Science.gov

Sample records for penelope studien fuer

  1. Introduction to Penelope

    NASA Technical Reports Server (NTRS)

    Guaspari, David

    1995-01-01

    A formal program verification is a (mathematical) proof that a program executed according to its intended model meets some specification. This proves that the algorithm defined by the program is correct in the precise technical sense of being consistent with a particular specification. A program correct in this sense is free from a large and important class of errors, even though its behavior may still produce unintended results--either because the implementation of the programming language itself does not match the model of execution, or because the specification does not correctly express the user's intentions. Penelope is a prototype system for interactively developing and verifying programs that are written in a rich subset of sequential Ada. Penelope can be used to develop a program and its correctness proof incrementally, and in concert with one another. Incrementality is used in a number of ways to help make verification more tractable and more productive. For example, if an already-verified program is modified, one can attempt to prove the modified version by replaying and modifying the original verification. Penelope's specification language, Larch/Ada, belongs to the family of Larch interface languages. Larch/Ada scales up properly, in the sense that it is demonstrably sound to decompose a system hierarchically and reason locally about the implementation of each piece. Penelope has been applied in various demonstration projects--for specification (guidance control, distributed operating systems), verification (of off-the-shelf code), and formal development (by non-expert as well as expert users). Some features of Penelope have been embodied in Ada Wise, a lint-like non-interactive tool that warns of the potential for certain dynamic semantic errors in Ada programs.

  2. [Twentieth-century Penelopes: popular culture revisited].

    PubMed

    Favaro, Cleci Eulalia

    2010-01-01

    During their settlement of the so-called Old Italian Colonies of Rio Grande do Sul, immigrants constructed a set of positive values that were to serve as an emotional support and a means of outside communication. When women immigrants embroidered images and sayings on wall hangings or kitchen towels made of rustic fabric, they helped nourish the dream of a better life, sought by all and achieved by some. The objects crafted by these twentieth-century Penelopes bear witness to a way of doing, thinking, and acting. Local museums and exhibits have fostered the recovery of old-time embroidery techniques and themes; sold at open-air markets and regional festivals, these products represent income for women whose age excludes them from the formal labor market.

  3. Penelope retroelements from Drosophila virilis are active after transformation of Drosophila melanogaster

    PubMed Central

    Pyatkov, Konstantin I.; Shostak, Natalia G.; Zelentsova, Elena S.; Lyozin, George T.; Melekhin, Michael I.; Finnegan, David J.; Kidwell, Margaret G.; Evgen'ev, Michael B.

    2002-01-01

    The Penelope family of retroelements was first described in species of the Drosophila virilis group. Intact elements encode a reverse transcriptase and an endonuclease of the UvrC type, which may play a role in Penelope integration. Penelope is a key element in the induction of D. virilis hybrid dysgenesis, which involves the mobilization of several unrelated families of transposable elements. We here report the successful introduction of Penelope into the germ line of Drosophila melanogaster by P element-mediated transformation with three different constructs. Penelope is actively transcribed in the D. melanogaster genome only in lines transformed with a construct containing a full-length Penelope clone. The transcript is identical to that detected in D. virilis dysgenic hybrids. Most newly transposed Penelope elements have a very complex organization. Significant proliferation of Penelope copy number occurred in some lines during the 24-month period after transformation. The absence of copy number increase with two other constructs suggests that the 5′ and/or 3′ UTRs of Penelope are required for successful transposition in D. melanogaster. No insect retroelement has previously been reported to be actively transcribed and to increase in copy number after interspecific transformation. PMID:12451171

  4. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs.

    PubMed

    Cervera, Amelia; De la Peña, Marcos

    2014-11-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  5. Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

    PubMed Central

    Cervera, Amelia; De la Peña, Marcos

    2014-01-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  6. Distribution and phylogeny of Penelope-like elements in eukaryotes.

    PubMed

    Arkhipova, Irina R

    2006-12-01

    Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal genomes, the reverse transcriptase moiety can also be found in several protists, fungi, and plants, indicating its ancient origin. A comprehensive phylogenetic analysis of PLEs was conducted, based on extended sequence alignments and a considerably expanded data set. PLEs exhibit the pattern of evolution similar to that of non-LTR retrotransposons, which form deep-branching clades dating back to the Precambrian era. However, PLEs seem to have experienced a much higher degree of lineage losses than non-LTR retrotransposons. It is suggested that PLEs and non-LTR retrotransposons are included into a larger eTPRT (eukaryotic target-primed) group of retroelements, characterized by 5' truncation, variable target-site duplication, and the potential of the 3' end to participate in formation of non-autonomous derivatives.

  7. Coincidence summing corrections for volume samples using the PENELOPE/penEasy Monte Carlo code.

    PubMed

    Vargas, A; Camp, A; Serrano, I; Duch, M A

    2014-05-01

    The coincidence summing correction factors estimated with penEasy, a steering program for the Monte Carlo simulation code PENELOPE, and with penEasy-eXtended, an in-house modified version of penEasy, are presented and discussed for (152)Eu and (134)Cs in volume sources. The geometries and experimental data were obtained from an intercomparison study organized by the International Committee for Radionuclide Metrology (ICRM). A significant improvement in the results calculated with PENELOPE/penEasy was obtained when X-rays are included in the (152)Eu simulations. PMID:24326316

  8. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    NASA Astrophysics Data System (ADS)

    Gaisbauer, D.; Konorov, I.; Steffen, D.; Paul, S.

    2016-07-01

    The aim of PENeLOPE (Precision Experiment on Neutron Lifetime Operating with Proton Extraction) at the Forschungsreaktor München II is a high-precision measurement of the neutron lifetime and thereby an improvement of the parameter's precision by one order of magnitude. In order to achieve a higher accuracy, modern experiments naturally require state-of-the-art readout electronics, as well as high-performance data acquisition systems. This paper presents the self-triggering readout system designed for PENeLOPE which features a continuous pedestal tracking, configurable signal detection logic, floating ground up to 30 kV, cryogenic environment and the novel Switched Enabling Protocol (SEP). The SEP is a time-division multiplexing transport level protocol developed for a star network topology.

  9. penORNL: a parallel Monte Carlo photon and electron transport package using PENELOPE

    SciTech Connect

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high-performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  10. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    NASA Astrophysics Data System (ADS)

    Gaisbauer, D.; Bai, Y.; Konorov, I.; Paul, S.; Steffen, D.

    2016-02-01

    PENeLOPE is a neutron lifetime measurement developed at the Technische Universität München and located at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) aiming to achieve a precision of 0.1 seconds. The detector for PENeLOPE consists of about 1250 Avalanche Photodiodes (APDs) with a total active area of 1225 cm2. The decay proton detector and electronics will be operated at a high electrostatic potential of -30 kV and a magnetic field of 0.6 T. This includes shaper, preamplifier, ADC and FPGA cards. In addition, the APDs will be cooled to 77 K. The 1250 APDs are divided into 14 groups of 96 channels, including spares. A 12-bit ADC digitizes the detector signals with 1 MSps. A firmware was developed for the detector including a self-triggering readout with continuous pedestal calculation and configurable signal detection. The data transmission and configuration is done via the Switched Enabling Protocol (SEP). It is a time-division multiplexing low layer protocol which provides determined latency for time critical messages, IPBus, and JTAG interfaces. The network has a n:1 topology, reducing the number of optical links.

  11. The web of Penelope. Regulating women's night work: an unfinished job?

    PubMed

    Riva, Michele A; Scordo, Francesco; Turato, Massimo; Messina, Giovanni; Cesana, Giancarlo

    2015-12-01

    Even though unhealthy consequences of night work for women have been evidenced by international scientific literature only in recent years, they were well acknowledged from ancient times. This essay traces the historical evolution of women's health conditions at work, focusing specifically on nocturnal work. Using the legendary web of Penelope of ancient Greek myths as a metaphor, the paper analyses the early limitations of night-work for women in pre-industrial era and the development of a modern international legislation on this issue, aimed at protecting women's health at the beginning of the twentieth century. The reform of national legislations in a gender-neutral manner has recently abolished gender disparities in night-work, but it seems it also reduced women's protection at work. PMID:27172729

  12. The web of Penelope. Regulating women's night work: an unfinished job?

    PubMed

    Riva, Michele A; Scordo, Francesco; Turato, Massimo; Messina, Giovanni; Cesana, Giancarlo

    2015-12-01

    Even though unhealthy consequences of night work for women have been evidenced by international scientific literature only in recent years, they were well acknowledged from ancient times. This essay traces the historical evolution of women's health conditions at work, focusing specifically on nocturnal work. Using the legendary web of Penelope of ancient Greek myths as a metaphor, the paper analyses the early limitations of night-work for women in pre-industrial era and the development of a modern international legislation on this issue, aimed at protecting women's health at the beginning of the twentieth century. The reform of national legislations in a gender-neutral manner has recently abolished gender disparities in night-work, but it seems it also reduced women's protection at work.

  13. Dosimetric characterization of an 192Ir brachytherapy source with the Monte Carlo code PENELOPE.

    PubMed

    Casado, Francisco Javier; García-Pareja, Salvador; Cenizo, Elena; Mateo, Beatriz; Bodineau, Coral; Galán, Pedro

    2010-01-01

    Monte Carlo calculations are highly spread and settled practice to calculate brachytherapy sources dosimetric parameters. In this study, recommendations of the AAPM TG-43U1 report have been followed to characterize the Varisource VS2000 (192)Ir high dose rate source, provided by Varian Oncology Systems. In order to obtain dosimetric parameters for this source, Monte Carlo calculations with PENELOPE code have been carried out. TG-43 formalism parameters have been presented, i.e., air kerma strength, dose rate constant, radial dose function and anisotropy function. Besides, a 2D Cartesian coordinates dose rate in water table has been calculated. These quantities are compared to this source reference data, finding results in good agreement with them. The data in the present study complement published data in the next aspects: (i) TG-43U1 recommendations are followed regarding to phantom ambient conditions and to uncertainty analysis, including statistical (type A) and systematic (type B) contributions; (ii) PENELOPE code is benchmarked for this source; (iii) Monte Carlo calculation methodology differs from that usually published in the way to estimate absorbed dose, leaving out the track-length estimator; (iv) the results of the present work comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques, in regards to dose rate uncertainty values and established differences between our results and reference data. The results stated in this paper provide a complete parameter collection, which can be used for dosimetric calculations as well as a means of comparison with other datasets from this source.

  14. Using Penelope to assess the correctness of NASA Ada software: A demonstration of formal methods as a counterpart to testing

    NASA Technical Reports Server (NTRS)

    Eichenlaub, Carl T.; Harper, C. Douglas; Hird, Geoffrey

    1993-01-01

    Life-critical applications warrant a higher level of software reliability than has yet been achieved. Since it is not certain that traditional methods alone can provide the required ultra reliability, new methods should be examined as supplements or replacements. This paper describes a mathematical counterpart to the traditional process of empirical testing. ORA's Penelope verification system is demonstrated as a tool for evaluating the correctness of Ada software. Grady Booch's Ada calendar utility package, obtained through NASA, was specified in the Larch/Ada language. Formal verification in the Penelope environment established that many of the package's subprograms met their specifications. In other subprograms, failed attempts at verification revealed several errors that had escaped detection by testing.

  15. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    SciTech Connect

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-11-15

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRU 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth

  16. Monte Carlo Simulation of Secondary Fluorescence using a New Graphical Interface for PENELOPE

    NASA Astrophysics Data System (ADS)

    Pinard, P. T.; Demers, H.; Llovet, X.; Gauvin, R.; Salvat, F.

    2011-12-01

    Secondary fluorescence is not a negligible factor in the chemical concentration measurement of many minerals (quartz, olivine, etc.) using the electron probe microanalysis (EPMA) technique (Llovet and Galán, 2003). The importance of this phenomenon depends on the chemical species present in the mineral but also, in case of heterogeneous samples, on their relative location to the measurement position. Monte Carlo codes are useful tools to select the optimal measurement conditions as well as to correct afterwards the results for phenomenon such as secondary fluorescence. PENELOPE (Salvat et al., 2011) is a Fortran Monte Carlo code for simulation of coupled electron-photon transport in matter that allows a detailed interpretation of experimental results of electron spectroscopy and microscopy. PENEPMA is a dedicated main program of PENELOPE designed to perform simulations with the same parameters as in actual EPMA measurements. Complex geometries can be defined to emulate the internal structure of a sample. Photon interactions are simulated in chronological succession, therefore allowing the calculation of secondary fluorescence. These features combined with the use of the most reliable physical interaction models make PENEPMA a unique Monte Carlo code for EPMA analysis. However, the original version of PENEPMA had a steep learning curve as it required the user to manually create several input files to run a single simulation. To facilitate the use of the code, a graphical interface was recently developed. Written in the cross-platform programming language Python, it simplifies the setup of simulations and the analysis of the results. It also includes optimized simulation parameters which increases the efficiency of the simulations (i.e. reduces the computation time) by a factor of up to 8. In this communication, we describe the structure and capabilities of this graphical interface. It not only eases the definition of the problem, but also provides more extensive

  17. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    NASA Astrophysics Data System (ADS)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  18. The complexities of female aging: Four women protagonists in Penelope Lively's novels.

    PubMed

    Oró-Piqueras, Maricel

    2016-01-01

    Penelope Lively is a well-known contemporary British author who has published a good number of novels and short stories since she started her literary career in her late thirties. In her novels, Lively looks at the lives of contemporary characters moulded by specific historical as well as cultural circumstances. Four of her novels, published from 1987 to 2004, present middle-aged and older women as their main protagonists. Through the voices and thoughts of these female characters, the reader is presented with a multiplicity of realities in which women find themselves after their mid-fifties within a contemporary context. Being a woman and entering into old age is a double-sided jeopardy which has increasingly been present in contemporary fiction. Scholars such as Simone de Beauvoir (1949) and Susan Sontag (1972) were among the first to point out a "double standard of aging" when they assured that women were punished when showing external signs of aging much sooner than men. In Lively's four novels, the aging protagonists present their own stories and, through them, as well as through the voices of those around them, the reader is invited to go beyond the aging appearance of the female protagonists while challenging the limiting conceptions attached to the old body and, by extension, to the social and cultural overtones associated with old age.

  19. Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors

    NASA Astrophysics Data System (ADS)

    Carvajal, M. A.; García-Pareja, S.; Guirado, D.; Vilches, M.; Anguiano, M.; Palma, A. J.; Lallena, A. M.

    2009-10-01

    In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of ~5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a 60Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0o, 15o, 30o, 45o, 60o and 75o. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.

  20. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.

    PubMed

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  1. Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors.

    PubMed

    Carvajal, M A; García-Pareja, S; Guirado, D; Vilches, M; Anguiano, M; Palma, A J; Lallena, A M

    2009-10-21

    In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of approximately 5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a (60)Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees and 75 degrees. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered. PMID:19794247

  2. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers

    PubMed Central

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  3. The complexities of female aging: Four women protagonists in Penelope Lively's novels.

    PubMed

    Oró-Piqueras, Maricel

    2016-01-01

    Penelope Lively is a well-known contemporary British author who has published a good number of novels and short stories since she started her literary career in her late thirties. In her novels, Lively looks at the lives of contemporary characters moulded by specific historical as well as cultural circumstances. Four of her novels, published from 1987 to 2004, present middle-aged and older women as their main protagonists. Through the voices and thoughts of these female characters, the reader is presented with a multiplicity of realities in which women find themselves after their mid-fifties within a contemporary context. Being a woman and entering into old age is a double-sided jeopardy which has increasingly been present in contemporary fiction. Scholars such as Simone de Beauvoir (1949) and Susan Sontag (1972) were among the first to point out a "double standard of aging" when they assured that women were punished when showing external signs of aging much sooner than men. In Lively's four novels, the aging protagonists present their own stories and, through them, as well as through the voices of those around them, the reader is invited to go beyond the aging appearance of the female protagonists while challenging the limiting conceptions attached to the old body and, by extension, to the social and cultural overtones associated with old age. PMID:26880600

  4. Aspects of the ecology of Penelope superciliaris temminck, 1815 (Aves: Cracidae) in the Araripe National Forest, Ceará, Brazil.

    PubMed

    Thel, T N; Teixeira, P H R; Lyra-Neves, R M; Telino-Júnior, W R; Ferreira, J M R; Azevedo-Júnior, S M

    2015-11-01

    Guans are large frugivorous birds that inhabit Neotropical forests and play a fundamental role in seed dispersal and forest regeneration. Despite their ecological importance, the natural populations of these birds are increasingly threatened by deforestation and hunting pressure. The present study was conducted in the Araripe National Forest, Ceará (Brazil), with the objective of estimating population parameters (density and total population size) in the Rusty-margined Guan (Penelope superciliaris) and the White-browed Guan (Penelope jacucaca), as well as providing data on their feeding ecology, including seasonal variation and fruit morphology. The study was based on the monthly collection of data between November, 2011, and October, 2012. Population parameters were estimated using line transect surveys, while feeding ecology was studied by direct observation, and the collection of plant and fecal samples. The estimated population density of P. superciliaris was 19.17 individuals/km2 (CV=13.98%), with a mean of 0.13 sightings per 10 km walked. Penelope jacucaca was not encountered during the surveys. A total of 14 plant species were recorded in the diet of P. superciliaris, 12 by direct observation, and two from fecal samples. Fruit diameter varied from 6.3 ± 1.35 mm (Miconia albicans) to 29.9 ± 1.7 mm (Psidium sp.). Yellow was the most frequent fruit color (41.6%, n=5), with two species each (16.6%) providing black, green, and red fruits. Fleshy fruits of the baccate (50.0%, n=6) and drupe (33.3%, n=4) types were the most consumed. The data on population parameters and feeding ecology collected in the present study provide an important database for the development of effective management strategies by environmental agencies for the conservation of the populations of the two guan species. PMID:26628224

  5. Aspects of the ecology of Penelope superciliaris temminck, 1815 (Aves: Cracidae) in the Araripe National Forest, Ceará, Brazil.

    PubMed

    Thel, T N; Teixeira, P H R; Lyra-Neves, R M; Telino-Júnior, W R; Ferreira, J M R; Azevedo-Júnior, S M

    2015-11-01

    Guans are large frugivorous birds that inhabit Neotropical forests and play a fundamental role in seed dispersal and forest regeneration. Despite their ecological importance, the natural populations of these birds are increasingly threatened by deforestation and hunting pressure. The present study was conducted in the Araripe National Forest, Ceará (Brazil), with the objective of estimating population parameters (density and total population size) in the Rusty-margined Guan (Penelope superciliaris) and the White-browed Guan (Penelope jacucaca), as well as providing data on their feeding ecology, including seasonal variation and fruit morphology. The study was based on the monthly collection of data between November, 2011, and October, 2012. Population parameters were estimated using line transect surveys, while feeding ecology was studied by direct observation, and the collection of plant and fecal samples. The estimated population density of P. superciliaris was 19.17 individuals/km2 (CV=13.98%), with a mean of 0.13 sightings per 10 km walked. Penelope jacucaca was not encountered during the surveys. A total of 14 plant species were recorded in the diet of P. superciliaris, 12 by direct observation, and two from fecal samples. Fruit diameter varied from 6.3 ± 1.35 mm (Miconia albicans) to 29.9 ± 1.7 mm (Psidium sp.). Yellow was the most frequent fruit color (41.6%, n=5), with two species each (16.6%) providing black, green, and red fruits. Fleshy fruits of the baccate (50.0%, n=6) and drupe (33.3%, n=4) types were the most consumed. The data on population parameters and feeding ecology collected in the present study provide an important database for the development of effective management strategies by environmental agencies for the conservation of the populations of the two guan species.

  6. New method to perform dosimetric quality control of treatment planning system using PENELOPE Monte Carlo and anatomical digital test objects

    NASA Astrophysics Data System (ADS)

    Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jean-Pierre; Torfeh, Tarraf

    2010-04-01

    In this paper, we deepen the R&D program named DTO-DC (Digital Object Test and Dosimetric Console), which goal is to develop an efficient, accurate and full method to achieve dosimetric quality control (QC) of radiotherapy treatment planning system (TPS). This method is mainly based on Digital Test Objects (DTOs) and on Monte Carlo (MC) simulation using the PENELOPE code [1]. These benchmark simulations can advantageously replace experimental measures typically used as reference for comparison with TPS calculated dose. Indeed, the MC simulations rather than dosimetric measurements allow contemplating QC without tying treatment devices and offer in many situations (i.p. heterogeneous medium, lack of scattering volume...) better accuracy compared to dose measurements with classical dosimetry equipment of a radiation therapy department. Furthermore using MC simulations and DTOs, i.e. a totally numerical QC tools, will also simplify QC implementation, and enable process automation; this allows radiotherapy centers to have a more complete and thorough QC. The program DTO-DC was established primarily on ELEKTA accelerator (photons mode) using non-anatomical DTOs [2]. Today our aim is to complete and apply this program on VARIAN accelerator (photons and electrons mode) using anatomical DTOs. First, we developed, modeled and created three anatomical DTOs in DICOM format: 'Head and Neck', Thorax and Pelvis. We parallelized the PENELOPE code using MPI libraries to accelerate their calculation, we have modeled in PENELOPE geometry Clinac head of Varian Clinac 2100CD (photons mode). Then, to implement this method, we calculated the dose distributions in Pelvis DTO using PENELOPE and ECLIPSE TPS. Finally we compared simulated and calculated dose distributions employing the relative difference proposed by Venselaar [3]. The results of this work demonstrate the feasibility of this method that provides a more accurate and easily achievable QC. Nonetheless, this method, implemented

  7. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code.

    PubMed

    Reis, C Q M; Nicolucci, P

    2016-02-01

    The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams.

  8. A review of HER2-targeted therapy in breast and ovarian cancer: lessons from antiquity - CLEOPATRA and PENELOPE.

    PubMed

    Hodeib, Melissa; Serna-Gallegos, Tasha; Tewari, Krishnansu S

    2015-01-01

    Although breast and ovarian cancer have notable distinctions, there may exist parallel pathways that can be exploited for therapeutic gain. For example, the therapeutic arena in breast cancer has benefited greatly from available endocrine therapies as well as novel drugs designed to target the HER2 receptor, including trastuzumab, lapatinib, T-DM1 and pertuzumab. CLEOPATRA, a Phase III randomized clinical trial studying pertuzumab in women with HER2-amplified metastatic breast cancer, was practice-changing in 2014. Its counterpart, the Phase III randomized PENELOPE trial, was activated following promising Phase II data and studied pertuzumab in an enriched ovarian cancer patient population with low HER3 mRNA. This review will trace the development of anti-HER2 therapies in breast and ovarian cancer.

  9. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    SciTech Connect

    Chica, U.; Anguiano, M.; Lallena, A. M.; Vilches, M.

    2014-01-15

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  10. A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Kahraman, A.; Kaya, S.; Jaksic, A.; Yilmaz, E.

    2015-05-01

    Radiation-sensing Field Effect Transistors (RadFETs or MOSFET dosimeters) with SiO2 gate dielectric have found applications in space, radiotherapy clinics, and high-energy physics laboratories. More sensitive RadFETs, which require modifications in device design, including gate dielectric, are being considered for personal dosimetry applications. This paper presents results of a detailed study of the RadFET energy response simulated with PENELOPE Monte Carlo code. Alternative materials to SiO2 were investigated to develop high-efficiency new radiation sensors. Namely, in addition to SiO2, Al2O3 and HfO2 were simulated as gate material and deposited energy amounts in these layers were determined for photon irradiation with energies between 20 keV and 5 MeV. The simulations were performed for capped and uncapped configurations of devices irradiated by point and extended sources, the surface area of which is the same with that of the RadFETs. Energy distributions of transmitted and backscattered photons were estimated using impact detectors to provide information about particle fluxes within the geometrical structures. The absorbed energy values in the RadFETs material zones were recorded. For photons with low and medium energies, the physical processes that affect the absorbed energy values in different gate materials are discussed on the basis of modelling results. The results show that HfO2 is the most promising of the simulated gate materials.

  11. PENELOPE-2008 Monte Carlo simulation of gamma exposure induced by ⁶⁰Co and NORM-radionuclides in closed geometries.

    PubMed

    Merk, R; Kröger, H; Edelhäuser-Hornung, L; Hoffmann, B

    2013-12-01

    We present Monte Carlo simulations of the gamma exposure in closed rooms made of steel or concrete and contaminated by ⁶⁰Co or NORM radionuclides. The computer code PENELOPE-2008 (Salvat et al., 2009) was used. Our simulations for ⁶⁰Co suggest considering detailed Monte Carlo simulations in future recommendations on clearance and exemption of materials with low radioactivity. For NORM nuclides our calculations suggest that Monte Carlo simulations are a possible alternative in case a material fails the dose rate criteria by using the RP 112 screening method.

  12. Electron beam quality kQ,Q0 factors for various ionization chambers: a Monte Carlo investigation with penelope

    NASA Astrophysics Data System (ADS)

    Erazo, F.; Brualla, L.; Lallena, A. M.

    2014-11-01

    In this work we calculate the beam quality correction factor {{k}\\text{Q,{{\\text{Q}}0}}} for various plane-parallel ionization chambers. A set of Monte Carlo calculations using the code penelope/penEasy have been carried out to calculate the overall correction factor fc,Q for eight electron beams corresponding to a Varian Clinac 2100 C/D, with nominal energies ranging between 6 MeV and 22 MeV, for a 60Co beam, that has been used as the reference quality Q0 and also for eight monoenergetic electron beams reproducing the quality index R50 of the Clinac beams. Two field sizes, 10 × 10 cm2 and 20 × 20 cm2 have been considered. The {{k}\\text{Q,{{\\text{Q}}0}}} factors have been calculated as the ratio between fc,Q and {{f}\\text{c,{{\\text{Q}}0}}} . Values for the Exradin A10, A11, A11TW, P11, P11TW, T11 and T11TW ionization chambers, manufactured by Standard Imaging, as well as for the NACP-02 have been obtained. The results found with the Clinac beams for the two field sizes analyzed show differences below 0.6%, even in the case of the higher energy electron beams. The {{k}\\text{Q,{{\\text{Q}}0}}} values obtained with the Clinac beams are 1% larger than those found with the monoenergetic beams for the higher energies, above 12 MeV. This difference can be ascribed to secondary photons produced in the linac head and the air path towards the phantom. Contrary to what was quoted in a previous work (Sempau et al 2004 Phys. Med. Biol. 49 4427-44), the beam quality correction factors obtained with the complete Clinac geometries and with the monoenergetic beams differ significantly for energies above 12 MeV. Material differences existing between chambers that have the same geometry produce non-negligible modifications in the value of these correction factors.

  13. Electron beam quality k(Q,Q0) factors for various ionization chambers: a Monte Carlo investigation with PENELOPE.

    PubMed

    Erazo, F; Brualla, L; Lallena, A M

    2014-11-01

    In this work we calculate the beam quality correction factor k(Q,Q0) for various plane-parallel ionization chambers. A set of Monte Carlo calculations using the code PENELOPE/PENEASY have been carried out to calculate the overall correction factor f(c,Q) for eight electron beams corresponding to a Varian Clinac 2100 C/D, with nominal energies ranging between 6 MeV and 22 MeV, for a (60)Co beam, that has been used as the reference quality Q0 and also for eight monoenergetic electron beams reproducing the quality index R50 of the Clinac beams. Two field sizes, 10 × 10 cm(2) and 20 × 20 cm(2) have been considered. The k(Q,Q0) factors have been calculated as the ratio between f(c,Q) and f(c,Q0). Values for the Exradin A10, A11, A11TW, P11, P11TW, T11 and T11TW ionization chambers, manufactured by Standard Imaging, as well as for the NACP-02 have been obtained. The results found with the Clinac beams for the two field sizes analyzed show differences below 0.6%, even in the case of the higher energy electron beams. The k(Q,Q0) values obtained with the Clinac beams are 1% larger than those found with the monoenergetic beams for the higher energies, above 12 MeV. This difference can be ascribed to secondary photons produced in the linac head and the air path towards the phantom. Contrary to what was quoted in a previous work (Sempau et al 2004 Phys. Med. Biol. 49 4427-44), the beam quality correction factors obtained with the complete Clinac geometries and with the monoenergetic beams differ significantly for energies above 12 MeV. Material differences existing between chambers that have the same geometry produce non-negligible modifications in the value of these correction factors. PMID:25325343

  14. Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE.

    PubMed

    Górka, B; Nilsson, B; Fernández-Varea, J M; Svensson, R; Brahme, A

    2006-08-01

    A new dosimeter, based on chemical vapour deposited (CVD) diamond as the active detector material, is being developed for dosimetry in radiotherapeutic beams. CVD-diamond is a very interesting material, since its atomic composition is close to that of human tissue and in principle it can be designed to introduce negligible perturbations to the radiation field and the dose distribution in the phantom due to its small size. However, non-tissue-equivalent structural components, such as electrodes, wires and encapsulation, need to be carefully selected as they may induce severe fluence perturbation and angular dependence, resulting in erroneous dose readings. By introducing metallic electrodes on the diamond crystals, interface phenomena between high- and low-atomic-number materials are created. Depending on the direction of the radiation field, an increased or decreased detector signal may be obtained. The small dimensions of the CVD-diamond layer and electrodes (around 100 microm and smaller) imply a higher sensitivity to the lack of charged-particle equilibrium and may cause severe interface phenomena. In the present study, we investigate the variation of energy deposition in the diamond detector for different photon-beam qualities, electrode materials and geometric configurations using the Monte Carlo code PENELOPE. The prototype detector was produced from a 50 microm thick CVD-diamond layer with 0.2 microm thick silver electrodes on both sides. The mean absorbed dose to the detector's active volume was modified in the presence of the electrodes by 1.7%, 2.1%, 1.5%, 0.6% and 0.9% for 1.25 MeV monoenergetic photons, a complete (i.e. shielded) (60)Co photon source spectrum and 6, 18 and 50 MV bremsstrahlung spectra, respectively. The shift in mean absorbed dose increases with increasing atomic number and thickness of the electrodes, and diminishes with increasing thickness of the diamond layer. From a dosimetric point of view, graphite would be an almost perfect

  15. Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE

    NASA Astrophysics Data System (ADS)

    Górka, B.; Nilsson, B.; Fernández-Varea, J. M.; Svensson, R.; Brahme, A.

    2006-08-01

    A new dosimeter, based on chemical vapour deposited (CVD) diamond as the active detector material, is being developed for dosimetry in radiotherapeutic beams. CVD-diamond is a very interesting material, since its atomic composition is close to that of human tissue and in principle it can be designed to introduce negligible perturbations to the radiation field and the dose distribution in the phantom due to its small size. However, non-tissue-equivalent structural components, such as electrodes, wires and encapsulation, need to be carefully selected as they may induce severe fluence perturbation and angular dependence, resulting in erroneous dose readings. By introducing metallic electrodes on the diamond crystals, interface phenomena between high- and low-atomic-number materials are created. Depending on the direction of the radiation field, an increased or decreased detector signal may be obtained. The small dimensions of the CVD-diamond layer and electrodes (around 100 µm and smaller) imply a higher sensitivity to the lack of charged-particle equilibrium and may cause severe interface phenomena. In the present study, we investigate the variation of energy deposition in the diamond detector for different photon-beam qualities, electrode materials and geometric configurations using the Monte Carlo code PENELOPE. The prototype detector was produced from a 50 µm thick CVD-diamond layer with 0.2 µm thick silver electrodes on both sides. The mean absorbed dose to the detector's active volume was modified in the presence of the electrodes by 1.7%, 2.1%, 1.5%, 0.6% and 0.9% for 1.25 MeV monoenergetic photons, a complete (i.e. shielded) 60Co photon source spectrum and 6, 18 and 50 MV bremsstrahlung spectra, respectively. The shift in mean absorbed dose increases with increasing atomic number and thickness of the electrodes, and diminishes with increasing thickness of the diamond layer. From a dosimetric point of view, graphite would be an almost perfect electrode

  16. Electron beam quality correction factors for plane-parallel ionization chambers: Monte Carlo calculations using the PENELOPE system.

    PubMed

    Sempau, Josep; Andreo, Pedro; Aldana, Judith; Mazurier, Jocelyne; Salvat, Francesc

    2004-09-21

    Simulations of three plane-parallel ionization chambers have been used to determine directly the chamber- and quality-dependent factors fc,Q, instead of the product (Sw,air p)Q, and kQ,Q0 (or kQ,Q,int) for a broad range of electron beam qualities (4-20 MeV) using divergent monoenergetic beams and phase-space data from two accelerators. An original calculation method has been used which circumvents the weakness of the so far assumed independence between stopping-power ratios and perturbation factors. Very detailed descriptions of the geometry and materials of the chambers have been obtained from the manufacturers, and prepared as input to the PENELOPE 2003 Monte Carlo system using a computer code that includes correlated sampling and particle splitting. Values of the beam quality factors have been determined for the case of an electron reference beam. The calculated values have been compared with those in the IAEA TRS-398 dosimetry protocol and the differences analysed. The results for a NACP-02 chamber show remarkably good agreement with TRS-398 at high electron beam qualities but differ slightly at low energies. Arguments to explain the differences include questioning the undemonstrated assumption that the NACP is a 'perturbation-free' chamber even at very low electron beam energies. Results for Wellhöfer PPC-40 and PPC-05 chambers cannot be compared with data from others for these chambers because no calculations or reliable experimental data exist. It has been found that the results for the PPC-40 are very close to those of a Roos chamber, but the values for the PPC-05 are considerably different from those of a Markus chamber, and rather approach those of a Roos chamber. Results for monoenergetic electrons and accelerator phase-space data have been compared to assess the need for detailed and costly simulations, finding very small differences. This questions the emphasis given in recent years to the use of 'realistic' source data for accurate electron beam

  17. 20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT TO RIGHT: RUDOLF NEBEL, FRANZ RITTER, UNKNOWN, KURT HEINISCH, UNKNOWN, HERMANN OBERTH, UNKNOWN, KLAUS RIEDEL, WERNHER VON BRAUN, UNKNOWN, KLAUS RIEDEL HOLDS EARLY VERSION OR MODEL FOR THE MINIMUM ROCKET, 'MIRAK'. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  18. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.

    PubMed

    Daures, J; Gouriou, J; Bordy, J M

    2011-03-01

    This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.

  19. Contact radiotherapy using a 50 kV X-ray system: Evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc

    2012-06-01

    This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.

  20. Development and implementation in the Monte Carlo code PENELOPE of a new virtual source model for radiotherapy photon beams and portal image calculation

    NASA Astrophysics Data System (ADS)

    Chabert, I.; Barat, E.; Dautremer, T.; Montagu, T.; Agelou, M.; Croc de Suray, A.; Garcia-Hernandez, J. C.; Gempp, S.; Benkreira, M.; de Carlan, L.; Lazaro, D.

    2016-07-01

    This work aims at developing a generic virtual source model (VSM) preserving all existing correlations between variables stored in a Monte Carlo pre-computed phase space (PS) file, for dose calculation and high-resolution portal image prediction. The reference PS file was calculated using the PENELOPE code, after the flattening filter (FF) of an Elekta Synergy 6 MV photon beam. Each particle was represented in a mobile coordinate system by its radial position (r s ) in the PS plane, its energy (E), and its polar and azimuthal angles (φ d and θ d ), describing the particle deviation compared to its initial direction after bremsstrahlung, and the deviation orientation. Three sub-sources were created by sorting out particles according to their last interaction location (target, primary collimator or FF). For each sub-source, 4D correlated-histograms were built by storing E, r s , φ d and θ d values. Five different adaptive binning schemes were studied to construct 4D histograms of the VSMs, to ensure histogram efficient handling as well as an accurate reproduction of E, r s , φ d and θ d distribution details. The five resulting VSMs were then implemented in PENELOPE. Their accuracy was first assessed in the PS plane, by comparing E, r s , φ d and θ d distributions with those obtained from the reference PS file. Second, dose distributions computed in water, using the VSMs and the reference PS file located below the FF, and also after collimation in both water and heterogeneous phantom, were compared using a 1.5%-0 mm and a 2%-0 mm global gamma index, respectively. Finally, portal images were calculated without and with phantoms in the beam. The model was then evaluated using a 1%-0 mm global gamma index. Performance of a mono-source VSM was also investigated and led, as with the multi-source model, to excellent results when combined with an adaptive binning scheme.

  1. Development and implementation in the Monte Carlo code PENELOPE of a new virtual source model for radiotherapy photon beams and portal image calculation

    NASA Astrophysics Data System (ADS)

    Chabert, I.; Barat, E.; Dautremer, T.; Montagu, T.; Agelou, M.; Croc de Suray, A.; Garcia-Hernandez, J. C.; Gempp, S.; Benkreira, M.; de Carlan, L.; Lazaro, D.

    2016-07-01

    This work aims at developing a generic virtual source model (VSM) preserving all existing correlations between variables stored in a Monte Carlo pre-computed phase space (PS) file, for dose calculation and high-resolution portal image prediction. The reference PS file was calculated using the PENELOPE code, after the flattening filter (FF) of an Elekta Synergy 6 MV photon beam. Each particle was represented in a mobile coordinate system by its radial position (r s ) in the PS plane, its energy (E), and its polar and azimuthal angles (φ d and θ d ), describing the particle deviation compared to its initial direction after bremsstrahlung, and the deviation orientation. Three sub-sources were created by sorting out particles according to their last interaction location (target, primary collimator or FF). For each sub-source, 4D correlated-histograms were built by storing E, r s , φ d and θ d values. Five different adaptive binning schemes were studied to construct 4D histograms of the VSMs, to ensure histogram efficient handling as well as an accurate reproduction of E, r s , φ d and θ d distribution details. The five resulting VSMs were then implemented in PENELOPE. Their accuracy was first assessed in the PS plane, by comparing E, r s , φ d and θ d distributions with those obtained from the reference PS file. Second, dose distributions computed in water, using the VSMs and the reference PS file located below the FF, and also after collimation in both water and heterogeneous phantom, were compared using a 1.5%–0 mm and a 2%–0 mm global gamma index, respectively. Finally, portal images were calculated without and with phantoms in the beam. The model was then evaluated using a 1%–0 mm global gamma index. Performance of a mono-source VSM was also investigated and led, as with the multi-source model, to excellent results when combined with an adaptive binning scheme.

  2. The impact of anthropogenic food supply on fruit consumption by dusky-legged guan (Penelope obscura Temminck, 1815): potential effects on seed dispersal in an Atlantic forest area.

    PubMed

    Vasconcellos-Neto, J; Ramos, R R; Pinto, L P

    2015-11-01

    Frugivorous birds are important seed dispersers and influence the recruitment of many plant species in the rainforest. The efficiency of this dispersal generally depends on environment quality, bird species, richness and diversity of resources, and low levels of anthropogenic disturbance. In this study, we compared the sighting number of dusky-legged guans (Penelope obscura) by km and their movement in two areas of Serra do Japi, one around the administrative base (Base) where birds received anthropogenic food and a pristine area (DAE) with no anthropogenic resource. We also compared the richness of native seeds in feces of birds living in these two areas. Although the abundance of P. obscura was higher in the Base, these individuals moved less, dispersed 80% fewer species of plants and consumed 30% fewer seeds than individuals from DAE. The rarefaction indicated a low richness in the frugivorous diet of birds from the Base when compared to the populations from DAE. We conclude that human food supply can interfere in the behavior of these birds and in the richness of native seeds dispersed. PMID:26675919

  3. The impact of anthropogenic food supply on fruit consumption by dusky-legged guan (Penelope obscura Temminck, 1815): potential effects on seed dispersal in an Atlantic forest area.

    PubMed

    Vasconcellos-Neto, J; Ramos, R R; Pinto, L P

    2015-11-01

    Frugivorous birds are important seed dispersers and influence the recruitment of many plant species in the rainforest. The efficiency of this dispersal generally depends on environment quality, bird species, richness and diversity of resources, and low levels of anthropogenic disturbance. In this study, we compared the sighting number of dusky-legged guans (Penelope obscura) by km and their movement in two areas of Serra do Japi, one around the administrative base (Base) where birds received anthropogenic food and a pristine area (DAE) with no anthropogenic resource. We also compared the richness of native seeds in feces of birds living in these two areas. Although the abundance of P. obscura was higher in the Base, these individuals moved less, dispersed 80% fewer species of plants and consumed 30% fewer seeds than individuals from DAE. The rarefaction indicated a low richness in the frugivorous diet of birds from the Base when compared to the populations from DAE. We conclude that human food supply can interfere in the behavior of these birds and in the richness of native seeds dispersed.

  4. Including the effect of molecular interference in the coherent x-ray scattering modeling in MC-GPU and PENELOPE for the study of novel breast imaging modalities

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Peng, R.; Suarez, I.; Bettolo, C.; Badal, A.

    2014-03-01

    Purpose: To present upgraded versions of MC-GPU and PenEASY Imaging, two open-source Monte Carlo codes for the simulation of radiographic projections and CT. The codes have been extended with the aim of studying breast imaging modalities that rely on the accurate modeling of coherent x-ray scatter. Methods: The simulation codes were extended to account for the effect of molecular interference in coherent scattering using experimentally measured molecular interference functions. The validity of the new model was tested experimentally using the Energy Dispersive X-Ray Diffraction (EDXRD) technique with a polychromatic x-ray source and an energy-resolved Germanium detector at a fixed scattering angle. Experiments and simulations of a full field digital mammography system with and without a 1D focused antiscatter grid were conducted for additional validation. The modified MC-GPU code was also used to examine the possibility of characterizing breast cancer within a mathematical breast phantom using the EDXRD technique. Results: The measured EDXRD spectra were correctly reproduced by the simulation with the modified code while the previous code using the Independent Atomic Approximation led to large errors in the predicted diffraction spectra. There was good agreement between the simulated and measured rejection factor for the 1D focused antiscatter grid with both models. The simulation study in a whole breast showed that the x-ray scattering profiles of adipose, fibrosis, cancer and benign tissues are differentiable. Conclusion: MC-GPU and PENELOPE were successfully extended and validated for accurate modeling of coherent x-ray scatter. The EDXRD technique with pencil-cone geometry in a whole breast was investigated by a simulation study and it was concluded that this technique has potential to characterize breast cancer lesions.

  5. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes

    SciTech Connect

    Koivunoro, Hanna; Siiskonen, Teemu; Kotiluoto, Petri; Auterinen, Iiro; Hippelaeinen, Eero; Savolainen, Sauli

    2012-03-15

    Purpose: In this work, accuracy of the mcnp5 code in the electron transport calculations and its suitability for ionization chamber (IC) response simulations in photon beams are studied in comparison to egsnrc and penelope codes. Methods: The electron transport is studied by comparing the depth dose distributions in a water phantom subdivided into thin layers using incident energies (0.05, 0.1, 1, and 10 MeV) for the broad parallel electron beams. The IC response simulations are studied in water phantom in three dosimetric gas materials (air, argon, and methane based tissue equivalent gas) for photon beams ({sup 60}Co source, 6 MV linear medical accelerator, and mono-energetic 2 MeV photon source). Two optional electron transport models of mcnp5 are evaluated: the ITS-based electron energy indexing (mcnp5{sub ITS}) and the new detailed electron energy-loss straggling logic (mcnp5{sub new}). The electron substep length (ESTEP parameter) dependency in mcnp5 is investigated as well. Results: For the electron beam studies, large discrepancies (>3%) are observed between the mcnp5 dose distributions and the reference codes at 1 MeV and lower energies. The discrepancy is especially notable for 0.1 and 0.05 MeV electron beams. The boundary crossing artifacts, which are well known for the mcnp5{sub ITS}, are observed for the mcnp5{sub new} only at 0.1 and 0.05 MeV beam energies. If the excessive boundary crossing is eliminated by using single scoring cells, the mcnp5{sub ITS} provides dose distributions that agree better with the reference codes than mcnp5{sub new}. The mcnp5 dose estimates for the gas cavity agree within 1% with the reference codes, if the mcnp5{sub ITS} is applied or electron substep length is set adequately for the gas in the cavity using the mcnp5{sub new}. The mcnp5{sub new} results are found highly dependent on the chosen electron substep length and might lead up to 15% underestimation of the absorbed dose. Conclusions: Since the mcnp5 electron

  6. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries - application to far-from-axis fields

    SciTech Connect

    Sempau, Josep; Badal, Andreu; Brualla, Lorenzo

    2011-11-15

    Purpose: Two new codes, PENEASY and PENEASYLINAC, which automate the Monte Carlo simulation of Varian Clinacs of the 600, 1800, 2100, and 2300 series, together with their electron applicators and multileaf collimators, are introduced. The challenging case of a relatively small and far-from-axis field has been studied with these tools. Methods: PENEASY is a modular, general-purpose main program for the PENELOPE Monte Carlo system that includes various source models, tallies and variance-reduction techniques (VRT). The code includes a new geometry model that allows the superposition of voxels and objects limited by quadric surfaces. A variant of the VRT known as particle splitting, called fan splitting, is also introduced. PENEASYLINAC, in turn, automatically generates detailed geometry and configuration files to simulate linacs with PENEASY. These tools are applied to the generation of phase-space files, and of the corresponding absorbed dose distributions in water, for two 6 MV photon beams from a Varian Clinac 2100 C/D: a 40 x 40 cm{sup 2} centered field; and a 3 x 5 cm{sup 2} field centered at (4.5, -11.5) cm from the beam central axis. This latter configuration implies the largest possible over-traveling values of two of the jaws. Simulation results for the depth dose and lateral profiles at various depths are compared, by using the gamma index, with experimental values obtained with a PTW 31002 ionization chamber. The contribution of several VRTs to the computing speed of the more demanding off-axis case is analyzed. Results: For the 40 x 40 cm{sup 2} field, the percentages {gamma}{sub 1} and {gamma}{sub 1.2} of voxels with gamma indices (using 0.2 cm and 2% criteria) larger than unity and larger than 1.2 are 0.2% and 0%, respectively. For the 3 x 5 cm{sup 2} field, {gamma}{sub 1} = 0%. These figures indicate an excellent agreement between simulation and experiment. The dose distribution for the off-axis case with voxels of 2.5 x 2.5 x 2.5 mm{sup 3} and an

  7. The Brustkrebs-Studien.de website for breast cancer patients: User acceptance of a German internet portal offering information on the disease and treatment options, and a clinical trials matching service

    PubMed Central

    2010-01-01

    Background The internet portal http://www.brustkrebs-studien.de (BKS) was launched in 2000 by the German Society of Senology (DGS) and the Baden-Württemberg Institute for Women's Health (IFG) to provide expert-written information on breast cancer online and to encourage and facilitate the participation of breast cancer patients in clinical trials. We describe the development of BKS and its applications, and report on website statistics and user acceptance. Methods Existing registries, including ClinicalTrials.gov, were analysed before we designed BKS, which combines a trial registry, a knowledge portal, and an online second opinion service. An advisory board guided the process. Log files and patient enquiries for trial participation and second opinions were analysed. A two-week user satisfaction survey was conducted online. Results During 10/2005-06/2010, the portal attracted 702,655 visitors, generating 15,507,454 page views. By 06/2010, the website's active scientific community consisted of 189 investigators and physicians, and the registry covered 163 clinical trial protocols. In 2009, 143 patients requested trial enrolment and 119 sought second opinions or individual treatment advice from the expert panel. During the two-week survey in 2008, 5,702 BKS visitors submitted 507 evaluable questionnaires. Portal acceptance was high. Respondents trusted information correctness (80%), welcomed self-matching to clinical trials (79%) and planned to use the portal in the future (76%) and recommend it to others (81%). Conclusions BKS is an established and trusted breast cancer information platform offering up-to-date resources and protocols to the growing physician and patient community to encourage participation in clinical trials. Further studies are needed to assess potential increases in trial enrolment by eligibility matching services. PMID:21126358

  8. Status and Use of African Lingua Francas. Afrika-Studien Nr. 49.

    ERIC Educational Resources Information Center

    Heine, Bernd

    Defining a lingua franca as a "common language which is habitually used as a medium of communication between groups of people whose mother tongues are different, "this book begins by comparing various Africa lingua francas and discussing questions of general relevance to their study, and then presents statements of varying length about 40 such…

  9. Reforms and Innovations in Estonian Education. Baltische Studien zur Erziehungs- und Sozialwissenschaft. Volume 16

    ERIC Educational Resources Information Center

    Mikk, Jaan, Ed.; Veisson, Marika, Ed.; Luik, Piret, Ed.

    2008-01-01

    This collection of papers provides a small overview of educational research in Estonia. The papers in the collection treat school reforms since the renewal of independence in 1991, new approaches to teacher training, the implementation of a child-centred approach in school, the achieving of educational aims and other actual topics in education.…

  10. Lifelong Learning: One Focus, Different Systems. Studien zur Erwachsenenbildung, Band 19.

    ERIC Educational Resources Information Center

    Harney, Klaus, Ed.; Heikkinen, Anja, Ed.; Rahn, Sylvia, Ed.; Schemmann, Michael, Ed.

    These 17 articles on different subjects of the broader theme "lifelong learning" represent the latest results of the discussions of the Vocational Education and Culture Research Network. An introduction (Klaus Harney et al.) provides summaries of the contents. The articles are "The Global and International Discourse of Lifelong Learning from the…

  11. Explorations in Social Inequality Stratification Dynamics in Social and Individual Development in Iceland. Studien und Berichte 38.

    ERIC Educational Resources Information Center

    Bjornsson, Sigurjon; And Others

    Having passed through a period of rapid and intense modernization and industrialization in the last two generations, Icelanders still retain the myth of social equality that more properly accompanied the earlier agrarian society. This study looked for evidence of the emergence of stratified social classes and for effects of this class structure in…

  12. The Study of Life Review. An Approach to the Investigation of Intellectual Development across the Life Span. Studien und Berichte 47.

    ERIC Educational Resources Information Center

    Staudinger, Ursula M.

    A study looked for age differences in the quality of responses to the Life Review Task (LRT), studied the LRT itself as a tool for exploring wisdom and intellectual functioning in adulthood, and considered personality characteristics and life experience as alternative predictors of response quality. Sixty-three West German women of different ages…

  13. Culturally Responsive Education: Diversity in Our Classrooms. Frequently Asked Questions for Saundra Tomlinson-Clarke, Ph.D., and Penelope Lattimer, Ph.D. REL Mid-Atlantic Webinar

    ERIC Educational Resources Information Center

    Regional Educational Laboratory Mid-Atlantic, 2015

    2015-01-01

    The webinar, "Culturally Responsive Education: Diversity in Our Classrooms" focused on the concept of culturally responsive education. Goals of the webinar included: (1) Learning what the research says about effective ways to promote culturally responsive education; (2) Discussion of ways to meet the cultural and linguistic needs of all…

  14. Aspekte und Probleme der linguistischen Analyse schichtenspezifischen Sprachgebrauchs. Studien und Berichte 31 (Aspects and Problems of the Linguistic Analysis of Language Usage Within Specific Social Levels. Studies and Reports No. 31).

    ERIC Educational Resources Information Center

    Klann, Gisela

    This is a study of linguistic variability among social levels in West Germany and of the problems associated with doing such an analysis. The data, ordered according to sex and social levels, were collected from young children retelling narratives heard on tapes. The report represents a comprehensive study of the children's syntactic performance…

  15. Neue Spiele fuer den Deutschunterricht (New Games for the German Classroom).

    ERIC Educational Resources Information Center

    Wolf-Manfre, Eva

    This document includes games and activities for the German as a foreign language class. There are games designed to help students get to know one another, games to help develop vocabulary skills and grammar, and activities for role playing. A list of references and resources is included as well as an index to abbreviations and symbols. (AB)

  16. Une lecon de "Franzoesisch fuer Sie" - Niveau 1 (A Lesson of "French for You," Level 1)

    ERIC Educational Resources Information Center

    Feldhendler, Daniel; And Others

    1974-01-01

    Using as an example Lesson 12 from the text for adults, "Franzoesisch fur Sie" ("French for You") (Huber, Munich), a teaching outline addressed to language learners at the beginners' level is presented. (Text is in German.) (IFS/WGA)

  17. Hoer-Sprech-Uebungen fuer Iraner (Aural-Oral Exercises for Iranians).

    ERIC Educational Resources Information Center

    Scharf, Kurt

    1980-01-01

    Exercises are presented as supplementary material for beginning classes. Many examples illustrate ways to consolidate the learned material, with particular reference to the textbook "Ich lerne Deutsch" and its pictures. Other exercises are designed to compare German and Farsi sentence structure. (IFS/WGA)

  18. The Fringe Reading Facility at the Max-Planck-Institut fuer Stroemungsforschung

    NASA Technical Reports Server (NTRS)

    Becker, F.; Meier, G. E. A.; Wegner, H.; Timm, R.; Wenskus, R.

