Peng, Juan; Zu, Lily; Fang, Weihai; Huang, Lingyun; Wang, Yaru; He, Dacheng
2010-06-01
An understanding of the dissociation of penetratin is important for improving its metabolic stability and cargo-delivery efficiency. In this study, we describe the selective cleavage of the K15-K16 amide bond of penetratin under the low-energy collision-induced dissociation condition in mass spectrometry. A variety of penetratin substitutes have been studied in which key basic amino acids have been substituted within the sequence. The calculated structure indicates that an alpha-helix structure prevents the fragmentation of the central peptide domain and the side chain of lysine is involved in the proton translocation process.
Penetratin-induced transdermal delivery from H(II) mesophases of sodium diclofenac.
Cohen-Avrahami, Marganit; Libster, Dima; Aserin, Abraham; Garti, Nissim
2012-05-10
Penetratin, a cell penetrating peptide is embedded within a reversed hexagonal (H(II)) mesophase for improved transdermal delivery of sodium diclofenac (Na-DFC). The H(II) mesophase serves as the solubilization reservoir and gel matrix whereas penetratin is the transdermal penetration enhancer for the drug. The systems were characterized and the interactions between the components were determined by SAXS, ATR-FTIR and SD-NMR. High affinity of Na-DFC to glycerol monooleate (GMO) was revealed, associated with increasing the order within the water channels. This affinity is enhanced upon heating and seems to be associated with GMO dehydration. Penetratin (PEN) is entrapped at the hydrophilic region of the H(II) mesophase, between the GMO headgroups, reducing the order of the system and decreasing the size of the hexagonal domains. The transdermal delivery rate of Na-DFC through porcine skin, from the H(II) mesophases, was enhanced by PEN and so also the cumulative transport crossing the skin. PEN induced accelerated drug diffusion through the stratum corneum, towards the different skin layers. The transdermal delivery enhancement is explained from the results of the ATR-FTIR analysis. It seems that PEN accelerates the structural transition of skin lipids from hexagonal to liquid. The disordering results in enhanced diffusion of Na-DFC through the stratum corneum, followed by enhanced overall penetration of the drug.
A Critical Reassessment of Penetratin Translocation Across Lipid Membranes
Bárány-Wallje, Elsa; Keller, Sandro; Serowy, Steffen; Geibel, Sebastian; Pohl, Peter; Bienert, Michael; Dathe, Margitta
2005-01-01
Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10−13 m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides. PMID:16040762
Curvature-induced lipid segregation
NASA Astrophysics Data System (ADS)
Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu
2015-06-01
We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).
Curvature inducing macroion condensation driven shape changes of fluid vesicles.
Sreeja, K K; Ipsen, John H; Sunil Kumar, P B
2015-11-21
We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.
Fringes of equal tangential inclination by curvature-induced birefringence
NASA Astrophysics Data System (ADS)
Medhat, M.; Hendawy, N. I.; Zaki, A. A.
2003-02-01
A new kind of interference fringes, fringes of equal tangential inclination by curvature-induced birefringence, is presented. These are two-beam interference fringes produced by bending a thin sheet of birefringent material into a part of an exact cylinder such that the curvature is constant. Due to this curvature there is a uniform birefringence being induced. The change in birefringence induced by applying different radii of curvatures to a Fortepan sheet is measured. The stored (fixed) or natural birefringence of this sheet is deduced.
NASA Astrophysics Data System (ADS)
Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J.; Radhakrishanan, Ravi
2012-06-01
The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable 'neck-region' (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated.
Curvature-Induced Asymmetric Spin-Wave Dispersion
NASA Astrophysics Data System (ADS)
Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila
2016-11-01
In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect.
Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban
2016-09-06
Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.
Cosmology of a holographic induced gravity model with curvature effects
Bouhmadi-Lopez, Mariam; Errahmani, Ahmed; Ouali, Taoufiq
2011-10-15
We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.
Schmidt, Nathan W.; Wong, Gerard C. L.
2013-01-01
Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This ‘saddle-splay curvature selection rule’ is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials. PMID:24778573
Stress-induced curvature engineering in surface-micromachined devices
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir A.; Pardo, Flavio; Bishop, David J.
1999-03-01
Residual stress and stress gradients play an important role in determining equilibrium shape and behavior of various Si surface-micromachined devices under applied loads. This is particularly true for system having large-area plates and long beams where curvature resulting from stress can lead to significant deviations from stress-free shape. To gain better understanding of these properties, we have measured the equilibrium shapes of various structures built on the MCNC MUMPs using an interferometric profiler. The structures were square plates and long beams composed of various combinations of polysilicon an oxide layers. Some of the structures had additional MUMPs metal layer on top, while on others in-house chromium-gold stacks of varying thickness have been deposited. Temperature dependence of the curvature was measured for some plates. We have used these data in conjunction with simple models to significantly improve the performance of our micromachined devices. While for some structures such as large area reflectors the curvature had to be minimized, it could be advantageously exploited by others, for example vertical actuators for self-assembly.
Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.
1988-01-01
We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.
Lipid membrane-mediated attraction between curvature inducing objects
van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.
2016-01-01
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764
Lipid membrane-mediated attraction between curvature inducing objects
NASA Astrophysics Data System (ADS)
van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.
2016-09-01
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (‑3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles.
Flow-induced instabilities of shells of revolution with non-zero Gaussian curvatures conveying fluid
NASA Astrophysics Data System (ADS)
Chang, Gary Han; Modarres-Sadeghi, Yahya
2016-02-01
We study flow-induced instabilities of axis-symmetric shells of revolution with an arbitrary meridian and non-zero Gaussian curvatures. We consider a fluid-structure interaction (FSI) model based on an inviscid flow model and a thin shell theory. This FSI model is solved using a method that combines the Galerkin technique with the boundary element method (BEM). The present method is capable of investigating the dynamic behavior of doubly-curved shells in contact with flow without the need for an analytical solution of the perturbed flow potential. Shells of revolution with different values of non-zero Gaussian curvatures are investigated and their behavior is compared to shells with zero Gaussian curvature. It is found that the added mass natural frequencies of shells of revolution are larger than those of conical shells with the same inlet, outlet and length. Shells of revolution, with both positive and negative Gaussian curvatures, lose their instability by buckling, however, shells with negative Gaussian curvatures buckle at modes similar to those observed in uniform and conical shells, while shells with positive Gaussian curvatures buckle with localized deformations close to the area with higher local flow velocities.
Flow-induced buckling of flexible shells with non-zero Gaussian curvatures and thin spots.
Chang, Gary Han; Modarres-Sadeghi, Yahya
2017-03-29
We study the influence of one or multiple thin spots on the flow-induced instabilities of flexible shells of revolution with non-zero Gaussian curvatures. The shell's equation of motion is described by a thin doubly-curved shell theory and is coupled with perturbed flow pressure, calculated based on an inviscid flow model. We show that for shells with positive Gaussian curvatures conveying fluid, the existence of a thin spot results in a localized flow-induced buckling response of the shell in the neighborhood of the thin spot, and significantly reduces the critical flow velocity for buckling instability. For shells with negative Gaussian curvatures, the buckling response is extended along the shell's characteristic lines and the critical flow velocity is only slightly reduced. We also show that the length scale of the localized deformation generated by a thin spot is proportional to the shell's global thickness when the stiffness of the thin spot is negligible compared with the stiffness of the rest of the shell. When two thin spots exist at a distance, their influences are independent from each other for shells with positive Gaussian curvatures, but large-scale deformations can be created due to multiple thin spots on shells with negative curvatures, depending on the thin spots' relative position.
Curvature-induced expulsion of actomyosin bundles during cytokinetic ring contraction
Huang, Junqi; Chew, Ting Gang; Kamnev, Anton; Martin, Douglas S; Carter, Nicholas J; Cross, Robert Anthony; Oliferenko, Snezhana; Balasubramanian, Mohan K
2016-01-01
Many eukaryotes assemble a ring-shaped actomyosin network that contracts to drive cytokinesis. Unlike actomyosin in sarcomeres, which cycles through contraction and relaxation, the cytokinetic ring disassembles during contraction through an unknown mechanism. Here we find in Schizosaccharomyces japonicus and Schizosaccharomyces pombe that, during actomyosin ring contraction, actin filaments associated with actomyosin rings are expelled as micron-scale bundles containing multiple actomyosin ring proteins. Using functional isolated actomyosin rings we show that expulsion of actin bundles does not require continuous presence of cytoplasm. Strikingly, mechanical compression of actomyosin rings results in expulsion of bundles predominantly at regions of high curvature. Our work unprecedentedly reveals that the increased curvature of the ring itself promotes its disassembly. It is likely that such a curvature-induced mechanism may operate in disassembly of other contractile networks. DOI: http://dx.doi.org/10.7554/eLife.21383.001 PMID:27734801
Molecular Characterization of Caveolin-induced Membrane Curvature*
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.
2015-01-01
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117
Smrt, Sean T.; Draney, Adrian W.; Lorieau, Justin L.
2015-01-01
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. PMID:25398882
Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus.
Kuznetsov, O A; Schwuchow, J; Sack, F D; Hasenstein, K H
1999-02-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm-3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity.
