or dehydrogenation (-2 Da), and elimination of sulfate (-80 Da). The initiation of the degradation was observed at the hydroxymethyl uracil and tricyclic guanidine groups; uracil moiety cleavage/fragmentation and further ring-opening of the alkaloid were also noted at an extended reaction time or higher UV fluence. The degradation rates of CYN decreased and less byproducts (species) were detected using natural water matrices; however, CYN was effectively eliminated under extended UV irradiation. This study demonstrates the efficiency of CYN degradation and provides a better understanding of the mechanism of CYN degradation by hydroxyl radical, a reactive oxygen species that can be generated by most AOPs and is present in natural water environment.

  12. Reaction Mechanism of the Bicopper Enzyme Peptidylglycine α-Hydroxylating Monooxygenase*

    PubMed Central

    Abad, Enrique; Rommel, Judith B.; Kästner, Johannes

    2014-01-01

    Peptidylglycine α-hydroxylating monooxygenase is a noninteracting bicopper enzyme that stereospecifically hydroxylates the terminal glycine of small peptides for its later amidation. Neuroendocrine messengers, such as oxytocin, rely on the biological activity of this enzyme. Each catalytic turnover requires one oxygen molecule, two protons from the solvent, and two electrons. Despite this enzyme having been widely studied, a consensus on the reaction mechanism has not yet been found. Experiments and theoretical studies favor a pro-S abstraction of a hydrogen atom followed by the rebinding of an OH group. However, several hydrogen-abstracting species have been postulated; because two protons are consumed during the reaction, several protonation states are available. An electron transfer between the copper atoms could play a crucial role for the catalysis as well. This leads to six possible abstracting species. In this study, we compare them on equal footing. We perform quantum mechanics/molecular mechanics calculations, considering the glycine hydrogen abstraction. Our results suggest that the most likely mechanism is a protonation of the abstracting species before the hydrogen abstraction and another protonation as well as a reduction before OH rebinding. PMID:24668808

  13. Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle

    NASA Astrophysics Data System (ADS)

    Crépisson, Céline; Blanchard, Marc; Bureau, Hélène; Sanloup, Chrystèle; Withers, Anthony C.; Khodja, Hicham; Surblé, Suzy; Raepsaet, Caroline; Béneut, Keevin; Leroy, Clémence; Giura, Paola; Balan, Etienne

    2014-03-01

    The mechanism and magnitude of fluorine incorporation in H-bearing forsterite were investigated through a combined experimental and theoretical approach. Forsterite samples were synthesized in a piston cylinder press at 2 and 4 GPa, in hydrous conditions, with or without fluorine. High fluorine solubilities of 1715 and 1308 ppm F were measured by particle induced gamma-ray emission (PIGE) in forsterite samples synthesized at 2 and 4 GPa, respectively. In addition, first-principles calculations based on density functional theory were performed in order to investigate the coupled incorporation mechanisms of fluorine and water in forsterite. Our results demonstrate the close association of fluoride, hydroxyl groups and Si vacancies. Comparison of experimental and theoretical infrared absorption spectra enables assignment of the nine OH stretching bands (3500-3700 cm-1) observed in F-rich synthetic forsterite to clumped fluoride-hydroxyl defects in the forsterite crystal structure. Noteworthily, similar bands were previously recorded on some natural olivine with Mg/(Mg+Fe) molar ratio down to 0.86. Fluorine and water cycles are therefore strongly coupled through the nominally anhydrous minerals and the mantle fluorine budget can be entirely accommodated by these mineral phases.

  14. Hydroxyl-modified magnetite nanoparticles as novel carrier for delivery of methotrexate.

    PubMed

    Farjadian, Fatemeh; Ghasemi, Sahar; Mohammadi-Samani, Soliman

    2016-05-17

    In this work, novel hydroxyl-modified magnetite nanocarriers are introduced as efficient host for methotrexate conjugation. The modification was based on the Micheal type addition reaction between tris(hydroxymethyl) aminomethane and acrylamidopropyl functionalized, silica-coated magnetite nanoparticle. The chemical structure characterization was carried out by FT-IR and the organic content was determined by CHN analysis. The topography was studied by SEM, TEM, AFM. DLS was performed to show particles' mean diameter. Furthermore, the magnetite properties of modified particles were evaluated by VSM and the crystallinity was proved by XRD. To illustrate the efficiency of the modified particles, the anti-cancer drug methotrexate was conjugated to hydroxyl groups through estric bond formation. The controlled release activity of established nanoparticles was evaluated in simulated cellular fluid. Later, the anti-cancer behavior of drug conjugated nanoparticles was evaluated in vitro in MCF-7 cell line which showed enhanced toxicity after 48 h. Conclusively, the modified nanoparticles have remarked as powerful carrier to be applied as an anti-cancer agent.

  15. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris).

    PubMed

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group.

  16. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris)

    PubMed Central

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V. Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group. PMID:26890886

  17. Finding synergies in fuels properties for the design of renewable fuels--hydroxylated biodiesel effects on butanol-diesel blends.

    PubMed

    Sukjit, E; Herreros, J M; Piaszyk, J; Dearn, K D; Tsolakis, A

    2013-04-02

    This article describes the effects of hydroxylated biodiesel (castor oil methyl ester - COME) on the properties, combustion, and emissions of butanol-diesel blends used within compression ignition engines. The study was conducted to investigate the influence of COME as a means of increasing the butanol concentration in a stable butanol-diesel blend. Tests were compared with baseline experiments using rapeseed methyl esters (RME). A clear benefit in terms of the trade-off between NOX and soot emissions with respect to ULSD and biodiesel-diesel blends with the same oxygen content was obtained from the combination of biodiesel and butanol, while there was no penalty in regulated gaseous carbonaceous emissions. From the comparison between the biodiesel fuels used in this work, COME improved some of the properties (for example lubricity, density and viscosity) of butanol-diesel blends with respect to RME. The existence of hydroxyl group in COME also reduced further soot emissions and decreased soot activation energy.

  18. [Effects of hydroxyl radicals on purified angiotensin I converting enzyme].

    PubMed

    Michel, B; Nirina, L B; Grima, M; Ingert, C; Coquard, C; Barthelmebs, M; Imbs, J L

    1998-08-01

    Somatic angiotensin-converting enzyme (ACE) is a protein which contains two similar domains (N and C), each possessing a functional active site. The relationship between ACE, its natural substrates and oxygen free radicals is starting to be explored. On one hand, superoxide anions production is induced by angiotensin II and on the other hand, activated polynuclear neutrophils, through free radicals generation, alter endothelial ACE activity. In this study, we examined the impact of hydroxyl radicals (.OH) on purified ACE. .OH were produced using a generator: 2,2'-azo-bis 2-amidinopropane (GRH) provided by Lara-Spiral (Fr). GRH (3 mM), in a time-dependent fashion, inhibited ACE activity. When ACE was co-incubated for 4 h with GRH, its activity decreased by 70%. Addition of dimethylthiourea (DMTU: 0.03 to 1 mM) or mannitol + methionine (20/10 mM), two sets of .OH scavengers, produced a dose-dependent protection on ACE activity. To examine whether oxidation of thiol groups in the ACE molecule could be involved in the action of GRH, the effects of thiol reducing agents: mercaptoethanol and dithiotreitol (DTT) were investigated. These compounds produced a dose-dependent and significant protection; with 100% protection at 0.2 and 0.3 mM for mercaptoethanol and at 0.1 mM for DTT. The hydrolysis of two natural and domain-specific substrates were also explored. The hydrolysis of angiotensin I preferentially cleaved by the C domain was significantly (p < 0.01) inhibited by 57, 58 and 69% in contact with 0.3, 1 and 3 mM GRH [in nmol angio II formed/min/nmol of ACE, n = 4; 35.9 +/- 0.6 (control), 15.5 +/- 2.8 (GRH : 0.3 mM), 15.1 +/- 0.5 (1), 10.9 +/- 0.6 (3)]. The hydrolysis of the hemoregulatory peptide (hp), preferential substrate for the N domain was not affected by GRH at 0.3 mM and inhibited by 28% (not significant) by 1 mM GRH [in nmol ph hydrolized/min/nmol ACE, n = 4; 12.6 +/- 1.9 (control), 14.9 (GRH : 0.3 mM), 8.3 +/- 4.0 (1). These results demonstrated that .OH

  19. Identification of the active components in Shenmai injection that differentially affect Cyp3a4-mediated 1'-hydroxylation and 4-hydroxylation of midazolam.

    PubMed

    Zeng, Caiwen; He, Fang; Xia, Chunhua; Zhang, Hong; Xiong, Yuqing

    2013-04-01

    Shenmai injection (SMI) is a popular herbal preparation that is widely used for the treatment of atherosclerotic coronary heart disease and viral myocarditis. In our previous study, SMI was shown to differentially affect CYP3A4-mediated 1'-hydroxylation and 4-hydroxylation of midazolam (MDZ). The present study was conducted to identify the active components in SMI responsible for the differential effects on MDZ metabolism, using in vitro incubation systems (rat and human liver microsomes and a recombinant CYP3A4 system) to measure 1'-hydroxylation and 4-hydroxylation of MDZ. First, different fractions of SMI were obtained by gradient elution on an solid phase extraction system and individually tested for their effects on MDZ metabolism. The results demonstrated that lipid-soluble constituents were likely to be the predominant active components of SMI. Second, the possible active components were gradually separated on an high-performance liquid chromatography system under different conditions and individually tested in vitro for their effects on MDZ metabolism. Third, the active component obtained in the above experiment was collected and subjected to structural analysis, and identified as panaxytriol (PXT). Finally, it was validated that PXT had significant differential effects on 1'-hydroxylation and 4-hydroxylation of MDZ in various in vitro systems that were similar to those of SMI. We conclude that PXT is the constituent of SMI responsible for the differential effects on CYP3A4-mediated 1'-hydroxylation and 4-hydroxylation of MDZ.

  20. Chromium(III) catalysed ethylene tetramerization promoted by bis(phosphino)amines with an N-functionalized pendant.

    PubMed

    Weng, Zhiqiang; Teo, Shihui; Andy Hor, T S

    2007-08-28

    Several N-functionalized bis(phosphino)amine ligands with ether, thioether and pyridyl tethers [(R'')2PN(R')P(R'')2=PNP] () have been synthesized. They react with CrCl3(THF)3 in CH2Cl2 to give dinuclear chloro bridged Cr2(micro-Cl)2Cl4(PNP)2 () which converts to the corresponding mononuclear solvento complexes fac-CrCl3(PNP)(NCR) (). The structures of the ligand with R'=-(CH2)3SCH3 and R''=Ph, and the complexes with R=CH3 () and C2H5 (), R'=-(CH2)3SCH3 and R''=Ph) have been established by single-crystal X-ray crystallography. All ligands are active towards ethylene tetramerization in the presence of Cr(III) and excess MAO at 80 degrees C in toluene. The ligand with thioether pendant Et2PN(CH2CH2CH2SCH3)PEt2 () shows the highest selectivity (55% weight in liquid product distribution) towards 1-octene. Complexes and are active towards ethylene polymerization under thermal conditions.

  1. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    SciTech Connect

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.

  2. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    PubMed

    Lamorgese, A; Mauri, R

    2015-09-01

    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  3. Universal phase and force diagrams for a microbubble or pendant drop in static fluid on a surface

    NASA Astrophysics Data System (ADS)

    Wei, P. S.; Hsiao, C. C.; Chen, K. Y.

    2008-01-01

    Dimensionless three-dimensional universal phase and lift force diagrams of a microbubble (or pendant drop) in static liquid on a solid surface (or orifice) are presented in this work. Microbubble dynamics has been found to play a vital role in mass, momentum, energy, and concentration transfer rates in contemporary micro- and nanosciences and technologies. In this study, dimensionless phase and force diagrams are introduced by utilizing the analytical solutions of the microbubble shape reported in the literature. It shows that phase and force diagrams can be universally specified by two dimensionless independent parameters, Bond number, and contact angle (or base radius). Based on the presence of an inflection point or neck on the microbubble surface, each diagram exhibits three regions. Growth, detachment, and entrapment of a microbubble can be described by path lines in three regions. The corresponding universal total lift forces include hydrostatic buoyancy, difference in gas, and hydrostatic pressures at the base, capillary pressure, as well as surface tension induced by the variation of circumference, which has not been treated in the literature so far. In the absence of viscous stress and Marangoni force, the total lift force equals surface tension induced by the variation of circumference. The latter can be an attaching or lifting force, depending on whether the state in the distinct regions and contact angle is less than or greater than a critical angle. The critical angle, which is slightly less than the inclination angle at the inflection point, is decreased with increasing Bond number.

  4. Particle-laden interfaces: direct calculation of interfacial stress from a discrete particle simulation of a pendant drop

    NASA Astrophysics Data System (ADS)

    Gu, Chuan; Botto, Lorenzo

    2015-11-01

    The adsorption of solid particles to fluid interfaces is exploited in several multiphase flow technologies, and plays a fundamental role in the dynamics of particle-laden drops. A fundamental question is how the particles modify the effective mechanical properties of the interface. Using a fast Eulerian-Lagrangian model for interfacial colloids, we have simulated a pendant drop whose surface is covered with spherical particles having short-range repulsion. The interface curvature induces non-uniform and anisotropic interfacial stresses, which we calculate by an interfacial extension of the Irving-Kirkwood formula. The isotropic component of this stress, related to the effective surface tension, is in good agreement with that calculated by fitting the drop shape to the Young-Laplace equation. The anisotropic component, related to the interfacial shear elasticity, is highly non uniform: small at the drop apex, significant along the drop sides. The reduction in surface tension can be substantial even below maximum surface packing. We illustrate this point by simulating phase-coarsening of a two-phase mixture in which the presence of interfacial particles ``freezes'' the coarsening process, for surface coverage well below maximum packing This work is supported by the EU through the Marie Curie Grant FLOWMAT (618335).