    1987-01-01

    A Mach-Zehnder interferometer is used for optical flow measurements in a transonic wind tunnel. Holographic interferograms are reconstructed by illumination with a He-Ne-laser and viewed by a video camera through wide angle optics. This setup was used for investigating industrial double exposure holograms of truck tires in order to develop methods of automatic recognition of certain manufacturing faults. Automatic input is achieved by a transient recorder digitizing the output of a TV camera and transferring the digitized data to a PDP11-34. Interest centered around sequences of interferograms showing the interaction of vortices with a profile and subsequent emission of sound generated by this process. The objective is the extraction of quantitative data which relates to the emission of noise.

  19. Lesekurse fuer Anfaenger-Fachbereich Psychologie (Reading Courses for Beginners-Psychology)

    ERIC Educational Resources Information Center

    Armaleo-Popper, Lore

    1976-01-01

    Describes a German course for psychologists, given in Italy by the author, using eight original texts by Freud and Mitscherlich. These were assigned for 40-50 hours' continuation reading at home, or were discussed in the 100-120 hours in the classroom. (Text is in German.) (IFS/WGA)

  20. Gesellschaft fuer angewandte Mathematik und Mechanik, Annual Scientific Meeting, Wiesbaden, West Germany, April 16-20, 1979, Reports. Part 2

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The journal reports on research in flow mechanics, applied analysis and mathematical physics, along with optimization and stochastic procedures and mathematical methods for economics. Papers are presented on transport processes in a magnetized plasma, flow and heat movement between rotating disks, 3-D characteristic surfaces in the analytical method of characteristics, and a comparison of high flow theory and experimental results for supersonic flow. Attention is also given to the transient development of an electrochemical process, a Galerkin based finite difference algorithm for nonlinear branching problems, the stability of implicit Runge-Kutta procedures with parabolic differential equations, and analytical results in random fields filtering theory.

  1. Code System to Perform Monte Carlo Simulation of Electron Gamma-Ray Showers in Arbitrary Marerials.

    2002-10-15

    Version 00 PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary materials. Initially, it was devised to simulate the PENetration and Energy LOss of Positrons and Electrons in matter; photons were introduced later. The adopted scattering model gives a reliable description of radiation transport in the energy range from a few hundred eV to about 1GeV. PENELOPE generates random electron-photon showers in complex material structures consisting of any number of distinct homogeneous regions (bodies)more » with different compositions. The Penelope Forum list archives and other information can be accessed at http://www.nea.fr/lists/penelope.html. PENELOPE-MPI extends capabilities of PENELOPE-2001 (RSICC C00682MNYCP02; NEA-1525/05) by providing for usage of MPI type parallel drivers and extends the original version's ability to read different types of input data sets such as voxel. The motivation is to increase efficiency of Monte Carlo simulations for medical applications. The physics of the calculations have not been changed, and the original description of PENELOPE-2001 (which follows) is still valid. PENELOPE-2001 contains substantial changes and improvements to the previous versions 1996 and 2000. As for the physics, the model for electron/positron elastic scattering has been revised. Bremsstrahlung emission is now simulated using partial-wave data instead of analytical approximate formulae. Photoelectric absorption in K and L-shells is described from the corresponding partial cross sections. Fluorescence radiation from vacancies in K and L-shells is followed. Refinements were also introduced in electron/positron transport mechanics, mostly to account for energy dependence of the mean free paths for hard events. Simulation routines were re-programmed in a more structured way, and new example MAIN programs were written with a more flexible input and expanded output.« less

  2. Mobile elements and chromosomal evolution in the virilis group of Drosophila

    PubMed Central

    Evgen'ev, Michael B.; Zelentsova, Helena; Poluectova, Helena; Lyozin, George T.; Veleikodvorskaja, Vera; Pyatkov, K. I.; Zhivotovsky, Lev A.; Kidwell, Margaret G.

    2000-01-01

    Species of the virilis group of Drosophila differ by multiple inversions and chromosome fusions that probably accompanied, or led to, speciation. Drosophila virilis has the primitive karyotype for the group, and natural populations are exceptional in having no chromosomal polymorphisms. We report that the genomic locations of Penelope and Ulysses transposons are nonrandomly distributed in 12 strains of D. virilis. Furthermore, Penelope and Ulysses insertion sites in D. virilis show a statistically significant association with the breakpoints of inversions found in other species of the virilis group. Sixteen newly induced chromosomal rearrangements were isolated from the progeny of D. virilis hybrid dysgenic crosses, including 12 inversions, 2 translocations, and 2 deletions. Penelope and Ulysses were associated with the breakpoints of over half of these new rearrangements. Many rearrangement breakpoints also coincide with the chromosomal locations of Penelope and Ulysses insertions in the parental strains and with breakpoints of inversions previously established for other species of the group. Analysis of homologous sequences from D. virilis and Drosophila lummei indicated that Penelope insertion sites were closely, but not identically, located at the nucleotide sequence level. Overall, these results indicate that Penelope and Ulysses insert in a limited number of genomic locations and are consistent with the possibility that these elements play an important role in the evolution of the virilis species group. PMID:11016976

  3. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.

    PubMed

    Habib, B; Poumarede, B; Tola, F; Barthe, J

    2010-01-01

    The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within +/-1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE.

  4. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.

    PubMed

    Habib, B; Poumarede, B; Tola, F; Barthe, J

    2010-01-01

    The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within +/-1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE. PMID:19342258

  5. Mobile elements and chromosomal evolution in the virilis group of Drosophila.

    PubMed

    Evgen'ev, M B; Zelentsova, H; Poluectova, H; Lyozin, G T; Veleikodvorskaja, V; Pyatkov, K I; Zhivotovsky, L A; Kidwell, M G

    2000-10-10

    Species of the virilis group of Drosophila differ by multiple inversions and chromosome fusions that probably accompanied, or led to, speciation. Drosophila virilis has the primitive karyotype for the group, and natural populations are exceptional in having no chromosomal polymorphisms. We report that the genomic locations of Penelope and Ulysses transposons are nonrandomly distributed in 12 strains of D. virilis. Furthermore, Penelope and Ulysses insertion sites in D. virilis show a statistically significant association with the breakpoints of inversions found in other species of the virilis group. Sixteen newly induced chromosomal rearrangements were isolated from the progeny of D. virilis hybrid dysgenic crosses, including 12 inversions, 2 translocations, and 2 deletions. Penelope and Ulysses were associated with the breakpoints of over half of these new rearrangements. Many rearrangement breakpoints also coincide with the chromosomal locations of Penelope and Ulysses insertions in the parental strains and with breakpoints of inversions previously established for other species of the group. Analysis of homologous sequences from D. virilis and Drosophila lummei indicated that Penelope insertion sites were closely, but not identically, located at the nucleotide sequence level. Overall, these results indicate that Penelope and Ulysses insert in a limited number of genomic locations and are consistent with the possibility that these elements play an important role in the evolution of the virilis species group.

  6. Gesellschaft fuer angewandte Mathematik und Mechanik, Scientific Annual Meeting, Universitaet Hannover, Hanover, Federal Republic of Germany, Apr. 8-12, 1990, Reports

    NASA Astrophysics Data System (ADS)

    Various papers on applied mathematics and mechanics are presented. Among the individual topics addressed are: dynamical systems with time-varying or unsteady structure, micromechanical modeling of creep rupture, forced vibrations of elastic sandwich plates with thick surface layers, postbuckling of a complete spherical shell under a line load, differential-geometric approach to the multibody system dynamics, stability of an oscillator with stochastic parametric excitation, identification strategies for crack-formation in rotors, identification of physical parameters of FEMs, impact model for elastic and partly plastic impacts on objects, varying delay and stability in dynamical systems. Also discussed are: parameter identification of a hybrid model for vibration analysis using the FEM, vibration behavior of a labyrinth seal with through-flow, similarities in the boundary layer of fiber composite materials, distortion parameter in shell theories, elastoplastic crack problem at finite strain, algorithm for computing effective stiffnesses of plates with periodic structure, plasticity of metal-matrix composites in a mixed stress-strain space formation, constitutive equations in directly formulated plate theories, microbuckling and homogenization for long fiber composites.

  7. Plaedoyer fuer den "RCT"--Zu Peter W. Kahls "Bemerkungen" (A Plea for the Reading Comprehension Test--On Peter W. Kahl's "Bemerkungen")

    ERIC Educational Resources Information Center

    Neuner, Gerhard

    1977-01-01

    Rejects criticism of Kahl's position in his article on the Reading Comprehension Test (in this journal, issue no. 3, 1977), pointing out that the test is constructed according to the prescribed guidelines. (Text is in German.) (IFS/WGA)

  8. Zur Frage der Textauswahl in einem Lesekurs fuer die Sozialwissenschaften (On the Question of the Choice of Textbooks in a Course in the Social Sciences)

    ERIC Educational Resources Information Center

    Apelt, Hans-Peter

    1974-01-01

    Passages from three selected samples of textbooks are used to show what requirements are made of textbooks in the social sciences. Some hints are given to the teacher for converting reading suggestions into instructional material. Short texts from Karl Marx are also suggested. (Text is in German.) (IFS/WGA)

  9. Materialien und Modelle fuer den Franzoesischunterricht in der Sekundarstufe Zwei (Materials and Models for Teaching French in Grades 11-13)

    ERIC Educational Resources Information Center

    Frei, Alfons

    1978-01-01

    Texts available for French courses in the highest grades are listed according to topics, which include: position of women, today's youth, the language of advertising, French colonialism, holidays and tourism, modern city living, criminality, French politics. Hints for the teacher are included. (Text is in German.) (IFS/WGA)

  10. Entwicklung eines Einstufungstests fuer Deutsch als Fremdsprache an der Universitaet Bonn (Developing a Placement Test for German as a Foreign Language at the University of Bonn).

    ERIC Educational Resources Information Center

    Kummer, Manfred; And Others

    1978-01-01

    Discusses various test types, and specifically the placement test for German as a foreign language at Bonn University, describing the segments: multiple-choice questions and "fill-in" dictations based on given texts. Test content varies according to students' nationality. Grading procedures are also described. (IFS/WGA)

  11. Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition.

    PubMed

    Rozhkov, Nikolay V; Zelentsova, Elena S; Shostak, Natalia G; Evgen'ev, Michael B

    2011-01-01

    Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level. PMID:21779346

  12. Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition.

    PubMed

    Rozhkov, Nikolay V; Zelentsova, Elena S; Shostak, Natalia G; Evgen'ev, Michael B

    2011-01-01

    Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level.

  13. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    SciTech Connect

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  14. The Empowerment of Discourse Management.

    ERIC Educational Resources Information Center

    Buck, R. A.

    In a study published in 1987, Penelope Brown and Stephen Levinson proposed that an abstract sociolinguistic principle guides and constrains a speaker's choice of language, and that this principle explains the politeness phenomenon in conversation. Moreover, central to this principle is the concept of "face," or personal self-image, implying that…

  15. Effects of Cooperative Learning on Achievement and Attitude among Students of Color.

    ERIC Educational Resources Information Center

    Vaughan, Winston

    2002-01-01

    Investigated the effects of cooperative learning on achievement in and attitudes toward mathematics among fifth graders of color in a culture different from that of the United States (Bermuda). Participants completed parts of the California Achievement Test and Penelope Peterson's Attitude Toward Mathematics Scale. Pre-test and post-test data…

  16. Code System for Monte Carlo Simulation of Electron and Photon Transport.

    2015-07-01

    Version 01 PENELOPE performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials and complex quadric geometries. A mixed procedure is used for the simulation of electron and positron interactions (elastic scattering, inelastic scattering and bremsstrahlung emission), in which ‘hard’ events (i.e. those with deflection angle and/or energy loss larger than pre-selected cutoffs) are simulated in a detailed way, while ‘soft’ interactions are calculated from multiple scattering approaches. Photon interactions (Rayleigh scattering, Compton scattering,more » photoelectric effect and electron-positron pair production) and positron annihilation are simulated in a detailed way. PENELOPE reads the required physical information about each material (which includes tables of physical properties, interaction cross sections, relaxation data, etc.) from the input material data file. The material data file is created by means of the auxiliary program MATERIAL, which extracts atomic interaction data from the database of ASCII files. PENELOPE mailing list archives and additional information about the code can be found at http://www.nea.fr/lists/penelope.html. See Abstract for additional features.« less

  17. Code System for Monte Carlo Simulation of Electron and Photon Transport.

    SciTech Connect

    2015-07-01

    Version 01 PENELOPE performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials and complex quadric geometries. A mixed procedure is used for the simulation of electron and positron interactions (elastic scattering, inelastic scattering and bremsstrahlung emission), in which ‘hard’ events (i.e. those with deflection angle and/or energy loss larger than pre-selected cutoffs) are simulated in a detailed way, while ‘soft’ interactions are calculated from multiple scattering approaches. Photon interactions (Rayleigh scattering, Compton scattering, photoelectric effect and electron-positron pair production) and positron annihilation are simulated in a detailed way. PENELOPE reads the required physical information about each material (which includes tables of physical properties, interaction cross sections, relaxation data, etc.) from the input material data file. The material data file is created by means of the auxiliary program MATERIAL, which extracts atomic interaction data from the database of ASCII files. PENELOPE mailing list archives and additional information about the code can be found at http://www.nea.fr/lists/penelope.html. See Abstract for additional features.

  18. Not-so-Soft Skills

    ERIC Educational Resources Information Center

    Curran, Mary

    2010-01-01

    Much recent discussion about the skills needed to secure Britain's economic recovery has focused on skills for employability. However, too often, these fundamental skills are understood in narrow functional or vocational terms. So-called "soft skills", what Penelope Tobin, in her 2008 paper "Soft Skills: the hard facts", terms "traits and…

  19. Electronic Learning Communities: Issues and Practices.

    ERIC Educational Resources Information Center

    Reisman, Sorel, Ed.; Flores, John G., Ed.; Edge, Denzil, Ed.

    This book provides information for researchers and practitioners on the current issues and best practices associated with electronic learning communities. Fourteen contributed chapters include: "Interactive Online Educational Experiences: E-volution of Graded Projects" (James Benjamin); "Hybrid Courses as Learning Communities" (Penelope Walters…

  20. Learning from Our Lives: Women, Research, and Autobiography in Education.

    ERIC Educational Resources Information Center

    Neumann, Anna, Ed.; Peterson, Penelope L., Ed.

    The autobiographical essays in this volume offer insights into how the field of education might change as women assume positions of intellectual leadership. After the "Foreword" (Mary Catherine Bateson), the 13 chapters are: (1) "Research Lives: Women, Scholarship, and Autobiography in Education" (Anna Neumann and Penelope L. Peterson); (2)…

  1. Formally specifying the logic of an automatic guidance controller

    NASA Technical Reports Server (NTRS)

    Guaspari, David

    1990-01-01

    The following topics are covered in viewgraph form: (1) the Penelope Project; (2) the logic of an experimental automatic guidance control system for a 737; (3) Larch/Ada specification; (4) some failures of informal description; (5) description of mode changes caused by switches; (6) intuitive description of window status (chosen vs. current); (7) design of the code; (8) and specifying the code.

  2. A Comparison Between GATE and MCNPX Monte Carlo Codes in Simulation of Medical Linear Accelerator.

    PubMed

    Sadoughi, Hamid-Reza; Nasseri, Shahrokh; Momennezhad, Mahdi; Sadeghi, Hamid-Reza; Bahreyni-Toosi, Mohammad-Hossein

    2014-01-01

    Radiotherapy dose calculations can be evaluated by Monte Carlo (MC) simulations with acceptable accuracy for dose prediction in complicated treatment plans. In this work, Standard, Livermore and Penelope electromagnetic (EM) physics packages of GEANT4 application for tomographic emission (GATE) 6.1 were compared versus Monte Carlo N-Particle eXtended (MCNPX) 2.6 in simulation of 6 MV photon Linac. To do this, similar geometry was used for the two codes. The reference values of percentage depth dose (PDD) and beam profiles were obtained using a 6 MV Elekta Compact linear accelerator, Scanditronix water phantom and diode detectors. No significant deviations were found in PDD, dose profile, energy spectrum, radial mean energy and photon radial distribution, which were calculated by Standard and Livermore EM models and MCNPX, respectively. Nevertheless, the Penelope model showed an extreme difference. Statistical uncertainty in all the simulations was <1%, namely 0.51%, 0.27%, 0.27% and 0.29% for PDDs of 10 cm(2)× 10 cm(2) filed size, for MCNPX, Standard, Livermore and Penelope models, respectively. Differences between spectra in various regions, in radial mean energy and in photon radial distribution were due to different cross section and stopping power data and not the same simulation of physics processes of MCNPX and three EM models. For example, in the Standard model, the photoelectron direction was sampled from the Gavrila-Sauter distribution, but the photoelectron moved in the same direction of the incident photons in the photoelectric process of Livermore and Penelope models. Using the same primary electron beam, the Standard and Livermore EM models of GATE and MCNPX showed similar output, but re-tuning of primary electron beam is needed for the Penelope model.

  3. Neuropathological research at the "Deutsche Forschungsanstalt fuer Psychiatrie" (German Institute for Psychiatric Research) in Munich (Kaiser-Wilhelm-Institute). Scientific utilization of children's organs from the "Kinderfachabteilungen" (Children's Special Departments) at Bavarian State Hospitals.

    PubMed

    Steger, Florian

    2006-09-01

    During National Socialism, the politically motivated interest in psychiatric genetic research lead to the founding of research departments specialized in pathological-anatomical brain research, the two Kaiser Wilhelm-Institutes (KWI) in Berlin and Munich. The latter was indirectly provided with brain material by Bavarian State Hospitals, to three of which "Kinderfachabteilungen" (Special Pediatric Units) were affiliated. As children became victims of the systematically conducted child "euthanasia" in these Special Pediatric Units, this paper will address the question whether and to which extent the organs from victims of child "euthanasia" were used for (neuro-) pathological research at the KWI in Munich. By means of case studies and medical histories (with focus on the situation in Kaufbeuren-Irsee), I will argue that pediatric departments on a regular base delivered slide preparations, that the child "euthanasia" conduced in these departments systematically contributed to neuropathological research and that slide preparations from victims of child "euthanasia" were used in scientific publications after 1945.

  4. Utopische Literatur im Leistungskurs Englisch. Vorschlaege fuer Planung und Durchfuehrung eines halbjaehrigen Kurses (Utopian Literature in the English Honors Course. Suggestions for Planning and Teaching a Half-Year Course)

    ERIC Educational Resources Information Center

    Schnitter, Helmut

    1976-01-01

    Gives prerequisites for participation, editions of texts used (Orwell, "1984"; Huxley, "Brave New World"; More, "Utopia") and mentions auxiliary materials. After listing aims of the course, gives suggestions as to method and organization of the course. Sketches various phases of discussion and forms for checking on learning goals. (Text is in…

  5. Integrierter Sprach- und Sachunterricht im Spanischkurs fuer Fortgeschrittene am Beispiel des Themas "La Emigracion actual" (Integrated Instruction in Language and Realia in the Advanced Spanish Course, with, as an Example, the Topic "The Present Emigration")

    ERIC Educational Resources Information Center

    Christ, Ingeborg

    1975-01-01

    Advanced-level Spanish courses often lead outside everyday situations. Text, topic, language content and skill orientation form a complex of conditions for advanced learning. Consequences of significance for the learning process are discussed, with the topic "la emigracion actual" ("the present emigration") as a base. (Text is in German.) (IFS/WGA)

  6. Exploring an ultracold Fermi-Fermi mixture: interspecies Feshbach resonances of ^6Li-^40K

    NASA Astrophysics Data System (ADS)

    Schreck, Florian

    2008-03-01

    We report on the observation of interspecies Feshbach resonances in an ultracold mixture of two fermionic species, ^6Li and ^40K. Interpretation of the data unambiguously assigns molecular bound states to the various resonances and fully characterizes the ground-state scattering properties in any combination of spin states. Using this knowledge we hope to be able to produce ^6Li-^40K molecules, cool them to quantum degeneracy, and study their BEC-BCS crossover. In collaboration with: F. Schreck, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria; E. Wille, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria and Institut fuer Experimentalphysik und Forschungszentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck, Austria; F.M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria; R. Grimm, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria and Institut fuer Experimentalphysik und Forschungszentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck, Austria; T.G. Tiecke, J.T.M. Walraven,Van der Waals-Zeeman Institute of the University of Amsterdam, 1018 XE, The Netherlands; S.J.J.M.F. Kokkelmans, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; E. Tiesinga, P.S. Julienne, Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899-8423, USA

  7. A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Sempau, J.; Brualla, L.

    2012-05-01

    A method based on a combination of the variance-reduction techniques of particle splitting and Russian roulette is presented. This method improves the efficiency of radiation transport through linear accelerator geometries simulated with the Monte Carlo method. The method named as ‘splitting-roulette’ was implemented on the Monte Carlo code \\scriptsize{{PENELOPE}} and tested on an Elekta linac, although it is general enough to be implemented on any other general-purpose Monte Carlo radiation transport code and linac geometry. Splitting-roulette uses any of the following two modes of splitting: simple splitting and ‘selective splitting’. Selective splitting is a new splitting mode based on the angular distribution of bremsstrahlung photons implemented in the Monte Carlo code \\scriptsize{{PENELOPE}}. Splitting-roulette improves the simulation efficiency of an Elekta SL25 linac by a factor of 45.

  8. Systematic discrepancies in Monte Carlo predictions of k-ratios emitted from thin films on substrates

    NASA Astrophysics Data System (ADS)

    Statham, P.; Llovet, X.; Duncumb, P.

    2012-03-01

    We have assessed the reliability of different Monte Carlo simulation programmes using the two available Bastin-Heijligers databases of thin-film measurements by EPMA. The MC simulation programmes tested include Curgenven-Duncumb MSMC, NISTMonte, Casino and PENELOPE. Plots of the ratio of calculated to measured k-ratios ("kcalc/kmeas") against various parameters reveal error trends that are not apparent in simple error histograms. The results indicate that the MC programmes perform quite differently on the same dataset. However, they appear to show a similar pronounced trend with a "hockey stick" shape in the "kcalc/kmeas versus kmeas" plots. The most sophisticated programme PENELOPE gives the closest correspondence with experiment but still shows a tendency to underestimate experimental k-ratios by 10 % for films that are thin compared to the electron range. We have investigated potential causes for this systematic behaviour and extended the study to data not collected by Bastin and Heijligers.

  9. What was wrong with Anna O?

    PubMed Central

    Hurst, L C

    1982-01-01

    The case of Fräulein Anna O (Bertha Pappenheim) was the first detailed by Breuer and Freud in 'Studien über Hysteria' (1895). The case history is examined and an organic causation postulated. The fallacies of psychogenesis and of hysteria as a disease are mentioned. Breuer's claim of cure by the cathartic method appears unfounded. PMID:7040654

  10. Magnus Strandqvist: 50th anniversary of his doctoral thesis.

    PubMed

    Kajanti, M J

    1994-01-01

    This article is dedicated to Magnus Strandqvist's famous doctoral thesis "Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Erfahrungen aus dem Radiumhemmet an 280 Haut- und Lippenkarzinomen" published in Acta Radiologica in 1944. After a short biography of Strandqvist some central points of his work and their influence on future development of modern radiotherapy are presented. PMID:7993639

  11. Comparison of experimental and calculated calibration coefficients for a high sensitivity ionization chamber.

    PubMed

    Amiot, M N; Mesradi, M R; Chisté, V; Morin, M; Rigoulay, F

    2012-09-01

    The response of a Vacutec 70129 ionization chamber was calculated using the PENELOPE-2008 Monte Carlo code and compared to experimental data. The filling gas mixture composition and its pressure have been determined using IC simulated response adjustment to experimental results. The Monte Carlo simulation revealed a physical effect in the detector response to photons due to the presence of xenon in the chamber. A very good agreement is found between calculated and experimental calibration coefficients for 17 radionuclides.

  12. Influenza A(H5N8) virus isolation in Russia, 2014.

    PubMed

    Marchenko, Vasiliy Y; Susloparov, Ivan M; Kolosova, Nataliya P; Goncharova, Nataliya I; Shipovalov, Andrey V; Durymanov, Alexander G; Ilyicheva, Tatyana N; Budatsirenova, Lubov V; Ivanova, Valentina K; Ignatyev, Georgy A; Ershova, Svetlana N; Tulyahova, Valeriya S; Mikheev, Valeriy N; Ryzhikov, Alexander B

    2015-11-01

    In this study, we report the isolation of influenza A(H5N8) virus from a Eurasian wigeon (Anas penelope) in Sakha Republic of the Russian Far East. The strain A/wigeon/Sakha/1/2014 (H5N8) has been shown to be pathogenic for mammals. It is similar to the strains that caused outbreaks in wild birds and poultry in Southeast Asia and Europe in 2014.

  13. Influenza A(H5N8) virus isolation in Russia, 2014.

    PubMed

    Marchenko, Vasiliy Y; Susloparov, Ivan M; Kolosova, Nataliya P; Goncharova, Nataliya I; Shipovalov, Andrey V; Durymanov, Alexander G; Ilyicheva, Tatyana N; Budatsirenova, Lubov V; Ivanova, Valentina K; Ignatyev, Georgy A; Ershova, Svetlana N; Tulyahova, Valeriya S; Mikheev, Valeriy N; Ryzhikov, Alexander B

    2015-11-01

    In this study, we report the isolation of influenza A(H5N8) virus from a Eurasian wigeon (Anas penelope) in Sakha Republic of the Russian Far East. The strain A/wigeon/Sakha/1/2014 (H5N8) has been shown to be pathogenic for mammals. It is similar to the strains that caused outbreaks in wild birds and poultry in Southeast Asia and Europe in 2014. PMID:26306756

  14. Optimization of a measurement facility for radioactive waste free release by Monte Carlo simulation.

    PubMed

    Solc, Jaroslav; Kovar, Petr; Suran, Jiri; Peyres, Virginia; García-Toraño, Eduardo

    2014-05-01

    A novel free release measurement facility (FRMF) was developed within the joint research project "Metrology for Radioactive Waste Management" of the European Metrology Research Programme. Before and during FRMF design and construction, Monte Carlo calculations with MCNPX and PENELOPE codes were used to optimize the thickness of the shielding, the dimensions of the container, and the shape of detector collimators. Validation of the numerical models of the FRMF detectors and the results of the optimization are discussed in the paper. PMID:24300969

  15. Validation of efficiency transfer for Marinelli geometries.

    PubMed

    Ferreux, Laurent; Pierre, Sylvie; Thanh, Tran Thien; Lépy, Marie-Christine

    2013-11-01

    In the framework of environmental measurements by gamma-ray spectrometry, some laboratories need to characterize samples in geometries for which a calibration is not directly available. A possibility is to use an efficiency transfer code, e.g., ETNA. However, validation for large volume sources, such as Marinelli geometries, is needed. With this aim in mind, ETNA is compared, initially to a Monte Carlo simulation (PENELOPE) and subsequently to experimental data obtained with a high-purity germanium detector (HPGe).

  16. 18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE VEREIN FUER RAUMSCHIFFAHRT (GERMAN SOCIETY FOR SPACE TRAVEL), DRIVES HIS ROCKET CAR IN 1931. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  17. De-Infinitiv oder reiner Infinitiv im Franzoesischen. Ein Beispiel fuer die Verwertung von Ergebnissen der linguistischen Grammatik in einer didaktischen Grammatik. ("De-" Infinitive or Pure Infinitive in French. An Example of the Utilization of Findings of Linguistic Grammar in a Teaching Grammar).

    ERIC Educational Resources Information Center

    Seelbach, Dieter

    1978-01-01

    Recommends the "distributional" and transformational grammar approach as especially suitable for developing a teaching grammar for dealing with the French simple infinitive and infinitive with "de". (IFS/WGA)

  18. Allgemeine Sprachfaehigkeit und Fremdsprachenerwerb. Zur Struktur von Leistungsdimensionen und linguistischer Kompetenz des Fremdsprachenlerners (General Language Ability and Foreign Language Acquisition. On the Structure of Performance Dimensions and the Linguistic Competence of the Foreign Language Learner). Diskussions beitraege aus dem Institute fuer Bildungsforschung, No. 1.

    ERIC Educational Resources Information Center

    Sang, Fritz; Vollmer, Helmut J.

    This study investigates the theoretical plausibility and empirical validity of the assumption that all performance in a foreign language can be traced back to a single factor, the general language ability factor. The theoretical background of this hypothesis is reviewed in detail. The concept of a unitary linguistic competence, interpreted as an…

  19. [Vegetarische und vegane Ernährung bei Kindern - Stand der Forschung und Forschungsbedarf].

    PubMed

    Keller, Markus; Müller, Stine

    2016-01-01

    Die Praxis vegetarischer Ernährungsformen ist in Deutschland im letzten Jahrzehnt deutlich angestiegen. Allerdings ist der Anteil vegetarischer und veganer Kinder dabei unbekannt. Studien mit Erwachsenen zeigen das präventive Potenzial, aber auch potenzielle Schwachstellen pflanzenbasierter Kostformen. Die Vorteile und Risiken einer vegetarischen bzw. veganen Ernährung im Kindesalter wurden bisher jedoch relativ selten untersucht. Außerdem lassen das unterschiedliche Alter der Kinder, das heterogene Studiendesign sowie die teilweise geringe Probandenzahl der Studien keine verbindlichen Aussagen zu. In dieser Übersichtsarbeit werden die Ergebnisse der wenigen Studien zu vegetarisch und vegan ernährten Kindern (< 12 Jahren) in Nordamerika und Europa zusammengefasst. Demnach lag die Zufuhr von Nahrungsenergie und Makronährstoffen vegetarischer und veganer Kinder meist näher an den Empfehlungen der Fachgesellschaften als die Ernährung gleichaltriger Mischkostkinder. Ebenso wiesen vegetarisch und vegan ernährte Kinder eine höhere Zufuhr von und bessere Versorgung mit verschiedenen Vitaminen und Mineralstoffen auf. Häufiger zeigten sich jedoch Defizite bei Vitamin B12, Zink, Kalzium, Eisen und Vitamin D. Das Wachstum und die Entwicklung vegetarisch und vegan ernährter Kinder entsprachen weitgehend den Referenzstandards, wobei sie dazu tendierten, leichter, schlanker und (< 5 Jahren) auch kleiner zu sein. Aufgrund der unzureichenden Studienlage besteht erheblicher Forschungsbedarf zu den Auswirkungen einer vegetarischen und veganen Ernährung im Kindesalter.

  20. [Vegetarische und vegane Ernährung bei Kindern - Stand der Forschung und Forschungsbedarf].

    PubMed

    Keller, Markus; Müller, Stine

    2016-01-01

    Die Praxis vegetarischer Ernährungsformen ist in Deutschland im letzten Jahrzehnt deutlich angestiegen. Allerdings ist der Anteil vegetarischer und veganer Kinder dabei unbekannt. Studien mit Erwachsenen zeigen das präventive Potenzial, aber auch potenzielle Schwachstellen pflanzenbasierter Kostformen. Die Vorteile und Risiken einer vegetarischen bzw. veganen Ernährung im Kindesalter wurden bisher jedoch relativ selten untersucht. Außerdem lassen das unterschiedliche Alter der Kinder, das heterogene Studiendesign sowie die teilweise geringe Probandenzahl der Studien keine verbindlichen Aussagen zu. In dieser Übersichtsarbeit werden die Ergebnisse der wenigen Studien zu vegetarisch und vegan ernährten Kindern (< 12 Jahren) in Nordamerika und Europa zusammengefasst. Demnach lag die Zufuhr von Nahrungsenergie und Makronährstoffen vegetarischer und veganer Kinder meist näher an den Empfehlungen der Fachgesellschaften als die Ernährung gleichaltriger Mischkostkinder. Ebenso wiesen vegetarisch und vegan ernährte Kinder eine höhere Zufuhr von und bessere Versorgung mit verschiedenen Vitaminen und Mineralstoffen auf. Häufiger zeigten sich jedoch Defizite bei Vitamin B12, Zink, Kalzium, Eisen und Vitamin D. Das Wachstum und die Entwicklung vegetarisch und vegan ernährter Kinder entsprachen weitgehend den Referenzstandards, wobei sie dazu tendierten, leichter, schlanker und (< 5 Jahren) auch kleiner zu sein. Aufgrund der unzureichenden Studienlage besteht erheblicher Forschungsbedarf zu den Auswirkungen einer vegetarischen und veganen Ernährung im Kindesalter. PMID:27160086

  1. SU-E-T-626: Accuracy of Dose Calculation Algorithms in MultiPlan Treatment Planning System in Presence of Heterogeneities

    SciTech Connect

    Moignier, C; Huet, C; Barraux, V; Loiseau, C; Sebe-Mercier, K; Batalla, A; Makovicka, L

    2014-06-15

    Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MC algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.

  2. Whole genome sequencing in Drosophila virilis identifies Polyphemus, a recently activated Tc1-like transposon with a possible role in hybrid dysgenesis

    PubMed Central

    2014-01-01

    Background Hybrid dysgenic syndromes in Drosophila have been critical for characterizing host mechanisms of transposable element (TE) regulation. This is because a common feature of hybrid dysgenesis is germline TE mobilization that occurs when paternally inherited TEs are not matched with a maternal pool of silencing RNAs that maintain transgenerational TE control. In the face of this imbalance TEs become activated in the germline and can cause F1 sterility. The syndrome of hybrid dysgenesis in Drosophila virilis was the first to show that the mobilization of one dominant TE, the Penelope retrotransposon, may lead to the mobilization of other unrelated elements. However, it is not known how many different elements contribute and no exhaustive search has been performed to identify additional ones. To identify additional TEs that may contribute to hybrid dysgenesis in Drosophila virilis, I analyzed repeat content in genome sequences of inducer and non-inducer lines. Results Here I describe Polyphemus, a novel Tc1-like DNA transposon, which is abundant in the inducer strain of D. virilis but highly degraded in the non-inducer strain. Polyphemus expression is also increased in the germline of progeny of the dysgenic cross relative to reciprocal progeny. Interestingly, like the Penelope element, it has experienced recent re-activation within the D. virilis lineage. Conclusions Here I present the results of a comprehensive search to identify additional factors that may cause hybrid dysgenesis in D. virilis. Polyphemus, a novel Tc1-like DNA transposon, has recently become re-activated in Drosophila virilis and likely contributes to the hybrid dysgenesis syndrome. It has been previously shown that the Penelope element has also been re-activated in the inducer strain. This suggests that TE co-reactivation within species may synergistically contribute to syndromes of hybrid dysgenesis. PMID:24555450

  3. Response and Monte Carlo evaluation of a reference ionization chamber for radioprotection level at calibration laboratories

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Vivolo, Vitor; Perini, Ana P.; Caldas, Linda V. E.

    2015-07-01

    A special parallel plate ionization chamber, inserted in a slab phantom for the personal dose equivalent Hp(10) determination, was developed and characterized in this work. This ionization chamber has collecting electrodes and window made of graphite, and the walls and phantom made of PMMA. The tests comprise experimental evaluation following international standards and Monte Carlo simulations, employing the PENELOPE code to evaluate the design of this new dosimeter. The experimental tests were conducted employing the radioprotection level quality N-60 established at the IPEN, and all results were within the recommended standards.

  4. Determination of LaBr3(Ce) internal background using a HPGe detector and Monte Carlo simulations.

    PubMed

    Camp, Anna; Vargas, Arturo; Fernández-Varea, José M

    2016-03-01

    The presence of (138)La and (227)Ac impurities in LaBr3(Ce) scintillator crystals is a drawback for their use in environmental radiation monitoring. A method is presented to evaluate the internal (138)La activity. Firstly, an experimental set-up is prepared with the LaBr3(Ce) crystal acting as the radiation source and an HPGe detector that acquires the photon spectrum. Then, the internal background spectrum is simulated with a modified version of the PENELOPE/penEasy Monte Carlo code. The simulated spectra agree with measurements conducted at ultra-low-background facilities. PMID:26688364

  5. Photometric geodesy of main-belt asteroids. III. Additional lightcurves

    SciTech Connect

    Weidenschilling, S.J.; Chapman, C.R.; Davis, D.R.; Greenberg, R.; Levy, D.H. )

    1990-08-01

    A total of 107 complete or partial lightcurves are presented for 59 different asteroids over the 1982-1989 period. Unusual lightcurves with unequal minima and maxima at large amplitudes are preferentially seen for M-type asteroids. Some asteroids, such as 16 Psyche and 201 Penelope, exhibit lightcurves combining large amplitude with very unequal brightness for both maxima and both minima, even at small phase angles. An M-type asteroid is believed to consist of a metal core of a differentiated parent body that has had its rocky mantle completely removed by one or more large impacts. 39 refs.

  6. Integrity and security in an Ada runtime environment

    NASA Technical Reports Server (NTRS)

    Bown, Rodney L.

    1991-01-01

    A review is provided of the Formal Methods group discussions. It was stated that integrity is not a pure mathematical dual of security. The input data is part of the integrity domain. The group provided a roadmap for research. One item of the roadmap and the final position statement are closely related to the space shuttle and space station. The group's position is to use a safe subset of Ada. Examples of safe sets include the Army Secure Operating System and the Penelope Ada verification tool. It is recommended that a conservative attitude is required when writing Ada code for life and property critical systems.

  7. Observation of double electron-positron pair production by {gamma} rays reexamined

    SciTech Connect

    Maidana, N. L.; Oliveira, J. R. B.; Rizzutto, M. A.; Added, N.; Vanin, V. R.; Brualla, L.; Fernandez-Varea, J. M.

    2009-04-15

    An experiment was conducted to observe triple- and quadruple-escape peaks, at a photon energy equal to 6.128 MeV, in the spectra recorded with a high-purity Ge detector working in coincidence with six bismuth germanate detectors. The peak intensities may be explained having recourse to only the bremsstrahlung cascade process of consecutive electron-positron pair creation; i.e., the contribution of simultaneous double pair formation (and other cascade effects) is much smaller. The experimental peak areas are in reasonably good agreement with those predicted by Monte Carlo simulations done with the general-purpose radiation-transport code PENELOPE.

  8. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    SciTech Connect

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  9. Rotation parameters and shapes of 15 asteroids

    NASA Astrophysics Data System (ADS)

    Tungalag, N.; Shevchenko, V. G.; Lupishko, D. F.

    2002-12-01

    With the use of the combined method (the amplitude and magnitude method plus the epoch method) pole coordinates, sidereal rotation periods, and axial ratios of triaxial ellipsoid figures for asteroids 22 Kalliope, 75 Eurydike, 93 Minerva, 97 Klotho, 105 Artemis, 113 Amalthea, 119 Althaea, 201 Penelope, 270 Anahita, 338 Budrosa, 487 Venetia, 674 Rachele, 776 Berbericia, 887 Alinda, nd 951 Gaspra were determined. For eight of them (asteroids 75, 97, 105, 113, 119, 338, 674, and 887) these values were obtained for the first time. We used the numerical photometric asteroid model based on ellipsoidal asteroid shape, homogeneous albedo distribution over the surface, and Akimov's scattering law.

  10. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    SciTech Connect

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random number and for measuring the time of simulation.

  11. Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques

    2014-12-01

    Version 04 FOTELP-2014 is a new compact general purpose version of the previous FOTELP-2K6 code designed to simulate the transport of photons, electrons and positrons through three-dimensional material and sources geometry by Monte Carlo techniques, using subroutine package PENGEOM from the PENELOPE code under Linux-based and Windows OS. This new version includes routine ELMAG for electron and positron transport simulation in electric and magnetic fields, RESUME option and routine TIMER for obtaining starting random numbermore » and for measuring the time of simulation.« less

  12. Monte Carlo simulation of a realistic anatomical phantom described by triangle meshes: application to prostate brachytherapy imaging

    PubMed Central

    Badal, Andreu; Kyprianou, Iacovos; Badano, Aldo; Sempau, Josep

    2008-01-01

    Purpose Monte Carlo codes can simulate the transport of radiation within matter with high accuracy and can be used to study medical applications of ionising radiations. The aim of our work was to develop a Monte Carlo code capable of generating projection images of the human body. In order to obtain clinically realistic images a detailed anthropomorphic phantom was prepared. These two simulation tools are intended to study the multiple applications of imaging in radiotherapy, from image guided treatments to portal imaging. Methods We adapted the general purpose code PENELOPE 2006 to simulate a radiation source, an ideal digital detector, and a realistic model of the patient anatomy. The anthropomorphic phantom was developed using computer-aided design tools, and is based on the NCAT phantom. The surface of each organ is modelled using a closed triangle mesh, and the full phantom contains 330 organs and more than 5 million triangles. A novel object-oriented geometry package, which includes an octree structure to sort the triangles, has been developed to use this complex geometry with PENELOPE. Results As an example of the capabilities of the new code, projection images of the human pelvis region were simulated. Radioactive seeds were included inside the phantom’s prostate. Therefore, the resulting simulated images resemble what would be obtained in a clinical procedure to assess the positioning of the seeds in a prostate brachytherapy treatment. Conclusions The new code can produce projection images of the human body that are comparable to those obtained by a real imaging system (within the limitations of the anatomical phantom and the detector model). The simulated images can be used to study and optimise an imaging task (i.e., maximise the object detectability, minimise the delivered dose, find the optimum beam energy, etc.). Since PENELOPE can simulate radiation from 50 eV to 1 GeV, the code can also be used to simulate radiotherapy treatments and portal

  13. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    PubMed Central

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10–30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10–30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90° for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30°, 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30° was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10°), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2–3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the “low energy” physics list were more accurate than

  14. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies.

    PubMed

    Faddegon, Bruce A; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-10-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degrees for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degrees, 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degrees was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degrees), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the "low energy" physics list were more

  15. Study of the angular-dependence of the L-alpha and L-beta radiation produced by 0-15 kev photons incident on Au targets of various thicknesses

    NASA Astrophysics Data System (ADS)

    Requena, Sebastian; Williams, Scott

    2011-03-01

    We report the results of experiments involving the L-alpha and L-beta x-ray lines produced by 0-15 keV bremsstrahlung incident on gold targets of various thicknesses at forward-scattered angles ranging from 20 to 160 degrees. Previous reports [1, 2] have shown the L-beta peaks to be isotropic and the L-alpha peaks to be anisotropic due to the symmetry/asymmetry associated with the orbital being filled during the transition. The relative intensities are compared to the predictions of the Monte Carlo code, PENELOPE.

  16. Optimization of a coincidence system using plastic scintillators in 4pi geometry.

    PubMed

    Dias, M S; Piuvezam-Filho, H; Koskinas, M F

    2008-01-01

    Improvements recently developed at the Nuclear Metrology Laboratory of IPEN-CNEN/SP in São Paulo were performed in order to increase the detector efficiency of a 4pibeta-gamma coincidence primary system using plastic scintillators in 4pi geometry. Measurements were undertaken and compared to the original system and Monte Carlo simulations of the extrapolation curves were calculated for this new system and compared to experimental results. For this purpose, the code Penelope was applied for calculating response functions for each detector and the code Esquema, developed at LMN, was used for simulating the decay scheme processes.

  17. Tumoral fibrosis effect on the radiation absorbed dose of (177)Lu-Tyr(3)-octreotate and (177)Lu-Tyr(3)-octreotate conjugated to gold nanoparticles.

    PubMed

    Azorín-Vega, E P; Zambrano-Ramírez, O D; Rojas-Calderón, E L; Ocampo-García, B E; Ferro-Flores, G

    2015-06-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals (177)Lu-Tyr(3)-octreotate (monomeric) and (177)Lu-Tyr(3)-octreotate-gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112Gy-multimeric vs. 43Gy-monomeric).

  18. Low bacterial diversity and high labile organic matter concentrations in the sediments of the Medee deep-sea hypersaline anoxic basin.

    PubMed

    Akoumianaki, Ioanna; Nomaki, Hidetaka; Pachiadaki, Maria; Kormas, Konstantinos Ar; Kitazato, Hiroshi; Tokuyama, Hidekazu

    2012-01-01

    Studies in the center and margin of the Medee Basin, a Mediterranean deep-sea hypersaline anoxic basin, and at a reference site during Penelope cruise (2007), revealed the existence of a 7 m-thick halocline, with high salinity (328 psu), and high sedimentary organic carbon and biopolymer concentrations. The 194 16S rRNA sequences retrieved were grouped into 118 unique phylotypes. Pseudomonas gessardii, dominated in the center, while 33 phylotypes were detected at the margin and 73 at the reference site. The study suggested conditions hostile to bacteria in the sediments of the Medee Basin and preservation of sedimentary labile organic matter. PMID:22504432

  19. PENEPMA: a Monte Carlo programme for the simulation of X-ray emission in EPMA

    NASA Astrophysics Data System (ADS)

    Llovet, X.; Salvat, F.

    2016-02-01

    The Monte Carlo programme PENEPMA performs simulations of X-ray emission from samples bombarded with electron beams. It is both based on the general-purpose Monte Carlo simulation package PENELOPE, an elaborate system for the simulation of coupled electron-photon transport in arbitrary materials, and on the geometry subroutine package PENGEOM, which tracks particles through complex material structures defined by quadric surfaces. In this work, we give a brief overview of the capabilities of the latest version of PENEPMA along with several examples of its application to the modelling of electron probe microanalysis measurements.

  20. Tumoral fibrosis effect on the radiation absorbed dose of (177)Lu-Tyr(3)-octreotate and (177)Lu-Tyr(3)-octreotate conjugated to gold nanoparticles.

    PubMed

    Azorín-Vega, E P; Zambrano-Ramírez, O D; Rojas-Calderón, E L; Ocampo-García, B E; Ferro-Flores, G

    2015-06-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals (177)Lu-Tyr(3)-octreotate (monomeric) and (177)Lu-Tyr(3)-octreotate-gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112Gy-multimeric vs. 43Gy-monomeric). PMID:25305748

  1. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    PubMed

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed. PMID:25836692

  2. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-01

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron™ electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  3. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    SciTech Connect

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-10

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  4. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    PubMed

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed.

  5. Application of the CIEMAT-NIST method to plastic scintillation microspheres.

    PubMed

    Tarancón, A; Barrera, J; Santiago, L M; Bagán, H; García, J F

    2015-04-01

    An adaptation of the MICELLE2 code was used to apply the CIEMAT-NIST tracing method to the activity calculation for radioactive solutions of pure beta emitters of different energies using plastic scintillation microspheres (PSm) and (3)H as a tracing radionuclide. Particle quenching, very important in measurements with PSm, was computed with PENELOPE using geometries formed by a heterogeneous mixture of polystyrene microspheres and water. The results obtained with PENELOPE were adapted to be included in MICELLE2, which is capable of including the energy losses due to particle quenching in the computation of the detection efficiency. The activity calculation of (63)Ni, (14)C, (36)Cl and (90)Sr/(90)Y solutions was performed with deviations of 8.8%, 1.9%, 1.4% and 2.1%, respectively. Of the different parameters evaluated, those with the greatest impact on the activity calculation are, in order of importance, the energy of the radionuclide, the degree of quenching of the sample and the packing fraction of the geometry used in the computation.

  6. Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Short, A.; Williams, S.

    2016-07-01

    The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.

  7. Working Time and the Volume of Work in Germany: The IAB Concept of Measurement. IAB Labour Market Research Topics.

    ERIC Educational Resources Information Center

    Bach, Hans-Uwe; Koch, Susanne

    The Institut fuer Arbeitsmarkt- und Berufsforschung (IAB) or Institute for Employment Research has developed a detailed working time and volume of work measurement concept in order to more comprehensively assess the demand for labor. The individual components of working time in Germany are obtained from various data sources and combined to form…

  8. Analysen zum Unterrichtshandeln - Band 5, IDM-Reihe, Untersuchungen zum Mathematikunterricht. (Analysis of Instructional Actions - Volume 5, IDM Series, Inquiries into Mathematics Instruction.)

    ERIC Educational Resources Information Center

    Bauersfeld, Heinrich; And Others

    This set of five papers, written in German with abstracts in English, was collected by the Institut fuer Didaktit der Mathematik (Institute for the Teaching of Mathematics) at the University of Bielefeld in West Germany. In the first paper, Bauersfeld used a transcript of a videotaped scene of group work out of school as a basis for analyzing…

  9. Lernen und Lehren von Mathematik-Analysen zum Unterrichtshandeln II - Band 6, IDM-Reihe, Untersuchungen zum Mathematikunterricht. (Learning and Teaching of Mathematics - Analysis of Instructional Actions II - Volume 6, IDM Series, Inquiries into Mathematics Instruction.)

    ERIC Educational Resources Information Center

    Bauersfeld, Heinrich; And Others

    This set of five papers, written in German with abstracts in English, was collected by the Institut fuer Didaktit der Mathematik (Institute for the Teaching of Mathematics) at the University of Bielefeld in West Germany. In the first paper, Bauersfeld considers domains of subjective experiences as the best issue for an interactive theory of…

  10. BKG/DGFI Combination Center Annual Report 2012

    NASA Technical Reports Server (NTRS)

    Bachmann, Sabine; Loesler, Michael; Heinkelmann, Robert; Gerstl, Michael

    2013-01-01

    This report summarizes the activities of the Federal Agency for Cartography and Geodesy (Bundesamt fuer Kartographie und Geodaesie, BKG) and the German Geodetic Research Institute (Deutsches Geodaetisches Forschungsinstitut, DGFI)BKG/DGFI Combination Center in 2011 and outlines the planned activities for the year 2012. The main focus was to stabilize outlier detection and to update the Web presentation of the combined products.

  11. 22. HISTORIC VIEW OF EARLY TEST STAND IN GERMANY PERHAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. HISTORIC VIEW OF EARLY TEST STAND IN GERMANY PERHAPS THE ENGINE IS FOR THE VFR'S (VEREIN FUER RAUMSCHIFFAHRT) 4 STICK REPULSOR. ENGINE IN PHOTOS IS BEING TANKED WITH LOX (NOTICE THE FROST FORMING AT THE BOTTOM OF THE TANK BEHIND THE LADDER. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  12. Doktor Johannes Häringshauser - Was seine Bücher über ihn erzählen.

    NASA Astrophysics Data System (ADS)

    Feola, Vittoria

    2009-06-01

    Die Bibliothek des Dr. Johannes Häringshauser (1603-1642) weist ihren Besitzer als Arzt und Gelehrten mit großem geistigen Horizont aus. Hervorzuheben ist sein Interesse für Astronomie und Astrologie. Neben Werken, die unmittelbar mit seinen Studien in Wien und Padua und den Erfordernissen eines Arztes in Zusammenhang zu bringen sind (Klassiker der Heilkunde genauso wie aktuelle medizinische Publikationen), wird in seiner Büchersammlung eine reiche Palette an Themen abgedeckt: Theologie, Philosophie, Philologie, Politik, Geschichte und Länderkunde.

  13. Navigating the maze of requirements for obtaining approval of non-interventional studies (NIS) in the European Union.

    PubMed

    Ramirez, Isabelle

    2015-01-01

    Ziel: Dieser Artikel soll über die Komplexität und unerwartete regulatorische Anforderungen bei multinationalen und multizentrischen, nicht-interventionellen Studien (NIS) in der Europäischen Union aufklären.Methoden: Die Internetseiten der zuständigen nationalen Behörden, Ethikkommissionen (EK) und Datenschutzbehörden wurden konsultiert, um Vorschriften und Richtlinien zum Genehmigungsverfahren von NIS in den verschiedenen Mitgliedstaaten der EU zu finden.Ergebnis: Viele zusätzliche Hürden wurden identifiziert, die weder offengelegt noch deutlich in den jeweiligen Verordnungen/Richtlinien für NIS beschrieben waren. Obwohl die Genehmigung durch die nationale Behörde für NIS grundsätzlich nicht erforderlich ist, wird in vielen Ländern dennoch empfohlen die geplante NIS – vor dem EK-Antrag – der nationalen Behörde anzuzeigen, um die Bestätigung zu erhalten, dass die geplante NIS nicht in die Kategorie „interventionelle Studie“ fällt. Zudem ist in einigen Ländern eine Probandenversicherung erforderlich. In vielen Ländern, in denen multizentrische NIS geplant sind, bedarf es zusätzlich zur Zustimmung der zentralen Ethikkommission auch noch die zustimmende Bewertung aller lokalen Ethikkommissionen, denn ein zentrales EK-Gutachten wird nicht als ausreichend betrachtet. Die Anforderungen an EK-Dokumente und an Gebühren für die Einreichung variieren stark unter allen Mitgliedsstaaten. Zusätzliche Genehmigungen von den Datenschutzbehörden und Versicherungsgesellschaften sind in einigen Ländern einzuholen.Schlussfolgerung: Das Genehmigungsverfahren für multizentrische und multinationale NIS ist zeitaufwendig, vor allem wegen des Mangels an Transparenz und den unterschiedlichen regulatorischen Anforderungen der Mitgliedsstaaten. Die EU-Rechtsvorschriften zur Pharmakovigilanz und die neue EU-Verordnung Nr. 536/2014 über klinische Studien sind zwar ein Schritt nach vorn bei der Schaffung eines Rechtsrahmens für PASS (post-authorisation safety

  14. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    SciTech Connect

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with the source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.