Curvature Induced by Amyloplast Magnetophoresis in Protonemata of the Moss Ceratodon purpureus1
Kuznetsov, Oleg A.; Schwuchow, Jochen; Sack, Fred D.; Hasenstein, Karl H.
1999-01-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm−3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity. PMID:9952461
Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Schwuchow, J.; Sack, F. D.; Hasenstein, K. H.
1999-01-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm-3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity.
Kegulian, Natalie C.; Sankhagowit, Shalene; Apostolidou, Melania; Jayasinghe, Sajith A.; Malmstadt, Noah; Butler, Peter C.; Langen, Ralf
2015-01-01
Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet β-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well. PMID:26283787
Modeling of stress-induced curvature in surface-micromachined devices
NASA Astrophysics Data System (ADS)
Cowan, William D.; Bright, Victor M.; Elvin, Alex A.; Koester, David A.
1997-09-01
This paper compares measured to modeled stress-induced curvature of simple piston micromirrors. Two similar flexure-beam micromirror designs were fabricate using the 11th DARPA-supported multi-user MEMS processes (MUMPs) run. The test devices vary only in the MUMPs layers used for fabrication. In one case the mirror plate is the 1.5 micrometers thick Poly2 layer. The other mirror design employs stacked Poly1 and Poly2 layers for a total thickness of 3.5 micrometers . Both mirror structures are covered with the standard MUMPs metallization of approximately 200 angstrom of chromium and 0.5 micrometers of gold. Curvature of these devices was measured to within +/- 5 nm with a computer controlled microscope laser interferometer system. As intended, the increased thickness of the stacked polysilicon layers reduces the mirror curvature by a factor of 4. The two micromirror designs were modeled using IntelliCAD, a commercial CAD system for MEMS. The basis of analysis was the finite element method. Simulated results using MUMPs 11 film parameters showed qualitative agreement with measured data, but obvious quantitative differences. Subsequent remeasurement of the metal stress and use of the new value significantly improved model agreement with the measured data. The paper explores the effect of several film parameters on the modeled structures. Implications for MEMS film metrology, and test structures are considered.
Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature.
Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A; van der Gucht, Jasper
2013-06-04
Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature.
Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins
Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi
2014-01-01
Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this
Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins
NASA Astrophysics Data System (ADS)
Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi
2014-10-01
Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham-Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the
Ion beam induced surface patterns due to mass redistribution and curvature-dependent sputtering
NASA Astrophysics Data System (ADS)
Bobes, Omar; Zhang, Kun; Hofsäss, Hans
2012-12-01
Recently it was reported that ion-induced mass redistribution would solely determine nano pattern formation on ion-irradiated surfaces. We investigate the pattern formation on amorphous carbon thin films irradiated with Xe ions of energies between 200 eV and 10 keV. Sputter yield as well as number of displacements within the collision cascade vary strongly as function of ion energy and allow us to investigate the contributions of curvature-dependent erosion according to the Bradley-Harper model as well as mass redistribution according to the Carter-Vishnyakov model. We find parallel ripple orientations for an ion incidence angle of 60° and for all energies. A transition to perpendicular pattern orientation or a rather flat surface occurs around 80° for energies between 1 keV and 10 keV. Our results are compared with calculations based on both models. For the calculations we extract the shape and size of Sigmund's energy ellipsoid (parameters a, σ, μ), the angle-dependent sputter yield, and the mean mass redistribution distance from the Monte Carlo simulations with program SDTrimSP. The calculated curvature coefficients Sx and Sy describing the height evolution of the surface show that mass redistribution is dominant for parallel pattern formation in the whole energy regime. Furthermore, the angle where the parallel pattern orientation starts to disappear is related to curvature-dependent sputtering. In addition, we investigate the case of Pt erosion with 200 eV Ne ions, where mass redistribution vanishes. In this case, we observe perpendicular ripple orientation in accordance with curvature-dependent sputtering and the predictions of the Bradley-Harper model.
Picard, G.; Schneider-Henriquez, J.E.; Fendler, J.H. )
1990-01-25
Two-exposure interferometric holograms have been shown to sensitively report ultrasmall-pressure (10 natm)-induced curvature changes in glyceryl monooleate (GMO) bilayer lipid membranes (BLMs). The number of concentric fringes observed, and hence the lateral distance between the plane of the Teflon and the BLM, increased linearly with increasing transmembrane pressure and led to a value of 1.1 {plus minus} 0.05 dyn/cm for the surface tension of the BLM. BLMs with appreciable Plateau-Gibbs borders have been shown to undergo nonuniform deformation; the bilayer portion is distorted less than the surrounding Plateau-Gibbs border upon the application of a transmembrane pressure gradient.
NASA Astrophysics Data System (ADS)
Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.
2013-03-01
Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.
Curvature induced quasi-melting from rough surfaces in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Barbero, G.; Durand, G.
1991-06-01
The Berreman-de Gennes model, describing the azimutal anchoring energy of a nematic material oriented by a grooved surface, is revisited. When the groove wave-length is shorter than the nematic-isotropic coherence lenght, the nematic should decrease locally its order parameter to decrease the too large curvature energy induced by the boundaries. This curvature induced surface quasi-melting could explain recent observations on the order parameter decrease close to oblique SiO evaporated rough surfaces. Le modèle de Berreman-de Gennes, qui décrit l'ancrage azimuthal d'un nématique orienté par une surface ondulée est rediscuté. Quand la période des ondulations est plus courte que la longueur de cohérence nématique-isotrope, le nématique préfère fondre que se courber. Ce mécanisme explique la décroissance du paramètre d'ordre observée sur des surfaces rugueuses obtenues par évaporation oblique de SiO.
Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends
Rui Li
2006-01-04
The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.
Gravitational induced particle production through a nonminimal curvature-matter coupling
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.; Pavón, Diego
2015-08-01
We consider the possibility of a gravitationally induced particle production through the mechanism of a nonminimal curvature-matter coupling. An interesting feature of this gravitational theory is that the divergence of the energy-momentum tensor is nonzero. As a first step in our study we reformulate the model in terms of an equivalent scalar-tensor theory, with two arbitrary potentials. By using the formalism of open thermodynamic systems, we interpret the energy balance equations in this gravitational theory from a thermodynamic point of view, as describing irreversible matter creation processes. The particle number creation rates, the creation pressure, and the entropy production rates are explicitly obtained as functions of the scalar field and its potentials, as well as of the matter Lagrangian. The temperature evolution laws of the newly created particles are also obtained. The cosmological implications of the model are briefly investigated, and it is shown that the late-time cosmic acceleration may be due to particle creation processes. Furthermore, it is also shown that due to the curvature-matter coupling, during the cosmological evolution a large amount of comoving entropy is also produced.
NASA Astrophysics Data System (ADS)
Lim, Jin-Myoung; Chun, Myung-Suk
2011-10-01
In order to exactly understand the curvature-induced secondary flow motion, the steady electro-osmotic flow (EOF) is investigated by applying the full Poisson-Boltzmann/Navier-Stokes equations in a whole domain of the rectangular microchannel. The momentum equation is solved with the continuity equation as the pressure-velocity coupling achieves convergence by employing the advanced algorithm, and generalized Navier's slip boundary conditions are applied at the hydrophobic curved surface. Two kinds of channels widely used for lab-on-chips are explored with the glass channel and the heterogeneous channel consisting of glass and hydrophobic polydimethylsiloxane, spanning thin to thick electric double layer (EDL) problem. According to a sufficiently low Dean number, an inward skewness in the streamwise velocity profile is observed at the turn. With increasing EDL thickness, the electrokinetic effect gets higher contribution in the velocity profile. Simulation results regarding the variations of streamwise velocity depending on the electrokinetic parameters and hydrodynamic fluid slippage are qualitatively consistent with the predictions documented in the literature. Secondary flows arise due to a mismatch of streamline velocity between fluid in the channel center and near-wall regions. Strengthened secondary flow results from increasing the EDL thickness and the contribution of fluid inertia (i.e., electric field and channel curvature), providing a scaling relation with the same slope. Comparing with and between the cases enables us to identify the optimum selection in applications of curved channel for enhanced EOF and stronger secondary motion relevant to the mixing effect.
Curvature induced L-defects in water conduction in carbon nanotubes.
Zimmerli, Urs; Gonnet, Pedro G; Walther, Jens H; Koumoutsakos, Petros
2005-06-01
We conduct molecular dynamics simulations to study the effect of the curvature induced static dipole moment of small open-ended single-walled carbon nanotubes (CNTs) immersed in water. This dipole moment generates a nonuniform electric field, changing the energy landscape in the CNT and altering the water conduction process. The CNT remains practically filled with water at all times, whereas intermittent filling is observed when the dipole term is not included. In addition, the dipole moment induces a preferential orientation of the water molecules near the end regions of the nanotube, which in turn causes a reorientation of the water chain in the middle of the nanotube. The most prominent feature of this reorientation is an L-defect in the chain of water molecules inside the CNT. The analysis of the water energetics and structural characteristics inside and in the vicinity of the CNT helps to identify the role of the dipole moment and to suggest possible mechanisms for controlled water and proton transport at the nanoscale.