  5. Pendant-drop method coupled to ultraviolet-visible spectroscopy: A useful tool to investigate interfacial phenomena.

    PubMed

    Andrade, Marco A R; Favarin, Bruno; Derradi, Rafael; Bolean, Mayte; Simão, Ana Maria S; Millán, José Luis; Ciancaglini, Pietro; Ramos, Ana P

    2016-09-05

    UV-vis spectroscopy is a powerful tool to investigate surface phenomena. Surface tension measurements coupled to spectroscopic techniques can help to elucidate how the interface organization influences the electronic properties of molecules. However, appreciable sample volumes are usually necessary to achieve strong signals during conduction of experiments. This study reports on the simultaneous acquisition of surface tension data and UV-vis spectra by axisymmetric drop shape analysis (ADSA) coupled to diffuse reflectance (DRUV) spectrophotometry using a pendant microliter-drop that requires small sample volumes and low analyte concentrations. Three example systems gave evidence of the applicability of this technique: (a) disaggregation of an organic dye driven by surfactant as a function of the surface tension and alterations in the UV-vis spectra, (b) activity of a glycosylphosphatidylinositol anchored enzyme estimated from formation of a colored product, and (c) interaction between this enzyme and biomimetic membrane systems consisting of dipalmitoylphosphaditylcholine and cholestenone. Apart from using smaller sample volume, this coupled technique allowed to investigate interfacial organization in the light of electronic spectra obtained in loco within a shorter acquisition time. This procedure provided precise interfacial information about static and dynamic systems. This has been the first study describing the kinetic activity of an enzyme in the presence of phospholipid monolayers through simultaneous determination of the surface tension and UV-vis spectra.

  6. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    PubMed Central

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  7. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    DOE PAGES

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less

  8. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity.

    PubMed

    Kolet, Swati P; Haldar, Saikat; Niloferjahan, Siddiqui; Thulasiram, Hirekodathakallu V

    2014-07-01

    Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family.

  9. Mimicking zeolite to its core: porous sodalite cages as hangers for pendant trimeric M3(OH) clusters (M = Mg, Mn, Co, Ni, Cd).

    PubMed

    Zheng, Shou-Tian; Wu, Tao; Zuo, Fan; Chou, Chengtsung; Feng, Pingyun; Bu, Xianhui

    2012-02-01

    A new class of zeolite-type porous materials in which 3D frameworks are covalently functionalized with crystallographically ordered pendant metal clusters have been synthesized. This work demonstrates a new paradigm for and the feasibility of functionalizing zeolite-type frameworks through the conversion of extraframework sites in mineral zeolites into part of the framework for occupation by dangling metal clusters in metal-organic frameworks.

  10. Modeling and predicting pKa values of mono-hydroxylated polychlorinated biphenyls (HO-PCBs) and polybrominated diphenyl ethers (HO-PBDEs) by local molecular descriptors.

    PubMed

    Yu, Haiying; Wondrousch, Dominik; Yuan, Quan; Lin, Hongjun; Chen, Jianrong; Hong, Huachang; Schüürmann, Gerrit

    2015-11-01

    Hydroxylated polychlorinated biphenyls (HO-PCBs) and polybrominated diphenyl ethers (HO-PBDEs) are attracting considerable concerns because of their multiple endocrine-disrupting effects and wide existence in environment and organisms. The hydroxyl groups enable these chemicals to be ionizable, and dissociation constant, pKa, becomes an important parameter for investigating their environmental behavior and biological activities. In this study, a new pKa prediction model was developed using local molecular descriptors. The dataset contains 21 experimental pKa values of HO-PCBs and HO-PBDEs. The optimized geometries by ab initio HF/6-31G(∗∗) algorithm were used to calculate the site-specific molecular readiness to accept or donate electron charges. The developed model obtained good statistical performance, which significantly outperformed commercial software ACD and SPARC. Mechanism analysis indicates that pKa values increase with the charge-limited donor energy EQocc on hydroxyl oxygen atom and decrease with the energy-limited acceptor charge QEvac on hydroxyl hydrogen atom. The regression model was also applied to calculate pKa values for all 837 mono-hydroxylated PCBs and PBDEs in each class, aiming to provide basic data for the ecological risk assessment of these chemicals.

  11. The evaluation of hydroxyl ions as a nucleating agent for apatite on electrospun non-woven poly( ϵ -caprolactone) fabric.

    PubMed

    Kim, Hyung-Sup; Um, Seung-Hoon; Rhee, Sang-Hoon

    2012-01-01

    The capacity of hydroxyl ions when used as a nucleating agent to form apatite in simulated body fluid (SBF) was investigated. A 25 wt% poly(ϵ-caprolactone) solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and was electrospun under an electric field of 1 kV/cm. Subsequently, non-woven poly(ϵ-caprolactone) fabrics were dipped into 4 M NaOH solution and the experimental group was then directly air-dried (NaOH coated), while the control group was washed with deionized water and air-dried (NaOH treated) under ambient conditions. The non-woven poly(ϵ-caprolactone) fabrics that were coated and treated with NaOH were exposed to SBF for 1 week, which resulted in the deposition of a layer of apatite crystals on the non-woven poly(ϵ-caprolactone) fabric coated with NaOH only. On the other hand, when the non-woven poly(ϵ-caprolactone) fabrics were dipped into 0.05, 0.1, 1 and 4 M NaOH solutions, respectively, air-dried, and then soaked in SBF, the apatite forming capacity was gradually increased according to the concentration of NaOH solution. These results were explained in terms of the degree of apatite supersaturation in SBF induced by the release of hydroxyl ions from the coated NaOH because hydroxyl ions are one of the constituent elements of apatite. These results suggest that hydroxyl ions have a good potential for use as a nucleating agent for apatite on a previously non-bioactive polymer surface.

  12. Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting

    SciTech Connect

    J Kiselar; M Chance

    2011-12-31

    Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis

  13. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  14. Aromatic-hydroxyl interaction of an alpha-aryl ether lignin model-compound on SBA-15, present at pyrolysis temperatures.

    PubMed

    Kandziolka, M V; Kidder, M K; Gill, L; Wu, Z; Savara, A

    2014-11-28

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic-hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C-H stretches, as well as a red-shift and broadening of the surface hydroxyl O-H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ∼400 °C whereupon the ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.

  15. Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops.

    PubMed

    Río; Neumann

    1997-12-15

    State-of-the-art axisymmetric drop shape analysis (ADSA) techniques for the computation of interfacial tensions and contact angles by fitting the Laplace equation of capillarity to the shape and dimensions of pendant and sessile drops are presented. More accurate, efficient, and reliable versions of the technique for the measurement of contact angles from the volume and diameter of sessile drops [axisymmetric drop shape analysis-diameter (ADSA-D)] and for interfacial tension measurements from a series of arbitrary profile coordinates of sessile and pendant drops [axisymmetric drop shape analysis-profile (ADSA-P)] have been developed. Advanced numerical methods have been used to improve the numerical stability and global convergence, for more accurate results and a wider range of applicability of the methods. A new technique called axisymmetric drop shape analysis-height and diameter (ADSA-HD) has been developed to estimate interfacial tensions from the height and diameter of sessile and pendant drops. Numerical simulations using numerically generated drop profiles were used to evaluate the accuracy and applicability of the methods. Copyright 1997 Academic Press.

  16. Field, petrologic and detrital zircon study of the Kings sequence and Calaveras complex, Southern Lake Kaweah Roof Pendant, Tulare County, California

    NASA Astrophysics Data System (ADS)

    Buchen, Christopher T.

    U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.

  17. Cytotoxic hydroxylated triterpene alcohol ferulates from rice bran.

    PubMed

    Luo, Hong-Feng; Li, Qinglin; Yu, Shanggong; Badger, Thomas M; Fang, Nianbai

    2005-01-01

    Three hydroxylated triterpene alcohol ferulates, (24S)-cycloart-25-ene-3 beta,24-diol-3 beta-trans-ferulate (1), (24R)-cycloart-25-ene-3 beta,24-diol-3 beta-trans-ferulate (2), and cycloart-23Z-ene-3 beta,25-diol-3 beta-trans-ferulate (3), along with known compounds cycloartenol trans-ferulate (4) and 24-methylenecycloartanol trans-ferulate (5) were isolated from rice bran. Their structures were elucidated by means of chemical and spectroscopic analysis. Compounds 2-5 showed moderate cytotoxicity against MCF-7 cells.

  18. Tropospheric concentrations of the hydroxyl radical—a review

    NASA Astrophysics Data System (ADS)

    Hewitt, C. N.; Harrison, Roy M.

    The dominant role played by the hydroxyl radical in tropospheric photochemistry makes essential a better definition of its atmospheric abundance. The measurement techniques employed to date are critically evaluated and the reported concentrations of HO in ambient air are reviewed. Photochemical models used to predict HO concentrations are discussed, and a comparison between measured and modelled concentrations made. Tropospheric concentrations in the ranges (0.5-5) × 10 6HO cm-3 daytime mean (measurements) and (0.3-3) × 10 6HO cm-3 24 h mean (models) are suggested. A seasonal variation of about 3-fold is indicated by model studies.

  19. Electrolytic coloration of hydroxyl-doped potassium iodide polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Na; Gu, Hongen; Han, Li; Guo, Meili; Qin, Fang

    2007-03-01

    Hydroxyl-doped potassium iodide polycrystals were successfully colored electrolytically by using a pointed cathode and a flat anode at various temperatures and electric field strengths, which mainly benefits appropriate coloration temperatures and electric field strengths. Characteristic OH-, O2--Va+ , U, V2, V3, Cu+, Cu-related, I2- , I2, K, F, R1 and R2 spectral bands were observed in Kubelka-Munk functions of the colored polycrystals, and the OH- and O2--Va+ spectral bands at room temperature were determined from Mollwo-Ivey plots. Color center formation in the electrolytic coloration was explained.

  20. Adsorption and dissociation of NH3 on clean and hydroxylated TiO2 rutile (110) surfaces: a computational study.

    PubMed

    Chang, Jee-Gong; Chen, Hsin-Tsung; Ju, Shin-Pon; Chang, Ching-Sheng; Weng, Meng-Hsiung

    2011-04-30

    The adsorption and dissociation of NH(3) on the clean and hydroxylated TiO(2) rutile (110) surfaces have been investigated by the first-principles calculations. The monodentate adsorbates such as H(3)N-Ti(a), H(2)N-Ti(a), N-Ti(a), H(2)N-O(a), HN-O(a), N-O(a) and H-O(a), as well as the bidentate adsorbate, Ti-N-Ti(a) can be formed on the clean surface. It is found that the hydroxyl group enhances the adsorption of certain adsorbates on the five-fold-coordinated Ti atoms (5c-Ti), namely H(2)N-Ti(a), HN-Ti(a), N-Ti(a) and Ti-N-Ti(a). In addition, the adsorption energy increases as the number of hydroxyl groups increases. On the contrary, the opposite effect is found for those on the two-fold-coordinated O atoms (2c-O). The enhanced adsorption of NH(x) (x = 1-2) on the 5c-Ti is due to the large electronegativity of the OH group, increasing the acidity of the Ti center. This also contributes to diminish the adsorption of NH(x) (x = 1-2) on the two-fold-coordinated O atoms (2c-O) decreasing its basicity. According to potential energy profile, the NH(3) dissociation on the TiO(2) surface is endothermic and the hydroxyl group is found to lower the energetics of H(2)N-Ti(a)+H-O(a) and HN-Ti(a)+2{H-O(a)}, but slightly raise the energetic of Ti-N-Ti(a)+3{H-O(a)} compare to those on the clean surface. However, the dissociation of NH(3) is found to occur on the hydroxylated surface with an overall endothermic by 31.8 kcal/mol and requires a barrier of 37.5 kcal/mol. A comparison of NH(3) on anatase surface has been discussed. The detailed electronic analysis is also carried out to gain insights into the interaction nature between adsorbate and surface.

  1. Macrocyclic Gd(3+) complexes with pendant crown ethers designed for binding zwitterionic neurotransmitters.

    PubMed

    Oukhatar, Fatima; Meudal, Hervé; Landon, Céline; Logothetis, Nikos K; Platas-Iglesias, Carlos; Angelovski, Goran; Tóth, Éva

    2015-07-27

    A series of Gd(3+) complexes exhibiting a relaxometric response to zwitterionic amino acid neurotransmitters was synthesized. The design concept involves ditopic interactions 1) between a positively charged and coordinatively unsaturated Gd(3+) chelate and the carboxylate group of the neurotransmitters and 2) between an azacrown ether appended to the chelate and the amino group of the neurotransmitters. The chelates differ in the nature and length of the linker connecting the cyclen-type macrocycle that binds the Ln(3+) ion and the crown ether. The complexes are monohydrated, but they exhibit high proton relaxivities (up to 7.7 mM(-1)  s(-1) at 60 MHz, 310 K) due to slow molecular tumbling. The formation of ternary complexes with neurotransmitters was monitored by (1) H relaxometric titrations of the Gd(3+) complexes and by luminescence measurements on the Eu(3+) and Tb(3+) analogues at pH 7.4. The remarkable relaxivity decrease (≈80 %) observed on neurotransmitter binding is related to the decrease in the hydration number, as evidenced by luminescence lifetime measurements on the Eu(3+) complexes. These complexes show affinity for amino acid neurotransmitters in the millimolar range, which can be suited to imaging concentrations of synaptically released neurotransmitters. They display good selectivity over non-amino acid neurotransmitters (acetylcholine, serotonin, and noradrenaline) and hydrogenphosphate, but selectivity over hydrogencarbonate was not achieved.

  2. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  3. Iron reduction potentiates hydroxyl radical formation only in flavonols.

    PubMed

    Macáková, Kateřina; Mladěnka, Přemysl; Filipský, Tomáš; Říha, Michal; Jahodář, Luděk; Trejtnar, František; Bovicelli, Paolo; Proietti Silvestri, Ilaria; Hrdina, Radomír; Saso, Luciano

    2012-12-15

    Flavonoids, substantial components of the human diet, are generally considered to be beneficial. However, they may possess possible pro-oxidative effects, which could be based on their reducing potential. The aims of this study were to evaluate the ability of 26 flavonoids to reduce ferric ions at relevant pH conditions and to find a possible relationship with potentiation of hydroxyl radical production. A substantial ferric ions reduction was achieved under acidic conditions, particularly by flavonols and flavanols with the catecholic ring B. Apparently corresponding bell-shaped curves displaying the pro-oxidant effect of flavonols quercetin and kaempferol on iron-based Fenton reaction were documented. Several flavonoids were efficient antioxidants at very low concentrations but rather inefficient or pro-oxidative at higher concentrations. Flavonols, morin and rutin were progressively pro-oxidant, while 7-hydroxyflavone and hesperetin were the only flavonoids with dose-dependent inhibition of hydroxyl radical production. Conclusively, administration of flavonoids may lead to unpredictable consequences with few exceptions.

