Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities
ERIC Educational Resources Information Center
Zachos, Paul
2004-01-01
Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balyan, M. K., E-mail: mbalyan@ysu.am
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
Analyzing spring pendulum phenomena with a smart-phone acceleration sensor
NASA Astrophysics Data System (ADS)
Kuhn, Jochen; Vogt, Patrik
2012-11-01
This paper describes two further pendulum experiments using the acceleration sensor of a smartphone in this column (for earlier contributions concerning this topic, including the description of the operation and use of the acceleration sensor, see Refs. 1 and 2). In this paper we focus on analyzing spring pendulum phenomena. Therefore two spring pendulum experiments will be described in which a smartphone is used as a pendulum body and SPARKvue3 software is used in conjunction with an iPhone or an iPod touch, or the Accelogger4 app for an Android device.1,2 As described in Ref. 1, the values measured by the smartphone are subsequently exported to a spreadsheet application (e.g., MS Excel) for analysis.
Square-Wave Model for a Pendulum with Oscillating Suspension
ERIC Educational Resources Information Center
Yorke, Ellen D.
1978-01-01
Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)
Charge management for gravitational-wave observatories using UV LEDs
NASA Astrophysics Data System (ADS)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.
2010-01-01
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of ˜105e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz.
ERIC Educational Resources Information Center
Barnes, Marianne B.; Garner, James; Reid, David
2004-01-01
In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…
Charge management for gravitational-wave observatories using UV LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging ofmore » the pendulum with equivalent charging rates of {approx}10{sup 5}e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3x10{sup 5}e/{radical}(Hz).« less
Parametric pendulum based wave energy converter
NASA Astrophysics Data System (ADS)
Yurchenko, Daniil; Alevras, Panagiotis
2018-01-01
The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.
Strange mechanics of the neutrino flavor pendulum
NASA Astrophysics Data System (ADS)
Johns, Lucas; Fuller, George M.
2018-01-01
We identify in the flavor transformation of astrophysical neutrinos a new class of phenomena, a common outcome of which is the suppression of flavor conversion. Appealing to the equivalence between a bipolar neutrino system and a gyroscopic pendulum, we find that these phenomena have rather striking interpretations in the mechanical picture: in one instance, the gyroscopic pendulum initially precesses in one direction, then comes to a halt and begins to precess in the opposite direction—a counterintuitive behavior that we analogize to the motion of a toy known as a rattleback. We analyze these behaviors in the early Universe, wherein a chance connection to sterile neutrino dark matter emerges, and we briefly suggest how they might manifest in compact-object environments.
A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy
NASA Astrophysics Data System (ADS)
Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan
2018-01-01
The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.
NASA Astrophysics Data System (ADS)
Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi
Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.
Seismic cross-coupling noise in torsion pendulums
NASA Astrophysics Data System (ADS)
Shimoda, Tomofumi; Aritomi, Naoki; Shoda, Ayaka; Michimura, Yuta; Ando, Masaki
2018-05-01
Detection of low-frequency gravitational waves around 0.1 Hz is one of the important targets for future gravitational wave observation. One of the main sources of the expected signals is gravitational waves from binary intermediate-mass black hole coalescences which is proposed as one of the formation scenarios of supermassive black holes. By using a torsion pendulum, which can have a resonance frequency of a few millihertz, such signals can be measured on the ground since its rotational motion can act as a free mass down to 0.01 Hz. However, sensitivity of a realistic torsion pendulum will suffer from torsional displacement noise introduced from translational ground motion in the main frequency band of interest. Such noise is called seismic cross-coupling noise, and there has been little research on it. In this paper, systematic investigation is performed to identify routes of cross-coupling transfer for standard torsion pendulums. Based on the results, this paper also proposes reduction schemes of cross-coupling noise, and they were demonstrated experimentally in agreement with theory. This result establishes a basic way to reduce seismic noise in torsion pendulums for the most significant coupling routes.
Light rays and the tidal gravitational pendulum
NASA Astrophysics Data System (ADS)
Farley, A. N. St J.
2018-05-01
Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null congruence.
Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum
ERIC Educational Resources Information Center
Findley, T.; Yoshida, S.; Norwood, D. P.
2007-01-01
A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…
The Doppler Pendulum Experiment
ERIC Educational Resources Information Center
Lee, C. K.; Wong, H. K.
2011-01-01
An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…
Real-Time Demonstration of the Main Characteristics of Chaos in the Motion of a Real Double Pendulum
ERIC Educational Resources Information Center
Vadai, Gergely; Gingl, Zoltan; Mellar, Janos
2012-01-01
Several studies came to the conclusion that chaotic phenomena are worth including in high school and undergraduate education. The double pendulum is one of the simplest systems that is chaotic; therefore, numerical simulations and theoretical studies of it have been given large publicity, and thanks to its spectacular motion, it has become one of…
Electronic system for the complex measurement of a Wilberforce pendulum
NASA Astrophysics Data System (ADS)
Kos, B.; Grodzicki, M.; Wasielewski, R.
2018-05-01
The authors present a novel application of a micro-electro-mechanical measurement system to the description of basic physical phenomena in a model Wilberforce pendulum. The composition of the kit includes a tripod with a mounted spring with freely hanging bob, a module GY-521 on the MPU 6050 coupled with an Arduino Uno, which in conjunction with a PC acts as measuring set. The system allows one to observe the swing of the pendulum in real time. Obtained data stays in good agreement with both theoretical predictions and previous works. The aim of this article is to introduce the study of a Wilberforce pendulum to the canon of physical laboratory exercises due to its interesting properties and multifaceted method of measurement.
Experimental Uncertainty Associated with Traveling Wave Excitation
2014-09-15
20 2.9 Schematic of the Lumped Model [6] . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Multiple Coupled Pendulum [7...model to describe the physical system, the authors chose to employ a coupled pendulum model to represent a rotor. This system is shown in Figure 2.10...System mistuning is introduced by altering pendulum lengths. All other system parameters are equal. A linear viscous proportional damping force is
NASA Technical Reports Server (NTRS)
Dunning, R. S.
1973-01-01
Equations are developed which give the pressure profile, the forces and torques on a disk pendulum by means of point source wave theory from acoustics. The pressure, force and torque equations for an unbaffled disk are developed. These equations are then used to calculate the apparent mass and apparent inertia for the pendulum.
NASA Astrophysics Data System (ADS)
Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong
2017-10-01
A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.
NASA Astrophysics Data System (ADS)
Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin
2017-09-01
We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
University of Florida Torsion Pendulum for Testing Key LISA Technology
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo Janet; Hillsberry, Daniel; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido; Conklin, John
2018-01-01
This presentation will describe the design and performance of a new torsion pendulum at the University of Florida used for testing inertial sensors and associated technologies for use in space – based gravitational wave observatories and geodesy missions. In particular this new torsion pendulum facility is testing inertial sensors and associated technology for the upcoming LISA (laser interferometer space antenna) space-based gravitational wave observatory mission. The torsion pendulum apparatus is comprised of a suspended cross bar assembly that has LISA test mass mockups at each of its ends. Two of the test mass mockups are enclosed by capacitive sensors which provide actuation and position sensing. The entire assembly is housed in a vacuum chamber. The pendulum cross-bar converts rotational motion of the test masses about the suspension fiber axis into translational motion. The 22 cm cross bar arm length along with the extremely small torsional spring constant of the suspension fiber results in a near free fall condition in the translational degree-of-freedom orthogonal to both the member and the suspension fiber. The test masses are electrically isolated from the pendulum assembly and their charge is controlled via photoemission using fiber coupled UV LEDS. Position of the test masses is measured using both capacitive and interferometric readout. The broadband sensitivity of the capacitive readout and laser interferometer readout is 30 nm/√Hz and 0.5 nm/√Hz respectively. The performance of the pendulum measured in equivalent acceleration noise acting on a LISA test mass is approximately 3 × 10-13 ms-2/√Hz at 2 mHz. This presentation will also discuss the design and fabrication of a flight-like gravitational reference sensor that will soon be integrated into the torsion pendulum facility. This flight-like GRS will allow for noise performance measurements in a more LISA-like configuration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Pendulums in the Physics Education Literature: A Bibliography
ERIC Educational Resources Information Center
Gauld, Colin
2004-01-01
Articles about the pendulum in four journals devoted to the teaching of physics and one general science teaching journal (along with other miscellaneous articles from other journals) are listed in three broad categories--types of pendulums, the contexts in which these pendulums are used in physics teaching at secondary or tertiary levels and a…
Solar Phenomena Associated with "EIT Waves"
NASA Technical Reports Server (NTRS)
Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.
2002-01-01
In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.
Measurement of Motion Transfer Functions for Mirror Suspensions
NASA Astrophysics Data System (ADS)
Stuver, Amber; Beilby, Mark; Glancy, Aran; Gonzalez, Gabriela
2001-04-01
Interferometric gravitational wave detectors, such as LIGO, use mirrors suspended in pendulums. The current LIGO dectors use simple pendulums, but advanced LIGO detectors will use multiple pendulums with some stages on soft vertical springs. A drawback of the a multiple pendulum design is that it is difficult to model and predict cross couplings from one vibrational mode to another due to slight unavoidable asymmetries in the real system. Of most concern are the couplings to motion along the optical axis and into angular motions, which have the most potential to contaminate data. Our research focuses on the experimental testing of the pendulum designs for cross couplings with a special dedicated shaking stage. The cross couplings in each degree of freedom, their isolation and damping are investigated in this research though the measurement of transfer functions as filtered though the suspension system. This research is supported by The Pennsylvania State University, the NSF Grant no. PHY-9870032, and the REU program at The Pennsylvania State University.
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
NASA Astrophysics Data System (ADS)
Manabu, Sumida
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's understanding, mostly non-scientific, made a marked developmental change to another type of non-scientific understanding by the time they reach G 4. Parents with scientific understanding do not presumably nurture scientifically minded children,even though about half of them can apply scientific conceptions that shorter pendulums swing faster, and the amplitude and speed of pendulum motion do not depend on its weight. There seems to be another type of developmental change from scientific understanding to non-scientific understanding around their fifties. Itis suggested that the scientific understanding in the public about pendulum motion become predominant due to the educational intervention through school science.
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue
2013-03-01
The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.
Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor
NASA Astrophysics Data System (ADS)
McManus, D. J.; Forsyth, P. W. F.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.
2017-07-01
Newtonian noise is likely to be a future challenge at low frequencies for Advanced LIGO and other second generation gravitational wave detectors. We present the TorPeDO system: a dual torsion pendulum sensor designed to measure local gravitational forces to high precision. Gravitational forces induce a differential rotation between the two torsion beams, which is measured with an optical read-out. Both torsion pendulums have a common suspension point, tunable centre of mass, and resonant frequency. This produces a high level of mechanical common mode noise cancellation. We report on a controls prototype of the TorPeDO system, presenting the frequency response and tuning range of both pendulums. A noise budget and mechanical cross-coupling model for this system are also presented. We demonstrate frequency tuning of the two torsion pendulums to a difference of 4.3 μHz.
Generation of Caustics and Rogue Waves from Nonlinear Instability.
Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W
2017-11-17
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
Generation of Caustics and Rogue Waves from Nonlinear Instability
NASA Astrophysics Data System (ADS)
Safari, Akbar; Fickler, Robert; Padgett, Miles J.; Boyd, Robert W.
2017-11-01
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
Response of pendulums to complex input ground motion
Graizer, V.; Kalkan, E.
2008-01-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component. ?? 2007 Elsevier Ltd. All rights reserved.
Response of Pendulums to Translational and Rotational Components of Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.; Kalkan, E.
2008-12-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). Pendulum response is usually simplified by considering the input from uni-axial translational motion only. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). We consider complete equations of motion for three following types of pendulum: (i) conventional mass-on-rod, (ii) mass- on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. Inverted pendulums are used in seismology for more than 100 years, for example, classical Wiechert's horizontal seismograph built around 1905 and still used at some seismological observatories, and recent Guralp's horizontal seismometers CMG-40T and CMG-3T. Inverted pendulums also have significant importance for engineering applications where they are often used to simulate the dynamic response of various structural systems. The results of this study show that a horizontal pendulum similar to a modern accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The responses of pendulums are calculated in time-domain using close-form solution Duhamel's integral with complex input forcing functions. As compared to a common horizontal pendulum, response of an inverted pendulum is sensitive to acceleration of gravity and vertical acceleration when it reaches the level close to 1.0 g. Gravity effect introduces nonlinearity into the differential equation of motion, and results in shift of the frequency response to lower frequencies. The equations of inverted pendulum represent elastic response of pendulums (as material behavior), with nonlinearity created by time and amplitude dependence of equation coefficients. Sensitivity of inverted pendulum to angular acceleration of tilt is proportional to the length of a pendulum, and should be taken into consideration since it can produce significant effect especially for long pendulums, idealizing for instance, bridge piers, bents, elevated water tanks, telecommunication towers, etc.
NASA Astrophysics Data System (ADS)
Purba, Siska Wati Dewi; Hwang, Wu-Yuin
2017-06-01
In this study, we designed and developed an app called Ubiquitous-Physics (U-Physics) for mobile devices like tablet PC or smart phones to help students learn the principles behind a simple pendulum in Physics. The unique characteristic of U-Physics is the use of sensors on mobile devices to collect acceleration and velocity data during pendulum swings. The data collected are transformed to facilitate students' understanding of the pendulum time period. U-Physics helped students understand the effects of pendulum mass, length, and angle in relation to its time period. In addition, U-Physics was equipped with an annotation function such as textual annotation to help students interpret and understand the concepts and phenomena of the simple pendulum. U-Physics also generated graphs automatically to demonstrate the time period during which the pendulum was swinging. Results showed a significant positive correlation between interpreting graphs and applying formula. This finding indicated that the ability to interpret graphs has an important role in scientific learning. Therefore, we strongly recommend that physics teachers use graphs to enrich students' information content and understanding and negative correlation between pair coherence and interpreting graphs. It may be that most of the participants (vocational high school students) have limited skill or confidence in physics problem solving; so, they often seek help from teachers or their high-achieving peers. In addition, the findings also indicated that U-Physics can enhance students' achievement during a 3-week time period. We hope that this app can be globally used to learn physics in the future.
Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.
We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less
Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode
Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.; ...
2018-01-19
We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less
Detection prospects for the Cosmic Neutrino Background using laser interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domcke, Valerie; Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw
The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup couldmore » also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.« less
Detection prospects for the Cosmic Neutrino Background using laser interferometers
NASA Astrophysics Data System (ADS)
Domcke, Valerie; Spinrath, Martin
2017-06-01
The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.
Edme Mariotte and Newton's Cradle
ERIC Educational Resources Information Center
Cross, Rod
2012-01-01
The first recorded experiments describing the phenomena made popular by Newton's cradle appear to be those conducted by Edme Mariotte around 1670. He was quoted in Newton's "Principia," along with Wren, Wallis, and Huygens, as having conducted pioneering experiments on the collisions of pendulum balls. Each of these authors concluded that momentum…
Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com
2015-04-16
Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less
Tiltmeter studies in earthquake prediction
Johnston, M.
1978-01-01
tilt measurements give us a means of monitoring vertical displacements or local uplift of the crust. The simplest type of tiltmeter is a stationary pendulum (fig. 1). As the Earth's surface distorts locally, the pendulum housing is tilted while, of course, the pendulum continues to hang vertically (that is, in the direction of the gravity vector). The tilt angle is the angle through which the pendulum housing is tilted. The pendulum is the inertial reference (the force of gravity remains unchanged at the site), and tilting of the instrument housing represents the moving reference frame. We note in passing that the tiltmeter could also be used to measure the force of gravity by using the pendulum in the same way as Henry Kater did in his celebrated measurement of g in 1817.
Simultaneous Dual Species Matter Wave Interferometry
NASA Astrophysics Data System (ADS)
Schlippert, Dennis; Albers, Henning; Richardson, Logan; Meiners, Christian; Hartwig, Jonas; Ertmer, Wolfgang; Rasel, Ernst
2014-05-01
We report on the first realization of a simultaneous 39K-87Rb-dual species matter wave interferometer measuring gravitational acceleration with the aim to test Einstein's Equivalence Principle (EEP). Compared to classical tests such as torsion pendulum experiments and Lunar Laser Ranging, chemical elements suitable for performing matter wave interferometry can provide complementary information. We show the performance of our apparatus and discuss current limitations and future improvements towards highly sensitive matter wave tests of EEP.
NASA Astrophysics Data System (ADS)
Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.
2015-09-01
The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
NASA Astrophysics Data System (ADS)
Baddour, Natalie
2018-02-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu
This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.
Introduction to Shock Waves and Shock Wave Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, William Wyatt
2017-02-02
M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and commonmore » techniques. However, the list will not be exhaustive by any means.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2010 CFR
2010-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2014 CFR
2014-07-01
...,000-kg) weight acting as a pendulum. The impact face of the weight shall be 27 ±1 in. by 27 ±1 in... restraining cables shall be located in the plane in which the center of gravity of the pendulum will swing, or... side on the same enclosure structure. The pendulum swinging from the height determined by paragraph (d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2011 CFR
2011-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Newton's Path to Universal Gravitation: The Role of the Pendulum
ERIC Educational Resources Information Center
Boulos, Pierre J.
2006-01-01
Much attention has been given to Newton's argument for Universal Gravitation in Book III of the "Principia". Newton brings an impressive array of phenomena, along with the three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the centre of this argument is the famous "moon test". Here it is the empirical evidence…
Code of Federal Regulations, 2014 CFR
2014-07-01
... a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be 27 ±1 in... restraining cables shall be located in the plane in which the center of gravity of the pendulum will swing, or... pendulum swinging from the height determined by paragraph (d)(3)(ii) of this section shall be used to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... produced by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... the center of gravity of the pendulum will swing, or more than one restraining cable shall give a... to the side on the same frame. The pendulum dropped from the height (see the definition of “H” in...
A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.
2014-01-01
The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.
Decoupling the structure from the ground motion during earthquakes by employing friction pendulums
NASA Astrophysics Data System (ADS)
Gillich, G. R.; Iancu, V.; Gillich, N.; Korka, Z. I.; Chioncel, C. P.; Hatiegan, C.
2018-01-01
Avoiding dynamic loads on structures during earthquakes is an actual issue since seismic actions can harm or destroy the built environment. Several attempts to prevent this are possible, the essence being to decouple the structure from the ground motion during earthquakes and preventing in this way large deflections and high accelerations. A common approach is the use of friction pendulums, with cylindrical or spherical surfaces but not limited to that, inserted between the ground and the structure, respectively between the pillar and the superstructure. This type of bearings permits small pendulum motion and in this way, earthquake-induced displacements that occur in the bearings are not integrally transmitted to the structure. The consequence is that the structure is subject to greatly reduced lateral loads and shaking movements. In the experiments, conducted to prove the efficiency of the friction pendulums, we made use of an own designed and manufactured shaking table. Two types of sliding surfaces are analyzed, one polynomial of second order (i.e. circular) and one of a superior order. For both pendulum types, analytical models were developed. The results have shown that the structure is really decoupled from the ground motion and has a similar behaviour as that described by the analytic model.
Using a digital video camera to examine coupled oscillations
NASA Astrophysics Data System (ADS)
Greczylo, T.; Debowska, E.
2002-07-01
In our previous paper (Debowska E, Jakubowicz S and Mazur Z 1999 Eur. J. Phys. 20 89-95), thanks to the use of an ultrasound distance sensor, experimental verification of the solution of Lagrange equations for longitudinal oscillations of the Wilberforce pendulum was shown. In this paper the sensor and a digital video camera were used to monitor and measure the changes of both the pendulum's coordinates (vertical displacement and angle of rotation) simultaneously. The experiments were performed with the aid of the integrated software package COACH 5. Fourier analysis in Microsoft^{\\circledR} Excel 97 was used to find normal modes in each case of the measured oscillations. Comparison of the results with those presented in our previous paper (as given above) leads to the conclusion that a digital video camera is a powerful tool for measuring coupled oscillations of a Wilberforce pendulum. The most important conclusion is that a video camera is able to do something more than merely register interesting physical phenomena - it can be used to perform measurements of physical quantities at an advanced level.