Curvature-induced crosshatched order in two-dimensional semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Vrusch, Cyril; Storm, Cornelis
2015-12-01
A recurring motif in the organization of biological tissues are networks of long, fibrillar protein strands effectively confined to cylindrical surfaces. Often, the fibers in such curved, quasi-two-dimensional (2D) geometries adopt a characteristic order: the fibers wrap around the central axis at an angle which varies with radius and, in several cases, is strongly bimodally distributed. In this Rapid Communication, we investigate the general problem of a 2D crosslinked network of semiflexible fibers confined to a cylindrical substrate, and demonstrate that in such systems the trade-off between bending and stretching energies, very generically, gives rise to crosshatched order. We discuss its general dependency on the radius of the confining cylinder, and present an intuitive model that illustrates the basic physical principle of curvature-induced order. Our findings shed new light on the potential origin of some curiously universal fiber orientational distributions in tissue biology, and suggests novel ways in which synthetic polymeric soft materials may be instructed or programmed to exhibit preselected macromolecular ordering.
Structure and dynamics of Penetratin's association and translocation to a lipid bilayer
NASA Astrophysics Data System (ADS)
Ignacio J., General; Asciutto, Eliana K.
2017-03-01
Penetratin belongs to the important class of small and positively charged peptides, capable of entering cells. The determination of the optimal peptidic structure for translocation is challenging; results obtained so far are varied and dependent on several factors. In this work, we review the dynamics of association of Penetratin with a modeled dioleoyl-phosphatidylcholine (DOPC) lipid membrane using molecular dynamics simulations with last generation force fields. Penetratin's structural preferences are determined using a Markov state model. It is observed that the peptide retains a helical form in the membrane associated state, just as in water, with the exception of both termini which lose helicity, facilitating the interaction of terminal residues with the phosphate groups on the membrane's outer layer. The optimal orientation for insertion is found to be with the peptide's axis forming a small angle with the interface, and with R1 stretching toward the bilayer. The interaction between arginine side-chains and phosphate groups is found to be greater than the corresponding to lysine, mainly due to a higher number of hydrogen bonds between them. The free energy profile of translocation is qualitatively studied using Umbrella Sampling. It is found that there are different paths of penetration, that greatly differ in size of free energy barrier. The lowest path is compatible with residues R10 to K13 leading the way through the membrane and pulling the rest of the peptide. When the other side is reached, the C-terminus overtakes those residues, and finally breaks out of the membrane. The peptide's secondary structure during this traversal suffers some changes with respect to the association structure but, overall, conserves its helicity, with both termini in a more disordered state.
Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.
2013-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948
Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying
2012-04-01
During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling.
Self-assembly of a filament by curvature-inducing proteins
NASA Astrophysics Data System (ADS)
Kwiecinski, James; Chapman, S. Jonathan; Goriely, Alain
2017-04-01
We explore a simplified macroscopic model of membrane shaping by means of curvature-sensing BAR proteins. Equations describing the interplay between the shape of a freely floating filament in a fluid and the adhesion kinetics of proteins are derived from mechanical principles. The constant curvature solutions that arise from this system are studied using weakly nonlinear analysis. We show that the stability of the filament's shape is completely characterized by the parameters associated with protein recruitment and establish that in the bistable regime, proteins aggregate on the filament forming regions of high and low curvatures. This pattern formation is then followed by phase-coarsening that resolves on a time-scale dependent on protein diffusion and drift across the filament, which contend to smooth and maintain the pattern respectively. The model is generalized for multiple species of BAR proteins and we show that the stability of the assembled shape is determined by a competition between proteins attaching on opposing sides.
Curvature-Induced Anomalous Enhancement in the Work Function of Nanostructures.
Kaur, Jasmin; Kant, Rama
2015-08-06
An analytical theory to estimate the electronic work function in curved geometries is formulated under Thomas-Fermi approximation. The work function is framed as the work against the electrostatic self-capacitive energy. The contribution of surface curvature is characterized by mean and Gaussian curvature (through multiple scattering expansion). The variation in work function of metal and semimetal nanostructures is shown as the consequence of surface radius of curvature comparable to electronic screening length. For ellipsoidal particles, the maximum value of work function is observed at the equator and poles for oblate and prolate particles, respectively, whereas triaxial ellipsoid shows nonuniform distribution of the work function over the surface. Similarly, theory predicts manifold increase in the work function for a particle with atomic scale roughness. Finally, the theory is validated with experimental data, and it is concluded that the work function of a nanoparticle can be tailored through its shape.
Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature*♦
Holkar, Sachin S.; Kamerkar, Sukrut C.; Pucadyil, Thomas J.
2015-01-01
Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding. PMID:25837255
SARS-CoV fusion peptides induce membrane surface ordering and curvature.
Basso, Luis G M; Vicente, Eduardo F; Crusca, Edson; Cilli, Eduardo M; Costa-Filho, Antonio J
2016-11-28
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
SARS-CoV fusion peptides induce membrane surface ordering and curvature
Basso, Luis G. M.; Vicente, Eduardo F.; Crusca Jr., Edson; Cilli, Eduardo M.; Costa-Filho, Antonio J.
2016-01-01
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed. PMID:27892522
NASA Astrophysics Data System (ADS)
Lowengrub, John; Allard, Jun; Aland, Sebastian
2016-03-01
The formation of membrane vesicles from a larger membrane that occurs during endocytosis and other cell processes is typically orchestrated by curvature-inducing molecules attached to the membrane. Recent reports demonstrate that vesicles can form de novo in a few milliseconds. Membrane dynamics at these scales are strongly influenced by hydrodynamic interactions. To study this problem, we develop new diffuse interface models for the dynamics of inextensible vesicles in a viscous fluid with stiff, curvature-inducing molecules. The model couples the Navier-Stokes equations with membrane-induced bending forces that incorporate concentration-dependent bending stiffness coefficients and spontaneous curvatures, with equations for molecule transport and for a Lagrange multiplier to enforce local inextensibility. Two forms of surface transport equations are considered: Fickian surface diffusion and Cahn-Hilliard surface dynamics, with the former being more appropriate for small molecules and the latter being better for large molecules. The system is solved using adaptive finite element methods in 3D axisymmetric geometries. The results demonstrate that hydrodynamics can indeed enable the rapid formation of a small vesicle attached to the membrane by a narrow neck. When the Fickian model is used, this is a transient state with the steady state being a flat membrane with a uniformly distributed molecule concentration due to diffusion. When the Cahn-Hilliard model is used, molecule concentration gradients are sustained, the neck stabilizes and the system evolves to a steady-state with a small, compact vesicle attached to the membrane. By varying the membrane coverage of molecules in the Cahn-Hilliard model, we find that there is a critical (smallest) neck radius and a critical (fastest) budding time. These critical points are associated with changes in the vesicle morphology from spherical to mushroom-like as the molecule coverage on the membrane is increased.
On ripples and rafts: Curvature induced nanoscale structures in lipid membranes
NASA Astrophysics Data System (ADS)
Schmid, Friederike; Dolezel, Stefan; Lenz, Olaf; Meinhardt, Sebastian
2014-03-01
We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model.
Berry curvature induced nonlinear Hall effect in time-reversal invariant materials
NASA Astrophysics Data System (ADS)
Sodemann, Inti; Fu, Liang
2015-03-01
It is well-known that a non-vanishing Hall conductivity requires time-reversal symmetry breaking. However, in this work, we demonstrate that a Hall-like transverse current can occur in second-order response to an external electric field in a wide class of time-reversal invariant and inversion breaking materials. This nonlinear Hall effect arises from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. We show that the nonlinear Hall coefficient is a rank-two pseudo-tensor, whose form is determined by point group symmetry. We will describe the optimal conditions and candidate materials to observe this effect. IS is supported by the Pappalardo Fellowship in Physics. LF is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.
Virialisation-induced curvature as a physical explanation for dark energy
Roukema, Boudewijn F.; Ostrowski, Jan J.; Buchert, Thomas E-mail: Jan.Ostrowski@astro.uni.torun.pl
2013-10-01
The geometry of the dark energy and cold dark matter dominated cosmological model (ΛCDM) is commonly assumed to be given by a Friedmann-Lemaître-Robertson-Walker (FLRW) metric, i.e. it assumes homogeneity in the comoving spatial section. The homogeneity assumption fails most strongly at (i) small distance scales and (ii) recent epochs, implying that the FLRW approximation is most likely to fail at these scales. We use the virialisation fraction to quantify (i) and (ii), which approximately coincide with each other on the observational past light cone. For increasing time, the virialisation fraction increases above 10% at about the same redshift ( ∼ 1–3) at which Ω{sub Λ} grows above 10% ( ≈ 1.8). Thus, instead of non-zero Ω{sub Λ}, we propose an approximate, general-relativistic correction to the matter-dominated (Ω{sub m}; = 1,Ω{sub Λ} = 0), homogeneous metric (Einstein-de Sitter, EdS). A low-redshift effective matter-density parameter of Ω{sub m}{sup eff}(0) = 0.26±0.05 is inferred. Over redshifts 0 < z < 3, the distance modulus of the virialisation-corrected EdS model approximately matches the ΛCDM distance modulus. This rough approximation assumes ''old physics'' (general relativity), not ''new physics''. Thus, pending more detailed calculations, we strengthen the claim that ''dark energy'' should be considered as an artefact of emerging average curvature in the void-dominated Universe, via a novel approach that quantifies the relation between virialisation and average curvature evolution.
Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B{sub 36}
Liu, Chun-Sheng Wang, Xiangfu; Yan, Xiaohong; Ye, Xiao-Juan; Zeng, Zhi
2014-11-21
The synthesis of quasiplanar boron clusters (B{sub 36}) with a central hexagonal hole provides the first experimental evidence that a single-atomic-layer borophene with hexagonal vacancies is potentially viable [Z. Piazza, H. Hu, W. Li, Y. Zhao, J. Li, and L. S. Wang, Nat. Commun. 5, 3113 (2014)]. However, owing to the hexagonal holes, tunning the electronic and physical properties of B{sub 36} through chemical modifications is not fully understood. Based on (van der Waals corrected-) density functional theory, we show that Li adsorbed on B{sub 36} and B{sub 36}{sup −} clusters can serve as reversible hydrogen storage media. The present results indicate that the curvature and ionization of substrates can enhance the bond strength of Li due to the energetically favorable B 2p-Li 2p orbitals hybridization. Both the polarization mechanism and the orbital hybridization between H-s orbitals and Li-2s2p orbitals contribute to the adsorption of H{sub 2} molecules and the resulting adsorption energy lies between the physisorbed and chemisorbed states. Interestingly, the number of H{sub 2} in the hydrogen storage medium can be measured by the appearance of the negative differential resistance behavior at different bias voltage regions. Furthermore, the cluster-assembled hydrogen storage materials constructed by metalized B{sub 36} clusters do not cause a decrease in the number of adsorbed hydrogen molecules per Li. The system reported here is favorable for the reversible hydrogen adsorption/desorption at ambient conditions.
Hasenstein, K H; Kuznetsov, O A
1999-03-01
Shoots of the lazy-2 mutant of tomato (Lycopersicon esculentum Mill., cv. Ailsa Craig) exhibit negative gravitropism in the dark, but respond positively gravitropically in (red) light. In order to test whether high-gradient magnetic fields (HGMFs) exert only ponderomotive effects on amyloplasts or affect other physiological processes, we induced magnetophoretic curvature in wild-type (WT) and lazy-2 mutant seedlings. Straight hypocotyls of 4-d-old plants were selected and the tips of their hooks were placed in an HGMF near the edge of a magnetized ferromagnetic wedge [grad (H2/2) approximately 10(9)-10(10) Oe2/cm] and mounted on a 1-rpm clinostat. After 4 h in the dark, 85% of WT hypocotyls and 67% of mutant hypocotyls curved toward the wedge. When the seedlings were exposed to red light for 1 h prior to and during the application of the HGMF, 78% of the WT seedlings curved toward the magnetic gradient, but the majority of the lazy-2 seedlings (75%) curved away from the stronger field area. Intracellular amyloplast displacement in the HGMF was similar for both varieties and resembled the displacement after horizontal reorientation. The WT showed a distinct graviresponse pattern depending on the orientation of the hook, even after excision of the apex. Application of HGMFs to decapitated hypocotyls resulted in curvature consistent with that obtained after horizontal reorientation. After light exposure, decapitated lazy-2 seedlings did not respond positively gravitropically. The data imply that the lazy-2 mutants perceive the displacement of amyloplasts in a similar manner to the WT and that the HGMF does not affect the graviresponse mechanism. The study demonstrates that ponderomotive forces due to HGMFs are useful for the analysis of the gravity-sensing mechanism in plants.
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Kuznetsov, O. A.
1999-01-01
Shoots of the lazy-2 mutant of tomato (Lycopersicon esculentum Mill., cv. Ailsa Craig) exhibit negative gravitropism in the dark, but respond positively gravitropically in (red) light. In order to test whether high-gradient magnetic fields (HGMFs) exert only ponderomotive effects on amyloplasts or affect other physiological processes, we induced magnetophoretic curvature in wild-type (WT) and lazy-2 mutant seedlings. Straight hypocotyls of 4-d-old plants were selected and the tips of their hooks were placed in an HGMF near the edge of a magnetized ferromagnetic wedge [grad (H2/2) approximately 10(9)-10(10) Oe2/cm] and mounted on a 1-rpm clinostat. After 4 h in the dark, 85% of WT hypocotyls and 67% of mutant hypocotyls curved toward the wedge. When the seedlings were exposed to red light for 1 h prior to and during the application of the HGMF, 78% of the WT seedlings curved toward the magnetic gradient, but the majority of the lazy-2 seedlings (75%) curved away from the stronger field area. Intracellular amyloplast displacement in the HGMF was similar for both varieties and resembled the displacement after horizontal reorientation. The WT showed a distinct graviresponse pattern depending on the orientation of the hook, even after excision of the apex. Application of HGMFs to decapitated hypocotyls resulted in curvature consistent with that obtained after horizontal reorientation. After light exposure, decapitated lazy-2 seedlings did not respond positively gravitropically. The data imply that the lazy-2 mutants perceive the displacement of amyloplasts in a similar manner to the WT and that the HGMF does not affect the graviresponse mechanism. The study demonstrates that ponderomotive forces due to HGMFs are useful for the analysis of the gravity-sensing mechanism in plants.
Agrawal, Neeraj J.; Weinstein, Joshua; Radhakrishnan, Ravi
2011-01-01
Using a recently developed multiscale simulation methodology, we describe the equilibrium behaviour of bilayer membranes under the influence of curvature-inducing proteins using a linearized elastic free energy model. In particular, we describe how the cooperativity associated with a multitude of protein–membrane interactions and protein diffusion on a membrane-mediated energy landscape elicits emergent behaviour in the membrane phase. Based on our model simulations, we predict that, depending on the density of membrane-bound proteins and the degree to which a single protein molecule can induce intrinsic mean curvature in the membrane, a range of membrane phase behaviour can be observed including two different modes of vesicle-bud nucleation and repressed membrane undulations. A state diagram as a function of experimentally tunable parameters to classify the underlying states is proposed. PMID:21243078
Hansen, Anne; Schäfer, Ingo; Knappe, Daniel; Seibel, Peter
2012-01-01
The health threat caused by multiresistant bacteria has continuously increased and recently peaked with pathogens resistant to all current drugs. This has triggered intense research efforts to develop novel compounds to overcome the resistance mechanisms. Thus, antimicrobial peptides (AMPs) have been intensively studied, especially the family of proline-rich AMPs (PrAMPs) that was successfully tested very recently in murine infection models. PrAMPs enter bacteria and inhibit chaperone DnaK. Here, we studied the toxicity of intracellular PrAMPs in HeLa and SH-SY5Y cells. As PrAMPs cannot enter most mammalian cells, we coupled the PrAMPs with penetratin (residues 43 to 58 in the antennapedia homeodomain) via a C-terminally added cysteine utilizing a thioether bridge. The resulting construct could transport the covalently linked PrAMP into mammalian cells. Penetratin ligation reduced the MIC for Gram-negative Escherichia coli only slightly (1 to 8 μmol/liter) but increased the activity against the Gram-positive Micrococcus luteus up to 32-fold (MIC ≈ 1 μmol/liter), most likely due to more effective penetration through the bacterial membrane. In contrast to native PrAMPs, the penetratin-PrAMP constructs entered the mammalian cells, aligned around the nucleus, and associated with the Golgi apparatus. At higher concentrations, the constructs reduced the cell viability (50% inhibitory concentration [IC50] ≈ 40 μmol/liter) and changed the morphology of the cells. No toxic effects or morphological changes were observed at concentrations of 10 μmol/liter or below. Thus, the IC50 values were around 5 to 40 times higher than the MIC values. In conclusion, PrAMPs are in general not toxic to mammalian cells, as they do not pass through the membrane. When shuttled into mammalian cells, however, PrAMPs are only slightly cross-reactive to mammalian chaperones or other intracellular mammalian proteins, providing a second layer of safety for in vivo applications, even if they
Tourdot, Richard W.; Ramakrishnan, N.; Baumgart, Tobias; Radhakrishnan, Ravi
2016-01-01
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension. PMID:26565280
NASA Astrophysics Data System (ADS)
Tourdot, Richard W.; Ramakrishnan, N.; Baumgart, Tobias; Radhakrishnan, Ravi
2015-10-01
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.
NASA Astrophysics Data System (ADS)
Bykov, A. D.; Lavrent'eva, N. N.; Sinitsa, L. N.
1992-09-01
The paper is concerned with the effect of trajectory curvature in calculations of the vibrational-rotational lines of molecules. The first-order term of the interruption function is calculated using exact solutions of classical dynamic equations. A universal function for two reduced arguments is obtained which is independent of the potential parameter and initial collision conditions; the function is capable of accounting for actual trajectories. Errors resulting from the use of a linear trajectory model are estimated for water vapor and methane expanded by various gases.