  4. Self-assembly of fatty acids and hydroxyl derivative salts.

    PubMed

    Novales, Bruno; Navailles, Laurence; Axelos, Monique; Nallet, Frédéric; Douliez, Jean-Paul

    2008-01-01

    We report the dispersions of a fatty acid and hydroxyl derivative salts in aqueous solutions that were further used to produce foams and emulsions. The tetrabutyl-ammonium salts of palmitic acid, 12-hydroxy stearic acid, and omega-hydroxy palmitic acid formed isotropic solutions of micelles, whereas the ethanolamine salts of the same acids formed turbid birefringent lamellar solutions. The structure and dimension of those phases were confirmed by small-angle neutron scattering and NMR. Micelles exhibited a surprisingly small radius of about 20 A, even for hydroxyl fatty acids, suggesting the formation of hydrogen bonds between lipids in the core of the micelles. In the case of ethanolamine salts of palmitic and 12-hydroxy stearic acids, the lipids were arranged in bilayers, with a phase transition from gel to fluid upon heating, whereas for omega-hydroxy palmitic acid, monolayers formed in accordance with the bola shape of this lipid. Foams and emulsions produced from ethanolamine salt solutions were more stable than those obtained from tetrabutyl-ammonium salt solutions. We discuss these results in terms of counterion size, lipid molecular shape, and membrane curvature.

  5. Hydroxyl radical generation by a light-dependent Fenton reaction.

    PubMed

    Van der Zee, J; Krootjes, B B; Chignell, C F; Dubbelman, T M; Van Steveninck, J

    1993-02-01

    Illumination of Fe3+, with light of a wavelength varying from 250 to 450 nm, in the presence of the iron chelators ethylenediamine N,N,N',N'-tetraacetic acid (EDTA), ethyleneglycol-bis-(beta-aminoethylether)N,N,N',N'-tetraacet ic acid (EGTA), diethylenetriamine-N,N,N',N',N'-pentaacetic acid (DTPA), or citrate resulted in the reduction of Fe3+ to Fe2+. Fe2+ formation was measured by the formation of its complex with bathophenanthroline disulfonic acid. In all cases Fe2+ formation was completely dependent on the presence of the iron chelator and on the wavelength used for illumination. A correlation was found between the absorption spectrum of the iron-chelator complex and the amount of Fe3+ reduced, suggesting that the absorption of light induced an electron transfer from the chelator to the iron ion. Exposure to oxygen, either during or after illumination, resulted in degradation of the chelator molecule. Illumination of the Fe(3+)-chelator complexes in the presence of H2O2 resulted in the formation of hydroxyl radicals, which could be determined by the formation of the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-hydroxyl radical adduct, using electron spin resonance spectroscopy. Formation of the spin adduct was inhibited by addition of catalase, mannitol, ethanol, or formate, whereas superoxide dismutase had no effect.

  6. Study of umbelliferone hydroxylation to esculetin catalyzed by polyphenol oxidase.

    PubMed

    Garcia-Molina, Mary Of The Sea; Munoz-Munoz, Joseph Louis; Garcia-Molina, Francis; Rodriguez-Lopez, Joseph Neptune; Garcia-Canovas, Francis

    2013-01-01

    We characterize umbelliferone, a derivative of 2,4-dihydroxycoumaric acid, as a substrate of polyphenol oxidase. This enzyme hydroxylates umbelliferone to esculetin, its o-diphenol, and then oxidizes it to o-quinone. The findings show that umbelliferone, an intermediate in one of the coumarin biosynthesis pathways, may be transformed into its o-diphenol, esculetin, which is also an intermediate in the same pathway. The activity of the enzyme on umbelliferone was followed by measuring the consumption of oxygen, spectrophotometrically and by HPLC. Kinetic constants characterizing the hydroxylation process were: kcat=0.09±0.02 s(-1) and Km=0.17±0.06 mM. The o-diphenol, esculetin, was a better substrate and when its oxidation was followed spectrophotometrically, the kinetic constants were: kcat=1.31±0.25 s(-1) and Km=0.035±0.002 mM. Both compounds therefore can be considered as alternative substrates to L-tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA), since both indirectly inhibit melanogenesis.

  7. Role of the hydroxyl radical in soot formation

    NASA Technical Reports Server (NTRS)

    King, Galen B.; Laurendeau, Normand M.

    1983-01-01

    The goal of this project is to determine the role of the hydroxyl radical during formation of soot. Correlations will be sought between OH concentration and (1) the critical equivalence ratio for incipient soot formation and (2) soot yield as a function of higher equivalence ratios. The ultimate aim is the development of a quasi-global kinetic model for the pre-particulate chemistry leading to soot nucleation. Hydroxyl radical concentration profiles are measured directly in both laminar premixed and diffusion flames using the newly developed technique, laser saturated fluorescence (LSF). This method is capable of measuring OH in the presence of soot particles. Aliphatic and aromatic fuels will be used to assess the influence of fuel type on soot formation. The influence of flame temperature on the critical equivalence ratio and soot yield will be related to changes in the OH concentration profiles. LSF measurements will be augmented with auxiliary measurements of soot and PAH concentrations to allow the development of a quasi-global model for soot formation.

  8. Hydroxylated Polychlorinated Biphenyls in the Environment: Sources, Fate, and Toxicities

    PubMed Central

    Tehrani, Rouzbeh; Van Aken, Benoit

    2013-01-01

    Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence has accumulated about the widespread dispersion of OH-PCBs in various compartments of the ecosystem, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are today increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment. PMID:23636595

  9. A site-holding effect of TiO2 surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol.

    PubMed

    Zhang, Hongxia; Zhang, Wenqin; Zhao, Min; Yang, Pengju; Zhu, Zhenping

    2017-01-26

    To understand the mechanism of the photocatalytic direct synthesis of 1,1-diethoxyethane (DEE) from ethanol is vital for enhancing the reaction efficiency. Based on photocatalytic data of different phase TiO2 and F-TiO2 catalysts, radical trapping data, and GC-MS data, we proposed a photocatalytic mechanism for the preparation of both DEE in neat ethanol and 2,3-butanediol (2,3-BD) in ethanol-H2O using photocatalytic methods. In neat ethanol, hydroxyl isn't involved in the catalytic cyclic process but hydroxyl has an indirect site-holding effect, thus leading to more hydroxyl groups with higher activity. In ethanol-H2O, although the strong oxidant ˙OH radical is involved, fewer OH groups lead to higher selectivity of 2,3-BD. The interaction of the reactant/solvent with the surface group of the catalyst is important in the activity and selectivity of photocatalytic reactions. This finding gives fundamental insight into the role of TiO2 surface hydroxyl in the photocatalytic dehydrogenation process of alcohols and opens a promising path to obtaining both high selectivity and high conversion in TiO2-based photocatalytic activity.

  10. Hydroxylamine as an oxygen nucleophile: substitution of sulfonamide by a hydroxyl group in benzothiazole-2-sulfonamides.

    PubMed

    Kamps, Jos J A G; Belle, Roman; Mecinović, Jasmin

    2013-02-21

    Benzothiazole-2-sulfonamides react with an excess of hydroxylamine in aqueous solutions to form 2-hydroxybenzothiazole, sulfur dioxide, and the corresponding amine. Mechanistic studies that employ a combination of structure-reactivity relationships, oxygen labeling experiments, and (in)direct detection of intermediates and products reveal that the reaction proceeds via oxygen attack, and that oxygen incorporated in the 2-hydroxybenzothiazole product derives from hydroxylamine. The reaction, which is performed under mild conditions, can be used as a deprotection method for cleavage of benzothiazole-2-sulfonyl-protected amino acids.

  11. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels.

  12. Electrocatalytic Oxygen Reduction by Iron Tetra-arylporphyrins Bearing Pendant Proton Relays

    SciTech Connect

    Carver, Colin T.; Matson, Benjamin D.; Mayer, James M.

    2012-03-28

    Fe(III)meso-tetra(2-carboxyphenyl)porphine chloride (1) was investigated as an electrocatalyst for the oxygen reduction reaction (ORR). Rotating ring-disk voltammetry and independent reactions with hydrogen peroxide indicate that 1 has very high selectivity for reduction of O2 to H2O, without forming significant amounts of H2O2. Cyclic voltammetric measurements at high substrate/catalyst ratios allowed the determination of the turnover frequency (TOF) of 1, TOF = 103 s-1. The 4-carboxyphenyl isomer of 1, in which the carboxylic acids point away from the iron center, is a substantially slower and less selective catalyst. This direct comparison demonstrates that the value of the carboxylate groups positioned to act as proton delivery relays to enhance both the TOF and selectivity of 1 as a catalyst for the ORR. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 1×1

    SciTech Connect

    Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek; Kim, Yu Kwon

    2015-01-15

    The reaction of NO with hydroxylated rutile TiO2(110)-1×1 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.3×1013 NH3/cm2 at a NO dose of 5×1013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formed in the absence of surface hydroxyls (HOb’s) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HOb’s on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .

  14. Hydroxyl radicals form in natural sediments - effects on sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Skoog, Annelie; Alejandro Arias-Esquivel, Victor

    2010-05-01

    We show that hydroxyl radicals form at the oxic anoxic interface in marine sediments from ferrous iron reacting with hydrogen peroxide in the Fenton reaction. The aggressive nature of hydroxyl radicals makes it likely that they participate in degradation of sedimentary organic matter (SOM). We used terephthalic acid (TPA) to trap the hydroxyl radicals in sediment cores - TPA reacts with hydroxyl radicals to form the highly fluorescent product TPAOH. Results indicated formation of TPAOH at high concentrations at the oxic-anoxic interface. We also subjected SOM to hydroxyl radicals formed by the Fenton reaction, which resulted in changes in fluorescence properties and chemical composition. This is the first study showing formation of hydroxyl radicals and their effect on SOM, which is a previously unknown mechanism in the global carbon cycle.

  15. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by

  16. Evaluation of 2'-hydroxyl protection in RNA-synthesis using the H-phosphonate approach.

    PubMed Central

    Rozners, E; Westman, E; Strömberg, R

    1994-01-01

    A number of different protecting groups were compared with respect to their usefulness for protection of 2'-hydroxyl functions during synthesis of oligoribonucleotides using the H-phosphonate approach. The comparison was between the t-butyldimethylsilyl (t-BDMSi), the o-chlorobenzoyl (o-CIBz), the tetrahydropyranyl (THP), the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp), the 1-(2-chloro-4-methylphenyl)-4-methoxypiperidin-4-yl (Ctmp), and the 1-(2-chloroethoxy)ethyl (Cee) protecting groups. All these groups were tested in synthesis of dodecamers, (Up)11U and (Up)11A, using 5'-O-(4-monomethoxytrityl) or (4,4'-dimethoxytrityl) uridine H-phosphonate building blocks carrying the respective 2'-protection. The performance of the t-BDMSi and o-CIBz derivatives were also compared in synthesis of (Up)19U. The most successful syntheses were clearly those where the t-butyldimethylsilyl group was used. The o-chlorobenzoyl group also gave satisfactory results but seems somewhat limited with respect to synthesis of longer oligomers. The results with all tested acetal derivatives (Fpmp, Ctmp, Cee, THP) were much less successful due to some accompanying cleavage of internucleotidic H-phosphonate functions during removal of 5'-O-protection (DMT). PMID:8127660

  17. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    SciTech Connect

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; Liu, Xiao; Wang, Hua; Mei, Donghai; Ge, Qingfeng

    2016-01-16

    In this study, tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still

  18. A novel tetraazamacrocycle bearing a thiol pendant arm for labeling biomolecules with radiolanthanides.

    PubMed

    Lacerda, Sara; Campello, M Paula; Marques, Fernanda; Gano, Lurdes; Kubícek, Vojtech; Fousková, Petra; Tóth, Eva; Santos, Isabel

    2009-06-21

    The novel tetraazamacrocycle 10-(2-sulfanylethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (H(4)DO3ASH) was synthesized and characterized by multinuclear NMR spectroscopy, 2D NMR techniques and mass spectrometry. The protonation constants of H(4)DO3ASH were determined by potentiometry at 25 degrees C in 0.1 M KCl ionic strength, and the protonation sequence was assigned based on (1)H- and (13)C-NMR titrations. The stability constants of the DO3ASH complexes with Ce(3+), Sm(3+) and Ho(3+) have been determined by potentiometry and UV-Vis spectroscopy. They are very similar, comprising a narrow range (logK(ML) = 21.0-22.0). UV-Vis spectrophotometric data on Ce(3+)-DO3ASH and relaxivity measurements on the Gd(3+)-DO3ASH complex suggest that the thiol group does not coordinate to the metal, even in its deprotonated form. For labeling with radioactive lanthanides(iii), various conditions were tested and both complexes, (153)Sm/(166)Ho-DO3ASH, were obtained in quantitative yield (> 98%) at pH = 6. At room temperature, formation kinetics were faster for the (153)Sm than for the (166)Ho complex (5 vs. 60 min, respectively, needed for complete labeling). The stability of these hydrophilic complexes ((153)Sm, logD = -2.1; (166)Ho, logD = -1.6) has been studied in different buffers, in human serum and in the presence of excess of cysteine and glutathione. (153)Sm-DO3ASH has shown a high stability under these conditions and a relatively low protein binding (2.1%), while (166)Ho-DO3ASH was less stable, including in the presence of cysteine and glutathione, and had a slightly higher protein binding (6.7%). In vivo studies have been performed only for the more stable (153)Sm-DO3ASH complex and its biological profile and in vivo stability has been compared to that of (153)Sm-DO3A in the same animal model. The biodistribution profile presents a similar trend with rapid total excretion from the whole animal body, mainly via the urinary pathway. The most striking difference

  19. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.