A simple, low-cost, data logging pendulum built from a computer mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gintautas, Vadas; Hubler, Alfred
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less
NASA Astrophysics Data System (ADS)
Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen
2012-08-01
Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.
An Empirical Model for Mine-Blast Loading
2014-10-17
fledged experimental program. The numerical approach however suffers from several drawbacks in the mine blast simulations. First, it is a very...Suffield consisted in a pendulum type device to measure global impulse of buried mine [15]. One of the main purposes of the ONAGER pendulum was to study...TP-1 Terminal effects, KTA 1-34 report, 2004. [15] Bues, R., Hlady, S.L. and Bergeron, D.M., Pendulum Measurement of Land Mine Blast Output, Volume
Sensing and actuation system for the University of Florida Torsion Pendulum for LISA
NASA Astrophysics Data System (ADS)
Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido
2014-03-01
Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.
An inexpensive, multipurpose physical pendulum
NASA Astrophysics Data System (ADS)
Schultz, David
2012-10-01
The pendulum is a highly versatile tool for teaching physics. Many special purpose pendula for student experiments have been described.1-4 In this paper, I describe an inexpensive, multipurpose physical pendulum that can function as both a variable gravity and ballistic pendulum. I designed the apparatus for use in a rotational dynamics unit of the AP Physics C mechanics course. The use of a bike wheel hub pivot allows for low-friction, rugged operation that yields results commensurate with those obtained with much more expensive pendula available on the market (typically 500 per unit5), placing these types of experiments within reach of the teacher on a restricted budget.
Predator-prey model for the self-organization of stochastic oscillators in dual populations
NASA Astrophysics Data System (ADS)
Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.
2015-12-01
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.
Mathematic study of the rotor motion with a pendulum selfbalancing device
NASA Astrophysics Data System (ADS)
Ivkina, O. P.; Ziyakaev, G. R.; Pashkov, E. N.
2016-09-01
The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ’ parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.
The motions of hinged-barge systems in regular seas
NASA Astrophysics Data System (ADS)
Kraemer, David Robert Burke
Harnessing the oceans' vast, clean, and renewable energy to do useful work is a tempting prospect. For over a century, wave-energy conversion devices have been proposed, but none has emerged as a clearly practical and economical solution. One promising system is the McCabe Wave Pump (MWP), an articulated-barge system consisting of three barges hinged together with a large horizontal plate attached below the central barge. Water pumps are driven by the relative pitching motions of the barges excited by ocean waves. This high-pressure water can be used to produce potable water or electricity. A simulation of the motions of a generic hinged-barge system is developed. The equations of motion are developed so that the nonlinear interactions between the barges are included. The simulation is general so that it can be used to study other hinged-barge systems, such as causeway ferry systems or floating airports. The simulation is used to predict the motions of a scale model that was studied in wave-tank experiments. In the experimental study, it was observed that the plate attached to the central barge acted as a pendulum. It was also observed that the phases of the pitching motions of the barges was such that the motions were enhanced by the pendulum effect at all of the wave periods studied. Hence, the increased angular displacements produced greater relative pitching motions which would lead to higher volume rates of pumped water in the operational system. The numerical simulations are found to predict the pendulum effect. In addition, the theory predicted that the after barge motions were significantly less than those of the forward barge, as was observed in the experimental study. The good agreement between the two data sets gives confidence in the ability of the theory to predict the performance of the MWP prototype. The motions of the MWP prototype in regular ocean waves are predicted by the simulation, and its performance is calculated. By modifying the length of the system to be compatible with the wavelength for maximum pitching excitation, the power output of the system is shown to increase by more than 150%.
Hammerschlag, Richard; Linda Baldwin, Ann; Schwartz, Gary E
When a human subject sits beneath a wire mesh, hemispheric torsion pendulum (TP) a rapid-onset series of oscillations at frequencies both higher and lower than the fundamental frequency of the TP have been consistently observed. This study was designed to replicate and extend prior findings that suggest the human subject effect on TP behavior is due to subject-generated, heat-induced convection currents. Effects on pendulum behavior were tested after draping an aluminized "space blanket" over the subject and by replacing the subject with a thermal mattress pad shaped to approximate the human form. Experiments were performed in a basic science university research laboratory. Real-time recordings and Fast Fourier Transform frequency spectra of pendulum oscillatory movement. The space blanket blocked, while the mattress pad mimicked, the human subject induced complex array of pendulum oscillations. Our findings support and strengthen previous results that suggest the effects of human subjects on behavior of a torsion pendulum are mediated by body-heat-induced air convection rather than an unknown type of biofield. Copyright © 2016 Elsevier Inc. All rights reserved.
Phenomena Associated with EIT Waves
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.; Fisher, Richard R. (Technical Monitor)
2002-01-01
We discuss phenomena associated with 'EIT Wave' transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to infer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.
Phenomena Associated With EIT Waves
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.
2003-01-01
We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.
Nitromethane ignition observed with embedded PDV optical fibers
NASA Astrophysics Data System (ADS)
Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.
For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.
Gravitational effective action at second order in curvature and gravitational waves
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel
2017-09-01
We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.
The Pendulum Weaves All Knots and Links
NASA Astrophysics Data System (ADS)
Starrett, John
2003-08-01
From a topological point of view, periodic orbits of three dimensional dynamical systems are knots, that is, circles (S∧1) embedded in the three sphere (S∧3) or in R∧3. The ensemble of periodic orbits comprising the skeleton of a 3-D strange attractor form a link: a collection of (not necessarily linked) knots. Joan Birman and Robert Williams used a topological device known as the template, a branched two-manifold that results when the stable direction is collapsed out of an attractor, to analyze the knot and link types appearing in the geometric Lorenz attractor. More recently, Robert Ghrist has shown the existence of universal templates: templates that support all knot and link types. I show that the template constructed from the geometric attractor of a forced physical pendulum contains a universal template as a subtemplate, and therefore the orbit set of the pendulum contains every knot and link type.
Using Python as a first programming environment for computational physics in developing countries
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Ehwerhemuepha, Louis; Echenim, Myron; Akpojotor, Famous
2011-03-01
Python unique features such its interpretative, multiplatform and object oriented nature as well as being a free and open source software creates the possibility that any user connected to the internet can download the entire package into any platform, install it and immediately begin to use it. Thus Python is gaining reputation as a preferred environment for introducing students and new beginners to programming. Therefore in Africa, the Python African Tour project has been launched and we are coordinating its use in computational science. We examine here the challenges and prospects of using Python for computational physics (CP) education in developing countries (DC). Then we present our project on using Python to simulate and aid the learning of laboratory experiments illustrated here by modeling of the simple pendulum and also to visualize phenomena in physics illustrated here by demonstrating the wave motion of a particle in a varying potential. This project which is to train both the teachers and our students on CP using Python can easily be adopted in other DC.
Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys
NASA Astrophysics Data System (ADS)
Fukuhara, Mikio; Umemori, Yoshimasa
2013-11-01
The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.
A new torsion pendulum for gravitational reference sensor technology development.
Ciani, Giacomo; Chilton, Andrew; Apple, Stephen; Olatunde, Taiwo; Aitken, Michael; Mueller, Guido; Conklin, John W
2017-06-01
We report on the design and sensitivity of a new torsion pendulum for measuring the performance of ultra-precise inertial sensors and for the development of associated technologies for space-based gravitational wave observatories and geodesy missions. The apparatus comprises a 1 m-long, 50 μm-diameter tungsten fiber that supports an inertial member inside a vacuum system. The inertial member is an aluminum crossbar with four hollow cubic test masses at each end. This structure converts the rotation of the torsion pendulum into translation of the test masses. Two test masses are enclosed in capacitive sensors which provide readout and actuation. These test masses are electrically insulated from the rest of the crossbar and their electrical charge is controlled by photoemission using fiber-coupled ultraviolet light emitting diodes. The capacitive readout measures the test mass displacement with a broadband sensitivity of 30 nm∕Hz and is complemented by a laser interferometer with a sensitivity of about 0.5 nm∕Hz. The performance of the pendulum, as determined by the measured residual torque noise and expressed in terms of equivalent force acting on a single test mass, is roughly 200 fN∕Hz around 2 mHz, which is about a factor of 20 above the thermal noise limit of the fiber.
The nonlinear wave equation for higher harmonics in free-electron lasers
NASA Technical Reports Server (NTRS)
Colson, W. B.
1981-01-01
The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
Proposal of a new electromechanical total artificial heart: the TAH Serpentina.
Sauer, I M; Frank, J; Bücherl, E S
1999-03-01
A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.
Observation of the Topological Change Associated with the Dynamical Monodromy
NASA Astrophysics Data System (ADS)
Salmon, Daniel; Nerem, Matthew; Aubin, Seth; Delos, John
2017-04-01
Classical mechanics is an old theory and new phenomena do not often appear. A recently predicted phenomenon is called ``Dynamical Monodromy.'' Monodromy is the study of the behavior of a system as it evolves ``once around a closed circuit''. Systems that do not return to their original state after forming a closed circuit in some space are said to exhibit ``nontrivial monodromy.'' One such system is a collection of non-interacting particles moving in a ``champagne bottle'' potential. A loop of trajectories of this system exhibits a topological change when each of the particles traverse a monodromy circuit in Energy-Angular Momentum space (any closed path that encloses the singular point at the origin). This system has been realized using a rigid spherical pendulum, with a permanent magnet at its end. Magnetic fields generated by coils are used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.
NASA Technical Reports Server (NTRS)
Phillips, P. R.
1979-01-01
A new type of ether drift experiment searches for anomalous torques on a permanent magnet. A torsion pendulum is used at liquid helium temperature, so that superconducting cylinders can be used to shield magnetic fields. Lead shields attenuate the earth's field, while Nb-Sn shields fastened to the pendulum contain the fields of the magnet. The paper describes the technique by which the earth's field can be reduced below 0.0001 G while simultaneously the moment of the magnet can be reduced by a factor 7 x 10 to the 4th.
ERIC Educational Resources Information Center
Gauld, Colin F.
2009-01-01
Books I and III of Newton's "Principia" develop Newton's dynamical theory and show how it explains a number of celestial phenomena. Book II has received little attention from historians or educators because it does not play a major role in Newton's argument. However, it is in Book II that we see most clearly Newton both as a theoretician and an…
Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin
2013-01-01
It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398
High-power, null-type, inverted pendulum thrust stand.
Xu, Kunning G; Walker, Mitchell L R
2009-05-01
This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.
Attitude Stability of a Spacecraft with Slosh Mass Subject to Parametric Excitation
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-09-01
The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.
LISA technology development using the UF precision torsion pendulum
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-04-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests
2016-05-19
and main rotor blades. A bifilar pendulum -type vibration absorber system was mounted on top of the hub to reduce 3/rev rotating in-plane loads. Main... pendulum weights were not attached (no 3/rev in-plane load absorption). The rotor assembly was mounted on a large test stand with its own fixed system
Quantum dynamics of a plane pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibscher, Monika; Schmidt, Burkhard
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less
Electromagnetic energy harvesting from a dual-mass pendulum oscillator
NASA Astrophysics Data System (ADS)
Wang, Hongyan; Tang, Jiong
2016-04-01
This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.
Fast Neural Solution Of A Nonlinear Wave Equation
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1996-01-01
Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).
Direct numerical simulation of annular flows
NASA Astrophysics Data System (ADS)
Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.
2017-11-01
Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper
NASA Astrophysics Data System (ADS)
Sun, C.; Jahangiri, V.
2018-05-01
Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.
Technology development for the LISA using the UF Torsion Pendulu
NASA Astrophysics Data System (ADS)
Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido
2015-08-01
Space-based gravitational wave observatories like LISA measure picometer changes in the distances between free falling test masses separated by millions of kilometers caused by gravitational waves. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). LISA will observe gravitational wave sources ranging from super-massive black hole mergers to compact galactic binaries in the millihertz region, and LISA science has consistently been ranked in the top two for future large space missions in the last two NASA astrophysics decadal reviews. With the 2015 launch of LISA Pathfinder (LPF) and the expected detection of gravitational waves by aLIGO and/or Pulsar Timing Arrays within in the next several years, this can arguably be called the decade of gravitational waves. Following a successful demonstration of the baseline LISA GRS by LPF, the measurement principle will be carried forward, but improvements in several GRS components are possible over the next ten years that will lead to cost savings and potential noise reductions. The UF LISA group has constructed the UF Torsion Pendulum to increase U.S. competency in this critical area and to have a facility where new technologies can be developed and evaluated. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. This presentation will describe this facility, focusing on its mechanical design, capacitive sensing and electrostatic actuation systems, and overall acceleration noise performance
Wave reflection in a reaction-diffusion system: breathing patterns and attenuation of the echo.
Tsyganov, M A; Ivanitsky, G R; Zemskov, E P
2014-05-01
Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).
Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo
NASA Astrophysics Data System (ADS)
Tsyganov, M. A.; Ivanitsky, G. R.; Zemskov, E. P.
2014-05-01
Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).
A classification of large amplitude oscillations of a spring-pendulum system
NASA Technical Reports Server (NTRS)
Broucke, R.
1977-01-01
We present a detailed classification of large amplitude oscillations of a non-integrable autonomous system with two degrees of freedom: the spring pendulum system. The classification is made with the method of invariant curves. The results show the importance of three types of motion: periodic, quasi-periodic and semi-ergodic. The numerical results are given for nine different values of the energy constant.
Wilmes, Benedict; Katyal, Vandana; Drescher, Dieter
2014-11-01
A treatment objective of upper molar distalisation may often be required during the correction of a malocclusion. Distalisation is not only indicated for the management of Class II patients, but also for Class III surgery patients who require decompensation in the upper arch if upper incisor retrusion is needed. Unfortunately, most conventional intra-oral devices for non-compliance maxillary molar distalisation experience anchorage loss. A Pendulum type of appliance and a mini-implant-borne distalisation mechanism have been designed which can be inserted at chair-side, without a prior laboratory procedure and immediately after mini-implant placement. For re-activation purposes, a distal screw may be added to the Pendulum B appliance.
NASA Astrophysics Data System (ADS)
Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any
2014-05-01
In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.
Wave Phenomena Associated with Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Golla, T.; MacDowall, R. J.
2016-12-01
Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.
Predator-prey model for the self-organization of stochastic oscillators in dual populations
NASA Astrophysics Data System (ADS)
Moradi, Sara; Anderson, Johan; Gürcan, Ozgur D.
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced that follows the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 nº 246540).
Acceleration Noise Measurements for LISA
NASA Astrophysics Data System (ADS)
Schlamminger, Stephan; Gundlach, Jens
2005-04-01
The close spacing between the proof mass and the housing in the LISA (Laser Interferometer Space Antenna) spacecraft has been a concern as there may be spurious feeble forces. Such forces may limit the performance of the gravity wave detector at frequencies below 3 mHz and must be studied experimentally. We are performing ultra sensitive torsion balance tests to investigate such effects. Our torsion pendulum and a nearby plate are designed to simulate the LISA proof mass with its adjacent housing surface. We study torque noise on the pendulum as a function of separation between the surfaces. In order to exceed the LISA requirement we are probing the acceleration noise at much closer separations, than those planned for LISA. We have taken data at separations as small as 0.15 mm.
NASA Technical Reports Server (NTRS)
Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.
1992-01-01
We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.
As the Earth Quakes... What Happens?
ERIC Educational Resources Information Center
Hanif, Muhammad
1990-01-01
Discussed are several phenomena associated with earthquakes. Included are seismic waves, plate movement, and earthquake measurement. Diagrams of different plate boundary types are included. An activity for teaching these events to elementary school children is provided. (CW)
Elastic metamaterials with simultaneously negative effective shear modulus and mass density.
Wu, Ying; Lai, Yun; Zhang, Zhao-Qing
2011-09-02
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.
Complex vibratory patterns in an elephant larynx.
Herbst, Christian T; Svec, Jan G; Lohscheller, Jörg; Frey, Roland; Gumpenberger, Michaela; Stoeger, Angela S; Fitch, W Tecumseh
2013-11-01
Elephants' low-frequency vocalizations are produced by flow-induced self-sustaining oscillations of laryngeal tissue. To date, little is known in detail about the vibratory phenomena in the elephant larynx. Here, we provide a first descriptive report of the complex oscillatory features found in the excised larynx of a 25 year old female African elephant (Loxodonta africana), the largest animal sound generator ever studied experimentally. Sound production was documented with high-speed video, acoustic measurements, air flow and sound pressure level recordings. The anatomy of the larynx was studied with computed tomography (CT) and dissections. Elephant CT vocal anatomy data were further compared with the anatomy of an adult human male. We observed numerous unusual phenomena, not typically reported in human vocal fold vibrations. Phase delays along both the inferior-superior and anterior-posterior (A-P) dimension were commonly observed, as well as transverse travelling wave patterns along the A-P dimension, previously not documented in the literature. Acoustic energy was mainly created during the instant of glottal opening. The vestibular folds, when adducted, participated in tissue vibration, effectively increasing the generated sound pressure level by 12 dB. The complexity of the observed phenomena is partly attributed to the distinct laryngeal anatomy of the elephant larynx, which is not simply a large-scale version of its human counterpart. Travelling waves may be facilitated by low fundamental frequencies and increased vocal fold tension. A travelling wave model is proposed, to account for three types of phenomena: A-P travelling waves, 'conventional' standing wave patterns, and irregular vocal fold vibration.
Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A
2014-07-01
An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented. © 2013 ISA. Published by ISA. All rights reserved.
Evaluation of dynamic electromagnetic tracking deviation
NASA Astrophysics Data System (ADS)
Hummel, Johann; Figl, Michael; Bax, Michael; Shahidi, Ramin; Bergmann, Helmar; Birkfellner, Wolfgang
2009-02-01
Electromagnetic tracking systems (EMTS's) are widely used in clinical applications. Many reports have evaluated their static behavior and errors caused by metallic objects were examined. Although there exist some publications concerning the dynamic behavior of EMTS's the measurement protocols are either difficult to reproduce with respect of the movement path or only accomplished at high technical effort. Because dynamic behavior is of major interest with respect to clinical applications we established a simple but effective modal measurement easy to repeat at other laboratories. We built a simple pendulum where the sensor of our EMTS (Aurora, NDI, CA) could be mounted. The pendulum was mounted on a special bearing to guarantee that the pendulum path is planar. This assumption was tested before starting the measurements. All relevant parameters defining the pendulum motion such as rotation center and length are determined by static measurement at satisfactory accuracy. Then position and orientation data were gathered over a time period of 8 seconds and timestamps were recorded. Data analysis provided a positioning error and an overall error combining both position and orientation. All errors were calculated by means of the well know equations concerning pendulum movement. Additionally, latency - the elapsed time from input motion until the immediate consequences of that input are available - was calculated using well-known equations for mechanical pendulums for different velocities. We repeated the measurements with different metal objects (rods made of stainless steel type 303 and 416) between field generator and pendulum. We found a root mean square error (eRMS) of 1.02mm with respect to the distance of the sensor position to the fit plane (maximum error emax = 2.31mm, minimum error emin = -2.36mm). The eRMS for positional error amounted to 1.32mm while the overall error was 3.24 mm. The latency at a pendulum angle of 0° (vertical) was 7.8ms.
Algorithm of resonance orders for the objects
NASA Astrophysics Data System (ADS)
Zhang, YongGang; Zhang, JianXue
2018-03-01
In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.