  15. Vaccination of children with a live-attenuated, intranasal influenza vaccine - analysis and evaluation through a Health Technology Assessment.

    PubMed

    Andersohn, Frank; Bornemann, Reinhard; Damm, Oliver; Frank, Martin; Mittendorf, Thomas; Theidel, Ulrike

    2014-01-01

    als auch TIV überlegen (Relative Risikoreduktion – RRR – einer laborbestätigten Influenzainfektion ca. 80% bzw. 50%). Bei Kindern im Alter von >7 bis 17 Jahren mit Asthma ist die Wirksamkeit der Impfung mit LAIV der Impfung mit TIV überlegen (RRR 32%); im Vergleich zu Placebo liegen keine Studien vor. Die Evidenzlage für Kinder >7 bis 17 Jahren mit Asthma ist als moderat einzuschätzen; für Kinder aus der Allgemeinbevölkerung (das heißt Begleiterkrankungen waren kein Einschlusskriterium) lagen keine Studien vor. Angesichts der nachgewiesenen besseren Wirksamkeit von LAIV bei Kindern im Alter von sechs Monaten bis ≤7 Jahren (hohe Evidenz) und der nachgewiesenen besseren Wirksamkeit von LAIV bei Kindern mit Asthma im Alter von >7 bis 17 Jahren (moderate Evidenz) ist LAIV höchstwahrscheinlich auch bei Kindern aus der Allgemeinbevölkerung im Alter von >7 bis 17 Jahren ebenso wirksam (indirekte Evidenz). LAIV war in den eingeschlossenen Studien bei Kindern im Alter von zwei bis 17 Jahren sicher und gut verträglich.In der Mehrzahl der ausgewerteten epidemiologischen Studien zeigte sich LAIV unter Alltagsbedingungen (Effectiveness) als wirksam in der Prävention von Influenza bei Kindern im Alter von zwei bis 17 Jahren. Im Trend war LAIV dabei wirksamer als TIV, was jedoch Methodik bedingt (Beobachtungsstudien) nur eingeschränkt zu bewerten ist. Neben einem direkten Schutzeffekt für die Kinder selbst, konnten bereits bei einer relativ geringen Impfquote auch indirekte Schutzeffekte („Herdenschutz“) bei nichtgeimpften älteren Bevölkerungsgruppen gezeigt werden. In Bezug auf die Sicherheit kann LAIV im Vergleich zu TIV insgesamt als gleichwertig betrachtet werden. Dies gilt auch für die Anwendung bei Kindern mit leichten chronisch-obstruktiven Atemwegserkrankungen, denen daher LAIV nicht vorenthalten werden muss.Aus gesundheitsökonomischer Sicht geht in den bewerteten Studien sowohl die Impfung von Kindern mit Vorerkrankungen als auch die

  16. Standardization of 134Cs by three methods.

    PubMed

    García-Toraño, E; Rodríguez, Barquero L; Roteta, M

    2002-01-01

    The nuclide 34Cs decays by beta-emission followed by gamma-deexcitation to 134Ba with a half-life T(1/2) = 2.065 a. It has been standardized by three methods: liquid scintillation counting (LSC), 4pi beta-gamma coincidence counting and 4pi gamma counting. In the LSC measurements, the CIEMAT/NIST method was used to calculate the efficiency. For the coincidence measurements, a conventional 4pi beta (proportional counter)-gamma(NaI) system was used. For the 4pi gamma standardization, a well-type Nal(Tl) detector was modeled with the Monte Carlo package PENELOPE, and the counting efficiency obtained by calculation. Results of the three methods agree within 0.65%.

  17. Thallium contamination in wild ducks in Japan.

    PubMed

    Mochizuki, Mariko; Mori, Makoto; Akinaga, Mayumi; Yugami, Kyoko; Oya, Chika; Hondo, Ryo; Ueda, Fukiko

    2005-07-01

    Although thallium (Tl) is toxic to both humans and animals, there is little information on contamination in wildlife. In this study, Tl contents in wild ducks in Japan were determined. Contents of Tl in kidney and liver ranged from 0.42 to 119.61 and 0.10 to 33.94 microg/g dry weight, respectively. Significant correlations between Tl contents in kidney and liver were observed for all dabbling ducks except mallard (Anas platyrhynchos); similar correlations were not observed in diving ducks. Variation in Tl content was observed between sampling locations with the highest mean Tl content in the Eurasian wigeon (Anas penelope) collected in Ibaraki Prefecture. PMID:16244083

  18. Tritium analysis in titanium films by the BIXS method

    NASA Astrophysics Data System (ADS)

    Zhang, W. G.; Sun, H. W.; Zeng, F. Y.; Mao, L.; Wu, Q. Q.; Zhu, J. J.; An, Z.

    2012-03-01

    In this paper, tritium analyses in titanium films has been carried out by β-decay induced X-ray spectroscopy (BIXS), based on Monte Carlo simulations and the Tikhonov regularization. In our analysis, for the first time the internal bremsstrahlung of tritium β-decay has been taken into account in the BIXS method. Meanwhile, parallel computation using the Monte Carlo code PENELOPE has been realized within the frame of a message passing interface. The tritium depth distributions, surface homogeneity and the total tritium content of the analyzed samples have been obtained. The total tritium contents obtained by the present BIXS method are found to be in good agreement with those obtained by the PVT method.

  19. How air influences radiation dose deposition in multiwell culture plates: a Monte Carlo simulation of radiation geometry

    PubMed Central

    Sabater, Sebastia; Berenguer, Roberto; Honrubia-Gomez, Paloma; Rivera, Miguel; Nuñez, Ana; Jimenez-Jimenez, Esther; Martos, Ana; Ramirez-Castillejo, Carmen

    2014-01-01

    Radiation of experimental culture cells on plates with various wells can cause a risk of underdosage as a result of the existence of multiple air–water interfaces. The objective of our study was to quantify this error in culture plates with multiple wells. Radiation conditions were simulated with the GAMOS code, based on the GEANT4 code, and this was compared with a simulation performed with PENELOPE and measured data. We observed a slight underdosage of ∼4% on the most superficial half of the culture medium. We believe that this underdosage does not have a significant effect on the dose received by culture cells deposited in a monolayer and adhered to the base of the wells. PMID:24722683

  20. How air influences radiation dose deposition in multiwell culture plates: a Monte Carlo simulation of radiation geometry.

    PubMed

    Sabater, Sebastia; Berenguer, Roberto; Honrubia-Gomez, Paloma; Rivera, Miguel; Nuñez, Ana; Jimenez-Jimenez, Esther; Martos, Ana; Ramirez-Castillejo, Carmen

    2014-09-01

    Radiation of experimental culture cells on plates with various wells can cause a risk of underdosage as a result of the existence of multiple air-water interfaces. The objective of our study was to quantify this error in culture plates with multiple wells. Radiation conditions were simulated with the GAMOS code, based on the GEANT4 code, and this was compared with a simulation performed with PENELOPE and measured data. We observed a slight underdosage of ∼ 4% on the most superficial half of the culture medium. We believe that this underdosage does not have a significant effect on the dose received by culture cells deposited in a monolayer and adhered to the base of the wells.

  1. Comment on 'Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy (125)I and (192)Ir sources and (60)Co cell irradiation'.

    PubMed

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for (60)Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  2. Development of a transmission positron microscope

    NASA Astrophysics Data System (ADS)

    Matsuya, M.; Jinno, S.; Ootsuka, T.; Inoue, M.; Kurihara, T.; Doyama, M.; Inoue, M.; Fujinami, M.

    2011-07-01

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000× (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  3. Comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    NASA Astrophysics Data System (ADS)

    Lindborg, Lennart; Lillhök, Jan; Grindborg, Jan-Erik

    2015-11-01

    The relative standard deviation, σr,D, of calculated multi-event distributions of specific energy for 60Co ϒ rays was reported by the authors F Villegas, N Tilly and A Ahnesjö (Phys. Med. Biol. 58 6149-62). The calculations were made with an upgraded version of the Monte Carlo code PENELOPE. When the results were compared to results derived from experiments with the variance method and simulated tissue equivalent volumes in the micrometre range a difference of about 50% was found. Villegas et al suggest wall-effects as the likely explanation for the difference. In this comment we review some publications on wall-effects and conclude that wall-effects are not a likely explanation.

  4. A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Hueso-González, Fernando; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Siebert, Frank-André

    2015-07-01

    In low energy brachytherapy, the presence of tissue heterogeneities contributes significantly to the discrepancies observed between treatment plan and delivered dose. In this work, we present a simplified analytical dose calculation algorithm for heterogeneous tissue. We compare it with Monte Carlo computations and assess its suitability for integration in clinical treatment planning systems. The algorithm, named as RayStretch, is based on the classic equivalent path length method and TG-43 reference data. Analytical and Monte Carlo dose calculations using Penelope2008 are compared for a benchmark case: a prostate patient with calcifications. The results show a remarkable agreement between simulation and algorithm, the latter having, in addition, a high calculation speed. The proposed analytical model is compatible with clinical real-time treatment planning systems based on TG-43 consensus datasets for improving dose calculation and treatment quality in heterogeneous tissue. Moreover, the algorithm is applicable for any type of heterogeneities.

  5. Vectorization of the time-dependent Boltzmann transport equation: Application to deep penetration problems

    NASA Astrophysics Data System (ADS)

    Cobos, Agustín C.; Poma, Ana L.; Alvarez, Guillermo D.; Sanz, Darío E.

    2016-10-01

    We introduce an alternative method to calculate the steady state solution of the angular photon flux after a numerical evolution of the time-dependent Boltzmann transport equation (BTE). After a proper discretization the transport equation was converted into an ordinary system of differential equations that can be iterated as a weighted Richardson algorithm. As a different approach, in this work the time variable regulates the iteration process and convergence criteria is based on physical parameters. Positivity and convergence was assessed from first principles and a modified Courant-Friedrichs-Lewy condition was devised to guarantee convergence. The Penelope Monte Carlo method was used to test the convergence and accuracy of our approach for different phase space discretizations. Benchmarking was performed by calculation of total fluence and photon spectra in different one-dimensional geometries irradiated with 60Co and 6 MV photon beams and radiological applications were devised.

  6. Monte Carlo Simulations on a 9-node PC Cluster

    NASA Astrophysics Data System (ADS)

    Gouriou, J.

    Monte Carlo simulation methods are frequently used in the fields of medical physics, dosimetry and metrology of ionising radiation. Nevertheless, the main drawback of this technique is to be computationally slow, because the statistical uncertainty of the result improves only as the square root of the computational time. We present a method, which allows to reduce by a factor 10 to 20 the used effective running time. In practice, the aim was to reduce the calculation time in the LNHB metrological applications from several weeks to a few days. This approach includes the use of a PC-cluster, under Linux operating system and PVM parallel library (version 3.4). The Monte Carlo codes EGS4, MCNP and PENELOPE have been implemented on this platform and for the two last ones adapted for running under the PVM environment. The maximum observed speedup is ranging from a factor 13 to 18 according to the codes and the problems to be simulated.

  7. Zum Stellenwert der Unterdruck-Instillationstherapie in der Dermatologie.

    PubMed

    Müller, Cornelia Sigrid Lissi; Burgard, Barbara; Zimmerman, Monika; Vogt, Thomas; Pföhler, Claudia

    2016-08-01

    Die Methoden zur Behandlung akuter und chronischer Wunden unterliegen einer steten Weiterentwicklung, Reevaluierung und Anwendung innovativer Therapieformen. Die Vakuumtherapie zur Wundbehandlung gehört zu den etablierten Behandlungsmodalitäten. Ein innovatives Verfahren kombiniert die Vakuumtherapie mit der automatisierten, kontrollierten Zufuhr und Drainage wirkstoffhaltiger Lösungen zur topischen Wundbehandlung im Wundbett und auch wirkstofffrei durch Instillation physiologischer Kochsalzlösung (Unterdruck-Instillationstherapie). Hierdurch können die Effekte der konventionellen Vakuumtherapie mit denen der lokalen Antisepsis kombiniert werden. Hierdurch kommt es zu einer Reduktion der Wundfläche, einer Induktion von Granulationsgewebe sowie einer Reduktion der Keimbesiedelung der Wunden. Bisher publizierte Studien konzentrieren sich auf die Anwendung dieses Therapieverfahrens zur Behandlung orthopädisch-chirurgischer Krankheiten. Die Datenlage bezüglich der Vakuum-Instillationstherapie in der Dermatochirurgie beschränkt sich derzeit auf Fallberichte und Einzelfallerfahrungen. Randomisierte, prospektive Studien zum Vergleich der Vakuum-Instillationstherapie zur Behandlung dermatologischer Krankheitsbilder existieren bislang nicht. Ziele des vorliegenden Artikels sind die Vorstellung der Vakuumtherapie mit Instillation einschließlich ihres Wirkprinzips, deren mögliche Komplikationen, die Diskussion erdenklicher Kontraindikationen sowie eine Übersicht über die aktuell verfügbare Datenlage. Zusammenfassend scheint sich die Evidenz zu verdichten, dass mittels Unterdruck-Instillationstherapie sowohl einfache als auch komplizierte Wunden effizient behandelt werden können, was sich in einer deutlichen Beschleunigung der Wundgranulation mit konsekutiv früher möglichem Defektverschluss äußert. PMID:27509413

  8. [Evidenzbasierte Leitlinien, Anspruch und Wirklichkeit].

    PubMed

    Gutsch, Johannes; Reif, Marcus; Müller-Hübenthal, Boris; Matthiessen, Peter F

    2016-01-01

    Mit der Konzeption der «Evidenzbasierten Medizin» und den «Evidenzbasierten Leitlinien» soll mithilfe von Formalisierungsprozeduren die ärztliche Irrtumsanfälligkeit kalkulierbar gemacht werden. Quantifizierte objektive Aussagen über die therapeutische Wirksamkeit einer Behandlung sollen die individuelle ärztliche Beurteilung der therapeutischen Wirksamkeit überflüssig machen. Damit kommt der Befolgung von formalen Regeln die entscheidende Rolle bei der Beantwortung der Frage nach dem Wahrheitsgehalt und dem Wirklichkeitsbezug zu. Im Rahmen evidenzbasierter Leitlinien werden vorrangig die Ergebnisse randomisierter kontrollierter Studien (RCT) oder Meta-Analysen solcher Studien herangezogen. Am Beispiel der S3-Leitlinie «Malignes Melanom» wird hier eine evidenzbasierte Urteilsbildung zur Wirksamkeit einer unkonventionellen Therapie - hier mit einem Mistelpräparat - analytisch nachvollzogen. Die für die Beurteilung dieser unkonventionellen Therapie herangezogene randomisierte Studie wird genauer methodisch analysiert. Obwohl sie keine statistisch basierte Aussage zulässt, wurde eine Leitlinienempfehlung auf Basis dieser Studie abgeleitet. Es wird gezeigt, dass 1) allein die Existenz einer einzigen RCT mit hoher Evidenz gleichgesetzt wird, 2) die Ergebnisse trotz beträchtlicher Fehlinterpretationen in eine S3-Leitlinie einfließen und 3) Meinungen anstelle kritischer wissenschaftlicher Analysen verarbeitet werden. Unsere Untersuchung zeigt, dass noch so ausgefeilte epistemologische und methodologische Formalien den Arzt nicht von der Pflicht entbinden, auf Basis seiner ärztlichen Erfahrung und professionellen Kompetenz den Realitätswert der ihm zur Verfügung stehenden Information zu beurteilen. PMID:27161555

  9. [Relationships between family interactions and pathological internet use in adolescents: an review].

    PubMed

    Wartberg, Lutz; Aden, Anneke; Thomsen, Monika; Thomasius, Rainer

    2015-01-01

    Einleitung: Neben einer generellen Nutzung digitaler Medien durch Kinder und Jugendliche ist in vielen Industrieländern (insbesondere in Asien, Europa und Nordamerika) ein pathologischer Gebrauch des Internets ein Phänomen von wachsender Bedeutung. Aktuellen epidemiologischen Daten zufolge sind in Deutschland Jugendliche häufiger betroffen als Erwachsene. International wurden in verschiedenen Studien Zusammenhänge von familialen Interaktionsmustern und pathologischer Internetnutzung bei Jugendlichen untersucht. Dieser Beitrag gibt eine Übersicht über die aktuell vorliegenden Forschungsbefunde. Methodik: Es erfolgte eine systematische Literaturrecherche in den Datenbanken PubMed, PsycINFO und Psyndex mit festgelegten Schlagwörtern. Ergebnisse: Insgesamt wurden 15 Untersuchungen zu dieser Thematik identifiziert. Es wurden alle Originalarbeiten eingeschlossen, die in englischer oder deutscher Sprache verfasst und in denen ausschließlich minderjährige Untersuchungsteilnehmer befragt worden waren. Funktionalität der Familie, eine gute Kommunikation zwischen Eltern und Kind, eine positive Eltern-Kind-Beziehung sowie unterstützendes elterliches Monitoring vermindern das Risiko einer jugendlichen pathologischen Internetnutzung. Diskussion: Die beschriebenen familialen Prädiktoren wurden in mehreren Studien repliziert. Implikationen für die zukünftige Forschung zu dieser Thematik werden diskutiert.

  10. Use of elaborate feedback and an audience-response-system in dental education.

    PubMed

    Rahman, Alexander; Jacker-Guhr, Silke; Staufenbiel, Ingmar; Meyer, Karen; Zupanic, Michaela; Hahnemann, Merle; Lührs, Anne-Katrin; Eberhard, Jörg

    2013-01-01

    Einleitung: Die Studie soll die Frage klären, ob sich durch Anwendung von elaboriertem Feedback und einem Audience-Response-Systems (ARS) der Lernerfolg im Studienfach Zahnerhaltung signifikant verbessert. Methodik: Die Studierenden des 1. klinischen Semesters wurden in eine Studien- und eine Kontrollgruppe randomisiert eingeteilt. Die Randomisierung erfolgte unter Berücksichtigung der Faktoren Alter, Geschlecht und Note im Physikum. Im Verlauf von 10 Vorlesungen wurden pro Vorlesung 5 Multiple-Choice-Fragen zu den formulierten Lernzielen gestellt. Diese wurden unter Anwendung eines ARS von den Studierenden beantwortet. Nur die Studiengruppe erhielt sofort ein elaboriertes Feedback zu den Ergebnissen. Die am Ende durchgeführte Abschlussklausur und Evaluation sollten ermitteln, ob das elaborierte Feedback zu einem Lernerfolg führt und welchen Effekt das ARS auf die Vorlesungsatmosphäre hat. Ergebnisse: Die Ergebnisse der Abschlussklausuren ergaben keinen signifikanten Unterschied zwischen dem Lernerfolg der Studien- und der Kontrollgruppe. Schlussfolgerung: Durch das elaborierte Feedback zeigte sich in dieser Untersuchung kein Unterschied im Lernerfolg. Mit dem ARS ließ sich jedoch eine interaktivere, positivere Lernatmosphäre schaffen.

  11. Dosimetric quality control of Eclipse treatment planning system using pelvic digital test object

    NASA Astrophysics Data System (ADS)

    Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jeanpierre; Crespin, Sylvain

    2011-03-01

    Last year, we demonstrated the feasibility of a new method to perform dosimetric quality control of Treatment Planning Systems in radiotherapy, this method is based on Monte-Carlo simulations and uses anatomical Digital Test Objects (DTOs). The pelvic DTO was used in order to assess this new method on an ECLIPSE VARIAN Treatment Planning System. Large dose variations were observed particularly in air and bone equivalent material. In this current work, we discuss the results of the previous paper and provide an explanation for observed dose differences, the VARIAN Eclipse (Anisotropic Analytical) algorithm was investigated. Monte Carlo simulations (MC) were performed with a PENELOPE code version 2003. To increase efficiency of MC simulations, we have used our parallelized version based on the standard MPI (Message Passing Interface). The parallel code has been run on a 32- processor SGI cluster. The study was carried out using pelvic DTOs and was performed for low- and high-energy photon beams (6 and 18MV) on 2100CD VARIAN linear accelerator. A square field (10x10 cm2) was used. Assuming the MC data as reference, χ index analyze was carried out. For this study, a distance to agreement (DTA) was set to 7mm while the dose difference was set to 5% as recommended in the TRS-430 and TG-53 (on the beam axis in 3-D inhomogeneities). When using Monte Carlo PENELOPE, the absorbed dose is computed to the medium, however the TPS computes dose to water. We have used the method described by Siebers et al. based on Bragg-Gray cavity theory to convert MC simulated dose to medium to dose to water. Results show a strong consistency between ECLIPSE and MC calculations on the beam axis.

  12. SU-C-12A-03: The Impact of Contrast Medium On Radiation Dose in CT: A Systematic Evaluation Across 58 Patient Models

    SciTech Connect

    Sahbaee, P; Samei, E; Segars, W

    2014-06-01

    Purpose: To assess the effect of contrast medium on radiation dose as a function of time via Monte Carlo simulation from the liver CT scan across a library of 5D XCAT models Methods: A validated Monte Carlo simulation package (PENELOPE) was employed to model a CT system (LightSpeed 64 VCT, GE Healthcare). The radiation dose was estimated from a common abdomen CT examination. The dose estimation was performed on a library of adult extended cardiac-torso (5D XCAT) phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The 5D XCAT models were created based on patient-specific iodine concentration-time results from our computational contrast medium propagation model for different intravenous injection protocols. To enable a dynamic estimation of radiation dose, each organ in the model was assigned to its own time-concentration curve via the PENELOPE package, material.exe. Using the Monte Carlo, for each scan time point after the injection, 80 million photons were initiated and tracked through the phantoms. Finally, the dose to the liver was tallied from the deposited energy. Results: Monte Carlo simulation results of radiation dose delivered to the liver from the XCAT models indicated up to 30% increase in dose for different time after the administration of contrast medium. Conclusion: The contrast enhancement is employed in over 60% of imaging modalities, which not only remarkably affects the CT image quality, but also increases the radiation dose by as much as 70%. The postinjection multiple acquisition in several enhanced CT protocols, makes the radiation dose increment through the use of contrast medium, an inevitable factor in optimization of these protocols. The relationship between radiation dose and injected contrast medium as a function of time studied in this work allows optimization of contrast administration for vulnerable individuals.

  13. When young are more conspicuous than adults: a new ranid species (Anura: Ranidae) revealed by its tadpole.

    PubMed

    Grosjean, Stéphane; Bordoloi, Sabitry; Chuaynkern, Yodchaiy; Chakravarty, Paramita; Ohler, Annemarie

    2015-12-18

    Tadpoles of Clinotarsus alticola collected nearby the type locality in Assam, India are barcoded and described. A detailed morphological and morphometrical description of the specimens, along with a study of the anatomy of the buccal cavity are provided. A comparison of these tadpoles with "Clinotarsus alticola" tadpoles from peninsular Thailand and of the genetic variation of a fragment of their mtDNA 16S gene led us to assign the population of peninsular Thailand to a new species, Clinotarsus penelope sp. n. The holotype of the new species is chosen among the tadpole series as no adult could be found in the type locality. Presumed conspecific adults of nearby localities are morphologically described and compared to barcoded adults of Clinotarsus alticola, waiting for further molecular confirmation. The tadpole of the new species differs from that of C. alticola by a much greater size at comparative stages (e.g., 77.7 mm vs. 53.3 mm in stage 36, respectively), a black coloration (vs. a yellow-olive tinge), several ocelli on the tail muscle (vs. only one), a rounded snout (vs. a more pointed snout) and a different Keratodont Row Formula (KRF; nine keratodonts rows maximum on both labia in C. penelope vs. eight maximum in C. alticola). A discussion about the choice of the holotype, the assignment of adult specimens and the future confirmation of this assignment are provided, as well as a comparison with older descriptions of "Clinotarsus alticola" sensu lato tadpoles and with Clinotarsus curtipes tadpoles from Karnataka, India. The lectotype of Clinotarsus alticola is redescribed.

  14. The GEANT4 toolkit for microdosimetry calculations: application to microbeam radiation therapy (MRT).

    PubMed

    Spiga, J; Siegbahn, E A; Bräuer-Krisch, E; Randaccio, P; Bravin, A

    2007-11-01

    Theoretical dose distributions for microbeam radiation therapy (MRT) are computed in this paper using the GEANT4 Monte Carlo (MC) simulation toolkit. MRT is an innovative experimental radiotherapy technique carried out using an array of parallel microbeams of synchrotron-wiggler-generated x rays. Although the biological mechanisms underlying the effects of microbeams are still largely unknown, the effectiveness of MRT can be traced back to the natural ability of normal tissues to rapidly repair small damages to the vasculature, and on the lack of a similar healing process in tumoral tissues. Contrary to conventional therapy, in which each beam is at least several millimeters wide, the narrowness of the microbeams allows a rapid regeneration of the blood vessels along the beams' trajectories. For this reason the calculation of the "valley" dose is of crucial importance and the correct use of MC codes for such purposes must be understood. GEANT4 offers, in addition to the standard libraries, a specialized package specifically designed to deal with electromagnetic interactions of particles with matter for energies down to 250 eV. This package implements two different approaches for electron and photon transport, one based on evaluated data libraries, the other adopting analytical models. These features are exploited to cross-check theoretical computations for MRT. The lateral and depth dose profiles are studied for the irradiation of a 20 cm diameter, 20 cm long cylindrical phantom, with cylindrical sources of different size and energy. Microbeam arrays are simulated with the aid of superposition algorithms, and the ratios of peak-to-valley doses are computed for typical cases used in preclinical assays. Dose profiles obtained using the GEANT4 evaluated data libraries and analytical models are compared with simulation results previously obtained using the PENELOPE code. The results show that dose profiles computed with GEANT4's analytical model are almost

  15. RBE of kV CBCT radiation determined by Monte Carlo DNA damage simulations.

    PubMed

    Kirkby, C; Ghasroddashti, E; Poirier, Y; Tambasco, M; Stewart, R D

    2013-08-21

    Due to the higher LET of kilovoltage (kV) radiation, there is potential for an increase in relative biological effectiveness (RBE) of absorbed doses of radiation from kV cone beam computed tomography (CBCT) sources in reference to megavoltage or Co-60 doses. This work develops a method for accurately coupling a Monte Carlo (MC) radiation transport code (PENELOPE) with the damage simulation (MCDS) to predict relative numbers of DNA double strand breaks (DSBs). The MCDS accounts for slowing down of electrons and delta ray production within the cell nucleus; however, determining the spectrum of electrons incident on the cell nucleus from photons interacting in a larger region of tissue is not trivial. PENELOPE simulations were conducted with a novel tally algorithm invoked where electrons incident on a detection material were tracked and both the incident energy and the final deposited dose were recorded. The DSB yield predicted by a set of MCDS runs of monoenergetic electrons was then looked up in a table and weighted by the specific energy of the incident electron. Our results indicate that the RBE for DSB induction is 1.1 for diagnostic x-rays with energies from 80 to 125 kVp. We found no significant change in RBE with depth or filtration. The predicted absolute DSB yields are about three times lower for cells irradiated under anoxic conditions than the yield in cells irradiated under normoxic (5%) or fully aerobic (100%) conditions. However, oxygen concentration has a negligible (± 0.02) effect on the RBE of kV CBCT x-rays.

  16. Retinoblastoma external beam photon irradiation with a special ‘D’-shaped collimator: a comparison between measurements, Monte Carlo simulation and a treatment planning system calculation

    NASA Astrophysics Data System (ADS)

    Brualla, L.; Mayorga, P. A.; Flühs, A.; Lallena, A. M.; Sempau, J.; Sauerwein, W.

    2012-11-01

    Retinoblastoma is the most common eye tumour in childhood. According to the available long-term data, the best outcome regarding tumour control and visual function has been reached by external beam radiotherapy. The benefits of the treatment are, however, jeopardized by a high incidence of radiation-induced secondary malignancies and the fact that irradiated bones grow asymmetrically. In order to better exploit the advantages of external beam radiotherapy, it is necessary to improve current techniques by reducing the irradiated volume and minimizing the dose to the facial bones. To this end, dose measurements and simulated data in a water phantom are essential. A Varian Clinac 2100 C/D operating at 6 MV is used in conjunction with a dedicated collimator for the retinoblastoma treatment. This collimator conforms a ‘D’-shaped off-axis field whose irradiated area can be either 5.2 or 3.1 cm2. Depth dose distributions and lateral profiles were experimentally measured. Experimental results were compared with Monte Carlo simulations’ run with the penelope code and with calculations performed with the analytical anisotropic algorithm implemented in the Eclipse treatment planning system using the gamma test. penelope simulations agree reasonably well with the experimental data with discrepancies in the dose profiles less than 3 mm of distance to agreement and 3% of dose. Discrepancies between the results found with the analytical anisotropic algorithm and the experimental data reach 3 mm and 6%. Although the discrepancies between the results obtained with the analytical anisotropic algorithm and the experimental data are notable, it is possible to consider this algorithm for routine treatment planning of retinoblastoma patients, provided the limitations of the algorithm are known and taken into account by the medical physicist and the clinician. Monte Carlo simulation is essential for knowing these limitations. Monte Carlo simulation is required for optimizing the

  17. Evaluation of bremsstrahlung contribution to photon transport in coupled photon-electron problems

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio; Salvat, Francesc

    2015-11-01

    The most accurate description of the radiation field in x-ray spectrometry requires the modeling of coupled photon-electron transport. Compton scattering and the photoelectric effect actually produce electrons as secondary particles which contribute to the photon field through conversion mechanisms like bremsstrahlung (which produces a continuous photon energy spectrum) and inner-shell impact ionization (ISII) (which gives characteristic lines). The solution of the coupled problem is time consuming because the electrons interact continuously and therefore, the number of electron collisions to be considered is always very high. This complex problem is frequently simplified by neglecting the contributions of the secondary electrons. Recent works (Fernández et al., 2013; Fernández et al., 2014) have shown the possibility to include a separately computed coupled photon-electron contribution like ISII in a photon calculation for improving such a crude approximation while preserving the speed of the pure photon transport model. By means of a similar approach and the Monte Carlo code PENELOPE (coupled photon-electron Monte Carlo), the bremsstrahlung contribution is characterized in this work. The angular distribution of the photons due to bremsstrahlung can be safely considered as isotropic, with the point of emission located at the same place of the photon collision. A new photon kernel describing the bremsstrahlung contribution is introduced: it can be included in photon transport codes (deterministic or Monte Carlo) with a minimal effort. A data library to describe the energy dependence of the bremsstrahlung emission has been generated for all elements Z=1-92 in the energy range 1-150 keV. The bremsstrahlung energy distribution for an arbitrary energy is obtained by interpolating in the database. A comparison between a PENELOPE direct simulation and the interpolated distribution using the data base shows an almost perfect agreement. The use of the data base increases

  18. Interface science of controlled metal/metal and metal/ceramic interfaces prepared using ultrahigh vacuum diffusion bonding

    SciTech Connect

    King, W.E.; Campbell, G.H.; Coombs, A.W.; Johnson, G.W.; Kelly, B.E.; Reitz, T.C.; Stoner, S.L.; Wien, W.L.; Wilson, D.M.

    1993-04-01

    We have designed, constructed, and are operating a capability for production of controlled homophase and heterophase interfaces: an ultrahigh vacuum diffusion bonding machine. This machine is based on a previous design which is operating at the Max Planck Institut fuer Metallforschung, Institut fuer Werkstoffwissenschaft, Stuttgart, FRG. In this method, flat-polished single or polycrystals of materials with controlled surfaced topography can be heat treated up to 1500C in ultrahigh vacuum. Surfaces of annealed samples can be sputter cleaned and characterized prior to bonding. Samples can then be precisely aligned crystallographically to obtain desired grain boundary misorientations. Material couples can then be bonded at temperatures up to 1500C and pressures up to 10 MPa. Results are presented from initial work on Mo grain boundaries and Cu/Al{sub 2}A{sub 3} interfaces.

  19. European whole body counter measurement intercomparison.

    PubMed

    Thieme, M; Hunt, E L; König, K; Schmitt-Hannig, A; Gödde, R

    1998-04-01

    In order to test the common quality standards for the performance of measurements of internal radioactivity, the European Commission funded a European intercomparison of whole body counters, which was organized and carried out by the Institut fuer Strahlenhygiene (part of the German Bundesamt fuer Strahlenschutz). Forty-four whole body counting facilities from forty-two institutions in nineteen countries (the fifteen member states of the European Union plus Hungary, the Czech Republic, Switzerland and Norway) took part in this intercomparison, which made it the most comprehensive ever carried out in Europe. For the study, the 70 kg tissue equivalent St Petersburg phantom was used with rods containing 40K, 57Co, 60Co, and 137Cs. The overall results of the whole body counter study were rather good.

  20. VizieR Online Data Catalog: Catalogue of Nearby Stars, Edition 1969 (Gliese, 1979)

    NASA Astrophysics Data System (ADS)

    Gliese, W.

    2015-11-01

    The Catalogue of Nearby Stars, Edition 1969, is a new edition of the "Katalog der Sterne naeher als 20pc fuer 1950.0" (Giiese 1957, Astron. Rechen-Inst. Heidelberg Mitt. A, 8). It contains the data available at the end of 1968 for the 915 stars of the first edition, as well as stars with parallaxes >=0.045arcsec. (1 data file).

  1. Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version

    SciTech Connect

    Raman, S.V.

    1983-09-01

    A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

  2. [Struggling for normal in an instable situation - informal caregivers self-management in palliative home care. A meta-synthesis].

    PubMed

    Kreyer, Christiane; Pleschberger, Sabine

    2014-10-01

    Hintergrund: Die Betreuung und Pflege von Menschen mit Krebserkrankung am Lebensende zu Hause wird zu einem großen Teil in der Familie geleistet. Dabei sind vor allem pflegende Angehörige stark belastet. Studien die sich mit der Perspektive der Familien in dieser Situation beschäftigen, gehen häufig indirekt auf Selbstmanagementstrategien ein. Diese könnten ein wichtiger Ansatzpunkt für Unterstützungsangebote sein. Ziel: Ziel der Studie ist es, qualitative Forschungsergebnisse zum Selbstmanagement von Familien in der Palliative Care zu Hause zu synthetisieren. Es soll dargestellt werden, wie Familien die Situation erleben und welche Selbstmanagementstrategien sie nutzen. Methode: Eine Metasynthese, die der Methode nach Noblit und Hare (1988) folgte, wurde durchgeführt. Die Ergebnisse von 13 qualitativen Studien aus sechs Ländern wurden einbezogen. Ergebnisse: Die Palliativversorgung eines Menschen mit Krebserkrankung zu Hause kann als instabiler Übergangsprozess verstanden werden, in dessen Verlauf die Familien «um Normalität ringen». Dieser Prozess wird entlang von vier Themen dargestellt. Zudem konnten sechs Selbstmanagementstrategien der Familien identifiziert werden, dies sind das Anerkennen der Situation, die Restrukturierung des Alltags, die Aufrechterhaltung der Balance in den familiären Beziehungen, die Übernahme von Verantwortung, das Nutzen sozialer Unterstützung und der Erwerb von Kompetenzen für Pflege und Betreuung. Schlussfolgerung: Aus den vielfältigen Selbstmanagementstrategien ergeben sich wertvolle Ansätze für die Unterstützung von Angehörigen im Rahmen palliativer Begleitung und Beratung.

  3. Basic practical skills teaching and learning in undergraduate medical education - a review on methodological evidence.

    PubMed

    Vogel, Daniela; Harendza, Sigrid

    2016-01-01

    Zielsetzung: Praktische Fertigkeiten sind ein wesentlicher Bestandteil des ärztlichen Arbeitsalltags. Dennoch liegt die Leistung von Absolventen eines Medizinstudiums bei der Durchführung praktischer Basisfertigkeiten häufig unter den erwarteten Anforderungen. Diese Übersichtsarbeit verfolgt daher das Ziel, Lehrmethoden für medizinische Basisfertigkeiten im Medizinstudium zu identifizieren und zusammenzufassen, die einen evidenzbasierten Nachweis für das effektive studentische Lernen dieser Fertigkeiten erbringen. Methoden: Praktische Basisfertigkeiten wurden als Basisfertigkeiten der körperlichen Untersuchung, Routinefertigkeiten, die im Laufe der Praxis besser werden, und als Fertigkeiten, die auch vom Pflegepersonal übernommen werden, definiert. PubMed wurde mit verschiedenen Begriffen durchsucht, die diese praktischen Basisfertigkeiten beschreiben. Insgesamt wurden 3467 identifizierte Publikationen gesichtet und 205 wurden schließlich auf ihre Eignung geprüft. Ergebnisse: 43 Studien, die mindestens eine praktische Basisfertigkeit, einen Vergleich zweier Gruppen von Medizinstudierenden und Wirkungen auf die studentische Leistung beinhalteten, wurden analysiert. Sieben praktische Basisfertigkeiten und 15 verschiedene Lehrmethoden konnten identifiziert werden. Die konsistentesten Ergebnisse in Bezug auf effektive Lehre und den Erwerb von praktischen Basisfertigkeiten wurden für strukturiertes Fertigkeitentraining, Feedback und selbstgesteuertes Lernen gefunden. Simulation war mit spezifischen Lehrmethoden wirksam und in mehreren Studien fanden sich keine Unterschiede in Bezug auf Lehreffekte zwischen Experten oder Peers als Lehrende. Multimedia-gestützte Instruktion zeigte bei Anwendung in geeignetem Rahmen ebenfalls positive Effekte für das Erlernen praktischer Basisfertigkeiten. Fazit: Eine Kombination von freiwilligem oder obligatorischem Selbststudium mit Multimedia-gestützten Anwendungen wie Video-Clips in Kombination mit einem strukturierten

  4. The Biodemography of Fertility: A Review and Future Research Frontiers.

    PubMed

    Mills, Melinda C; Tropf, Felix C

    In sozialwissenschaftlichen Untersuchungen von Fertilitätsentscheidungen und –verhalten sind biodemographische Ansätze bislang kaum integriert worden, was zu überwiegend sozial-deterministischen Theorien und Befunden geführt hat. Der vorliegende Beitrag diskutiert zunächst die Gründe für diese weitgehend fehlende Integration, gibt dann einen Überblick über frühere Untersuchungen, fasst die bisher vorliegenden Erkenntnisse zusammen und zeigt schließlich Perspektiven zukünftiger Forschung auf. Ausgehend von grundlegenden Arbeiten zu den proximalen Determinanten der Fertilität werden verhaltensgenetische (Familien- und Zwillings-)Studien besprochen, die das Ausmaß genetischer Einflüsse auf Fertilitätsmerkmale isolieren konnten. Anschließend wird die Forschung zur Gen-Umwelt-Interaktion, zur Bedeutung von kohorten- und länderspezifischen Analysen sowie von Modellen, die Bildung und Fertilitätsentscheidungen vorausgehende Motivlagen berücksichtigen, betrachtet. Darüber hinaus werden Möglichkeiten und Grenzen molekulargenetischer Studien besprochen, bevor schließlich ein kurzer Überblick über Arbeiten aus der evolutionären Anthropologie und Biologie mit einem Fokus auf den Aspekt der natürlichen Auslese gegeben wird. Es zeigt sich, dass biologische und genetische Faktoren für das Verständnis und die Vorhersage von Fertilitätsmerkmalen relevant sind und dass ihre Interaktion mit sozialen Umweltfaktoren zentral für das Verständnis von Fertilitätsoutcomes ist. Für die Vorhersage zukünftiger Fertilitätstrends wird die Untersuchung des Zusammenspiels von Gen-Umwelt-Faktoren sowie die Nutzbarmachung neuer Datenquellen und die Integration neuer Methoden eine wesentliche Rolle spielen.

  5. Silicate Peak Shifts, Spectrometer Peaking Issues and Standard/Specimen Size Discrepancies in EPMA: 3 Bumps in the Road to the Goal of 1% Accuracy

    NASA Astrophysics Data System (ADS)

    Fournelle, J.

    2006-05-01

    ), whereas the standard may be millimeters in size. Or the standard (e.g., a pure synthesized phase) is 10 um wide and the unknown is a millimeter wide. In either case, errors of several % in the K-ratios may occur -- in the first case, the K-ratio is too low; in the second case, too high). These result from the "x-ray excitation range" (secondary fluorescence) which is scores of microns to a hundred or so microns in diameter, where the dominant EPMA assumption of homogenous volume breaks down. The development of the PENELOPE Monte Carlo program has created the ability to model secondary fluorescence in a variety of geometric situation, as demonstrated in Llovet and Galan (2003, American Mineralogist) and Fournelle, Kim and Perepezko (2005, Surface & Interface Analysis). With PENELOPE, we have modeled the case of grains of pure Cr2O3 at 20 keV, with a 2 mm diameter sphere (flat top of bottom half) the standard. A 100 um diameter sphere (flat top of bottom half) mounted in epoxy is modelled; the center will have a Cr Ka K-ratio of .99, whereas a 10 um diameter grain will have a Cr Ka K-ratio of .985. In this case, all of the secondary fluorescence is from the continuum. With an actual chromite grain (with 10-15 wt% Fe), there would be the additional complication of secondary fluorescence by the Fe Ka. There is thus additional meaning to the phrase "use similar standards to your unknowns." A two day workshop on PENELOPE and its usefulness for studying secondary fluorescence in EPMA will be held in Madison Wisconsin August 4-5, 2006.

  6. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    NASA Astrophysics Data System (ADS)

    Poškus, A.

    2016-09-01

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more

  7. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms

    SciTech Connect

    Moura, Eduardo S.; Rostelato, Maria Elisa C. M.; Zeituni, Carlos A.

    2015-04-15

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The

  8. SU-D-213-01: Transparent Photon Detector For The Online Monitoring Of IMRT Beams

    SciTech Connect

    Delorme, R; Arnoud, Y; Fabbro, R; Boyer, B; Rossetto, O; Gallin-Martel, L; Gallin-Martel, M; Pelissier, A; Fonteille, I

    2015-06-15

    Purpose: An innovative Transparent Detector for Radiotherapy (TraDeRa) has been developed. The detector aims at real-time monitoring of modulated beam ahead of the patient during delivery sessions, with a field cover up to 40×40 cm {sup 2}. Methods: TraDeRa consists in a pixelated matrix of ionization chambers with a patented electrodes design. An in-house designed specific integrated circuit allows to extract the signal and provides a real-time map of beam intensity and shape, at the linac pulse-scale. The measurements under irradiation are made with a 6 MV clinical X-Ray beam. Dose calculations are performed with the Monte Carlo code PENELOPE, modeling the full accelerator head and the TraDeRa detector. Results: A 2 % attenuation of the beam was measured in the presence of TraDeRa and the PENELOPE dosimetric study showed no significant modification of the photon beam properties. TraDeRa detects error leaf position as small as 1 mm compared to a reference field, for both static and modulated fields. In addition, measurements are accurate over a large dynamic range from low intensity signals, as inter-leaves leaks, to very high intensities as obtained on the medical line of the European Synchrotron Radiation Facility. The detector is fully operational for conventional and high dose rate beams as FFF modes (up to 2400 MU/min). Conclusion: The current version of TraDeRa shows promising results for IMRT quality assurance (QA), allowing pulse-scale monitoring of the beam and high sensitivity for errors detection. The attenuation is small enough not to hinder the irradiation while keeping the beam upstream of the patient under constant control. A final prototype under development will include 1600 independent electrodes, half of them with a high resolution centered on the beam axis. This compact detector provides an independent set of measurements for a better QA. Funding support : This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Universite de Lyon

  9. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization.

    PubMed

    Garnica-Garza, H M

    2011-01-21

    It has been shown that the use of kilovoltage x-rays in conjunction with a contrast agent incorporated into the tumor can lead to acceptable treatment plans with regard to the absorbed dose distribution produced in the target as well as in the tissue and organs at risk surrounding it. In this work, several key aspects related to the technology and irradiation techniques necessary to clinically implement this treatment modality are addressed by means of Monte Carlo simulation. The Zubal phantom was used to model a prostate radiotherapy treatment, a challenging site due to the depth of the prostate and the presence of bony structures that must be traversed by the x-ray beam on its way to the target. It is assumed that the concentration levels of the enhancing agent present in the tumor are at or below 10 mg per 1 g of tissue. The Monte Carlo code PENELOPE was used to model a commercial x-ray tube having a tungsten target. X-ray energy spectra for several combinations of peak electron energy and added filtration were obtained. For each energy spectrum, a treatment plan was calculated, with the PENELOPE Monte Carlo code, by modeling the irradiation of the patient as 72 independent conformal beams distributed at intervals of 5° around the phantom in order to model a full x-ray source rotation. The Cimmino optimization algorithm was then used to find the optimum beam weight and energy for different treatment strategies. It is shown that for a target dose prescription of 72 Gy covering the whole tumor, the maximum rectal wall and bladder doses are kept below 52 Gy for the largest concentration of contrast agent of 10 mg per 1 g of tissue. It is also shown that concentrations of as little as 5 mg per 1 g of tissue also render dose distributions with excellent sparing of the organs at risk. A treatment strategy to address the presence of non-uniform distributions of the contrast agent in the target is also modeled and discussed.

  10. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.

    PubMed

    Andreo, Pedro; Burns, David T; Salvat, Francesc

    2012-04-21

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for ¹⁹²Ir and ⁶⁰Co gamma-ray spectra. The aim of this work was to establish 'an envelope of uncertainty' based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µ(en)/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, u(c), for the µ(en)/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For ⁶⁰Co and ¹⁹²Ir, u(c) is approximately 0.1%. The Type B uncertainty analysis for the ratios of µ(en)/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µ(en)/ρ)(graphite,air) and (µ(en)/ρ)(graphite,water) are 1.5%, and 0.5% for (µ(en)/ρ)(water,air), decreasing gradually down to u(c) = 0.1% for the three µ(en)/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well

  11. Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient

    PubMed Central

    Bueno, G.; Déniz, O.; Carrascosa, C. B.; Delgado, J. M.; Brualla, L.

    2009-01-01

    Purpose: A method for performing fast simulations of absorbed dose using a patient’s computerized tomography (CT) scan without explicitly relying on a calibration curve is presented. Methods: The method is based on geometrical deformations performed on a standard voxelized human phantom. This involves spatially transforming the human phantom to align it with the patient CT image. Since the chemical composition and density of each voxel are given in the phantom data, a calibration curve is not used in the proposed method. For this study, the Monte Carlo (MC) code PENELOPE has been used as the simulation of reference. The results obtained with PENELOPE simulations are compared to those obtained with PENFAST and with the collapsed cone convolution algorithm implemented in a commercial treatment planning system. Results: The comparisons of the absorbed doses calculated with the different algorithms on two patient CTs and the corresponding deformed phantoms show a maximum distance to agreement of 2 mm, and in general, the obtained absorbed dose distributions are compatible within the reached statistical uncertainty. The validity of the deformation method for a broad range of patients is shown using MC simulations in random density phantoms. A PENFAST simulation of a 6 MV photon beam impinging on a patient CT reaches 2% statistical uncertainty in the absorbed dose, in a 0.1 cm3 voxel along the central axis, in 10 min running on a single core of a 2.8 GHz CPU. Conclusions: The proposed method of the absorbed dose calculation in a deformed voxelized phantom allows for dosimetric studies in the geometry of a patient CT scan. This is due to the fact that the chemical composition and material density of the phantom are known. Furthermore, simulation using the phantom geometry can provide dosimetric information for each organ. The method can be used for quality assurance procedures. In relation to PENFAST, it is shown that a purely condensed-history algorithm (class I) can

  12. Spectral radiance calibrations between 165-300 nm - An interlaboratory comparison

    NASA Technical Reports Server (NTRS)

    Bridges, J. M.; Ott, W. R.; Pitz, E.; Schulz, A.; Einfeld, D.; Stuck, D.

    1977-01-01

    The spectral radiance of deuterium lamps calibrated by the Max-Planck-Institut fuer Astronomie (MPI), by the U.S. National Bureau of Standards (NBS), and by the Physikalisch-Technische Bundesanstalt (PTB) are compared to check the agreement of UV radiometric scales. The NBS group used the optically thin continuum radiation from a wall-stabilized hydrogen arc as its fundamental radiometric standard, while the MPI and PTB groups used the synchrotron radiation facility in DESY. It is found that the spectral radiance scales based upon the DESY synchrotron and the NBS hydrogen arc are consistent, at least for one wavelength relative to another.

  13. Roentgensatellit (ROSAT)

    NASA Technical Reports Server (NTRS)

    Guckenbiehl, F.; Ousley, G. W., Sr.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for ROSAT (Roentgensatellit) are summarized. ROSAT is an international cooperative program between NASA and the Bundesministerium fuer Forschung and Technologie (BMFT). The satellite was launched on a Delta 2 vehicle and placed in a circular orbit at an altitude of 580 km, with a 53-deg inclination. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry and command; and tracking support responsibility.

  14. STORAGE RING MEASUREMENT OF ELECTRON IMPACT IONIZATION FOR Mg{sup 7+} FORMING Mg{sup 8+}

    SciTech Connect

    Hahn, M.; Lestinsky, M.; Novotny, O.; Savin, D. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Wolf, A.

    2010-04-01

    We report electron impact ionization cross section measurements for Mg{sup 7+} forming Mg{sup 8+} at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the GIPPER code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code.

  15. Current status of fusion-relevant covariance data

    SciTech Connect

    Muir, D.W.

    1994-09-12

    The following review of the current status of formatted data covariance files and their multigroup processing is a contribution to the IAEA Advisory Group Meeting on ``Improved Evaluations and Integral Data Testing for FENDL,`` to be held at the Max-Planck-Institut fuer Plasmaphysik, Garching, Germany, 12--16 September 1994. The draft agenda of this meeting lists as Item 6 the ``assessment of present status and role of uncertainty files, their processing and sensitivity studies related to FENDL.`` We conclude that this is an important and timely topic and recommend needed actions in this field.

  16. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Ahmad, Nash'at N.; Holzaepfel, Frank; VanValkenburg, Randal L.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  17. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam.

    PubMed

    Groetz, J-E; Ounoughi, N; Mavon, C; Belafrites, A; Fromm, M

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™ and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  18. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    NASA Astrophysics Data System (ADS)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  19. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2012-01-01

    Purpose Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V. Veenendaal, The Netherlands). This study aims to obtain dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Material and methods Two Monte Carlo radiation transport codes were used: Penelope2008 and GEANT4. The source was centrally-positioned in a 100 cm radius water phantom. Absorbed dose and collisional kerma were obtained using 0.01 cm (close) and 0.1 cm (far) sized voxels to provide high-resolution dosimetry near (far from) the source. Dose rate distributions obtained with the two Monte Carlo codes were compared. Results and Discussion Simulations performed with those two radiation transport codes showed an agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Detailed results of dose distributions are being made available. Conclusions Dosimetric data are provided for the new Flexisource Co-60 source. These data are meant to be used in treatment planning systems in clinical practice. PMID:23346138

  20. Ambient dose estimation H*(10) from LaBr3(Ce) spectra.

    PubMed

    Camp, A; Vargas, A

    2014-08-01

    The stripping method for ambient dose estimation has been used for detectors such as high-purity Ge (HPGe). This method strips the spectrum from the partial absorptions produced in the detector leaving only the events corresponding to the full absorption of a gamma ray. In the present study, this method is applied to a 1″ × 1″ LaBr3(Ce) detector using the PENELOPE/penEasy Monte Carlo code to obtain both the partial absorptions and detector full peak efficiency. The stripping method has been validated from a set of gamma fluxes carried out at the accredited laboratory of the Institute of Energy Technologies of the Technical University of Catalonia and results were obtained with differences <5 %. After validation, the LaBr3(Ce) monitor was installed on the roof of the institute premises working in parallel with a photon equivalent dose monitor, model FHZ 601A from the FAG Company. The derived H*(10) values from the LaBr3(Ce) detector show good agreement with those derived from the dose monitor. PMID:24366248

  1. Pulse and energy pulse height tally comparison in breast dosimetry with Monte Carlo radiation transport codes: MCNP5 and PENEASY(2005).