Urade, Vikrant N; Bollmann, Luis; Kowalski, Jonathan D; Tate, Michael P; Hillhouse, Hugh W
2007-04-10
The double-gyroid phase of nanoporous silica films has been shown to possess facile mass-transport properties and may be used as a mold to fabricate a variety of highly ordered inverse double-gyroid metal and semiconductor films. This phase exists only over a very small region of the binary phase diagram for most surfactants, and it has been very difficult to synthesize metal oxide films with this structure by evaporation-induced self-assembly (EISA). Here, we show the interplay of the key parameters needed to synthesize these structures reproducibly and show that the interfacial curvature may be systematically controlled. Grazing angle of incidence small-angle X-ray scattering (GISAXS) is used to determine the structure and orientation of nanostructured silica films formed by EISA from dilute silica/(poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl) surfactant solutions. Four different highly ordered film structures are observed by changing only the concentration of the surfactant, the relative humidity during dip-coating, and the aging time of the solution prior to coating. The highly ordered films progress from rhombohedral (Rm) to 2D rectangular (c2m) to double-gyroid (distorted Iad) to lamellar systematically as interfacial curvature decreases. Under all experimental conditions investigated, increasing the aging time of the coating solution was found to decrease the interfacial curvature. In particular, this parameter was critical to being able to synthesize highly ordered, pure-phase double-gyroid films. The key role of the aging time is shown via processing diagrams that map out the interplay between the aging time, composition, and relative humidity. 29Si nuclear magnetic resonance (NMR) spectroscopy and solution-phase small-angle X-ray scattering (SAXS) of the aged coating solutions presented in part I of this series are then used to interpret the effects of aging prior to dip-coating. Specifically, it was found that a predictive model based on volume
NASA Astrophysics Data System (ADS)
Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng
2013-09-01
Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.
da Hora, G C A; Archilha, N L; Lopes, J L S; Müller, D M; Coutinho, K; Itri, R; Soares, T A
2016-11-04
Antimicrobial peptides (AMPs) are cationic peptides that kill bacteria with a broad spectrum of action, low toxicity to mammalian cells and exceptionally low rates of bacterial resistance. These features have led to considerable efforts in developing AMPs as an alternative antibacterial therapy. In vitro studies have shown that AMPs interfere with membrane bilayer integrity via several possible mechanisms, which are not entirely understood. We have performed the synthesis, membrane lysis measurements, and biophysical characterization of a novel hybrid peptide. These measurements show that PA-Pln149 does not form nanopores, but instead promotes membrane rupture. It causes fast rupture of the bacterial model membrane (POPG-rich) at concentrations 100-fold lower than that required for the disruption of mammalian model membranes (POPC-rich). Atomistic molecular dynamics (MD) simulations were performed for single and multiple copies of PA-Pln149 in the presence of mixed and pure POPC/POPG bilayers to investigate the concentration-dependent membrane disruption by the hybrid peptide. These simulations reproduced the experimental trend and provided a potential mechanism of action for PA-Pln149. It shows that the PA-Pln149 does not form nanopores, but instead promotes membrane destabilization through peptide aggregation and induction of membrane negative curvature with the collapse of the lamellar arrangement. The sequence of events depicted for PA-Pln149 may offer insights into the mechanism of action of AMPs previously shown to induce negative deformation of membrane curvature and often associated with peptide translocation via non-bilayer intermediate structures.
Instant curvature measurement for microcantilever sensors
Jeon, Sangmin; Thundat, Thomas
2004-08-09
A multiple-point deflection technique has been developed for the instant measurement of microcantilever curvature. Eight light-emitting diodes are focused on various positions of a gold-coated silicon cantilever through optical fibers, and temperature change or chemical adsorption induces cantilever bending. The deflection at each point on the cantilever is measured with subnanometer precision by a position-sensitive detector, and thus the curvature of the cantilever is obtained.
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin
2016-01-01
Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. PMID:26745422
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1992-01-01
Calculations are presented of the coefficient of thermal expansion (CTE) of the radius of curvature of the reflector face sheets made of a quasi-isotropic composite. It is shown that, upon cooling, the change of the CTE of the focal distance of the mirror is equal to that of the radius of the curvature of the reflector face sheet. The CTE of the radius of the curvature of a quasi-isotropic composite face sheet depends on both the in-plane and the out-of-plane CTEs. The zero in-plane CTE of a face sheet does not guarantee mirrors with no focal length changes.
NASA Astrophysics Data System (ADS)
Monga, Olivier; Ayache, Nicholas; Sander, Peter T.
1991-09-01
Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.
Optimal Spatial Scale for Curvature Calculations in Multiphase Flows
NASA Astrophysics Data System (ADS)
Senecal, Jacob; Owkes, Mark
2016-11-01
In gas-liquid flows, the surface tension force often controls the dynamics of the flow and an accurate calculation of this force is necessary for predictive simulations. The surface tension force is directly proportional to the curvature of the gas-liquid interface, making accurate curvature calculations an essential consideration. Multiple methods have been developed to calculate the curvature of volume of fluid (VoF) interface capturing schemes, such as the height function method. These methods have been extensively tested. However, the impact of the scale or size of computational stencil on which the curvature is computed, has not been correlated with the rate at which interface perturbations relax under the surface tension force. In this work, the effect of varying the scale on which the curvature is computed has been tested and quantified. An optimal curvature scale is identified that leads to accurate and converging curvatures, and accurate timescales for surface tension induced, interface dynamics.
Wrinkles and splay conspire to give positive disclinations negative curvature
Matsumoto, Elisabetta A.; Vega, Daniel A.; Pezzutti, Aldo D.; García, Nicolás A.; Chaikin, Paul M.; Register, Richard A.
2015-01-01
Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations. PMID:26420873
NASA Astrophysics Data System (ADS)
Chambolle, Antonin; Morini, Massimiliano; Ponsiglione, Marcello
2015-12-01
This paper aims at building a unified framework to deal with a wide class of local and nonlocal translation-invariant geometric flows. We introduce a class of nonlocal generalized mean curvatures and prove the existence and uniqueness for the level set formulation of the corresponding geometric flows. We then introduce a class of generalized perimeters, whose first variation is an admissible generalized curvature. Within this class, we implement a minimizing movements scheme and we prove that it approximates the viscosity solution of the corresponding level set PDE. We also describe several examples and applications. Besides recovering and presenting in a unified way existence, uniqueness, and approximation results for several geometric motions already studied and scattered in the literature, the theory developed in this paper also allows us to establish new results.
Engineering curvature in graphene ribbons using ultrathin polymer films.
Li, Chunyu; Koslowski, Marisol; Strachan, Alejandro
2014-12-10
We propose a method to induce curvature in graphene nanoribbons in a controlled manner using an ultrathin thermoset polymer in a bimaterial strip setup and test it via molecular dynamics (MD) simulations. Continuum mechanics shows that curvature develops to release the residual stress caused by the chemical and thermal shrinkage of the polymer during processing and that this curvature increases with decreasing film thickness; however, significant deformation is only achieved for ultrathin polymer films. Quite surprisingly, explicit MD simulations of the curing and annealing processes show that the predicted trend not just continues down to film thicknesses of 1-2 nm but that the curvature development is enhanced significantly in such ultrathin films due to surface tension effects. This combination of effects leads to very large curvatures of over 0.14 nm(-1) that can be tuned via film thickness. This provides a new avenue to engineer curvature and, thus, electromagnetic properties of graphene.
Forman curvature for complex networks
NASA Astrophysics Data System (ADS)
Sreejith, R. P.; Mohanraj, Karthikeyan; Jost, Jürgen; Saucan, Emil; Samal, Areejit
2016-06-01
We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, while the distribution is broad in scale-free and real-world networks. In most networks, Forman curvature is found to display significant negative correlation with degree and centrality measures. However, Forman curvature is uncorrelated with clustering coefficient in most networks. Importantly, we find that both model and real networks are vulnerable to targeted deletion of nodes with highly negative Forman curvature. Our results suggest that Forman curvature can be employed to gain novel insights on the organization of complex networks.
Robust pupil center detection using a curvature algorithm
NASA Technical Reports Server (NTRS)
Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)
1999-01-01
Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.
On nonlinear higher spin curvature
NASA Astrophysics Data System (ADS)
Manvelyan, Ruben; Mkrtchyan, Karapet; Rühl, Werner; Tovmasyan, Murad
2011-05-01
We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the de Wit-Freedman curvature.
Controllable curvature from planar polymer sheets in response to light.
Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan
2017-02-24
The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, Ta. We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.
John Paul Wallace, Ganapati Rao Myneni, and Robert Pike
2011-03-01
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert
2011-03-31
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
Cosmic curvature and condensation
NASA Technical Reports Server (NTRS)
Harwit, Martin
1992-01-01
It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.
Stiffness Modulation of Rayed Fins by Curvature
NASA Astrophysics Data System (ADS)
Nguyen, Khoi; Yu, Ning; Venkadesan, Madhusudhan; Bandi, Mahesh; Mandre, Shreyas
2016-11-01
Fishes with rayed fins comprise over 99% of all extant fish species. Multifunctional use of fins, from propulsion to station holding, requires substantial modulation of stiffness. We propose that fishes stiffen the fin by curving it transverse to its length. This effect is similar to stiffening a dollar bill by curling it because of curvature-induced coupling of out-of-plane bending with in-plane stretching. Unlike a piece of paper, rayed fins are a composite of rays and membranes. We model this as parallel elastic beams (rays) with springy interconnections (membranes). Our analysis shows that the key parameters stiffening the fin are the ray anisotropy to bending, the misalignment of principal bending directions of adjacent rays, and the membrane elasticity. The composite fin stiffens when the principal bending directions of adjacent rays are misaligned due to fin curvature, which necessarily causes the membrane to stretch. Unlike a homogenous thin sheet, composite rayed structures are able to mimic curvature-induced stiffening by using misaligned rays even if the fin appears geometrically flat. Preliminary radiographic evidence from the rays of fish fins supports such a mechanism. Funding by Human Frontier Science Program.