Flow visualization of unsteady phenomena in the hypersonic regime using high-speed video camera
NASA Astrophysics Data System (ADS)
Hashimoto, Tokitada; Saito, Tsutomu; Takayama, Kazuyoshi
2004-02-01
Flows over double cones and wedges featured with a large shock induced separation zone are representative of many parts of hypersonic vehicle geometries. To be practically important at shock interactions is phenomena that the shock wave produced from another objects carries out incidence to bow shock around a blunt body in the hypersonic flows, the two shock waves interact each other and various shock interactions occur according to the intensity of the shock wave and depending on the case of the local maximum of pressure and heat flux is locally produced on the body surface. The six types of shock interactions are classified, and particularly in the Type IV, a shear layer generated from the intersection of the two shock reached on the body surface, and locally anomalous pressure increase and aerodynamic heating occurred experimentally. In the present study, unsteady shock oscillations and periodically separation flows were visualized by means of high-speed video camera. Particularly, sequential observations with combination of schlieren methods are very effective because of flow unsteadiness.
Social waves in giant honeybees (Apis dorsata) elicit nest vibrations.
Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas
2013-07-01
Giant honeybees (Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (='natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to the majority of its members.
Social waves in giant honeybees ( Apis dorsata) elicit nest vibrations
NASA Astrophysics Data System (ADS)
Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas
2013-07-01
Giant honeybees ( Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (=`natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to the majority of its members.
Golub, Mikhail V; Zhang, Chuanzeng
2015-01-01
This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido
2016-01-01
The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.
The time-delayed inverted pendulum: Implications for human balance control
NASA Astrophysics Data System (ADS)
Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann
2009-06-01
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
NASA Astrophysics Data System (ADS)
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.
Choi, Sun-Ho; Kim, Yong-Jung
2017-02-01
We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.
NASA Astrophysics Data System (ADS)
Wang, Hai-Xiao; Chen, Yige; Hang, Zhi Hong; Kee, Hae-Young; Jiang, Jian-Hua
2017-09-01
The Dirac equation for relativistic electron waves is the parent model for Weyl and Majorana fermions as well as topological insulators. Simulation of Dirac physics in three-dimensional photonic crystals, though fundamentally important for topological phenomena at optical frequencies, encounters the challenge of synthesis of both Kramers double degeneracy and parity inversion. Here we show how type-II Dirac points—exotic Dirac relativistic waves yet to be discovered—are robustly realized through the nonsymmorphic screw symmetry. The emergent type-II Dirac points carry nontrivial topology and are the mother states of type-II Weyl points. The proposed all-dielectric architecture enables robust cavity states at photonic-crystal—air interfaces and anomalous refraction, with very low energy dissipation.
Chacón, Ricardo
2008-12-01
Optimal energy amplification via autoresonance in dissipative systems subjected to separatrix crossings is discussed through the universal model of a damped driven pendulum. Analytical expressions of the autoresonance responses and forces as well as the associated adiabatic invariants for the phase space regions separated by the underlying separatrix are derived from the energy-based theory of autoresonance. Additionally, applications to a single Josephson junction, topological solitons in Frenkel-Kontorova chains, as well as to the three-wave problem in dissipative media are discussed in detail from the autoresonance analysis.
Experimental Apparatus to Observe Dynamical Manifestations of Hamiltonian Monodromy
NASA Astrophysics Data System (ADS)
Nerem, M. Perry; Salmon, Danial; Delos, John; Aubin, Seth
An experiment to observe a topological change in a classical system with nontrivial monodromy is presented. Monodromy is the study of the topological behavior of a system as it evolves along a closed path. If the system does not return to the initial topological state at the end of the circuit, that system exhibits nontrivial monodromy. Such a topological change has been predicted in certain mechanical systems, but has not yet been observed experimentally. One such system is a family of paths in a cylindrically symmetric champagne-bottle potential, with a classically forbidden region centered at the origin. We constructed this system with a long spherically symmetric pendulum and a permanent magnet attached at the end. Magnetic fields from coils are used to create the potential barrier and the external forces to drive the pendulum about a monodromy circuit. A loop of initial conditions, that is initially on one side of the forbidden region, is driven smoothly about this circuit such that it continuously evolves into a loop that surrounds the forbidden region. We will display this phenomena through numerical simulations and hopefully experimental measurement.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Hanouva, M. N. H.
1982-01-01
A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.
Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otake, Yuji; Araya, Akito; Hidano, Kazuo
We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet.more » Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the rotational pendulum for building a feedback control seismometer. Observations showed that the noise level of the seismometer was less than about 10{sup -8} m/s at 1 Hz. This fruitful value is close to the specifications of the most sensitive seismometer, such as STS-I. However, low-frequency noise of about 10{sup -7} m/s, caused by a buoyancy change at the pendulum weight arising from atmospheric pressure variation, could be recognized. To decrease the noise, a vacuum chamber to isolate the atmospheric pressure variation should be employed in the next step of the study.« less
NASA's Preparations for ESA's L3 Gravitational Wave Mission
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2016-01-01
Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.
NASA Astrophysics Data System (ADS)
Jones, Philip H.; Smart, Thomas J.; Richards, Christopher J.; Cubero, David
2016-09-01
The Kapitza pendulum is the paradigm for the phenomenon of dynamical stabilization, whereby an otherwise unstable system achieves a stability that is induced by fast modulation of a control parameter. In the classic, macroscopic Kapitza pendulum, a rigid pendulum is stabilized in the upright, inverted pendulum using a particle confined in a ring-shaped optical trap, subject to a drag force via fluid flow and driven via oscillating the potential in a direction parallel to the fluid flow. In the regime of vanishing Reynold's number with high-frequency driving the inverted pendulum is no longer stable, but new equilibrium positions appear that depend on the amplitude of driving. As the driving frequency is decreased a yet different behavior emerges where stability of the pendulum depends also on the details of the pendulum hydrodynamics. We present a theory for the observed induced stability of the overdamped pendulum based on the separation of timescales in the pendulum motion as formulated by Kapitza, but with the addition of a viscous drag. Excellent agreement is found between the predicted behavior from the analytical theory and the experimental results across the range of pendulum driving frequencies. We complement these results with Brownian motion simulations, and we characterize the stabilized pendulum by both time- and frequency-domain analyses of the pendulum Brownian motion.
Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin
2016-08-01
Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.
Solar Type II Radio Bursts and IP Type II Events
NASA Technical Reports Server (NTRS)
Cane, H. V.; Erickson, W. C.
2005-01-01
We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.
Report on the solar physics-plasma physics workshop
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.
1976-01-01
The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.
Mah, Su-Jung; Kim, Ji-Eun; Ahn, Eun Jin; Nam, Jong-Hyun; Kim, Ji-Young
2016-01-01
Skeletal anchorage-assisted upper molar distalization has become one of the standard treatment modalities for the correction of Class II malocclusion. The purpose of this study was to analyze maxillary molar movement patterns according to appliance design, with the simultaneous use of buccal fixed orthodontic appliances. The authors devised two distinct types of midpalatal miniscrew-assisted maxillary molar distalizers, a lingual arch type and a pendulum type. Fourteen patients treated with one of the two types of distalizers were enrolled in the study, and the patterns of tooth movement associated with each type were compared. Pre- and post-treatment lateral cephalograms were analyzed. The lingual arch type was associated with relatively bodily upper molar distalization, while the pendulum type was associated with distal tipping with intrusion of the upper molar. Clinicians should be aware of the expected tooth movement associated with each appliance design. Further well designed studies with larger sample sizes are required. PMID:26877983
Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
El-Bardini, Mohammad; El-Nagar, Ahmad M
2014-05-01
In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A Personal Navigation System Based on Inertial and Magnetic Field Measurements
2010-09-01
MATLAB IMPLEMENTATION.................................................................74 G. A MODEL FOR PENDULUM MOTION SENSOR DATA...76 1. Pendulum Model for MATLAB Simulation....................................76 2. Sensor Data Generated with the Pendulum Model... PENDULUM ..................................................................................................88 I. FILTER PERFORMANCE WITH REAL PENDULUM DATA
Broadband pendulum energy harvester
NASA Astrophysics Data System (ADS)
Liang, Changwei; Wu, You; Zuo, Lei
2016-09-01
A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.
Dynamic Modeling and Simulation of a Rotational Inverted Pendulum
NASA Astrophysics Data System (ADS)
Duart, J. L.; Montero, B.; Ospina, P. A.; González, E.
2017-01-01
This paper presents an alternative way to the dynamic modeling of a rotational inverted pendulum using the classic mechanics known as Euler-Lagrange allows to find motion equations that describe our model. It also has a design of the basic model of the system in SolidWorks software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the theoretical results, It was made a contrast between the solutions obtained by simulation SimMechanics-Matlab and the system of equations Euler-Lagrange, solved through ODE23tb method included in Matlab bookstores for solving equations systems of the type and order obtained. This article comprises a pendulum trajectory analysis by a phase space diagram that allows the identification of stable and unstable regions of the system.
Dynamic characteristics of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Goglia, G. L.
1977-01-01
The point transmission matrix for a vertical plane pendulum on a rotating blade undergoing combined flapwise bending, and chordwise bending and torsion is derived. The equilibrium equation of the pendulum is linearized for small oscillations about the steady state. A FORTRAN program was written for the case of a vertical plane pendulum attached to a uniform blade with flapwise bending degree of freedom for cantilever boundary conditions. The frequency has a singular value right at the uncoupled pendulum natural frequency and thus introduces two frequencies corresponding to the nearest natural frequency of the blade without pendulum. In both of these modes it was observed that the pendulum deflection is large. One frequency can be thought of as a coupled pendulum frequency and the other as a coupled bending and pendulum frequency.
NASA Astrophysics Data System (ADS)
Takayama, Kazuyoshi
Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.
On hydromagnetic oscillations in a rotating cavity.
NASA Technical Reports Server (NTRS)
Gans, R. F.
1971-01-01
Time-dependent hydromagnetic phenomena in a rotating spherical cavity are investigated in the framework of an interior boundary-layer expansion. The first type of wave is a modification of the hydrodynamic inertial wave, the second is a pseudo-geostrophic wave and is involved in spinup, and the third is related to the MAC waves of Braginskii (1967). It is shown that the MAC waves must satisfy more than the usual normal boundary conditions, and that reference must be made to the boundary-layer solution to resolve the ambiguity regarding which conditions are to be taken. The boundary-layer structure is investigated in detail to display the interactions between applied field, viscosity, electrical conductivity, frequency and latitu de.
Wave Interactions and Fluid Flows
NASA Astrophysics Data System (ADS)
Craik, Alex D. D.
1988-07-01
This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.
NASA Astrophysics Data System (ADS)
Hu, Cong-Cong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang; Du, Zhong
2018-02-01
Under investigation is a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves in a fluid. Via the Hirota method and symbolic computation, we obtain the mixed lump-kink and mixed rogue wave-kink solutions. Through the mixed lump-kink solutions, we observe three different phenomena between a lump and one kink. For the fusion phenomenon, a lump and a kink are merged with the lump's energy transferring into the kink gradually, until the lump merges into the kink completely. Fission phenomenon displays that a lump separates from a kink. The last phenomenon shows that a lump travels together with a kink with their amplitudes unchanged. In addition, we graphically study the interaction between a rogue wave and a pair of the kinks. It can be observed that the rogue wave arises from one kink and disappears into the other kink. At certain time, the amplitude of the rogue wave reaches the maximum.
NASA Astrophysics Data System (ADS)
Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.
2013-12-01
Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster's rotation-rotation transition causes electromagnetic VHF wave emission. We also discuss a possibility of electromagnetic VHF wave emission from excitation of polyatomic molecules by alpha particles from Rn-222 and its daughter nuclides, similar to air luminescence by excitation of nitrogen molecule in the viewpoint of electromagnetic radiation in quantum theory.
New Frontiers at the Interface of General Relativity and Quantum Optics
NASA Astrophysics Data System (ADS)
Feiler, C.; Buser, M.; Kajari, E.; Schleich, W. P.; Rasel, E. M.; O'Connell, R. F.
2009-12-01
In the present paper we follow three major themes: (i) concepts of rotation in general relativity, (ii) effects induced by these generalized rotations, and (iii) their measurement using interferometry. Our journey takes us from the Foucault pendulum via the Sagnac interferometer to manifestations of gravito-magnetism in double binary pulsars and in Gödel’s Universe. Throughout our article we emphasize the emerging role of matter wave interferometry based on cold atoms or Bose-Einstein condensates leading to superior inertial sensors. In particular, we advertise recent activities directed towards the operation of a coherent matter wave interferometer in an extended free fall.
About Essence of the Wave Function on Atomic Level and in Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulov, A. V.
The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less
Measuring g with a classroom pendulum using changes in the pendulum string length
NASA Astrophysics Data System (ADS)
Oliveira, V.
2016-11-01
This frontline presents a simple apparatus for measuring the acceleration of gravity using a classroom pendulum. Instead of the traditional method where the pendulum period is measured as a function of its length, here the period is measured as a function of changes in the pendulum string length. The major advantage of this method is that students can measure these changes with a greater accuracy than measuring the total pendulum length.
Roles Played by Electrostatic Waves in Producing Radio Emissions
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
2000-01-01
Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.
NASA Astrophysics Data System (ADS)
Liu, Yaqing; Wen, Xiaoyong
2018-05-01
In this paper, a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.
NASA Astrophysics Data System (ADS)
Barone, Fabrizio; Giordano, Gerardo
2018-02-01
We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.
Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators
NASA Astrophysics Data System (ADS)
Manimala, James Mathew
Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation in locally dissipative AM with various damped oscillator microstructures was studied using mechanical lattice models. The presence of damping was represented by a complex effective-mass. Analytical transmissibilities and numerical verifications were obtained for Kelvin-Voigt-type, Maxwell-type and Zener-type oscillators. Although peak attenuation at resonance is diminished, broadband attenuation was found to be achievable without increasing mass ratio, obviating the bandgap width limitations of locally resonant AM. Static and frequency-dependent measures of optimal damping that maximize the attenuation characteristics were established. A transitional value for the excitation frequency was identified within the locally resonant bandgap, above which there always exists an optimal amount of damping that renders the attenuation for the dissipative AM greater than that for the locally resonant case. AM with nonlinear stiffnesses were also investigated. For a base-excited two degree of freedom system consisting of a master structure and a Duffing-type oscillator, approximate transmissibility was derived, verified using simulations and compared to its equivalent damped model. Analytical solutions for dispersion curve shifts in nonlinear chains with linear resonators and in linear chains with nonlinear oscillators were obtained using perturbation analysis and first order approximations for cubic hardening and softening cases. Amplitude-activated alterations in bandgap width and the possibility of phenomena such as branch curling and overtaking were observed. Device implications of nonlinear AM as amplitude-dependent filters and direction-biased waveguides were examined using simulations.
Experiment with Conical Pendulum
ERIC Educational Resources Information Center
Tongaonkar, S. S.; Khadse, V. R.
2011-01-01
Conical pendulum is similar to simple pendulum with the difference that the bob, instead of moving back and forth, swings around in a horizontal circle. Thus, in a conical pendulum the bob moves at a constant speed in a circle with the string tracing out a cone. This paper describes an experiment with conical pendulum, with determination of g from…
Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B
2015-01-01
We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.
NASA Astrophysics Data System (ADS)
Shiraishi, Hiroyuki
2015-09-01
Microwave-supported Detonation (MSD), one type of Microwave-supported Plasma (MSP), is considered as one of the most important phenomena because it can generate high pressure and high temperature for beam-powered space propulsion systems. In this study, I numerically simulate MSD waves propagating through a diatomic gas. In order to evaluate the threshold of beam intensity, I use the physical-fluid dynamics scheme, which has been developed for simulating unsteady and non-equilibrium LSD waves propagating through a hydrogen gas.
Research into Surface Wave Phenomena in Sedimentary Basins.
1981-12-31
150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for
Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.
1989-01-01
Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors
Giner, Emmanuel; Angeli, Celestino
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl2 and [CuCl4](2-) systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.
Swinging into Pendulums with a Background.
ERIC Educational Resources Information Center
Barrow, Lloyd H.; Cook, Julie
1993-01-01
Explains reasons why students have misconceptions concerning pendulum swings. Presents a series of 10 pendulum task cards to provide middle-school students with a solid mental scaffolding upon which to build their knowledge of kinetic energy and pendulums. (PR)
How Short and Light Can a Simple Pendulum Be for Classroom Use?
ERIC Educational Resources Information Center
Oliveira, V.
2014-01-01
We compare the period of oscillation of an ideal simple pendulum with the period of a more "real" pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
How short and light can a simple pendulum be for classroom use?
NASA Astrophysics Data System (ADS)
Oliveira, V.
2014-07-01
We compare the period of oscillation of an ideal simple pendulum with the period of a more ‘real’ pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
A contribution to calculation of the mathematical pendulum
NASA Astrophysics Data System (ADS)
Anakhaev, K. N.
2014-11-01
In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.
U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheltukhin, A. A.; Fysikum, AlbaNova, Stockholm University, 106 91 Stockholm; NORDITA, Roslagstullsbacken 23, 106 91 Stockholm
The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.
Acceleration and rotation in a pendulum ride, measured using an iPhone 4
NASA Astrophysics Data System (ADS)
Pendrill, Ann-Marie; Rohlén, Johan
2011-11-01
Many modern cell phones have built-in sensors that may be used as a resource for physics education. Amusement rides offer examples of many different types of motion, where the acceleration leads to forces experienced throughout the body. A comoving 3D-accelerometer gives an electronic measurement of the varying forces acting on the rider, but a complete description of a motion also requires measurement of the rotation around the three axes, as provided, for example, by the iPhone 4. Here we present and interpret accelerometer and gyroscope data that were collected on a rotary pendulum ride.
Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai
2018-01-01
General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.
NASA Astrophysics Data System (ADS)
Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai
2018-01-01
General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.
Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility
NASA Astrophysics Data System (ADS)
Hargather, Michael John; Settles, Gary S.; Madalis, Matthew J.
2010-02-01
A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.
NASA Astrophysics Data System (ADS)
Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.
2018-02-01
LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.
A torsion pendulum test of the Lisa Pathfinder free-fall mode
NASA Astrophysics Data System (ADS)
Russano, Giuliana; Dolesi, Rita; Cavalleri, Antonella; Hueller, Mauro; Vitale, Stefano; Weber, William Joseph; Tu, HaiBo
The LISA Pathfinder geodesic explorer mission for gravitational wave astronomy aims to demonstrate the proof of a low acceleration noise level. The relative acceleration between two test masses free falling in orbit is perturbed by the presence of a larger constant relative acceleration that must be actively compensated in order to keep the test particles centered inside an orbiting apparatus. The actuation force applied to compensate this effect introduces a dominant source of force noise. To suppress this noise source, a “free-fall” actuation control scheme has been designed: actuation is limited to brief impulses, with test masses in free fall in between two “kicks”, with this actuation-free motion then analyzed for the remaining sources of acceleration ultra noise. In this work, we will discuss and present preliminary data for an on-ground torsion pendulum experiment to test this technique, and the associated analysis algorithms, at a level nearing the sub-femto-g/sqrt(Hz) performance required for LISA Pathfinder.
Heterodyne lock-in thermography of early demineralized in dental tissues
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang
2017-12-01
Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.
Complex pendulum biomass sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.
A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In anmore » alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.« less
Optical rogue waves and stimulated supercontinuum generation
NASA Astrophysics Data System (ADS)
Solli, Daniel R.; Ropers, Claus; Jalali, Bahram
2010-06-01
Nonlinear action is known for its ability to create unusual phenomena and unexpected events. Optical rogue waves-freak pulses of broadband light arising in nonlinear fiber-testify to the fact that optical nonlinearities are no less capable of generating anomalous events than those in other physical contexts. In this paper, we will review our work on optical rogue waves, an ultrafast phenomenon counterpart to the freak ocean waves known to roam the open oceans. We will discuss the experimental observation of these rare events in real time and the measurement of their heavytailed statistical properties-a probabilistic form known to appear in a wide variety of other complex systems from financial markets to genetics. The nonlinear Schrödinger equation predicts the existence of optical rogue waves, offering a means to study their origins with simulations. We will also discuss the type of initial conditions behind optical rogue waves. Because a subtle but specific fluctuation leads to extreme waves, the rogue wave instability can be harnessed to produce these events on demand. By exploiting this property, it is possible to produce a new type of optical switch as well as a supercontinuum source that operates in the long pulse regime but still achieves a stable, coherent output.
Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)
2013-10-23
impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n
The influences of load mass changing on inverted pendulum stability based on simulation study
NASA Astrophysics Data System (ADS)
Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula
2017-09-01
An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
Measurements of Acceleration Due to Gravity.
ERIC Educational Resources Information Center
Crummett, Bill
1990-01-01
The principle means by which g has been measured are summarized. Discussed are "Kater's Reversible Pendulum," falling rules, and interferometry methods. Types of corrections and various sources of uncertainty are considered. (CW)
Traveling waves in an optimal velocity model of freeway traffic.
Berg, P; Woods, A
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Traveling waves in an optimal velocity model of freeway traffic
NASA Astrophysics Data System (ADS)
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Wave cybernetics: A simple model of wave-controlled nonlinear and nonlocal cooperative phenomena
NASA Astrophysics Data System (ADS)
Yasue, Kunio
1988-09-01
A simple theoretical description of nonlinear and nonlocal cooperative phenomena is presented in which the global control mechanism of the whole system is given by the tuned-wave propagation. It provides us with an interesting universal scheme of systematization in physical and biological systems called wave cybernetics, and may be understood as a model realizing Bohm's idea of implicate order in natural philosophy.
Numerical simulation of anomalous wave phenomena in hot nuclear matter
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Likhachev, A. P.
2015-11-01
The collective dynamic phenomena accompanying the collision of high-energy heavy ions are suggested to be approximately described in the framework of ideal relativistic hydrodynamics. If the transition from hadron state to quark-gluon plasma is the first-order phase transition (presently this view is prevailing), the hydrodynamic description of the nuclear matter must demonstrate several anomalous wave phenomena—such as the shock splitting and the formation of rarefaction shock and composite waves, which may be indicative of this transition. The present work is devoted to numerical study of these phenomena.
Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect.
Bliokh, Konstantin Yu
2006-07-28
We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.
Magnetospheric radio and plasma wave research - 1987-1990
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1991-01-01
This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.
Vibration analysis of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Hammond, C. E.
1979-01-01
A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.
Lyapunov stability analysis for the generalized Kapitza pendulum
NASA Astrophysics Data System (ADS)
Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.
2017-12-01
In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.
Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander
2017-10-01
The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.
Some remarks on waves in the solar wind
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.
1995-01-01
Waves are significant to the solar wind in two ways as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. There are two areas where waves (we include discontinuities under this heading) must make important modifications of the distribution functions: in accelerating the alpha particles to higher speeds than the protons (Marsch et al.) and in accelerating the solar wind itself. A third area is possibly in maintaining the relative isotropy of the solar wind ion distribution in the solar wind rest frame. As the solar wind is nearly collisionless, the ions should conserve magnetic moment in rushing out from the sun, and therefore Tperp/B should be relatively constant, but it is obviously not. This has not received much attention. The waves, both electromagnetic and electrostatic, which are pan of the solar Type 111 burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic pan of the type 111 burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Langmuir waves in the solar wind are usually in quasi-thermal equilibrium quasi because the solar wind itself is not isothermal. The Observatory of Paris group (Steinberg. Meyer-Vernet, Hoang) has exploited this with an experiment on WIND which is capable of providing density and temperature on a faster time scale than hitherto. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to panicle energy. Some recent examples from WIND data will be shown.
Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?
ERIC Educational Resources Information Center
Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L
2012-01-01
We present results from our ongoing investigation of student understanding of periodic waves and interference phenomena at the introductory physics level. We have found that many students experience significant difficulties when they attempt to express a distance of interest in terms of the wavelength of a periodic wave. We argue that for these…
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.
This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.
2018-03-01
The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.
Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum
ERIC Educational Resources Information Center
Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo
2004-01-01
We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…
Al-Thomali, Yousef; Basha, Sakeenabi; Mohamed, Roshan Noor
2017-08-01
The main purpose of the present systematic review was to evaluate the quantitative effects of the pendulum appliance and modified pendulum appliances for maxillary molar distalization in Class II malocclusion. Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus and key journals and review articles; the date of the last search was 30 January 2017. We graded the methodological quality of the studies by means of the Quality Assessment Tool for Quantitative Studies, developed for the Effective Public Health Practice Project (EPHPP). In total, 203 studies were identified for screening, and 25 studies were eligible. The quality assessment rated four (16%) of the study as being of strong quality and 21 (84%) of these studies as being of moderate quality. The pendulum appliances showed mean molar distalization of 2-6.4 mm, distal tipping of molars from 6.67° to 14.50° and anchorage loss with mean premolar and incisor mesial movement of 1.63-3.6 mm and 0.9-6.5 mm, respectively. The bone anchored pendulum appliances (BAPAs) showed mean molar distalization of 4.8-6.4 mm, distal tipping of molars from 9° to 11.3° and mean premolar distalization of 2.7-5.4 mm. Pendulum and modified pendulum appliances are effective in molar distalization. Pendulum appliance with K-loop modification, implant supported pendulum appliance and BAPA significantly reduced anchorage loss of the anterior teeth and distal tipping of the molar teeth.
Testing new technologies for the LISA Gravitational Reference Senso
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido
2015-01-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Dynamical stability of slip-stacking particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
2014-09-01
We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.
Wave propagation in graphite/epoxy laminates due to impact
NASA Technical Reports Server (NTRS)
Tan, T. M.; Sun, C. T.
1982-01-01
The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity.
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
A Simple Method to Measure the Trajectory of a Spherical Pendulum
ERIC Educational Resources Information Center
Yang, Hujiang; Xiao, Jinghua; Yang, Tianyu; Qiu, Chen
2011-01-01
Compared with a single gravity pendulum, the spherical pendulum behaves more complicatedly in experiments, which makes it difficult to measure. In this paper, we present a method to visualize the trajectories of a spherical pendulum by employing a gravity ball with a lit LED and a digital camera. This new measurement is inexpensive and easy to…
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... of motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ± 0.06 m/s measured at the center of the pendulum accelerometer, as...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
Turning Points of the Spherical Pendulum and the Golden Ratio
ERIC Educational Resources Information Center
Essen, Hanno; Apazidis, Nicholas
2009-01-01
We study the turning point problem of a spherical pendulum. The special cases of the simple pendulum and the conical pendulum are noted. For simple initial conditions the solution to this problem involves the golden ratio, also called the golden section, or the golden number. This number often appears in mathematics where you least expect it. To…
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... of motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ± 0.06 m/s measured at the center of the pendulum accelerometer, as...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)
NASA Technical Reports Server (NTRS)
Kissel, R. R.; Sutherland, W. T.
1997-01-01
A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that eachmore » valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.« less
Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics
NASA Astrophysics Data System (ADS)
Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.
2017-06-01
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics.
Horikis, Theodoros P; Frantzeskakis, Dimitrios J
2017-06-16
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2+1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y-, X-, and H-shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
Thermal Noise in the Initial LIGO Interferometers
NASA Astrophysics Data System (ADS)
Gillespie, Aaron D.
1995-01-01
Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Diekmann, R.; Epple, S.
2017-01-01
A pendulum impact tester is a technical device which is used to perform plasticity characterizations of metallic materials. Results are calculated based on fracture behavior under pendulum impact loadings according to DIN 50115, DIN 51222/EN 10045. The material is held at the two ends and gets struck in the middle. A mechanical Problem occurs when testing materials with a very high impact toughness. These specimen often do not break when hit by the pendulum. To return the pendulum to its initial position, the operator presses a service button. After a delay of approximately 2 seconds a clutch is activated which connects the arm of the pendulum with an electric motor to return it back upright in start position. At the moment of clutch activation, the pendulum can still swing or bounce with any speed in any direction at any different position. Due to the lack of synchronization between pendulum speed and constant engine speed, the clutch suffers heavy wear of friction. This disadvantage results in considerable service and repair costs for the customer. As a solution to this problem this article presents a customized technical device to significantly increase the lifetime of the clutch. It was accomplished by a precisely controlled activation of the clutch at a point of time when pendulum and motor are at synchronized speed and direction using incremental encoders.
ERIC Educational Resources Information Center
Kwon, Yong-Ju; Jeong, Jin-Su; Park, Yun-Bok
2006-01-01
The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-belief test about pendulum motion were developed and administered to a sample of…
Foot trajectory approximation using the pendulum model of walking.
Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J
2014-01-01
Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.
Radial forcing and Edgar Allan Poe's lengthening pendulum
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Blasing, David; Whitney, Heather M.
2013-09-01
Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.
Closed form solutions of two time fractional nonlinear wave equations
NASA Astrophysics Data System (ADS)
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
A simple pendulum laser interferometer for determining the gravitational constant
Parks, Harold V.; Faller, James E.
2014-01-01
We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry–Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. PMID:25201994
Papilionoid inflorescences revisited (Leguminosae-Papilionoideae).
Prenner, Gerhard
2013-11-01
The inflorescence structure determines the spatiotemporal arrangement of the flowers during anthesis and is therefore vital for reproductive success. The Leguminosae are among the largest angiosperm plant families and they include some important crop plants. In papilionoid legumes, the raceme is the most common type of inflorescence. However, a range of other inflorescence types have evolved via various developmental processes. A (re-)investigation of inflorescences in Swainsona formosa, Cicer arietinum, Abrus precatorius, Hardenbergia violacea and Kennedia nigricans leads to new insights into reduction mechanisms and to a new hypothesis on the evolution of the papilionoid pseudoraceme. Inflorescence morphology and ontogeny were studied using scanning electron microscopy (SEM). The inflorescence in S. formosa is an umbel with a rare type of pendulum symmetry which may be triggered by the subtending leaf. Inflorescences in C. arietinum are reduced to a single flower. An early formed adaxial bulge is the sterile apex of the inflorescence (i.e. the inflorescence is open and not terminated by a flower). In partial inflorescences of A. precatorius, the axis is reduced and its meristem is relocated towards the main inflorescence. Flower initiation follows a peculiar pendulum pattern. Partial inflorescences in H. violacea and in K. nigricans show reduction tendencies. In both taxa, initiated but early reduced bracteoles are present. Pendulum symmetry in S. formosa is probably associated with distichous phyllotaxis. In C. arietinum, strong reduction tendencies are revealed. Based on studies of A. precatorius, the papilionoid pseudoraceme is reinterpreted as a compound raceme with condensed lateral axes. From an Abrus-like inflorescence, other types can be derived via reduction of flower number and synchronization of flower development. A plea is made for uniform usage of inflorescence terminology.
Papilionoid inflorescences revisited (Leguminosae-Papilionoideae)
Prenner, Gerhard
2013-01-01
Background and Aims The inflorescence structure determines the spatiotemporal arrangement of the flowers during anthesis and is therefore vital for reproductive success. The Leguminosae are among the largest angiosperm plant families and they include some important crop plants. In papilionoid legumes, the raceme is the most common type of inflorescence. However, a range of other inflorescence types have evolved via various developmental processes. A (re-)investigation of inflorescences in Swainsona formosa, Cicer arietinum, Abrus precatorius, Hardenbergia violacea and Kennedia nigricans leads to new insights into reduction mechanisms and to a new hypothesis on the evolution of the papilionoid pseudoraceme. Methods Inflorescence morphology and ontogeny were studied using scanning electron microscopy (SEM). Key Results The inflorescence in S. formosa is an umbel with a rare type of pendulum symmetry which may be triggered by the subtending leaf. Inflorescences in C. arietinum are reduced to a single flower. An early formed adaxial bulge is the sterile apex of the inflorescence (i.e. the inflorescence is open and not terminated by a flower). In partial inflorescences of A. precatorius, the axis is reduced and its meristem is relocated towards the main inflorescence. Flower initiation follows a peculiar pendulum pattern. Partial inflorescences in H. violacea and in K. nigricans show reduction tendencies. In both taxa, initiated but early reduced bracteoles are present. Conclusions Pendulum symmetry in S. formosa is probably associated with distichous phyllotaxis. In C. arietinum, strong reduction tendencies are revealed. Based on studies of A. precatorius, the papilionoid pseudoraceme is reinterpreted as a compound raceme with condensed lateral axes. From an Abrus-like inflorescence, other types can be derived via reduction of flower number and synchronization of flower development. A plea is made for uniform usage of inflorescence terminology. PMID:23235698
Observation of two-dimensional Faraday waves in extremely shallow depth.
Li, Xiaochen; Yu, Zhengyue; Liao, Shijun
2015-09-01
A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.
Segmented Hoop as a Physical Pendulum
ERIC Educational Resources Information Center
Layton, William; Rodriguez, Nuria
2013-01-01
An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is…
ERIC Educational Resources Information Center
Adhitama, Egy; Fauzi, Ahmad
2018-01-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies…
Dynamic stabilization of an optomechanical oscillator
2014-10-20
respectively. The proper frequency of the pendulum is ω0 = √ g/, where g is the gravitational acceleration and is the length of the pendulum . The...controlled experiments. In this paper we discuss one such situation, the dynamic stabilization of a mechanical system such as an inverted pendulum . The...quantumoptomechanics, macroscopic quantum system, dynamic stabilization, Kapitza pendulum REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S
Ask the pendulum: personality predictors of ideomotor performance.
Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir
2017-01-01
For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with "yes" and "no" responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants ( N = 80 ) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally "asked" a hand-held pendulum whether the target was present; particular motions signified "yes" and "no". We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one's life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition ( d = 1.10 ). We confirmed this bias difference in a second study ( d = 0.47 , N = 40 ). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making.
Ask the pendulum: personality predictors of ideomotor performance
Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir
2017-01-01
Abstract For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with “yes” and “no” responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants (N=80) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally “asked” a hand-held pendulum whether the target was present; particular motions signified “yes” and “no”. We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one’s life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition (d=1.10). We confirmed this bias difference in a second study (d=0.47, N=40). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making. PMID:29877514
Ionospheric modifications in high frequency heating experiments
NASA Astrophysics Data System (ADS)
Kuo, Spencer P.
2015-01-01
Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.
Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G
1998-01-01
The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.
Energy behavior of an electromechanical system with internal impacts and uncertainties
NASA Astrophysics Data System (ADS)
Lima, Roberta; Sampaio, Rubens
2016-07-01
This paper analyzes the maximal energy stored in an elastic barrier due to the impacts of a pendulum fitted within a vibro-impact electromechanical system considering the existence of epistemic uncertainties in the system parameters. The vibro-impact electromechanical system is composed of two subsystems. The first subsystem is the electromechanical system composed by a motor, cart and pendulum, and the second is an elastic barrier. The first will be called striker system. The pendulum is fitted within the cart. Its suspension point is fixed in the cart, so that it may exist a relative motion between cart and pendulum. The influence of the DC motor in the dynamic behavior of the pendulum is considered. The coupling between the motor and the cart is made by a scotch yoke mechanism, so that the motor rotational motion is transformed in horizontal cart motion over a rail. The pendulum is modeled as a mathematical pendulum (bar without mass and particle of mass mp at the end). A flexible barrier, placed inside the cart, constrains the pendulum motion. Due to the relative motion between the cart and the pendulum, impacts may occur between these two elements. The objective of the paper is to analyze the energy stored in the barrier due to impacts as a function of some parameters of the electromechanical system from a deterministic and from a stochastic viewpoint. The system is designed as an aid in drilling. The impacts damage or fracture the rock and facilitate the conventional drilling.
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.
Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber
NASA Astrophysics Data System (ADS)
Kecik, Krzysztof
2018-06-01
The paper presents a novel system for simultaneous energy harvesting and vibration mitigation. The system consists of two main parts: an autoparametric pendulum vibration absorber and an energy harvester device. The recovered energy is from oscillation of a levitating magnet in a coil. The energy harvesting system is mounted in a pendulum structure. The system allows energy recovery from a semi-trivial solution (pendulum in rest) or/and swinging of a pendulum. The influence of harvester parameters on the system response and energy harvesting in a parametric resonance is studied in detail. The harvester device does not decrease vibration reduction effectiveness.
Measure synchronization in a Huygens's non-dissipative two-pendulum clocks system
NASA Astrophysics Data System (ADS)
Tian, Jing; Chen, ZiChen; Qiu, HaiBo; Xi, XiaoQiang
2018-01-01
In this paper, we characterize measure synchronization (MS) in a four-degrees-of-freedom Huygens's two-pendulum clocks system. The two-pendulum clocks are connected by a massless spring with stiffness constant k. We find that with the stiffness constant k increasing, the coupled pendulums system achieves MS above a threshold value of k c . The energy characteristics of measure synchronization have been discussed, it is found that averaged energy of each pendulum system provide us an easy way to characterize MS transition. Furthermore, we discuss the dependence of the critical value for MS transition on initial conditions and the characteristic parameters of the system.
A simple pendulum laser interferometer for determining the gravitational constant.
Parks, Harold V; Faller, James E
2014-10-13
We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry-Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Shoulder Injuries and Disorders - Multiple Languages
... Af-Soomaali (Somali) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - Af-Soomaali (Somali) Bilingual PDF ... Exercises - español (Spanish) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - English PDF Pendulum Exercises for ...
Plume Characterization of Busek 600W Hall Thruster
2012-03-09
probe was used to examine the thruster plume current density while the ion species fractions were determined by the ExB probe. The inverted pendulum ...25 A. Inverted Pendulum ...Diagnostic Equipment .....................................................................................45 A. Inverted Pendulum
Precessional Periods of Long and Short Foucault Pendulums
ERIC Educational Resources Information Center
Soga, Michitoshi
1978-01-01
Derives the precessional period of a Foucault pendulum without using small oscillation amplitudes. Shows that if the path of the pendulum passes through the origin, the periods for differing amplitudes are essentially the same. (GA)
A historical review of gravimetric observations in Norway
NASA Astrophysics Data System (ADS)
Ragnvald Pettersen, Bjørn
2016-10-01
The first gravity determinations in Norway were made by Edward Sabine in 1823 with a pendulum instrument by Henry Kater. Seventy years later a Sterneck pendulum was acquired by the Norwegian Commission for the International Arc Measurements. It improved the precision and eventually reduced the bias of the absolute calibration from 85 to 15 mGal. The last pendulum observations in Norway were made in 1955 with an instrument from Cambridge University. At a precision of ±1 mGal, the purpose was to calibrate a section of the gravity line from Rome, Italy, to Hammerfest, Norway. Relative spring gravimeters were introduced in Norway in 1946 and were used to densify and expand the national gravity network. These data were used to produce regional geoids for Norway and adjacent ocean areas. Improved instrument precision allowed them to connect Norwegian and foreign fundamental stations as well. Extensive geophysical prospecting was made, as in other countries. The introduction of absolute gravimeters based on free-fall methods, especially after 2004, improved the calibration by 3 orders of magnitude and immediately revealed the secular changes of the gravity field in Norway. This was later confirmed by satellite gravimetry, which provides homogeneous data sets for global and regional gravity models. The first-ever determinations of gravity at sea were made by pendulum observations onboard the Norwegian polar vessel Fram during frozen-in conditions in the Arctic Ocean in 1893-1896. Simultaneously, an indirect method was developed at the University of Oslo for deducing gravity at sea with a hypsometer. The precision of both methods was greatly superseded by relative spring gravimeters 50 years later. They were employed extensively both at sea and on land. When GPS allowed precise positioning, relative gravimeters were mounted in airplanes to cover large areas of ocean faster than before. Gravimetry is currently being applied to study geodynamical phenomena relevant to climate change. The viscoelastic postglacial land uplift of Fennoscandia has been detected by terrestrial gravity time series as well as by satellite gravimetry. Corrections for local effects of snow load, hydrology, and ocean loading at coastal stations have been improved. The elastic adjustment of present-day melting of glaciers at Svalbard and in mainland Norway has been detected. Gravimetry is extensively employed at offshore oil facilities to monitor the subsidence of the ocean floor during oil and gas extraction.