    PubMed

    Jensen, Michael P; Lange, Steven J; Mehn, Mark P; Que, Emily L; Que, Lawrence

    2003-02-26

    afforded only high-spin intermediates. The L(1) and L(8) intermediates both decomposed to form respective phenolate complexes, but their reaction times differed by 3 orders of magnitude. In the case of L(1), (18)O isotope labeling indicated that the phenolate oxygen is derived from the terminal peroxide oxygen via a species that can undergo partial exchange with exogenous water. The iron(III) alkylperoxo intermediate is proposed to undergo homolytic O-O bond cleavage to yield an oxoiron(IV) species as an unobserved reactive intermediate in the hydroxylation of the pendant alpha-aryl substituents. The putative homolytic chemistry was confirmed by using 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH) as a probe, and the products obtained in the presence and in the absence of air were consistent with formation of alkoxy radical (RO(*)). Moreover, when one ortho position was labeled with deuterium, no selectivity was observed between hydroxylation of the deuterated and normal isotopomeric ortho sites, but a significant 1,2-deuterium shift ("NIH shift") occurred. These results provide strong mechanistic evidence for a metal-centered electrophilic oxidant, presumably an oxoiron(IV) complex, in these arene hydroxylations and support participation of such a species in the mechanisms of the nonheme iron- and pterin-dependent aryl amino acid hydroxylases.

  20. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound.

    PubMed

    Antal, Peter; Drahoš, Bohuslav; Herchel, Radovan; Trávníček, Zdeněk

    2016-06-20

    The 2-pyridylmethyl N-pendant-armed heptadentate macrocyclic ligand {3,12-bis(2-methylpyridine)-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene = L} and [M(L)](ClO4)2 complexes, where M = Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), and Cu(II) (5), were prepared and thoroughly characterized, including elucidation of X-ray structures of all the compounds studied. The complexes 1-5 crystallize in non-centrosymmetric Sohncke space groups as racemic compounds. The coordination numbers of 7, 6 + 1, and 5 were found in complexes 1-3, 4, and 5, respectively, with a distorted pentagonal bipyramidal (1-4) or square pyramidal (5) geometry. On the basis of the magnetic susceptibility experiments, a large axial zero-field splitting (ZFS) was found for 2, 3, and 4 (D(Fe) = -7.4(2) cm(-1), D(Co) = 34(1) cm(-1), and D(Ni) = -12.8(1) cm(-1), respectively) together with a rhombic ZFS (E/D = 0.136(3)) for 4. Despite the easy plane anisotropy (D > 0, E/D = 0) in 3, the slow relaxation of the magnetization below 8 K was observed and analyzed either with Orbach relaxation mechanism (the relaxation time τ0 = 9.90 × 10(-10) s and spin reversal barrier Ueff = 24.3 K (16.9 cm(-1))) or with Raman relaxation mechanism (C = 2.12 × 10(-5) and n = 2.84). Therefore, compound 3 enlarges the small family of field-induced single-molecule magnets with pentagonal-bipyramidal chromophore. The cyclic voltammetry in acetonitrile revealed reversible redox processes in 1-3 and 5, except for the Ni(II) complex 4, where a quasi-reversible process was dominantly observed. Presence of the two 2-pyridylmethyl pendant arms in L with a stronger σ-donor/π-acceptor ability had a great impact on the properties of all the complexes (1-5), concretely: (i) strong pyridine-metal bonds provided slight axial compression of the coordination sphere, (ii) substantial changes in magnetic anisotropy, and (iii) stabilization of lower oxidation states.

  1. An NMR and DFT investigation on the conformational properties of lanthanide(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate analogues containing methylenephosphonate pendant arms.

    PubMed

    Purgel, Mihály; Baranyai, Zsolt; de Blas, Andrés; Rodríguez-Blas, Teresa; Bányai, István; Platas-Iglesias, Carlos; Tóth, Imre

    2010-05-03

    The conformational properties of lanthanide(III) complexes with the mono- and biphosphonate analogues of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) are investigated by means of density functional theory (DFT) calculations and NMR spectroscopy. Geometry optimizations performed at the B3LYP/6-31G(d) level and using a 46 + 4f(n) effective core potential for lanthanides provide two energy minima corresponding to the square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) geometries. Our calculations give relative free energies between the SAP and TSAP isomers in fairly good agreement with the experimental values. The SAP isomer presents the highest binding energy of the ligand to the metal ion, which further increases with respect to that of the TSAP isomer across the lanthanide series as the charge density of the metal ion increases. The stabilization of the TSAP isomer upon substitution of the acetate arms of DOTA by methylenephosphonate ones is attributed to the higher steric demand of the phosphonate groups and the higher strain of the ligand in the SAP isomer. A (1)H NMR band-shape analysis performed on the [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes provided the activation parameters for enantiomerization of the TSAP form of the complexes. The TSAP isomerization process was also investigated by using DFT calculations on the [Lu(DOTA)](-) and [Ln(DO2A2P)](3-) (Ln = La and Lu) systems. Our results confirm that enantiomerization requires both rotation of the pendant arms and inversion of the four five-membered chelate rings formed upon coordination of the macrocyclic unit. According to our calculations, the arm rotation pathway in [Lu(DOTA)](-) is a one-step process involving the simultaneous rotation of the four acetate arms, while in the DO2A2P analogue, the arm-rotation process is a multistep path involving the stepwise rotation of each of the four pendant arms. The calculated activation free energies are in reasonably good agreement

  2. Development of a reaxff reactive force field for silicon/oxygen/hydrogen/fluoride interactions and applications to hydroxylation and friction

    NASA Astrophysics Data System (ADS)

    Yeon, Jejoon

    Molecular dynamics (MD) simulations with the ReaxFF reactive force field were carried out to find the atomistic mechanisms for tribo-chemical reactions occurring at the sliding interface of fully-hydroxylated amorphous silica and oxidized silicon as a function of interfacial water amount. The ReaxFF-MD simulations showed a significant amount of mass transfer across the interface occurs during the sliding. In the absence of water molecules, the interfacial mixing was initiated by dehydroxylation followed by the Si-O-Si bond formation bridging two solid surfaces. In the presence of sub-monolayer thick water, the dissociation of water molecules can provide additional reaction pathways to form the Si-O-Si bridge bonds and mass transfers across the interface. However, when the amount of interfacial water molecules was large enough to form full monolayer, the degree of mass transfer was substantially reduced since the silicon atoms at the sliding interface were terminated with hydroxyl groups rather than forming interfacial Si-O-Si bridge bonds. The ReaxFF-MD simulations clearly showed the role of water molecules in atomic scale mechano-chemical processes during the sliding and provided physical insights into tribochemical wear processes of silicon oxide surfaces observed experimentally. In addition to this, we performed reactive force field molecular dynamics simulation to observe the hydrolysis reactions between water molecules and locally strained SiO2 geometries. We improved the Si/O/H force field from Fogarty et al.1, to more accurately describe the hydroxylation reaction barrier for strained and non-strained Si-O structures, which are about 20 kcal/mol and 30 kcal/mol, respectively. After optimization, energy barrier for the hydroxylation shows a good agreement with DFT data. The observation of silanol formation at the high-strain region of a silica nano-rod also supports the concept that the adsorption of water molecule: hydroxyl formation favors the geometry with

  3. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals

    SciTech Connect

    Lester, M.I.

    1993-12-01

    The DOE supported work in this laboratory has focused on the spectroscopic characterization of the interaction potential between an argon atom and a hydroxyl radical in the ground X{sup 2}II and excited A {sup 2}{summation}{sup +} electronic states. The OH-Ar system has proven to be a test case for examining the interaction potential in an open-shell system since it is amenable to experimental investigation and theoretically tractable from first principles. Experimental identification of the bound states supported by the Ar + OH (X {sup 2}II) and Ar + OH(A {sup 2}{summation}{sup +}) potentials makes it feasible to derive realistic potential energy surfaces for these systems. The experimentally derived intermolecular potentials provide a rigorous test of ab initio theory and a basis for understanding the dramatically different collision dynamics taking place on the ground and excited electronic state surfaces.

  4. Crystal structure of tris-(hydroxyl-ammonium) orthophosphate.

    PubMed

    Leinemann, Malte; Jess, Inke; Boeckmann, Jan; Näther, Christian

    2015-11-01

    The crystal structure of the title salt, ([H3NOH](+))3·[PO4](3-), consists of discrete hydroxyl-ammonium cations and ortho-phos-phate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phospho-rus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by inter-molecular O-H⋯O and N-H⋯O hydrogen bonds into a three-dimensional network. Altogether, one very strong O-H⋯O, two N-H⋯O hydrogen bonds of medium strength and two weaker bifurcated N-H⋯O inter-actions are observed.

  5. SPLASH: A Southern Parkes Large Area Survey in Hydroxyl

    NASA Astrophysics Data System (ADS)

    Dawson, Joanne; Caswell, James; Gomez, Jose F.; Mcclure-Griffiths, Naomi; Lo, Nadia; Jones, Paul; Dickey, John; Cunningham, Maria; Green, James; Carretti, Ettore; Ellingsen, Simon; Walsh, Andrew; Purcell, Cormac; Breen, Shari; Hennebelle, Patrick; Imai, Hiroshi; Lowe, Vicki; Gibson, Steven; Brown, Courtney; Krishnan, Vasaant

    2014-04-01

    The OH 18 cm lines are powerful and versatile probes of diffuse molecular gas, that trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. The survey is answering critical questions on the global distribution of diffuse OH, the degree to which it traces ‘hidden’ material caught between the regimes probed by traditional tracers of the neutral ISM, and its role as a probe of molecular cloud formation. As a blind survey for all four ground-state transitions, SPLASH is also detecting many new OH masers, facilitating a broad range of astrophysical studies. This proposal requests 250 hours to complete Phase 1 of the SPLASH project, which is mapping 152 square degrees in the inner Galactic Plane, including the Galactic Centre.

  6. [Formation of hydrogen peroxide and hydroxyl radicals in aqueous solutions of L-amino acids by the action of X-rays and heat].

    PubMed

    Shtarkman, I N; Gudkov, S V; Chernikov, A V; Bruskov, V I

    2008-01-01

    The action of 1 mM solutions of L-amino acids in 5 mM phosphate buffer, pH 7.4, on the production of hydrogen peroxide and hydroxyl radicals under the action of X-rays and heating has been studied. Hydrogen peroxide was estimated by the method of enhanced luminescence in a system luminol-paraiodophenol-peroxidase and hydroxyl radicals were determined by using the fluorescence probe coumarin-3-carboxylic acid. It was shown that amino acids can be divided by their influence on H202 formation into three groups: those that reduce the yield of H202, that do not influence it, and that increase it. A similar action of amino acids was observed upon heating, but the composition of the groups was different. All amino acids lowered the formation of hydroxyl radicals under the action of X-rays, and the most effective among them were Cys > His > Phe = Met = Trp > Tyr. Met, His and Phe lowered the amount of hydroxyl radicals by heating, Ser raised it, whereas Tyr and Pro did not change it. Thus, amino acids differently influence the formation of reactive oxygen species by the action of X-rays and heat, and some of amino acids reveal themselves as effective natural antioxidants.

  7. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    PubMed Central

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  8. Photochemical formation of hydroxyl radical from effluent organic matter.

    PubMed

    Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2012-04-03

    The photochemical formation of hydroxyl radical (HO•) from effluent organic matter (EfOM) was evaluated using three bulk wastewater samples collected at different treatment facilities under simulated sunlight. For the samples studied, the formation rates of HO•(R(HO•)) were obtained from the formation rate of phenol following the hydroxylation of benzene. The values of R(HO•) ranged from 2.3 to 3.8 × 10(-10) M s(-1) for the samples studied. The formation rate of HO• from nitrate photolysis (R(NO3)(HO•)) was determined to be 3.0 × 10(-7) M(HO)• M(NO3)(-1) s(-1). The HO• production rate from EfOM (R(EfOM)(HO•)) ranged from 0.76 to 1.3 × 10(-10) M s(-1). For the wastewater samples studied, R(EfOM)(HO•) varied from 1.5 to 2.4 × 10(-7) M(HO)• M(C)(-1) (s-1) on molarcarbon basis, which was close to HO• production from nitrate photolysis. The apparent quantum yield for the formation of HO• from nitrate (Φ(NO3-HO•)(a)) was determined as 0.010 ± 0.001 for the wavelength range 290-400 nm in ultrapure water. The apparent quantum yield for HO• formation in EfOM (Φ(EfOM-HO•)(a)) ranged from 6.1 to 9.8 × 10(-5), compared to 2.99 to 4.56 × 10(-5) for organic matter (OM) isolates. The results indicate that wastewater effluents could produce significant concentrations of HO•, as shown by potential higher nitrate levels and relatively higher quantum yields of HO• formation from EfOM.

  9. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.

  10. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education (13th, Paris, France, July 9-13, 1989), Volume 1.

    ERIC Educational Resources Information Center

    International Group for the Psychology of Mathematics Education.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) includes the following papers: "Transformations Accelerees de l'Education Scientifique Pendant la Revolution Francaise" (Jean Dhombres); "Building on the Knowledge of Students and Teachers" (Thomas P. Carpenter & Elizabeth…

  11. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 8-chloro-4-hydroxyl-2-quinolone

    NASA Astrophysics Data System (ADS)

    Yahyazadeh, Asieh; Yousefi, Hessamoddin

    2014-01-01

    In this study, 8-chloro-4-hydroxyl-2-quinolone was synthesized from cyclocondensation of corresponding dianilide and subsequently used as a potent coupling component with some diazotized heterocyclic amines. These compounds were characterized by UV-vis, FT-IR, 1H NMR spectroscopic techniques and elemental analysis. Absorption spectra of these dyes were measured in six polar solvents and discussed with respect to the nature of solvents and substituted groups. The effects of acid, base, temperature and concentration on the visible absorption spectra of the dyes were reported. In addition, the antimicrobial activity of the dyes was explored in detail.