Ionic liquid tunes microemulsion curvature.
Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng
2009-02-17
Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems.
Curvature Interaction in Collective Space
NASA Astrophysics Data System (ADS)
Herrmann, Richard
2012-12-01
For the Riemannian space, built from the collective coordinates used within nuclear models, an additional interaction with the metric is investigated, using the collective equivalent to Einstein's curvature scalar. The coupling strength is determined using a fit with the AME2003 ground state masses. An extended finite-range droplet model including curvature is introduced, which generates significant improvements for light nuclei and nuclei in the trans-fermium region.
Influence of Coanda surface curvature on performance of bladeless fan
NASA Astrophysics Data System (ADS)
Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2014-10-01
The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.
Sorting of amphiphile membrane components in curvature and composition gradients
NASA Astrophysics Data System (ADS)
Tian, Aiwei
Phase and shape heterogeneities in biomembranes are of functional importance. However, it is difficult to elucidate the roles membrane heterogeneities play in maintaining cellular function due to the complexity of biomembranes. Therefore, investigations of phase behavior and composition/curvature coupling in lipid and polymer model membranes offer some advantages. In this thesis, phase properties in lipid and polymer giant vesicles were studied. Line tension at the fluid/fluid phase boundary of giant lipid unilamellar vesicles was determined directly by micropipette aspiration, and found to be composition-dependent. Dynamics of calcium-induced domains within polyanionic vesicles subject to chemical stimuli were investigated, which revealed the strength of molecular interaction and suggested applications in triggered delivery. In addition, curvature sorting of lipids and proteins was examined. Lipid membrane tethers were pulled from giant unilamellar vesicles using two micropipettes and a bead. Tether radius can be controlled and measured in this system. By examining fluorescence intensity of labeled molecules as a function of curvature, we found that DiI dyes (lipid analogues with spontaneous curvatures) had no curvature preference down to radii of 10 nm. Theoretical calculation predicted that the distribution of small lipids was dominated by entropy instead of bending energy. However protein Cholera toxin subunit B was efficiently sorted away from the high positive curvature due to its negative spontaneous curvature. Bending stiffness was determined to decrease as curvature increased in homogeneous membranes with ternary lipid mixtures near a critical consulate point, revealing the strong preferential intermolecular interactions of such mixtures. In addition, diffusion controlled domain growth was observed in tethers pulled from phase-separated vesicles, which provides a new dynamic sorting principle for lipids and proteins in curvature gradients.
Curvature of the localized surface plasmon resonance peak.
Chen, Peng; Liedberg, Bo
2014-08-05
Localized surface plasmon resonance (LSPR) occurring in noble metal nanoparticles (e.g., Au) is a widely used phenomenon to report molecular interactions. Traditional LSPR sensors typically monitor shifts in the peak position or extinction in response to local refractive index changes in the close vicinity of the nanoparticle surface. The ability to resolve minute shifts/extinction changes is to a large extent limited by instrumental noise. A new strategy to evaluate LSPR responses utilizing changes in the shape of the extinction spectrum (the curvature) is proposed. The response of curvature to refractive index changes is investigated theoretically using Mie theory and an analytical expression relating the curvature to the refractive index is presented. The experimentally derived curvatures for 13 nm spherical gold nanoparticles (AuNPs) exposed to solvents with different bulk refractive indices confirm the theoretical predictions. Moreover, both the calculated and experimental findings suggest that the curvature is approximately a linear function of refractive index in regimes relevant to bio and chemical sensing. We demonstrate that curvature is superior over peak shift and extinction both in terms of signal-to-noise (S/N) ratio and reliability of LSPR sensors. With a curvature, one could readily monitor submonolayer adsorption of a low molecular weight thiol molecule (M(w) = 458.6) onto 13 nm AuNPs. It is also worthwhile mentioning that curvature is virtually insensitive to instrumental instabilities and artifacts occurring during measurement. Instabilities such as baseline tilt and shift, shift in peak position as well as sharp spikes/steps in the extinction spectra do not induce artifacts in the sensorgrams of curvature.
Spatial curvature endgame: Reaching the limit of curvature determination
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Bull, Philip; Allison, Rupert
2016-07-01
Current constraints on spatial curvature show that it is dynamically negligible: |ΩK|≲5 ×10-3 (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on ΩK at around the 10-4 level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Λ CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like ΩK with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.
Raft Formation in Lipid Bilayers Coupled to Curvature
Sadeghi, Sina; Müller, Marcus; Vink, Richard L.C.
2014-01-01
We present computer simulations of a membrane in which the local composition is coupled to the local membrane curvature. At high temperatures (i.e., above the temperature of macroscopic phase separation), finite-sized transient domains are observed, reminiscent of lipid rafts. The domain size is in the range of hundred nanometers, and set by the membrane elastic properties. These findings are in line with the notion of the membrane as a curvature-induced microemulsion. At low temperature, the membrane phase separates. The transition to the phase-separated regime is continuous and belongs to the two-dimensional Ising universality class when the coupling to curvature is weak, but becomes first-order for strong curvature-composition coupling. PMID:25296311
Spacetime curvature and the Higgs stability during inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2014-11-21
It has been claimed that the electroweak vacuum may be unstable during inflation due to large fluctuations of the order H in the case of a high inflationary scale as suggested by BICEP2. We compute the standard model Higgs effective potential including UV-induced curvature corrections at one-loop level. We find that for a high inflationary scale a large curvature mass is generated due to renormalization group running of nonminimal coupling ξ, which either stabilizes the potential against fluctuations for ξEW≳6×10(-2), or destabilizes it for ξEW≲2×10(-2) when the generated curvature mass is negative. Only in the narrow intermediate region may the effect of the curvature mass be significantly smaller.
Curvature reduces bending strains in the quokka femur
McCabe, Kyle; Henderson, Keith; Pantinople, Jess; Milne, Nick
2017-01-01
This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side) bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading. PMID:28348929
Nanoscale Membrane Curvature detected by Polarized Localization Microscopy
NASA Astrophysics Data System (ADS)
Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin
Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.
Spatial curvature falsifies eternal inflation
Kleban, Matthew; Schillo, Marjorie E-mail: mls604@nyu.edu
2012-06-01
Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup −5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ω{sub k}. On this basis we argue that a measurement of |Ω{sub k}| > 10{sup −4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ω{sub k} < −10{sup −4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ω{sub k} measurements and constitute a sharp test of these predictions.
Membrane curvature at a glance
McMahon, Harvey T.; Boucrot, Emmanuel
2015-01-01
ABSTRACT Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. PMID:25774051
On the Weyl curvature hypothesis
Stoica, Ovidiu Cristinel
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.
NASA Astrophysics Data System (ADS)
Dempsey, D.; Suckale, J.; Huang, Y.
2015-12-01
In 2010-11, a sequence of earthquakes occurred on an unmapped basement fault near Guy, Arkansas. The events are likely to have been triggered by a nine month period of wastewater disposal during which 4.5x105 m2 of water was injected at two nearby wells. Magnitude-frequency distributions (MFD) for the induced sequence show two interesting properties: (i) a low Gutenberg-Richter (GR) b-value of ~0.8 during injection, increasing to 1.0 post-injection (ii) and downward curvature of the MFD at the upper magnitude limit. We use a coupled model of injection-triggering and earthquake rupture to show how the evolving MFD can be understood in terms of an effective stress increase on the fault, which arises from overpressuring and strength reduction. Reservoir simulation is used to model injection into a horizontally extensive aquifer that overlies an impermeable basement containing a single permeable fault. Earthquake triggering occurs when the static strength, reduced by the modeled pressure increase, satisfies a Mohr-Coulomb criterion. Pressure evolution is also incorporated in a model of fault rupture, which is based on an expanding bilateral crack approximation to quasidynamic rupture propagation and static/dynamic friction evolution. An earthquake sequence is constructed as an ensemble of triggered ruptures for many realizations of a heterogeneous fractal stress distribution. During injection, there is a steady rise in fluid pressure on the fault. In addition to its role in triggering earthquakes, rising pressure affects the rupture process by reducing the dynamic strength relative to fault shear stress; this is equivalent to tectonic stress increase in natural seismicity. As mean stress increases, larger events are more frequent and this is reflected in a lower b-value. The largest events, however, occur late in the loading cycle at very high stress; their absence in the early stages of injection manifests as downward curvature in the MFD at large magnitudes.
Curvature generation in nematic surfaces
NASA Astrophysics Data System (ADS)
Mostajeran, Cyrus
2015-06-01
In recent years there has been a growing interest in the study of shape formation using modern responsive materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular, nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been made in achieving a variety of shape transitions in thin sheets of nematic solids by engineering isolated points of concentrated Gaussian curvature using topological defects in the nematic director field across textured surfaces. In this paper, we consider ways of achieving shape transitions in thin sheets of nematic glass by generation of nonlocalized Gaussian curvature in the absence of topological defects in the director field. We show how one can blueprint any desired Gaussian curvature in a thin nematic sheet by controlling the nematic alignment angle across the surface and highlight specific patterns which present feasible initial targets for experimental verification of the theory.