Wave Phenomena in an Acoustic Resonant Chamber
ERIC Educational Resources Information Center
Smith, Mary E.; And Others
1974-01-01
Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…
Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu
2011-03-01
To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.
A novel control algorithm for interaction between surface waves and a permeable floating structure
NASA Astrophysics Data System (ADS)
Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu
2016-04-01
An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.
Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients
NASA Technical Reports Server (NTRS)
Maxwell, A.; Dryer, M.
1981-01-01
An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.
Design and Experimental Implementation of Optimal Spacecraft Antenna Slews
2013-12-01
LINK PENDULUM MODEL ............................................................58 C. AZIMUTH-ELEVATION SYSTEM...BOUNDARY VALUE PROBLEM ......................77 B. DOUBLE PENDULUM EXAMPLE............................................................82 C. SOLVING THE...Figure 15. Two-link Pendulum .........................................................................................58 Figure 16. Double
NASA Astrophysics Data System (ADS)
Demidov, Ivan; Sorokin, Vladislav
2018-05-01
Motion of a pendulum with damping and vibrating axis of suspension is considered at unconventional values of parameters. Case when the frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied. Vibration intensity is assumed to be relatively low. In this case, the corresponding equation of the pendulum's motions doesn't involve an explicit small parameter. To solve the equation a new modification of the method of direct separation of motions is used. As the result, stability conditions of the pendulum inverted position are determined. Effects of damping on these conditions are discussed.
NASA Astrophysics Data System (ADS)
Adhitama, Egy; Fauzi, Ahmad
2018-05-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies the resistance value and was processed by the microcontroller, ATMega328, to obtain a signal period as a function of time and brightness when the pendulum crosses the light. Through the experiment, using calculated average periods, the gravitational acceleration value has been accurately and precisely determined.
Pendulum Mass Affects the Measurement of Articular Friction Coefficient
Akelman, Matthew R.; Teeple, Erin; Machan, Jason T.; Crisco, Joseph J.; Jay, Gregory D.; Fleming, Braden C.
2012-01-01
Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton’s equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton’s model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n = 4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton’s equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. PMID:23122223
Pendulum mass affects the measurement of articular friction coefficient.
Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C
2013-02-01
Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Preface: MHD wave phenomena in the solar interior and atmosphere
NASA Astrophysics Data System (ADS)
Fedun, Viktor; Srivastava, A. K.
2018-01-01
The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.
Caprioglio, Alberto; Beretta, Matteo; Lanteri, Claudio
2011-01-01
To compare the dento-alveolar and skeletal effects produced by two different molar intraoral distalization appliances, Pendulum and Fast-Back, both followed by fixed appliances, in the treatment of Class II malocclusion. 41 patients for Pendulum (18 males and 23 females) and 35 for Fast-Back (14 males and 21 females) were selected, with a mean age at the start of treatment of 12.11 years in the Pendulum group and 13.3 for in the Fast-Back group. The durations of the distalization phase were 8 months in the Pendulum group and 9 months in the Fast-Back group, and the durations of the second phase of treatment with fixed appliances were 19 months in the Pendulum group and 20 months in the Fast-Back group. Lateral cephalograms were analyzed at 3 observation times: before treatment, after distalization and after comprehensive orthodontic treatment. During molar distalization the Pendulum subjects showed greater distal molar movement and less anchorage loss at both the premolars and maxillary incisors than the Fast-Back subjects. Pendulum and Fast-Back produced similar amounts of distal molar movement and overcorrection of molar relationship at the end of distalization though the Fast-Back induced a more bodily movement. Very little change occurred in the inclination of the mandibular plane at the end of the 2-phase treatment in both groups. At the end of treatment the maxillary first molars were on average 1mm more distal in the Pendulum group compared to the Fast-Back group, while the total molar correction was 3.2mm with 3.9° of distal inclination for the Pendulum and 2mm with 1.1° of mesial inclination for the Fast-Back. Both appliance were equally effective in inducing a satisfactory Class I relationship in 97.2% of the cases. The Pendulum and the Fast-Back induce similar dentoskeletal effects. The use of the two distalization devices, therefore, can be considered clinically equivalent. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Review of chemical-kinetic problems of future NASA missions. I - Earth entries
NASA Technical Reports Server (NTRS)
Park, Chul
1993-01-01
A number of chemical-kinetic problems related to phenomena occurring behind a shock wave surrounding an object flying in the earth atmosphere are discussed, including the nonequilibrium thermochemical relaxation phenomena occurring behind a shock wave surrounding the flying object, problems related to aerobraking maneuver, the radiation phenomena for shock velocities of up to 12 km/sec, and the determination of rate coefficients for ionization reactions and associated electron-impact ionization reactions. Results of experiments are presented in form of graphs and tables, giving data on the reaction rate coefficients for air, the ionization distances, thermodynamic properties behind a shock wave, radiative heat flux calculations, Damkoehler numbers for the ablation-product layer, together with conclusions.
Examining Functions in Mathematics and Science Using Computer Interfacing.
ERIC Educational Resources Information Center
Walton, Karen Doyle
1988-01-01
Introduces microcomputer interfacing as a method for explaining and demonstrating various aspects of the concept of function. Provides three experiments with illustrations and typical computer graphic displays: pendulum motion, pendulum study using two pendulums, and heat absorption and radiation. (YP)
EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics
NASA Astrophysics Data System (ADS)
Patsourakos, S.
2015-12-01
Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.
Physics of the inner heliosphere: Mechanisms, models and observational signatures
NASA Technical Reports Server (NTRS)
Withbroe, G. L.
1985-01-01
The physics of the solar wind acceleration phenomena (e.g. effect of transient momentum deposition on the temporal and spatial variation of the temperature, density and flow speed of the solar wind, formation of shocks, etc.) and the resultant effects on observational signatures, particularly spectroscopic signature are studied. Phenomena under study include: (1) wave motions, particularly spectroscopic signatures are studied. Phenomena under study include:(1) wave motions, particularly Alfven and fast mode waves, (2) the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind and (3) coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejections. Also included are the theoretical investigation of spectroscopic plasma diagnostics for the inner heliosphere and the analysis of existing Skylab and other relevant data.
Control of Torsional Vibrations by Pendulum Masses
NASA Technical Reports Server (NTRS)
Stieglitz, Albert
1942-01-01
Various versions of pendulum masses have been developed abroad within the past few years by means of which resonant vibrations of rotating shafts can be eliminated at a given tuning. They are already successfully employed on radial engines in the form of pendulous counterweights. Compared with the commonly known torsional vibration dampers, the pendulum masses have the advantage of being structurally very simple, requiring no internal damping and being capable of completely eliminating certain vibrations. Unexplained, so far, remains the problem of behavior of pendulum masses in other critical zones to which they are not tuned, their dynamic behavior at some tuning other than in resonance, and their effect within a compound vibration system and at simultaneous application of several differently tuned pendulous masses. These problems are analyzed in the present report. The results constitute an enlargement of the scope of application of pendulum masses, especially for in-line engines. Among other things it is found that the natural frequency of a system can be raised by means of a correspondingly tuned pendulum mass. The formulas necessary for the design of any practical version are developed, and a pendulum mass having two different natural frequencies simultaneously is described.
A novel pendulum test for measuring roller chain efficiency
NASA Astrophysics Data System (ADS)
Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.
2018-07-01
This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
Szopa, Andrzej; Domagalska-Szopa, Małgorzata; Kidoń, Zenon; Syczewska, Małgorzata
2014-12-16
Development of a reliable and objective test of spasticity is important for assessment and treatment of children with cerebral palsy. The pendulum test has been reported to yield reliable measurements of spasticity and to be sensitive to variations in spasticity in these children. However, the relationship between the pendulum test scores and other objective measures of spasticity has not been studied. The present study aimed to assess the effectiveness of an accelerometer-based pendulum test as a measurement of spasticity in CP, and to explore the correlation between the measurements of this test and the global index of deviation from normal gait in in children with cerebral palsy. We studied thirty-six children with cerebral palsy, including 18 with spastic hemiplegia and 18 with spastic diplegia, and a group of 18 typically-developing children. Knee extensor spasticity was assessed bilaterally using the accelerometer-based pendulum test and three-dimensional gait analysis. The Gillette Gait Index was calculated from the results of the gait analysis. The data from the accelerometer-based pendulum test could be used to distinguish between able-bodied children and children with cerebral palsy. Additionally, two of the measurements, first swing excursion and relaxation index, could be used to differentiate the degree of knee extensor spasticity in the children with cerebral palsy. Only a few moderate correlations were found between the Gillette Gait Index and the pendulum test data. This study demonstrates that the pendulum test can be used to discriminate between typically developing children and children with CP, as well as between various degrees of spasticity, such as spastic hemiplegia and spastic diplegia, in the knee extensor muscle of children with CP. Deviations from normal gait in children with CP were not correlated with the results of the pendulum test.
Angelieri, Fernanda; de Almeida, Renato Rodrigues; Janson, Guilherme; Castanha Henriques, José Fernando; Pinzan, Arnaldo
2008-12-01
This study compared the effects produced by two different molar distalizers, namely cervical headgear (CHG) and the intraoral pendulum appliance, associated with fixed orthodontic appliances. The headgear group comprised 30 patients (19 females, 11 males), with an initial age of 13.07 years [standard deviation (SD) = 1.3], treated with CHG and fixed orthodontic appliances for a mean period of 3.28 years, and the pendulum group 22 patients (15 females, 7 males), with initial age of 13.75 years (SD = 1.86), treated with the pendulum appliance followed by fixed orthodontic appliances for a mean period of 4.12 years. Lateral cephalograms were taken at the start (T1) and on completion (T2) of orthodontic treatment. The pendulum and CHG groups were similar as to initial age, severity of the Class II malocclusion, gender distribution, initial cephalometric characteristics, and initial and final treatment priority index (TPI). Only treatment time was not similar between the groups, with a need for annualization for data for the pendulum group. The data were compared with independent t-tests. There was significantly greater restriction of maxillary forward growth and improvement of the skeletal maxillomandibular relationship in the CHG group (P < 0.05). The maxillary molars were more mesially tipped and extruded and the mandibular molars more uprighted in the CHG group compared with the pendulum group (P < 0.05). There was more labial tipping of the mandibular incisors and greater overbite reduction in the pendulum group. The pendulum appliance produced only dentoalveolar effects, different from the CHG appliance, which restricted maxillary forward displacement, thus improving the skeletal maxillomandibular relationship.
Ionospheric modification by radio waves: An overview and novel applications
NASA Astrophysics Data System (ADS)
Kosch, M. J.
2008-12-01
High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.
Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments
NASA Astrophysics Data System (ADS)
Block, Gareth I.; Harris, John G.
2006-01-01
Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study the conductivity dependence of the electrokinetic (EK) effect are described, and outcomes for studies in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves and (2) the electromagnetic waves produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores; this feature is characteristic of poroelastic (Biot) media but is not predicted by either viscoelastic fluid or solid models. A model of plane wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both loose glass microspheres and medium-grain sand.
Toy, Ebubekir; Enacar, Ayhan
2011-05-01
Headgears are effective in distalising maxillary molars, but success depends on patient compliance and tolerance. Intra-oral distalising appliances are simple to construct and use and may be a better alternative for patients who are non-compliant or cannot tolerate headgear. To compare the Pendulum (PEN) appliance and cervical headgear (CHG) on distal movement of maxillary first molars in patients requiring maxillary molar distalisation. Thirty patients were randomly divided into two groups. Both groups had comparable occlusal and cephalometric characteristics before treatment. Fifteen patients (9 girls, 6 boys) with a mean age of 1 1.45 +/- 1.54 years (Range: 8.58-13.50 years) were treated with Pendulum appliances and 15 patients (10 girls, 5 boys) with a mean age of 11.72 + 1.24 years (Range: 9.58-13.33 years) were treated with a Ricketts-type CHG. A pilot study of four patients estimated that the time required to distalise the maxillary molars with the Pendulum appliance was five months. Therefore, the end of treatment records for the CHG group were taken after 4.96 +/- 0.35 months. Lateral and postero-anterior cephalometric radiographs were taken of both groups at the start (T1) and end of distalisation/treatment (T2). Changes in cephalometric measurements in the two groups were compared with Wilcoxon and Mann-Whitney U tests. Measurements indicated that U6-ANS distance, overjet and U1-APo distance increased, U6-PP angle and U6-PTV distance reduced, and the molar relationship improved more in the PEN group compared with the CHG group. Statistically, significant right molar - left molar differences were found between the two groups. Distalisation produced significant side effects, resulting in distal tipping of the first molars and an increase in overjet, whereas the CHG reduced the overjet. The Pendulum appliance was more effective than the CHG in distalising the maxillary first molars.
Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro
2012-10-07
Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum
NASA Astrophysics Data System (ADS)
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .
NASA Astrophysics Data System (ADS)
Yulkifli; Afandi, Zurian; Yohandri
2018-04-01
Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.
Instability dynamics and breather formation in a horizontally shaken pendulum chain.
Xu, Y; Alexander, T J; Sidhu, H; Kevrekidis, P G
2014-10-01
Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic resonance. We examine the development of modulational instability in a driven pendulum chain and find both a critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation of on-site and off-site breathers.
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.
Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y
2007-11-01
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster.
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.
Nonlinear stability of solar type III radio bursts. II - Application to observations near 1 AU
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Smith, R. A.; Papadopoulos, K.
1979-01-01
A set of rate equations including strong turbulence effects and anomalous resistivity are solved using parameters which model several solar type III bursts. Analysis of these bursts has led to quantitative comparisons between several of the observed phenomena and the theory. Through use of an analytic model for the time evolution of the energetic electron exciter, it is found that the exciter distributions observed at 1 AU are unstable to the excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two-stream instability (OTSI). The OTSI and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. In addition, the various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Finally, reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU.
Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials
NASA Astrophysics Data System (ADS)
Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.
2015-07-01
We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born-Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices.
VLF Technique and Science in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, S. C.
2010-10-20
Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) electromagnetic radiations are being recorded at large number of ground stations and on board satellites to study various wave-plasma interactive phenomena. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) system to long horizontal distances around the globe and ducted along the geomagnetic field lines into the conjugate hemisphere through the ionosphere-plasmasphere-magnetosphere routes. The time frequency spectra indicate presence of dispersion and various cut-off frequencies providing several types of received signals like whistlers, chorus, tweeks, hiss, hisslers etc., whichmore » can be heard on an earphone with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of various anomalous characteristics over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted propagation, low latitude TRIMPI/TLE effects, D-region ionisation perturbations due to solar and stellar x- and {gamma} ray emissions and detecting precursors of seismic activities are a few problems which will gain from low latitude studies. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively noise free to observe rare and new phenomena requiring better SNR to detect such changes. The VLF signals emanating from the active seismic zones would require high sensitivity of the system and suitable network of transmitting and receiving stations. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 deg. N are mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of ionisation in the D-region due to solar/stellar UV/X/{gamma}-rays. Further use of the VLF technique in terms of improving both observational data for real time monitoring/modelling of geophysical phenomena and exploring space weather conditions are considered as part of a future Indian programme.« less
VLF Technique and Science in India
NASA Astrophysics Data System (ADS)
Chakravarty, S. C.
2010-10-01
Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) electromagnetic radiations are being recorded at large number of ground stations and on board satellites to study various wave-plasma interactive phenomena. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) system to long horizontal distances around the globe and ducted along the geomagnetic field lines into the conjugate hemisphere through the ionosphere-plasmasphere-magnetosphere routes. The time frequency spectra indicate presence of dispersion and various cut-off frequencies providing several types of received signals like whistlers, chorus, tweeks, hiss, hisslers etc., which can be heard on an earphone with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of various anomalous characteristics over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted propagation, low latitude TRIMPI/TLE effects, D-region ionisation perturbations due to solar and stellar x- and γ ray emissions and detecting precursors of seismic activities are a few problems which will gain from low latitude studies. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively noise free to observe rare and new phenomena requiring better SNR to detect such changes. The VLF signals emanating from the active seismic zones would require high sensitivity of the system and suitable network of transmitting and receiving stations. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 °N are mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of ionisation in the D-region due to solar/stellar UV/X/γ-rays. Further use of the VLF technique in terms of improving both observational data for real time monitoring/modelling of geophysical phenomena and exploring space weather conditions are considered as part of a future Indian programme.
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Lower hybrid wave phenomena associated with density depletions
NASA Technical Reports Server (NTRS)
Seyler, C. E.
1994-01-01
A fluid description of lower hybrid, whistler and magnetosonic waves is applied to study wave phenomena near the lower hybrid resonance associated with plasma density depletions. The goal is to understand the nature of lower hybrid cavitons and spikelets often associated with transverse ion acceleration events in the auroral ionosphere. Three-dimensional simulations show the ponderomotive force leads to the formation of a density cavity (caviton) in which lower hybrid wave energy is concentrated (spikelet) resulting in a three-dimensional collapse of the configuration. Plasma density depletions of the order of a few percent are shown to greatly modify the homogeneous linear properties of lower hybrid waves and account for many of the observed features of lower hybrid spikelets.
Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes
NASA Astrophysics Data System (ADS)
Bershader, Daniel; Hanson, Ronald
1986-09-01
One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.
ERIC Educational Resources Information Center
Fay, Temple H.
2002-01-01
We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…
Equilibrium and Stability of a Pendulum in an Orbiting Spaceship.
ERIC Educational Resources Information Center
Blitzer, Leon
1979-01-01
Investigates the behavior of a simple pendulum attached to a fixed point inside a satellite moving in a circular orbit about the earth. It is found that the number of equilibrium positions depends on the length of the pendulum and the location of the point of attachment. (HM)
Code of Federal Regulations, 2011 CFR
2011-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2014 CFR
2014-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
Conical Pendulum--Linearization Analyses
ERIC Educational Resources Information Center
Dean, Kevin; Mathew, Jyothi
2016-01-01
A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period "T", as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m-2.130 m) are plotted with the theoretical lines and…
Code of Federal Regulations, 2011 CFR
2011-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2012 CFR
2012-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2013 CFR
2013-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
Experiments with a Magnetically Controlled Pendulum
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2011 CFR
2011-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
"Time: What Is It that It Can Be Measured?"
ERIC Educational Resources Information Center
Raju, C. K.
2006-01-01
Experiments with the simple pendulum are easy, but its motion is nevertheless confounded with simple harmonic motion. However, refined theoretical models of the pendulum can, today, be easily taught using software like CALCODE. Similarly, the cycloidal pendulum is isochronous only in simplified theory. But what "are" theoretically equal intervals…
NASA Astrophysics Data System (ADS)
Rubio, Rafael M.; Salamanca, Juan J.
2018-07-01
The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.
The Pendulum and the Calculus.
ERIC Educational Resources Information Center
Sworder, Steven C.
A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…
2014-04-01
improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
NASA Astrophysics Data System (ADS)
Rivera-Ortega, Uriel; Dirckx, Joris
2015-09-01
In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.
Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range
NASA Astrophysics Data System (ADS)
Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao
2017-04-01
Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.
NASA Astrophysics Data System (ADS)
Li, S. H.; Zhu, W. C.; Niu, L. L.; Yu, M.; Chen, C. F.