  12. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer

    PubMed Central

    Iwasaki, Kenichi; Zheng, Yun-Wen; Murata, Soichiro; Ito, Hiromu; Nakayama, Ken; Kurokawa, Tomohiro; Sano, Naoki; Nowatari, Takeshi; Villareal, Myra O; Nagano, Yumiko N; Isoda, Hiroko; Matsui, Hirofumi; Ohkohchi, Nobuhiro

    2016-01-01

    AIM To investigate the anticancer mechanisms of the monoterpenoid alcohol linalool in human colon cancer cells. METHODS The cytotoxic effect of linalool on the human colon cancer cell lines and a human fibroblast cell line was examined using the WST-8 assay. The apoptosis-inducing effect of linalool was measured using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and flow cytometry with Annexin V. Oxidative stress was investigated by staining for diphenyl-1-pyrenylphosphine, which is a cellular lipid peroxidation marker, and electron spin resonance spectroscopy. Sixteen SCID mice xenografted with human cancer cells were randomized into 3 groups for in vivo analysis: control and low-dose and high-dose linalool groups. The control group was administered tap water orally every 3 d. The linalool treatment groups were administered 100 or 200 μg/kg linalool solution orally for the same period. All mice were sacrificed under anesthesia 21 d after tumor inoculation, and tumors and organs were collected for immunohistochemistry using an anti-4-hydroxynonenal antibody. Tumor weights were measured and compared between groups. RESULTS Linalool induced apoptosis of cancer cells in vitro, following the cancer-specific induction of oxidative stress, which was measured based on spontaneous hydroxyl radical production and delayed lipid peroxidation. Mice in the high-dose linalool group exhibited a 55% reduction in mean xenograft tumor weight compared with mice in the control group (P < 0.05). In addition, tumor-specific lipid peroxidation was observed in the in vivo model. CONCLUSION Linalool exhibited an anticancer effect via cancer-specific oxidative stress, and this agent has potential for application in colon cancer therapy. PMID:27956800

  13. Oxidative addition/decarbonylation of. alpha. ,. omega. -alkanedioyl dichlorides. Metallacycle formation via intramolecular reductive cyclization of a pendant acid chloride with samarium(II) iodide

    SciTech Connect

    Zizelman, P.M.; Stryker, J.M. )

    1990-06-01

    Controlled oxidative addition and decarbonylation at one end of {alpha},{omega}-alkanedioyl dichlorides is reported with (Ph{sub 3}P){sub 2}Ir(N{sub 2})Cl, giving Ir(III) alkyl complexes bearing a pendant acid chloride functionality. The use of the dinitrogen complex enables suppression of competitive intramolecular lactonization processes. Use of 2 equiv of samarium(II) diiodide uniquely promotes intramolecular reductive cyclometalation of one of these complexes, forming a cyclic acyl complex. This cyclization is highly sensitive to both electronic factors in the substrate and the nature and stoichiometry of the reducing agent.

  14. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals

    PubMed Central

    Cohn, Corey A; Simon, Sanford R; Schoonen, Martin AA

    2008-01-01

    Background Reactive oxygen species including hydroxyl radicals can cause oxidative stress and mutations. Inhaled particulate matter can trigger formation of hydroxyl radicals, which have been implicated as one of the causes of particulate-induced lung disease. The extreme reactivity of hydroxyl radicals presents challenges to their detection and quantification. Here, three fluorescein derivatives [aminophenyl fluorescamine (APF), amplex ultrared, and dichlorofluorescein (DCFH)] and two radical species, proxyl fluorescamine and tempo-9-ac have been compared for their usefulness to measure hydroxyl radicals generated in two different systems: a solution containing ferrous iron and a suspension of pyrite particles. Results APF, amplex ultrared, and DCFH react similarly to the presence of hydroxyl radicals. Proxyl fluorescamine and tempo-9-ac do not react with hydroxyl radicals directly, which reduces their sensitivity. Since both DCFH and amplex ultrared will react with reactive oxygen species other than hydroxyl radicals and another highly reactive species, peroxynitite, they lack specificity. Conclusion The most useful probe evaluated here for hydroxyl radicals formed from cell-free particle suspensions is APF due to its sensitivity and selectivity. PMID:18307787

  15. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  16. [7alpha-hydroxylation of steroid 5-olefins by mold fungi].

    PubMed

    Andriushina, V G; Druzhinina, A V; Iaderets, V V; Stytsenko, T S; Voĭshvillo, N E

    2010-01-01

    Hydroxylation activity of the mold fungi belonging to the orders Dothideales, Hypocreales, and Mucorales towards delta(5)-3beta-hydroxysteroids was studied. The fungi Bipolaris sorokiniana, Fusarium sp., and Rhizopus nigricans were able to introduce hydroxy group at position 7alpha; however, this ability was detected only at a low substrate load and with a low yield. A 7alpha-hydroxylase activity of the Curvularia lunata VKPM F-981 culture was shown for the first time. It was demonstrated that the studied strain was capable of stereo- and regioselective transformations of androstane 5-olefins at a load not less than 2 g/l. Conversion of pregnane steroids by this culture yielded both 7alpha and 11beta-hydroxy derivatives. The introduction of 7alpha-hydroxy group by this strain occurred concurrently with enzymatic hydrolysis of ester groups, which proceeded under mild conditions to give the corresponding alcohols in the cases of both 3-acetate of delta(5)-androstenes and mono- and triacetates of delta(5)-pregnenes.

  17. Synthetic tripodal receptors for carbohydrates. Pyrrole, a hydrogen bonding partner for saccharidic hydroxyls.

    PubMed

    Francesconi, Oscar; Gentili, Matteo; Roelens, Stefano

    2012-09-07

    The carbohydrate recognition properties of synthetic tripodal receptors relying on H-bonding interactions have highlighted the crucial role played by the functional groups matching saccharidic hydroxyls. Herein, pyrrole and pyridine, which emerged as two of the most effective H-bonding groups, were quantitatively compared through their isostructural substitution within the architecture of a shape-persistent bicyclic cage receptor. NMR and ITC binding studies gave for the pyrrolic receptor a 20-fold larger affinity toward octyl-β-d-glucopyranoside in CDCl(3), demonstrating the superior recognition properties of pyrrole under conditions in which differences would depend on the intrinsic binding ability of the two groups. The three-dimensional structures of the two glucoside complexes in solution were elucidated by combined NMR and molecular mechanics computational techniques, showing that the origin of the stability difference between the two closely similar complex structures resides in the ability of pyrrole to establish shorter/stronger H-bonds with the glucosidic ligand compared to pyridine.

  18. Measurements of snow grain hydroxyl radical at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Galbavy, E.; Hutterli, M.; Friel, D.; Bales, R.

    2004-12-01

    Sunlit snowpacks release a number of volatile organic compounds (VOCs) such as formaldehyde and other carbonyls, carboxylic acids, alkenes, and alkyl halides. It has been hypothesized that this flux of VOCs to the overlying atmosphere is in part due to reactions of hydroxyl radical (OH) with snowgrain organic matter. Recent laboratory measurements by Grannas et al. support this idea by showing that the photolysis of polar snow releases formaldehyde, and that this release is enhanced by the addition of nitrate, a photochemical source of OH. In addition to its effects on organic chemistry, OH is probably also important in other snowpack reactions such as the oxidation of halides to form volatile, reactive gaseous halogens. However, the possible role of OH in these reactions has not been quantified. To begin to address the importance of OH in snowpack chemistry, we have measured the photochemical formation of hydroxyl radicals on snow grains at Summit, Greenland during the spring and summer. Measurements were made using a chemical probe technique where benzoate is added to the snow sample in order to scavenge OH and convert it into p-hydroxybenzoate, which is measured by HPLC. We found that OH is formed on snow grains during both seasons and that the rate of formation in the summer was more than an order of magnitude greater than the typical springtime value. Expressed on a bulk (melted) snow volume basis, the average summer value was approximately 200 nM/hr. Assuming that this reactivity occurs within a snowgrain "quasi-liquid layer" (QLL) that represents approximately 0.001% of the bulk liquid volume, rates of OH photoformation in the QLL are on the order of 10 mM/hr. The possible implications of this enormous rate of OH formation for snowpack chemistry (e.g., for VOC release) will be discussed. We have also examined the relative importance of nitrate and hydrogen peroxide as sources of photoformed OH on snow grains at Summit. Based on quantum yields determined in

  19. Spectral induced polarization signatures of hydroxyl adsorption in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Johnson, T. C.; Slater, L. D.; Redden, G. D.

    2010-12-01

    There is a growing interest in applying geophysical methods to monitor microbial enhanced mineral precipitation through urea hydrolysis. Sensing changes in mineral surface properties as well as changes in fluid chemistry could be used to track geochemical reactions fronts in subsurface environments. Frequency-dependent complex conductivity measured with the spectral induced polarization (SIP) technique is sensitive to both fluid chemistry and mineral surface properties. We had previously observed phase shifts (φ) between current and voltage waveforms associated with hydroxyl concentration changes in a silica gel column during a urea hydrolysis experiment. In a study using less complex conditions we applied both SIP and geochemical measurements on a saturated column composed of sequential zones with Ottawa sand and silica gel in order to: 1) understand whether adsorption of hydroxyl contributes to the changes in complex conductivity, and 2) to determine whether changes in solution chemistry follow changes in surface chemistry in porous media (or vice versa). Silica gel is a highly porous form of silica (surface area is ~500 m2/g vs. <0.1 m2/g for Ottawa sand) and has a high sorption capacity for hydroxide ions. A column (48 cm) was packed with Ottawa sand at both the bottom and top sections, and with silica gel beads in the middle part of the column. The experiment started with a pH 7 sodium chloride solution (50 mM) flowing through the column at 10 ml/min, then sodium chloride solutions at higher pH (pH 8 and pH 10) replaced this solution and continued flow at the same rate for 49 hours. SIP measurements were made along the column as a function of time, and effluent samples along the column were taken for pH and conductivity measurements. The results show phase angle shifts (~4.5 mrad) in the silica gel, while no significant phase changes occurred in the Ottawa sands. Although changes in complex conductivity were only observed on synthetic high surface area

  20. Ion mobility spectrometry-mass spectrometry analysis for the site of aromatic hydroxylation.

    PubMed

    Shimizu, Atsushi; Chiba, Masato

    2013-07-01

    Hydroxylated metabolites often retain the pharmacological activity of parent compound, and the position of hydroxylation determines the formation of chemically reactive intermediates, such as quinones and analogs, from para- and/or ortho-hydroxylation of phenols or arylamines. Therefore, the identification of exact position of hydroxylation is often required at the early development stage of new drug candidates. In many cases, liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides identical MS/MS spectra among isomeric hydroxylated metabolites, and therefore, it alone cannot unequivocally identify the exact position(s) of hydroxylation. Ion mobility spectrometry (IMS), integrated with LC-MS/MS, recently showed the capability of separating isomeric species based on differences in their drift times from IMS, which are linearly proportional to the collision cross-section (CCS) reflecting physical size and shape. In the present study, a chemical derivatization of isomeric hydroxylated metabolites with 2-fluoro-N-methyl pyridinium p-toluenesulfonate was found to confer distinct theoretical CCS value on each isomer by forming corresponding N-methyl pyridine (NMP) derivative. The regression lines established by the comparison between theoretical CCS values and observed drift times from IMS for each set of parent compound (labetalol, ezetimibe, atorvastatin, and warfarin) and its MS/MS product ions accurately and selectively projected the actual drift times of NMP derivatives of corresponding aromatic or isomeric hydroxylated metabolites. The established method was used for the accurate assignment of predominant formation of 2-hydroxylated metabolite from imipramine in NADPH- fortified human liver microsomes. The present application expands the versatility of LC-IMS-MS technique to the structure identification of isomeric hydroxylated metabolites at the early stage for drug development.

  1. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2016-10-01

    Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs.

  2. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    NASA Astrophysics Data System (ADS)

    Simonetti, S.; Compañy, A. Díaz; Pronsato, E.; Juan, A.; Brizuela, G.; Lam, A.

    2015-12-01

    Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's-D2 correction were performed to elucidate the drug-silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO2 (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  3. A facile, versatile approach to hydroxyl-anchored metal oxides with high Cr(VI) adsorption performance in water treatment

    PubMed Central

    Ma, Ji; Zuo-Jiang, SiZhi; He, Yunhao; Sun, Qinglei; Wang, Yunguo; Liu, Wei; Sun, Shuangshuang

    2016-01-01

    In this study, a facile and versatile urea-assisted approach was proposed to synthesize Chinese rose-like NiO, pinecone-like ZnO and sponge-like CoO adsorbents. The presence of urea during syntheses endowed these adsorbents with high concentration of surface hydroxyl groups, which was estimated as 1.83, 1.32 and 4.19 mmol [OH−] g−1 for NiO, ZnO and CoO adsorbents, respectively. These surface hydroxyl groups would facilitate the adsorption of Cr(vi) species (e.g. HCrO4−, Cr2O72− and CrO42−) from wastewater by exchanging with hydroxyl protons or hydroxide ions, and hence result in extremely high maximum adsorbed amounts of Cr(vi), being 2974, 14 256 and 408 mg g−1 for NiO, ZnO and CoO adsorbents in the pH range of 5.02–5.66 at 298 K, respectively. More strikingly, the maximum adsorbed amounts of Cr(vi) would be greatly enhanced as the adsorbing temperature is increased, and even amount to 23 411 mg g−1 for ZnO adsorbents at 323 K. Based on the kinetics and equilibrium studies of adsorptive removal of Cr(vi) from wastewater, our synthetic route will greatly improve the adsorptivity of the as-synthesized metal-oxide adsorbents, and hence it will shed new light on the development of high-performance adsorbents. PMID:28018639

  4. A facile, versatile approach to hydroxyl-anchored metal oxides with high Cr(VI) adsorption performance in water treatment

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Zuo-Jiang, SiZhi; He, Yunhao; Sun, Qinglei; Wang, Yunguo; Liu, Wei; Sun, Shuangshuang; Chen, Kezheng

    2016-11-01

    In this study, a facile and versatile urea-assisted approach was proposed to synthesize Chinese rose-like NiO, pinecone-like ZnO and sponge-like CoO adsorbents. The presence of urea during syntheses endowed these adsorbents with high concentration of surface hydroxyl groups, which was estimated as 1.83, 1.32 and 4.19 mmol [OH-] g-1 for NiO, ZnO and CoO adsorbents, respectively. These surface hydroxyl groups would facilitate the adsorption of Cr(vi) species (e.g. HCrO4-, Cr2O72- and CrO42-) from wastewater by exchanging with hydroxyl protons or hydroxide ions, and hence result in extremely high maximum adsorbed amounts of Cr(vi), being 2974, 14 256 and 408 mg g-1 for NiO, ZnO and CoO adsorbents in the pH range of 5.02-5.66 at 298 K, respectively. More strikingly, the maximum adsorbed amounts of Cr(vi) would be greatly enhanced as the adsorbing temperature is increased, and even amount to 23 411 mg g-1 for ZnO adsorbents at 323 K. Based on the kinetics and equilibrium studies of adsorptive removal of Cr(vi) from wastewater, our synthetic route will greatly improve the adsorptivity of the as-synthesized metal-oxide adsorbents, and hence it will shed new light on the development of high-performance adsorbents.