    PubMed

    Ramos, M; Ferrer, S; Verdu, G

    2005-01-01

    The authors present a review of tallying processes with non-Boltzmann tallies under Monte Carlo simulations. A comparison between different pulse and energy pulse height tallies has been done with MCNP5 code and PENEASY, a user-friendly version of PENELOPE code. Several simulations have been done for estimating the pulse and energy deposited spectra in a polymethyl-methacrilate (PMMA) phantom used during quality control testing in digital mammography. In the case of MCNP5, the arbitrary energy-loss which is activated by default for particles just crossing the detector has been removed for comparing the efficiency of the tally. PENEASY works similarly, counting all scores which have or have not deposited energy in the phantom. A correction has been done to the code to remove this scoring. As derived from the results, the deposited energy has been estimated as 3.73369e-3 MeV/particle for MCNP5 and 3.25468e-3 MeV/particle for PENASY. Further studies are necessary to obtain more accurate results modeling the compression plate and the imaging system. Pulse and energy pulse height spectra are still tallies under development and all effort must be done to understand the tallying process under different applications. PMID:17282861

  2. Monte-Carlo simulation of a slot-scanning X-ray imaging system.

    PubMed

    Kulkarni, Mayuresh; Dendere, Ronald; Nicolls, Fred; Steiner, Stef; Douglas, Tania S

    2016-01-01

    We present a method for simulating slot-scanning X-ray imaging using the general-purpose Monte Carlo simulation package PENELOPE and penEasy Imaging. Different phantoms can be defined with the PENGEOM package, which defines bodies as combinations of volumes limited by quadric surfaces. The source-detector geometry, the position of the object, the collimator, the X-ray tube properties, the detector material and the pixel dimensions are defined. The output of the time-delay integration detector is simulated using sequential slot outputs derived from penEasy Imaging. The simulations are validated using tungsten and aluminium test objects, which are both simulated and imaged. The simulations are compared to the X-ray images using standard image quality metrics. The MTF, NPS and DQE curves show that the real and simulated X-ray images are comparable in terms of spatial resolution, noise and frequency information. The implementation can be modified to suit alterations in the system being simulated. PMID:26725256

  3. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  4. Serosurveillance for Japanese encephalitis virus in wild birds captured in Korea.

    PubMed

    Yang, Dong-Kun; Oh, Yoon-I; Kim, Hye-Ryoung; Lee, Youn-Jeong; Moon, Oun-Kyong; Yoon, Hachung; Kim, Byounghan; Lee, Kyung-Woo; Song, Jae-Young

    2011-12-01

    Climate change induced by recent global warming may have a significant impact on vector-borne and zoonotic diseases. For example, the distribution of Japanese encephalitis virus (JEV) has expanded into new regions. We surveyed the levels of hemagglutination-inhibition (HI) antibodies against JEV (Family Flaviviridae, genus Flavivirus) in wild birds captured in Korea. Blood samples were collected from 1,316 wild birds including the following migratory birds: Oceanodroma castro (n = 4), Anas formosa (n = 7), Anas penelope (n = 20), Fulica atra (n = 30), Anas acuta (n = 89), Anas crecca (n = 154), Anas platyrhynchos (n = 214), Aix galericulata (n = 310), and Anas poecilorhyncha (n = 488). All were captured in 16 locations in several Korea provinces between April 2007 and December 2009. Out of the 1,316 serum samples tested, 1,141 (86.7%) were positive for JEV. Wild birds captured in 2009 had a higher seroprevalence of ant-JEV antibodies than those captured in 2007. Wild birds with an HI antibody titer of 1 : 1,280 or higher accounted for 21.2% (280/1,316) of the animals tested. These findings indicated that wild birds from the region examined in our study have been exposed to JEV and may pose a high risk for introducing a new JEV genotype into Korea.

  5. Surveillance and identification of influenza A viruses in wild aquatic birds in the Crimea, Ukraine (2006-2008).

    PubMed

    Kulak, M V; Ilinykh, F A; Zaykovskaya, A V; Epanchinzeva, A V; Evstaphiev, I L; Tovtunec, N N; Sharshov, K A; Durimanov, A G; Penkovskaya, N A; Shestopalov, A M; Lerman, A I; Drozdov, I G; Swayne, D E

    2010-09-01

    The ecology of avian influenza (AI) viruses in wild aquatic birds of Asia is poorly understood, especially for the H5N1 high pathogenicity AI (HPAI) viruses. From March 2006 through November 2008, 20 AI viruses were isolated in the Crimea region of Ukraine with an overall frequency of virus recovery of 3.3%. All the viruses were isolated from three species of dabbling ducks: mallard (Anas platyrhynchos), wigeon (Anas penelope), and garganey (Anas querquedula), making the frequency of virus recovery for dabbling ducks 6.3%. The viruses were predominantly isolated during the fall sampling period. All viruses were genetically and antigenically characterized. No H5N1 HPAI viruses were isolated, but other HA and NA subtypes were identified including H3N1 (2), H3N6 (3), H3N8 (4), H4N6 (6), H5N2 (3), H7N8 (1), and H10N6 (1) subtypes. All isolates were of low pathogenicity, as determined by the intravenous pathogenicity index of 0.00. For H5N2 and H7N8 isolates, the HA gene was sequenced and the phylogenetic analysis revealed possible ecologic connections of the Crimea region with AI viruses from Siberia and Europe. No influenza A isolates were recovered from other Anseriformes (diving ducks [two species of pochards] and graylag geese), Columbiformes (collared doves), Gruiformes (coot), and Galliformes (gray partridges). PMID:20945793

  6. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    SciTech Connect

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A.

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  7. On the Monte Carlo simulation of small-field micro-diamond detectors for megavoltage photon dosimetry.

    PubMed

    Andreo, Pedro; Palmans, Hugo; Marteinsdóttir, Maria; Benmakhlouf, Hamza; Carlsson-Tedgren, Åsa

    2016-01-01

    Monte Carlo (MC) calculated detector-specific output correction factors for small photon beam dosimetry are commonly used in clinical practice. The technique, with a geometry description based on manufacturer blueprints, offers certain advantages over experimentally determined values but is not free of weaknesses. Independent MC calculations of output correction factors for a PTW-60019 micro-diamond detector were made using the EGSnrc and PENELOPE systems. Compared with published experimental data the MC results showed substantial disagreement for the smallest field size simulated ([Formula: see text] mm). To explain the difference between the two datasets, a detector was imaged with x rays searching for possible anomalies in the detector construction or details not included in the blueprints. A discrepancy between the dimension stated in the blueprints for the active detector area and that estimated from the electrical contact seen in the x-ray image was observed. Calculations were repeated using the estimate of a smaller volume, leading to results in excellent agreement with the experimental data. MC users should become aware of the potential differences between the design blueprints of a detector and its manufacturer production, as they may differ substantially. The constraint is applicable to the simulation of any detector type. Comparison with experimental data should be used to reveal geometrical inconsistencies and details not included in technical drawings, in addition to the well-known QA procedure of detector x-ray imaging.

  8. "How to stop choking to death": Rethinking lesbian separatism as a vibrant political theory and feminist practice.

    PubMed

    Enszer, Julie R

    2016-01-01

    In contemporary feminist discourses, lesbian separatism is often mocked. Whether blamed as a central reason for feminism's alleged failure or seen as an unrealistic, utopian vision, lesbian separatism is a maligned social and cultural formation. This article traces the intellectual roots of lesbian feminism from the early 1970s in The Furies and Radicalesbians through the work of Julia Penelope and Sarah Lucia Hoagland in the 1980s and 1990s, then considers four feminist and lesbian organizations that offer innovative engagements with lesbian separatism. Olivia Records operated as a separatist enterprise, producing and distributing womyn's music during the 1970s and 1980s. Two book distributors, Women in Distribution, which operated in the 1970s, and Diaspora Distribution, which operated in the 1980s, offer another approach to lesbian separatism as a form of economic and entrepreneurial engagement. Finally, Sinister Wisdom, a lesbian-feminist literary and arts journal, enacts a number of different forms of lesbian separatism during its forty-year history. These four examples demonstrate economic and cultural investments of lesbian separatism and situate its investments in larger visionary feminist projects. More than a rigid ideology, lesbian separatism operates as a feminist process, a method for living in the world. PMID:26914821

  9. Exploring the Written Dialogues of Two First-Year Secondary Science Teachers in an Online Mentoring Program

    NASA Astrophysics Data System (ADS)

    Bang, EunJin; Luft, Julie A.

    2014-02-01

    This study explored the yearlong learning processes of two first-year secondary science teachers participating in an online mentoring program, through examination of their written dialogues within the program and other data. Using a case study method, this study (a) explored the patterns of written dialogues between the two new teachers and their mentors over the course of a year, (b) documented pertinent topics of importance, and finally (c) illustrated the new realities created in the mentees' classrooms as a result of the online mentoring process. Penelope and Bradley, who taught at an urban school and at a suburban school respectively, were selected as subjects. Our analysis revealed that the two pairs of mentee-mentors showed different participation patterns that affected the intensity of the creation of new realities, and affected whether the mentees tried/vetted new teaching practices suggested by their mentors. Yet, analysis also revealed that certain elements in the written dialogues between pairs were found to be similar, in that construction of knowledge was evident between both pairs when friction developed and appropriate teamwork emerged to deal with it. The topics of greatest interest and importance within the dialogues were those related to the logistics of the school system and the processes and methodologies of teaching. These results suggest that online mentoring programs are an effective dialogical tool for transferring the knowledge of experts to novices, and for thus expediting the professional induction and growth of new science teachers.

  10. Comparative polytene chromosome maps of D. montana and D. virilis.

    PubMed

    Morales-Hojas, Ramiro; Päällysaho, Seliina; Vieira, Cristina P; Hoikkala, Anneli; Vieira, Jorge

    2007-02-01

    Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species. PMID:16906413

  11. A generic algorithm for Monte Carlo simulation of proton transport

    NASA Astrophysics Data System (ADS)

    Salvat, Francesc

    2013-12-01

    A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron-photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane-wave Born approximation (PWBA), making use of the Sternheimer-Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.

  12. Formalizing structured file services for the data storage and retrieval subsystem of the data management system for Spacestation Freedom

    NASA Technical Reports Server (NTRS)

    Jamsek, Damir A.

    1993-01-01

    A brief example of the use of formal methods techniques in the specification of a software system is presented. The report is part of a larger effort targeted at defining a formal methods pilot project for NASA. One possible application domain that may be used to demonstrate the effective use of formal methods techniques within the NASA environment is presented. It is not intended to provide a tutorial on either formal methods techniques or the application being addressed. It should, however, provide an indication that the application being considered is suitable for a formal methods by showing how such a task may be started. The particular system being addressed is the Structured File Services (SFS), which is a part of the Data Storage and Retrieval Subsystem (DSAR), which in turn is part of the Data Management System (DMS) onboard Spacestation Freedom. This is a software system that is currently under development for NASA. An informal mathematical development is presented. Section 3 contains the same development using Penelope (23), an Ada specification and verification system. The complete text of the English version Software Requirements Specification (SRS) is reproduced in Appendix A.

  13. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-01

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  14. On the Monte Carlo simulation of small-field micro-diamond detectors for megavoltage photon dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Palmans, Hugo; Marteinsdóttir, Maria; Benmakhlouf, Hamza; Carlsson-Tedgren, Åsa

    2016-01-01

    Monte Carlo (MC) calculated detector-specific output correction factors for small photon beam dosimetry are commonly used in clinical practice. The technique, with a geometry description based on manufacturer blueprints, offers certain advantages over experimentally determined values but is not free of weaknesses. Independent MC calculations of output correction factors for a PTW-60019 micro-diamond detector were made using the EGSnrc and PENELOPE systems. Compared with published experimental data the MC results showed substantial disagreement for the smallest field size simulated (5~\\text{mm}× 5 mm). To explain the difference between the two datasets, a detector was imaged with x rays searching for possible anomalies in the detector construction or details not included in the blueprints. A discrepancy between the dimension stated in the blueprints for the active detector area and that estimated from the electrical contact seen in the x-ray image was observed. Calculations were repeated using the estimate of a smaller volume, leading to results in excellent agreement with the experimental data. MC users should become aware of the potential differences between the design blueprints of a detector and its manufacturer production, as they may differ substantially. The constraint is applicable to the simulation of any detector type. Comparison with experimental data should be used to reveal geometrical inconsistencies and details not included in technical drawings, in addition to the well-known QA procedure of detector x-ray imaging.

  15. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  16. Analytical response function for planar Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  17. Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.

    2005-01-01

    Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.

  18. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors.

    PubMed

    Garnica-Garza, H M

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 degrees arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  19. Fast modelling of spectra and stopping-power ratios using differentiated fluence pencil kernels

    NASA Astrophysics Data System (ADS)

    Eklund, Karin; Ahnesjö, Anders

    2008-08-01

    Modern radiotherapy steadily utilizes more of the available degrees of freedom provided by radiotherapy equipment, raising the need for the dosimetric methods to deliver reliable measurements for situations where the spectral properties of the radiation field may also vary. A kernel-based superposition method is presented for which the spectra from any field modulation can be instantly calculated, thus facilitating the determination of dosimetric quantities at arbitrary locations. A database of fluence pencil kernels describing the fluence resulting from point monodirectional monoenergetic beams incident onto a water phantom has been calculated with the PENELOPE-2005 Monte Carlo package. Spectra calculated by means of the kernels are presented for various 6 MV fields. The spectra have been used to investigate depth and lateral variations of water-to-air stopping-power ratios. Results show that the stopping-power ratio decreases with depth, and that this effect is more pronounced for small fields. These variations are clearly connected to spectral variations. For a 10 × 10 cm2 field, the difference between the stopping-power ratio at 2.5 cm depth and 30 cm depth is less than 0.3% while for a 0.3 × 0.3 cm2 field this difference is 0.7%. Ratios outside the field were found to be sensitive to the collimator leakage spectral variations.

  20. CloudMC: a cloud computing application for Monte Carlo simulation.

    PubMed

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  1. Angular distribution of bremsstrahlung produced by electrons with initial energies in the range from 10 to 20 keV incident on thick Ag

    NASA Astrophysics Data System (ADS)

    Gonzales, Daniel; Cavness, Brandon; Williams, Scott

    2012-03-01

    Experimental results are presented comparing the intensities of the thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, measured at forward angles in the range of 0 to 55 degrees. When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E0. The results of our experiments suggest that, as k/E0->0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. Comparison to the theory of Kissel et al. [At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E0 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program PENELOPE.

  2. SU-E-T-237: Monte Carlo Dosimetric Characterization of the Mobetron Mobile Linac

    SciTech Connect

    Garcia, F; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J

    2014-06-01

    Purpose: The aim of this work is to characterize dosimetrically a clinical intraoperative electron beam accelerator, Mobetron (IntraOp Medical, Inc.) in clinical use in our Hospital. Once this first step is completed our purpose is to evaluate shielding requirements for such a device by preparing adequate phase space files. Methods: It is known that electron beam simulation parameters required for state-of-the-art Monte Carlo codes to obtain a good match with measured data, like the mean energy or the FWHM, may not be code-independent due to the different set of process simulated and formalisms involved. Then, to cross-check our results against any issue in the simulation we have compared experimental data (PDD and profiles for electrons in the range 4 to 12 MeV) with simulations performed independently using both Penelope2011 and Geant4 codes. To do so, the geometry and materials of the head of the accelerator have been fully characterized following information provided by the manufacturer. Results: Both simulations agree with experimental data within experimental uncertainties (±1 mm displacement), although small variations (less than 10%) in the mean energy and FWHM are required to match measured values depending on the code used. Conclusion: Independent Monte Carlo simulations were used to obtain an excellent match to measured electron dose distributions. This opens the road to use such data for evaluating shielding requirements which is the main objective of this project.

  3. A transport-based condensed history algorithm

    SciTech Connect

    Tolar Jr, D R

    1999-01-06

    Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s{sub 0}. This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 {le} s {le} s{sub 0}. For example, the PEnELOPE method splits each step into two substeps; one with length {xi}s{sub 0} and one with length (1 {minus}{xi})s{sub 0}, where {xi} is a random number from 0 < {xi} < 1. because s{sub 0} is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power.

  4. Transcriptome Analysis of ESTs from a Chaetognath Reveals a Deep-Branching Clade of Retrovirus-Like Retrotransposons

    PubMed Central

    Barthélémy, Roxane M; Casanova, Jean-Paul; Faure, Eric

    2008-01-01

    Chaetognaths constitute a small marine phylum exhibiting several characteristic which are highly unusual in animal genomes, including two classes of both rRNA and protein ribosomal genes. As in this phylum presence of retrovirus-like elements has never been documented, analysis of a published expressed sequence tag (EST) collection of the chaetognath Spadella cephaloptera has been made. Twelve sequences representing transcript sections of reverse transcriptase domain of active retrotransposons were isolated from~11,000 ESTs. Five of them are originated from Gypsy retrovirus-like elements, whereas the other are transcripts from a Bel-Pao LTR-retrotransposon, a Penelope-like element and LINE retrotransposons. Moreover, a part of a putative integrase has also been found. Phylogenetic analyses suggest a deep-branching clade of the retrovirus-like elements, which is in agreement with the probably Cambrian origin of the phylum. Moreover, retrotransposons have not been found in telomeric-like transcripts which are probably constituted by both vertebrate and arthropod canonical repeats. PMID:19440464

  5. "How to stop choking to death": Rethinking lesbian separatism as a vibrant political theory and feminist practice.

    PubMed

    Enszer, Julie R

    2016-01-01

    In contemporary feminist discourses, lesbian separatism is often mocked. Whether blamed as a central reason for feminism's alleged failure or seen as an unrealistic, utopian vision, lesbian separatism is a maligned social and cultural formation. This article traces the intellectual roots of lesbian feminism from the early 1970s in The Furies and Radicalesbians through the work of Julia Penelope and Sarah Lucia Hoagland in the 1980s and 1990s, then considers four feminist and lesbian organizations that offer innovative engagements with lesbian separatism. Olivia Records operated as a separatist enterprise, producing and distributing womyn's music during the 1970s and 1980s. Two book distributors, Women in Distribution, which operated in the 1970s, and Diaspora Distribution, which operated in the 1980s, offer another approach to lesbian separatism as a form of economic and entrepreneurial engagement. Finally, Sinister Wisdom, a lesbian-feminist literary and arts journal, enacts a number of different forms of lesbian separatism during its forty-year history. These four examples demonstrate economic and cultural investments of lesbian separatism and situate its investments in larger visionary feminist projects. More than a rigid ideology, lesbian separatism operates as a feminist process, a method for living in the world.

  6. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  7. Experimental Evidence Shows the Importance of Behavioural Plasticity and Body Size under Competition in Waterfowl

    PubMed Central

    Zhang, Yong; Prins, Herbert H. T.; Versluijs, Martijn; Wessels, Rick; Cao, Lei; de Boer, Willem Frederik

    2016-01-01

    When differently sized species feed on the same resources, interference competition may occur, which may negatively affect their food intake rate. It is expected that competition between species also alters behaviour and feeding patch selection. To assess these changes in behaviour and patch selection, we applied an experimental approach using captive birds of three differently sized Anatidae species: wigeon (Anas penelope) (~600 g), swan goose (Anser cygnoides) (~2700 g) and bean goose (Anser fabalis) (~3200 g). We quantified the functional response for each species and then recorded their behaviour and patch selection with and without potential competitors, using different species combinations. Our results showed that all three species acquired the highest nitrogen intake at relatively tall swards (6, 9 cm) when foraging in single species flocks in the functional response experiment. Goose species were offered foraging patches differing in sward height with and without competitors, and we tested for the effect of competition on foraging behaviour. The mean percentage of time spent feeding and being vigilant did not change under competition for all species. However, all species utilized strategies that increased their peck rate on patches across different sward heights, resulting in the same instantaneous and nitrogen intake rate. Our results suggest that variation in peck rate over different swards height permits Anatidae herbivores to compensate for the loss of intake under competition, illustrating the importance of behavioural plasticity in heterogeneous environments when competing with other species for resources. PMID:27727315

  8. Structural and Population Polymorphism of RT-Like Sequences in Avian Schistosomes Trichobilharzia szidati (Platyhelminthes: Digenea: Schistosomatidae).

    PubMed

    Semyenova, S K; Chrisanfova, G G; Guliaev, A S; Yesakova, A P; Ryskov, A P

    2015-01-01

    Recently we developed the genus-specific markers of the avian schistosomes of the genus Trichobilharzia, the causative agents of human cercarial dermatitis. The 7 novel genome sequences of T. franki, T. regenti, and T. szidati revealed similarity with genome repeat region of African schistosome Schistosoma mansoni. In the present work we analyzed the 37 new T. szidati sequences to study intragenome variability and host specificity for the parasite from three localities of East Europe. DNAs were isolated from cercariae or single sporocysts obtained from 6 lymnaeid snails Lymnaea stagnalis and L. palustris from Belarus and Russia. All sequences formed three diverged groups, one of which consists of the sequences with multiple deletions; other groups involved two paralogous copies with stop codons and frameshift mutations. Strong association between geographical distribution and snail host specificity cannot be established. All studied sequences have homology with the reverse transcriptase domain (RT) of Penelope-like elements (PLE) of S. mansoni and S. japonicum and new members of RT family were identified. We proposed that three diverged groups RT sequences of T. szidati are results of duplication or transposition of PLE during parasite evolution. Implications of the retroelement dynamics in the life history of avian schistosomes are discussed.

  9. PENGEOM-A general-purpose geometry package for Monte Carlo simulation of radiation transport in material systems defined by quadric surfaces

    NASA Astrophysics Data System (ADS)

    Almansa, Julio; Salvat-Pujol, Francesc; Díaz-Londoño, Gloria; Carnicer, Artur; Lallena, Antonio M.; Salvat, Francesc

    2016-02-01

    The Fortran subroutine package PENGEOM provides a complete set of tools to handle quadric geometries in Monte Carlo simulations of radiation transport. The material structure where radiation propagates is assumed to consist of homogeneous bodies limited by quadric surfaces. The PENGEOM subroutines (a subset of the PENELOPE code) track particles through the material structure, independently of the details of the physics models adopted to describe the interactions. Although these subroutines are designed for detailed simulations of photon and electron transport, where all individual interactions are simulated sequentially, they can also be used in mixed (class II) schemes for simulating the transport of high-energy charged particles, where the effect of soft interactions is described by the random-hinge method. The definition of the geometry and the details of the tracking algorithm are tailored to optimize simulation speed. The use of fuzzy quadric surfaces minimizes the impact of round-off errors. The provided software includes a Java graphical user interface for editing and debugging the geometry definition file and for visualizing the material structure. Images of the structure are generated by using the tracking subroutines and, hence, they describe the geometry actually passed to the simulation code.

  10. Monte Carlo Simulation of the Treatment of Eye Tumors with 106Ru Plaques: A Study on Maximum Tumor Height and Eccentric Placement

    PubMed Central

    Brualla, Lorenzo; Zaragoza, Francisco J.; Sauerwein, Wolfgang

    2014-01-01

    Background/Aims Ruthenium plaques are used for the treatment of ocular tumors. There is, however, a controversy regarding the maximum treatable tumor height. Some advocate eccentric plaque placement, without a posterior safety margin, to avoid collateral damage to the fovea and optic disc, but this has raised concerns about marginal tumor recurrence. There is a need for quantitative information on the spatial absorbed dose distribution in the tumor and adjacent tissues. We have overcome this obstacle using an approach based on Monte Carlo simulation of radiation transport. Methods CCA and CCB 106Ru plaques were modeled and their geometry embedded in a computerized tomography scan of the eye of a patient. Different tumor sizes and locations were simulated with the general-purpose Monte Carlo code PENELOPE. Results Cumulative dose-volume histograms were obtained for the tumors and the tissues at risk considered. Plots of isodose lines for both plaques were obtained in a computerized tomography study. Conclusions Ruthenium eye plaques are an adequate treatment option for tumors up to around 5 mm in height. According to our results, assuming a correct placement of the plaque, a tumor of 6.5 mm apical height is about the maximum size that can be treated safely with the large CCB plaque. PMID:27175356

  11. An update on the analysis of the Princeton 19Ne beta asymmetry measurement

    NASA Astrophysics Data System (ADS)

    Combs, Dustin; Calaprice, Frank; Jones, Gordon; Pattie, Robert; Young, Albert

    2013-10-01

    We report on the progress of a new analysis of the 1994 19Ne beta asymmetry measurement conducted at Princeton University. In this experiment, a beam of 19Ne atoms were polarized with a Stern-Gerlach magnet and then entered a thin-walled mylar cell through a slit fabricated from a piece of micro channel plate. A pair of Si(Li) detectors at either end of the apparatus were aligned with the direction of spin polarization (one parallel and one anti-parallel to the spin of the 19Ne) and detected positrons from the decays. The difference in the rate in the two detectors was used to calculate the asymmetry. A new analysis procedure has been undertaken using the Monte Carlo package PENELOPE with the goal of determining the systematic uncertainty due to positrons scattering from the face of the detectors causing the incorrect reconstruction of the initial direction of the positron momentum. This was a leading cause of systematic uncertainty in the experiment in 1994.

  12. Lack of virological and serological evidence for continued circulation of highly pathogenic avian influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January 2016.

    PubMed

    Poen, Marjolein J; Verhagen, Josanne H; Manvell, Ruth J; Brown, Ian; Bestebroer, Theo M; van der Vliet, Stefan; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Nolet, Bart A; Kleyheeg, Erik; Müskens, Gerhard J D M; Majoor, Frank A; Grund, Christian; Fouchier, Ron A M

    2016-09-22

    In 2014, H5N8 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage emerged in poultry and wild birds in Asia, Europe and North America. Here, wild birds were extensively investigated in the Netherlands for HPAI H5N8 virus (real-time polymerase chain reaction targeting the matrix and H5 gene) and antibody detection (haemagglutination inhibition and virus neutralisation assays) before, during and after the first virus detection in Europe in late 2014. Between 21 February 2015 and 31 January 2016, 7,337 bird samples were tested for the virus. One HPAI H5N8 virus-infected Eurasian wigeon (Anas penelope) sampled on 25 February 2015 was detected. Serological assays were performed on 1,443 samples, including 149 collected between 2007 and 2013, 945 between 14 November 2014 and 13 May 2015, and 349 between 1 September and 31 December 2015. Antibodies specific for HPAI H5 clade 2.3.4.4 were absent in wild bird sera obtained before 2014 and present in sera collected during and after the HPAI H5N8 emergence in Europe, with antibody incidence declining after the 2014/15 winter. Our results indicate that the HPAI H5N8 virus has not continued to circulate extensively in wild bird populations since the 2014/15 winter and that independent maintenance of the virus in these populations appears unlikely. PMID:27684783

  13. Importance of Carbon Contamination in High-Resolution (FEG) EPMA of Silicate Minerals.

    PubMed

    Buse, Ben; Kearns, Stuart

    2015-06-01

    The effect of carbon contamination on the analysis of carbon-coated silicate minerals at 5 kV for X-ray energies 0.7-4 keV is examined. For individual spot analyses, carbon is found to deposit adjacent to the beam spot forming ring-shaped deposits with no impact on the analysis. Carbon contamination becomes important for closely spaced analyses such as multipoint transects, where each subsequent analysis overlaps the carbon ring of the previous analysis. X-ray intensity loss due to contamination is most severe for low-overvoltage elements such as Ca K consistent with carbon deposition effectively reducing beam energy. Rates of contamination are calculated and the use of a liquid nitrogen cold trap is shown to greatly reduce the amount of carbon deposited. A complimentary empirical correction is developed to correct for X-ray intensity loss from measured carbon, assuming the carbon is a film, and is compared with corrections derived from thin film calculations. PENELOPE electron probe microanalysis (PENEPMA) calculations confirm that asymmetry of the carbon deposition can be ignored for X-ray energies where intensity loss is predominantly through energy loss of beam electrons. Using a cold trap and/or an empirical correction high spatial resolution analysis (ca. 400 nm between points) is achievable with analytical errors of ca. 1-3%.

  14. A Neutron Detector Constructed Using Shards of ^6Li-loaded Glass Scintillator

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Czirr, Bart; Rees, Lawrence

    2012-10-01

    Because of a global shortage of ^3He, an essential component of many neutron detectors, much work is currently being done to develop new neutron detectors based on alternative materials for homeland security applications. One of the possible replacements for ^3He is Ce^3+-activated, ^6Li-loaded glass scintillator. Although this material has been widely used in neutron detectors for over half a century, its relatively high gamma sensitivity has made it unattractive for use in radiation portal monitors. We have tested a new technique for reducing the gamma sensitivity of a neutron detector based on ^6Li glass. Our prototype neutron detector consists of small (about 1 mm^3) shards of ^6Li-loaded glass scintillator embedded in optical epoxy. Mineral oil is placed behind the glass and epoxy for moderation. Our tests indicate that this detector can achieve a gamma sensitivity that is at least 100 times lower than a comparable neutron detector constructed using a thin sheet of ^6Li glass. Modeling performed using the particle transport codes MCNP and PENELOPE suggests that the gamma sensitivity of the glass shards is lower because more high-energy Compton electrons escape them before depositing their full energy.

  15. Monte Carlo simulation of the movement and detection efficiency of a whole-body counting system using a BOMAB phantom.

    PubMed

    Bento, Joana; Barros, Sílvia; Teles, Pedro; Neves, Maria; Gonçalves, Isabel; Corisco, José; Vaz, Pedro

    2012-03-01

    This study reports on the computational analysis and experimental calibration of the whole-body counting detection equipment at the Nuclear and Technological Institute (ITN) in Portugal. Two state-of-the-art Monte Carlo simulation programmes were used for this purpose: PENELOPE and MCNPX. This computational work was undertaken as part of a new set of experimental calibrations, which improved the quality standards of this study's WBC system. In these calibrations, a BOMAB phantom, one of the industry standards phantoms for WBC calibrations in internal dosimetry applications, was used. Both the BOMAB phantom and the detection system were accurately implemented in the Monte Carlo codes. The whole-body counter at ITN possesses a moving detector system, which poses a challenge for Monte Carlo simulations, as most codes only accept static configurations. The continuous detector movement was approximately described in the simulations by averaging several discrete positions of the detector throughout the movement. The computational efficiency values obtained with the two Monte Carlos codes have deviations of less than 3.2 %, and the obtained deviations between experimental and computational efficiencies are less than 5 %. This work contributes to demonstrate the great effectiveness of using computational tools for understanding the calibration of radiation detection systems used for in vivo monitoring.

  16. Magnetic field effects on the energy deposition spectra of MV photon radiation.

    PubMed

    Kirkby, C; Stanescu, T; Fallone, B G

    2009-01-21

    Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.

  17. Measurement of Quantum Phase-Slips in Josephson Junction Chains

    NASA Astrophysics Data System (ADS)

    Guichard, Wiebke

    2011-03-01

    Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.

  18. Handbook of environmental chemistry. Volume 4. Part A, air pollution

    SciTech Connect

    Hutzinger, O.

    1986-01-01

    Five authors have each contributed one chapter to this first part (A) of the series on Air Pollution (Volume 4). Thus the book is neither a handbook compilation of reference data nor a text on the subject of air pollution. The first and shortest chapter (22 pages) by A. Wint of the University of Nottingham, England, is an overview called Air Pollution in Perspective. The second chapter, by P. Fabian of Max-Planck-Institute fuer Aeronomie, FRG, is titled Halogenated Hydrocarbons in the Atmosphere. This chapter, in 29 pages, summarizes current data on twenty of these compounds. Hans Guesten of the Institute fuer Radiochemie, Karlsruhe, FRG, contributed chapter 3 on Formation, Transport, and Control of Photochemical Smog (52 pages). This chapter is a good survey of current understanding of smog although each of the three topics promised in the title could by itself take up a good sized book. Atmospheric Distribution of Pollutants and Modeling of Air Pollution Dispersion by H. van Dop of the Royal Netherlands Meteorological Institute, the Netherlands, makes up Chapter 4 (42 pages). The article is written from a meteorological perspective. The last chapter, by J.M. Hales of Battelle Pacific Northwest Laboratories, USA, is titled The Mathematical Characterization of Precipitation Scavenging and Precipitation Chemistry (74 pages). Removal of pollutants from the atmosphere by precipitation is good news/bad news.

  19. (HFR-B1 experiment reporting and capsule disassembly)

    SciTech Connect

    Myers, B.F.

    1991-02-22

    The traveler visited the Joint Research Centre (JRC), Petten, The Netherlands, the Forschungszentrum GmbH (KFA), Juelich, Germany; and the Zentralinstitut fuer Kernforschung (ZfK), Rossendorf, Germany, during the period January 28 through February 9. At JRC, the analysis of the experiment HFR-B1 was discussed; a new schedule for issuance of the final data report was established. Other discussions at JRC concerned the capabilities of Petten to conduct two reactor experiments being proposed under the US/FRG cooperative program and the initial results of a proof test of Germany fuel spheres. At KFA, the main emphasis was on the disassembly of capsules 2 and 3 of the HFR-B1 experiment and agreement on the examinations and tests to be conducted with the disassembled components. The disassembly of capsule 3 was observed. Extensive discussions were conducted on the work, both experimental and analytical, being conducted in the Institut fuer Sicherheitsforschung und Reaktor Technologie. A major portion of the experimental work is being conducted at ZfK and a visit to this laboratory, sponosored by the KFA, was made on February 6 and 7. Cooperation with the US on the experimental and analytical work in the safety area was strongly emphasized. 1 tab.

  20. SUNRISE: a balloon-borne telescope for high resolution solar observations in the visible and UV

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Gandorfer, Achim M.; Schuessler, Manfred; Curdt, W.; Lites, Bruce W.; Martinez-Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M.

    2003-02-01

    Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ~200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Through its interaction with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Sunrise is a joint project of the Max-Planck-Institut fuer Aeronomie (MPAe), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofi sica de Canarias, La Laguna, Tenerife. In addition, there are close contacts with associated scientists from a variety of institutes.

  1. Innovative Conditioning Procedures for the Generation of Radioactive Waste Products which are Stable for Intermediate Storage or Repository-Independent in Final Storage

    SciTech Connect

    Steinmetz, H.J.; Heimbach, H.; Odoj, R.; Pruesse, R.; Wartenberg, W.

    2006-07-01

    The German Federal Government aims at a future final storage site for all kinds of radioactive waste within 30 years. Existing and newly-produced radioactive waste therefore has to be stored in interim storage facilities over very long periods of time. At present, most German radioactive waste or waste packages are produced and qualified according to the acceptance criteria of the projected final repository KONRAD. [1] Nevertheless, conditioning strategies for crude radioactive waste have to take into account the open question of the future repository site as well as requirements for long-term interim storage. The Quality Control Group for Radioactive Waste (in German: Produktkontrollstelle fuer radioaktive Abfaelle - PKS) works as an independent expert organisation for the quality checking of radioactive waste packages as well as evaluating conditioning procedures for waste containers suitable for final storage on behalf of the Federal Office for Radiation Protection (in German: Bundesamt fuer Strahlenschutz - BfS). The Institute for Safety Research and Reactor Technology (in German: Institut fuer Sicherheitsforschung and Reaktortechnik - ISR) of the Research Centre Juelich investigates scientific/technical problems of nuclear disposal, especially in the field of waste treatment. In this context, ISR and PKS investigated and/or evaluated innovative procedures, by means of which radioactive waste flows may be minimized and rendered inert. QSA Global (formerly: AEA Technology QSA) conditions radioactive waste of German users from the fields of medicine, research and industry as well as from its own radioactive source production and operates an intermediate storage facility for radioactive waste containers. This poster deals with the characteristics and possible applications of new waste fixation media on the basis of organic and inorganic mineral polymers; with the approach of producing inherently safe waste forms for various geological formations. Plasma technology

  2. Deciding what to see: the role of intention and attention in the perception of apparent motion.

    PubMed

    Kohler, Axel; Haddad, Leila; Singer, Wolf; Muckli, Lars

    2008-03-01

    Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in Wertheimer's early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161-265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers' attention was diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation prolonged dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional modulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects. PMID:18279907

  3. Reconstructive surgery for male stress urinary incontinence: Experiences using the ATOMS(®) system at a single center.

    PubMed

    Krause, Jens; Tietze, Stefan; Behrendt, Wolf; Nast, Jenifer; Hamza, Amir

    2014-01-01

    Fragestellung: Es erfolgt die Darstellung der Probleme und Komplikationsraten mit dem ATOMS(®)-Schlingensystem an Hand von eigenen Ergebnissen, um aktuelle Behandlungsmöglichkeiten von männlicher Stressinkontinenz zu analysieren. Material und Methode: In dem definiertem Zeitraum (4/2010 bis 4/2014) wurde bei 36 Patienten ein ATOMS(®)-System in unserer Klinik implantiert. Die Evaluation erfolgte prä- und postoperativ mithilfe des internationalen Fragebogens zur Inkontinenz (ICIQ SF). Es erfolgte die Erweiterung des Fragebogen mit Fragen über die postoperative perineale Schmerzsymptomatik, die generelle Zufriedenheit mit Operationsergebnis und über die Bereitschaft zur Therapieweiterempfehlung an den besten Freund.Ergebnisse: Unsere Daten zeigen eine relativ hohe Explantationsrate, jedoch eine hohe Patientenzufriedenheit. Die Explantation war in den meisten Fällen aufgrund einer Spätinfektion des Implantats oder aufgrund anderer symptomatische Faktoren notwendig. Im Vergleich zu anderen Studien zeigte sich unmittelbar postoperativ eine geringere Infektionsrate. Schlussfolgerung: Ein nicht invasives, unkompliziertes adjustierbares System zur Linderung der männlichen Stressinkontinenz bleibt eine Herausforderung. Obwohl unterschiedliche Systeme zur Behandlung der männlichen Stressinkontinenz verfügbar sind, scheint es, dass ein artifizieller Sphincter mehr Vorteile gegenüber dem ATOMS(®)-Systems besitzt. Dies könnte jedoch auch aufgrund zahlreicher, gut dokumentierter und langfristiger Daten über den artifiziellen Sphincter begründet werden.

  4. [What are the reasons for patient dropout in nursing home residents in an intervention study. An analysis of unit nonresponders in 12 German nursing homes].

    PubMed

    Budnick, Andrea; Jordan, Laura-Maria; Könner, Franziska; Hannemann, Bianca; Wulff, Ines; Kalinowski, Sonja; Kreutz, Reinhold; Dräger, Dagmar

    2015-02-01

    Hintergrund: Nonresponse verursacht zweifelsohne ein Bias in Studienergebnissen. Ausfallursachen in Studien mit Pflegeheimbewohner(inne)n sind bisher unzureichend untersucht. Ziel und Methode: Ziel dieser Studie war es, nach dem Prozessmodell induktiver Kategorienbildung nach Mayring (2010) reliable und valide Kategorien zu entwickeln, welche detailliert Ausfallgründe von Pflegeheimbewohner(inne)n abbilden. Zudem wurden Charakteristika der Unit-Nonresponder und der Responder verglichen. Ergebnisse: Die Kategorisierung der Ausfallgründe erfolgte im Längsschnitt mit insgesamt 522 Pflegeheimbewohner(inne)n. Identifiziert wurden vier Oberkategorien («generelle Ablehnung», «gesundheitliche Aspekte», «Erreichbarkeit», «Überforderung») sowie 17 Subkategorien. Unit-Nonresponder und Responder unterscheiden sich hinsichtlich Alter und Geschlecht nicht; jedoch zeigten sich Unterschiede im Follow-up bei Familienstand, Berufsabschluss und kognitivem Status. Schlussfolgerungen: Das vorgelegte Kategorienschema kann zukünftig zur Erfassung von Ausfallgründen im Setting Pflegeheim verwendet werden. Die detaillierte Erfassung der Ausfallursachen kann zur Optimierung der Responserate beitragen.

  5. Deciding what to see: the role of intention and attention in the perception of apparent motion.

    PubMed

    Kohler, Axel; Haddad, Leila; Singer, Wolf; Muckli, Lars

    2008-03-01

    Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in Wertheimer's early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161-265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers' attention was diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation prolonged dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional modulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects.

  6. Safety relevant knowledge of orally anticoagulated patients without self-monitoring: a baseline survey in primary care

    PubMed Central

    2014-01-01

    Background Effective and safe management of oral anticoagulant treatment (OAT) requires a high level of patient knowledge and adherence. The aim of this study was to assess patient knowledge about OAT and factors associated with patient knowledge. Methods This is a baseline survey of a cluster-randomized controlled trial in 22 general practices with an educational intervention for patients or their caregivers. We assessed knowledge about general information on OAT and key facts regarding nutrition, drug-interactions and other safety precautions of 345 patients at baseline. Results Participants rated their knowledge about OAT as excellent to good (56%), moderate (36%) or poor (8%). However, there was a discrepancy between self-rated knowledge and evaluated actual knowledge and we observed serious knowledge gaps. Half of the participants (49%) were unaware of dietary recommendations. The majority (80%) did not know which non-prescription analgesic is the safest and 73% indicated they would not inform pharmacists about OAT. Many participants (35-75%) would not recognize important emergency situations. After adjustment in a multivariate analysis, older age and less than 10 years education remained significantly associated with lower overall score, but not with self-rated knowledge. Conclusions Patients have relevant knowledge gaps, potentially affecting safe and effective OAT. There is a need to assess patient knowledge and for structured education programs. Trial registration Deutsches Register Klinischer Studien (German Clinical Trials Register): DRKS00000586. Universal Trial Number (UTN U1111-1118-3464). PMID:24885192

  7. Therapeutisches Management kutaner und genitaler Warzen.

    PubMed

    Ockenfels, Hans Michael

    2016-09-01

    Mindestens 10 % der Bevölkerung erkranken während ihres Lebens an einer Infektion mit humanen Papillomaviren (HPV), welche sich klinisch anhand der Ausbildung kutaner oder genitaler Warzen manifestiert. Obwohl Warzen ubiquitär sind, existieren keine definierten Behandlungen. Warzen zeigen, insbesondere in den ersten sechs Monaten, eine erhöhte Selbstheilungsrate. Dieser Umstand erschwert die Interpretation von Studien, da häufig Patienten mit Neuinfektionen zusammen mit Patienten mit Altinfektionen behandelt werden. Lokalisationen, Größe und Dicke der Warzen sind ebenfalls in den meisten Fällen nicht berücksichtigt. Ziel dieses Übersichtsartikels ist eine Analyse des vorliegenden Studienmaterials, unter der für den klinischen Alltag so wichtigen Berücksichtigung von Subtypen und Lokalisationen. Insbesondere die Abgrenzung zwischen frischen und chronisch-therapieresistenten Verrucae vulgares spiegelt sich in einem Therapiealgorithmus wider. Bei genitalen Warzen wird der Therapiealgorithmus deutlicher durch das Ausmaß der infizierten Fläche als durch das Alter der Warzen bestimmt. Bei immunkompetenten Personen muss es mit den hier aufgezeigten therapeutischen Methoden immer das Ziel sein, eine komplette Abheilung zu erzielen. PMID:27607029

  8. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  9. Model-Based Radiation Dose Correction for Yttrium-90 Microsphere Treatment of Liver Tumors With Central Necrosis

    SciTech Connect

    Liu, Ching-Sheng; Lin, Ko-Han; Lee, Rheun-Chuan; Tseng, Hsiou-Shan; Wang, Ling-Wei; Huang, Pin-I; Chao, Liung-Sheau; Chang, Cheng-Yen; Yen, Sang-Hue; Tung, Chuan-Jong; Wang, Syh-Jen; Oliver Wong, Ching-yee

    2011-11-01

    Purpose: The objectives of this study were to model and calculate the absorbed fraction {phi} of energy emitted from yttrium-90 ({sup 90}Y) microsphere treatment of necrotic liver tumors. Methods and Materials: The tumor necrosis model was proposed for the calculation of {phi} over the spherical shell region. Two approaches, the semianalytic method and the probabilistic method, were adopted. In the former method, the range--energy relationship and the sampling of electron paths were applied to calculate the energy deposition within the target region, using the straight-ahead and continuous-slowing-down approximation (CSDA) method. In the latter method, the Monte Carlo PENELOPE code was used to verify results from the first method. Results: The fraction of energy, {phi}, absorbed from {sup 90}Y by 1-cm thickness of tumor shell from microsphere distribution by CSDA with complete beta spectrum was 0.832 {+-} 0.001 and 0.833 {+-} 0.001 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors (where r is the radii of the tumor [T] and necrosis [N]). The fraction absorbed depended mainly on the thickness of the tumor necrosis configuration, rather than on tumor necrosis size. The maximal absorbed fraction {phi} that occurred in tumors without central necrosis for each size of tumor was different: 0.950 {+-} 0.000, and 0.975 {+-} 0.000 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors, respectively (p < 0.0001). Conclusions: The tumor necrosis model was developed for dose calculation of {sup 90}Y microsphere treatment of hepatic tumors with central necrosis. With this model, important information is provided regarding the absorbed fraction applicable to clinical {sup 90}Y microsphere treatment.

  10. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru.

    PubMed

    Ohl-Schacherer, Julia; Shepard, Glenn H; Kaplan, Hillard; Peres, Carlos A; Levi, Taal; Yu, Douglas W

    2007-10-01

    The presence of indigenous people in tropical parks has fueled a debate over whether people in parks are conservation allies or direct threats to biodiversity. A well-known example is the Matsigenka (or Machiguenga) population residing in Manu National Park in Peruvian Amazonia. Because the exploitation of wild meat (or bushmeat), especially large vertebrates, represents the most significant internal threat to biodiversity in Manu, we analyzed 1 year of participatory monitoring of game offtake in two Matsigenka native communities within Manu Park (102,397 consumer days and 2,089 prey items). We used the Robinson and Redford (1991) index to identify five prey species hunted at or above maximum sustainable yield within the approximately 150-km(2) core hunting zones of the two communities: woolly monkey (Lagothrix lagotricha), spider monkey (Ateles chamek), white-lipped peccary (Tayassu pecari), Razor-billed Currasow (Mitu tuberosa), and Spix's Guan (Penelope jacquacu). There was little or no evidence that any of these five species has become depleted, other than locally, despite a near doubling of the human population since 1988. Hunter-prey profiles have not changed since 1988, and there has been little change in per capita consumption rates or mean prey weights. The current offtake by the Matsigenka appears to be sustainable, apparently due to source-sink dynamics. Source-sink dynamics imply that even with continued human population growth within a settlement, offtake for each hunted species will eventually reach an asymptote. Thus, stabilizing the Matsigenka population around existing settlements should be a primary policy goal for Manu Park.

  11. Spectral Emissions and Dosimetry of Metal Tritide Particulates

    SciTech Connect

    Strom, Daniel J.; Stewart, Robert D.; McDonald, Joseph C.

    2002-01-01

    Inference of intakes and doses from inhalation of metal tritide particles has come under scrutiny because of decommissioning and decontamination of U.S. Department of Energy facilities. Since self-absorption of radiation is very significant for larger particles, interpretation of counting results of metal tritide particles by liquid scintillation requires information about emission spectra. Similarly, inference of dose requires knowledge of charged particle and photon spectra. Using the PENELOPE Monte Carlo radiation transport computer code, we calculated various dosimetric, microdosimetric and spectral emissions from tritides of Sc, Ti, Zr, Er, and Hf. For metal tritide particles with physical diameters in the range from about 0.01 mm to 25 mm, we present energy emission fractions, distributions of microdosimetric quantities, and the emitted spectra of electrons and bremsstrahlung photons. Results characterizing the effects of uncertainties associated with the composition and density of the tritides are also presented. Emission spectra are used to illustrate trends in the relationship between "apparent" and "observed" activity as a function of particle type and size. Emissions from metal tritide particles are weakly penetrating, and the emission spectra tend to "harden" as the particle size increases. Microdosimetric considerations suggest that the radiation emitted by metal tritides can be classified as a low Linear Energy Transfer (LET) radiation source. For cells less than about 7 mm away from the surface of a metal tritide, the primary dose component is due to electrons. However, bremsstrahlung radiation may deposit some energy tens, hundreds or even thousands of micrometers away from the surface of a tritide particle.

  12. Sci—Thur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study

    SciTech Connect

    Koger, B; Kirkby, C

    2014-08-15

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.

  13. Monte Carlo calculation of specific absorbed fractions: variance reduction techniques

    NASA Astrophysics Data System (ADS)

    Díaz-Londoño, G.; García-Pareja, S.; Salvat, F.; Lallena, A. M.

    2015-04-01

    The purpose of the present work is to calculate specific absorbed fractions using variance reduction techniques and assess the effectiveness of these techniques in improving the efficiency (i.e. reducing the statistical uncertainties) of simulation results in cases where the distance between the source and the target organs is large and/or the target organ is small. The variance reduction techniques of interaction forcing and an ant colony algorithm, which drives the application of splitting and Russian roulette, were applied in Monte Carlo calculations performed with the code penelope for photons with energies from 30 keV to 2 MeV. In the simulations we used a mathematical phantom derived from the well-known MIRD-type adult phantom. The thyroid gland was assumed to be the source organ and urinary bladder, testicles, uterus and ovaries were considered as target organs. Simulations were performed, for each target organ and for photons with different energies, using these variance reduction techniques, all run on the same processor and during a CPU time of 1.5 · 105 s. For energies above 100 keV both interaction forcing and the ant colony method allowed reaching relative uncertainties of the average absorbed dose in the target organs below 4% in all studied cases. When these two techniques were used together, the uncertainty was further reduced, by a factor of 0.5 or less. For photons with energies below 100 keV, an adapted initialization of the ant colony algorithm was required. By using interaction forcing and the ant colony algorithm, realistic values of the specific absorbed fractions can be obtained with relative uncertainties small enough to permit discriminating among simulations performed with different Monte Carlo codes and phantoms. The methodology described in the present work can be employed to calculate specific absorbed fractions for arbitrary arrangements, i.e. energy spectrum of primary radiation, phantom model and source and target organs.

  14. Validation of the GEANT4 simulation of bremsstrahlung from thick targets below 3 MeV

    NASA Astrophysics Data System (ADS)

    Pandola, L.; Andenna, C.; Caccia, B.

    2015-05-01

    The bremsstrahlung spectra produced by electrons impinging on thick targets are simulated using the GEANT4 Monte Carlo toolkit. Simulations are validated against experimental data available in literature for a range of energy between 0.5 and 2.8 MeV for Al and Fe targets and for a value of energy of 70 keV for Al, Ag, W and Pb targets. The energy spectra for the different configurations of emission angles, energies and targets are considered. Simulations are performed by using the three alternative sets of electromagnetic models that are available in GEANT4 to describe bremsstrahlung. At higher energies (0.5-2.8 MeV) of the impinging electrons on Al and Fe targets, GEANT4 is able to reproduce the spectral shapes and the integral photon emission in the forward direction. The agreement is within 10-30%, depending on energy, emission angle and target material. The physics model based on the Penelope Monte Carlo code is in slightly better agreement with the measured data than the other two. However, all models over-estimate the photon emission in the backward hemisphere. For the lower energy study (70 keV), which includes higher-Z targets, all models systematically under-estimate the total photon yield, providing agreement between 10% and 50%. The results of this work are of potential interest for medical physics applications, where knowledge of the energy spectra and angular distributions of photons is needed for accurate dose calculations with Monte Carlo and other fluence-based methods.

  15. Denoising techniques combined to Monte Carlo simulations for the prediction of high-resolution portal images in radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Lazaro, D.; Barat, E.; Le Loirec, C.; Dautremer, T.; Montagu, T.; Guérin, L.; Batalla, A.

    2013-05-01

    This work investigates the possibility of combining Monte Carlo (MC) simulations to a denoising algorithm for the accurate prediction of images acquired using amorphous silicon (a-Si) electronic portal imaging devices (EPIDs). An accurate MC model of the Siemens OptiVue1000 EPID was first developed using the penelope code, integrating a non-uniform backscatter modelling. Two already existing denoising algorithms were then applied on simulated portal images, namely the iterative reduction of noise (IRON) method and the locally adaptive Savitzky-Golay (LASG) method. A third denoising method, based on a nonparametric Bayesian framework and called DPGLM (for Dirichlet process generalized linear model) was also developed. Performances of the IRON, LASG and DPGLM methods, in terms of smoothing capabilities and computation time, were compared for portal images computed for different values of the RMS pixel noise (up to 10%) in three different configurations, a heterogeneous phantom irradiated by a non-conformal 15 × 15 cm2 field, a conformal beam from a pelvis treatment plan, and an IMRT beam from a prostate treatment plan. For all configurations, DPGLM outperforms both IRON and LASG by providing better smoothing performances and demonstrating a better robustness with respect to noise. Additionally, no parameter tuning is required by DPGLM, which makes the denoising step very generic and easy to handle for any portal image. Concerning the computation time, the denoising of 1024 × 1024 images takes about 1 h 30 min, 2 h and 5 min using DPGLM, IRON, and LASG, respectively. This paper shows the feasibility to predict within a few hours and with the same resolution as real images accurate portal images, combining MC simulations with the DPGLM denoising algorithm.

  16. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.

    PubMed

    Zagni, F; Cicoria, G; Lucconi, G; Infantino, A; Lodi, F; Marengo, M

    2014-12-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the "PENELOPE" EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration.

  17. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    PubMed

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  18. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  19. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast

    NASA Astrophysics Data System (ADS)

    Ghammraoui, Bahaa; Badal, Andreu; Popescu, Lucretiu M.