2018-06-01
A split Hopkinson pressure bar apparatus driven by a pendulum hammer was used to perform uniaxial compression tests to examine the degradation process of green sandstone subjected to repetitive impact loading. The acoustic characteristics, dissipated energy, deformation characteristics, and microstructure evolution were investigated. The representative stress-strain curve can be broken into five stages that were characterized by changes in the axial strain response during impact loading. Both the ultrasonic wave velocity and cumulative dissipated energy exhibited obvious three-stage behavior with respect to the impact number. As the impact number increased, more than one peak was observed in the frequency spectra, and the relative weight of the peak frequency increased in the low-frequency range. According to the evolution of the ultrasonic wave velocity, the degradation process was divided into three stages. By comparing the intact stage I and early stage II microcrack development patterns, the initiation of new cracks and elongation of existing cracks were identified as the main degradation mechanisms. Furthermore, a slight increase in the number of cracks was observed, and microcrack lengths steadily increased. Moreover, due to the low level of microcrack damage, the deformation mechanism was mainly characterized by volume compression during impact loading. In late stage II, the main degradation mechanism was the elongation of existing cracks. Additionally, as microcracks accumulated in the rock samples, cracks were arranged parallel to the loading direction, which led to volume dilation. In stage III, microcracks continued to elongate nearly parallel to the loading direction and then linked to each other, which led to intense degradation in the rock samples. In this stage, rock sample deformation was mainly characterized by volume dilation during impact loading. Finally, rock samples were split into blocks with fractures oriented subparallel to the loading direction. These results can improve the understanding of the stability evaluations of rock structures subjected to repetitive impact loading.
Decoupling nonclassical nonlinear behavior of elastic wave types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less
Interaction of pulsating and spinning waves in condensed phase combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booty, M.R.; Margolis, S.B.; Matkowsky, B.J.
1986-10-01
The authors employ a nonlinear stability analysis in the neighborhood of a multiple bifurcation point to describe the interaction of pulsating and spinning modes of condensed phase combustion. Such phenomena occur in the synthesis of refractory materials. In particular, they consider the propagation of combustion waves in a long thermally insulated cylindrical sample and show that steady, planar combustion is stable for a modified activation energy/melting parameter less than a critical value. Above this critical value primary bifurcation states, corresponding to time-periodic pulsating and spinning modes of combustion, emanate from the steadily propagating solution. By varying the sample radius, themore » authors split a multiple bifurcation point to obtain bifurcation diagrams which exhibit secondary, tertiary, and quarternary branching to various types of quasi-periodic combustion waves.« less
Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin
2015-05-01
In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interfacial fluid instabilities and Kapitsa pendula.
Krieger, Madison S
2017-07-01
The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.
Shashidhar, Nagam Reddy; Reddy, S Rama Koteswara; Rachala, Madhukar Reddy
2016-06-01
Molar distalization is the non extraction method of managing Class II malocclusions. The purpose of this study was to evaluate the skeletal and dentoalveolar effects of maxillary molar distalization with K-loop appliance, and to compare these effects with that of pendulum group. Class I and dental Class II malocclusions were divided into two groups of 15 each: In Group 1 (nine females and six males; mean age, 16.0±2.6 years) patients were treated with K-Loop molar distalization supported palatally by Nance button, while in Group 2 (seven females and eight males; mean age, 15.4±4.7 years), the patients were treated with conventional pendulum appliance. Standardized lateral cephalograms were taken at the beginning of treatment (T0) and at the end of molar distalization (T1) and the changes were statistically analyzed with paired t-test. The results showed no statistically significant difference in the amount of molar distalization in either of the appliance groups: the mean amount of molar distal movement of 5.1±0.8 mm and 4.93±1.68 mm was observed in the Group 1 and 2 respectively. The incisors moved mesially by 1.3±0.63 mm in Group 1 and 1.57±0.58 mm in Group 2. K-Loop molar distalizing appliance has similar skeletal and dentoalveolar effects as that of pendulum appliance, with the advantages of simple yet efficient to control the moment-force ratio to produce all types of tooth movements and also requires minimal patient co-operation.
General analytic results for nonlinear waves and solitons in molecular clouds
NASA Technical Reports Server (NTRS)
Adams, Fred C.; Fatuzzo, Marco; Watkins, Richard
1994-01-01
We study nonlinear wave phenomena in self-gravitating fluid systems, with a particular emphasis on applications to molecular clouds. This paper presents analytical results for one spatial dimension. We show that a large class of physical systems can be described by theories with a 'charge density' q(rho); this quantity replaces the density on the right-hand side of the Poisson equation for the gravitational potential. We use this formulation to prove general results about nonlinear wave motions in self-gravitating systems. We show that in order for stationary waves to exist, the total charge (the integral of the charge density over the wave profile) must vanish. This 'no-charge' property for solitary waves is related to the capability of a system to be stable to gravitational perturbations for arbitrarily long wavelengths. We find necessary and sufficient conditions on the charge density for the existence of solitary waves and stationary waves. We study nonlinear wave motions for Jeans-type theories (where q(rho) = rho-rho(sub 0)) and find that nonlinear waves of large amplitude are confined to a rather narrow range of wavelengths. We also study wave motions for molecular clouds threaded by magnetic fields and show how the allowed range of wavelengths is affected by the field strength. Since the gravitational force in one spatial dimension does not fall off with distance, we consider two classes of models with more realistic gravity: Yukawa potentials and a pseudo two-dimensional treatment. We study the allowed types of wave behavior for these models. Finally, we discuss the implications of this work for molecular cloud structure. We argue that molecular clouds can support a wide variety of wave motions and suggest that stationary waves (such as those considered in this paper) may have already been observed.
NASA Astrophysics Data System (ADS)
Sabiniarz, Patrick; Kropp, Wolfgang
2010-07-01
Although tyre/road noise has been a research subject for more than three decades, there is still no consensus in the literature as to which waves on a tyre are mainly responsible for the radiation of sound during rolling. Even the free vibrational behaviour of a stationary (non-rotating) tyre, not in contact with the ground, is still not well understood in the mid- and high-frequency ranges. Thus, gaining an improved understanding of this behaviour is a natural first step towards illuminating the question of which waves on a rolling tyre contribute to sound radiation. This is the topic of the present paper, in which a model based on the waveguide finite element method (WFEM) is used to study free wave propagation, on a stationary tyre, in the range 0-1500 Hz. In the low-frequency region (0-300 Hz), wave propagation is found to be rather straightforward, with two main wave-types present. Both have cross-section modes involving a nearly rigid motion of the belt. For higher frequencies (300-1500 Hz) the behaviour is more complex, including phenomena such as 'curve veering' and waves for which the phase speed and group speed have opposite signs. Wave-types identified in this region include (i) waves involving mainly sidewall deformation, (ii) belt bending waves, (iii) a wave with significant extensional deformation of the central belt region and (iv) a wave with a 'breathing' cross-section mode. The phase speed corresponding to found waves is computed and their radiation efficiency is discussed, assuming free-field conditions. In a future publication, the tyre model will be used in conjunction with a contact model and a radiation model to investigate the contribution of these waves to radiated sound during rolling.
NASA Technical Reports Server (NTRS)
Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor); Maker, Paul D. (Inventor); Wilson, Daniel W. (Inventor)
2003-01-01
The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.
Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system
NASA Astrophysics Data System (ADS)
Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong
2011-06-01
The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.
What Makes the Foucault Pendulum Move among the Stars?
ERIC Educational Resources Information Center
Phillips, Norman
2004-01-01
Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with…
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... The sum mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum... filtered CFC 180; (3)Neck and lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis... 180. (j)(1) Filter the pendulum acceleration data using a SAE J211 CFC 60 filter. (2) Determine the...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... The sum mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum... filtered CFC 180; (3)Neck and lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis... 180. (j)(1) Filter the pendulum acceleration data using a SAE J211 CFC 60 filter. (2) Determine the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2011 CFR
2011-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
Code of Federal Regulations, 2013 CFR
2013-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
Code of Federal Regulations, 2012 CFR
2012-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Explicit Analytical Solution of a Pendulum with Periodically Varying Length
ERIC Educational Resources Information Center
Yang, Tianzhi; Fang, Bo; Li, Song; Huang, Wenhu
2010-01-01
A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper,…
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
Code of Federal Regulations, 2011 CFR
2011-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Code of Federal Regulations, 2010 CFR
2010-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
A Simple, Low-Cost, Data-Logging Pendulum Built from a Computer Mouse
ERIC Educational Resources Information Center
Gintautas, Vadas; Hubler, Alfred
2009-01-01
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in…
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
ERIC Educational Resources Information Center
Manabu, Sumida
2004-01-01
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's…
The Multiple Pendulum Problem via Maple[R
ERIC Educational Resources Information Center
Salisbury, K. L.; Knight, D. G.
2002-01-01
The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…
ERIC Educational Resources Information Center
Matthews, Michael R.
2004-01-01
Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the…
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, N.; Yokota, S.; Komurasaki, K.
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less
Analytical study of the critical behavior of the nonlinear pendulum
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2010-11-01
The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.
How do Turkish High School Graduates Use the Wave Theory of Light to Explain Optics Phenomena?
ERIC Educational Resources Information Center
Sengoren, S. K.
2010-01-01
This research was intended to investigate whether Turkish students who had graduated from high school used the wave theory of light properly in explaining optical phenomena. The survey method was used in this research. The data, which were collected from 175 first year university students in Turkey, were analysed quantitatively and qualitatively.…
Wave Phenomena in Reaction-Diffusion Systems
NASA Astrophysics Data System (ADS)
Steinbock, Oliver; Engel, Harald
2013-12-01
Pattern formation in excitable and oscillatory reaction-diffusion systems provides intriguing examples for the emergence of macroscopic order from molecular reaction events and Brownian motion. Here we review recent results on several aspects of excitation waves including anomalous dispersion, vortex pinning, and three-dimensional scroll waves. Anomalies in the speed-wavelength dependence of pulse trains include nonmonotonic behavior, bistability, and velocity gaps. We further report on the hysteresis effects during the pinning-depinning transition of twodimensional spiral waves. The pinning of three-dimensional scroll waves shows even richer dynamic complexity, partly due to the possibility of geometric and topological mismatches between the unexcitable, pinning heterogeneities and the one-dimensional rotation backbone of the vortex. As examples we present results on the pinning of scroll rings to spherical, C-shaped, and genus-2-type heterogeneities. We also review the main results of several experimental studies employing the Belousov-Zhabotinsky reaction and briefly discuss the biomedical relevance of this research especially in the context of cardiology.
Computer Simulations and Clear Observations Do Not Guarantee Conceptual Understanding
ERIC Educational Resources Information Center
Renken, Maggie D.; Nunez, Narina
2013-01-01
Evidence for cognitive benefits of simulated versus physical experiments is unclear. Seventh grade participants (n = 147) reported their understanding of two simple pendulum problems (1) before conducting an experiment, (2) immediately following experimentation, and (3) after a 12-week delay. "Problem type" was manipulated within…
Applying Chaos Theory to Careers: Attraction and Attractors
ERIC Educational Resources Information Center
Pryor, Robert G. L.; Bright, Jim E. H.
2007-01-01
This article presents the Chaos Theory of Careers with particular reference to the concepts of "attraction" and "attractors". Attractors are defined in terms of characteristic trajectories, feedback mechanisms, end states, ordered boundedness, reality visions and equilibrium and fluctuation. The identified types of attractors (point, pendulum,…
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Note: A 1-m Foucault pendulum rolling on a ball.
Salva, H R; Benavides, R E; Venturino, J A; Cuscueta, D J; Ghilarducci, A A
2013-10-01
We have built a short Foucault pendulum of 1-m length. The aim of this work was to increase the sensitivity to elliptical trajectories from other longer pendula. The design was a semi-rigid pendulum that rolls over a small ball. The measurements of the movements (azimuth and elliptical trajectory) were done by an optical method. The resulting pendulum works in a medium satisfactory way due to problems of the correct choice of the mass of the bob together with the diameter of the supporting ball. It is also important to keep the rolling surface very clean.
Comparison of strain rates of dart impacted plaques and pendulum impacted bumpers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scammell, K.L.
1987-01-01
The difference in strain rates prevailing during pendulum impact of bumpers versus high speed dart impact of plaques was investigated. Uni-axial strain gages were applied to the tension side of the plaques and bumpers directly opposite the point of impact. The plaques were impacted with an instrumented high rate dart impact tester and the bumpers impacted with a full scale bumper pendulum impact tester. Theoretical calculations and actual strain rate data support the conclusion that the strain rate of a plaque during dart impact significantly exceeds that of bumper strain rate during pendulum impact.
NASA Astrophysics Data System (ADS)
Gârnet, I. A.; Stanciu, S.; Hopulele, I.; Zaharia, M. G.; Cimpoesu, N.; Chicet, D. L.; Crăciun, R. C.
2017-06-01
An experimental equipment, type torsion pendulum was made in laboratory in order to analyze the damping capacity of metallic materials. The scheme of the equipment is presented, 2D and 3D visions at real scale. The equipment functioning (mechanical and electrical part) and principles are presented. In this article we present some preliminary experimental results obtained on different materials (aluminium, steel etc.) using two different methods for registration the outputs (one based on optoelectronic device with Arduino acquisition board and second on video analyze (cinematic review: video to jpeg) of the damped motion of the lead pendulum). Steel materials were with shoot penning surface modification with and without heat treatment in order to establish the heat treatment influence on the damping capacity property.
NASA Astrophysics Data System (ADS)
Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.
2015-04-01
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.
Photo-Controlled Waves and Active Locomotion.
Epstein, Irving R; Gao, Qingyu
2017-08-22
Waves of chemical concentration, created by the interaction between reaction and diffusion, occur in a number of chemical systems far from equilibrium. In appropriately chosen polymer gels, these waves generate mechanical forces, which can result in locomotion. When a component of the system is photosensitive, light can be used to modulate and control these waves. In this Concept article, we examine various forms of photo-control of such systems, focusing particularly on the Belousov-Zhabotinsky oscillating chemical reaction. The phenomena we consider include image storage and image processing, feedback-control and feedback-induced clustering of waves, and phototropic and photophobic locomotion. Several of these phenomena have analogues in or potential applications to biological systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Comprehensive Analytical Solution of the Nonlinear Pendulum
ERIC Educational Resources Information Center
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…
Oscillations of a Simple Pendulum with Extremely Large Amplitudes
ERIC Educational Resources Information Center
Butikov, Eugene I.
2012-01-01
Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…
Measurement of Gravitational Acceleration Using a Computer Microphone Port
ERIC Educational Resources Information Center
Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny
2012-01-01
A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…
Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?
ERIC Educational Resources Information Center
Puri, Avinash
2015-01-01
According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…
Maple[R] Version of the "Indian Rope Trick". Classroom Notes
ERIC Educational Resources Information Center
Knight, D. G.
2004-01-01
If the point of suspension of a multiple pendulum is suitably oscillated then the pendulum can remain in motion in an upside-down position. Since such pendulums can model flexible materials, this inverted motion is sometimes referred to as an 'Indian rope trick'. Despite the complexity of the governing differential equations, this rope trick can…
A Laboratory Experiment on Coupled Non-Identical Pendulums
ERIC Educational Resources Information Center
Li, Ang; Zeng, Jingyi; Yang, Hujiang; Xiao, Jinghua
2011-01-01
In this paper, coupled pendulums with different lengths are studied. Through steel magnets, each pendulum is coupled with others, and a stepping motor is used to drive the whole system. To record the data automatically, we designed a data acquisition system with a CCD camera connected to a computer. The coupled system shows in-phase, locked-phase…
An Apparatus to Demonstrate Linear and Nonlinear Oscillations of a Pendulum
ERIC Educational Resources Information Center
Mayer, V. V.; Varaksina, E. I.
2016-01-01
A physical pendulum with a magnetic load is proposed for comparison of linear and nonlinear oscillations. The magnetic load is repelled by permanent magnets which are disposed symmetrically relative to the load. It is established that positions of the pendulum and the magnets determine the dependence of restoring force on displacement of the load.…
Chemistry and the Pendulum--What Have They to Do with Each Other?
ERIC Educational Resources Information Center
De Berg, K. C.
2006-01-01
Physicists have known for some time that pendulum motion is a useful analogy for other physical processes. Chemists have played with the idea from time to time but the strength of the analogy between pendulum motion and chemical processes has only received prominent published recognition since about 1980, although there are details of the analogy…
Some observations on mesh refinement schemes applied to shock wave phenomena
NASA Technical Reports Server (NTRS)
Quirk, James J.
1995-01-01
This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.
Theories of dynamical phenomena in sunspots
NASA Technical Reports Server (NTRS)
Thomas, J. H.
1981-01-01
Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.
Extending the Range for Force Calibration in Magnetic Tweezers
Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf
2015-01-01
Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733
NASA Technical Reports Server (NTRS)
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
Oscillators: Old and new perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Jayanta K.; Roy, Jyotirmoy
We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less
NASA Technical Reports Server (NTRS)
Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.
2013-01-01
The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results
Coronal Mass Ejections (CMEs) and Associated Phenomena
NASA Astrophysics Data System (ADS)
Manoharan, P. K.
2008-10-01
The Sun is the most powerful radio waves emitting object in the sky. The first documented recognition of the reception of radio waves from the Sun was made in 1942 by Hey.15 Since then solar radio observations, from ground-based and space-based instruments, have played a major role in understanding the physics of the Sun and fundamental physical processes of the solar radio emitting phenomena...
Development of Seismic Isolation Systems Using Periodic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yiqun; Mo, Yi-Lung; Menq, Farn-Yuh
Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are notmore » desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the periodic foundation is a promising and effective way to mitigate structural damage caused by earthquake excitation.« less
Experimental Chaos - Proceedings of the 3rd Conference
NASA Astrophysics Data System (ADS)
Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep
1996-10-01
The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
NASA Astrophysics Data System (ADS)
Sarwi, S.; Supardi, K. I.; Linuwih, S.
2017-04-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory.
Solar flare emissions and geophysical disturbances
NASA Technical Reports Server (NTRS)
Sakurai, K.
1973-01-01
Various geophysical phenomena are produced by both wave and particle emissions from solar flares. Using the observed data for these emissions, a review is given on the nature of solar flares and their development. Geophysical phenomena are discussed by referring to the results for solar flare phenomena.
Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields.
Forrester, Derek Michael; Huang, Jinrui; Pinfield, Valerie J; Luppé, Francine
2016-03-14
Here we present the verification of shear-mediated contributions to multiple scattering of ultrasound in suspensions. Acoustic spectroscopy was carried out with suspensions of silica of differing particle sizes and concentrations in water to find the attenuation at a broad range of frequencies. As the particle sizes approach the nanoscale, commonly used multiple scattering models fail to match experimental results. We develop a new model, taking into account shear mediated contributions, and find excellent agreement with the attenuation spectra obtained using two types of spectrometer. The results determine that shear-wave phenomena must be considered in ultrasound characterisation of nanofluids at even relatively low concentrations of scatterers that are smaller than one micrometre in diameter.
The Pendulum in the 21st Century-Relic or Trendsetter
ERIC Educational Resources Information Center
Peters, Randall D.
2004-01-01
When identifying instruments that have had great influence on the history of physics, none comes to mind more quickly than the pendulum. Though first treated scientifically by Galileo in the 16th century, and in some respects nearly "dead" by the middle of the 20th century; the pendulum experienced "rebirth" by becoming an archetype of chaos. With…
Analysis of Pendulum Period with an iPod Touch/iPhone
ERIC Educational Resources Information Center
Briggle, Justin
2013-01-01
We describe the use of Apple's iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device's three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment.…
On the Stable Limit Cycle of a Weight-Driven Pendulum Clock
ERIC Educational Resources Information Center
Llibre, J; Teixeira, M. A.
2010-01-01
In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled "The pendulum clock: a venerable dynamical system", Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ± 5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
The Bravais Pendulum: The Distinct Charm of an Almost Forgotten Experiment
ERIC Educational Resources Information Center
Babovic, V. M.; Mekic, S.
2011-01-01
In the year 1851 in Paris, the apparent change of the plane of oscillation of a linear pendulum was observed by Leon Foucault. In the same year, at the same place, the unequal duration of the oscillations of a right- and left-handed conical pendulum was observed by Bravais. Today, the Foucault pendula are common at universities, the Bravais…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ± 5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
Working Model of a Foucault Pendulum at Intermediate Latitudes
ERIC Educational Resources Information Center
Sears, Francis W.
1969-01-01
Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)
Analysis of the linearity of half periods of the Lorentz pendulum
NASA Astrophysics Data System (ADS)
Wickramasinghe, T.; Ochoa, R.