Geometric curvature and phase of the Rabi model
Mao, Lijun; Huai, Sainan; Guo, Liping; Zhang, Yunbo
2015-11-15
We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit–cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.
Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W
2014-03-01
Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to
Space Curvature and the "Heavy Banana 'Paradox.'"
ERIC Educational Resources Information Center
Gruber, Ronald P.; And Others
1991-01-01
Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)
Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia E-mail: enfmarti@mppmu.mpg.de E-mail: liciaverde@icc.ub.edu
2010-03-01
Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d{sub A}(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω{sub k} in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d{sub A}(z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω{sub k} degeneracy.
Curvatures Estimation in Orientation Selection
1991-01-31
than is-obtained in length-tuning measurements . Hence, over a limited range, increasing the size or gain of the small RF has a similar effect . The...the remaining larger, lower curvature units to represent the curve. An indirect test involves measuring the time for the effect to set in, with and...31Jan 91 By, Steen .Zcke * ax . Cnadr tDistribution/ Steen .Zcke *MaxS. ynaer ~ Availability Codes Dist Special Computer Vision and Robotics Laboratory
Quantum complexity and negative curvature
NASA Astrophysics Data System (ADS)
Brown, Adam R.; Susskind, Leonard; Zhao, Ying
2017-02-01
As time passes, once simple quantum states tend to become more complex. For strongly coupled k -local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system—classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.
Disformal invariance of curvature perturbation
Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp
2016-02-01
We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.
Relationship between peptide membrane curvature generation and bactericidal activities
NASA Astrophysics Data System (ADS)
Schmidt, Nathan; Lee, Michelle; Kuo, David; Ouellette, Andre; Wong, Gerard
2013-03-01
Many amphipathic peptides and amphipathic domains in proteins can restructure biological membranes. Two examples are host defense antimicrobial peptides (AMPs) which disrupt and destabilize the cell membranes of microbes, and apolipoproteins which help stabilize nanoscale lipid aggregates. We use complementary x-ray and bacterial cell assays to elucidate the molecular length scale membrane deformations generated by amphipathic peptides with different structural motifs and relate these deformations to their activities on bacteria. Small angle x-ray scattering is used to study the interactions of model membranes with prototypical AMPs and consensus peptides from the amphipathic domains in apolipoproteins. By characterizing the nanoscale curvature deformations induced by these two distinct classes of membrane restructuring peptides we will discuss the role of amino acid composition on curvature generation. Bactericidal assays are used to access the in vivo activities of different amphipathic peptide motifs in order to understand the relationships between cell viability and membrane curvature generation.
Sculpting membranes: a mechanism of curvature generation by proteins
NASA Astrophysics Data System (ADS)
Campelo, Felix
2010-03-01
A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Crescent shaped N-BAR domains containing amphipathic helices can induce membrane curvature by two mechanisms: the scaffolding mechanism due to the very shape of the BAR dimer, and the hydrophobic insertion mechanism by which small shallow inclusions penetrate the membrane matrix and act as a wedge changing the local membrane curvature. We will focus on this latter mechanism, and study it from a quantitative point of view. We use an elastic model of the lipid bilayer, taking into account the internal strains and stresses generated by the presence of an inclusion. We show that large membrane curvatures found in in vitro experiments can be ascribed to this mechanism, and that shallow insertions are more powerful curvature generators than lipids.
Intracellular magnetophoresis of amyloplasts and induction of root curvature
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Intracellular magnetophoresis of amyloplasts and induction of root curvature.
Kuznetsov, O A; Hasenstein, K H
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Effect of topological defects and curvature on anisotropic crystal growth
NASA Astrophysics Data System (ADS)
Azadi, Amir; Grason, Gregory M.
2015-03-01
The equilibrium shapes and symmetries of crystals are vestiges of the physical principles underlying their formation. We perform particle-based simulations guided by analytical analysis to investigate the structure of crystalline domains on curved substrates, a focus on the impact of topological defects on domain morphology. We find at low area fraction, as has been argued previously, that isotropic crystal growth with relatively compact domains generates large curvature-induced strains accommodated by relative ductile interactions, while the formation of anisotropic ribbon-like structures with lower-curvature induced stresses, introduces a larger line tension cost, and is thus favored for brittle crystals. Our results show that for ductile crystals with large surface coverage, appearance of stable topological defects precludes the formation of anisotropic, ribbon domains. However branch-like structures with large interfacial area are stable for certain values of intermediate curvature and crystalline ductility. These processes are guided by the interplay between elastic shape instability, defects, and curvature, where pattern formations are not related to kinetic instabilities.
Curvature–undulation coupling as a basis for curvature sensing and generation in bilayer membranes
Bradley, Ryan P.; Radhakrishnan, Ravi
2016-01-01
We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height–height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function. PMID:27531962
Mirror with thermally controlled radius of curvature
Neil, George R.; Shinn, Michelle D.
2010-06-22
A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.
Radius of curvature controlled mirror
Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.
2006-01-17
A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.
Robust contour decomposition using a constant curvature criterion
NASA Technical Reports Server (NTRS)
Wuescher, Daniel M.; Boyer, Kim L.
1991-01-01
The problem of decomposing an extended boundary or contour into simple primitives is addressed with particular emphasis on Laplacian-of-Gaussian (LoG) zero-crossing contours. A technique is introduced for partitioning such contours into constant curvature segments. A nonlinear `blip' filter matched to the impairment signature of the curvature computation process, an overlapped voting scheme, and a sequential contiguous segment extraction mechanism are used. This technique is insensitive to reasonable changes in algorithm parameters and robust to noise and minor viewpoint-induced distortions in the contour shape, such as those encountered between stereo image pairs. The results vary smoothly with the data, and local perturbations induce only local changes in the result. Robustness and insensitivity are experimentally verified.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.
Streamline curvature effects on turbulent boundary layers
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Chambers, T. L.
1976-01-01
A theoretical tool has been developed for predicting, in a nonempirical manner, effects of streamline curvature and coordinate-system rotation on turbulent boundary layers. The second-order closure scheme developed by Wilcox and Traci has been generalized for curved streamline flow and for flow in a rotating coordinate system. A physically based straightforward argument shows that curvature/rotation primarily affects the turbulent mixing energy; the argument yields suitable curvature/rotation terms which are added to the mixing-energy equation. Singular-perturbation solutions valid in the wall layer of a curved-wall boundary layer and a fully developed rotating channel flow demonstrate that, with the curvature/rotation terms, the model predicts the curved-wall and the rotating coordinate system laws of the wall. Results of numerical computations of curved-wall boundary layers and of rotating channel flow show that curvature/rotation effects can be computed accurately with second-order closure.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Evans, M. L.
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.
Bcl-2 apoptosis proteins, mitochondrial membrane curvature, and cancer
NASA Astrophysics Data System (ADS)
Hwee Lai, Ghee; Schmidt, Nathan; Sanders, Lori; Mishra, Abhijit; Wong, Gerard; Ivashyna, Olena; Christenson, Eric; Schlesinger, Paul; Akabori, Kiyotaka; Santangelo, Christian
2012-02-01
Critical interactions between Bcl-2 family proteins permeabilize the outer mitochondrial membrane, a common decision point early in the intrinsic apoptotic pathway that irreversibly commits the cell to death. However, a unified picture integrating the essential non-passive role of lipid membranes with the contested dynamics of Bcl-2 regulation remains unresolved. Correlating results between synchrotron x-ray diffraction and microscopy in cell-free assays, we report activation of pro-apoptotic Bax induces strong pure negative Gaussian membrane curvature topologically necessary for pore formation and membrane remodeling events. Strikingly, Bcl-xL suppresses not only Bax-induced pore formation, but also membrane remodeling by disparate systems including cell penetrating, antimicrobial or viral fusion peptides, and bacterial toxin, none of which have BH3 allosteric domains to mediate direct binding. We propose a parallel mode of Bcl-2 pore regulation in which Bax and Bcl-xL induce antagonistic and mutually interacting Gaussian membrane curvatures. The universal nature of curvature-mediated interactions allows synergy with direct binding mechanisms, and potentially accounts for the Bcl-2 family modulation of mitochondrial fission/fusion dynamics.
Gao, Dengliang
2013-03-01
In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.
Magnetophoretic Induction of Root Curvature
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.
1997-01-01
The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.
Programming curvature using origami tessellations
NASA Astrophysics Data System (ADS)
Dudte, Levi H.; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L.
2016-05-01
Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures--we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.
Curvature function and coarse graining
Diaz-Marin, Homero; Zapata, Jose A.
2010-12-15
A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to ''local details'' ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F{sub S}(A) defined below. It covers the holonomy function in the sense that expF{sub S}(A)=Hol(l={partial_derivative}S,A).