    2016-04-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter cross section of the investigated object revealing structural information of tissue under investigation. In the original CSCT proposals the reconstruction of images from coherently scattered x-rays is done at each scattering angle separately using analytic reconstruction. In this work we develop a maximum likelihood estimation of scatter components algorithm (ML-ESCA) that iteratively reconstructs images using a few material component basis functions from coherent scatter projection data. The proposed algorithm combines the measured scatter data at different angles into one reconstruction equation with only a few component images. Also, it accounts for data acquisition statistics and physics, modeling effects such as polychromatic energy spectrum and detector response function. We test the algorithm with simulated projection data obtained with a pencil beam setup using a new version of MC-GPU code, a Graphical Processing Unit version of PENELOPE Monte Carlo particle transport simulation code, that incorporates an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The results obtained for breast imaging phantoms using adipose and glandular tissue cross sections show that the new algorithm can separate imaging data into basic adipose and water components at radiation doses comparable with Breast Computed Tomography. Simulation results also show the potential for imaging microcalcifications. Overall, the component images obtained with ML-ESCA algorithm have a less noisy appearance than the images obtained with the conventional filtered back projection algorithm for each individual scattering angle. An optimization study for x-ray energy range selection for breast CSCT is also presented.

  20. A monte carlo comparison of three different media for contrast enhanced radiotherapy of the prostate.

    PubMed

    Garnica-Garza, H M

    2010-06-01

    Contrast-enhanced radiotherapy makes use of a kilovoltage X-ray beam, either from a diagnostic X-ray tube or modified megavoltage linear accelerator, in conjunction with a high-Z contrast medium deposited into the target volume to enhance the absorption of radiation. In this work, using the Monte Carlo code PENELOPE and the voxelized Zubal phantom to model a prostate radiotherapy treatment, a comparison between the physical absorbed dose distributions rendered by three different enhancing agents namely bismuth, gadolinium, and iodine is performed. It is assumed that there exists a concentration of 10 mg of enhancing agent per 1 g of tissue in the target volume while in the background a concentration of 1.5 mg per 1 g of tissue is present. The X-ray beam energy spectrum was obtained by means of Monte Carlo simulation of a tungsten target upon which a 220 keV mono-energetic electron pencil beam is made to impinge, and the resultant photon beam is heavily filtrated by 0.2 cm of copper. The treatment delivery is simulated as a 3608 arc collimated to conform to the target from every direction. Cumulative dose-volume histograms and isodose curves are presented for the target as well as five organs-at-risk, namely rectal wall, bladder, femoral heads, skin, and bone marrow. It is shown that under these conditions clinically acceptable treatment plans are obtained for all three contrast agents. A 72 Gy dose to 100% of the target volume results in maximum absorbed doses to the above mentioned organs-at-risk of 65, 56, 44, 32 and 65 Gy respectively when bismuth is used as the contrast agent, but the results obtained with gadolinium follow closely.

  1. SU-E-J-51: Dose Response of Common Solid State Detectors in Homogeneous Transverse and Longitudinal Magnetic Fields

    SciTech Connect

    Reynolds, M; Fallone, B; Rathee, S

    2014-06-01

    Purpose: Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is evaluated in varying transverse and longitudinal magnetic fields for eventual use in MR-Linac devices. Methods: A PTW 60003 and IBA PFD detector were modeled in the Monte Carlo code PENELOPE, incorporating a magnetic field which was varied in strength and oriented both transversely and longitudinally with respect to the incident photon beam. The detectors' long axis was in turn oriented either parallel or perpendicular to the photon beam. Dose to the active volume of each detector was scored, and its ratio to dose with zero magnetic field strength (dose response) was determined. Accuracy of the simulations was evaluated by measurements using both chambers taken at low field with a small electromagnet. Simulations were also performed in a water phantom to compare to the in air results. Results: Significant dose response was found in transverse field geometries, nearing 20% at 1.5T. The response is highly dependent on relative orientations to the magnetic field and photon beam, and on detector composition. Low field measurements confirm these results. In the presence of longitudinal magnetic fields, the detectors exhibit little dose response, reaching 0.5–1% at 1.5T regardless of detector orientation. Water tank simulations compared well to the in air simulations when not at the beam periphery, where in transverse magnetic fields only, the water tank simulations differed from the in air results. Conclusion: Transverse magnetic fields can cause large deviations in dose response, and are highly position orientation dependent. Comparatively, longitudinal magnetic fields exhibit little to no dose response in each detector as a function of magnetic field strength. Water tank simulations show longitudinal fields are generally easier to work with, but each detector must be evaluated separately.

  2. TH-C-BRD-01: Analytical Computation of Prompt Gamma Ray Emission and Detection for Proton Range Verification

    SciTech Connect

    Sterpin, E; Vynckier, S; Janssens, G; Smeets, J; Prieels, D

    2014-06-15

    Purpose: A prompt gamma (PG) slit camera prototype demonstrated that on-line range monitoring within 1–2 mm could be performed by comparing expected and measured PG detection profiles. Monte Carlo (MC) can simulate the expected PG profile but this would result in prohibitive computation time for a complete pencil beam treatment plan. We implemented a much faster method that is based on analytical processing of pre-computed MC data. Methods: The formation of the PG detection signal can be separated into: 1) production of PGs and 2) detection by the camera detectors after PG transport in geometry. For proton energies from 40 to 230 MeV, PG productions in depth were pre-computed by MC (PENH) for 12C, 14N, 16O, 31P and 40Ca. The PG production was then modeled analytically by adding the PG production for each element according to local proton energy and tissue composition.PG transport in the patient/camera geometries and the detector response were modeled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to pre-computed MC data (PENELOPE). The database was generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions.As a benchmark, the analytical model was compared to PENH for a water phantom, a phantom with different slabs (adipose, muscle, lung) and a thoracic CT. Results: Good agreement (within 5%) was observed between the analytical model and PENH for the PG production. Similar accuracy for detecting range shifts was also observed. Speed of around 250 ms per profile was achieved (single CPU) using a non-optimized MatLab implementation. Conclusion: We devised a fast analytical model for generating PG detection profiles. In the test cases considered in this study, similar accuracy than MC was achieved for detecting range shifts. This research is supported by IBA.

  3. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast.

    PubMed

    Ghammraoui, Bahaa; Badal, Andreu; Popescu, Lucretiu M

    2016-04-21

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter cross section of the investigated object revealing structural information of tissue under investigation. In the original CSCT proposals the reconstruction of images from coherently scattered x-rays is done at each scattering angle separately using analytic reconstruction. In this work we develop a maximum likelihood estimation of scatter components algorithm (ML-ESCA) that iteratively reconstructs images using a few material component basis functions from coherent scatter projection data. The proposed algorithm combines the measured scatter data at different angles into one reconstruction equation with only a few component images. Also, it accounts for data acquisition statistics and physics, modeling effects such as polychromatic energy spectrum and detector response function. We test the algorithm with simulated projection data obtained with a pencil beam setup using a new version of MC-GPU code, a Graphical Processing Unit version of PENELOPE Monte Carlo particle transport simulation code, that incorporates an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The results obtained for breast imaging phantoms using adipose and glandular tissue cross sections show that the new algorithm can separate imaging data into basic adipose and water components at radiation doses comparable with Breast Computed Tomography. Simulation results also show the potential for imaging microcalcifications. Overall, the component images obtained with ML-ESCA algorithm have a less noisy appearance than the images obtained with the conventional filtered back projection algorithm for each individual scattering angle. An optimization study for x-ray energy range selection for breast CSCT is also presented. PMID:27025665

  4. Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study

    SciTech Connect

    Martínez-Rovira, I.; Prezado, Y.

    2014-06-15

    Purpose: Minibeam radiation therapy (MBRT) exploits the well-established tissue-sparing effect provided by the combination of submillimetric field sizes and a spatial fractionation of the dose. The aim of this work is to evaluate the feasibility and potential therapeutic gain of MBRT, in comparison with conventional radiotherapy, for osteosarcoma treatments. Methods: Monte Carlo simulations (PENELOPE/PENEASY code) were used as a method to study the dose distributions resulting from MBRT irradiations of a rat femur and a realistic human femur phantoms. As a figure of merit, peak and valley doses and peak-to-valley dose ratios (PVDR) were assessed. Conversion of absorbed dose to normalized total dose (NTD) was performed in the human case. Several field sizes and irradiation geometries were evaluated. Results: It is feasible to deliver a uniform dose distribution in the target while the healthy tissue benefits from a spatial fractionation of the dose. Very high PVDR values (⩾20) were achieved in the entrance beam path in the rat case. PVDR values ranged from 2 to 9 in the human phantom. NTD{sub 2.0} of 87 Gy might be reached in the tumor in the human femur while the healthy tissues might receive valley NTD{sub 2.0} lower than 20 Gy. The doses in the tumor and healthy tissues might be significantly higher and lower than the ones commonly delivered used in conventional radiotherapy. Conclusions: The obtained dose distributions indicate that a gain in normal tissue sparing might be expected. This would allow the use of higher (and potentially curative) doses in the tumor. Biological experiments are warranted.

  5. Stereotactic breast irradiation with kilovoltage x-ray beams

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2016-01-01

    The purpose of this work is to determine, using Monte Carlo simulation and a realistic patient model, the characteristics of the resultant absorbed dose distributions when breast tumors are irradiated using small-field stereotactic body radiation therapy (SBRT) with kilovoltage x-ray beams instead of the standard megavoltage energies currently in use. The Rensselaer Polytechnic Institute (RPI) female phantom was used to model a pair of small-field SBRT breast treatments: in one treatment the tumor at depth and another one with the tumor located close to the breast surface. Each treatment consisted of 300 circular beams aimed at the tumor from a plurality of positions. The PENELOPE Monte Carlo code was used to determine the absorbed dose distribution for each beam and subsequently an optimization algorithm determined each beam weight according to a set of prescription goals. Both kilo- and megavoltage beam treatments were modeled, the latter to be used as a reference. Cumulative dose-volume histograms for eleven structures were used to compare the kilovoltage and reference treatments. Integral dose values are also reported. Absorbed dose distributions for the target volumes as well as the organs at risk were within the parameters reported in a clinical trial for both treatments. While for the ipsilateral healthy breast tissue the megavoltage treatment does offer an advantage in terms of less volume irradiated to intermediate doses, for the contralateral structures, breast and lung, the low penetration ability of the kilovoltage treatment results in a lower maximum dose. Skin dose is higher for the kilovoltage treatment but still well within the tolerance limits reported in the clinical trial.

  6. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.

    PubMed

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-21

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code MANTIS, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fastDETECT2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the MANTIS code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify PENELOPE (the open source software package that handles the x-ray and electron transport in MANTIS) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fastDETECT2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybridMANTIS approach achieves a significant speed-up factor of 627 when compared to MANTIS and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybridMANTIS, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical tox-ray transport. The new code requires much less memory than MANTIS and, asa result, allows us to efficiently simulate large area detectors.

  7. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions.

    PubMed

    Lanconelli, N; Pacilio, M; Lo Meo, S; Botta, F; Di Dia, A; Aroche, A Torres; Pérez, M A Coca; Cremonesi, M

    2012-01-21

    The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it.

  8. Designing a phantom for dose evaluation in multi-slice CT

    NASA Astrophysics Data System (ADS)

    Abboud, Samir; Badal, Andreu; Stern, Stanley H.; Kyprianou, Iacovos S.

    2010-04-01

    Accurately representing radiation dose delivered in MSCT is becoming a concern as the maximum beam width of some modern CT scanners tends to become wider than the 100 mm charge-collection length of the pencil ionization chamber generally used in CT dosimetry. We investigate two alternative methods of dose evaluation in CT scanners. We investigate two alternative approaches for better characterization of CT dose than conventional evaluation of CTDI100. First, we simulate dose profiles and energy deposition in phantoms longer than the typically used 14-15 cm length right-circular cylinders. Second we explore the accuracy and practicality of applying mathematical convolution to a scatter kernel in order to generate dose profiles. A basic requirement for any newly designed phantom is that it be able to capture approximately the same dose as would an infinitely long cylinder, but yet be of a size and weight that a person could easily carry and position. Using the PENELOPE Monte Carlo package, we simulated dose profiles in cylindrical polymethyl methacrylate (PMMA) phantoms of 10, 16, 20, 24 and 32 cm diameter and 15, 30 and 300 cm length. Beam widths were varied from 1 cm to 60 cm. Lengths necessary to include within the dose integrals values associated with the scatter tails as well as with the primary radiation of the profile were then calculated as the full width at five percent of maximum dose. The resulting lengths suggest that to accommodate wide beam widths, phantoms longer than those currently used are necessary. The results also suggest that using a longer phantom is a relatively more accurate approach, while using mathematical convolution is simpler and more practical to implement than using the long phantoms designed according to direct Monte Carlo simulations.

  9. A robust procedure for verifying TomoTherapy Hi-Art™ source models for small fields

    NASA Astrophysics Data System (ADS)

    Hundertmark, B.; Sterpin, E.; Mackie, T.

    2011-06-01

    The dosimetric measurement and modeling of small radiation treatment fields (<2 × 2 cm2) are difficult to perform and prone to error. Measurements of small fields are often adversely influenced by the properties of the detectors used to make them. The dosimetric properties of small fields have been difficult to accurately model due to the effects of source occlusion caused by the collimating jaws. In this study, small longitudinal slice widths (SWs) of the TomoTherapy® Hi-Art® machine are characterized by performing dosimetric measurements topographically. By using a static gantry, opening the central 16 MLC leaves during the irradiations, and symmetrically scanning detectors 10 cm through each longitudinal SW, integral doses to a 'TomoTherapy equivalent' 10 × 10 cm2 area are topographically measured. To quantify the effects of source occlusion for TomoTherapy, a quantity referred to as the integral scanned dose to slice width ratio (D/SW) is introduced. (D/SW) ratios are measured for SWs ranging from 0.375 to 5 cm in size using ion chambers and a radiographic film. The measurements of the (D/SW) ratio are shown to be insensitive to the detectors used in this study. The (D/SW) ratios for TomoTherapy have values of unity in the range of SW sizes from 5 cm to approximately 2 cm. For SWs smaller than 2 cm in size, the source-occlusion effect substantially reduces the measured machine output and the value of the (D/SW) ratios. The topographic measurement method presented provides a way to directly evaluate the accuracy of the small-field source model parameters used in dose calculation algorithms. As an example, the electron source spot size of a Penelope Monte Carlo (MC) model of TomoTherapy was varied to match computed and measured (D/SW) ratios. It was shown that the MC results for small SW sizes were sensitive to that particular parameter.

  10. The effect of breast compression on mass conspicuity in digital mammography

    SciTech Connect

    Saunders, Robert S. Jr; Samei, Ehsan

    2008-10-15

    This study analyzed how the inherent quality of diagnostic information in digital mammography could be affected by breast compression. A digital mammography system was modeled using a Monte Carlo algorithm based on the Penelope program, which has been successfully used to model several medical imaging systems. First, the Monte Carlo program was validated against previous measurements and simulations. Once validated, the Monte Carlo software modeled a digital mammography system by tracking photons through a voxelized software breast phantom, containing anatomical structures and breast masses, and following photons until they were absorbed by a selenium-based flat-panel detector. Simulations were performed for two compression conditions (standard compression and 12.5% reduced compression) and three photon flux conditions (constant flux, constant detector signal, and constant glandular dose). The results showed that reduced compression led to higher scatter fractions, as expected. For the constant photon flux condition, decreased compression also reduced glandular dose. For constant glandular dose, the SdNR for a 4 cm breast was 0.60{+-}0.11 and 0.62{+-}0.11 under standard and reduced compressions, respectively. For the 6 cm case with constant glandular dose, the SdNR was 0.50{+-}0.11 and 0.49{+-}0.10 under standard and reduced compressions, respectively. The results suggest that if a particular imaging system can handle an approximately 10% increase in total tube output and 10% decrease in detector signal, breast compression can be reduced by about 12% in terms of breast thickness with little impact on image quality or dose.

  11. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    SciTech Connect

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-06-15

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.

  12. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions

    NASA Astrophysics Data System (ADS)

    Lanconelli, N.; Pacilio, M.; Lo Meo, S.; Botta, F.; Di Dia, A.; Torres Aroche, L. A.; Coca Pérez, M. A.; Cremonesi, M.

    2012-01-01

    The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it.

  13. Geant4 Monte Carlo simulation of energy loss and transmission and ranges for electrons, protons and ions

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Vladimir

    Geant4 is a toolkit for Monte Carlo simulation of particle transport originally developed for applications in high-energy physics with the focus on experiments at the Large Hadron Collider (CERN, Geneva). The transparency and flexibility of the code has spread its use to other fields of research, e.g. radiotherapy and space science. The tool provides possibility to simulate complex geometry, transportation in electric and magnetic fields and variety of physics models of interaction of particles with media. Geant4 has been used for simulation of radiation effects for number of space missions. Recent upgrades of the toolkit released in December 2009 include new model for ion electronic stopping power based on the revised version of ICRU'73 Report increasing accuracy of simulation of ion transport. In the current work we present the status of Geant4 electromagnetic package for simulation of particle energy loss, ranges and transmission. This has a direct implication for simulation of ground testing setups at existing European facilities and for simulation of radiation effects in space. A number of improvements were introduced for electron and proton transport, followed by a thorough validation. It was the aim of the present study to validate the range against reference data from the United States National Institute of Standards and Technologies (NIST) ESTAR, PSTAR and ASTAR databases. We compared Geant4 and NIST ranges of electrons using different Geant4 models. The best agreement was found for Penelope, except at very low energies in heavy materials, where the Standard package gave better results. Geant4 proton ranges in water agreed with NIST within 1 The validation of the new ion model is performed against recent data on Bragg peak position in water. The data from transmission of carbon ions via various absorbers following Bragg peak in water demonstrate that the new Geant4 model significantly improves precision of ion range. The absolute accuracy of ion range

  14. Microbeam radiation therapy: A Monte Carlo study of the influence of the source, multislit collimator, and beam divergence on microbeams

    SciTech Connect

    Nettelbeck, H.; Takacs, G. J.; Lerch, M. L. F.; Rosenfeld, A. B.

    2009-02-15

    Microbeam radiation therapy (MRT) is a new oncology method currently under development for the treatment of inoperable pediatric brain tumors. Monte Carlo simulation, or the computational study of radiation transport in matter, is often used in radiotherapy to theoretically estimate the dose required for treatment. However, its potential use in MRT dose planning systems is currently hindered by the significant discrepancies that have been observed between measured and theoretical dose and the PVDR (peak to valley dose ratio). The need to resolve these discrepancies is driven by the desirability of making MRT available to humans in the next few years. This article aims to resolve some of the discrepancies by examining the simplifications adopted in previous MRT Monte Carlo studies, such as the common practice of commencing microbeam transport on the surface of the target which neglects the influence of the distributed synchrotron source, multislit collimator, and the beam divergence between them. This article uses PENELOPE Monte Carlo simulation to investigate the influence of these beamline components upstream of the target on the lateral dose profiles and PVDRs of an array of 25 microbeams. It also compares the dose profiles and PVDRs of a microbeam array produced from a single simulation (full array) to those produced from the superposition of a single microbeam profile (sup array). The effect of modeling the distributed source and the beam divergence was an increase in the absorbed dose in the penumbral and valley regions of the microbeam profiles. Inclusion of the multislit collimator resulted in differences of up to 5 {mu}m in the FWHM of microbeam profiles across the array, which led to minor variations in the corresponding PVDR yields.

  15. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation.

    PubMed

    Cot, A; Sempau, J; Pareto, D; Bullich, S; Pavía, J; Calviño, F; Ros, D

    2004-07-21

    The iterative reconstruction algorithms employed in brain single-photon emission computed tomography (SPECT) allow some quantitative parameters of the image to be improved. These algorithms require accurate modelling of the so-called point spread function (PSF). Nowadays, most in vivo neurotransmitter SPECT studies employ pharmaceuticals radiolabelled with 123I. In addition to an intense line at 159 keV, the decay scheme of this radioisotope includes some higher energy gammas which may have a non-negligible contribution to the PSF. The aim of this work is to study this contribution for two low-energy high-resolution collimator configurations, namely, the parallel and the fan beam. The transport of radiation through the material system is simulated with the Monte Carlo code PENELOPE. We have developed a main program that deals with the intricacies associated with tracking photon trajectories through the geometry of the collimator and detection systems. The simulated PSFs are partly validated with a set of experimental measurements that use the 511 keV annihilation photons emitted by a 18F source. Sensitivity and spatial resolution have been studied, showing that a significant fraction of the detection events in the energy window centred at 159 keV (up to approximately 49% for the parallel collimator) are originated by higher energy gamma rays, which contribute to the spatial profile of the PSF mostly outside the 'geometrical' region dominated by the low-energy photons. Therefore, these high-energy counts are to be considered as noise, a fact that should be taken into account when modelling PSFs for reconstruction algorithms. We also show that the fan beam collimator gives higher signal-to-noise ratios than the parallel collimator for all the source positions analysed.

  16. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cot, A.; Sempau, J.; Pareto, D.; Bullich, S.; Pavía, J.; Calviño, F.; Ros, D.

    2004-07-01

    The iterative reconstruction algorithms employed in brain single-photon emission computed tomography (SPECT) allow some quantitative parameters of the image to be improved. These algorithms require accurate modelling of the so-called point spread function (PSF). Nowadays, most in vivo neurotransmitter SPECT studies employ pharmaceuticals radiolabelled with 123I. In addition to an intense line at 159 keV, the decay scheme of this radioisotope includes some higher energy gammas which may have a non-negligible contribution to the PSF. The aim of this work is to study this contribution for two low-energy high-resolution collimator configurations, namely, the parallel and the fan beam. The transport of radiation through the material system is simulated with the Monte Carlo code PENELOPE. We have developed a main program that deals with the intricacies associated with tracking photon trajectories through the geometry of the collimator and detection systems. The simulated PSFs are partly validated with a set of experimental measurements that use the 511 keV annihilation photons emitted by a 18F source. Sensitivity and spatial resolution have been studied, showing that a significant fraction of the detection events in the energy window centred at 159 keV (up to approximately 49% for the parallel collimator) are originated by higher energy gamma rays, which contribute to the spatial profile of the PSF mostly outside the 'geometrical' region dominated by the low-energy photons. Therefore, these high-energy counts are to be considered as noise, a fact that should be taken into account when modelling PSFs for reconstruction algorithms. We also show that the fan beam collimator gives higher signal-to-noise ratios than the parallel collimator for all the source positions analysed.

  17. Monte Carlo simulations of dose enhancement around gold nanoparticles used as X-ray imaging contrast agents and radiosensitizers

    NASA Astrophysics Data System (ADS)

    Li, W. B.; Müllner, M.; Greiter, M. B.; Bissardon, C.; Xie, W. Z.; Schlatll, H.; Oeh, U.; Li, J. L.; Hoeschen, C.

    2014-03-01

    Gold nanoparticles (GNPs) were demonstrated as X-ray imaging contrast agents and radiosensitizers in mice. However, the translational medical applications of GNPs in to the clinical practice need further detailed information on the biological effects related to the enhanced doses in malignant and healthy cells. The idea of improving radiotherapy with high atomic number materials, especially gold foils, was initiated in our research unit in the 1980s. Recently, experimental and theoretical efforts were made to investigate the potential improvement of imaging and radiotherapy with GNPs. Initially, the present work attempts to validate the dose enhancement effects of GNPs to cancer cells; secondly, it intends to examine the possible side effects on healthy cells when using GNPs as X-ray contrast agent. In this study, three Monte Carlo simulation programs, namely PENELOPE-2011, GEANT4 and EGSnrc were used to simulate the local energy deposition and the resulting dose enhancement of GNPs. Diameters of the GNPs were assumed to be 2 nm, 15 nm, 50 nm, 100 nm and 200 nm. The X-ray energy spectra for irradiation were 60 kVp, 80 kVp, 100 kVp, 150 kVp with a filtering of 2.7 mm Al for projectional radiography, and 8 mm Al for 100 kVp and 150 kVp for computed tomography. Additional peak energy of 200 kVp was simulated for radiotherapy purpose. The information of energy deposition and dose enhancement can help understanding the physical processes of medical imaging and the implication of nanoparticles in radiotherapy.

  18. Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats.

    PubMed

    Vera, Manuel; Bello, Xabier; Álvarez-Dios, Jose-Antonio; Pardo, Belen G; Sánchez, Laura; Carlsson, Jens; Carlsson, Jeanette E L; Bartolomé, Carolina; Maside, Xulio; Martinez, Paulino

    2015-12-01

    The flat oyster (Ostrea edulis) is one of the most appreciated molluscs in Europe, but its production has been greatly reduced by the parasite Bonamia ostreae. Here, new generation genomic resources were used to analyse the repetitive fraction of the oyster genome, with the aim of developing molecular markers to face this main oyster production challenge. The resulting oyster database, consists of two sets of 10,318 and 7159 unique contigs (4.8 Mbp and 6.8 Mbp in total length) representing the oyster's genome (WG) and haemocyte transcriptome (HT), respectively. A total of 1083 sequences were identified as TE-derived, which corresponded to 4.0% of WG and 1.1% of HT. They were clustered into 142 homology groups, most of which were assigned to the Penelope order of retrotransposons, and to the Helitron and TIR DNA-transposons. Simple repeats and rRNA pseudogenes, also made a significant contribution to the oyster's genome (0.5% and 0.3% of WG and HT, respectively).The most frequent short tandem repeats identified in WG were tetranucleotide motifs while trinucleotide motifs were in HT. Forty identified microsatellite loci, 20 from each database, were selected for technical validation. Success was much lower among WG than HT microsatellites (15% vs 55%), which could reflect higher variation in anonymous regions interfering with primer annealing. All microsatellites developed adjusted to Hardy-Weinberg proportions and represent a useful tool to support future breeding programmes and to manage genetic resources of natural flat oyster beds. PMID:26341181

  19. Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats.

    PubMed

    Vera, Manuel; Bello, Xabier; Álvarez-Dios, Jose-Antonio; Pardo, Belen G; Sánchez, Laura; Carlsson, Jens; Carlsson, Jeanette E L; Bartolomé, Carolina; Maside, Xulio; Martinez, Paulino

    2015-12-01

    The flat oyster (Ostrea edulis) is one of the most appreciated molluscs in Europe, but its production has been greatly reduced by the parasite Bonamia ostreae. Here, new generation genomic resources were used to analyse the repetitive fraction of the oyster genome, with the aim of developing molecular markers to face this main oyster production challenge. The resulting oyster database, consists of two sets of 10,318 and 7159 unique contigs (4.8 Mbp and 6.8 Mbp in total length) representing the oyster's genome (WG) and haemocyte transcriptome (HT), respectively. A total of 1083 sequences were identified as TE-derived, which corresponded to 4.0% of WG and 1.1% of HT. They were clustered into 142 homology groups, most of which were assigned to the Penelope order of retrotransposons, and to the Helitron and TIR DNA-transposons. Simple repeats and rRNA pseudogenes, also made a significant contribution to the oyster's genome (0.5% and 0.3% of WG and HT, respectively).The most frequent short tandem repeats identified in WG were tetranucleotide motifs while trinucleotide motifs were in HT. Forty identified microsatellite loci, 20 from each database, were selected for technical validation. Success was much lower among WG than HT microsatellites (15% vs 55%), which could reflect higher variation in anonymous regions interfering with primer annealing. All microsatellites developed adjusted to Hardy-Weinberg proportions and represent a useful tool to support future breeding programmes and to manage genetic resources of natural flat oyster beds.

  20. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 1, October 1, 1980-January 31, 1981

    SciTech Connect

    Bube, R. H.

    1981-01-01

    This program is concerned with the investigation of the materials properties of CdTe thin films deposited by hot-wall vacuum evaporation and of CdTe single crystalline material, particularly those relevant to solar cell applications in which CdTe is the absorbing member. Progress is reported on: (a) an evaluation of CdTe homojunctions formed by HWVE of CdTe by Walter Huber at the laboratory of Dr. Adolfo Lopez-Otero at the Institut fuer Physik of the University of Linz, using single crystal p-type CdTe from Stanford as a substrate; (b) the design and construction of a HWVE apparatus at Stanford; and (c) properties of grain boundaries in large grain polycrystalline CdTe.

  1. Proceedings of the 8th high energy heavy ion study

    SciTech Connect

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

  2. The Nagra-DOE Cooperative Project

    SciTech Connect

    Long, J.C.S.; Levitch, R.A.; Zuidema, P.

    1993-04-01

    The Nagra-DOE Cooperative (NDC-I) research program was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL), and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra). Scientists participating in this project explored the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. Six joint tasks were defined and are described briefly below. Tasks 1, 2, 3 and 5 were concerned with the characterization of fractured rock. Task 5 in particular was focused on investigations at the Grimsel Underground Laboratory in the Swiss Alps. Tasks 2 and 6 focused on the phenomenology associated with storing radioactive waste underground.

  3. The NGS Pyramid wavefront sensor for ERIS

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.

    2014-07-01

    ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.

  4. Thick Nano-Crystalline Diamond films for fusion applications

    SciTech Connect

    Dawedeit, Christoph

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  5. Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions

    SciTech Connect

    Krainov, V. P.

    2012-07-15

    We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeeman splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.

  6. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  7. An intelligent ground operator support system

    NASA Technical Reports Server (NTRS)

    Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe

    1994-01-01

    This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.

  8. Highlights from the 2013 International Sherwood Fusion Theory Conference, Santa Fe, NM

    SciTech Connect

    2013-04-15

    The 2013 International Sherwood Fusion Theory Conference was held in Santa Fe, NM from April 15-17. There were 15 invited talks spanning the field of fusion theory on topics such as stellerator theory, intrinsic rotation in tokamaks, transport in the plasma edge, and plasma-wall interactions. Author-provided summaries of several of the invited talks are included on pages 5 to 10 of this document. Plenary talks were given by Per Helander (Max-Planck-Institut fuer Plasmaphysik, Greifswald, Germany) on “Overview of recent developments in stellerator theory”, Amit Misra (Los Alamos National Laboratory) on “Stable storage of Helium at interfaces in nanocomposites”, Sergei Krasheninnikov (UC San Diego) on “On the physics of the first wall in fusion devices”, and Stuart Bale (UC Berkeley) on “Solar wind thermodynamics and turbulence: collisional – collisionless transitions”.

  9. Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin films

    SciTech Connect

    Stierle, A.; Steinhaeuser, A.; Ruehm, A.; Renner, F.U.; Weigel, R.; Kasper, N.; Dosch, H.

    2004-12-01

    A dedicated beamline for the Max-Planck-Institut fuer Metallforschung was recently taken into operation at the Angstroemquelle Karlsruhe (ANKA). Here we describe the layout of the beamline optics and the experimental end-station, consisting of a heavy duty multiple circle diffractometer. For both a new design was realized, combining a maximum flexibility in the beam properties [white, pink (focused) monochromatic, energy range 6-20 keV] with a special diffractometer for heavy sample environments up to 500 kg, that can be run in different geometrical modes. In addition the angular-reciprocal space transformations for the diffractometer in use are derived, which allows an operation of the instrument in the convenient six circle mode. As an example, results from surface x-ray diffraction on a Cu{sub 3}Au(111) single crystal are presented.

  10. Progress in Heavy Ion Fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  11. Overview of the German industrial research project ADAPTRONIK

    NASA Astrophysics Data System (ADS)

    Hanselka, Holger

    2000-06-01

    In 1997 BMBF, within the framework of an idea competition for future-oriented key technologies and their industrial utilization, called for project proposals from industries and research for so-called 'Leitprojekts'. An independent group of experts selected few project proposals form the many submitted, and prosed them to BMBF for promotion. One of these projects is the BMBF-Leitprojekt ADAPTRONIK which is introduced in this paper. The Leitprojekt ADAPTRONIK which is conducted under the responsibility of Deutsches Zentrum fuer Luft-und Raumfahrt e.V. in Brunswick, focuses on the strucutre-conforming integration of piezoelectric fibers and patches in structures for lightweight construction. It is aimed at active vibration and noise reduction, contour deformation and micro-positioning in the very sense of adaptronics in various industrial applications. The project targets are prototype assemblies from the fields of automotive industry, rail vehicles, mechanical engineering, medical engineering, and aerospace.

  12. Observation of Spontaneous Neoclassical Tearing Modes

    SciTech Connect

    E.D. Fredrickson

    2001-10-03

    We present data in this paper from the Tokamak Fusion Test Reactor (TFTR) which challenges the commonly held belief that extrinsic MHD events such as sawteeth or ELMs [edge localized modes] are required to provide the seed islands that trigger Neoclassical Tearing Modes (NTMs). While sawteeth are reported to provide the trigger for most of the NTMs on DIII-D [at General Atomics in San Diego, California] and ASDEX-U [at Max-Planck-Institut fuer Plasmaphysik in Garching, Germany], the majority of NTMs seen in TFTR occur in plasmas without sawteeth, that is which are above the beta threshold for sawtooth stabilization. Examples of NTMs appearing in the absence of any detectable extrinsic MHD activity will be shown. Conversely, large n=1 modes in plasmas above the NTM beta threshold generally do not trigger NTMs. An alternative mechanism for generating seed islands will be discussed.

  13. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    SciTech Connect

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-03-16

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented.

  14. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  15. [Coping with everyday stress in different problem areas- comparison of clinically referred and healthy adolescents].

    PubMed

    Escher, Fabian; Seiffge-Krenke, Inge

    2013-09-01

    Fragestellung: In der Untersuchung klinisch auffälliger Jugendlicher fehlen bislang Studien zum Coping mit alltäglichen Stressoren im Vergleich zu gesunden Jugendlichen. Methodik: Klinisch auffällige Jugendliche mit verschiedenen Störungen (gemischten Störungen einschließlich Delinquenz, Sucht, Depression) wurden anhand des Coping across Situations Questionnaire (Seiffge-Krenke, 1995) und einer gekürzten Version des Youth Self Report (Achenbach, 1991) mit gesunden Jugendlichen verglichen. Ergebnisse: Die verschiedenen klinischen Gruppen (n = 469) zeigten spezifische Muster hinsichtlich ihres Copings. Die Gruppe der depressiven Jugendlichen zeigten insgesamt sehr geringe Werte im Coping. Die Gruppe aus den Einrichtungen der Suchthilfe hingegen bediente sich vor allem dysfunktionaler Copingstrategien. Die Jugendlichen aus Einrichtungen der Jugendhilfe (gemischte Störungen einschließlich Delinquenz) hatten sowohl in den dysfunktionalen als auch in den funktionalen Copingstrategien höhere Werte als die beiden anderen klinisch auffälligen Gruppen. Die Kontrollgruppe zeigte mehr funktionales und geringeres dysfunktionales Coping. Die klinisch auffälligen Jugendlichen differenzierten in ihrem Copingverhalten nicht in Abhängigkeit von den unterschiedlichen Problembereichen. Es zeigte sich des Weiteren ein geringer Geschlechtseffekt im Coping. Schlussfolgerungen: Klinisch auffällige Jugendliche waren nicht in der Lage adaptiv auf verschiedene Problembereiche zu reagieren, sondern wandten situationsübergreifend dysfunktionale Copingstrategien wie Rückzug und Problemmeidung an.

  16. The Teamwork Assessment Scale: A Novel Instrument to Assess Quality of Undergraduate Medical Students' Teamwork Using the Example of Simulation-based Ward-Rounds.

    PubMed

    Kiesewetter, Jan; Fischer, Martin R

    2015-01-01

    der Skala und klinischer Performanz als einem externen Kriterium (r=,64) gezeigt werden und die ausreichend hohen psychometrischen Eigenschaften konnten repliziert werden (Cronbach’s α=,78).Schlussfolgerungen: Die Validierung gestattet den Einsatz der Teamarbeitsskala in Visitentrainings von Studierenden, um Teamarbeit reliabel von Ärztinnen und Ärzten einschätzen zu lassen. Weitere Studien sind notwendig, um die Anwendbarkeit des Instruments zu verifizieren.

  17. The scholar role in the National Competence Based Catalogues of Learning Objectives for Undergraduate Medical Education (NKLM) compared to other international frameworks.

    PubMed

    Hautz, Stefanie C; Hautz, Wolf E; Keller, Niklas; Feufel, Markus A; Spies, Claudia

    2015-01-01

    Hintergrund: In Deutschland haben die Gesellschaft für Medizinische Ausbildung (GMA) und der Medizinische Fakultätentag (MFT) den Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLM) federführend entwickelt. Dieser beschreibt, wie viele internationale Pendants, detailliert Qualifikationen für Absolventen des Medizinstudiums. Die Definition derartiger Rahmenwerke folgt der Bestrebung, Ausbildungsinhalte den Lehrenden und Lernenden sowie der Gesellschaft transparent darzustellen. Der NKLM ergänzt die Listen von Themen aus Gegenstandskatalogen durch eine Sammlung erlernbarer Kompetenzen. Alle Rahmenwerke sind dabei entweder in Kapitel oder Domänen oder nach ärztlichen Rollen gegliedert. Dabei wirft die Definition der Gelehrten-Rolle zahlreiche Fragen auf, wie Studien gezeigt haben: Welcher Unterschied besteht zwischen den notwendigen Qualifikationen als wissenschaftlich qualifizierter Arzt und denen als ärztlicher Wissenschaftler? Wie werden die Schwerpunkte gesetzt und wie unterscheiden sie sich im internationalen Vergleich?Methode: In einer systematischen, dreistufigen Recherche wurden 13 internationale Rahmenwerke identifiziert und deren Inhalte durch eine qualitative Textanalyse mit den Inhalten der Gelehrten-Rolle des NKLM verglichen. Die drei Stufen umfassen (1) die systematische Suche, (2) die transparente Auswahl publizierter Rahmenwerke (in- und exclusion) und (3) die Datenextraktion, Kategorisierung und Validierung. Die Ergebnisse daraus wurden mit der Gelehrten-Rolle des NKLM verglichen.Ergebnisse: Die extrahierten Inhalte aller Rahmenwerke lassen sich in die Komponenten Gemeinsame Grundlagen, Klinische Anwendung, Forschung, Lehren und Bilden, sowie Lebenslanges Lernen gliedern. Im Unterschied zu den verglichenen Rahmenwerken betont der NKLM die zum Forschen und Lehren notwendigen Kompetenzen, während die klinische Anwendung eine vergleichsweise untergeordnete Rolle spielt. Schlussfolgerung: Die Inhalte der Gelehrtenrolle des NKLM

  18. Measurement of specific medical school stress: translation of the "Perceived Medical School Stress Instrument" to the German language.

    PubMed

    Kötter, Thomas; Voltmer, Edgar

    2013-01-01

    Zielsetzung: Medizinstudierende sind spezifischen Stressoren ausgesetzt. Als Folge der Stressbelastung kommt es bei Medizinstudierenden im Vergleich zu gleichaltrigen Berufstätigen häufiger zu Ängsten, Depressionen und Burn-out. Vitaliano et al. haben bereits 1984 ein 13 Items umfassendes Instrument zur Messung der spezifischen Stressbelastung von Medizinstudierenden, das „Perceived Medical School Stress Instrument“ (PMSS), vorgestellt. Es wurde seitdem im englischsprachigen Bereich breit eingesetzt und validiert. Bislang liegt jedoch keine deutschsprachige Version des Instrumentes vor. Ziel des Projektes war die Übersetzung des PMSS in die deutsche Sprache, um es im Rahmen von Studien im deutschsprachigen Raum einzusetzen.Methodik: Die englischsprachigen Items des PMSS wurden von drei Untersuchern in die deutsche Sprache übersetzt. Die Versionen wurden synoptisch gegenübergestellt und auf dieser Basis wurde für jedes Item eine deutschsprachige Version formuliert. Diese Versionen wurden von Muttersprachlerinnen in die englische Sprache zurückübersetzt. Auf der Basis dieser Rückübersetzungen, eines kognitiven Debriefings an 19 deutschen Medizinstudierenden und einer testtheoretischen Evaluation an 169 deutschen Medizinstudierenden wurden dann die endgültigen deutschsprachigen Formulierungen festgelegt. Ergebnisse: Das PMSS konnte ohne größere Schwierigkeiten in die deutsche Sprache übersetzt werden. Sowohl zwischen den Übersetzungen in die deutsche Sprache als auch zwischen beiden Rückübersetzungen waren die Übereinstimmungen groß. Bei Diskrepanzen erfolgte die Einigung schnell und unkompliziert. Der Einsatz der deutschsprachigen Version erbrachte einen guten Wert für die Reliabilität (Cronbachs Alpha 0,81).Schlussfolgerung: Es steht nun auch für deutschsprachigen Raum ein spezifisches Instrument zur Messung der Stressbelastung von Medizinstudierenden zur Verfügung.

  19. Blogging medical students: a qualitative analysis.

    PubMed

    Pinilla, Severin; Weckbach, Ludwig T; Alig, Stefan K; Bauer, Helen; Noerenberg, Daniel; Singer, Katharina; Tiedt, Steffen

    2013-01-01

    Einleitung: Bloggen ist eine unter Medizinstudierenden zunehmend verbreitete Methode, Erfahrungen über das Internet mit einer weltweiten „Learning Community“ auszutauschen. Trotz intensiver Recherche sind den Autoren keine Studien bekannt, in denen spezifisch Blogs von Medizinstudierenden qualitativ analysiert wurden. Im Folgenden werden Kategorien und Themen aus diesen Blogeinträgen beschrieben und ihre medizindidaktische Bedeutung für Medizinstudierende und Lehrende diskutiert.Methoden: In der vorliegenden qualitativen Studie wurden ursprünglich 75 von Medizinstudierenden verfasste Blogs identifiziert. 33 Blogs mit insgesamt 1228 englischen und 337 deutschen Einträgen erfüllten die Einschlusskriterien und wurden analysiert. Mit Hilfe einer komparativen Analysemethode wurden die Blogeinträge zunächst Zeile für Zeile und anschließend fokussiert kodiert. Die emergierenden Themen und Unterthemen wurden in übergeordneten Kategorien zusammengefasst.Ergebnisse: Medizinstudierende verwenden Blogs, um über eine große Vielfalt an Erfahrungen während des Medizinstudiums zu berichten und diese zu reflektieren. Vorbereitung auf schriftliche und mündliche Examina, Erfahrungen während klinischer Praktika, der Umgang mit belastenden Situationen während des Studiums und das Sozialleben jenseits des Studiums waren Hauptthemen.Schlussfolgerung: Unsere Ergebnisse weisen darauf hin, dass Blogs für Medizinstudierende möglicherweise hilfreich sind, um Erfahrungen zu reflektieren. Zusätzlich können Lehrende auf diesem Weg wertvolle Einblicke in die studentische Wahrnehmung der medizinischen Ausbildung erhalten.Die Bedeutung von Blogs in der medizinischen Ausbildung könnte durch gezieltes Kommentieren von Blogeinträgen durch Lehrende erhöht werden. Von diesem Dialog könnte auch eine örtlich unabhängige „Learning Community“ profitieren.

  20. The active participation of German-speaking countries in conferences of the Association for Medical Education in Europe (AMEE) between 2005 and 2013: a reflection of the development of medical education research?

    PubMed

    Raes, Patricia; Bauer, Daniel; Schöppe, Franziska; Fischer, Martin R

    2014-01-01

    Zielsetzung: International gewinnt medizinische Ausbildungsforschung an Bedeutung. Seit Anfang der 2000er ist auch in deutschsprachigen Ländern (D-A-CH) ein steigendes Interesse zu beobachten. In einer kontinuierlichen Steigerung der Publikationszahlen deutscher Autoren in internationalen Fachzeitschriften zum Thema „medizinische Ausbildung“ schlug sich das bisher jedoch nicht nieder. Die vorliegende Arbeit untersucht, ob sich jene Entwicklungen aus der aktiven Teilnahme deutschsprachiger Forscher an den Konferenzen der AMEE ablesen lassen.Methoden: Die Tagungsbände der AMEE-Kongresse von 2005-2013 der Kategorien „Postervorträge“, „Short Communications“, „Research Papers“ und „Plenarvorträge“ wurden auf Beteiligung aus D-A-CH hin untersucht. Im Anschluss wurden die Abstracts einer inhaltlichen Analyse unterzogen und nach Studiendesign, Methodik, Untersuchungsgegenstand und Forschungsthema kategorisiert. Ergebnisse: Von 9446 analysierten Abstracts weisen 549 Beiträge mindestens einen Erst-/Co- oder Letztautor aus D-A-CH auf. Die absolute Zahl der Beiträge pro Kongress schwankt zwischen 44 im Jahr 2010 und 77 im Jahr 2013. Der prozentuale Anteil schwankt zwischen 10,0% in 2005 und 4,1% im Jahr 2010. Seit 2010 stieg die Beteiligung jedoch kontinuierlich an. Die Arbeiten sind zumeist deskriptiver Art (62,7%). Studien zu grundlegenden Fragen des Lehrens und Lernens (clarification studies) sind eher selten (4,0%). Angewandt wurden meist quantitative Methoden (51,9%), um Fragestellungen zu Themen wie Lehr- und Lernmethoden (33,0%), Evaluation und Assessment (22,4%) oder Curriculumsentwicklung (14,4%) zu untersuchen. Untersuchungsgegenstand sind meist Studierende (52,5%).Schlussfolgerung: Die Beitragszahlen aus D-A-CH weisen zu Beginn und am Ende des Untersuchungszeitraums ein Maximum auf. Ein kontinuierlicher Anstieg der aktiven Beteiligung seit 2005 ist nicht zu beobachten. Dieser Umstand spiegelt nicht das steigende Interesse an der

  1. Developing and piloting a multifactorial intervention to address participation and quality of life in nursing home residents with joint contractures (JointConImprove): study protocol.

    PubMed

    Müller, Martin; Bartoszek, Gabriele; Beutner, Katrin; Klingshirn, Hanna; Saal, Susanne; Stephan, Anna-Janina; Strobl, Ralf; Grill, Eva; Meyer, Gabriele

    2015-01-01

    Hintergrund: Gelenkkontrakturen sind häufige Probleme gebrechlicher älterer Menschen in Pflegeheimen. Unabhängig von der genauen Anzahl an älteren Menschen, die an Gelenkkontrakturen leiden, scheint dieses Syndrom ein relevantes Problem im Setting Pflegeheim dazustellen. Durch einen zunehmenden Fokus auf Gelenkkontrakturen, z.B. durch die Pflegeversicherung, kam es zu einem Anstieg im Dokumentations- und Assessmentaufwand und in der Einführung von Präventionsmaßnahmen. Viel mehr Aufmerksamkeit sollte aber auf die tatsächliche Situation der älteren Menschen mit Gelenkkontrakturen in Pflegeheimen gelegt werden, vor allem deren tatsächlichen Einschränkungen in Aktivitäten und Teilhabe. Das Ziel dieser Studie ist daher, 1) die Entwicklung einer maßgeschneiderten Intervention zur Verbesserung der Funktionsfähigkeit, sozialen Teilhabe und Lebensqualität von Menschen mit Gelenkkontrakturen in Pflegeheimen und 2) die Überprüfung der Machbarkeit der Intervention, begleitet von einer Prozessevaluation.Methoden: Die Entwicklung der komplexen Intervention folgt dem UK Medical Research Council (MRC) Framework und integriert die Perspektiven aller potenziell relevanten Benutzergruppen von den betroffenen Personen über Kliniker und Forscher. Der Entwicklungsprozess beinhaltet einen systematischen Literaturreview, die Re-Analyse vorhandener Daten, Fokusgruppeninterviews mit Betroffenen, eine Expertentagung und eine Delphi-Studie mit klinischen Experten sowie eine Cluster-randomisierte Pilotstudie mit umfassender Prozessevaluation. Diskussion: Die geplante Studie wird eine maßgeschneiderte Intervention zur Verbesserung von Funktionsfähigkeit, sozialer Teilhabe und Lebensqualität von Menschen mit Gelenkkontrakturen in Pflegeheimen bereitstellen. Die Pilotstudie inklusive der Prozessevaluation stellt einen ersten Schritt zur Schätzung der Stärke des Interventionseffektes dar und wird weitere Studien vorbereiten.

  2. Heat for wounds - water-filtered infrared-A (wIRA) for wound healing - a review.

    PubMed

    Hoffmann, Gerd; Hartel, Mark; Mercer, James B

    2016-01-01

    Hintergrund: Wassergefiltertes Infrarot A (wIRA) ist eine spezielle Form der Wärmestrahlung mit hohem Eindringvermögen in das Gewebe und geringer thermischer Belastung der Hautoberfläche. wIRA entspricht dem Großteil der die Erdoberfläche in gemäßigten Klimazonen durch Wasser und Wasserdampf der Atmosphäre gefiltert erreichenden Sonnenwärmestrahlung. wIRA fördert die Heilung akuter und chronischer Wunden sowohl über thermische und temperaturabhängige als auch über nicht-thermische und temperaturunabhängige zelluläre Effekte.Methoden: Diese Publikation schließt eine Literaturübersicht mit Suche in PubMed/Medline nach “water-filtered infrared-A” und “wound”/”ulcus” oder “wassergefiltertes Infrarot A” und “Wunde”/”Ulkus” (Publikationen in Englisch und Deutsch) und zusätzliche Analysen von Studiendaten ein. 7 prospektive klinische Studien (davon 6 randomisierte kontrollierte Studien (RCT), die größte Studie mit n=400 Patienten) wurden gefunden und eingeschlossen. Alle randomisierten kontrollierten klinischen Studien vergleichen eine Kombination aus Therapie auf hohem Niveau plus wIRA-Therapie vs. Therapie auf hohem Niveau allein. Die mit „vs.“ gekennzeichneten Ergebnisse unten zeigen diese Vergleiche. Ergebnisse: wIRA steigert die Temperatur (+2,7°C in 2 cm Gewebetiefe) und den Sauerstoffpartialdruck im Gewebe (+32% in 2 cm Gewebetiefe) und die Gewebedurchblutung (Größe der Effekte innerhalb der wIRA-Gruppe). wIRA fördert sowohl die normale als auch die gestörte Wundheilung, indem es Entzündung und Sekretion mindert, Infektionsabwehr und Regeneration fördert und Schmerzen lindert (bezüglich Schmerzlinderung ausnahmslos während 230 Bestrahlungen, 13.4 vs. 0,0 auf einer visuellen Analogskala (VAS 0–100), mediane Differenz zwischen den Gruppen 13.8, 95%-Konfidenzinterval (KI) 12.3/16.7, p<0,000001) mit relevant weniger Analgetikabedarf (52–69% weniger in den drei Gruppen mit wIRA verglichen mit den drei

  3. Monte Carlo-based simulation of dynamic jaws tomotherapy

    SciTech Connect

    Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S.

    2011-09-15

    Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis

  4. A deterministic partial differential equation model for dose calculation in electron radiotherapy

    NASA Astrophysics Data System (ADS)

    Duclous, R.; Dubroca, B.; Frank, M.

    2010-07-01

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  5. Analytical computation of prompt gamma ray emission and detection for proton range verification

    NASA Astrophysics Data System (ADS)

    Sterpin, E.; Janssens, G.; Smeets, J.; Vander Stappen, François; Prieels, D.; Priegnitz, Marlen; Perali, Irene; Vynckier, S.

    2015-06-01

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either 12C, 14N, 16O, 31P or 40Ca, with 10% of 1H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the profiles

  6. Analytical computation of prompt gamma ray emission and detection for proton range verification.

    PubMed

    Sterpin, E; Janssens, G; Smeets, J; Vander Stappen, François; Prieels, D; Priegnitz, Marlen; Perali, Irene; Vynckier, S

    2015-06-21

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either (12)C, (14)N, (16)O, (31)P or (40)Ca, with 10% of (1)H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the

  7. Monte Carlo calculated and experimentally determined output correction factors for small field detectors in Leksell Gamma Knife Perfexion beams.