2005-05-01
We analyze the motion of the Lorentz pendulum, a simple pendulum whose length is changed at a constant rate k. We show both analytically and numerically that the half period Tn, the time between half oscillations as measured from midpoint to midpoint, increases linearly with the oscillation number n such that Tn+1-Tn≈kπ2/2g, where g is the acceleration due to gravity. A video camera is used to record the motion of the oscillating bob of the pendulum and verify the linearity of Tn with oscillation number. The theory and the experiment are suitable for an advanced undergraduate laboratory.
Orion GN&C Detection and Mitigation of Parachute Pendulosity
NASA Technical Reports Server (NTRS)
Kane, Mark A.; Wacker, Roger
2016-01-01
New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touchdown. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge, the control system maneuvers the vehicle using two separate strategies determined by wind velocity magnitude and pendulum energy thresholds; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities and large pendulum amplitudes the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).
Pendulum Motion in Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Machin, Ricardo A.
2015-01-01
The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.
NASA Astrophysics Data System (ADS)
Gröber, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.
2007-05-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy Δg ~ 0.01 m s-2). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes the physical origin of this phenomenon g(phiv), that the Earth's effective gravitational acceleration g depends on the angle of latitude phiv. Then, we present all necessary formula to deduce g(phiv) from oscillations of a string pendulum. The technical part explains tips and tricks to realize such an apparatus to measure all necessary values with sufficient accuracy. In addition, we justify the precise dimensions of a physical pendulum such that the formula for a mathematical pendulum is applicable to determine g(phiv) without introducing errors. To conclude, we describe the internet version—the string pendulum as a remotely controlled laboratory. The teaching relevance and educational value will be discussed in detail at the end of this paper including global experimenting, using the internet and communication techniques in teaching and new ways of teaching and learning methods.
The Third Planet: Surfers, Bedsprings and Harmonicas.
ERIC Educational Resources Information Center
Helms, Harry
1991-01-01
Examines the everywhere-observable phenomena of waveforms, and how waves transport energy across a distance within some given medium. Discusses how waves are described, what happens when waves meet, the specifics of standing waves and echoes, and an introduction to Fourier analysis. (JJK)
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Shashidhar, Nagam Reddy; Reddy, S.Rama Koteswara
2016-01-01
Introduction Molar distalization is the non extraction method of managing Class II malocclusions. Aim The purpose of this study was to evaluate the skeletal and dentoalveolar effects of maxillary molar distalization with K-loop appliance, and to compare these effects with that of pendulum group. Materials and Methods Class I and dental Class II malocclusions were divided into two groups of 15 each: In Group 1 (nine females and six males; mean age, 16.0±2.6 years) patients were treated with K-Loop molar distalization supported palatally by Nance button, while in Group 2 (seven females and eight males; mean age, 15.4±4.7 years), the patients were treated with conventional pendulum appliance. Standardized lateral cephalograms were taken at the beginning of treatment (T0) and at the end of molar distalization (T1) and the changes were statistically analyzed with paired t-test. Results The results showed no statistically significant difference in the amount of molar distalization in either of the appliance groups: the mean amount of molar distal movement of 5.1±0.8 mm and 4.93±1.68 mm was observed in the Group 1 and 2 respectively. The incisors moved mesially by 1.3±0.63 mm in Group 1 and 1.57±0.58 mm in Group 2. Conclusion K-Loop molar distalizing appliance has similar skeletal and dentoalveolar effects as that of pendulum appliance, with the advantages of simple yet efficient to control the moment-force ratio to produce all types of tooth movements and also requires minimal patient co-operation. PMID:27504403
Weaver, Tyler B; Glinka, Michal N; Laing, Andrew C
2014-11-07
Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)-COM difference. Ten young adults held static standing, stooping and crouching postures, each for 20s. For both the anterior-posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP-COM were computed, and the relationship between these two variables was determined using Pearson's correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP-COM signal, and the inertial component (i.e., -I/Wh) were compared across postures. Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP-COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002). The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Testing the gravitational inverse-square law at centimeter scales
NASA Astrophysics Data System (ADS)
Bonicalzi, Ricco
Many attempts to unify gravity with the Standard Model entail a gravitational inverse-square-law violation (ISLV) at some low level. This dissertation reports on the initial phase of a torsion-pendulum null experiment searching for such a violation in the interaction between two macroscopic bodies with a characteristic separation of 12 cm. Central to the experimental design is the special configuration of the mass distributions of both the pendulum and source mass to provide high-sensitivity to the horizontal gradient of the Laplacian of the interaction potential (a signature of ISLV), while strongly suppressing coupling through Newtonian gravity. Specifically, this design ensures that gravitational systematic effects arise only at second order in the fabrication errors of the pendulum and source mass. A key aspect of this work is the choice of the second-harmonic amplitude of pendulum oscillation as the torque observable, instead of the traditional oscillation frequency. This relatively recent torsion-pendulum method is markedly less sensitive to changes in torsion-fiber temperature and enables the ambient-temperature instrumentation of the initial phase to achieve necessary noise performance without heroic efforts to stabilize temperature. As details of the second-harmonic method have not yet been published, the presentation here dwells on a number of subtleties involved in analyzing the data. Experimental results are reported assuming a Yukawa-type interaction anomaly, where a is the strength of the Yukawa term relative to Newtonian gravity. A preliminary set of 34 data runs, each around a day in duration, produced a value of alpha = (-6.3 +/- 7.5) x 10-5. In the absence of significant systematic effects, even this interim result would have placed tighter bounds on ISLV than previously appearing in the literature. Unfortunately, an accelerated Department of Energy deadline for demolition of our Hanford laboratory facility compelled a shift of focus to the principal phase of this experiment before resolving two apparently marginal, but significant sources of systematic error. These and resolved systematic effects are discussed in the context of the second-harmonic method.
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg; Shipeev, Oleg
2015-04-01
As a result of long-term natural geomechanics and geophysical observation data on mines of complex ore rocks, generalization of the non-linear reaction of rock massif to heavy dynamic influences have been established. In addition, pendulum type waves have been observed and the sources of them have been located inside geoblocks of different hierarchic levels (Oparin et al., 2010). At the same time, these waves propagate with wide low (compared with seismic waves) velocity values (Kurlenja et al., 1993; Oparin et al., 2006). Research into the massif state with the use of the dynamic systems theory approach (Naimark et al., 2009; Chulichkov, 2003; Hachay et al., 2010) has been developed to ascertain the criteria of dissipative regimes changing for real rock massifs, which are under heavy man-caused influence. To realize such research we used the data from the seismic record of the Tashtagol mine for the two-year period from June 2006 up to June 2008. We used the space-time coordinates for all dynamic massif event responses, which occurred during that period inside the mine space and for the explosions - values fixed by seismic station energy (Hachay et al., 2010). The phase diagrams of the massif state for the northern and southern parts of the mine space were plotted in coordinates Ev(t) and d(Ev(t))/dt, t - time - in parts of 24 hours, Ev - the dissipated massive seismic energy - in joules. Hachay et al., (2010) analysed the morphology of seismic response phase trajectories on the explosion influences during different serial intervals in the southern part of the mine. In that period, according to data for different explosions in the mine, the majority of the total energy had been injected into the southern part of the mine. Moreover, at the end of 2007, just in the southern part, the strongest rock burst during the whole history of the working mine happened. We developed a new processing method of seismological information in real, which we can use directly in the mine to estimate the changing state of the rock burst in the massif by its outworking. As a result we have selected a typical morphology of massif response phase trajectories, which were locally, over time, in a stable state: on the phase plane the local area presented as a ball of twisted trajectories with some not far removed points from the ball, which had not exceeded energy of more than 105 joules. For some time intervals those removed points exceeded 105 joules, achieving 106 joules and even 109 joules (Hachay et al., 2010). Introduction of the additional velocity parameter of slow deformation wave propagation allowed us, with the use of phase diagrams, to identify the hierarchic structure. Further, we can use that information for the modelling and interpretation of seismic and deformation waves in hierarchic structures (Hachay et al., 2012). That method can be useful in building-up an understanding of the resonance outshooting of catastrophic dynamic events and prevent these events. References 1.Chulichkov A. (2003) Mathematical models of nonlinear dynamics. Moscow: Phismatlit. 294p. 2.Hachay O., Khachay O.Yu., Klimko V., et al. (2010) Reflection of synergetic features of rock massif state under the man-caused influence from the data of a seismological catalogue. Mining Information-Analytic Bulletin, Moscow, Mining book, 6, pp.259-271. 3.Hachay O., Khachay A.Yu. (2012) Research of stress-deforming state of hierarchic medium. Proceedings of the Third Tectonics and Physics Conference at the Institute of the Physics of the Earth 8-12 October 2012, Moscow, IFZ RAS, pp.114-117. 4.Kurlenja M., Oparin V., Vostrikov V. (1993) About forming elastic wave trains by impulse excitation of block medium. Waves of pendulum type Uμ. DAN USSR, V.133, 4, pp.475-481. 5.Naimark Yu., Landa P. (2009). Stochastic and chaotic oscillations. Moscow, Knigniy dom ,'LIBROKOM', 424 p. 7.Oparin V., Vostrikov V., Tapsiev A. et al. (2006) About one kinematic criterion of forecasting of the limiting massif state with use of seismological data , FTPRPI, 6, pp.3-10.
Superconductivity bordering Rashba type topological transition
Jin, M. L.; Sun, F.; Xing, L. Y.; ...
2017-01-04
Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap closemore » then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature T C of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. As a result, the Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.« less
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
Fluid-Structure Interaction in a Fluid-Filled Composite Structure Subjected to Low Velocity Impact
2016-06-01
for creating an E-glass composite cubic structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of...structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of the composite structure was studied at various...SET-UP .......................................................31 1. Impact Pendulum
ERIC Educational Resources Information Center
Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.
2007-01-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy [delta]g is approximately equal to 0.01 m s[superscript -2]). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes…
Physics of the inner heliosphere: Mechanisms, models and observational signatures
NASA Technical Reports Server (NTRS)
Withbroe, George L.
1987-01-01
Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.
NASA Astrophysics Data System (ADS)
Varma, Ram K.; Punithavelu, A. M.; Banerjee, S. B.
2002-02-01
We report here the observations that exhibit the existence of matter wave phenomena with wavelength in the macrodomain of a few centimeters, for electrons moving along a magnetic field from an electron gun to a collector plate situated behind a grounded grid. These are in accordance with the predictions of a quantumlike theory for charged particles in the classical macrodomain, given by one of the authors [R. K. Varma, Phys. Rev. A 31, 3951 (1985)] with a recent generalization [R. K. Varma, Phys. Rev. E 64, 036608 (2001)]. The beats correspond to two closely spaced ``frequencies'' in the system, with the beat frequency given, in accordance with the characteristics of a wave phenomena, by the difference between the two frequencies. The beats ride as a modulation over a discrete energy band structure obtained with only one frequency present. The frequency here corresponds to the distance between the electron gun and the detector plate as it characterizes the variation in the energy band structure as the electron energy is swept. The second ``frequency'' corresponds to the gun-grid distance. These observations of the beats of matter waves in this experiment, with characteristics in accordance with the wave algorithm, then establish unambiguously the existence of macroscopic matter waves for electrons propagating along a magnetic field.
Cheney, Jr., Marvin C.
1982-01-01
A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.
Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends.
Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu
2016-02-01
Antisymmetric and symmetric Lamb-type feature guided waves (FGW) have recently been shown to exist in small angle plate bends. This paper reports Semi-Analytical Finite Element (SAFE) method simulations revealing the existence of a new family of Shear Horizontal (SHB) type of FGW mode in 90° bends in plate structures. Mode shapes and velocity dispersion curves are extracted, demonstrating the SH-like nature of a bend-confined mode identified in studies of power flow across the bend. The SHB mode is shown to have reduced attenuation in the higher frequency range, making it an ideal choice for high-resolution inspection of such bends. Further modal studies examine the physical basis for mode confinement, and argue that this is strongly related to FGW phenomena reported earlier, and also linked to the curvature at the bend region. Wedge acoustic waves discussed widely in literature are shown as arising from surface-limiting of the SHB mode at higher frequencies. The results are validated by experiments and supported by 3D Finite Element (FE) simulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Rigorous approaches to tether dynamics in deployment and retrieval
NASA Technical Reports Server (NTRS)
Antona, Ettore
1987-01-01
Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.
NASA Astrophysics Data System (ADS)
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-11
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
NASA Astrophysics Data System (ADS)
Mazzella, Alessandra; Testa, Italo
2016-09-01
This study is a first attempt to investigate effectiveness of smartphone-based activities on students’ conceptual understanding of acceleration. 143 secondary school students (15-16 years old) were involved in two types of activities: smartphone- and non-smartphone activities. The latter consisted in data logging and ‘cookbook’ activities. For the sake of comparison, all activities featured the same phenomena, i.e., the motion on an inclined plane and pendulum oscillations. A pre-post design was adopted, using open questionnaires as probes. Results show only weak statistical differences between the smartphone and non-smartphone groups. Students who followed smartphone activities were more able to design an experiment to measure acceleration and to correctly describe acceleration in a free fall motion. However, students of both groups had many difficulties in drawing acceleration vector along the trajectory of the studied motion. Results suggest that smartphone-based activities may be effective substitutes of traditional experimental settings and represent a valuable aid for teachers who want to implement laboratory activities at secondary school level. However, to achieve a deeper conceptual understanding of acceleration, some issues need to be addressed: what is the reference system of the built-in smartphone sensor; relationships between smartphone acceleration graphs and experimental setup; vector representation of the measured acceleration.
Low-Cost Alternative for Signal Generators in the Physics Laboratory
NASA Astrophysics Data System (ADS)
Pathare, Shirish Rajan; Raghavendra, M. K.; Huli, Saurabhee
2017-05-01
Recently devices such as the optical mouse of a computer, webcams, Wii remote, and digital cameras have been used to record and analyze different physical phenomena quantitatively. Devices like tablets and smartphones are also becoming popular. Different scientific applications available at Google Play (Android devices) or the App Store (iOS devices) make them versatile. One can find many websites that provide information regarding various scientific applications compatible with these systems. A variety of smartphones/tablets are available with different types of sensors embedded. Some of them have sensors that are capable of measuring intensity of light, sound, and magnetic field. The camera of these devices has been used to study projectile motion, and the same device, along with a sensor, has been used to study the physical pendulum. Accelerometers have been used to study free and damped harmonic oscillations and to measure acceleration due to gravity. Using accelerometers and gyroscopes, angular velocity and centripetal acceleration have been measured. The coefficient of restitution for a ball bouncing on the floor has been measured using the application Oscilloscope on the iPhone. In this article, we present the use of an Android device as a low-cost alternative for a signal generator. We use the Signal Generator application installed on the Android device along with an amplifier circuit.
Requirements for Real-Time Laboratory Experimentation over the Internet.
ERIC Educational Resources Information Center
Salzmann, C.; Latchman, H. A.; Gillet, D.; Crisalle, O. D.
A prototype system based on an inverted pendulum is used to study the Quality of Service and discuss requirements of remote-experimentation systems utilized for carrying out control engineering experiments over the Internet. This class of applications involves the transmission over the network of a variety of data types with their own peculiar…
DOT National Transportation Integrated Search
1995-01-01
This report (1) identified and characterized Virginia's nonpolishing aggregates in terms of their wet skid resistance, (2) compared the standard ASTM E 274-90 skid test to the British Accelerated Polishing Machine (BAPM) and British PendulumTester (B...
NASA Astrophysics Data System (ADS)
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
NASA Astrophysics Data System (ADS)
Matthews, Michael R.
2004-11-01
Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.
Low blow Charpy impact of silicon carbides
NASA Technical Reports Server (NTRS)
Abe, H.; Chandan, H. C.; Bradt, R. C.
1978-01-01
The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.
Mukdadi, Osama; Shandas, Robin
2004-01-01
Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.
Modeling and Model Identification of Autonomous Underwater Vehicles
2015-06-01
setup, based on a quadrifilar pendulum , is developed to measure the moments of inertia of the vehicle. System identification techniques, based on...parametric models of the platforms: an individual channel excitation approach and a free decay pendulum test. The former is applied to THAUS, which can...excite the system in individual channels in four degrees of freedom. These results are verified in the free decay pendulum setup, which has the
NASA Technical Reports Server (NTRS)
Gracey, William
1948-01-01
A simplified compound-pendulum method for the experimental determination of the moments of inertia of airplanes about the x and y axes is described. The method is developed as a modification of the standard pendulum method reported previously in NACA report, NACA-467. A brief review of the older method is included to form a basis for discussion of the simplified method. (author)
A Clinically Realistic Large Animal Model of Intra-Articular Fracture
2014-12-01
pendulum system for measuring energy absorption during fracture insult to large animal joints in vivo. J Biomech Eng. 2014 Jun;136(6):064502. PMID:24760051...Model 4. Yucatan Minipig 5. Impact 6. Pendulum 7. Mankin Scoring 8. Inflammatory Cytokines 9. Gait Analysis 10. Incongruity 3. OVERALL...primarily hardware upgrades and ex-vivo experimentation of the pendulum . 3.2.a Device Upgrades The primary hardware upgrade was to instrument the
Novel Out-Coupling Techniques for Terahertz Free Electron Lasers
2012-06-01
4 1. FEL “ Pendulum ” Equation and Electron Dynamics .......................4 2. FEL...4 B. FEL THEORY 1. FEL “ Pendulum ” Equation and Electron Dynamics The dynamics of electron motion as it passes through the undulator are governed...I.5, then the FEL “ pendulum equation” is derived , (I.7) where is the dimensionless laser field amplitude[1]. From this, it is shown that changes
Nguyen, Huong Ngoc; Hardesty, Melissa; Hong, Khuat Thu
2011-11-01
Having emerged only recently due to fast urbanisation and globalisation, pendulum migrant labourers in Vietnam are economically, culturally and socially difficult to locate - though they are estimated to number in their millions. Defined by their frequent migration between village and city, pendulum migrant labourers occupy an extended period of liminality. Are they traditional villagers or liberal city people when it comes to sex? Does city life radically change their views on sexuality? Starting with the premise that living environments play a key role in structuring the practical and symbolic realities of sex, this paper explores how extended periods of circular migration between the village and city - living environments that differ markedly in terms of socioeconomic and cultural conditions - affect the sexual views and perspectives of Vietnamese pendulum migrant labourers. Analysis from in-depth interviews with 23 married pendulum migrant labourers revealed that even though they had been living the pendulum life for several years, they continued to identify themselves, sexually, as traditional villagers. Among labourers the link between sexuality and living environment was a matter of pragmatism - matching 'suitable' sexual behaviour to social, even if imagined, location - and of privilege or 'leagues' - matching behaviour and comportment to social pedigree.
Kim, Yong-Wook
2013-01-01
. [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test–retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test–retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95–0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = −0.77– −0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity. PMID:24259775
Kim, Yong-Wook
2013-10-01
. [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test-retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95-0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = -0.77- -0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity.
Foucault pendulum with eddy-current damping of the elliptical motion
NASA Astrophysics Data System (ADS)
Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.
1984-10-01
A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2017-12-01
In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
NASA Astrophysics Data System (ADS)
Long, D. M.; Murphy, P.; Graham, G.; Carley, E. P.; Pérez-Suárez, D.
2017-12-01
Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high-cadence synoptic data provided by the Solar Dynamics Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) were found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1975-01-01
A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.
Investigation of mesoscale meteorological phenomena as observed by geostationary satellite
NASA Technical Reports Server (NTRS)
Brundidge, K. C.
1982-01-01
Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.