  5. Antimony(III) and bismuth(III) amides containing pendant N-donor groups--a combined experimental and theoretical study.

    PubMed

    Vránová, Iva; Jambor, Roman; Růžička, Aleš; Hoffmann, Alexander; Herres-Pawlis, Sonja; Dostál, Libor

    2015-01-07

    N,N- and N,N,N-chelated antimony(III) and bismuth(III) chlorides L(1-3)MCl2 1-4 [for L(1): M = Sb (1), for L(2): M = Sb (2) and for L(3): M = Sb (3) and Bi (4)], containing ligands L(1-3) derived from the pyrrole ring (where L(1) = C4H3N-2-(CH[double bond, length as m-dash]N-2',6'-iPr2C6H3), L(2) = C4H2N-2,5-(CH2NMe2)2, L(3) = C4H2N-2,5-(CH2NC4H8)2), were prepared by the treatment of lithium precursors with SbCl3 or BiCl3. Molecular structures 1-4 of were described both in solution (NMR spectroscopy) and in the solid state (single-crystal X-ray diffraction analysis). Structures of 1-4 were also subjected to a density functional theory study.

  6. Production of hydroxyl radical by redox active flavonoids

    SciTech Connect

    Kalyanaraman, B.; Hodnick, W.F.; Pardini, R.S.

    1986-05-01

    The authors have previously shown that flavonoids autoxidize and generate superoxide (O/sub 2//sup -/) and hydrogen peroxide (H/sub 2/O/sub 2/), suggesting that hydroxyl radical (OH) could be formed via the metal-ion catalyzed Haber-Weiss reaction. In the presence of ethylenediamine tetraacetic acid (EDTA) and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), myricetin, quercetagetin and quercetin gave an ESR signal for the DMPO-OH spin adduct, and the DMPO-Eto adduct in the presence of excess ethanol, indicating the production of free OH. The addition of FeCl/sub 3/ to the reaction mixture resulted in a dramatic increase in the DMPO-OH signal. Without chelator (EDTA) there was no signal and the presence of diethylenetriamine-pentaacetic acid (DETAPAC) greatly diminished the signal. The presence of superoxide dismutase (SOD) had no effect on the signal while catalase completely abrogated the signal. The addition of Fe (III)-EDTA to flavonoid solutions under anaerobic conditions produced time dependent auxochromic shifts in their absorption spectra and resulted in the reduction of Fe (III) to Fe (II). These data suggest that the flavonoids autoxidize to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/ by dismutation and in the presence of Fe (III)-EDTA the flavonoid can directly reduce the Fe (III) to Fe (II) resulting in the production of OH through Fenton chemistry.

  7. Arsenate substitution in lead hydroxyl apatites: A Raman spectroscopic study.

    PubMed

    Giera, Alicja; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Kwaśniak-Kominek, Monika; Marchlewski, Tomasz

    2016-01-05

    A total of seven compounds of the hydroxylpyromorphite Pb10(PO4)6(OH)2 - hydroxylmimetite Pb10(AsO4)6(OH)2 (HPY-HMI) solid solution series were synthesized at 80°C from aqueous solutions and characterized using Raman spectroscopy. The positions of the bands in all spectra of the series depend on the content of arsenates and phosphates shifting to lower wavenumbers with substitution of (AsO4)(3-) for (PO4)(3-). This shift results from the decreasing bond strength of X-O (where X=P, As) and higher atomic mass of As than P. The position and intensity of major (PO4)(3-) and (AsO4)(3-) bands in Raman spectra exhibit linear correlation with As content, while the ratio of the intensities of these peaks shows exponential correlation. This results due to different polarizability of (PO4)(3-) and (AsO4)(3-) molecules. A small carbonate band develops with increasing As content indicating that hydroxyl lead apatites adopt the (CO3)(2-) ions, particularly at the arsenate end of the series.

  8. Hydroxylation of methane through component interactions in soluble methane monooxygenases.

    PubMed

    Lee, Seung Jae

    2016-04-01

    Methane hydroxylation through methane monooxygenases (MMOs) is a key aspect due to their control of the carbon cycle in the ecology system and recent applications of methane gas in the field of bioenergy and bioremediation. Methanotropic bacteria perform a specific microbial conversion from methane, one of the most stable carbon compounds, to methanol through elaborate mechanisms. MMOs express particulate methane monooxygenase (pMMO) in most strains and soluble methane monooxygenase (sMMO) under copper-limited conditions. The mechanisms of MMO have been widely studied from sMMO belonging to the bacterial multicomponent monooxygenase (BMM) superfamily. This enzyme has diiron active sites where different types of hydrocarbons are oxidized through orchestrated hydroxylase, regulatory and reductase components for precise control of hydrocarbons, oxygen, protons, and electrons. Recent advances in biophysical studies, including structural and enzymatic achievements for sMMO, have explained component interactions, substrate pathways, and intermediates of sMMO. In this account, oxidation of methane in sMMO is discussed with recent progress that is critical for understanding the microbial applications of C-H activation in one-carbon substrates.

  9. Oxidation of acetovanillone by photochemical processes and hydroxyl radicals.

    PubMed

    Benitez, F Javier; Real, Francisco J; Acero, Juan L; Leal, Ana I; Cotilla, Sonia

    2005-01-01

    Acetovanillone [Ethanone, 1-(4-hydroxy-3-metoxyphenyl)] is one of the major pollutants that is present in the wastewater produced during the boiling of raw material in the cork industry. The oxidation of its aqueous solutions by monochromatic UV radiation alone and combined with hydrogen peroxide, Fenton's reagent and the photo-Fenton system has been investigated. In the single UV radiation process, the apparent rate constants and the quantum yields are determined, and in the UV/H2O2 combination, the additional efficiency in the oxidation process due to the presence of hydrogen peroxide is established. The influence of some operating variables, such as initial concentrations of H2O2 and Fe(II), as well as the pH, is discussed in the Fenton and photo-Fenton systems, and the partial contribution of the radical pathways to the global oxidation rates are evaluated. The rate constant for the reaction of acetovanillone with hydroxyl radicals is also determined by means of a competition kinetics model, its value being 5.62 x 10(9) M(-1)s(-1). Finally, chemical oxidation experiments of wastewaters generated in this industry were carried out by using the same advanced oxidation processes. Specifically, the elimination of acetovanillone in these effluents was determined, and the removal of the global organic pollutant content was also evaluated.

  10. SPLASH The Southern Parkes Large-Area Survey in Hydroxyl

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew; Dawson, Joanne

    2013-07-01

    The OH lines at 1612, 1665, 1667 and 1720 MHz are versatile probes of diffuse molecular gas, and may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large-Area Survey in Hydroxyl) is a large, unbiassed and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane and Galactic Centre, that will achieve sensitivities an order of magnitude better than previous surveys. The project will answer critical questions on the global distribution of diffuse OH, the degree to which it traces 'hidden' emission caught between the regimes probed by traditional tracers, and its role as a probe of molecular cloud formation. As a blind and sensitive survey of all four ground-state transitions, SPLASH is also detecting many new OH masers, facilitating a broad range of astrophysical studies. I will report on the science aims and strategy of the survey, and present initial results from its first two semesters, which have revealed a rich and complex distribution of OH emission and absorption in a subsection of the Southern Milky Way.

  11. SPLASH: A Southern Parkes Large Area Survey in Hydroxyl

    NASA Astrophysics Data System (ADS)

    Dawson, Joanne; Caswell, James; Gomez, Jose F.; Mcclure-Griffiths, Naomi; Lo, Nadia; Jones, Paul; Dickey, John; Cunningham, Maria; Green, James; Carretti, Ettore; Ellingsen, Simon; Walsh, Andrew; Purcell, Cormac; Breen, Shari; Hennebelle, Patrick; Imai, Hiroshi; Lowe, Vicki; Gibson, Steven; Jones, Courtney; Krishnan, Vasaant

    2013-10-01

    The OH 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. The survey will answer critical questions on the global distribution of diffuse OH, the degree to which it traces ‘hidden’ material caught between the regimes probed by traditional tracers of the neutral ISM, and its role as a probe of molecular cloud formation. As a blind survey for all four ground-state transitions, SPLASH will also detect many new OH masers, facilitating a broad range of astrophysical studies. This proposal requests 670 hours spread over two semesters to complete Phase 1 of the SPLASH project, which will map 152 square degrees in the inner Galactic Plane, including the Galactic Centre. Following the ongoing success of the project, we request that its pre-graded status be renewed for a final two semesters.

  12. SPLASH: A Southern Parkes Large Area Survey in Hydroxyl

    NASA Astrophysics Data System (ADS)

    Dawson, Joanne; Caswell, James; Gomez, Jose F.; Mcclure-Griffiths, Naomi; Jones, Paul; Dickey, John; Cunningham, Maria; Green, James; Carretti, Ettore; Ellingsen, Simon; Walsh, Andrew; Purcell, Cormac; Breen, Shari; Hennebelle, Patrick; Gibson, Steven; Jones, Courtney; Krishnan, Vasaant

    2012-10-01

    The OH 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. The survey will answer critical questions on the global distribution of diffuse OH, the degree to which it traces ‘hidden’ emission caught between the regimes probed by traditional tracers, and its role as a probe of molecular cloud formation. As a blind survey for all four ground-state transitions, SPLASH will also detect many new OH masers as well as providing full Stokes information for all objects, facilitating a broad range of astrophysical studies. This proposal requests 1520 hours spread over three semesters to complete Phase 1 of the SPLASH project, which will map 152 square degrees in the inner Galactic Plane, including the Galactic Centre. Following the success of first observations last semester, we request that the project be granted pre-graded status.

  13. SPLASH: A Southern Parkes Large Area Survey in Hydroxyl

    NASA Astrophysics Data System (ADS)

    Dawson, Joanne; Caswell, James; Gomez, Jose F.; Mcclure-Griffiths, Naomi; Jones, Paul; Dickey, John; Cunningham, Maria; Green, James; Carretti, Ettore; Ellingsen, Simon; Walsh, Andrew; Purcell, Cormac; Breen, Shari; Hennebelle, Patrick; Imai, Hiroshi; Lowe, Vicki; Gibson, Steven; Jones, Courtney; Krishnan, Vasaant

    2013-04-01

    The OH 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. The survey will answer critical questions on the global distribution of diffuse OH, the degree to which it traces ‘hidden’ emission caught between the regimes probed by traditional tracers, and its role as a probe of molecular cloud formation. As a blind survey for all four ground-state transitions, SPLASH will also detect many new OH masers as well as providing full Stokes information for all objects, facilitating a broad range of astrophysical studies. This proposal requests 1105 hours spread over two semesters to complete Phase 1 of the SPLASH project, which will map 152 square degrees in the inner Galactic Plane, including the Galactic Centre. Following the success of initial observations in 2012APRS, the project has been granted pre-graded status.

  14. SPLASH: A Southern Parkes Large Area Survey in Hydroxyl

    NASA Astrophysics Data System (ADS)

    Dawson, Joanne; Caswell, James; Gomez, Jose F.; Mcclure-Griffiths, Naomi; Jones, Paul; Dickey, John; Cunningham, Maria; Green, James; Carretti, Ettore; Ellingsen, Simon; Walsh, Andrew; Breen, Shari; Hennebelle, Patrick; Gibson, Steven; Jones, Courtney

    2012-04-01

    The OH 18 cm lines are powerful and versatile probes of diffuse molecular gas, that may trace a largely unstudied component of the Galactic ISM. SPLASH (the Southern Parkes Large Area Survey in Hydroxyl) is a large, unbiased and fully-sampled survey of OH emission, absorption and masers in the Galactic Plane that will achieve sensitivities an order of magnitude better than previous work. This proposal requests 1800 hours spread over four semesters to carry out Phase 1 of the SPLASH project, which will map 152 square degrees in the inner Galactic Plane, including the Galactic Centre. The survey will answer critical questions on the global distribution of diffuse OH, the degree to which it traces ‘hidden’ emission caught between the regimes probed by traditional tracers, and its role as a probe of molecular cloud formation. As a blind survey for all four ground-state transitions, SPLASH will also detect many new OH masers as well as providing full Stokes information for all objects, facilitating a broad range of astrophysical studies.

  15. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.

    PubMed

    Chen, Xiangyang; Yang, Xinzheng

    2016-03-17

    Inspired by the active site structure of [FeFe]-hydrogenase, we built a series of iron dicarbonyl diphosphine complexes with pendant amines and predicted their potentials to catalyze the hydrogenation of CO2 to methanol using density functional theory. Among the proposed iron complexes, [(P(tBu)2N(tBu)2H)FeH(CO)2(COOH)](+) (5COOH) is the most active one with a total free energy barrier of 23.7 kcal/mol. Such a low barrier indicates that 5COOH is a very promising low-cost catalyst for high-efficiency conversion of CO2 and H2 to methanol under mild conditions. For comparison, we also examined Bullock's Cp iron diphosphine complex with pendant amines, [(P(tBu)2N(tBu)2H)FeHCp(C5F4N)](+) (5Cp-C5F4N), as a catalyst for hydrogenation of CO2 to methanol and obtained a total free energy barrier of 27.6 kcal/mol, which indicates that 5Cp-C5F4N could also catalyze the conversion of CO2 and H2 to methanol but has a much lower efficiency than our newly designed iron complexes.