    PubMed

    Benmakhlouf, H; Johansson, J; Paddick, I; Andreo, P

    2015-05-21

    The measurement of output factors (OF) for the small photon beams generated by Leksell Gamma Knife® (LGK) radiotherapy units is a challenge for the physicist due to the under or over estimation of these factors by a vast majority of the detectors commercially available. Output correction factors, introduced in the international formalism published by Alfonso (2008 Med. Phys. 35 5179-86), standardize the determination of OFs for small photon beams by correcting detector-reading ratios to yield OFs in terms of absorbed-dose ratios. In this work output correction factors for a number of detectors have been determined for LGK Perfexion™ (60)Co γ-ray beams by Monte Carlo (MC) calculations and measurements. The calculations were made with the MC system PENELOPE, scoring the energy deposited in the active volume of the detectors and in a small volume of water; the detectors simulated were two silicon diodes, one liquid ionization chamber (LIC), alanine and TLD. The calculated LIC output correction factors were within ± 0.4%, and this was selected as the reference detector for experimental determinations where output correction factors for twelve detectors were measured, normalizing their readings to those of the LIC. The MC-calculated and measured output correction factors for silicon diodes yielded corrections of up to 5% for the smallest LGK collimator size of 4 mm diameter. The air ionization chamber measurements led to extremely large output correction factors, caused by the well-known effect of partial volume averaging. The corrections were up to 7% for the natural diamond detector in the 4 mm collimator, also due to partial volume averaging, and decreased to within about ± 0.6% for the smaller synthetic diamond detector. The LIC, showing the smallest corrections, was used to investigate machine-to-machine output factor differences by performing measurements in four LGK units with different dose rates. These resulted in OFs within ± 0.6% and

  8. MCNP-based computational model for the Leksell Gamma Knife

    SciTech Connect

    Trnka, Jiri; Novotny, Josef Jr.; Kluson, Jaroslav

    2007-01-15

    We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large

  9. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    SciTech Connect

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-08-15

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm{sup 2}) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm{sup 2} field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  10. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    SciTech Connect

    Bueno, M. Duch, M. A.; Carrasco, P.; Jornet, N.; Muñoz-Montplet, C.

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  11. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  12. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources

    SciTech Connect

    Martínez-Rovira, I. Prezado, Y.; Fois, G.

    2015-02-15

    Purpose: Spatial fractionation of the dose has proven to be a promising approach to increase the tolerance of healthy tissue, which is the main limitation of radiotherapy. A good example of that is GRID therapy, which has been successfully used in the management of large tumors with low toxicity. The aim of this work is to explore new avenues using nonconventional sources: GRID therapy by using kilovoltage (synchrotron) x-rays, the use of very high-energy electrons, and proton GRID therapy. They share in common the use of the smallest possible grid sizes in order to exploit the dose–volume effects. Methods: Monte Carlo simulations (PENELOPE/PENEASY and GEANT4/GATE codes) were used as a method to study dose distributions resulting from irradiations in different configurations of the three proposed techniques. As figure of merit, percentage (peak and valley) depth dose curves, penumbras, and central peak-to-valley dose ratios (PVDR) were evaluated. As shown in previous biological experiments, high PVDR values are requested for healthy tissue sparing. A superior tumor control may benefit from a lower PVDR. Results: High PVDR values were obtained in the healthy tissue for the three cases studied. When low energy photons are used, the treatment of deep-seated tumors can still be performed with submillimetric grid sizes. Superior PVDR values were reached with the other two approaches in the first centimeters along the beam path. The use of protons has the advantage of delivering a uniform dose distribution in the tumor, while healthy tissue benefits from the spatial fractionation of the dose. In the three evaluated techniques, there is a net reduction in penumbra with respect to radiosurgery. Conclusions: The high PVDR values in the healthy tissue and the use of small grid sizes in the three presented approaches might constitute a promising alternative to treat tumors with such spatially fractionated radiotherapy techniques. The dosimetric results presented here

  13. Analytical computation of prompt gamma ray emission and detection for proton range verification.

    PubMed

    Sterpin, E; Janssens, G; Smeets, J; Vander Stappen, François; Prieels, D; Priegnitz, Marlen; Perali, Irene; Vynckier, S

    2015-06-21

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either (12)C, (14)N, (16)O, (31)P or (40)Ca, with 10% of (1)H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the

  14. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  15. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    NASA Astrophysics Data System (ADS)

    Dusciac, D.; Bordy, J.-M.; Daures, J.; Blideanu, V.

    2016-09-01

    In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists' demands for high-energy (6 - 9 MeV) photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors) are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes), a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV) has been built for radiation protection purposes. Due to the specific design of the target, this "realistic" radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  16. Simulating the transport of heavy charged particles through trabecular spongiosa

    NASA Astrophysics Data System (ADS)

    Gersh, Jacob A.

    As planning continues for manned missions far beyond Low Earth Orbit, a paramount concern remains the flight crew's exposure to galactic cosmic radiation. When humans exit the protective magnetic field of Earth, they become subject to bombardment by highly-reactive heavy charged (HZE) particles. A possible consequence of this two- to three-year-long mission is the onset of radiation-induced leukemia, a disorder with a latency period as short as two to three years. Because data on risk to humans from exposure to HZE particles is non-existent, studies of leukemia in animals are now underway to investigate the relative effectiveness of HZE exposures. Leukemogenesis can result from energy depositions occurring within marrow contained in the trabecular spongiosa. Trabecular spongiosa is found in flat bones and within the ends of long bones, and is characterized by an intricate matrix of interconnected bone tissue forming cavities that house marrow. The microscopic internal dimensions of spongiosa vary between species. As radiation traverses this region, interface-induced dose perturbations that occur at the interfaces between bone and marrow affect the patterns of energy deposition within the region. An aim of this project is to determine the extent by which tissue heterogeneity and microscopic dimensions have on patterns of energy deposition within the trabecular spongiosa. This leads to the development of PATHFIT, a computer code capable of generating simple quadric-based geometric models of trabecular spongiosa for both humans and mice based on actual experimentally-determined internal dimensions of trabecular spongiosa. Following the creation of spongiosa models, focus is placed on the development of HITSPAP, a hybrid Monte Carlo (MC) radiation transport code system that combines capabilities of the MC code PENELOPE and MC code PARTRAC. This code is capable of simulating the transport of HZE particles through accurate models of trabecular spongiosa. The final and

  17. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2014-09-15

    Purpose: MR-Linac devices under development worldwide will require standard calibration, commissioning, and quality assurance. Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is therefore evaluated in varying transverse and longitudinal magnetic fields for this purpose. Methods: The Monte Carlo code PENELOPE was used to model irradiation of a PTW 60003 diamond detector and IBA PFD diode detector in the presence of a magnetic field. The field itself was varied in strength, and oriented both transversely and longitudinally with respect to the incident photon beam. The long axis of the detectors was oriented either parallel or perpendicular to the photon beam. The dose to the active volume of each detector in air was scored, and its ratio to dose with zero magnetic field strength was determined as the “dose response” in magnetic field. Measurements at low fields for both detectors in transverse magnetic fields were taken to evaluate the accuracy of the simulations. Additional simulations were performed in a water phantom to obtain few representative points for beam profile and percent depth dose measurements. Results: Simulations show significant dose response as a function of magnetic field in transverse field geometries. This response can be near 20% at 1.5 T, and it is highly dependent on the detectors’ relative orientation to the magnetic field, the energy of the photon beam, and detector composition. Measurements at low transverse magnetic fields verify the simulations for both detectors in their relative orientations to radiation beam. Longitudinal magnetic fields, in contrast, show little dose response, rising slowly with magnetic field, and reaching 0.5%–1% at 1.5 T regardless of detector orientation. Water tank and in air simulation results were the same within simulation uncertainty where lateral electronic equilibrium is present and expectedly

  18. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium

    SciTech Connect

    Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M.

    2004-10-01

    An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by meansof the PENELOPE code were performed. Four different field sizes (10x10, 5x5, 2x2, and1x1 cm{sup 2}) and two lung equivalent materials (CIRS, {rho}{sub e}{sup w}=0.195 and St. Bartholomew Hospital, London, {rho}{sub e}{sup w}=0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2x2 cm{sup 2} 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2x2 cm{sup 2} 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo

  19. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    SciTech Connect

    Kirkby, Charles Ghasroddashti, Esmaeel

    2015-02-15

    Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dose on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly

  20. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks.

    PubMed

    Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Prosser, Diann J; Spragens, Kyle A; Palm, Eric C; Yan, Baoping; Li, Tianxian; Lei, Fumin; Zhao, Delong; Douglas, David C; Muzaffar, Sabir Bin; Ji, Weitao

    2010-03-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  1. Migration of waterfowl in the east asian flyway and spatial relationship to HPAI H5N1 outbreaks

    USGS Publications Warehouse

    Takekawa, J.Y.; Newman, S.H.; Xiao, X.; Prosser, D.J.; Spragens, K.A.; Palm, E.C.; Yan, B.; Li, T.; Lei, F.; Zhao, D.; Douglas, D.C.; Muzaffar, S.B.; Ji, W.

    2010-01-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  2. Application of Monte Carlo methods in tomotherapy and radiation biophysics

    NASA Astrophysics Data System (ADS)

    Hsiao, Ya-Yun

    Helical tomotherapy is an attractive treatment for cancer therapy because highly conformal dose distributions can be achieved while the on-board megavoltage CT provides simultaneous images for accurate patient positioning. The convolution/superposition (C/S) dose calculation methods typically used for Tomotherapy treatment planning may overestimate skin (superficial) doses by 3-13%. Although more accurate than C/S methods, Monte Carlo (MC) simulations are too slow for routine clinical treatment planning. However, the computational requirements of MC can be reduced by developing a source model for the parts of the accelerator that do not change from patient to patient. This source model then becomes the starting point for additional simulations of the penetration of radiation through patient. In the first section of this dissertation, a source model for a helical tomotherapy is constructed by condensing information from MC simulations into series of analytical formulas. The MC calculated percentage depth dose and beam profiles computed using the source model agree within 2% of measurements for a wide range of field sizes, which suggests that the proposed source model provides an adequate representation of the tomotherapy head for dose calculations. Monte Carlo methods are a versatile technique for simulating many physical, chemical and biological processes. In the second major of this thesis, a new methodology is developed to simulate of the induction of DNA damage by low-energy photons. First, the PENELOPE Monte Carlo radiation transport code is used to estimate the spectrum of initial electrons produced by photons. The initial spectrum of electrons are then combined with DNA damage yields for monoenergetic electrons from the fast Monte Carlo damage simulation (MCDS) developed earlier by Semenenko and Stewart (Purdue University). Single- and double-strand break yields predicted by the proposed methodology are in good agreement (1%) with the results of published

  3. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.

    2015-01-01

    Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100  μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200  μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194

  4. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    SciTech Connect

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  5. Monte Carlo dose enhancement studies in microbeam radiation therapy

    SciTech Connect

    Martinez-Rovira, I.; Prezado, Y.

    2011-07-15

    Purpose: A radical radiation therapy treatment for gliomas requires extremely high absorbed doses resulting in subsequent deleterious side effects in healthy tissue. Microbeam radiation therapy (MRT) is an innovative technique based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The synchrotron-generated x-ray beam is collimated and delivered to an array of narrow micrometer-sized planar rectangular fields. Several preclinical experiments performed at the Brookhaven National Laboratory (BNL) and at the European Synchrotron Radiation Facility (ESRF) confirmed that MRT yields a higher therapeutic index than nonsegmented beams of the same characteristics. This index can be greatly improved by loading the tumor with high atomic number (Z) contrast agents. The aim of this work is to find the high-Z element that provides optimum dose enhancement. Methods: Monte Carlo simulations (PENELOPE/penEasy) were performed to assess the peak and valley doses as well as their ratio (PVDR) in healthy tissue and in the tumor, loaded with different contrast agents. The optimization criteria used were maximization of the ratio between the PVDR values in healthy tissue respect to the PVDR in the tumor and minimization of bone and brain valley doses. Results: Dose enhancement factors, PVDR, and valley doses were calculated for different high-Z elements. A significant decrease of PVDR values in the tumor, accompanied by a gain in the valley doses, was found in the presence of high-Z elements. This enables the deposited dose in the healthy tissue to be reduced. The optimum high-Z element depends on the irradiation configuration. As a general trend, the best outcome is provided by the highest Z contrast agents considered, i.e., gold and thallium. However, lanthanides (especially Lu) and hafnium also offer a satisfactory performance. Conclusions: The remarkable therapeutic index in microbeam radiation therapy can be further

  6. Discovery and partial characterization of a non-LTR retrotransposon that may be associated with abdominal segment deformity disease (ASDD) in the whiteleg shrimp Penaeus (Litopenaeus) vannamei

    PubMed Central

    2013-01-01

    Background Abdominal segment deformity disease (ASDD) of cultivated whiteleg shrimp Penaeus (Litopenaeus) vannamei causes economic loss of approximately 10% in affected specimens because of the unsightliness of distorted abdominal muscles. It is associated with the presence of viral-like particles seen by electron microscopy in the ventral nerve cords of affected shrimp. Thus, shotgun cloning was carried out to seek viral-like sequences in affected shrimp. Results A new retrovirus-like element of 5052 bp (named abdominal segment deformity element or ASDE) was compiled by shotgun cloning and 3′ and 5′ RACE using RNA and DNA extracted from ventral nerve cords of ASDD shrimp. ASDE contained 7 putative open reading frames (ORF). One ORF (called the PENS sub-domain), had a deduced amino acid (aa) sequence homologous to the GIY-YIG endonuclease domain of penelope-like retrotransposons while two others were homologous to the reverse transcriptase (RT) and RNaseH domains of the pol gene of non-long terminal repeat (non-LTR) retrotransposons (called the NLRS sub-domain). No single amplicon of 5 kb containing both these elements was obtained by PCR or RT-PCR from ASDD shrimp. Subsequent analysis indicated that PENS and NLRS were not contiguous and that NLRS was a host genetic element. In situ hybridization using a dioxygenin-labeled NLRS probe revealed that NLRS gave positive reactions in abdominal-ganglion neurons of ASDD shrimp but not normal shrimp. Preliminary analysis indicated that long-term use of female broodstock after eyestalk ablation in the hatchery increased the intensity of RT-PCR amplicons for NLRS and also the prevalence of ASDD in mysis 3 offspring of the broodstock. The deformities persist upon further cultivation until shrimp harvest but do not increase in prevalence and do not affect growth or survival. Conclusions Our results suggested that NLRS is a shrimp genetic element associated with ASDD and that immediate preventative measures could include

  7. Evaluation of the long-term efficacy and safety of an imidacloprid 10%/flumethrin 4.5% polymer matrix collar (Seresto®) in dogs and cats naturally infested with fleas and/or ticks in multicentre clinical field studies in Europe

    PubMed Central

    2012-01-01

    Background The objective of these two GCP multicentre European clinical field studies was to evaluate the long-term efficacy and safety of a new imidacloprid/flumethrin collar (Seresto®, Bayer AnimalHealth, Investigational Veterinary Product(IVP)) in dogs and cats naturally infested with fleas and/or ticks in comparison to a dimpylat collar ("Ungezieferband fuer Hunde/fuer Katzen", Beaphar, Control Product (CP)). Methods 232 (IVP) and 81 (CP) cats and 271(IVP) and 129 (CP) dogs were treated with either product according to label claims and formed the safety population. Flea and tick counts were conducted in monthly intervals for up to 8 months in the efficacy subpopulation consisting of 118 (IVP) + 47 (CP) cats and 197 (IVP) + 94 (CP) dogs. Efficacy was calculated as reduction of infestation rate within the same treatment group and statistically compared between the two treatment groups. Results Preventive efficacy against fleas in cats/dogs varied in the IVP group between 97.4%/94.1% and 100%/100% (overall mean: 98.3%/96.7%) throughout the 8 month period and in the CP group between 57.1%/28.2% and 96.1%/67.8% (overall mean: 79.3%/57.9%). Preventive efficacy against ticks in cats/dogs varied in the IVP group between 94.0%/91.2% and 100%/100% (overall mean: 98.4%/94.7%) throughout the 8 month period and in the CP group between 90.7%/79.9% and 100%/88.0% (overall mean: 96.9%/85.6%). The IVP group was statistically non-inferior to the CP group, and on various assessment days, statistical superiority was proven for flea and tick count reduction in dogs and cats. Both treatments proved to be safe in dogs and cats with mainly minor local observations at the application site. There was moreover, no incidence of any mechanical problem with the collar in dogs and cats during the entire study period. Conclusions The imidacloprid/flumethrin collar proved to reduce tick counts by at least 90% and flea counts by at least 95% for a period of at least 7-8 months in cats and dogs

  8. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of Central African Gorilla Habitat

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  10. Healthcare, molecular tools and applied genome research.

    PubMed

    Groves, M

    2000-11-01

    Biotechnology 2000 offered a rare opportunity for scientists from academia and industry to present and discuss data in fields as diverse as environmental biotechnology and applied genome research. The healthcare section of the meeting encompassed a number of gene therapy delivery systems that are successfully treating genetic disorders. Beta-thalassemia is being corrected in mice by continous erythropoeitin delivery from engineered muscles cells, and from naked DNA electrotransfer into muscles, as described by Dr JM Heard (Institut Pasteur, Paris, France). Dr Reszka (Max-Delbrueck-Centrum fuer Molekulare Medizin, Berlin, Germany), meanwhile, described a treatment for liver metastasis in the form of a drug carrier emolization system, DCES (Max-Delbrueck-Centrum fuer Molekulare Medizin), composed of surface modified liposomes and a substance for chemo-occlusion, which drastically reduces the blood supply to the tumor and promotes apoptosis, necrosis and antiangiogenesis. In the molecular tools section, Willem Stemmer (Maxygen Inc, Redwood City, CA, USA) gave an insight into the importance that techniques, such as molecular breeding (DNA shuffling), have in the evolution of molecules with improved function, over a range of fields including pharmaceuticals, vaccines, agriculture and chemicals. Technologies, such as ribosome display, which can incorporate the evolution and the specific enrichment of proteins/peptides in cycles of selection, could play an enormous role in the production of novel therapeutics and diagnostics in future years, as explained by Andreas Plückthun (Institute of Biochemistry, University of Zurich, Switzerland). Applied genome research offered technologies, such as the 'in vitro expression cloning', described by Dr Zwick (Promega Corp, Madison, WI, USA), are providing a functional analysis for the overwhelming flow of data emerging from high-throughput sequencing of genomes and from high-density gene expression microarrays (DNA chips). The

  11. Space Radar Image of Long Valley, California - 3D view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  12. Space Radar Image of Colima Volcano, Jalisco, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  13. Space Radar Image of Raco Vegetation Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  14. Space Radar Image of Kilauea, Hawaii - interferometry 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo

  15. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  17. Space Radar Image of Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  18. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  19. Space Radar Image of Hong Kong, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-SAR image spanning an area of approximately 20 kilometers by 40 kilometers (12 miles by 25 miles) of the island of Hong Kong, the Kowloon Peninsula and the new territories in southern China, taken by the imaging radar on board the space shuttle Endeavour on October 4, 1994. North is toward the top left corner of the image. The Kaitak Airport runway on Kowloon Peninsula (center right of image) was built on reclaimed land and extends almost 3 kilometers (nearly 2 miles) into Victoria Harbor. To the south of the harbor lies the island of Hong Kong. The bright areas around the harbor are the major residential and business districts. Housing more than six million residents, Hong Kong is the most densely populated area in the world. The large number of objects visible in the harbor and surrounding waters are a variety of sea-going vessels, anchored in one of the busiest seaports in the Far East. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in

  20. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  1. North Central Thailand

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  2. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  3. The Wonders of Physics Outreach Program

    NASA Astrophysics Data System (ADS)

    Sprott, J. C.; Mirus, K. A.; Newman, D. E.; Watts, C.; Feeley, R. E.; Fernandez, E.; Fontana, P. W.; Krajewski, T.; Lovell, T. W.; Oliva, S.; Stoneking, M. R.; Thomas, M. A.; Jaimison, W.; Maas, K.; Milbrandt, R.; Mullman, K.; Narf, S.; Nesnidal, R.; Nonn, P.

    1996-11-01

    One important step toward public education about fusion energy is to first elevate the public's appreciation of science in general. Toward this end, the Wonders of Physics program was started at the University of Wisconsin-Madison in 1984 as a public lecture and demonstration series in an attempt to stem a growing tide of science illiteracy and to bolster the public's perception of the scientific enterprise. Since that time, it has grown into a public outreach endeavor which consists of a traveling demonstration show, educational pamphlets, videos, software, a website (http://sprott.physics.wisc.edu/wop.htm), and the annual public lecture demonstration series including tours highlighting the Madison Symmetric Torus and departmental facilities. The presentation has been made about 400 times to a total audience in excess of 50,000. Sample educational materials and Lecture Kits will be available at the poster session. Currently at Oak Ridge National Laboratories. Currently at Max Planck Institut fuer Plasmaphysik. *Currently at Johnson Controls.

  4. Application of Surface Micro-Discharge plasma to spacecraft component decontamination

    NASA Astrophysics Data System (ADS)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia; Weber, Peter; Morfill, Gregor; Thomas, Hubertus

    2013-09-01

    In the field of extinct or extant extraterrestrial life research on other planets and moons, the prevention of biological contamination through spaceprobes is one of the most important requirements, and its detailed conditions are defined by the COSPAR planetary protection policy. Currently, a dry heat microbial reduction (DHMR) method is the only applicable way to satisfy the demand, which could, however, damage the sophisticated components like integrated circuits. In this study, cold atmospheric plasma based on the Surface Micro-Discharge technology was investigated for inactivation of different types of bacteria and endospores as an alternative method. After 90 min of plasma gas exposure, 3-6 log reductions were observed for the vegetative bacteria Escherichia coliand Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, B. safensis, B. megaterium, B. megaterium 2c1 and B. thuringiensis E24. Furthermore, the applicability of the system for spacecraft decontamination was checked by studying the inactivation homogeneity, the temperature at the area of interest and the effects of the plasma gas exposure on different materials. The authors would like to acknowledge the financial support from Deutches Zentrum fuer Luft- und Raumfahrt (FKZ 50 JR1005).

  5. The first educational interferometer in Mexico (FEYMANS): A novel project

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Saucedo Morales, Julio Cesar; Carreto, Francisco; Valdes Estrada, Erik; Wendolyn Blanco Cardenas, Monica; Rodríguez Garza, Carolina B.; Pech Castillo, Gerardo A.; Ángel Vaquerizo, Juan

    2016-07-01

    An interferometer is composed of several radio telescopes (dishes) separated by a defined distance and used in synchrony. This kind of array produces a superior angular resolution, better than the resolution achieved by a single dish of the same combined area. In this work we propose the First Educational Youth Mexican Array North South, FEYMANS. It consists of an educational interferometer with initially four dishes. This array harvests Mexico's geography by locating each dish at the periphery of the country; creating new scientific links of provincial populations with the capital. The FEYMANS project focus in high school students and their projects on physics, chemistry and astronomy as a final project. Also, it can be used for bachelor theses. The initial and central dish-node is planed to be in Mexico City. After its construction, the efforts will focus to build subsequent nodes, on the Northwest region, Northeast, or Southeast. Region Northwest will give service to Baja California, Sonora and Chihuahua states. Region Northeast will cover Coahuila, Nuevo Leon and Tamaulipas. Finally, region Southeast will give access to Yucatan, Quintana Roo, Campeche, Tabasco and Chiapas. This project has been conceived by young professional astronomers and Mexican experts that will operate each node. Also, we have the technical support of the "Max Planck Institute fuer Radioastronomy in Bonn Germany" and the educational model of the "PARTNeR" project in Spain. This interferometer will be financed by Mexico's Federal Congress and by Mexico City's Legislative Assembly (ALDF).

  6. Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy

    SciTech Connect

    Luechtenborg, Robert; Saito, Nami; Durante, Marco; Bert, Christoph

    2011-10-15

    Purpose: Implementation and experimental assessment of a real-time dose compensation system for beam tracking in scanned carbon beam therapy of intrafractionally moving targets. Methods: A real-time dose compensation functionality has been developed and implemented at the experimental branch of the beam tracking system at GSI Helmholtzzentrum fuer Schwerionenforschung (GSI). Treatment plans for different target geometries have been optimized. They have been delivered using scanned carbon ions with beam tracking (BT) and real-time dose compensation combined with beam tracking (RDBT), respectively. Target motion was introduced by a rotating table. Dose distributions were assessed by ionization chamber measurements and dose reconstructions. These distributions have been compared to stationary delivery for BT as well as RDBT. Additionally simulations have been performed to investigate the dependence of delivered dose distributions on varying motion starting phases for BT and RDBT, respectively. Results: Average measured dose differences between static delivery and motion influenced delivery could be reduced from 27-68 mGy when BT was used to 12-37 mGy when RDBT was used. Nominal dose was 1000 mGy. Simulated dose deliveries showed improvements in dose delivery and robustness against varying starting motion phases when RDBT was used. Conclusions: A real-time dose compensation functionality extending the existing beam tracking functionality has been implemented and verified by measurements. Measurements and simulated dose deliveries show that real-time dose compensation can substantially improve delivered dose distributions for large rotational target motion compared to beam tracking alone.

  7. Extraction of the vibrational dynamics from the spectra of highly excited molecules and periodic orbit quantization by harmonic inversion

    NASA Astrophysics Data System (ADS)

    Atilgan, Erdinc

    Part I. The effective spectroscopic Hamiltonian fitted to experiment by Troellsch and Temps {A. Troellsch, F. Temps Zeitschrift fuer Physikalische Chemie 215, 207, (2001)} and describing high vibrational excitation to bound and resonant states, is used in conjunction with methods of nonlinear classical dynamics and semiclassical mechanics to extract for all the observed highly excited resonance levels in Polyad 8, the molecular motions upon which they are quantized. Two types of interlaced dynamically distinct ladders of states are revealed. The rungs of these ladders intersperse making the spectra complex. The resonant 2:2:1 frequency ratio of the DC, CO stretches and the bend respectively is what causes the complexity and is what caused past attempts at interpretation to be at best incomplete. All states are assigned with physically meaningful quantum numbers corresponding to quasiconserved quantities. Most interestingly it is pointed out that much of the information and assignment can be done without any calculations at all, using only the qualitative ideas from nonlinear, semiclassical and quantum mechanics along with the information supplied by the experimentalist. Part II. In systems with few degrees of freedom modern quantum calculations are, in general, numerically more efficient than semiclassical methods. However, this situation can be reversed with increasing dimension of the problem. For a three-dimensional system, viz. the hyperbolic four-sphere scattering system, we demonstrate the superiority of semiclassical versus quantum calculations. Semiclassical resonances can easily be obtained even in energy regions which are unattainable with the currently available quantum techniques.

  8. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    SciTech Connect

    Graca, S.; Santos, J.; Manso, M.E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut fuer Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusao Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  9. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  10. Proton microscopy at GSI and FAIR

    SciTech Connect

    Merrill, Frank E; Mariam, Fesseha G; Golubev, A A; Turtikov, V I; Varentsov, D

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and facilities have been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international collaboration was formed to develop a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located at Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. This new Proton microscope for FAIR (PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. These dynamic experiments will be driven with many energy sources including heavy ions, high explosives and lasers. The design of the proton microscope and expected radiographic performance is presented.

  11. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    SciTech Connect

    Clauss, D.B.

    1987-05-01

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test.

  12. Seismic sounding of convection in the Sun

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Katepalli R.

    2015-11-01

    Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.

  13. 3D-PIC simulation of an inductively coupled ion source

    NASA Astrophysics Data System (ADS)

    Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian

    2015-09-01

    Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  14. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  15. BioRef: A versatile time-of-flight reflectometer for soft matter applications at Helmholtz-Zentrum Berlin

    SciTech Connect

    Strobl, M.; Kreuzer, M.; Steitz, R.; Rose, M.; Herrlich, H.; Mezei, F.; Grunze, M.; Dahint, R.

    2011-05-15

    BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fuer Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad range of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film.

  16. DKIST visible tunable filter control software: connecting the DKIST framework to OPC UA

    NASA Astrophysics Data System (ADS)

    Bell, Alexander; Halbgewachs, Clemens; Kentischer, Thomas J.; Schmidt, Wolfgang; von der Lühe, Oskar; Sigwarth, Michael; Fischer, Andreas

    2014-07-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based on large-format Fabry Perot interferometers that is currently built by the Kiepenheuer Institut fuer Sonnenphysik for the Daniel K. Inouye Solar Telescope (DKIST). The control software must handle around 30 motorised drives, 3 etalons, a polarizing modulator, a helium neon laser for system calibration, temperature controllers and a multitude of sensors. The VTF is foreseen as one of the DKISTs first-light instruments and should become operational in 2019. In the design of the control software we strongly separate between the high-level part interfacing to the DKIST common services framework (CSF) and the low-level control system software which guarantees real-time performance and synchronization to precision time protocol (PTP) based observatory time. For the latter we chose a programmable logic controller (PLC) from Beckhoff Automation GmbH which supports a wide set of input and output devices as well as distributed clocks for synchronizing signals down to the sub-microsecond level. In this paper we present the design of the required control system software as well as our work on extending the DKIST CSF to use the OPC Unified Architecture (OPC UA) standard which provides a cross-platform communication standard for process control and automation as an interface between the high-level software and the real-time control system.

  17. Asgard impact structure on Callisto

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This four-frame mosaic shows the ancient impact structure Asgard on Jupiter's moon Callisto. This image is centered at 30 degrees north, 142 degrees west. The Asgard structure is approximately 1700 km across (1,056 mi) and consists of a bright central zone surrounded by discontinuous rings. The rings are tectonic features with scarps near the central zone and troughs at the outer margin. Several large impacts have smashed into Callisto after the formation of Asgard. The very young, bright-rayed crater Burr is located on the northern part of Asgard. This mosaic has been projected to show a uniform scale between the four mosaiced images. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.

    This image was taken on November 4, 1996, at a distance of 111,891 kilometers (69,070 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its third orbit around Jupiter.

    The Galileo mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, D.C.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  18. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (Project FALSIRE)

    SciTech Connect

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J.; Schulz, H.; Sievers, J.

    1993-06-01

    This report summarizes the recently completed Phase I of the Project for Fracture Analysis of Large-Scale International Reference Experiments (Project FALSIRE). Project FALSIRE was created by the Fracture Assessment Group (FAG) of Principal Working Group No. 3 (PWG/3) of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency`s (NEA`s) Committee on the Safety of Nuclear Installations (CSNI). Motivation for the project was derived from recognition by the CSNI-PWG/3 that inconsistencies were being revealed in predictive capabilities of a variety of fracture assessment methods, especially in ductile fracture applications. As a consequence, the CSNI/FAG was formed to evaluate fracture prediction capabilities currently used in safety assessments of nuclear components. Members are from laboratories and research organizations in Western Europe, Japan, and the United States of America (USA). On behalf of the CSNI/FAG, the US Nuclear Regulatory Commission`s (NRC`s) Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Anlagen--und Reaktorsicherheit (GRS), Koeln, Federal Republic of Germany (FRG) had responsibility for organization arrangements related to Project FALSIRE. The group is chaired by H. Schulz from GRS, Koeln, FRG.

  19. CO submillimeter observations from Gornergrat

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.; Zimmermann, P.; Hernichel, J.; Miller, M.; Schieder, R.; Ungerecht, Sh.

    1990-04-01

    The KOSMA (Koelner Observatorium fuer Submillimeter Astronomie) 3-m telescope on Gornergrat near Zermatt, Switzerland, has been successfully operated in the sub-mm region for observations of the J = 3-2 transition of CO at 345.8 GHz from December 1988 through April 1989. The observations were carried out with a GaAs Schottky mixer receiver which has a system temperature of 600 K (DSB). The excellent weather conditions are demonstrated by a total content of precipitable water frequently less than 2 mm, and 20 percent of the time reaching below 1 mm, sometimes as low as 0.5 mm. The telescope reflector surface was manufactured to be within 30 microns (rms) of the ideal paraboloid and thus well suited for sub-mm observations. Pointing accuracy has been improved with the aid of an optical telescope to 14 arcsec (rms) in azimuth and elevation. Representative spectra from molecular clouds, some of which have been mapped extensively, are shown.

  20. Experiments on Synthesis of the Heaviest Element at RIKEN

    SciTech Connect

    Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Kanumgo, R.; Katori, K.; Kikunaga, H.; Ohnishi, T.; Suda, T.; Yoneda, A.; Yoshida, A.; Akiyama, T.; Goto, S.; Ideguchi, E.; Koura, H.; Kudo, H.; Ozawa, A.; Sueki, K.; Sato, N.; Tokanai, F.

    2007-02-26

    At the Institute of Physical and Chemical Research (RIKEN) a series of experiments studying the productions and their decays of the heaviest elements have been performed by using a gas-filled recoil ion separator GARIS. Results on the isotope of the 112th element, 277112, and on that of the 113th element, 278113, are reviewed. Tow decay chains which are assigned to be ones originating from the isotope 277112 were observed in the 208Pb(70Zn, n) reaction. Both chains consisted of four consecutive alpha decays followed by a spontaneous fission. The results provide a confirmation of the production and decay of the isotope 277112 reported by a research group at Gesellschaft fuer Schwerionenforschung (GSI), Germany, produced via the same reaction by using a velocity filter. Tow decay chains, both consisted of four consecutive alpha decays followed by a spontaneous fission, were observed also in the reaction 209Bi(70Zn, n). Those are assigned to be the convincing candidate events of the decays of the isotope of the 113th element, 278113, and its daughter nuclei, 274Rg, 270Mt, 266Bh, and 262Db.

  1. Nuclear quantum effects in water

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph; Car, Roberto

    2008-03-01

    In this work, a path integral Car-Parrinello molecular dynamicsootnotetextCPMD V3.11 Copyright IBM Corp 1990-2006, Copyright MPI fuer Festkoerperforschung Stuttgart 1997-2001. simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed ``open'' path integral molecular dynamics methodologyootnotetextJ.A. Morrone, V. Srinivasan, D. Sebastiani, R. Car J. Chem. Phys. 126 234504 (2007).. It is shown that these results, which are consistent with our computations of the liquid structure, are in good agreement with neutron Compton scattering dataootnotetextG.F. Reiter, J.C. Li, J. Mayers, T. Abdul-Redah, P. Platzman Braz. J. Phys. 34 142 (2004).. The remaining discrepancies between experiment and the present results are indicative of some degree of over-binding in the hydrogen bond network, likely engendered by the use of semi-local approximations to density functional theory in order to describe the electronic structure.

  2. The ARCHES project

    NASA Astrophysics Data System (ADS)

    Motch, C.; Arches Consortium

    2014-07-01

    ARCHES (Astronomical Resource Cross-matching for High Energy Studies) is a FP7-Space funded project started in 2013 and involving the Observatoire Astronomique de Strasbourg including the CDS (France), the Leibniz-Institut fuer Astrophysik Potsdam (Germany), the University of Leicester (UK), the Universidad de Cantabria (IFCA, Spain) and the Instituto Nacional de Técnica Aeroespacial (Madrid, Spain). ARCHES aims at providing the international astronomical community with well-characterised multi-wavelength data in the form of spectral energy distributions (SEDs) for large sets of objects extracted from the 3XMM catalogue. The project develops new tools implementing fully probabilistic simultaneous cross-correlation of several catalogues. SEDs are based on an enhanced version of the 3XMM catalogue and on a careful selection of the most relevant multi-wavelength archival catalogues. In order to ensure the largest audience, SEDs will be distributed to the international community through CDS services and through the Virtual Observatory. These enhanced resources are currently tested in the framework of several science cases. An integrated cluster finder is developed at Potsdam, AGN science is studied at Leicester and IFCA while populations of Galactic X-ray sources are investigated at Strasbourg and Madrid.

  3. Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines

    SciTech Connect

    Kreuz-Ihli, T.; Filsinger, D.; Schulz, A.; Wittig, S.

    2000-04-01

    The blades of turbocharger impellers are exposed to unsteady aerodynamic forces, which cause blade vibrations and may lead to failures. An indispensable requirement for a safe design of radial inflow turbines is a detailed knowledge of the exciting forces. Up to now, only a few investigations relating to unsteady aerodynamic forces in radial turbines have been presented. To give a detailed insight into the complex phenomena, a comprehensive research project was initiated at the Institut fuer Thermische Stroemungsmaschinen, at the University of Karlsruhe. A turbocharger test rig was installed in the high-pressure, high-temperature laboratory of the institute. The present paper gives a description of the test rig design and the measuring techniques. The flow field in a vaneless radial inflow turbine was analyzed using laser-Doppler anemometry. First results of unsteady flow field investigations in the turbine scroll and unsteady phase-resolved measurements of the flow field in the turbine rotor will be discussed. Moreover, results from finite element calculations analyzing frequencies and mode shapes are presented. As vibrations in turbines of turbochargers are assumed to be predominantly excited by unsteady aerodynamic forces, a method to predict the actual transient flow in a radial turbine utilizing the commercial Navier-Stokes solver TASCflow3d was developed. Results of the unsteady calculations are presented and comparisons with the measured unsteady flow field are made. As a major result, the excitation effect of the tongue region in a vaneless radial inflow turbine can be demonstrated.

  4. The University of Stuttgart IKE/University of Arizona student research program

    SciTech Connect

    Seale, R.L. )

    1988-01-01

    The University of Stuttgart's Institut fuer Kernenergetik und Energiesysteme (IKE) and the University of Arizona have had a joint program in which graduate students from the IKE spend 1 yr on the University of Arizona campus. This program started in 1982 largely as the result of an initiative begun by K.H. Hoecker, then director of IKE. Since 1985, Alfred Voss has been director and the program has continued without interruption. Under the program, the Deutscher Akademisher Austauschdienst, a government agency of the Federal Republic of Germany has funded scholarships for students from IKE, which provide support for 1 yr during which they attend the University of Arizona as visiting student scholars and engage in a research project under the direction of one of our faculty, which satisfies a part of the requirements for the Ingenieur-Diplom Fachrichtung Maschinenbau. The students get credit for their research from the University of Stuttgart. The topics have a broad range and include software development, artificial intelligence, radiation transport, and energy management studies.

  5. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  6. German Data Center for the Solar Dynamics Observatory: A model for the PLATO mission?

    NASA Astrophysics Data System (ADS)

    Burston, R.; Gizon, L.; Saidi, Y.; Solanki, S. K.

    2008-12-01

    The German Data Center for the Solar Dynamics Observatory (GDC-SDO), hosted by the Max Planck Institute for Solar System Research in Germany, will provide access to SDO data for the German solar physics community. The GDC-SDO will make available all the relevant Helioseismic and Magnetic Imager (HMI) data for helioseismology and smaller se- lected Atmospheric Imaging Assembly (AIA) data sets. This project commenced in August 2007 and is funded by the German Aerospace Center (Deutsches zentrum fuer Luft- und Raumfahrt or DLR) until December 2012. An important component of the GDC-SDO is the Data Record Management System (DRMS), developed in collaboration with the Stan- ford/Lockheed Joint Science Operations Center (JSOC). The PEGASUS workflow manage- ment system will be used to implement GDC-SDO data analysis pipelines. This makes use of the CONDOR High Throughput Computing Project for optimal job scheduling and also the GLOBUS Toolkit to enable grid technologies. Additional information about the GDC-SDO can be found at http://www.mps.mpg.de/projects/seismo/GDC1/index.html. Here, we sug- gest a similar structure and philosophy should be ideal for the PLATO mission, which looks for planetary transits and stellar oscillations and is being studied by ESA for an M-Mission slot in Cosmic Vision.

  7. Construction and manufacturing of a microgearhead with 1.9-mm outer diameter for universal application

    NASA Astrophysics Data System (ADS)

    Thuerigen, Christian; Beckord, Ulrich; Bessey, Reiner

    1999-03-01

    Many new applications in medicine, telecommunication, automation systems etc. require powerful microdrives. Speeds up to 100.000 rpm and output torques in the (mu) Nm-range are typical characteristics of electromagnetic micromotors with diameters of a few millimeters. To accomplish a powerful microdrive, these micromotors have to be combined with micro gearheads of the same outer diameter. For such a micro gearhead with toothed wheels manufactured by use of the LIGA process a multi-stage planetary gear has many advantages. Many stages with different gear ratios can be combined to achieve a great number of different transmission, but manufacturing tolerances and a clearance for assembly must be respected. Therefore besides the selection of a reliable gearhead type and a suitable manufacturing process the optimization of the tooth profile is the key to the implementation of powerful micro gear systems with high output torques and efficiencies. The involute profile is the most suitable toothing, but many calculations and simulations are required to find the right modulus, total depth of teeth, profile offset etc. In a joint project Dr. Fritz Faulhaber GmbH and Co. KG and the Institut fuer Mikrotechnik Mainz GmbH developed a powerful microdevice with an outer diameter of only 1.9 mm.

  8. PlasmaPIC: A tool for modeling low-temperature plasma discharges

    NASA Astrophysics Data System (ADS)

    Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian

    2015-09-01

    PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  9. Microscopy of semiconducting materials

    NASA Astrophysics Data System (ADS)

    Pennycook, S. J.

    1991-04-01

    The purpose of the trip was to present an invited talk at the 7th Oxford Conference on Microscopy of Semiconducting Materials entitled, High-Resolution Z-Contrast Imaging of Heterostructures and Superlattices, (Oxford, United Kingdom) and to visit VG Microscopes, East Grinstead, for discussions on the progress of the Oak Ridge National Laboratory (ORNL) 300-kV high-resolution scanning transmission electron microscope (STEM), which is currently on order. The traveler also visited three other institutions with 100-kV STEMs that either have or intend to purchase the necessary modifications to provide Z-contrast capability similar to that of the existing ORNL machine. Specifically, Max-Planck Institut fuer Metallforschung (Stuttgart, Germany); Cambridge University, Department of Materials Science and Metallurgy (Cambridge, United Kingdom); and Cavendish Laboratory, Cambridge University (Cambridge, United Kingdom) were visited. In addition, discussions were held with C. Humphreys on the possibility of obtaining joint funding for collaborative research involving electron beam writing and Z-contrast imaging in the Cambridge and Oak Ridge STEMs, respectively.

  10. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    SciTech Connect

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-02-15

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  11. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    SciTech Connect

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A.; Marcum, P. M.; Roellig, T. L.; Temi, P.; Herter, T. L.; Guesten, R.; Dunham, E. W.; Backman, D.; Burgdorf, M.; Caroff, L. J.; Erickson, E. F.; Davidson, J. A.; Gehrz, R. D.; Harper, D. A.; Harvey, P. M.; and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  12. Cryogenic Concept for the Low-energy Electrostatic Cryogenic Storage Ring (CSR) at MPI-K in Heidelberg

    SciTech Connect

    Hahn, R. von; Andrianarijaona, V.; Crespo Lopez-Urrutia, J. R.; Fadil, H.; Grieser, M.; Mallinger, V.; Orlov, D. A.; Schroeter, C. D.; Schwalm, D.; Ullrich, J.; Weber, T.; Wolf, A.; Haberstroh, Ch.; Quack, H.; Rappaport, M.; Zajfman, D.

    2006-04-27

    At the Max-Planck-Institut fuer Kernphysik in Heidelberg a next generation electrostatic storage ring for cryogenic temperatures is under development. The main focus of this unique machine is the research on ions, molecules and clusters up to bio molecules in the energy range of 20-300 keV at low temperatures down to 2 Kelvin. The achievement of this low temperature for all material walls seen by the ions in the storage ring will allow novel experiments to be performed, such as rotational and vibrational state control of molecular ions and their interaction with ultra-low energy electrons and laser radiation. The low temperature of the storage ring not only causes a strong reduction of black body radiation incident onto the stored particles, but also acts as a large cryopump, expected to lead to a vacuum in the 10-15 mbar range. In this paper the cryogenic concept of the storage ring and the related vacuum design will be presented.

  13. Hot Electron Diagnostics using X-rays and Cerenkov Radiation

    SciTech Connect

    Stein, J; Fill, E E; Pretzler, G; Brandl, F; Kuba, J; Habs, D

    2003-12-21

    The propagation of laser-generated hot electrons through matter and across narrow vacuum gaps is studied. We use the ATLAS titanium-sapphire laser of Max-Planck-Institut fuer Quantenoptik to irradiate 10 {proportional_to}m to 100 {proportional_to}m thick copper foils at intensities up to 10{sup 19} W/cm{sup 2}, generating electrons with temperatures in the MeV-range. After propagating through the target the electrons are detected via Cerenkov radiation generated in a suitable medium and by hard X-rays emitted from an X-ray ''fluor''. In some experiments a plastic scintillator was used to monitor the electrons. These diagnostics allow to characterize the electrons with respect to their energy, number and directionality. We also investigate the propagation of the hot electrons across narrow vacuum gaps, with a width ranging from several 100 {proportional_to}m down to 25 {proportional_to}m. The effect of self-generated fields in preventing electrons to cross the gap is demonstrated. Implications of these experiments with respect to pumping of X-ray lasers, isochoric heating by X-rays and developing optics for 4th-generation light sources will be discussed.

  14. Training of leadership skills in medical education.

    PubMed

    Kiesewetter, Jan; Schmidt-Huber, Marion; Netzel, Janine; Krohn, Alexandra C; Angstwurm, Matthias; Fischer, Martin R

    2013-01-01

    Hintergrund: Eine effektive Zusammenarbeit in Teams ist eine wichtige Voraussetzung für qualitativ hochwertige Versorgung im Gesundheitswesen. In diesem Zusammenhang spielen auch Führungskompetenzen von Ärztinnen und Ärzten im klinischen Alltag eine wichtige Rolle. Bisher wurde die Entwicklung von Führungskompetenzen in medizinischen Curricula in der Aus- und Weiterbildung von Ärztinnen und Ärzten jedoch kaum systematisch abgebildet. Die Entwicklung adäquater und effektiver Trainingsmethoden für die Vermittlung von Führungskompetenzen ist daher wünschenswert. Ziel: Das Review soll vorliegende Ergebnisse der Literatur zu Trainings von Führungskompetenzen in der Medizin zusammenfassen und integrieren, um zukünftige Forschung und Trainingsentwicklung anzuregen. Methode: Die Datenbanken PubMED, ERIC, PsycArticles, PsycINFO, PSYNDEX und dem Academic search complete durch EBSCOhost wurden auf Deutsch und Englisch nach Trainings von Führungskompetenzen in der Medizin durchsucht. Relevante Artikel wurden identifiziert und die Studienergebnisse hinsichtlich des zugrundeliegenden Führungsverständnisses, der Zielgruppe und Teilnehmeranzahl, der zeitlichen Ressourcen, sowie der Inhalte und Methoden des Trainings, des Evaluationsdesigns und der berichteten Trainingseffekte zusammengefasst. Ergebnisse: Auf acht Studien trafen alle Einschluss- und kein Ausschlusskriterium zu. Die Trainings selbst sowie die thematisierten Führungskompetenzen differenzieren jedoch stark voneinander. Die Trainingsdesigns beinhalten im Schwerpunkt die theoretische Auseinandersetzung mit dem Thema Führung sowie die Diskussion von Fallstudien aus der Praxis. Die Dauer der Trainings reicht von mehrstündigen bis hin zu mehrjährigen Veranstaltungen. Die selbst eingeschätzte Reaktion der Teilnehmer auf alle Trainings war positiv; es fand jedoch bisher keine systematische Überprüfung des Trainingserfolgs in Bezug auf konkrete Verhaltensänderungen der Teilnehmer statt

  15. Pharmacist-Led Medication Reviews to Identify and Collaboratively Resolve Drug-Related Problems in Psychiatry – A Controlled, Clinical Trial

    PubMed Central

    Wolf, Carolin; Pauly, Anne; Mayr, Andreas; Grömer, Teja; Lenz, Bernd; Kornhuber, Johannes; Friedland, Kristina

    2015-01-01

    promising results of this trial likely warrant further research that evaluates direct clinical outcomes and health-related costs. Trial Registration Deutsches Register Klinischer Studien (DRKS), DRKS00006358 PMID:26544202

  16. Whole body vibration compared to conventional physiotherapy in patients with gonarthrosis: a protocol for a randomized, controlled study

    PubMed Central

    2010-01-01

    treatment of OA, it is important to investigate the effectiveness of competing strategies. With this study, not only patient-based scores, but also objective assessments will be used to quantify patient-derived benefits of therapy. Trial registration Deutsches Register Klinischer Studien (DRKS) DRKS00000415 Clinicaltrials.gov NCT01037972 EudraCT 2009-017617-29 PMID:20565956

  17. Impact of the Medical Faculty on Study Success in Freiburg: Results from Graduate Surveys.

    PubMed

    Biller, Silke; Boeker, Martin; Fabry, Götz; Giesler, Marianne

    2015-01-01

    , die die Lehre beschreiben, leisten kaum einen Beitrag zur Vorhersage der schriftlichen M2-Note, was insofern nachvollziehbar ist, als die Lehre weit über den stark wissensorientierten Inhalt des M2-schriftlich hinausgeht. Die mangelnde Vorhersagbarkeit der Wissenschaftskompetenz ist am ehesten damit erklärbar, dass diese Kompetenz bisher nur wenig und häufig nicht expliziter Bestandteil des Curriculums ist. Die Variable Verknüpfung von Theorie und Praxis scheint für die Ausbildung der Fachkompetenz und die Ausprägung der Studienzufriedenheit bedeutsam zu sein. Inwieweit diese Beziehungen praktisch relevant sind, soll in weiteren Studien geklärt werden. Limitierend ist insbesondere anzumerken, dass die Kompetenzerfassung ausschließlich auf Selbsteinschätzungen beruht.