Loram, Ian D; Lakie, Martin
2002-01-01
In standing, there are small sways of the body. Our interest is to use an artificial task to illuminate the mechanisms underlying the sways and to account for changes in their size. Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. By giving full attention to minimising sway subjects could systematically reduce pendulum movement. The pendulum position, the torque generated at each ankle and the soleus and tibialis anterior EMGs were recorded. Explanations about how the human inverted pendulum is balanced usually ignore the fact that balance is maintained over a range of angles and not just at one angle. Any resting equilibrium position of the pendulum is unstable and in practice temporary; movement to a different resting equilibrium position can only be accomplished by a biphasic ‘throw and catch’ pattern of torque and not by an elastic mechanism. Results showed that balance was achieved by the constant repetition of a neurally generated ballistic-like biphasic pattern of torque which can control both position and sway size. A decomposition technique revealed that there was a substantial contribution to changes in torque from intrinsic mechanical ankle stiffness; however, by itself this was insufficient to maintain balance or to control position. Minimisation of sway size was caused by improvement in the accuracy of the anticipatory torque impulses. We hypothesise that examination of centre of mass and centre of pressure data for quiet standing will duplicate these results. PMID:11986396
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.
Morphological evolution of spiders predicted by pendulum mechanics.
Moya-Laraño, Jordi; Vinković, Dejan; De Mas, Eva; Corcobado, Guadalupe; Moreno, Eulalia
2008-03-26
Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders). Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.
Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system
Rojas-Líbano, Daniel
2008-01-01
Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484
Let's Get Physical: Teaching Physics Through Gymnastics
NASA Astrophysics Data System (ADS)
Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.
2018-01-01
The concept of embodied learning—that we can learn with our bodies and with our minds—is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of exploring physical phenomena through body movements. Sport has long served as a guide for both illustrating and experiencing physical concepts and phenomena, with a particularly relevant example being the sport of gymnastics. Here, the practitioner is subjected to a wide range of forces and torques, and experiences translational and rotational motions, all guided by control of body positioning, shape, strength, and leverage. Smith provides a comprehensive study of the mechanics used to analyze gymnastic movements, which includes core concepts such as force balance, leverage and torque, center of mass and stability, moment of inertia, ballistic motion, pendulum motion, and circular motion. For life science majors, gymnastics also provides relevant physical examples of biomechanics and the physical limits of biological materials (skin, bones, ligaments). The popularity of gymnastics—consider the phenomenon of Simone Biles—makes it broadly accessible and engaging, particularly across genders.
Experimental evidence of coherent transport.
Flores-Olmedo, E; Martínez-Argüello, A M; Martínez-Mares, M; Báez, G; Franco-Villafañe, J A; Méndez-Sánchez, R A
2016-04-28
Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations.
Experimental evidence of coherent transport
Flores-Olmedo, E.; Martínez-Argüello, A. M.; Martínez-Mares, M.; Báez, G.; Franco-Villafañe, J. A.; Méndez-Sánchez, R. A.
2016-01-01
Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations. PMID:27121226
NASA Astrophysics Data System (ADS)
Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji
2016-04-01
There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.
Stability of post-fertilization traveling waves
NASA Astrophysics Data System (ADS)
Flores, Gilberto; Plaza, Ramón G.
This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.
The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.
Understanding "Human" Waves: Exploiting the Physics in a Viral Video
ERIC Educational Resources Information Center
Ferrer-Roca, Chantal
2018-01-01
Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…
A laboratory analogue of the event horizon using slow light in an atomic medium.
Leonhardt, Ulf
2002-01-24
Singularities underlie many optical phenomena. The rainbow, for example, involves a particular type of singularity-a ray catastrophe-in which light rays become infinitely intense. In practice, the wave nature of light resolves these infinities, producing interference patterns. At the event horizon of a black hole, time stands still and waves oscillate with infinitely small wavelengths. However, the quantum nature of light results in evasion of the catastrophe and the emission of Hawking radiation. Here I report a theoretical laboratory analogue of an event horizon: a parabolic profile of the group velocity of light brought to a standstill in an atomic medium can cause a wave singularity similar to that associated with black holes. In turn, the quantum vacuum is forced to create photon pairs with a characteristic spectrum, a phenomenon related to Hawking radiation. The idea may initiate a theory of 'quantum' catastrophes, extending classical catastrophe theory.
Does vegetation prevent wave erosion of salt marsh edges?
Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H
2009-06-23
This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.
NASA Astrophysics Data System (ADS)
Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref
2017-11-01
This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
NASA Astrophysics Data System (ADS)
Tsuchiizu, Masahisa; Kawaguchi, Kouki; Yamakawa, Youichi; Kontani, Hiroshi
2018-04-01
Recently, complex rotational symmetry-breaking phenomena have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various unconventional charge susceptibilities in an unbiased way by applying the functional-renormalization-group method to the d -p Hubbard model. Without assuming the wave vector of the order parameter, we reveal that the most dominant instability is the uniform (q =0 ) charge modulation on the px and py orbitals, which possesses d symmetry. This uniform nematic order triggers another nematic p -orbital density wave along the axial (Cu-Cu) direction at Qa≈(π /2 ,0 ) . It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at q =Qa is triggered by the uniform order. The predicted multistage nematic transitions are caused by Aslamazov-Larkin-type fluctuation-exchange processes.
Does vegetation prevent wave erosion of salt marsh edges?
Feagin, R. A.; Lozada-Bernard, S. M.; Ravens, T. M.; Möller, I.; Yeager, K. M.; Baird, A. H.
2009-01-01
This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves. PMID:19509340
Integrated Data Collection and Analysis Project: Friction Correlation Study
2015-08-01
methods authorized in AOP-7 include Pendulum Friction, Rotary Friction, Sliding Friction (ABL), BAM Friction and Steel/Fiber Shoe Methods. The...sensitivity can be obtained by Pendulum Friction, Rotary Friction, Sliding Friction (such as the ABL), BAM Friction and Steel/Fiber Shoe Methods.3, 4 Within...Figure 4.16 A variable compressive force is applied downward through the wheel hydraulically (50-1995 psi). The 5 kg pendulum impacts (8 ft/sec is the
Quantum Simulation and Quantum Sensing with Ultracold Strontium
2015-09-18
quantum Kapitza pendulum , a novel Floquet system which we are investigating using modulated optical lattices. We have proposed and are developing...another goal of our AFOSR YIP project. To this end, we have developed the first theoretical treatment of a lattice-based quantum Kapitza pendulum . We have...classical single-particle analogue of this phase occurs in a rigid pendulum with an oscillating support (known as a Kapitza pendu- lum [9]). To prepare for
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
Model propellant slosh for Europa Clipper using two pendulums such that controls engineers can predict slosh behavior during the mission. Importance of predicting propellant slosh; (1) Sloshing changes CM (center of mass) of spacecraft and exerts forces and torques on spacecraft. (2) Avoid natural frequencies of structures. (3) Size ACS (Attitude Control Systems) thrusters to counteract forces and torques. Can model sloshing fluid as two pendulums with specific parameters (mass, length, damping),
2011-03-01
for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13
Simple pendulum for blind students
NASA Astrophysics Data System (ADS)
Goncalves, A. M. B.; Cena, C. R.; Alves, D. C. B.; Errobidart, N. C. G.; Jardim, M. I. A.; Queiros, W. P.
2017-09-01
Faced with the need to teach physics to the visually impaired, in this paper we propose a way to demonstrate the dependence of distance and time in a pendulum experiment to blind students. The periodic oscillation of the pendulum is translated, by an Arduino and an ultrasonic sensor, in a periodic variation of frequency in a speaker. The main advantage of this proposal is the possibility that a blind student understands the movement without necessity of touching it.
Precision Measurement of Distribution of Film Thickness on Pendulum for Experiment of G
NASA Astrophysics Data System (ADS)
Liu, Lin-Xia; Guan, Sheng-Guo; Liu, Qi; Zhang, Ya-Ting; Shao, Cheng-Gang; Luo, Jun
2009-09-01
Distribution of film thickness coated on the pendulum of measuring the Newton gravitational constant G is determined with a weighing method by means of a precision mass comparator. The experimental result shows that the gold film on the pendulum will contribute a correction of -24.3 ppm to our G measurement with an uncertainty of 4.3 ppm, which is significant for improving the G value with high precision.
Inquiry learning: Students' perception of light wave phenomena in an informal environment
NASA Astrophysics Data System (ADS)
Ford, Ken
This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging lenses, concave and convex mirrors in an informal science setting. The sample used in the study consisted of 40 subjects (15 males and 25 females) in a college program at a University located in the Southern region of the United States. The participants were selected using a convenient sampling process from a population enrolled in a pre-calculus class and a physics class. The participants were engaged in pretest on light wave phenomena using the Inquiry Laboratory Light Island exhibit. After the pretest, the participants were engaged in activities, where they reflected white light off the surface of concave and convex mirrors, refracted white light through converging and diverging lens, and passed white light through a prism. They also made observations of the behavior and characteristics of light from the patterns that it created. After three weeks, the participants were given the Inquiry Laboratory Light Island exhibit posttest. The findings of the study indicated that the means yielded a higher average for the participants' posttest scores. The t-Test results were statistically significant, which confirmed that the concepts of light wave phenomena were perceived and learned by the participants. The Inquiry Laboratory survey questions analyzed using the chi-square test suggested that participants were in agreement with the concepts about light. In addition, Cramer's phi and Cramer's V suggested a moderate relationship and association between the genders of the participants on the concepts of light wave phenomena. Furthermore, the interview and observation protocol processes confirmed that students perceived and learned the science concepts of light wave phenomena by the way they responded to the researcher's interview questions. Implications from the study suggested that further study be carried out on the learning process in an informal science setting and should be supported by corporations, businesses, educational institutions, and organizations. Although the findings from this study aided in the development of a structured approach that enhanced student motivation, interest, and learning about light waves in physics/physical science there is still a need to do more research in this area.
NASA Astrophysics Data System (ADS)
Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.
1985-07-01
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R
2015-08-01
Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.
NASA Technical Reports Server (NTRS)
Kundu, M. R. (Editor); Gergely, T. E.
1980-01-01
Papers are presented in the areas of the radio characteristics of the quiet sun and active regions, the centimeter, meter and decameter wavelength characteristics of solar bursts, space observations of low-frequency bursts, theoretical interpretations of solar active regions and bursts, joint radio, visual and X-ray observations of active regions and bursts, and the similarities of stellar radio characteristics to solar radio phenomena. Specific topics include the centimeter and millimeter wave characteristics of the quiet sun, radio fluctuations arising upon the transit of shock waves through the transition region, microwave, EUV and X-ray observations of active region loops and filaments, interferometric observations of 35-GHz radio bursts, emission mechanisms for radio bursts, the spatial structure of microwave bursts, observations of type III bursts, the statistics of type I bursts, and the numerical simulation of type III bursts. Attention is also given to the theory of type IV decimeter bursts, Voyager observations of type II and III bursts at kilometric wavelengths, radio and whitelight observations of coronal transients, and the possibility of obtaining radio observations of current sheets on the sun.
Projection operators for the Rossby and Poincare waves in a beta-plane approximation
NASA Astrophysics Data System (ADS)
Lebedkina, Anastasia; Ivan, Karpov; Sergej, Leble
2013-04-01
Study of the wave structure variations of atmospheric parameters is a due to a solving of number practical problems associated with the weather and the state of the environment requires knowledge of the spectral characteristics of atmospheric waves. Modern methods, for identification of wave disturbances in the atmosphere, based on the harmonic analysis of observations. The success of these application is determined by the presence of sets of experimental data obtained in the long-term (over the period of the wave) of the atmosphere on a large number of independent observation stations. Currently, the system of observation in the atmosphere, both terrestrial and satellite, unevenly covers the surface of the Earth and, despite the length of observation, doesn't solve the problem of identification of waves. Thus, the problem of identification wave disturbances conflicts fundamental difficulties, and solution needs in a new methods for the analysis of observations. The work complete a procedure to construct a projection operators for large-scale waves in the atmosphere. Advantage of this method is the ability to identify type of wave and its characteristics only on the base of a time series of observations. It means that the problem of waves identification can be solved on the basis of only one station observations. In the method assumed that the observed spatial and temporal structure of the atmosphere is determined by the superposition of different type waves. For each type of waves involved in this superposition, dispersion and polarization relations (between the components of the wave vector of the field) expect as known. Based on these assumptions, we can construct projection operators on the initial superposition state on the linear basis of vectors corresponding to the known type of atmospheric waves. The action of the design on the superposition state, which, in fact, is the result of observations, determine the amplitude and phase of the waves of a known type. The idea to use the polarization relations for the classification of waves originated in radio physics in the works of A. A. Novikov. In the theory of the electromagnetic field polarization relations is traditionally included in the analysis of wave phenomena. In the theory of acoustic-gravity waves, projection operators were introduced in a works of S. B. Leble. The object of study is a four-dimentional vector (components of the velocity, pressure and temperature). Based on these assumptions, we can construct the projection operators for superposition state on the linear basis, corresponding to the well-known type of waves. In this paper we consider procedure for construction of a projection operators for planetary Rossby and Poincare waves in the Earth's atmosphere in the approximation of the "beta-plane". In a result of work we constructed projection operators in this approximation for Poincare and Rossby waves. The tests for operators shown, that separation of the contribution of corresponding waves from source of the wave field is possible. Estimation accuracy of the operators and results of applying operators to the data TEC presented.
VHF electromagnetic wave propagation
NASA Astrophysics Data System (ADS)
Gole, P.
Theoretical and experimental study of large-scale VHF propagation characteristics is presented. Certain phenomena that are difficult to model, such as the effects of ground near the antenna, are examined from a purely experimental point of view. The characteristics of electromagnetic waves over a spherical surface and through a medium having a certain refractive index, such as is the case for waves propagated over the earth's surface, are analytically described. Two mathematical models are used, one for the case of the receiver being within the radioelectric horizon of the transmitter and the other for when it is not. Propagation phenomena likely to increase the false alarm probability of an air surveillance radar are briefly considered.
NASA Technical Reports Server (NTRS)
Rodriguez, J. V.; Inan, U. S.; Li, Y. Q.; Holzworth, R. H.; Smith, A. J.; Orville, R. E.; Rosenberg, T. J.
1992-01-01
The relationships among cloud-to-ground (CG) lightning, sferics, whistlers, VLF amplitude perturbations, and other ionospheric phenomena occurring during substorm events were investigated using data from simultaneous ground-based observations of narrow-band and broad-band VLF radio waves and of CG lightning made during the 1987 Wave-Induced Particle Precipitation campaign conducted from Wallops Island (Virginia). Results suggest that the data collected on ionospheric phenomena during this event may represent new evidence of direct coupling of lightning energy to the lower ionosphere, either in conjunction with or in the absence of gyroresonant interactions between whistler mode waves and electrons in the magnetosphere.
Pendulum motions of extended lunar space elevator
NASA Astrophysics Data System (ADS)
Burov, A. A.; Kosenko, I. I.
2014-09-01
In the usual everyday life, it is well known that the inverted pendulum is unstable and is ready to fall to "all four sides," to the left and to the right, forward and backward. The theoretical studies and the lunar experience of moon robots and astronauts also confirms this property. The question arises: Is this property preserved if the pendulum is "very, very long"? It turns out that the answer is negative; namely, if the pendulum length significantly exceeds the Moon radius, then the radial equilibria at which the pendulum is located along the straight line connecting the Earth and Moon centers are Lyapunov stable and the pendulum does not fall in any direction at all. Moreover, if the pendulum goes beyond the collinear libration points, then it can be extended and manufactured from cables. This property was noted by F. A. Tsander and underlies the so-called lunar space elevator (e.g., see [1]). In the plane of the Earth and Moon orbits, there are some other equilibria which turn out to be unstable. The question is, Are there equilibria at which the pendulum is located outside the orbital plane? In this paper, we show that the answer is positive, but such equilibria are unstable in the secular sense. We also study necessary conditions for the stability of lunar pendulum oscillations in the plane of the lunar orbit. It was numerically discovered that stable and unstable equilibria alternate depending on the oscillation amplitude and the angular velocity of rotation. The study of the lunar elevator dynamics originates in [2]. The concept of lunar elevator was developed in detail in [3, 4]. Several classes of equilibria with the finiteness of the Moon size taken into account were studied in [5]. The possibility of location of an orbital station fixed to the Moon surface by a pair of tethers was investigated in [6]. The problem of orientation of the terminal station of the lunar space elevator was studied in [7]. The influence of the tether length variations on the motion of the lunar tether system was considered in [8]. The alternation of stable and unstable flat oscillations is well known in the problem of satellite oscillations in a circular orbit [9, 10].
Multi-scale phenomena of rotation-modified mode-2 internal waves
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek; Coutino, Aaron
2018-03-01
We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.
Robotic system construction with mechatronic components inverted pendulum: humanoid robot
NASA Astrophysics Data System (ADS)
Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan
2017-03-01
Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.
Dynamic Modeling and Simulation of an Underactuated System
NASA Astrophysics Data System (ADS)
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
NASA Astrophysics Data System (ADS)
Shiraishi, Hiroaki; Yamada, Ryuhei; Kobayashi, Naoki; Murakami, Hideki; Takeuchi, Nozomu; Tanaka, Satoshi; Fujimura, Akio
A short-period passive seismometer onboard the lunar penetrator is modified as two different types of long-period active sensors; one is a conventional force-balanced accelerometer, and the other is a so-called PID-controlled feedback velocity sensor. The former adopts the forcebalance principle, which means that the external force on the sensor mass is compensated by an electro-magnetic force in the opposite direction, using a displacement transducer to sense the mass motion. The latter has a broader frequency response in velocity output, by an additional installation of integrator/derivator circuits. The original short-period seismometer is a classical electro-magnetic type one with velocity output consisted of signal coils as a pendulum mass suspended by a pair of diaphragm springs and magnetic circuits fixed to the reference frame. Because it was developed for the former LUNAR-A penetrator mission, it has the shock-durability up to 10,000G at a high-speed impact process and it demonstrates to work well even under low temperature condition. When several little modifications are made for this short-period seismometer, the sensor performance in the frequency ranges of 10 to 20 seconds is considerably improved and appropriate for detection of the longer body waves and possible surface waves on any other terrestrial planets. However, the present lunar penetrator can not install both the active-type seismometers for a long-lived observation, because of the strict limitation of power consumption. If some more electrical power is supplied, we will be able to apply either of these improved versions for lunar soft-lander. And also, if the possible Martian penetrator with an after-body structure would be continuously operated by the solar power battery, we could do just the same. In this paper, we present some results of laboratory and field tests and compare them with the original short-period sensor, and then we describe the future prospects for application on the lunar and planetary explorations.
Reachability and Real-Time Actuation Strategies for the Active SLIP Model
2015-06-01
spring leg, the Spring Loaded Inverted Pendulum (SLIP) is a prevalent model for analyzing running and hopping. In this work we consider an actuated...forced symmetry of the stance phase for the Spring-Loaded Inverted Pendulum , In Proceedings of the 2012 IEEE International Conference on Robotics and...Networks. Automatica, 49(1):206-213, 2013 (v) G. Piovan and K. Byl. Enforced symmetry of the stance phase for the spring-loaded inverted pendulum . In
Lyapunov optimal feedback control of a nonlinear inverted pendulum
NASA Technical Reports Server (NTRS)
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
UT Austin Villa 2011: 3D Simulation Team Report
2011-01-01
inverted pendulum model omnidirectional walk engine based on one that was originally designed for the real Nao robot [7]. The omnidirectional walk is...using a double linear inverted pendulum , where the center of mass is swinging over the stance foot. In addition, as in Graf et al.’s work [7], we use...between the inverted pendulums formed by the respective stance feet. Notation Description maxStep∗i Maximum step sizes allowed for x, y, and θ y
Using a Modified Simple Pendulum to Find the Variations in the Value of “g”
NASA Astrophysics Data System (ADS)
Arnold, Jonathan P.; Efthimiou, C.
2007-05-01
The simple pendulum is one of the most known and studied system of Newtonian Mechanics. It also provides one of the most elegant and simple devices to measure the acceleration of gravity at any location. In this presentation we will revisit the problem of measuring the acceleration of gravity using a simple pendulum and will present a modification to the standard technique that increases the accuracy of the measurement.