  16. Synthesis, structural studies, and oxidation catalysis of the late-first-row-transition-metal complexes of a 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam.

    PubMed

    Jones, Donald G; Wilson, Kevin R; Cannon-Smith, Desiray J; Shircliff, Anthony D; Zhang, Zhan; Chen, Zhuqi; Prior, Timothy J; Yin, Guochuan; Hubin, Timothy J

    2015-03-02

    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni(2+) complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn(2+), Fe(2+), and Cu(2+) complexes identified the Mn(2+) complex as a potential mild oxidation catalyst worthy of continued development.

  17. A hexaaza macrocyclic ligand containing acetohydrazide pendants for Ln(III) complexation in aqueous solution. Solid-state and solution structures and DFT calculations.

    PubMed

    Núñez, Cristina; Bastida, Rufina; Macías, Alejandro; Mato-Iglesias, Marta; Platas-Iglesias, Carlos; Valencia, Laura

    2008-08-07

    Lanthanide complexes of a hexaaza macrocyclic ligand containing acetohydrazide pendants (L) have been synthesised (Ln = La-Er, except Pm), and structural studies have been carried out both in the solid state and in aqueous solution. Attempts to isolate the complexes of the heaviest Ln(iii) ions (Ln = Tm-Lu) were unsuccessful. The crystal structures of the ligand and its lanthanum complex have been determined by single-crystal X-ray crystallography. The X-ray crystal structure of [La(L)](3+) shows the metal ion being ten-coordinate, with the acetohydrazide pendants situated alternatively above and below the plane of the macrocycle. The two five membered chelate rings formed by the ethylenediamine moieties adopt (deltadelta) [or (lambdalambda)] conformations. The [Ln(L)](3+) complexes have been characterised by means of density-functional theory (DFT) calculations (B3LYP model). The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as obtained from paramagnetic NMR measurements on the Ce(iii), Pr(III), Nd(III) and Eu(III) complexes. The complexes adopt in aqueous solution a D(2) structure with the ligand adopting a (deltadelta) [or (lambdalambda)] conformation.

  18. Fingerprinting of hydroxyl radical-attacked polysaccharides by N-isopropyl-2-aminoacridone labelling

    PubMed Central

    Vreeburg, Robert A. M.; Airianah, Othman B.; Fry, Stephen C.

    2014-01-01

    Hydroxyl radicals (•OH) cause non-enzymic scission of polysaccharides in diverse biological systems. Such reactions can be detrimental (e.g. causing rheumatic and arthritic diseases in mammals) or beneficial (e.g. promoting the softening of ripening fruit, and biomass saccharification). Here we present a method for documenting •OH action, based on fluorescent labelling of the oxo groups that are introduced as glycosulose residues when •OH attacks polysaccharides. The method was tested on several polysaccharides, especially pectin, after treatment with Fenton reagents. 2-Aminoacridone plus cyanoborohydride reductively aminated the oxo groups in treated polysaccharides; the product was then reacted with acetone plus cyanoborohydride, forming a stable tertiary amine with the carbohydrate linked to N-isopropyl-2-aminoacridone (pAMAC). Digestion of labelled pectin with ‘Driselase’ yielded several fluorescent products which on electrophoresis and HPLC provided a useful ‘fingerprint’ indicating •OH attack. The most diagnostic product was a disaccharide conjugate of the type pAMAC·UA-GalA (UA=unspecified uronic acid), whose UA-GalA bond was Driselase-resistant (product 2A). 2A was clearly distinguishable from GalA-GalA–pAMAC (disaccharide labelled at its reducing end), which was digestible to GalA–pAMAC. The methodology is applicable, with appropriate enzymes in place of Driselase, for detecting natural and artificial •OH attack in diverse plant, animal and microbial polysaccharides. PMID:25072268

  19. Effects of hydroxyl-functionalized multiwalled carbon nanotubes on sperm health and testes of Wistar rats.

    PubMed

    Nirmal, N K; Awasthi, K K; John, P J

    2017-01-01

    Carbon nanotubes (CNTs) are promising candidates for various applications including biomedical purposes. Owing to their remarkable physical, mechanical, electrical and chemical properties, CNTs have become an area of intense research and industrial activity in recent years. Therefore, toxicity and risk assessment studies are becoming increasingly important. The present study was designed to assess the effects of hydroxyl-functionalized multiwalled CNTs (OH-f MWCNTs) on sperm health and testes of adult Wistar rats. Animals were treated with different doses of OH-f MWCNTs (0.4, 2.0 and 10.0 mg/kg) along with a control group receiving only vehicle. Assessments after 15 alternate intraperitoneal doses revealed dose-related adverse effects on many endpoints tested. Results of the study showed significant impairment of sperm health at 2.0 and 10.0 mg/kg. Histology of testes demonstrated degeneration of germinal epithelium and loss of germ cells in the treatment groups. The exposure resulted in increased oxidative stress in testes in a dose-dependent manner. The findings of the study demonstrate that CNTs are potentially harmful for male reproductive health.

  20. Microbiological Aspects in the Hydroxylation of Estrogens by Fusarium moniliforme1

    PubMed Central

    Casas-Campillo, C.; Bautista, M.

    1965-01-01

    A strain of Fusarium moniliforme (IH4), isolated from soil, showed outstanding enzymatic abilities to hydroxylate a number of estrogens. Estrone and estradiol were transformed into the 15α-hydroxy derivatives, and estradiol 3-methyl ether was transformed into the corresponding 6β-hydroxy derivative. Δ6-Estrone was not hydroxylated. The accumulation of 15α-hydroxyestrone was influenced by the nutritional conditions of the fungus. Maximal yield was obtained when the organism grew in Czapek solution supplemented with yeast extract, although good conversion was also found in a peptone-corn molasses medium. Substitution of NO3-N in Czapek medium with NH4-N, lactalbumin hydrolysate, Casitone, or Casamino Acids resulted in limited hydroxylation of estrone. A remarkable strain specificity was demonstrated in this conversion. Of 13 strains of F. moniliforme and Gibberella fujikuroi under investigation, only 2 strains (IH4 and ATCC 9851) accumulated substantial amounts of the 15α-hydroxylated product. However, marked quantitative variations were observed which are attributable to a different ability of the organisms to degrade the steroid nucleus. Biochemical instabilities were also found through the appearance of spontaneous variants lacking steroid-hydroxylating activity. Replacement culture studies revealed that 15α-hydroxylation of estrone was dependent on the supply of external phosphate; exogenous nitrogen or energy sources were not required. Most of the enzymatic activity was confined to the mycelia. Microconidia showed a very limited hydroxylating activity, even in the presence of supplements or energy sources. Images Fig. 2 PMID:5866044

  1. Hydroxyl radical oxidation of cylindrospermopsin (cyanobacterial toxin) and its role in the photochemical transformation.

    PubMed

    Song, Weihua; Yan, Shuwen; Cooper, William J; Dionysiou, Dionysios D; O'Shea, Kevin E

    2012-11-20

    Cylindrospermopsin (CYN), an alkaloid guanidinium sulfated toxin, is produced by a number of cyanobacteria regularly found in lakes, rivers, and reservoirs. Steady-state and time-resolved radiolysis methods were used to determine reaction pathways and kinetic parameters for the reactions of hydroxyl radical with CYN. The absolute bimolecular reaction rate constant for the reaction of hydroxyl radical with CYN is (5.08 ± 0.16) × 10(9) M(-1) s(-1). Comparison of the overall reaction rate of CYN with hydroxyl radical with the individual reaction rate for addition to the uracil ring in CYN indicate the majority of the hydroxyl radicals (84%) react at the uracil functionality of CYN. Product analyses using liquid chromatography-mass spectrometry indicate the major products from the reaction of hydroxyl radical with CYN involve attack of hydroxyl radical at the uracil ring and hydrogen abstraction from the hydroxy-methine bridge linking the uracil ring to the tricyclic guanidine functionality. The role of hydroxyl radical initiated pathways in the natural organic matter (NOM) photosensitized transformation of CYN were evaluated. Scavenger and trapping experiments indicate that hydroxyl radical mediated transformations account for approximately ~70% of CYN destruction in surface waters under solar irradiation in the presence of NOM. The absence of solvent isotope effect indicates singlet oxygen does not play a significant role in the NOM sensitized transformation of CYN. The primary degradation pathways for HO• mediated and NOM photosensitized destruction of CYN involve destruction of the uracil ring. The fundamental kinetic parameters determined from these studies are critical for the accurate evaluation of hydroxyl-radical based technologies for the remediation of this problematic cyanotoxin in drinking water and important in the assessment of the environmental oxidative transformation of uracil based compounds.

  2. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural Soil

    PubMed Central

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B.; Juhler, René K.; Aamand, Jens

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N′,N′-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N′-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N′-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′-methylurea, which is the product resulting from combined N demethylation and hydroxylation. PMID:16332769

  3. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin; Kannan, Rangaramanujam M.

    2015-02-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE

  4. Photoformation of hydroxyl radical on snow grains at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Anastasio, Cort; Galbavy, Edward S.; Hutterli, Manuel A.; Burkhart, John F.; Friel, Donna K.

    We measured the photoformation of hydroxyl radical ( ṡOH) on snow grains at Summit, Greenland during the spring and summer. Midday rates of ṡOH formation in the snow phase in the summer range from 130 to 610nmolL-1h-1, expressed relative to the liquid equivalent volume of snow. Calculated formation rates of snow-grain ṡOH based on the photolysis of hydrogen peroxide and nitrate agree well with our measured rates during summer, indicating that there are probably not other major sources of ṡOH under these conditions. Throughout both the spring and summer, HOOH is by far the dominant source of snow-grain ṡOH; on average, HOOH produces approximately 100 times more ṡOH than does NO3-. Rates of ṡOH photoformation have a strong seasonal dependence and increase by approximately a factor of 10 between early spring and summer at midday. The rate of ṡOH photoformation on snow grains decreases rapidly with depth in the snowpack, with approximately 90% of photoformation occurring within the top 10 cm, although ṡOH formation occurs to depths below 20 cm. The formation of ṡOH on snow grains likely initiates a suite of reactions in the snowpack, including the transformation of organic carbon (OC) and oxidation of halides. The reaction of ṡOH with OC probably forms a number of volatile organic compounds (VOCs) that are potentially emitted into the atmospheric boundary layer. Indeed, our measured rates of ṡOH photoformation on snow grains are large enough that they could account for previously reported fluxes of VOCs from the snowpack at Summit, although the relative importance of thermal desorption and photochemical production for most of these VOCs still needs to be determined.

  5. CYP2E1 hydroxylation of aniline involves negative cooperativity.

    PubMed

    Hartman, Jessica H; Knott, Katie; Miller, Grover P

    2014-02-01

    CYP2E1 plays a role in the metabolic activation and elimination of aniline, yet there are conflicting reports on its mechanism of action, and hence relevance, in aniline metabolism. Based on our work with similar compounds, we hypothesized that aniline binds two CYP2E1 sites during metabolism resulting in cooperative reaction kinetics and tested this hypothesis through rigorous in vitro studies. The kinetic profile for recombinant CYP2E1 demonstrated significant negative cooperativity based on a fit of data to the Hill equation (n=0.56). Mechanistically, the data were best explained through a two-binding site cooperative model in which aniline binds with high affinity (K(s)=30 μM) followed by a second weaker binding event (K(ss)=1100 uM) resulting in a threefold increase in the oxidation rate. Binding sites for aniline were confirmed by inhibition studies with 4-methylpyrazole. Inhibitor phenotyping experiments with human liver microsomes validated the central role for CYP2E1 in aniline hydroxylation and indicated minor roles for CYP2A6 and CYP2C9. Importantly, inhibition of minor metabolic pathways resulted in a kinetic profile for microsomal CYP2E1 that replicated the preferred mechanism and parameters observed with the recombinant enzyme. Scaled modeling of in vitro CYP2E1 metabolism of aniline to in vivo clearance, especially at low aniline levels, led to significant deviations from the traditional model based on non-cooperative, Michaelis-Menten kinetics. These findings provide a critical mechanistic perspective on the potential importance of CYP2E1 in the metabolic activation and elimination of aniline as well as the first experimental evidence of a negatively cooperative metabolic reaction catalyzed by CYP2E1.

  6. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid.

    PubMed

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Schoemacker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-08-13

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 10(4)-10(5) molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅10(6) molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air.

  7. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid

    PubMed Central

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-01-01

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188

  8. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  9. Detection, identification, and quantification of hydroxylated bis(2-ethylhexyl)-tetrabromophthalate isomers in house dust.

    PubMed

    Peng, Hui; Saunders, David M V; Sun, Jianxian; Codling, Garry; Wiseman, Steve; Jones, Paul D; Giesy, John P

    2015-03-03

    Ultra-High Resolution LC/mass spectrometry (LC-UHRMS; Thermo Fisher Q-Exactive) was used to identify two novel isomers of hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) which were unexpectedly observed in a commercial standard of TBPH. By combining ultra-high resolution (UHR) mass spectra (MS(1)), mass errors to theoretical [TBPH-Br+O](-) were 2.1 and 1.0 ppm for the two isomers, UHR-MS(2) spectra and NMR analysis; the structures of the two compounds were identified as hydroxylated TBPH with a hydroxyl group on the aromatic ring. Relatively great proportions of the two isomers of OH-TBPH were detected in two technical products, Firemaster 550 (FM-550; 0.1% and 6.2%, respectively) and Firemaster BZ 54 (BZ-54; 0.1% and 7.9%), compared to a commercial standard (0.4% and 0.9%). To simultaneously analyze OH-TBPH isomers and TBPH in samples of dust, a method based on LC-UHRMS was developed to quantify the two compounds, using negative and positive ion modes, respectively. The instrumental limit of detection for TBPH was 0.01 μg/L, which was 200-300 times better than traditional methods (2.5 μg/L) based on gas chromatography-mass spectrometry. The analytical method combined with a Florisil cleanup was successfully applied to analyze TBPH and OH-TBPH in 23 indoor dust samples from Saskatoon, Saskatchewan, Canada. Two OH-TBPH isomers, OH-TBPH1 and OH-TBPH2, were detected in 52% and 91% of dust samples, respectively. Concentrations of OH-TBPH2 (0.35 ± 1.0 ng/g) were 10-fold greater than those of OH-TBPH1 (0.04 ± 0.88 ng/g) in dust, which was similar to profiles in FM-550 and BZ-54. TBPH was also detected in 100% of dust samples with a mean concentration of 733 ± 0.87 ng/g. A significant (p < 0.001) log-linear relationship was observed between TBPH and OH-TBPH isomers, further supporting the hypothesis of a common source of emission. Relatively small proportions of OH-TBPH isomers were detected in dust (0.01% ± 0.67 OH-TBPH1 and 0.1% ± 0.60 OH-TBPH2

  10. Density functional study of the adsorption of aspirin on the hydroxylated (0 0 1) α-quartz surface

    NASA Astrophysics Data System (ADS)

    Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C.