  18. Sustained Increase of 25-Hydroxyvitamin D Levels in Healthy Young Women during Wintertime after Three Suberythemal UV Irradiations—The MUVY Pilot Study

    PubMed Central

    Biersack, Maria Gudrun; Hajdukiewicz, Malgorzata; Uebelhack, Ralf; Franke, Leonora; Piazena, Helmut; Klaus, Pascal; Höhne-Zimmer, Vera; Braun, Tanja; Buttgereit, Frank; Burmester, Gerd-Rüdiger; Detert, Jacqueline

    2016-01-01

    young women with VitD deficient status. Trial Registration German Clinical Trials Register (Deutsches Register Kinischer Studien) DRKS00009274 PMID:27434043

  19. Early Monitoring of Response (MORE) to Golimumab Therapy Based on Fecal Calprotectin and Trough Serum Levels in Patients With Ulcerative Colitis: A Multicenter Prospective Study

    PubMed Central

    Drabik, Attyla; Sturm, Andreas; Blömacher, Margit

    2016-01-01

    Background The treatment of ulcerative colitis (UC) patients with moderate to severe inflammatory activity with anti-tumor necrosis factor alpha (TNFα) antibodies leads to a clinical remission rate of 10% after 8 weeks of therapy. However, it must be taken into account that patient selection in clinical trials clearly influences both response and remission rates. An unsatisfactory response to anti-TNFα medication after week 12 often leads to a discontinuation of treatment. The early prediction of clinical response could therefore help optimize therapy and potentially avoid ineffective treatments. Objective The aim of this study is to develop an algorithm for optimizing golimumab administration in patients with moderate to severe UC by calculating the probability of clinical response in Week 26 based on data from Week 6. Methods The study is designed as a prospective, single-arm, multicenter, non-interventional observational study with no interim analyses and a sample size of 58 evaluable patients. The primary outcome is the prediction of clinical response in Week 26 based on a 50% reduction in fecal calprotectin and a positive golimumab trough level in Week 6. Results Enrollment started in October 2014 and was still open at the date of submission. The study is expected to finish in December 2016. Conclusions The early identification of patients who are responding to an anti-TNFα antibody is therapeutically beneficial. At the same time, patients who are not responding can be identified earlier. The development of a therapeutic algorithm for identifying patients as responders or non-responders can thus help prescribing physicians to both avoid ineffective treatments and adjust dosages when necessary. This in turn promotes a higher degree of treatment tolerance and patient safety in the case of anti-TNFα antibody administration. ClinicalTrial German Clinical Trials Register, Deutsches Register Klinischer Studien DRKS00005940; https://drks-neu.uniklinik-freiburg.de

  20. The use of Facebook in medical education--a literature review.

    PubMed

    Pander, Tanja; Pinilla, Severin; Dimitriadis, Konstantinos; Fischer, Martin R

    2014-01-01

    Hintergrund: Die Verbreitung sozialer Medien beeinflusst und verändert die Kommunikationskultur sowie die Lern- und Lehrmöglichkeiten in der medizinischen Ausbildung. Das beliebteste soziale Netzwerk ist Facebook. Seine Eigenschaften bieten ein großes Potenzial für die medizinische Ausbildung, bringen aber auch einige neue Herausforderungen mit sich.Ziele: Dieser systematische Literaturüberblick zielt darauf ab, herauszufinden, wie Facebook bisher in der medizinischen Ausbildung integriert, eingesetzt und beforscht wurde. Nach einer systematischen Durchsicht der aktuellen Literatur, werden Forschungslücken identifiziert, Verbindungen zu vorherigen Arbeiten gezogen, die bisherigen Ergebnisse systematisch analysiert und Konsequenzen diskutiert.Methode: Die Autoren durchsuchten sechs online-basierte Literatur-Datenbanken. Sie definierten Einschlusskriterien und überprüften unabhängig voneinander die Suchergebnisse. Die wichtigsten Informationen der Artikel wurden methodisch abstrahiert und kodiert und in den Kategorien Studiendesign, Phase der Studienteilnehmer in der medizinischen Ausbildung und Studieninhalt dargestellt und diskutiert.Ergebnisse: 16 Artikel erfüllten alle Einschlusskriterien. 45-96% der Mediziner und Medizinstudierenden haben ein Facebook-Profil. Die meisten Studien konzentrierten sich auf Facebook und digitale Professionalität. Unprofessionelles Verhalten und Verstöße gegen den Datenschutz traten in 0,02% bis 16% der Fälle auf. In Hinblick auf den Einsatz als Lehr- und Lernumgebung wird Facebook von Medizinstudierenden gut akzeptiert. Es wird verwendet, um sich für Prüfungen vorzubereiten, Online-Materialien zu teilen, klinische Fälle zu diskutieren, Treffen zu organisieren und Informationen über Famulaturen auszutauschen. Einige Unterrichtsmaterialien für den professionellen Umgang mit Facebook wurden positiv beurteilt. Es scheint allerdings keine Beweise dafür zu geben, dass Medizinstudierende von Facebook als Lernumgebung

  1. Pragmatic RCT on the Efficacy of Proximal Caries Infiltration.

    PubMed

    Meyer-Lueckel, H; Balbach, A; Schikowsky, C; Bitter, K; Paris, S

    2016-05-01

    more efficacious in reducing lesion progression compared with individualized noninvasive measures alone over a period of 18 mo when performed in a private practice setting by various practitioners (German Clinical Trials Register / Deutsches Register Klinischer Studien DRKS00009963). PMID:26826108

  2. Development of an advanced regional climate-ecosystem model for Arctic applications

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Smith, Benjamin; Miller, Paul

    2013-04-01

    approaches. Global Ecology and Biogeography, Vol. 10, pp: 621-637. Smith B, Samuelsson P, Wramneby A, and Rummukainen M. 2010. A Model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus, Vol: 63A, Issue: 1, pp: 87-106 von Post L and Sernander R. 1910. Pflanzen-physiognomische Studien aus Torfmooren in Närke. XI International Geological Congress: Excursion Guide No: 14(A7), Stockholm, pp: 48

  3. Deglaciation and post-glacial environmental evolution in the Western Massif of Picos de Europa

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Oliva, Marc; García, Cristina; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2014-05-01

    This study examines the process of deglaciation of the Western Massif of Picos de Europa through field work, geomorphological mapping, sedimentary records and absolute datings of 14C. This massif has several peaks over 2,400 m a.s.l. (Peña Santa de Castilla, 2,596 m; Torre Santa María, 2,486 m; Torre del Mediu, 2,467 m). It is composed mainly by Carboniferous limestones. This area has been intensively affected by karstic dissolution, Quaternary glaciers and fluvio-torrential processes (Miotke, 1968; Moreno et al, 2010; Ruiz-Fernández et al, 2009; Ruiz-Fernández, 2013). At present day, periglacial processes are active at the highest elevations (Ruiz-Fernández, 2013). We have identified four main glacial stages regarding the deglaciation of the massif: (i) maximum advance corresponding to the Last Glaciation, (ii) retreat and stabilization after the maximum advance, (iii) Late Glacial, and (iv) Little Ice Age. Sedimentological studies also contribute data to the understanding of the chronological framework of these environmental changes. The datings of the bottom sediments in two long sequences (8 and 5.4 m) provided a minimum age of 18,075 ± 425 cal BP for the maximum advance stage and 11,150 ± 900 cal BP for retreat and stabilization in the phase following the maximum advance. The ongoing analyses of these sequences at very high resolution will provide new knowledge about the environmental conditions prevailing since the deglaciation of the massif. References Miotke, F.D. (1968). Karstmorphologische studien in der glazial-überformten Höhenstufe der Picos de Europa, Nordspanien. Hannover, Selbtverlag der Geografischen Gessellschaft, 161 pp. Moreno, A., Valero, B.L., Jiménez, M., Domínguez, M.J., Mata, M.P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P. & Rico, M. (2010). The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Ruiz

  4. Study protocol of the Diabetes and Depression Study (DAD): a multi-center randomized controlled trial to compare the efficacy of a diabetes-specific cognitive behavioral group therapy versus sertraline in patients with major depression and poorly controlled diabetes mellitus

    PubMed Central

    2013-01-01

    hypothesis we expect that CBT leads to significantly greater improvement of glycemic control in the one year follow-up in treatment responders of the short term phase. Discussion The DAD study is the first randomized controlled trial comparing antidepressants to a psychological treatment in diabetes patients with depression. The study is investigator initiated and was supported by the ‘Förderprogramm Klinische Studien (Clinical Trials)’ and the ‘Competence Network for Diabetes mellitus’ funded by the Federal Ministry of Education and Research (FKZ 01KG0505). Trial registration Current controlled trials ISRCTN89333241. PMID:23915015

  5. Landscape and vegetation change on the Iberian Peninsula during the Roman Epoch - A reconstruction based on Geo-Bioarchives

    NASA Astrophysics Data System (ADS)

    Schneider, Heike

    2010-05-01

    Huerva. Postgrado en Ingeneria de los Recursos Hidricos, Zaragoza. Teichner, F. (2007): Zwischen Land und Meer - Entre tierra y mar. Studien zur Architektur und Wirtschaftsweise ländlicher Siedlungen im Süden der römischen Provinz Lusitanien. - Stvdia Lvsitana 3 (MNAR) / Madrider Beitr. (DAI). Thorndycraft, V.R. & G. Benito (2006a): Late Holocene fluvial chronology of Spain: The role of climatic variability and human impact. - Catena 66 (1-2): 34-41. Thorndycraft, V.R. & G. Benito (2006b): The Holocene fluvial chronology of Spain: evidence from a newly compiled radiocarbon database. - Quaternary Science Reviews 25 (3-4): 223-234.

  6. Modeling a Hypothetical {sup 170}Tm Source for Brachytherapy Applications

    SciTech Connect

    Enger, Shirin A.; D'Amours, Michel; Beaulieu, Luc

    2011-10-15

    Purpose: To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical {sup 170}Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons. Methods: GEANT4 Monte Carlo code version 9.2 patch 2 was used to simulate the decay process of {sup 170}Tm and to calculate the absorbed dose distribution using the GEANT4 Penelope physics models. A hypothetical {sup 170}Tm source based on the Flexisource brachytherapy design with the active core set as a pure thulium cylinder (length 3.5 mm and diameter 0.6 mm) and different cylindrical source encapsulations (length 5 mm and thickness 0.125 mm) constructed of titanium, stainless-steel, gold, or platinum were simulated. The radial dose function for the line source approximation was calculated following the TG-43U1 formalism for the stainless-steel encapsulation. Results: For the titanium and stainless-steel encapsulation, 94% of the total bremsstrahlung is produced inside the core, 4.8 and 5.5% in titanium and stainless-steel capsules, respectively, and less than 1% in water. For the gold capsule, 85% is produced inside the core, 14.2% inside the gold capsule, and a negligible amount (<1%) in water. Platinum encapsulation resulted in bremsstrahlung effects similar to those with the gold encapsulation. The range of the beta particles decreases by 1.1 mm with the stainless-steel encapsulation compared to the bare source but the tissue will still receive dose from the beta particles several millimeters from the source capsule. The gold and platinum capsules not only absorb most of the electrons but also attenuate low energy photons. The mean energy of the photons escaping the core and the stainless-steel capsule is 113 keV while for the gold and platinum the mean energy is 160 keV and 165 keV, respectively. Conclusions: A {sup 170}Tm source is primarily a bremsstrahlung source, with the majority of bremsstrahlung photons being

  7. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system

    SciTech Connect

    Austerlitz, C.; Campos, C. A. T.

    2013-11-15

    Purpose: To develop a calibration phantom for {sup 192}Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system.Methods: A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P{sub sw}{sup lw}, to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N{sub gas} formalism and the P{sub sw}{sup lw} factor. Likewise, the absorbed dose to water was calculated using the source strength, S{sub k}, values provided by 15 institutions visited in this work.Results: A value of 1.020 (0.09%, k= 2) was found for P{sub sw}{sup lw}. The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k= 1). To an associated S{sub k} of 27.8 cGy m{sup 2} h{sup −1}, the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with the Brachy

  8. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    SciTech Connect

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y.

    2012-05-15

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  9. Obituary: Alexander Dalgarno (1928 - 2015)

    NASA Astrophysics Data System (ADS)

    Hartquist, Tom; Babb, James F. Babb; Loeb, Avi

    Alex Dalgarno's major contributions to the understanding of fundamental atomic and molecular processes enabled him to develop diagnostics of the physical conditions of atmospheres and astrophysical sources and to elucidate the roles of such processes in controlling those environments. He greatly influenced the research of physicists, chemists, atmospheric scientists, and astronomers, leading Sir David Bates to write, "There is no greater figure than Alex in the history of atomic physics and its applications." Alex was born and grew up in London. As a child, he enjoyed mathematical puzzles and did well at sports. He was invited to try out for the Tottenham Hotspur soccer team, but his professional sporting career ended due to an injury, which did not prevent Alex playing tennis and squash into his ninth decade. In 1945 Alex began to study Mathematics at University College London (UCL). In 1947 Sir Harrie Massey invited him to work for a PhD in Physics and suggested that Alex investigate collisions of metastable helium atoms in helium gas to determine the cross sections for excitation transfer. Richard Buckingham was Alex's immediate supervisor. After completing his graduate study in 1951, Alex became a member of staff in Applied Mathematics at the Queen's University of Belfast (QUB). He served as the Director of the Computational Laboratory after a 1954 visit to MIT, which had an electronic computer, led Alex to persuade colleagues that QUB needed one. In 1957, the poet Philip Larkin was the best man at the marriage of Alex to Barbara Kane. They had four children, Fergus, Penelope, Piers, and Rebecca, but the marriage dissolved after ten years. Alex's important work during the 1950s on the quantitative evaluation of long-range interactions underpinned his collaborations on precise scattering calculations relevant to ultra-cold collisions and the formation of atomic Bose-Einstein condensates over four decades later. He investigated the theory of atomic and molecular

  10. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.

    PubMed

    Figueroa, R G; Valente, M

    2015-09-21

    The main purpose of this work is to determine the feasibility and physical characteristics of a new teletherapy device of radiation therapy based on the application of a convergent x-ray beam of energies like those used in radiotherapy providing highly concentrated dose delivery to the target. We have denominated it Convergent Beam Radio Therapy (CBRT). Analytical methods are developed first in order to determine the dosimetry characteristic of an ideal convergent photon beam in a hypothetical water phantom. Then, using the PENELOPE Monte Carlo code, a similar convergent beam that is applied to the water phantom is compared with that of the analytical method. The CBRT device (Converay(®)) is designed to adapt to the head of LINACs. The converging beam photon effect is achieved thanks to the perpendicular impact of LINAC electrons on a large thin spherical cap target where Bremsstrahlung is generated (high-energy x-rays). This way, the electrons impact upon various points of the cap (CBRT condition), aimed at the focal point. With the X radiation (Bremsstrahlung) directed forward, a system of movable collimators emits many beams from the output that make a virtually definitive convergent beam. Other Monte Carlo simulations are performed using realistic conditions. The simulations are performed for a thin target in the shape of a large, thin, spherical cap, with an r radius of around 10-30 cm and a curvature radius of approximately 70 to 100 cm, and a cubed water phantom centered in the focal point of the cap. All the interaction mechanisms of the Bremsstrahlung radiation with the phantom are taken into consideration for different energies and cap thicknesses. Also, the magnitudes of the electric and/or magnetic fields, which are necessary to divert clinical-use electron beams (0.1 to 20 MeV), are determined using electromagnetism equations with relativistic corrections. This way the above-mentioned beam is manipulated and guided for its perpendicular impact

  11. A systematic catalogue of butterflies of the former Soviet Union (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kyrgyzstan, Kazakhstan, Latvia, Lituania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan) with special account to their type specimens (Lepidoptera: Hesperioidea, Papilionoidea).

    PubMed

    Korb, Stanislav K; Bolshakov, Lavr V

    2016-01-01

    A catalogue of butterflies of Russia and adjacent countries is given, with special account to the name-bearing types depository. This catalogue contains data about 86 species (3 of them are questionable) of Hesperiidae (22 genera); 47 species of Papilionidae (14 genera); 89 species of Pieridae (5 of them are questionable)  (15 genera); 1 species (1 genus) of Libytheinae(dae); 2 species of Danainae(dae) (2 genera); 160 species of Nymphalinae(dae) (1 of them is questionable) (23 genera); 259 species of Satyrinae(dae) (14 of them are questionable, mainly from genera Oeneis and Pseudochazara) (34 genera); 3 species of Riodinidae (2 genera); 318 species of Lycaenidae (11 of them are questionable, mainly from genera Neolycaena and Plebeius) (57 genera). In total: 965 species of butterflies, 174 genera, by countries: Armenia-244, Azerbaijan-225, Belarus-107, Estonia-113, Georgia-211, Kyrgyzstan-316, Kazakhstan-344, Latvia-115, Lituania-126, Moldova-87, Russia-522, Tajikistan-295, Turkmenistan-159, Ukraine-192, Uzbekistan-241. Detailed distribution and subspecific structure (if present) for every species is provided. Lectotypes of the following species-group taxa are designated: Hesperia poggei Lederer, 1858, Parnassius felderi Bremer, 1861, P. eversmanni Eversmann, 1851, P. boedromius Püngeler, 1901, Limenitis moltrechti Kardakov, 1928, L. sydyi Kindermann, 1853, L. amphyssa Ménétriès, 1859, L. doerriesi Staudinger, 1892, L. helmanni duplicata Staudinger, 1892, L. homeyeri Tancré, 1881, Argynnis penelope Staudinger, 1891, A. thore borealis Staudinger, 1861, Vanessa io geisha Stichel, [1908], Melitaea maturna staudingeri Wnukowsky, 1929 (=uralensis Staudinger, 1871), M. didymina Staudinger, 1895, Papilio fascelis Esper, 1783, Thecla quercivora Staudinger, 1887, Lycaena orion var. ornata Staudinger, 1892. The following nomenclatural acts are established: Neolycaena submontana baitenovi (Zhdanko, 2011), comb. et stat.n. The following new synonymy is provided: Hesperia

  12. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-André; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  13. Monte Carlo study for designing a dedicated “D”-shaped collimator used in the external beam radiotherapy of retinoblastoma patients

    SciTech Connect

    Mayorga, P. A.; Brualla, L.; Sauerwein, W.; Lallena, A. M.

    2014-01-15

    Purpose: Retinoblastoma is the most common intraocular malignancy in the early childhood. Patients treated with external beam radiotherapy respond very well to the treatment. However, owing to the genotype of children suffering hereditary retinoblastoma, the risk of secondary radio-induced malignancies is high. The University Hospital of Essen has successfully treated these patients on a daily basis during nearly 30 years using a dedicated “D”-shaped collimator. The use of this collimator that delivers a highly conformed small radiation field, gives very good results in the control of the primary tumor as well as in preserving visual function, while it avoids the devastating side effects of deformation of midface bones. The purpose of the present paper is to propose a modified version of the “D”-shaped collimator that reduces even further the irradiation field with the scope to reduce as well the risk of radio-induced secondary malignancies. Concurrently, the new dedicated “D”-shaped collimator must be easier to build and at the same time produces dose distributions that only differ on the field size with respect to the dose distributions obtained by the current collimator in use. The scope of the former requirement is to facilitate the employment of the authors' irradiation technique both at the authors' and at other hospitals. The fulfillment of the latter allows the authors to continue using the clinical experience gained in more than 30 years. Methods: The Monte Carlo codePENELOPE was used to study the effect that the different structural elements of the dedicated “D”-shaped collimator have on the absorbed dose distribution. To perform this study, the radiation transport through a Varian Clinac 2100 C/D operating at 6 MV was simulated in order to tally phase-space files which were then used as radiation sources to simulate the considered collimators and the subsequent dose distributions. With the knowledge gained in that study, a new, simpler,

  14. A systematic catalogue of butterflies of the former Soviet Union (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kyrgyzstan, Kazakhstan, Latvia, Lituania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan) with special account to their type specimens (Lepidoptera: Hesperioidea, Papilionoidea).

    PubMed

    Korb, Stanislav K; Bolshakov, Lavr V

    2016-01-01

    A catalogue of butterflies of Russia and adjacent countries is given, with special account to the name-bearing types depository. This catalogue contains data about 86 species (3 of them are questionable) of Hesperiidae (22 genera); 47 species of Papilionidae (14 genera); 89 species of Pieridae (5 of them are questionable)  (15 genera); 1 species (1 genus) of Libytheinae(dae); 2 species of Danainae(dae) (2 genera); 160 species of Nymphalinae(dae) (1 of them is questionable) (23 genera); 259 species of Satyrinae(dae) (14 of them are questionable, mainly from genera Oeneis and Pseudochazara) (34 genera); 3 species of Riodinidae (2 genera); 318 species of Lycaenidae (11 of them are questionable, mainly from genera Neolycaena and Plebeius) (57 genera). In total: 965 species of butterflies, 174 genera, by countries: Armenia-244, Azerbaijan-225, Belarus-107, Estonia-113, Georgia-211, Kyrgyzstan-316, Kazakhstan-344, Latvia-115, Lituania-126, Moldova-87, Russia-522, Tajikistan-295, Turkmenistan-159, Ukraine-192, Uzbekistan-241. Detailed distribution and subspecific structure (if present) for every species is provided. Lectotypes of the following species-group taxa are designated: Hesperia poggei Lederer, 1858, Parnassius felderi Bremer, 1861, P. eversmanni Eversmann, 1851, P. boedromius Püngeler, 1901, Limenitis moltrechti Kardakov, 1928, L. sydyi Kindermann, 1853, L. amphyssa Ménétriès, 1859, L. doerriesi Staudinger, 1892, L. helmanni duplicata Staudinger, 1892, L. homeyeri Tancré, 1881, Argynnis penelope Staudinger, 1891, A. thore borealis Staudinger, 1861, Vanessa io geisha Stichel, [1908], Melitaea maturna staudingeri Wnukowsky, 1929 (=uralensis Staudinger, 1871), M. didymina Staudinger, 1895, Papilio fascelis Esper, 1783, Thecla quercivora Staudinger, 1887, Lycaena orion var. ornata Staudinger, 1892. The following nomenclatural acts are established: Neolycaena submontana baitenovi (Zhdanko, 2011), comb. et stat.n. The following new synonymy is provided: Hesperia

  15. EDITORIAL: Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012) Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012)

    NASA Astrophysics Data System (ADS)

    Spezi, Emiliano; Leal, Antonio

    2013-04-01

    ) investigated the recombination effect on liquid ionization chambers for stereotactic radiotherapy, a field of increasing importance in external beam radiotherapy. They modelled both radiation source (Cyberknife unit) and detector with the BEAMnrc/EGSnrc codes and quantified the dependence of the response of this type of detectors on factors such as the volume effect and the electrode. They also recommended that these dependences be accounted for in measurements involving small fields. In the field of external beam radiotherapy, Chakarova et al (2013) showed how total body irradiation (TBI) could be improved by simulating patient treatments with MC. In particular, BEAMnrc/EGSnrc based simulations highlighted the importance of optimizing individual compensators for TBI treatments. In the same area of application, Mairani et al (2013) reported on a new tool for treatment planning in proton therapy based on the FLUKA MC code. The software, used to model both proton therapy beam and patient anatomy, supports single-field and multiple-field optimization and can be used to optimize physical and relative biological effectiveness (RBE)-weighted dose distribution, using both constant and variable RBE models. In the field of nuclear medicine Marcatili et al (2013) presented RAYDOSE, a Geant4-based code specifically developed for applications in molecular radiotherapy (MRT). RAYDOSE has been designed to work in MRT trials using sequential positron emission tomography (PET) or single-photon emission tomography (SPECT) imaging to model patient specific time-dependent metabolic uptake and to calculate the total 3D dose distribution. The code was validated through experimental measurements in homogeneous and heterogeneous phantoms. Finally, in the field of code development Miras et al (2013) reported on CloudMC, a Windows Azure-based application for the parallelization of MC calculations in a dynamic cluster environment. Although the performance of CloudMC has been tested with the PENELOPE MC

  16. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data

    SciTech Connect

    Belosi, Maria F.; Fogliata, Antonella E-mail: afc@iosi.ch; Cozzi, Luca; Clivio, Alessandro; Nicolini, Giorgia; Vanetti, Eugenio; Rodriguez, Miguel; Sempau, Josep; Krauss, Harald; Khamphan, Catherine; Fenoglietto, Pascal; Puxeu, Josep; Fedele, David; Mancosu, Pietro; Brualla, Lorenzo

    2014-05-15

    Purpose: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. Methods: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on thePENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm{sup 2} using 1 × 1 × 1 mm{sup 3} voxels and for 20 × 20 and 40 × 40 cm{sup 2} with 2 × 2 × 2 mm{sup 3} voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Results: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm{sup 2}, while the discrepancy increased toward 2% in the 40 × 40 cm{sup 2} cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion

  17. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.

    PubMed

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  18. Fast voxel-level dosimetry for 177Lu labelled peptide treatments

    NASA Astrophysics Data System (ADS)

    Hippeläinen, E.; Tenhunen, M.; Sohlberg, A.

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for 177Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions. Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by 177Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared. The photon cross-fire dose from the kidney increased the background’s absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  19. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.

    PubMed

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  20. Monte Carlo computed machine-specific correction factors for reference dosimetry of TomoTherapy static beam for several ion chambers

    SciTech Connect

    Sterpin, E.; Mackie, T. R.; Vynckier, S.

    2012-07-15

    Purpose: To determine k{sub Q{sub m{sub s{sub r,Q{sub o}{sup f{sub m}{sub s}{sub r},f{sub o}}}}}} correction factors for machine-specific reference (msr) conditions by Monte Carlo (MC) simulations for reference dosimetry of TomoTherapy static beams for ion chambers Exradin A1SL, A12; PTW 30006, 31010 Semiflex, 31014 PinPoint, 31018 microLion; NE 2571. Methods: For the calibration of TomoTherapy units, reference conditions specified in current codes of practice like IAEA/TRS-398 and AAPM/TG-51 cannot be realized. To cope with this issue, Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)] described a new formalism introducing msr factors k{sub Q{sub m{sub s{sub r,Q{sub o}{sup f{sub m}{sub s}{sub r},f{sub o}}}}}} for reference dosimetry, applicable to static TomoTherapy beams. In this study, those factors were computed directly using MC simulations for Q{sub 0} corresponding to a simplified {sup 60}Co beam in TRS-398 reference conditions (at 10 cm depth). The msr conditions were a 10 Multiplication-Sign 5 cm{sup 2} TomoTherapy beam, source-surface distance of 85 cm and 10 cm depth. The chambers were modeled according to technical drawings using the egs++ package and the MC simulations were run with the egs{sub c}hamber user code. Phase-space files used as the source input were produced using PENELOPE after simulation of a simplified {sup 60}Co beam and the TomoTherapy treatment head modeled according to technical drawings. Correlated sampling, intermediate phase-space storage, and photon cross-section enhancement variance reduction techniques were used. The simulations were stopped when the combined standard uncertainty was below 0.2%. Results: Computed k{sub Q{sub m{sub s{sub r,Q{sub o}{sup f{sub m}{sub s}{sub r},f{sub o}}}}}} values were all close to one, in a range from 0.991 for the PinPoint chamber to 1.000 for the Exradin A12 with a statistical uncertainty below 0.2%. Considering a beam quality Q defined as the TPR{sub 20,10} for a 6 MV Elekta photon beam (0

  1. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.

    PubMed

    Figueroa, R G; Valente, M

    2015-09-21

    The main purpose of this work is to determine the feasibility and physical characteristics of a new teletherapy device of radiation therapy based on the application of a convergent x-ray beam of energies like those used in radiotherapy providing highly concentrated dose delivery to the target. We have denominated it Convergent Beam Radio Therapy (CBRT). Analytical methods are developed first in order to determine the dosimetry characteristic of an ideal convergent photon beam in a hypothetical water phantom. Then, using the PENELOPE Monte Carlo code, a similar convergent beam that is applied to the water phantom is compared with that of the analytical method. The CBRT device (Converay(®)) is designed to adapt to the head of LINACs. The converging beam photon effect is achieved thanks to the perpendicular impact of LINAC electrons on a large thin spherical cap target where Bremsstrahlung is generated (high-energy x-rays). This way, the electrons impact upon various points of the cap (CBRT condition), aimed at the focal point. With the X radiation (Bremsstrahlung) directed forward, a system of movable collimators emits many beams from the output that make a virtually definitive convergent beam. Other Monte Carlo simulations are performed using realistic conditions. The simulations are performed for a thin target in the shape of a large, thin, spherical cap, with an r radius of around 10-30 cm and a curvature radius of approximately 70 to 100 cm, and a cubed water phantom centered in the focal point of the cap. All the interaction mechanisms of the Bremsstrahlung radiation with the phantom are taken into consideration for different energies and cap thicknesses. Also, the magnitudes of the electric and/or magnetic fields, which are necessary to divert clinical-use electron beams (0.1 to 20 MeV), are determined using electromagnetism equations with relativistic corrections. This way the above-mentioned beam is manipulated and guided for its perpendicular impact

  2. A package of Linux scripts for the parallelization of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Badal, Andreu; Sempau, Josep

    2006-09-01

    Despite the fact that fast computers are nowadays available at low cost, there are many situations where obtaining a reasonably low statistical uncertainty in a Monte Carlo (MC) simulation involves a prohibitively large amount of time. This limitation can be overcome by having recourse to parallel computing. Most tools designed to facilitate this approach require modification of the source code and the installation of additional software, which may be inconvenient for some users. We present a set of tools, named clonEasy, that implement a parallelization scheme of a MC simulation that is free from these drawbacks. In clonEasy, which is designed to run under Linux, a set of "clone" CPUs is governed by a "master" computer by taking advantage of the capabilities of the Secure Shell (ssh) protocol. Any Linux computer on the Internet that can be ssh-accessed by the user can be used as a clone. A key ingredient for the parallel calculation to be reliable is the availability of an independent string of random numbers for each CPU. Many generators—such as RANLUX, RANECU or the Mersenne Twister—can readily produce these strings by initializing them appropriately and, hence, they are suitable to be used with clonEasy. This work was primarily motivated by the need to find a straightforward way to parallelize PENELOPE, a code for MC simulation of radiation transport that (in its current 2005 version) employs the generator RANECU, which uses a combination of two multiplicative linear congruential generators (MLCGs). Thus, this paper is focused on this class of generators and, in particular, we briefly present an extension of RANECU that increases its period up to ˜5×10 and we introduce seedsMLCG, a tool that provides the information necessary to initialize disjoint sequences of an MLCG to feed different CPUs. This program, in combination with clonEasy, allows to run PENELOPE in parallel easily, without requiring specific libraries or significant alterations of the

  3. Space Radar Image of Glascow, Missouri

    NASA Technical Reports Server (NTRS)

    1994-01-01

    community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Bebedauro, Brazil, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Missouri River, Glasgow, Missouri

    NASA Technical Reports Server (NTRS)

    1994-01-01

    ) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  7. Space Radar Image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  8. Space Radar Image of Karisoke & Virunga Volcanoes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    vegetation maps of the area to aid in their studies of the last 650 mountain gorillas in the world. The faint lines above the bamboo forest are the result of agricultural terracing by the people who live in the region. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of Kliuchevskoi, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mature in Kamchatka's 120-day growing season. The forest industry is managing these forests and practicing selective cutting to allow younger trees time to grow and reseed. X-SAR images will aid in mapping these deforested areas and in encouraging further recultivation efforts. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  10. Space Radar Image of Raco, Michigan, ecological test site

    NASA Technical Reports Server (NTRS)

    1994-01-01

    global changes resulting from climatic warming. Baseline studies of vegetation are essential in monitoring these expected changes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  11. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  12. Space Radar Image of North Sea, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    swiftly than is currently possible. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  13. Safsaf Oasis, Egypt

    NASA Technical Reports Server (NTRS)

    1998-01-01

    is C-band, horizontally transmitted and received; and blue is X-band, vertically transmitted and received. The radar image was acquired by the Spaceborne Imaging Radar-C/ X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 16, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Earth Science Enterprise. The Landsat Program is managed jointly by NASA, the National Oceanic and Atmospheric Administration and the United States Geological Survey.

    Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  14. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companiesfor the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency,Agenzia SpazialeItaliana (ASI), with the Deutsche Forschungsanstalt fuer Luft undRaumfahrt e.v.(DLR), the major partner in science,operations, and data processing of X-SAR.

  15. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1994-01-01

    site is covered by glaciers. Corner reflectors are set up for calibration. Five corner reflectors can be seen on the Gepatschferner and two can be seen on the Vernagtferner. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Radar Image of Rabaul Volcano, New Guinea

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  17. Space Radar Image of Houston, Texas

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  18. Space Radar Image of the Lost City of Ubar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  19. Space Radar Image of Flevoland, Netherlands

    NASA Technical Reports Server (NTRS)

    1999-01-01

    used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  20. Space Radar Image of Oberpfaffenhofen, Germany

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  1. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  2. Space Radar Image of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -ice growth perhaps 5 to 10 centimeters (2 to 4 inches) thick. The more extensive dark zones are covered by a slightly thicker layer of smooth, level ice up to 70 centimeters (28 inches) thick. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  3. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  4. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science operations and data processing of X-SAR.

  5. Space Radar Image of Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Space Radar Image of Taal Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  7. Space Radar Image of Patagonian Ice Fields

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , a direct indication of the steep meteorological gradients known to exist in this region. The bluer color of the outlet glaciers is probably due to a thin snow cover. A portion of the terminus of the outlet glacier at the top left center of the images has advanced approximately 600 meters (1,970 feet) in the five-and-a-half months between the two missions. Because of the persistent cloud cover this observation was only possible by using the orbiting, remote imaging radar system. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  8. Space Radar Image of Kliuchevskoi Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  10. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR, scientists will be able to discern these areas even more clearly. Space Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  11. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    radar missions to help in better understanding the processes responsible for volcanic eruptions and earthquakes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  12. Space Radar Image of the Silk route in Niya, Taklamak, China

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  13. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    . The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  14. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  15. Space Radar Image of the Yucatan Impact Crater Site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR. Research on the biological effects of the Chicxulub impact is supported by the NASA Exobiology Program.

  16. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  17. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  18. Evidence for e+e- →γχc1,2 at center-of-mass energies from 4.009 to 4.360 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; L. Liu, C.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; R. Shepherd, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; D. Wang(Yadi, Y.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-04-01

    Using data samples collected at center-of-mass energies of √s = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+e- → γχcJ (J=0, 1, 2) and find evidence for e+e- → γχc1 and e+e- → γχc2 with statistical significances of 3.0σ and 3.4σ, respectively. The Born cross sections σB(e+e- → γχcJ), as well as their upper limits at the 90% confidence level (C.L.) are determined at each center-of-mass energy. Supported by National Key Basic Research Program of China (2015CB856700), Joint Funds of National Natural Science Foundation of China (11079008, 11179007, U1232201, U1332201, U1232107), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11322544, 11335008), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  19. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  20. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  1. Effectiveness of Carbon Ion Radiotherapy in the Treatment of Skull-Base Chordomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Karger, Christian P.; Feuerhake, Alexandra; Nikoghosyan, Anna; Combs, Stephanie E.; Jaekel, Oliver; Edler, Lutz; Scholz, Michael; Debus, Juergen

    2007-06-01

    Purpose: The aim of this study was to evaluate the effectiveness and toxicity of carbon ion radiotherapy in chordomas of the skull base. Methods and Materials: Between November 1998 and July 2005, a total of 96 patients with chordomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. All patients had gross residual tumors. Median total dose was 60 CGE (range, 60-70 CGE) delivered in 20 fractions within 3 weeks. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and the Radiation Therapy Oncology Group (RTOG) / European Organization for Research and Treatment of Cancer (EORTC) score. Results: Mean follow-up was 31 months (range, 3-91 months). Fifteen patients developed local recurrences after carbon ion RT. The actuarial local control rates were 80.6% and 70.0% at 3 and 5 years, respectively. Target doses in excess of 60 CGE and primary tumor status were associated with higher local control rates. Overall survival was 91.8% and 88.5% at 3 and 5 years, respectively. Late toxicity consisted of optic nerve neuropathy RTOG/EORTC Grade 3 in 4.1% of the patients and necrosis of a fat plomb in 1 patient. Minor temporal lobe injury (RTOG/EORTC Grade 1-2) occurred in 7 patients (7.2%). Conclusions: Carbon ion RT offers an effective treatment option for skull-base chordomas with acceptable toxicity. Doses in excess of 75 CGE with 2 CGE per fraction are likely to increase local control probability.

  2. Performance Simulations for a Spaceborne Methane Lidar Mission

    NASA Technical Reports Server (NTRS)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  3. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    SciTech Connect

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan; Collette, Andrew; Drake, Keith; Northway, Paige; Gruen, Eberhard; Mocker, Anna; Munsat, Tobin; Srama, Ralf; and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  4. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of

  5. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb‑1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e‑ → γISR/FSRμ+μ‑, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  6. Correlation of bone fragments reposition and related parameters in thoracolumbar burst fractures patients

    PubMed Central

    Dai, Jianhui; Lin, Haibin; Niu, Susheng; Wu, Xianwei; Wu, Yujun; Zhang, Huaizhi

    2015-01-01

    The aim of this study is to determine if thoracolumbar vertebral body collapse or canal compromise (CC) is associated with reposition of bone fragment. We retrospective review medical charts of patients with thoracolumbar burst fractures from July 2010 to September 2013. The fractures were classified according to the Arbeit Fuer Osteoosynthese (AO) classification system. Neurological status was classified according to American Spinal Injury Association (ASIA). Patients were divided into two groups (reposition group and non-reposition group) according to whether the bone fragments were reposition or non-reposition after surgery. Mimics measured mid-sagittal canal diameter (MSD), transverse canal diameter (TCD), local kyphosis (LK) and calculated anterior vertebral body compression ratio (AVBCR), middle vertebral body compression ratio (MVBCR), posterior vertebral body compression ratio (PVBCR), and mid-sagittal canal diameter compression ratio (MSDCR) on the preoperative CT image. The results indicated that 55 patients were included in the study. There are 35 patients with reposition of bone fragment and 20 patients with non-reposition of bone fragment after surgery. There were significant difference on MSD (t = 3.258, P = 0.002), TCD (t = 2.197, P = 0.032), AVBCR (t = -2.063, P = 0.044), MVBCR (t = -2.526, P = 0.015), PVBCR (t = -2.211, P = 0.031), MSDCR (t = -4.975, P = 0.000) between two groups before surgery. There was a significant correlation between reposition of bone fragment and AO classification (OR = 5.251, P = 0.022), and MSDCR (OR = 7.366, P = 0.007). There was no significant correlation between reposition and AVBCR, MVBCR, PVBCR, LK, MSD and TCD. In conclusion, this study indicates that AO classification and MSDCR are predictors of reposition of bone fragment. PMID:26379913

  7. DIY EOS: Experimentally Validated Equations of State for Planetary Fluids to GPa Pressures, Tools for Understanding Planetary Processes and Habitability

    NASA Astrophysics Data System (ADS)

    Vance, Steven; Brown, J. Michael; Bollengier, Olivier

    2016-10-01

    Sound speeds are fundamental to seismology, and provide a path allowing the accurate determination of thermodynamic potentials. Prior equations of state (EOS) for pure ammonia (Harr and Gallagher 1978, Tillner-Roth et al. 1993) are based primarily on measured densities and heat capacities. Sound speeds, not included in the fitting, are poorly predicted.We couple recent high pressure sound speed data with prior densities and heat capacities to generate a new equation of state. Our representation fits both the earlier lower pressure work as well as measured sound speeds to 4 GPa and 700 K and the Hugoniot to 70 GPa and 6000 K.In contrast to the damped polynomial representation previously used, our equation of state is based on local basis functions in the form of tensor b-splines. Regularization allows the thermodynamic surface to be continued into regimes poorly sampled by experiments. We discuss application of this framework for aqueous equations of state validated by experimental measurements. Preliminary equations of state have been prepared applying the local basis function methodology to aqueous NH3, Mg2SO4, NaCl, and Na2SO4. We describe its use for developing new equations of state, and provide some applications of the new thermodynamic data to the interior structures of gas giant planets and ocean worlds.References:L. Haar and J. S. Gallagher. Thermodynamic properties of ammonia. American Chemical Society and the American Institute of Physics for the National Bureau of Standards, 1978.R. Tillner-Roth, F. Harms-Watzenberg, and H. Baehr. Eine neue fundamentalgleichung fuer ammoniak. DKV TAGUNGSBERICHT, 20:67–67, 1993.

  8. Methodology, status and plans for development and assessment of the code ATHLET

    SciTech Connect

    Teschendorff, V.; Austregesilo, H.; Lerchl, G.

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.

  9. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  10. Natural and False Color Views of Europa

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This image shows two views of the trailing hemisphere of Jupiter's ice-covered satellite, Europa. The left image shows the approximate natural color appearance of Europa. The image on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named 'Pwyll' for the Celtic god of the underworld.

    Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  11. CO J = 1-0 AND J = 2-1 LINE OBSERVATIONS OF THE MOLECULAR-CLOUD-BLOCKED SUPERNOVA REMNANT 3C434.1

    SciTech Connect

    Jeong, Il-Gyo; Koo, Bon-Chul; Cho, Wan-Kee; Kramer, Carsten; Stutzki, Juergen; Byun, Do-Young E-mail: koo@astro.snu.ac.kr

    2013-06-20

    We present the results of CO emission line observations toward the semicircular Galactic supernova remnant (SNR) 3C434.1 (G94.0+1.0). We mapped an area covering the whole SNR in the {sup 12}CO J = 1-0 emission line using the Seoul Radio Astronomy Observatory 6 m telescope and found a large molecular cloud superposed on the faint western part of the SNR. The cloud was elongated along the north-south direction and showed a very good spatial correlation with the radio features of the SNR. We carried out {sup 12}CO J = 2-1 line observations of this cloud using the Koelner Observatorium fuer Sub-Millimeter Astronomie 3 m telescope and found a region in which the {sup 12}CO J = 2-1 to J = 1-0 ratio was high ({approx}1.6). This higher excitation, together with the morphological relation, strongly suggested that the molecular cloud was interacting with the SNR. The systemic velocity of the molecular cloud (-13 km s{sup -1}) gave a kinematic distance of 3.0 kpc to the SNR-molecular cloud system. We derived the physical parameters of the SNR based on this new distance. We examined the variation of the radio spectral index over the remnant and found that it was flatter in the western part, wherein the SNR was interacting with the molecular cloud. We therefore propose that 3C434.1 is the remnant of a supernova explosion that occurred just outside the boundary of a relatively thin, sheet-like molecular cloud. We present a hydrodynamic model showing that its asymmetric radio morphology can result from its interaction with this blocking molecular cloud.

  12. Autocollimators for Deflectometry: Current Status and Future Progress

    SciTech Connect

    Geckeler, Ralf; Just, Andreas; Krause, Michael; Yashchuk, Valeriy V.

    2009-06-15

    The proliferation of autocollimator-based surface profilometers at synchrotron metrology laboratories worldwide necessitates a detailed understanding of the parameters influencing their angular response. A comprehensive overview of the current status of autocollimator characterization and calibration at the Physikalisch-Technische Bundesanstalt (PTB) and its implications for their optimal application are provided, as well as information on future challenges and expected progress. Autocollimator-based deflectometric profilometers are in operation at the PTB, the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, USA, the BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Germany, and the Diamond Light Source Ltd (DLS), UK. A continuous topic of research at the PTB is to investigate the factors influencing the angular response of autocollimators and to provide the most accurate calibration of the instruments to aid users in their application and manufacturers in their improvements [1-3]. At the PTB, the calibration of autocollimators is realized by a direct comparison of the devices with the primary angle reference standard [1]. With highly stable autocollimators, calibrations with standard measurement uncertainties of u = 0.003 arcsec (15 nrad) have been achieved [2,3]. The influence of a number of parameters on the angle measurement with autocollimators have been investigated in detail, such as the reflectivity of the surface under test (SUT), the diameter and shape of the aperture stop, its position both along the autocollimator's optical axis and perpendicular to it [2], as well as the optical path length of the autocollimator beam [3]. Extensive information on these errors and their minimization will be presented.

  13. The Construction of the Konrad Repository - Status and Perspective - 13034

    SciTech Connect

    Kunze, V.

    2013-07-01

    Due to the Atomic Energy Act of Germany the Federation is responsible for the construction and operation of installations for the safekeeping and disposal of radioactive waste. The Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz - BfS) is assigned with this duty. In 1982 the abandoned iron ore mine Konrad near Salzgitter (Federal State of Lower Saxony) was proposed as a repository for low and intermediate level radioactive waste with negligible heat generation. After 20 years of plan approval procedure the license was granted by the Ministry for Environment of Lower Saxony in May 2002. This decision was finally confirmed by the Federal Administrative Court in March 2007. The construction has started, but former assumptions about the beginning of waste emplacement tuned out to be too optimistic. In the course of the preparatory work and the implementation planning it turned out that many changes need to be done. As a matter of fact most of the documents and planning originate from the 1990's and need to be revised because from that time on until now no adaptation was appropriate. The necessity to apply the state-of-the-art technology and other legal implications give rise to further changes and new licensing procedures, especially building licenses. Furthermore, the license from 2002 also includes a lot of collateral clauses that need to be fulfilled before radioactive waste can be emplaced. With this in mind, the time frame for the construction of the Konrad repository was revised in 2010. As a result, the completion of the erection before 2019 does not seem to be realistic. (authors)

  14. LISA 8 Science Organizing Committee and Local Organizing Committee LISA 8 Science Organizing Committee and Local Organizing Committee

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Science Organising Committee (SOC) Tom Abel, Stanford University Odylio Aguiar, Instituto Nacional de Pesquisas Espaciais Tal Alexander, Wizemann Institute Peter Bender, University of Colorado Pierre Binetruy, APC - College de France Sasha Buchman, Stanford University Robert Byer, Stanford University Manuela Campanelli, University of Texas Joan Centrella, NASA/Goddard Massimo Cerdonio, University of Padova Eugenio Coccia, University of Roma-2 Neil Cornish, Montana State University Michael Cruise, University of Birmingham Curt Cutler, NASA/JPL Karsten Danzmann, University of Hannover Sam Finn, Penn State University Jens Gundlach, NPL Gerhard Heinzel, Max-Planck-Institut fuer Gravitationsphysik Craig Hogan, University of Washington Jim Hough, University of Glasgow Scott Hughes, MIT Oliver Jennrich, ESTEC Philippe Jetzer, University Zurich Seiji Kawamura, National Observatory, Japan Alberto Lobo, ICE-CSIC and IEEC Avi Loeb, Harvard University Piero Madau, Lick Observatory Yannick Mellier, IAP, Paris Peter Michelson, Stanford University Guido Mueller, University of Florida Sterl Phinney, Caltech Tom Prince, NASA/JPL Doug Richstone, University of Michigan Bernard Schutz, AEI Potsdam Tuck Stebbins, NASA/Goddard Tim Sumner, Imperial College, London Ke-Xun Sun, Stanford University Kip Thorne, Caltech Michele Vallisneri, NASA/JPL Alberto Vecchio, University of Birmingham Jean-Yves Vinet, OCA, Nice Stefano Vitale, University of Trento Rai Weiss, MIT Nick White, NASA/Goddard Local Organising Committee (LOC) Sasha Buchman (Stanford University) Robert Byer (Stanford University) Sara Charbonneau-Lefort (Stanford University) Nancy Christianson (Stanford University) John Conklin (Stanford University) Dan DeBra (Stanford University) Jan Goebel (Stanford University) Vivian Drew (Stanford University) Ke-Xun Sun (Stanford University) Lucy Zhou (Stanford University) Andrea Zoellner (Stanford University)

  15. Dedication to Professor Hannspeter Winter (1941 2006): Dedication to Professor Hannspeter Winter (1941 2006)

    NASA Astrophysics Data System (ADS)

    McCullough, Bob

    2007-03-01

    Professor H Winter. It was with great sadness that we learnt of the death of colleague and friend Professor Hannspeter Winter in Vienna on the 8 November 2006. In memory of him and the contribution he made both to our conference and to the field of the physics of highly charged ions we dedicate these proceedings. Hannspeter was one of our distinguished invited speakers at HCI2006 and gave a talk on the status of the ITER programme. His invited paper on the subject is included in these proceedings. Hannspeter will be particularly remembered for his pioneering work on ion-surface interactions that, together with his colleagues at the Vienna University of Technology (TUW), has stimulated a worldwide experimental and theoretical interest in this field. He was appointed Director of the Institut fuer Allgemeine Physik at TUW in 1987 and using both his scientific and management skills has made it one of the leading university physics laboratories in the world. His research publications, of which there are 270, have inspired many others to work in the field of atomic and plasma physics. He was also a great European playing a major role in the EURATOM fusion programme, the European Physical Society and the International Union of Pure and Applied Physics and was an evaluator and advisory board member for many national and international institutions. Hannspeter was also an interesting and friendly social companion with interests in current affairs, music and fine wines and will be greatly missed both on a scientific and social level. Our condolences go to his wife Renate, son Dorian and his relatives. R W McCullough Co-chair HCI2006

  16. Investigations and results concerning railway-induced ground-borne vibrations in Germany

    NASA Astrophysics Data System (ADS)

    Degen, K. G.; Behr, W.; Grütz, H.-P.

    2006-06-01

    Besides noise reduction, ground-borne vibrations induced by railways are another important environmental issue associated with the construction of new or the reconstruction of existing railway lines that had to be tackled during the last decade. Annoyance can occur, particularly for lines in urban areas at small distances to neighbouring houses or lines in shallow depth tunnels under buildings. The ground-borne vibrations can be perceived by the inhabitants via the floor vibrations, as well as via the air-borne noise radiated inside the building by the vibrating building structures (secondary noise). At present, legal specifications for judging railway-induced ground-borne vibrations do not exist in Germany. In order to review common practices, an experimental psycho-physical laboratory study was performed. To estimate the annoyance of railway-induced vibrations, the mean vibration energy of a train pass-by seems much more significant and related to the annoyance than the commonly used RMS value according to the German standard DIN 4150-2. The minimum difference in vibration that can be felt by people was found at a signal difference of 25%. This paper will review results of a project performed in cooperation with the engineering office Obermeyer in Munich and the Technical University of Munich [A. Said, D. Fleischer, H. Kilcher, H. Fastl, H.-P. Grütz, Zur Bewertung von Erschütterungsimmissionen aus dem Schienenverkehr, Zeitschrift fuer Lärmbekämpfung, Vol. 48(6), Springer VDI Verlag, Düsseldorf, 2001.] and will link them to further demands on research and on development of suitable guiding principles and legislative regulations.

  17. The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Kainulainen, J.; Tafalla, M.; Beuther, H.; Alves, J.

    2016-03-01

    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13CO and C18O (2-1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its ~6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e. σNT/cs ≲ 1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the interstellar medium. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fuer Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory (ESO programme 087.C-0583).The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A97

  18. Industrial approach to piezoelectric damping of large fighter aircraft components

    NASA Astrophysics Data System (ADS)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power

  19. GOCE Reduced-dynamic Orbits - Inter-agency Comparisons

    NASA Astrophysics Data System (ADS)

    Bock, H.; Jaeggi, A.; Meyer, U.; van den IJssel, J.; Visser, P. N.; Swatschina, P.; Montenbruck, O.

    2011-12-01

    The Gravity and Ocean Circulation Explorer (GOCE) mission of the European Space Agency is now in orbit since more than two years. The 12-channel, dual-frequency GPS receiver delivers high-quality data for determination of precise orbits. These orbit solutions are used to accurately geolocate the gradiometer observations and to provide complementary information for the long-wavelength gravity field part. Operational orbit products are routinely generated by the Department of Earth Observation and Space Systems at Delft University of Technology (DEOS, Rapid Science Orbit, RSO) and the Astronomical Institute of the University of Bern (AIUB, Precise Science Orbit, PSO) using different software packages (GEODYN/GHOST, BERNESE) and analysis strategies. Internal orbit comparisons and external validations with independent Satellite Laser Ranging measurements demonstrate that both orbit products fully meet the corresponding mission accuracy requirements of 50 cm (RSO) and 2 cm (PSO), respectively. For an independent performance assessment, orbit solutions are, furthermore, generated at Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) on a best effort basis using the GHOST software. In addition to the RSO product, post-processed orbit solutions based on GEODYN are generated at DEOS as well. We provide an overview of the adopted analysis strategies and present inter-agency comparisons of the individual reduced-dynamic orbit solutions based on one year of data. A cross-comparison of the various orbits indicates a good agreement of a few cm 3D rms accuracy, but reveals small systematic biases, e.g., in the radial direction. Special emphasis will be given to the assessment and discussion of the systematic biases, which are related to different orbit modeling strategies used to cope with non-gravitational accelerations.

  20. Multidrug-resistant organisms in refugees: prevalences and impact on infection control in hospitals.

    PubMed

    Heudorf, Ursel; Albert-Braun, Sabine; Hunfeld, Klaus-Peter; Birne, Franz-Ulrich; Schulze, Jörg; Strobel, Klaus; Petscheleit, Knut; Kempf, Volkhard A J; Brandt, Christian

    2016-01-01

    Einleitung: Die Flüchtlingssituation ist eine große Herausforderung für das Gesundheitssystem in vielen Ländern Europas, besonders auch in Deutschland. Eine Vielzahl von Daten zur gesundheitlichen Situation von Flüchtlingen (Infektionen, körperliche Erkrankungen und psych(iatr)ische Probleme) und zu deren Prävention (Hygiene und Impfprogramme) sind publiziert. Jedoch sind Daten zu multiresistenten Erregern (MRE) bei Flüchtlingen vergleichsweise rar, obwohl viele Flüchtlinge aus Ländern mit hoher MRE-Prävalenz stammen und/oder auf ihrer Flucht durch Länder mit hoher MRE-Prävalenz gekommen sind. In der vorliegenden Arbeit werden aktuelle Daten zur MRE-Prävalenz von Flüchtlingen bei Aufnahme in Akutkrankenhäuser vorgestellt und die Bedeutung des Aufnahme-Screenings und des Hygiene-Managements in den Krankenhäusern diskutiert. Methoden: Verschiedene Krankenhäuser in der Rhein-Main-Region teilten die Ergebnisse von Aufnahme-Screening-Untersuchungen von Flüchtlingen anonymisiert dem Gesundheitsamt mit. Die Screening-Untersuchungen wurden zwischen Dezember 2015 und März 2016 nach standardisierten und validierten Methoden vorgenommen. Ergebnisse: 9,8% der bei Klinikaufnahme gescreenten Flüchtlinge (32/325) waren mit Methicillin-resistenten Staphylococcus aureus-Stämmen kolonisiert und 23,3% der Flüchtlinge (67/290) wiesen Gram-negative Erreger mit erweitertem Resistenzspektrum gegen β-Laktam-Antibiotika (ESBL) und/oder Enterobakterien mit Resistenz gegen 3 oder 4 Antibiotikagruppen auf (3MRGN: multiresistente Gram-negative Erreger mit Resistenz gegen Penicilline, Cephalosporine und Fluorchinolone; 4MRGN mit Resistenz gegen die genannten Antibiotikagruppen und zusätzlicher Resistenz gegen Carbapeneme; Definition nach KRINKO 2012). Carbapenem-resistente Gram-negative Erreger (CRE) wurden bei 2,1% (6/290) der untersuchten Flüchtlinge gefunden. Diskussion: Die Daten bestätigen zwischen 2014 und 2016 publizierte Studien, in denen Flüchtlinge bei

  1. Soil formation on hard rock with and without cover of Pleistocene periglacial slope deposits in humid-temperate climate of Europe

    NASA Astrophysics Data System (ADS)

    Sauer, Daniela; Schülli-Maurer, Isabelle

    2014-05-01

    mainly of beech, birch, fir, pine, and sorb, blueberry and hair-grass (Deschampsia flexuosa). 4) Cambisol developed from Monzonite This soil has an age of ca. 9,500 years. The thickness of the organic surface layer is 6 cm; the mineral soil comprises an Ah (9 cm), Bw (17 cm) and BC (9 cm) horizon. Vegetation consists mainly of fir, oak, beech, and sorb, blueberry, ferns, grasses and mosses. Geochemical data suggest that the soil has not entirely developed from Monzonite but that the Ah and Bw horizon are mainly composed of a thin layer of beach sediments. The comparison demonstrates the importance of physical weathering under periglacial conditions and formation of PPSD for Holocene soil development on hard rock in central Europe. References: Schilling, W., Wiefel, H. (1962): Jungpleistozäne Periglazialbildungen und ihre regionale Differenzierung in einigen Teilen Thüringens und des Harzes. Geologie, Jg. 11, Heft 4: 393 - 504. Semmel, A. (1964): Junge Schuttdecken in Hessischen Mittelgebirgen. Notitzbl. Hess. L.-Amt Bodenforsch. 92: 275 - 285. Semmel, A. (1968): Studien über den Verlauf jungpleistozäner Formung in Hessen. Frankfurter Geogr. Hefte 45.