    2009-08-01

    In this study the adsorption geometry of aspirin molecule on a hydroxylated (0 0 1) α-quartz surface has been investigated using DFT calculations. The optimized adsorption geometry indicates that both, adsorbed molecule and substrate are strongly deformed. Strong hydrogen bonding between aspirin and surface hydroxyls, leads to the breaking of the original hydroxyl-hydroxyl hydrogen bonds (Hydrogenbridges) on the surface. In this case new hydrogen bonds on the hydroxylated (0 0 1) α-quartz surface appear which significantly differ from those at the clean surface. The 1.11 eV adsorption energy reveals that the interaction of aspirin with α-quartz is an exothermic chemical interaction.

  11. Binding of hydroxylated single-walled carbon nanotubes to two hemoproteins, hemoglobin and myoglobin.

    PubMed

    Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian

    2014-12-01

    Herein, we studied the binding interactions between hydroxylated single-walled carbon nanotubes and hemoglobin and myoglobin by the use of multi-spectral techniques and molecular modeling. The ultraviolet-vis absorbance and circular dichroism spectral results indicated that the binding interactions existed between hydroxylated single-walled carbon nanotubes and hemoglobin/myoglobin. These binding interactions partially affected the soret/heme bands of hemoglobin and myoglobin. The secondary structures of hemoproteins were partially destroyed by hydroxylated single-walled carbon nanotubes. Fluorescence studies suggested that the complexes formed between hydroxylated single-walled carbon nanotubes and hemoglobin/myoglobin by hydrogen bonding, hydrophobic, and π-π stacking interactions. In addition, molecular modeling analysis well supported the experimental results.

  12. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations.

    PubMed

    Zilly, Felipe E; Taglieber, Andreas; Schulz, Frank; Hollmann, Frank; Reetz, Manfred T

    2009-12-14

    A light-driven deazaflavin-dependent direct enzyme regeneration system has been developed for a P450-BM3 catalyzed CH-activating hydroxylation, thereby avoiding the need for the expensive NADPH cofactor.

  13. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    PubMed

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  14. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel.

    PubMed

    Li, Shiming; Lo, Chih-Yu; Ho, Chi-Tang

    2006-06-14

    Polymethoxyflavones (PMFs) from citrus genus have been of particular interest because of their broad spectrum of biological activities, including antiinflammatory, anticarcinogenic, and antiatherogenic properties. There have been increasing interests in the exploration of health beneficial properties of PMFs in citrus fruits. Therefore, the isolation and characterization of PMFs from sweet orange (Citrus sinensis) peel will lead to new applications of the byproducts from orange juice processes and other orange consumption in nutraceutical and pharmaceutical products. In our study, eight hydroxylated PMFs, six PMFs, one polymethoxyflavanone, one hydroxylated polymethoxyflavanone, and two hydroxylated polymethoxychalcones were isolated from sweet orange peel and their structures were elucidated by various MS, UV, and different NMR techniques. Some of the hydroxylated PMFs and chalcones are newly isolated from sweet orange peel.

  15. N-3 Hydroxylation of Pyrimidine-2,4-diones Yields Dual Inhibitors of HIV Reverse Transcriptase and Integrase

    PubMed Central

    2010-01-01

    A new molecular scaffold featuring an N-hydroxyimide functionality and capable of inhibiting both reverse transcriptase (RT) and integrase (IN) of human immunodeficiency virus (HIV) was rationally designed based on 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) non-nucleoside RT inhibitors (NNRTIs). The design involves a minimal 3-N hydroxylation of the pyrimidine ring of HEPT compound to yield a chelating triad which, along with the existing benzyl group, appeared to satisfy major structural requirements for IN binding. In the mean time, this chemical modification did not severely compromise the compound’s ability to inhibit RT. A preliminary structure−activity relationship (SAR) study reveals that this N-3 OH is essential for IN inhibition and that the benzyl group on N-1 side chain is more important for IN binding than the one on C-6. PMID:21499541

  16. Iron chlorin e6 scavenges hydroxyl radical and protects human endothelial cells against hydrogen peroxide toxicity.

    PubMed

    Yu, J W; Yoon, S S; Yang, R

    2001-09-01

    Iron chlorin e6 (FeCe6) has recently been proposed to be potentially antimutagenic and antioxidative. However, the antioxidant property of FeCe6 has not been elucidated in detail. In this study, we investigated the ability of FeCe6 to scavenge hydroxyl radical and to protect biomolecules and mammalian cells from oxidative stress-mediated damage. In electron spin resonance (ESR) experiments, FeCe6 showed excellent hydroxyl radical scavenging activity, whereas its iron-deficient molecule, chlorin e6 (Ce6) showed little effect. FeCe6 also significantly reduced hydroxyl radical-induced thiobarbituric acid reactive substance (TBARS) formation and benzoate hydroxylation in a dose-dependent manner. The rate constant for reaction between FeCe6 and hydroxyl radical was measured as 8.5 x 10(10) M(-1) s(-1) by deoxyribose degradation method, and this value was much higher than that of most hydroxyl radical scavengers. Superoxide dismutase (SOD) activity of FeCe6 was also confirmed by ESR study and cytochrome c reduction assay, but its in vitro activity appeared to be less efficient in comparison with other well-known SOD mimics. In addition, FeCe6 appreciably diminished hydroxyl radical-induced DNA single-strand breakage and protein degradation in Fe-catalyzed and Cu-catalyzed Fenton systems, and it significantly protected human endothelial cells against hydrogen peroxide (H2O2) toxicity. These results suggest that FeCe6 is a novel hydroxyl radical scavenger and may be useful for preventing oxidative injury in biological systems.

  17. Hydroxylation and Glycosylation of Phenylpropanoids by Cultured Cells of Phytolacca americana.

    PubMed

    Shimoda, Kei; Kubota, Naoji; Uesugi, Daisuke; Tanigawa, Masato; Hamada, Hiroki

    2016-02-01

    Hydroxylation and glycosylation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated using cultured plant cells of Phytolacca americana as biocatalysts. Regioselective hydroxylation at the 4-position of cinnamic acid and 3-position of p-coumaric acid was observed. Although cinnamic acid was transformed to mono-glucoside products, di-glycosylation occurred in the case of the biotransformation of p-coumaric acid, caffeic acid, and ferulic acid.

  18. A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin

    PubMed Central

    Eckhardt, Matthias; Yaghootfam, Afshin; Fewou, Simon N.; Zöller, Inge; Gieselmann, Volkmar

    2005-01-01

    Hydroxylation is an abundant modification of the ceramides in brain, skin, intestinal tract and kidney. Hydroxylation occurs at the sphingosine base at C-4 or within the amide-linked fatty acid. In myelin, hydroxylation of ceramide is exclusively found at the α-C atom of the fatty acid moiety. α-Hydroxylated cerebrosides are the most abundant lipids in the myelin sheath. The functional role of this modification, however, is not known. On the basis of sequence similarity to a yeast C26 fatty acid hydroxylase, we have identified a murine cDNA encoding FA2H (fatty acid 2-hydroxylase). Transfection of FA2H cDNA in CHO cells (Chinese-hamster ovary cells) led to the formation of α-hydroxylated fatty acid containing hexosylceramide. An EGFP (enhanced green fluorescent protein)–FA2H fusion protein co-localized with calnexin, indicating that the enzyme resides in the endoplasmic reticulum. FA2H is expressed in brain, stomach, skin, kidney and testis, i.e. in tissues known to synthesize fatty acid α-hydroxylated sphingolipids. The time course of its expression in brain closely follows the expression of myelin-specific genes, reaching a maximum at 2–3 weeks of age. This is in agreement with the reported time course of fatty acid α-hydroxylase activity in the developing brain. In situ hybridization of brain sections showed expression of FA2H in the white matter. Our results thus strongly suggest that FA2H is the enzyme responsible for the formation of α-hydroxylated ceramide in oligodendrocytes of the mammalian brain. Its further characterization will provide insight into the functional role of α-hydroxylation modification in myelin, skin and other organs. PMID:15658937

  19. Atropisomeric determination of chiral hydroxylated metabolites of polychlorinated biphenyls using HPLC-MS

    PubMed Central

    2013-01-01

    Background Polychlorinated biphenyls (PCBs) are a group of environmental persistent organic pollutants, which can be metabolized into a series of metabolites, including hydroxylated metabolites (OH-PCBs) in biota. Nineteen of 209 PCB congeners can form chiral stable isomers. However, atropisomeric determination of the hydroxylated metabolites of these chiral PCBs has never been reported by LC methods. In this work, a novel HPLC-MS method was developed to detect five chiral OH-PCBs (4OH-PCB91, 5OH-PCB91, 4OH-PCB95, 5OH-PCB95 and 5OH-PCB149) using HPLC-MS without a derivatization step. Results The influences of column-type, column temperature, flow rate and ratio of the mobile phase on the atropisomeric separation were investigated in detail. In the final method, calibration curves, based on peak areas against concentration, were linear in a range of 1–100 ng mL-1 of five chiral OH-PCBs with correlation coefficients ranging from 0.9996 to 0.9999 for all atropisomers of OH-PCBs. The relative standard deviations measured at the 10.0 ng mL-1 level for atropisomers of five chiral OH-PCBs were in the range of 0.60-7.55% (n = 5). Calculated detection limits (S/N = 3) of five chiral OH-PCBs were between 0.31 and 0.60 ng mL-1 for all OH-PCB atropisomers. Conclusion This HPLC-MS method was developed to detect chiral OH-PCBs and further successfully applied to measure OH-PCB atropisomer levels and enantiomeric fractions (EFs) in rat liver microsomal samples. The results from LC-MS method were highly consistent with those from GC-ECD method. It is the first time to report these OH-PCB atropisomers detected in microsomes by HPLC-MS. The proposed method might be applied also to detect chiral OH-PCBs in environmental samples and for metabolites of PCBs in vivo. PMID:24360245

  20. Hydroxylated and methylsulfonyl polychlorinated biphenyl metabolites in albatrosses from Midway Atoll, North Pacific Ocean

    SciTech Connect

    Klasson-Wehler, E.; Bergman, A.; Athanasiadou, M.

    1998-08-01

    Concentrations of hydroxylated metabolites of polychlorinated biphenyls (PCBs) (OH-PCBs) and methylsulfonyl metabolites of PCBs (MeSO{sub 2}-PCBs) were determined in plasma and liver of albatrosses collected from the Midway Atoll in the central North Pacific Ocean. The mean total concentrations of OH-PCBs in plasma of Laysan albatrosses (Diomedea immutabilis) and black-footed albatrosses (Diomedea nigripes) were 11.5 and 27.1 ng/g wet weight, respectively. Total concentrations of OH-PCBs were only one- to fivefold less than those of total PCBs. 4-hydroxy-2,2{prime},3,4{prime},5,5{prime},6-heptachlorinated biphenyl and 4-hydroxy-2,2{prime},3,4{prime},5,5{prime}-hexachlorinated biphenyl were the predominant polychlorinated biphenylols, constituting 70 to 90% of the total OH-PCBs. Concentrations of MeSO{sub 2}-PCBs in liver were between 10.6 and 77 ng/g, lipid weight, approximately 250 times less than those of total PCBs. The MeSO{sub 2}-PCBs congeners retained in the liver were dominated by those having the methylsulfonyl group in the 3-position.

  1. Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles.

    PubMed

    Lin, Jia-Hui; Yu, Cheng-Ju; Yang, Ya-Chun; Tseng, Wei-Lung

    2015-06-21

    This study describes the synthesis of fluorescent polydopamine dots (PDs) through hydroxyl radical-induced degradation of polydopamine nanoparticles. The decomposition of polydopamine nanoparticles to fluorescent PDs was confirmed using transmission electron microscopy and dark-field microscopy. The analysis of PDs by using laser desorption/ionization time-of-flight mass spectrometry revealed that the PDs consisted of dopamine, 5,6-dihydroxyindole, and trihydroxyindole units. Oligomerization and self-assembly of these units produced a broad adsorption band, resulting in an excitation-wavelength-dependent emission behavior. The maximal fluorescence of PDs appeared at 440 nm with a quantum yield of 1.2%. The coordination between the catechol groups of PDs and ferric ions (Fe(3+)) quenched the fluorescence of PDs; the limit of detection at a signal-to-noise ratio of 3 for Fe(3+) was determined to be 0.3 μM. The presence of pyrophosphate switched on the fluorescence of the PD-Fe(3+) complexes. Compared to the other reported methods for sensing Fe(3+), PDs provided simple, low-cost, and reusable detection of Fe(3+).

  2. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    SciTech Connect

    Shen, N; Matthews, M J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Yang, S T

    2009-10-30

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {micro}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In-situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  3. Synthesis of Some Members of the Hydroxylated Phenanthridone Sub-class of the Amaryllidaceae Alkaloid Family

    PubMed Central

    Padwa, Albert; Zhang, Hongjun

    2008-01-01

    The total synthesis of several members of the hydroxylated phenanthridone sub-class of the Amaryllidaceae alkaloid family has been carried out. (±)-Lycoricidine and (±)-7-deoxypancratistatin were assembled through a one-pot Stille/intramolecular Diels-Alder cycloaddition cascade to constr