  2. ROSAT Discovers Unique, Distant Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    1995-06-01

    measured (by obtaining spectra of the arcs and measuring their redshift). The masses of galaxy clusters are important for the determination, for instance of the mean density and distribution of matter in the universe. This is because these clusters are the most massive, clearly defined objects known and as such trace these parameters in the universe on very large scales. Another possibility to derive the cluster mass is offered by X-ray observations, because the distribution of the hot, X-ray emitting gas traces the gravitational field of the cluster. Recently, in some clusters there has been a discrepancy between the mass determined in this way and that found from gravitational lensing effects. The team of astronomers now hopes that follow-up X-ray observations of RXJ1347.5-1145 will help to solve this puzzle. Moreover, the combination of extremely high X-ray brightness and the possibility to perform a rather accurate mass determination by the gravitational lensing effect makes this particular cluster a truly unique object. In view of the exceptional X-ray brightness, a very high mass is expected. The exact determination will be possible, as soon as spectra have been obtained of the two arcs. Contrary to what is the case in other clusters, this will not be so difficult, due to their unusual brightness and their ideal geometrical configuration. [1] This is a joint Press Release of ESO and the Max-Planck-Society. It is accompanied by a B/W photo. [2] The investigation described in this Press Release is the subject of a Letter to the Editor which will soon appear in the European journal Astronomy & Astrophysics, with the following authors: Sabine Schindler (Max-Planck-Institut fuer Extraterrestrische Physik and Max-Planck-Institut fuer Astrophysik, Garching, Germany), Hans Boehringer, Doris M. Neumann and Ulrich G. Briel (Max-Planck-Institut fuer Extraterrestrische Physik, Garching, Germany), Luigi Guzzo (Osservatorio Astronomico di Brera, Merate, Italy), Guido Chincarini

  3. Space Radar Image of Niya ruins, Taklamakan desert

    NASA Technical Reports Server (NTRS)

    1999-01-01

    human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstaltfuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    SciTech Connect

    Uzawa, Akiko; Ando, Koichi Koike, Sachiko; Furusawa, Yoshiya; Matsumoto, Yoshitaka; Takai, Nobuhiko; Hirayama, Ryoichi; Watanabe, Masahiko; Scholz, Michael; Elsaesser, Thilo; Peschke, Peter

    2009-04-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 {gamma} rays were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D{sub 10} doses (mean {+-} standard deviation) of HSG cells ranged from 2.37 {+-} 0.14 Gy to 3.47 {+-} 0.19 Gy for Chiba and from 2.31 {+-} 0.11 Gy to 3.66 {+-} 0.17 Gy for Darmstadt. Isoeffective D{sub 10} doses of gut crypts after single doses ranged from 8.25 {+-} 0.17 Gy to 10.32 {+-} 0.14 Gy for Chiba and from 8.27 {+-} 0.10 Gy to 10.27 {+-} 0.27 Gy for Darmstadt, whereas isoeffective D{sub 30} doses after three fractionated doses were 9.89 {+-} 0.17 Gy through 13.70 {+-} 0.54 Gy and 10.14 {+-} 0.20 Gy through 13.30 {+-} 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.

  5. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  6. Direct optimization method for reentry trajectory design

    NASA Astrophysics Data System (ADS)

    Jallade, S.; Huber, P.; Potti, J.; Dutruel-Lecohier, G.

    The software package called `Reentry and Atmospheric Transfer Trajectory' (RATT) was developed under ESA contract for the design of atmospheric trajectories. It includes four software TOP (Trajectory OPtimization) programs, which optimize reentry and aeroassisted transfer trajectories. 6FD and 3FD (6 and 3 degrees of freedom Flight Dynamic) are devoted to the simulation of the trajectory. SCA (Sensitivity and Covariance Analysis) performs covariance analysis on a given trajectory with respect to different uncertainties and error sources. TOP provides the optimum guidance law of a three degree of freedom reentry of aeroassisted transfer (AAOT) trajectories. Deorbit and reorbit impulses (if necessary) can be taken into account in the optimization. A wide choice of cost function is available to the user such as the integrated heat flux, or the sum of the velocity impulses, or a linear combination of both of them for trajectory and vehicle design. The crossrange and the downrange can be maximized during reentry trajectory. Path constraints are available on the load factor, the heat flux and the dynamic pressure. Results on these proposed options are presented. TOPPHY is the part of the TOP software corresponding to the definition and the computation of the optimization problemphysics. TOPPHY can interface with several optimizes with dynamic solvers: TOPOP and TROPIC using direct collocation methods and PROMIS using direct multiple shooting method. TOPOP was developed in the frame of this contract, it uses Hermite polynomials for the collocation method and the NPSOL optimizer from the NAG library. Both TROPIC and PROMIS were developed by the DLR (Deutsche Forschungsanstalt fuer Luft und Raumfahrt) and use the SLSQP optimizer. For the dynamic equation resolution, TROPIC uses a collocation method with Splines and PROMIS uses a multiple shooting method with finite differences. The three different optimizers including dynamics were tested on the reentry trajectory of the

  7. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  8. Radar Image of Galapagos Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  9. Space Radar Image of Mammoth, California in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a Spaceborne Imaging Radar-C (SIR-C) radar image on a U.S. Geological Survey digital elevation map. Vertical exaggeration is 1.87 times. The image is centered at 37.6 degrees north, 119.0 degrees west. It was acquired from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on its 67th orbit on April 13, 1994. In this color representation, red is C-band HV-polarization, green is C-band VV-polarization and blue is the ratio of C-band VV to C-band HV. Blue areas are smooth, and yellow areas are rock out-crops with varying amounts of snow and vegetation. Crowley Lake is in the foreground, and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  10. Application of Ion and Electron Momentum Imaging to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Cocke, C. L.

    2000-06-01

    COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) combines fast imaging detectors with a supersonically cooled gas target to allow the charged particles from any ionizing collision, including both recoil ions and electrons, to be collected with extremely high efficiency and with fully measured vector momenta. Since all particles are measured in event mode, the full multi-dimensional momentum space is mapped. We will review several examples of the use of this technique to study two- , three- and four-body final states created in ionizing interactions of photons and charged particles with He and D2 . The momentum spectra of electrons ejected from these targets by slow projectiles reveal the stucture of the molecular orbitals which are promoted into the continuum. Double photoionization of the same targets reveals patterns which can be interpreted in terms of collective coordinates. Two-electron removal from D2 by Xe ^26+ reveals the influence of the projectile field on the dissociation process. A recent application of the technique to ionization by high intensity laser fields will be discussed. Work performed in collaboration with M.A.Abdallah^1, I.Ali^1, Matthias Achler^2, H.Braeuning^2,3, Angela Braeuning-Deminian^2, Achim Czasch^2,3, R.Doerner^2,3, R.DuBois^6, A. Landers^1,5, V.Mergel^2, R.E.Olson^6, T.Osipov^1, M.Prior^3, H.Schmidt-Boecking^2, M.Singh^1, A.Staudte^2,3, T.Weber^2, W.Wolff^4, and H.E.Wolf^4 ^1J.R.Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506; ^2 Institut fuer Kernphysik, Univ. Frankfurt, August-Euler-Str.6,D-60486 Frankfurt, Germany ; ^3Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ^4Instituto de Fisica, Universidade Federal do Rio de Janeiro Caixa Postal 68.528, 21945-970, Rio de Janeiro, Brazil; ^5Physics Dept., Western Michigan University, Kalamazoo, MI 49008; ^6Physics Dept., Univ. Missouri Rolla, Rolla, MO 65409 Work supported by the Division of Chemical Sciences, Office of Basic

  11. Color Image of Death Valley, California from SIR-C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  12. Space Radar Image of Namib Desert in Southern Namib

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a C-band, VV polarization radar image of the Namib desert in southern Namibia, near the coast of South West Africa. The image is centered at about 25 degrees South latitude, 15.5 degrees East longitude. This image was one of the first acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) when it was taken on orbit 4 from the shuttle Endeavour on April 9, 1994. The area shown is approximately 78 kilometers by 20 kilometers. The dominant features in the image are complex sand dune patterns formed by the prevailing winds in this part of the Namib desert. The Namib desert is an extremely dry area formed largely because of the influence of the cold Benguela ocean current that flows northward along the coast of Namibia. The bright areas at the bottom of the image are exposed outcrops of Precambrian rocks. This extremely barren area is a region rich in diamonds that through the centuries have washed down from the mountains. The town of Luderitz is located just to the south of the area shown. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Aumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia

  13. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf; Auer, Siegfried; Baust, Guenter; Matt, Guenter; Otto, Katharina; Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan; Fiege, Katherina; Postberg, Frank; Gruen, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Mellert, Tobias; and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and

  14. A Mathematical Physicist's Approach to Virology

    NASA Astrophysics Data System (ADS)

    Twarock, Reidun

    2012-02-01

    The following talk has been given in a special session dedicated to Professor Heinz-Dietrich Doebner at QTS in Prague in August 2011 on the occasion of his 80th birthday. It documents my journey from being a PhD student in Mathematical Physics at the Arnold Sommerfeld Institute in Clausthal under his supervision, to becoming a Professor of Mathematical Biology at the University of York in the UK. I am currently heading an interdisciplinary research group of eight PDRAs and PhDs, focussed on investigating the structures of viruses from a symmetry perspective and unravelling the implications of virus structure on how viruses form and infect their hosts. A central element in my research is my fascination with the development and application of symmetry techniques, which stems from my time in Clausthal when working with Professor Doebner and colleagues. I would like to thank Professor Doebner for these important formative years in Clausthal. Der folgende Vortrag war mein Beitrag zu einer Festsitzung fuer Herrn Professor Heinz-Dietrich Doebner auf der Tagung QTS im August 2011 anläßlich seines achzigsten Geburtstags. Dieser Beitrag dokumentiert, wie sich meine Forschungen aus der Zeit als Doktorandin von Herrn Professor Doebner in Mathematischer Physik am Arnold Sommerfeld Institut in Clausthal weiterentwickelt haben, und zu meiner Professur in Mathematischer Biologie an der Universität York geführt haben. Ich leite dort zur Zeit eine interdisziplinäre Forschungsgruppe von acht Postdocs und Doktoranden, die sich mit der Entwicklung und Anwendung von Symmetrie-Techniken in der Virologie beschäftigt, und insbesondere untersucht, wie sich die Symmetrie-Eigenschaften von Viren auf deren Entstehung und Funktionsweise auswirken. Eine wichtige Vorraussetzung für dieses Forschungsprogramm ist meine Faszination für die Modellierung von Symmetrie-Eigenschaften, die ich während meiner Zusammenarbeit mit Herrn Professor Doebner und Kollegen in Clausthal entwickelt habe

  15. Relativistic electron beam interaction and Ka - generation in solid targets

    SciTech Connect

    Eder, D C; Eidman, K; Fill, E; Pretzler, G; Saemann, A

    1999-06-01

    When fs laser pulses interact with solid surfaces at intensities I{lambda}{sup 2} > 10{sup 18} W/cm{sup 2} {micro}m{sup 2}, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K{sub {alpha}}) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fuer Quantenoptik, the authors investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 {micro}m. By varying the position of the focus, they measure the copper K{sub {alpha}} - yield as a function of intensity in a range of 10{sup 15} to 2 x 10{sup 18} W/cm{sup 2} while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10{sup 17} W/cm{sup 2}. However, this result is readily explained by the weak scaling of the hot-electron temperature with intensity. An efficiency of 2 x 10{sup -4} for the conversion of laser energy into copper K{sub {alpha}} is measured. Simulations of the interaction of the hot electrons with the cold target material and the conversion into X-rays are carried out by means of the TIGER/ITS code, a time-independent, coupled electron/photon Monte Carlo transport code. The code calculates the propagation of individual electrons and the generation of photons in cold material. Comparison of the code predictions with the data shows an efficiency of 15% for the generation of electrons with energies in the 100 keV range. A second experiment involves the demonstration of photopumping of an innershell transition in cobalt by the copper radiation. Comparing the emission with the one of nickel, which is not photopumped by copper K{sub {alpha}} photons

  16. Safety and Security of Radioactive Sealed and Disused/Orphan Sources in Ukraine - German Contribution - 13359

    SciTech Connect

    Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten; Uhlenbruck, Hermann; Shevtsov, Alexey

    2013-07-01

    Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial and technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of

  17. Progress in the GEOROC Database - Fast and Simple Access to Analytical Data by Precompilation

    NASA Astrophysics Data System (ADS)

    Sarbas, B.

    2001-12-01

    The geochemical database GEOROC of the Max-Planck-Institut fuer Chemie in Mainz http://georoc.mpch-mainz.gwdg.de includes the published chemical analyses of samples from Oceanic Islands, Convergent Margins, and Large Igneous Provinces. As a whole, the database comprises about 77,000 whole-rock, 35,000 mineral and 3,000 inclusion analyses published in about 2,800 papers (status Sept. 2001). For the individual tectonic settings, the following numbers of analyses are available: Oceanic Islands - 25,000 whole rocks, 14,000 minerals, 1,500 inclusions Convergent Margins - 20,000 whole rocks, 9,000 minerals, 500 inclusions Large Igneous Provinces - 32,000 whole rocks, 12,000 minerals, 1500 inclusions. Data entry is complete for samples from Oceanic Islands and Oceanic Large Igneous Provinces. Newly published papers are added regularly. Among the Continental Flood Basalts, which comprise 25,000 whole-rock and 12,000 mineral analyses, large and nearly complete datasets are available for the Columbia River, Deccan, Karoo, Paraná, and Siberian Plateau Basalts. Data for Convergent Margins have been added to the database most recently. The database includes, for instance, for the Honshu Arc 3,300, for the Izu-Bonin Arc 1,550, for the Mariana Arc 1,800, for the Kurile Arc 1,400, for the Aleutian Arc 1,500, for the Cascades 500, for the Andes 1,600, for the Lesser Antilles 1,100, and for the Tonga Arc 1,400 whole-rock analyses. For many localities, huge numbers of analyses (more than 2000) are included in the GEOROC database. The selection and compilation of such substantial datasets proved to be difficult and time-consuming when using the web interface of the database. Therefore, we are building precompiled datasets that include all published whole-rock analyses and a fixed set of location and sample metadata for the respective locations. These precompiled datasets are stored as Excel files and can be downloaded easily and rapidly. If multiple element analyses exist for a

  18. Replacement of the in vivo neutralisation test for efficacy demonstration of tetanus vaccines ad us. vet.

    PubMed

    Rosskopf, Ute; Noeske, Kerstin; Werner, Esther

    2005-01-01

    The bacterium Clostridium (C.) tetani is an ubiquitous pathogen. This anaerobic, gram-positive bacterium can form spores and can be found in the whole environment. It enters the body via injuries of the skin and wounds where it releases the neurotoxin "tetanospasmin" (= tetanus toxin). The animals most susceptible to tetanus infection are horses and sheep. Only active immunisation by tetanus vaccine provides effective protection against tetanus intoxication. The marketing authorisation requirements stipulate that efficacy of tetanus vaccines ad us. vet. must be demonstrated in all target animal species via determination of neutralising tetanus serum antitoxin concentrations. The standard method used for this purpose is still the toxin neutralisation test (TNT), as it quantifies the tetanus toxin-neutralising effect of tetanus serum antibodies in vivo. In this test, tetanus toxin is added to dilutions of serum from vaccinated horse and sheep. The serum dilutions are then administered to mice or guinea pigs, which are observed for toxic symptoms. Against the background of animal protection, the goal of one project of the Paul-Ehrlich-Institut (Bundesministerium fuer Bildung und Forschung (Federal Ministry for Education and Research), 0312636) was to establish an alternative to the toxin neutralisation test, enabling the testing of efficacy of tetanus vaccines with serological in vitro methods. For this purpose, a so-called double antigen ELISA (DAE) was established which enables the testing of sera of different species in one assay. In addition, the sera were tested in an indirect ELISA for horses and sheep separately. Altogether, ten groups of horses and eight groups of sheep were immunised with ten animals per group each. The tetanus vaccines comprised almost all products authorised for the German market at the start of the project. 564 horse sera and 257 sheep sera were tested using the two ELISA methods. Some sera were also tested in vivo. The kinetics of

  19. Determination of the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for detectors used with an 800 MU/min CyberKnife{sup ®} system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method

    SciTech Connect

    Moignier, C. Huet, C.; Makovicka, L.

    2014-07-15

    Purpose: In a previous work, output ratio (OR{sub det}) measurements were performed for the 800 MU/min CyberKnife{sup ®} at the Oscar Lambret Center (COL, France) using several commercially available detectors as well as using two passive dosimeters (EBT2 radiochromic film and micro-LiF TLD-700). The primary aim of the present work was to determine by Monte Carlo calculations the output factor in water (OF{sub MC,w}) and the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors. The secondary aim was to study the detector response in small beams using Monte Carlo simulation. Methods: The LINAC head of the CyberKnife{sup ®} was modeled using the PENELOPE Monte Carlo code system. The primary electron beam was modeled using a monoenergetic source with a radial gaussian distribution. The model was adjusted by comparisons between calculated and measured lateral profiles and tissue-phantom ratios obtained with the largest field. In addition, the PTW 60016 and 60017 diodes, PTW 60003 diamond, and micro-LiF were modeled. Output ratios with modeled detectors (OR{sub MC,det}) and OF{sub MC,w} were calculated and compared to measurements, in order to validate the model for smallest fields and to calculate k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors, respectively. For the study of the influence of detector characteristics on their response in small beams; first, the impact of the atomic composition and the mass density of silicon, LiF, and diamond materials were investigated; second, the material, the volume averaging, and the coating effects of detecting material on the detector responses were estimated. Finally, the influence of the size of silicon chip on diode response was investigated. Results: Looking at measurement ratios (uncorrected output factors) compared to the OF{sub MC,w}, the PTW 60016

  20. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  1. Space Radar Image of Mt. Rainer, Washington

    NASA Technical Reports Server (NTRS)

    1994-01-01

    White River, and the river leaving the mountain at the bottom right of the image (south) is the Nisqually River, which flows out of the Nisqually glacier on the mountain. The river leaving to the left of the mountain is the Carbon River, leading west and north toward heavily populated regions near Tacoma. The dark patch at the top right of the image is Bumping Lake. Other dark areas seen to the right of ridges throughout the image are radar shadow zones. Radar images can be used to study the volcanic structure and the surrounding regions with linear rock boundaries and faults. In addition, the recovery of forested lands from natural disasters and the success of reforestation programs can also be monitored. Ultimately this data may be used to study the advance and retreat of glaciers and other forces of global change. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), the C-band (6 cm) and the X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  2. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  3. Space Radar Image of Mount Pinatubo Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Prince Albert, Canada, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of San Rafael Glacier, Chile

    NASA Technical Reports Server (NTRS)

    1994-01-01

    means. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    cover and alpine glaciers are critical to the radiation and water balances. SIR-C/X-SAR is a powerful tool because it is sensitive to most snowpack conditions and is less influenced by weather conditions than other remote sensing instruments, such as Landsat. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput SAR processing in preparation for upcoming data-intensive SAR missions. The images released here were produced as part of this experimental effort. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  7. Space Radar Image of Long Valley, California -Interferometry/Topography

    NASA Technical Reports Server (NTRS)

    1994-01-01

    this area is about 1,320 meters (4,330 feet). Brightness variations come from the radar image, which has been geometrically corrected to remove radar distortions and rotated to have north toward the top. The image in the lower right is a three-dimensional perspective view of the northeast rim of the Long Valley caldera, looking toward the northwest. SIR-C C-band radar image data are draped over topographic data derived from the interferometry processing. No vertical exaggeration has been applied. Combining topographic and radar image data allows scientists to examine relationships between geologic structures and landforms, and other properties of the land cover, such as soil type, vegetation distribution and hydrologic characteristics. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  8. Space Radar Image of Weddell Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . Oceanographers believe this process forms most of the oceans' deep water. Sea ice covering all of the southern oceans, including the Weddell Sea, typically reaches its most northerly extent in about September. As periods of daylight become gradually longer in the Southern Hemisphere, ice formation stops and the ice edge retreats southward. By February, most of the sea ice surrounding Antarctica disappears. Imaging radar is extremely useful for studying the polar regions because of the long periods of darkness and extensive cloud cover. The multiple frequencies of the SIR-C/X-SAR instruments allow further study into ways of improving the separation of the various thickness ranges of sea ice, which are vital to understanding the heat balance in the ice, ocean and atmospheric system. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  10. Vergleich von rekombinanten Vaccinia- und DNA-Vektoren zur Tumorimmuntherapie im C57BL/6-Mausmodell

    NASA Astrophysics Data System (ADS)

    Johnen, Heiko

    2002-10-01

    antigenpräsentierender Zellen verantwortlich sein. Durch die Modifikation einer Methode zur intrazellulären IFN-gamma Färbung konnten in vakzinierten Mäusen tumorantigenspezifische CTL sensitiv und quantitativ detektiert werden. Die so bestimmte CTL-Frequenz, nicht jedoch die humorale Antwort, korrelierte mit der in vivo Wirksamkeit der verschiedenen Vakzinen: DNA vakzinierte Tiere entwickeln starke tumorantigenspezifische CTL-Antworten, wohingegen in MVA-vakzinierten Tieren überwiegend gegen virale Epitope gerichtete CD4 und CD8-T-Zellen detektiert wurden. Die Wirksamkeit der pCI-DNA-Vakzine spricht für die Weiterentwicklung in weiteren präklinischen Mausmodellen, beispielsweise unter Verwendung von MUC1 oder HLA-A2 transgenen Mäusen. Die Methoden zur Detektion Tumorantigen-spezifischer CTL in 96-Loch-Mikrotiterplatten können dabei zur systematischen Suche nach im Menschen immundominanten T-Zell-Epitopen im Muzin-Molekül genutzt werden. Der durchgeführte Vergleich der auf den Vektoren pCI und MVA basierenden Vakzinen und die Analyse neuerer Publikationen führen zu dem Ergebniss, daß vor allem DNA-Vakzinen in Zukunft eine wichtige Rolle bei der Entwicklung von aktiven Tumorimpfstoffen spielen werden. Rekombinante MVA-Viren, eventuell in Kombination mit DNA- oder anderen Vektoren, haben sich dagegen in zahlreichen Studien als wirksame Impfstoffe zur Kontrolle von durch Pathogene hervorgerufenen Infektionserkrankungen erwiesen. In this study, tumor vaccines based on the plasmid pCI, the attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) and MVA-infected dendritic cells were constructed and characterized by sequencing, Western blot and flow cytometric analysis. The efficiency to induce tumor immunity in vivo was compared in several C57BL/6 mouse tumor models. Naked DNA Vaccination based on the eukaryotic expression vector pCI did induce very effective, antigen-specific and long-term protection against tumor cell lines expressing mucin, CEA or

  11. Vergleich von rekombinanten Vaccinia- und DNA-Vektoren zur Tumorimmuntherapie im C57BL/6-Mausmodell

    NASA Astrophysics Data System (ADS)

    Johnen, Heiko

    2002-10-01

    antigenpräsentierender Zellen verantwortlich sein. Durch die Modifikation einer Methode zur intrazellulären IFN-gamma Färbung konnten in vakzinierten Mäusen tumorantigenspezifische CTL sensitiv und quantitativ detektiert werden. Die so bestimmte CTL-Frequenz, nicht jedoch die humorale Antwort, korrelierte mit der in vivo Wirksamkeit der verschiedenen Vakzinen: DNA vakzinierte Tiere entwickeln starke tumorantigenspezifische CTL-Antworten, wohingegen in MVA-vakzinierten Tieren überwiegend gegen virale Epitope gerichtete CD4 und CD8-T-Zellen detektiert wurden. Die Wirksamkeit der pCI-DNA-Vakzine spricht für die Weiterentwicklung in weiteren präklinischen Mausmodellen, beispielsweise unter Verwendung von MUC1 oder HLA-A2 transgenen Mäusen. Die Methoden zur Detektion Tumorantigen-spezifischer CTL in 96-Loch-Mikrotiterplatten können dabei zur systematischen Suche nach im Menschen immundominanten T-Zell-Epitopen im Muzin-Molekül genutzt werden. Der durchgeführte Vergleich der auf den Vektoren pCI und MVA basierenden Vakzinen und die Analyse neuerer Publikationen führen zu dem Ergebniss, daß vor allem DNA-Vakzinen in Zukunft eine wichtige Rolle bei der Entwicklung von aktiven Tumorimpfstoffen spielen werden. Rekombinante MVA-Viren, eventuell in Kombination mit DNA- oder anderen Vektoren, haben sich dagegen in zahlreichen Studien als wirksame Impfstoffe zur Kontrolle von durch Pathogene hervorgerufenen Infektionserkrankungen erwiesen. In this study, tumor vaccines based on the plasmid pCI, the attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) and MVA-infected dendritic cells were constructed and characterized by sequencing, Western blot and flow cytometric analysis. The efficiency to induce tumor immunity in vivo was compared in several C57BL/6 mouse tumor models. Naked DNA Vaccination based on the eukaryotic expression vector pCI did induce very effective, antigen-specific and long-term protection against tumor cell lines expressing mucin, CEA or

  12. A short history of the Australian Society of Soil Science

    NASA Astrophysics Data System (ADS)

    Bennison, Linda

    2013-04-01

    in 1996, and which have been held subsequently every four years. A society logo was introduced for the national soil conference in 1984 and a competition was subsequently held to design a logo for the Society. The winning design was launched in 1986, replaced in 2006 and the rebranding of the Society continued into 2011 when the business name Soil Science Australia was adopted by the Society as the 'public name' of the organisation. Over the years the Society was approached to support a range of organisations. It was a founding member of the Australian GeoScience Council in 1982. In general the Society has maintained its focus on soil and limited its associations to kindred organisations. Technology has driven many of the recent changes in the Society. In 1996 the first web site was developed, housed on the University of Melbourne domain. The Society newsletter ceased to be printed on paper in 2002 and delivery to members was via email. Subscription notices are no longer issued and online collection of subscriptions due is via the internet. The administration of the Society was moved to a centralized office run by the Australian Institute of Agricultural Science in 1996 and whilst the Federal Council Executive continues to rotate across the branches of Australia the administration found a permanent home for the first time. In 1998 the first Executive Officer was appointed, whose role includes the administration of the Society. In 2010 the Governor of Queensland, Her Excellency Ms Penelope Wensley AC Governor of Queensland accepted the invitation to become the first Patron of the Society. A significant decision taken in 1996 to introduce the Certified Professional Soil Scientist (CPSS) accreditation program has seen the program burgeon primarily due to the increasing demand by Government authorities for certified professionals in soil and land management. Accreditation is only available to members with requirements for accreditation listed in the Standards for

  13. EDITORIAL: Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012) Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012)

    NASA Astrophysics Data System (ADS)

    Spezi, Emiliano; Leal, Antonio

    2013-04-01

    ) investigated the recombination effect on liquid ionization chambers for stereotactic radiotherapy, a field of increasing importance in external beam radiotherapy. They modelled both radiation source (Cyberknife unit) and detector with the BEAMnrc/EGSnrc codes and quantified the dependence of the response of this type of detectors on factors such as the volume effect and the electrode. They also recommended that these dependences be accounted for in measurements involving small fields. In the field of external beam radiotherapy, Chakarova et al (2013) showed how total body irradiation (TBI) could be improved by simulating patient treatments with MC. In particular, BEAMnrc/EGSnrc based simulations highlighted the importance of optimizing individual compensators for TBI treatments. In the same area of application, Mairani et al (2013) reported on a new tool for treatment planning in proton therapy based on the FLUKA MC code. The software, used to model both proton therapy beam and patient anatomy, supports single-field and multiple-field optimization and can be used to optimize physical and relative biological effectiveness (RBE)-weighted dose distribution, using both constant and variable RBE models. In the field of nuclear medicine Marcatili et al (2013) presented RAYDOSE, a Geant4-based code specifically developed for applications in molecular radiotherapy (MRT). RAYDOSE has been designed to work in MRT trials using sequential positron emission tomography (PET) or single-photon emission tomography (SPECT) imaging to model patient specific time-dependent metabolic uptake and to calculate the total 3D dose distribution. The code was validated through experimental measurements in homogeneous and heterogeneous phantoms. Finally, in the field of code development Miras et al (2013) reported on CloudMC, a Windows Azure-based application for the parallelization of MC calculations in a dynamic cluster environment. Although the performance of CloudMC has been tested with the PENELOPE MC

  14. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fur Luft und Raumfahrt e.v. (DLR), the major partner in science, operation and data processing of X-SAR.

  15. Space Radar Image of Prince Albert, Canada

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -greenish areas are young jack pine trees, 3 to 5 meters (10 to 16 feet) in height and 11 to 16 years old. The green areas are due to the relative high intensity of the HV channel which is strongly correlated with the amount of biomass. L-band HV channel shows the biomass variations over the entire region. Most of the green areas, when compared to the forest cover maps are identified as black spruce trees. The dark blue and dark purple colors show recently harvested or regrowth areas respectively. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  16. Space Radar Image of Death Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  17. SPace Radar Image of Mt. Pinatubo, Philippines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    the next 10 to 15 years. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  18. Roter Kamm Impact Crater in Namibia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    the surface of the Earth help geologists understand the role of the impact process in the Earth's evolution, including effects on the atmosphere and on biological evolution.

    Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  19. To Boldly Go: America's Next Era in Space. The Plasma Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this, the eighth seminar in the Administrator's Seminar Series. She introduced the NASA Administrator, Daniel S. Goldin, who, in turn, introduced the subject of plasma. Plasma, an ionized gas, is a function of temperature and density. We ve learned that, at Jupiter, the radiation is dense. But, Goldin asked, what else do we know? Dr. Cordova then introduced Dr. James Van Allen, for whom the Van Allen radiation belt was named. Dr. Van Allen, a member of the University of Iowa faculty, discussed the growing interest in practical applications of space physics, including radiation fields and particles, plasmas and ionospheres. He listed a hierarchy of magnetic fields, beginning at the top, as pulsars, the Sun, planets, interplanetary medium, and interstellar medium. He pointed out that we have investigated eight of the nine known planets,. He listed three basic energy sources as 1) kinetic energy from flowing plasma such as constitutional solar wind or interstellar wind; 2) rotational energy of the planet, and 3) orbital energy of satellites. He believes there are seven sources of energetic particles and five potential places where particles may go. The next speaker, Dr. Ian Axford of New Zealand, has been associated with the Max Planck Institut fuer Aeronomie and plasma physics. He has studied solar and galactic winds and clusters of galaxies of which there are several thousand. He believes that the solar wind temperature is in the millions of degrees. The final speaker was Dr. Roger Blanford of the California Institute of Technology. He classified extreme plasmas as lab plasmas and cosmic plasmas. Cosmic plasmas are from supernovae remnants. These have supplied us with heavy elements and may come via a shock front of 10(sup 15) electron volts. To understand the physics of plasma, one must learn about x-rays, the maximum energy of acceleration by supernova remnants, particle acceleration and composition of cosmic

  20. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1999-01-01

    microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  1. Stabile Expression von Sulfotransferasen - allein oder in Kombination mit Cytochrom P450 - in Zelllinien für Mutagenitätsuntersuchungen

    NASA Astrophysics Data System (ADS)

    Pabel, Ulrike

    2003-10-01

    -dimethylaminoazobenzol; 0,1 µM für 2-Aminoanthracen; 10 µM für 2,4-Diaminotoluol). Die stärkste Aktivierung von 2-Acetylaminofluoren und 3′-Methyl-4-dimethylaminoazobenzol erfolgte in der Zelllinie, die CYP1A2 und SULT1A2 koexprimierte; die stärkste Aktivierung von 2,4-Diaminotoluol und 2-Aminoanthracen erfolgte in der Zelllinie, die CYP1A2 und SULT1A1 koexprimierte. Sowohl SULT1A1 als auch SULT1A2 sind im Menschen genetisch polymorph. Ein unterschiedlich starkes Aktivierungspotenzial der Alloenzyme könnte eine individuell unterschiedliche Suszeptibilität für die durch aAA ausgelöste Kanzerogenese bedingen. In HPRT-Mutationsuntersuchungen mit rekombinanten Zellen zeigten die allelischen Varianten der SULT1A2 starke Unterschiede in ihrem Aktivierungpotenzial. Nur in der Zelllinie, die das Alloenzym SULT1A2*1 mit CYP1A2 koexprimierte, wurde 2-Acetylaminofluoren zum Mutagen aktiviert. Zur Aktivierung von 3′-Methyl-4-dimethylaminoazobenzol waren jedoch sowohl das Alloenzym SULT1A2*1 als auch das Alloenzym SULT1A2*2 in der Lage. Die Alloenzyme der SULT1A1 zeigten ein ähnlich gutes Aktivierungspotenzial für aAA. In früheren Studien wurde gezeigt, dass die SULT1C1 der Ratte eine wichtige Rolle bei der Aktivierung der aAA in dieser Spezies spielt. Dahingegen war die humane SULT1C1 nicht in der Lage die untersuchten aAA zu aktivieren. Die Kenntnis solcher Spezieunterschiede könnte wichtig sein um unterschiedliche Organotropismen aAA in Menschen und Tiermodellen zu erklären, da SULT mit starker Gewebespezifität exprimiert werden und das Expressionsmuster für die einzelnen SULT-Formen in Menschen und Ratten sich stark unterscheidet. Aromatic amines and amides (aAA) represent a group of chemicals with great toxicological importance due to their wide distribution in the environment and their carcinogenic potency. The carcinogenicity of aAA is mediated by the mutagenic action of highly reactive metabolites. They are frequently formed by N-hydroxylation of the exocyclic

  2. U.S. Geological Survey Karst Interest Group Proceedings, Carlsbad, New Mexico, April 29-May 2, 2014

    USGS Publications Warehouse

    Kuniansky, Eve L.; Spangler, Lawrence E.; Kuniansky, Eve L.; Spangler, Lawrence E.

    2014-01-01

    and Peggy Palmer. This sixth and current 2014 KIG workshop is hosted by the National Cave and Karst Research Institute (NCKRI) in Carlsbad, New Mexico, with Director of NCKRI, George Veni, serving as co-chair of the workshop with Eve Kuniansky, USGS. The session planning committee for this sixth workshop includes Van Brahana, USGS retired and University of Arkansas Professor Emeritus; Tom Byl, USGS and Tennessee State University; Zelda Bailey, former Director of NCKRI and retired Director, National Institute of Standards and Technology, Boulder Laboratory, Colorado; Patrick Tucci, USGS retired; and Mike Bradley, Allan Clark, Geoff Delin, Daniel Doctor, James Kaufmann, Eve Kuniansky, Randy Orndorff, Larry Spangler, and Dave Weary of the USGS. The karst hydrology field trip on Thursday will be led by Lewis Land (NCKRI karst hydrologist) and the optional Friday field trip on the geology of Carlsbad Caverns National Park will be led by George Veni. The keynote speaker is Dr. Penelope Boston, Director of Cave and Karst Studies at New Mexico Tech, Socorro, and Academic Director at NCKRI, who will address the future of karst research. Additionally, there is a featured presentation “Irish karst and its management,” by Caoimhe Hickey, The Geological Survey of Ireland, preceding a panel discussion on “Collaboration During Times of Limited Resources.” The extended abstracts of USGS authors were peer reviewed and approved for publication by the U.S. Geological Survey. Articles submitted by university researchers and other federal and state agencies did not go through the formal USGS peer review and approval process, and therefore may not adhere to our editorial standards or stratigraphic nomenclature and is not research conducted or data collected by the USGS. However, all articles had at a minimum of two peer reviews, and all articles were edited for consistency of appearance in the published Proceedings. The use of trade, firm or product names in any article is for

  3. Obituary: Alexander Dalgarno (1928 - 2015)

    NASA Astrophysics Data System (ADS)

    Hartquist, Tom; Babb, James F. Babb; Loeb, Avi

    Alex Dalgarno's major contributions to the understanding of fundamental atomic and molecular processes enabled him to develop diagnostics of the physical conditions of atmospheres and astrophysical sources and to elucidate the roles of such processes in controlling those environments. He greatly influenced the research of physicists, chemists, atmospheric scientists, and astronomers, leading Sir David Bates to write, "There is no greater figure than Alex in the history of atomic physics and its applications." Alex was born and grew up in London. As a child, he enjoyed mathematical puzzles and did well at sports. He was invited to try out for the Tottenham Hotspur soccer team, but his professional sporting career ended due to an injury, which did not prevent Alex playing tennis and squash into his ninth decade. In 1945 Alex began to study Mathematics at University College London (UCL). In 1947 Sir Harrie Massey invited him to work for a PhD in Physics and suggested that Alex investigate collisions of metastable helium atoms in helium gas to determine the cross sections for excitation transfer. Richard Buckingham was Alex's immediate supervisor. After completing his graduate study in 1951, Alex became a member of staff in Applied Mathematics at the Queen's University of Belfast (QUB). He served as the Director of the Computational Laboratory after a 1954 visit to MIT, which had an electronic computer, led Alex to persuade colleagues that QUB needed one. In 1957, the poet Philip Larkin was the best man at the marriage of Alex to Barbara Kane. They had four children, Fergus, Penelope, Piers, and Rebecca, but the marriage dissolved after ten years. Alex's important work during the 1950s on the quantitative evaluation of long-range interactions underpinned his collaborations on precise scattering calculations relevant to ultra-cold collisions and the formation of atomic Bose-Einstein condensates over four decades later. He investigated the theory of atomic and molecular

  4. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    Livan, Pavia Univ. & INFN Pasquale Lubrano, INFN Perugia Steve Magill, ANL Amelia Maio, LIPP Lisbon Horst Oberlack, MPI Munich Adam Para, FNAL Klaus Pretzl, Univ. of Bern Yifang Wang, IHEP Beijing Richard Wigmans, TTU Ren-Yuan Zhu, Caltech Local Organizing Committee: Nural Akchurin, TTU Debra Boyce, TTU (Secretary) Xiadong Jiang, LANL Jon Kapustinsky, LANL Sung-Won Lee, TTU Sally Seidel, UNM Igor Volobouev, TTU Session Conveners: LHC I-III: David Barney (CERN) Ana Henriques (CERN) Sally Seidel (UNM) Calorimetry Techniques I-II: Francesca Tedaldi (ETH-Zurich) Tao Hu (IHEP-Beijing) Calorimetry Techniques III-IV: Craig Woody (BNL) Tohru Takeshita (Shinshu) Astrophysics and Neutrinos: Don Groom (LBNL) Steve Magill (ANL) Operating Calorimeters: Jordan Damgov (TTU) Gabriella Gaudio (INFN-Pavia) Frank Chlebana (FNAL) Algorithms and Simulations: Artur Apresyan (Caltech) Igor Volobouev (TTU) Front-end and Trigger: Chris Tully (Princeton) Kejun Zhu (IHEP-Beijing) Future Calorimetry: Michele Livan (Pavia Univ.) Frank Simon (MPI) Vishnu Zutshi (NICADD) List of Participants: ABOUZEID, Hass University of Toronto AKCHURIN, Nural Texas Tech University ANDEEN, Timothy Columbia University ANDERSON, Jake Fermilab APRESYAN, Artur California Institute of Technology AUFFRAY, Etiennette CERN BARILLARI, Teresa Max-Planck-Inst. fuer Physik BARNEY, David CERN BESSON, Dave University of Kansas BOYCE, Debra Texas Tech University BRUEL, Philippe LLR, Ecole Polytechnique, CNRS/IN2P3 BUCHANAN, Norm Colorado State University CARLOGANU, Cristina LPC Clermont Ferrand / IN2P3 / CNRS CHEFDEVILLE, Maximilien CNRS/IN2P3/LAPP CHLEBANA, Frank Fermilab CLARK, Jonathan Texas Tech University CONDE MUINO, Patricia LIP-Lisboa COWDEN, Christopher Texas Tech University DA SILVA, Cesar Luiz Los Alamos National Lab DAMGOV, Jordan Texas Tech University DAVYGORA, Yuriy University of Heidelberg DEMERS, Sarah Yale University EIGEN, Gerald University of Bergen EUSEBI, Ricardo Texas A&M University FERRI, Federico CEA

  5. Discovery of a Satellite around a Near-Earth Asteroid

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Institut fuer Planetenerkundung and Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR) . [2] See ESO Press Release 09/94 of 18 May 1994. [3] Asteroids are small solid planetary bodies revolving around the Sun in orbits that are mostly located in the so-called Main Asteroid Belt, confined between the orbits of Mars and Jupiter. Most of them are thought to be fragments derived from catastrophic, past collisions between larger asteroids. By mid-1997, the orbits of about 8000 asteroids in the solar system were sufficiently well known to allow them to be officially numbered by the rules of the International Astronomical Union. (3671) Dionysus was discovered in 1984 at the Palomar Observatory (California, USA) and is named after the Greek god of wine. [4] The gravitational influence of the giant planet Jupiter can modify the orbits of asteroids located in particular regions of the Main Belt (the effect is refered to as `orbital perturbations'). As a result, the orbit of an asteroid may `cross' that of a major planet, and eventually it may become a NEO , i.e. a near-Earth object. The orbits of NEO's are highly unstable over times comparable to the age of the solar system. This instability can result in a collision with one of the terrestrial (inner) planets, or with the Sun, or in the ejection of the asteroid out of the solar system. The present orbit of (3671) Dionysus is such that this object is not likely to collide with the Earth in the foreseeable future. [5] The method of analyzing the lightcurve of Dionysus consists of `removing' (subtracting) the normal short-period brightness variations due to rotation of the asteroid and plotting the residuals against time, cf. Press Photo 20/97. The residual lightcurve shows a clear resemblance with typical lightcurves of eclipsing binary stellar systems (in which two stars move around each other, producing mutual eclipses) and leads to a model of two bodies revolving around a common gravitational centre, in an orbital

  6. EDITORIAL: Message from the Editor Message from the Editor

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2012-01-01

    Board Members, Guest Editors of special editions and those referees who were already listed in the last years. The following people have been selected: Marina Becoulet, CEA Cadarache, France Russell Doerner, University of California - San Diego, USA Emiliano Fable, Max-Planck-Institut fuer Plasmaphysik, Germany Akihide Fujisawa, Kyushi University, Japan Gerardo Giruzzi, CEA Cadarache, France Grigory Kagan, LANL, USA Morten Lennholm, CCFE, UK Akinobu Matsuyama, NIFS, Japan Peter Stangeby, University of Toronto, Canada Leonid Zakharov, PPPL, USA In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2011. Our thanks to them! Authors The winner of the 2011 Nuclear Fusion Award is H. Urano, for the paper 'Dimensionless parameter dependence of H-mode pedestal width using hydrogen and deuterium plasmas in JT-60U' (Nucl. Fusion 48 045008). The award was presented at the Plasma Conference 2011 (Joint meeting of 28th JSPF Annual Meeting, The 29th Symposium on Plasma Processing, and Division of Plasma Physics, 2011 Autumn Meeting of The Physical Society of Japan). This is the sixth year that the International Atomic Energy Agency (IAEA) has awarded an annual prize to honour exceptional work published in Nuclear Fusion. IOP Publishing has generously made a contribution of $2500 to the award. The Nuclear Fusion Electronic Archive The journal's electronic archive has been online since the beginning of the year. The archive has been a roaring success and has contributed to the nearly 300 000 downloads of journal papers in 2011. The archive can be accessed via http://iopscience.iop.org/0029-5515/page/Archive. It has direct links to 16 landmark papers, from authors such as Artsimovich and Mercier. The Nuclear Fusion office and IOP Publishing Just as the journal depends on the authors and referees, so its success is also

  7. EDITORIAL: Message from the Editor

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2009-01-01

    The end of 2008 cannot pass without remarking that the economic news has repeatedly strengthened the case for nuclear fusion; not perhaps to solve the immediate crises but to offer long-term security of energy supply. Although temporary, the passage of the price of oil through 100 per barrel is a portent of things to come and should bolster our collective determination to develop nuclear fusion into a viable energy source. It is with great pride, therefore, that I can highlight the contributions that the Nuclear Fusion journal has made to the research programme and the consolidation of its position as the lead journal in the field. Of course, the journal would be nothing without its authors and referees and I would like to pass on my sincere thanks to them all for their work in 2008 and look forward to a continuing, successful collaboration in 2009. Refereeing The Nuclear Fusion Editorial Office understands how much effort is required of our referees. The Editorial Board decided that an expression of thanks to our most loyal referees is appropriate and so, since January 2005, we have been offering the top ten most loyal referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. To select the top referees we have adopted the criterion that a researcher should have acted as a referee or adjudicator for at least two different manuscripts during the period from November 2007 to November 2008 and provided particularly detailed advice to the authors. We have excluded our Board members and those referees who were already listed in the last four years. According to our records the following people met this criterion. Congratulations and many, many thanks! T. Hino (Hokkaido University, Japan) M. Sugihara (ITER Cadarache, France) M. Dreval (Saskatchewan University, Canada) M. Fenstermacher (General Atomics, USA) V.S. Marchenko (Institute for Nuclear Research, Ukraine) G.V. Pereverzev (Max-Planck-Institut fuer

  8. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italian

  9. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA)

  10. Message from the Editor

    NASA Astrophysics Data System (ADS)

    Stambaugh, Ronald D.

    2013-01-01

    reviewed five manuscripts in the period November 2011 to December 2012 and provided excellent advice to the authors. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in recent years. The following people have been selected: Marina Becoulet, CEA-Cadarache, France Jiaqui Dong, Southwestern Institute of Physics, China Emiliano Fable, Max-Planck-Institut für Plasmaphysik, Germany Ambrogio Fasoli, Ecole Polytechnique Federale de Lausanne, Switzerland Eric Fredrickson, Princeton Plasma Physics Laboratory, USA Manuel Garcia-Munoz, Max-Planck-Institut fuer Plasmaphysik, Germany William Heidbrink, California University, USA Katsumi Ida, National Inst. For Fusion Science, Japan Peter Stangeby, Toronto University, Canada James Strachan, Princeton Plasma Physics Laboratory, USA Victor Yavorskij, Ukraine National Academy of Sciences, Ukraine In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2012. Our thanks to them!

  11. Space Radar Image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    German space agency, Deutsche Agentur fr Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR) which is major partner in science, operations and data processing of X-SAR.

  12. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Ag

  13. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  14. FORS am Very Large Telescope der Europäischen Südsternwarte

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Erstes wissenschaftliches Beobachtungsinstrument liefert eindrucksvolle Bilder Entsprechend dem straffen Zeitplan wird das ESO Very Large Teleskop Projekt (VLT-Projekt) auf dem Cerro Paranal in Nord-Chile verwirklicht: die volle Betriebsbereitschaft des ersten der vier 8,2m-Einzelteleskope wird Anfang des nächsten Jahres erreicht sein. Am 15. September 1998 wurde ein weiterer wichtiger Meilenstein erfolgreich, rechtzeitig und innerhalb des Kostenplans erreicht. Nur wenige Tage nach seiner Montage am ersten 8,2m-Einzelteleskop des VLT (UT1) konnte FORS1 ( FO cal R educer and S pectrograph) als erstes einer Gruppe leistungsfähiger und komplexer wissenschaftlicher Instrumente seine Beobachtungstätigkeit beginnen. Von Anfang an konnte es eine Reihe exzellenter astronomischer Bilder aufnehmen. Dieses bedeutende Ereignis eröffnet eine Fülle neuer Möglichkeiten für die europäische Astronomie. FORS - ein Höhepunkt an Komplexität FORS1 und das zukünftige Zwillingsinstrument (FORS2) sind das Ergebnis einer der eingehendsten und fortschrittlichsten technologischen Studien, die je für ein Instrument der bodengebundenen Astronomie durchgeführt wurden. Dieses einzigartige Instrument ist nun im Cassegrain-Fokus installiert und verschwindet beinahe, trotz seiner Dimensionen von 3 x 1.5m (Gewicht 2.3t), unterhalb des riesigen 53 m 2 großen Zerodurspiegels. Um die große Spiegelfläche und die hervorragende Bildqualität von UT1 optimal auszunützen, wurde FORS speziell so konstruiert, daß es die lichtschwächsten und entferntesten Objekte im Weltall untersuchen kann. Bald wird dieses komplexe VLT-Instrument den europäischen Astronomen erlauben, die derzeitigen Beobachtungshorizonte entscheidend zu erweitern. Die beiden FORS-Instrumente sind Vielzweck-Beobachtungsinstrumente, die in mehreren unterschiedlichen Beobachtungsarten eingesetzt werden können. Beispielsweise können Bilder mit zwei verschiedenen Abbildungsmaßstäben (Vergrößerungen) sowie Spektren mit

  15. ESO Council Visits First VLT Unit Telescope Structure in Milan

    NASA Astrophysics Data System (ADS)

    1995-12-01

    (UT4). Mirrors and Instruments As earlier announced, ESO officially received the first 8.2-metre VLT mirror from REOSC in Paris [3] on November 21. The polishing of the second mirror has already started and, based on the experience gained with the first, it is expected that this work will be accomplished in less time. The third blank is already at REOSC and the fourth will soon be ready at Schott Glaswerke in Mainz (Germany). Following extended studies, and as yet another move towards new technology within the VLT project, it has now been decided to make the 1.2-metre secondary VLT mirrors of beryllium, a very light, exotic metal. The contracting firm is Dornier of the DASA group (Germany). This saves much weight and allows these relatively large mirrors to be efficiently used in the `chopping and tilting' mode needed for observations in the infrared wavelength region as well as for the critical, image-sharpening adaptive optics system. Significant progress has also been achieved on the first astronomical instruments which will be installed at the VLT. The integration of the first two of these, ISAAC and CONICA which will be installed on UT1 in the course of 1997, has already started in the ESO laboratories at the Headquarters in Garching. Important advances have also taken place within the FORS (managed by a consortium of Landessternwarte Heidelberg, Universitaets-Sternwarte Goettingen and Institut fuer Astronomie und Astrophysik der Ludwig Maximilians Universitaet Muenchen) and FUEGOS (Paris Observatory, Meudon Observatory, Toulouse Observatory, Geneva Observatory and Bologna Observatory) projects. More details about these and other VLT instruments will be given in later communications. Notes: [1] The Council of ESO consists of two representatives from each of the eight member states. It is the highest legislative authority of the organisation and normally meets twice a year. This time, Council was invited to Milan by the Director of the Osservatorio di Brera (Milan

  16. Soybean (Glycine max L.) N-Turnover Effects on Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    . (1878): Die Sojabohne. Ergebnisse der Studien und Versuche über die Anbauwürdigkeit dieser neu einzuführenden Culturpflanze. Gerolds' Sohn. Wien. Hinson, K.-Hartwig, E.E. (1977): Soybean production in the topics. FAO. Rome. 680 p. Kádár, I.-Márton, L. (1999): Mineral nutrient cycle of soya. Agroch. and soil science. 48: 50-67. Kurnik, E.-Szabó, L. (1987): A szója. Magyarország Kulturflórája, III. kötet, 18. füzet. Akadémiai Kiadó. Budapest. Marcus-Wyner, L.-Rains, D.W. (1983): Patterns of ammonium absorption and acetylene deduction during soybean developmental growht. Physiol. Pl. 59. K., 1. sz. 79-82. Copenhagen. Márton, L.-Kismányoky, T.-Kádár, I. (1990): Testing the N-supply and N-turnover of soyabean in lysimeters. Plant production. 39: 55-64. Márton, L.-Fazekas, M.-Chrappán, Gy. (1998): Egy új pillangós. Magy. Mezőgazdaság. 53. 9. 22. Márton, L.-Szüts, G.-Kádár, I. (1998): Effect of N supplies on the protein and amino acid contents of soya flour. Plant production. 47: 417-422. Márton, L.-Kádár, I. (1999): N-mütrágyázás hatása a szója levelének klorofill és karotinoid tartalmára, valamint hozamára. Agrokémia és Talajtan. In press. Márton, L.-Kádár, I. (1998): Effect of nitrogen supplies on the yield components of soya. Plant production. 47: 677-687. Mengel, K.-Kirkby, E.A. (1982): Principles of plant nutrition. Int. Potash Inst. Bern. 655 p. Németh, T. (1995): Talajaink szervesanyag-tartalma és nitrogénforgalma. MTA Talajtani és Agrokémiai Kutató Intézete. Budapest. Norman, A. (1963): The soybean genetics, breeding, physiology, nutrition management. Acad. press. NY. 239 p. Walter, O.S.-Samuel, R.A. (1980): Modern soybean production. Champ, Illinois. USA. 192 p. Table 1. Effect of N-fertilization on the yield of soybean. Lysimeter trial, Keszthely, 1986-88. Air-dried weight, kg/ha at harvest. N kg/ha Main root Stalk Foliage Pod Grain Total At the and of August 1986. 0 672 1870 2448 750 1814 7554 40 790 2406 3952