Curvature in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Li, Wenxia; Hasinska, Kathy; Seabaugh, Matt; Swartz, Scott; Lannutti, John
At this point in history, curvature is inherent to the laminated components that comprise solid oxide fuel cells (SOFCs). Surprisingly, however, this fact has never been previously quantified in the literature. In addition, potential curvature changes associated with NiO reduction and re-oxidation during operation have not been investigated. In this report, an optical profilometer was employed to non-destructively quantify the surface curvature or cracking behavior observed on a large scale in industrially manufactured cells. This provides insights into the challenges that the component materials face as well as additional appreciation for why, in spite of a concerted effort to commercialize SOFC power generation, all currently manufactured SOFC stacks fail. Our results demonstrate that cracked electrolyte areas (caused by differential sintering) are flatter than uncracked regions. The height of the electrolyte surface ranged from 86 to 289 μm above the baseline following sintering. Reduction typically results in increases in curvature of up to 214 μm. Initial crack density appears to affect curvature evolution during reduction; the higher the crack density, the smaller the curvature increase following reduction at 600 °C. In general, however, we observed that the electrolyte layer is remarkably resistant to further cracking during these typographic changes. Following oxidation at 750 °C, large changes in curvature (up to 280 μm) are noted that appear to be related to the strength of the bond between the electrolyte and the underlying anode.
Curvature and torsion in growing actin networks
Shaevitz, Joshua W; Fletcher, Daniel A
2011-01-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Impact of curvature on topological defects
NASA Astrophysics Data System (ADS)
Mesarec, L.; Góźdź, W.; Iglič, A.; Kralj, S.
2017-01-01
We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. In particular, in oblate ellipsoids the extrinsic and intrinsic elastic terms enforce conflicting tendencies to positions of TDs.
Berry curvature and various thermal Hall effects
NASA Astrophysics Data System (ADS)
Zhang, Lifa
2016-10-01
Applying the approach of semiclassical wave packet dynamics, we study various thermal Hall effects where carriers can be electron, phonon, magnon, etc. A general formula of thermal Hall conductivity is obtained to provide an essential physics for various thermal Hall effects, where the Berry phase effect manifests naturally. All the formulas of electron thermal Hall effect, phonon Hall effect, and magnon Hall effect can be directly reproduced from the general formula. It is also found that the Strěda formula can not be directly applied to the thermal Hall effects, where only the edge magnetization contributes to the Hall effects. Furthermore, we obtain a combined formula for anomalous Hall conductivity, thermal Hall electronic conductivity and thermal Hall conductivity for electron systems, where the Berry curvature is weighted by a different function. Finally, we discuss particle magnetization and its relation to angular momentum of the carrier, change of which could induce a mechanical rotation; and possible experiments for thermal Hall effect associated with a mechanical rotation are also proposed.
Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.
Silva, Pedro Emanuel Santos; Godinho, Maria Helena
2017-03-01
There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl.
Role of feature curvature in contact guidance
Mathur, Anurag; Moore, Simon W.; Sheetz, Michael P.; Hone, James
2012-01-01
This study examines the role of feature curvature in cellular topography sensing. To separate the effects of feature size and curvature, we have developed a method to fabricate grooved substrates whose radius of curvature (r) is varied from under 10 nm to 400 nm, while all other dimensions are kept constant. With increasing r up to 200 nm, mouse embryonic fibroblasts increased their spread area, but reduced their polarization (aspect ratio). Interestingly, on features with an r of 200 and 400 nm - where there was very little effect on spreading area and polarization - we find that internal structures such as stress fibers are nevertheless still strongly aligned to the topography. These findings are of importance to studies of both tissue engineering and curvature sensing proteins. PMID:22426288
Detonation front curvatures and detonation rates
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark
2017-01-01
Many detonation front curvatures are reviewed. Most are of the Shock Dynamics type, which are described as a combination of quadratic and 8th power-of-the-radius curves. The integrated fraction of the 8th power curve is taken as a measure of curvature, which we are able to relate to the logarithm of the detonation rate. This provides a means of estimating the rates of some unknown explosives from the curvature. Using the edge lag divided by the radius is an even better way. A second group of curvatures are almost or purely quadratic. This is probably not associated with density gradients but may be caused by low sound speeds. A final group of "sombreros" show curvy fronts for ideal explosives, which appear to be caused by density gradients.
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been
First Investigation on the Magnetic Curvature Distribution in the Magnetic Diffusion Region
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shen, C.; Liu, Z.; Marchaudon, A.; Rong, Z.
2015-12-01
We report first results of magnetic curvature distribution in the diffusion region of a unique magnetic reconnection event. This event is exceptional since all four Cluster spacecraft are crossing the diffusion region. Magnetic curvature analysis shows that magnetic field lines are sharply curved with high curvature in the inner outflow regions between the two Hall regions and display nearly coplanar features of antiparallel reconnection. Combination of the decrease in curvature radius of magnetic field lines and the increase in electron gyro-radius induces curvature pitch angle scattering of initially trapped electrons, resulting in an isotropic electron distribution. In Hall regions, magnetic curvature decreases corresponding obviously to the presence of Y-directed Hall fields, which implies that the stress of reconnected field is released here, in agreement with whistler mediated-reconnection. The value and direction of curvature radius are not well organized due to the fluctuating Hall fields resulting from the temporal dynamical reconnection.Same analysis will be applied to MMS data to investigate the fine magnetic structure in diffusion region.
Aggregation and vesiculation of membrane proteins by curvature-mediated interactions
NASA Astrophysics Data System (ADS)
Reynwar, Benedict J.; Illya, Gregoria; Harmandaris, Vagelis A.; Müller, Martin M.; Kremer, Kurt; Deserno, Markus
2007-05-01
Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.
Curvature Analysis of Cardiac Excitation Wavefronts
2013-04-01
computational cardiac-cell network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Curvature Analysis of Cardiac...network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Index Terms Cardiac excitation waves...isopotentials, Bézier curves, curvature, cardiac arrhythmia and fibrillation Ç 1 INTRODUCTION AN estimated 81,000,000 American adults, more than onein three
Curvature adaptive optics and low light imaging
NASA Astrophysics Data System (ADS)
Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.
We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.
Nonadditive Compositional Curvature Energetics of Lipid Bilayers
NASA Astrophysics Data System (ADS)
Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.
2016-09-01
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
The role of curvature in entanglement
NASA Astrophysics Data System (ADS)
Buck, Gregory
2015-10-01
Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.
Spherical gravitational curvature boundary-value problem
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2016-08-01
Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.
Falk, Kerstin; Sedlmeier, Felix; Joly, Laurent; Netz, Roland R; Bocquet, Lydéric
2010-10-13
In this paper, we study the interfacial friction of water at graphitic interfaces with various topologies, water between planar graphene sheets, inside and outside carbon nanotubes, with the goal to disentangle confinement and curvature effects on friction. We show that the friction coefficient exhibits a strong curvature dependence; while friction is independent of confinement for the graphene slab, it decreases with carbon nanotube radius for water inside, but increases for water outside. As a paradigm the friction coefficient is found to vanish below a threshold diameter for armchair nanotubes. Using a statistical description of the interfacial friction, we highlight here a structural origin of this curvature dependence, mainly associated with a curvature-induced incommensurability between the water and carbon structures. These results support the recent experiments reporting fast transport of water in nanometric carbon nanotube membranes.
Strong curvature effects in Neumann wave problems
Willatzen, M.; Pors, A.; Gravesen, J.
2012-08-15
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
Lipids, curvature, and nano-medicine*
Mouritsen, Ole G
2011-01-01
The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature. Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy. PMID:22164124
Curvature and geometric modules of noncommutative spheres and tori
Arnlind, Joakim
2014-04-15
When considered as submanifolds of Euclidean space, the Riemannian geometry of the round sphere and the Clifford torus may be formulated in terms of Poisson algebraic expressions involving the embedding coordinates, and a central object is the projection operator, projecting tangent vectors in the ambient space onto the tangent space of the submanifold. In this note, we point out that there exist noncommutative analogues of these projection operators, which implies a very natural definition of noncommutative tangent spaces as particular projective modules. These modules carry an induced connection from Euclidean space, and we compute its scalar curvature.
Eigenstates of Moebius nanostructures including curvature effects
Gravesen, J.; Willatzen, M.
2005-09-15
Moebius-shell structures and their physical properties have recently received considerable attention experimentally and theoretically. In this work, eigenstates and associated eigenenergies are determined for a quantum-mechanical particle bounded to a Moebius shell including curvature contributions to the kinetic-energy operator. This is done using a parametrization of the Moebius shell-found by minimizing the elastic energy of the full structure-and employing differential-geometry methods. It is shown that inclusion of curvature contributions to the kinetic energy leads to splitting of the otherwise doubly degenerate groundstate and significantly alters the form of the groundstate and excited-state wavefunctions. Hence, we anticipate qualitative changes in the physical properties of Moebius-shell structures due to surface confinement and curvature effects.
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
HEREDITARY DISTAL FORELEG CURVATURE IN THE RABBIT
Pearce, Louise
1960-01-01
An inwardly directed curvature of the distal segment of both forelegs of the rabbit has been described. The condition was detected at 2 to 3 weeks of age, developed rapidly, and reached its final and permanent stage at 2 to 3 months of age. Only the distal epiphysis of the ulna was primarily affected and this in the form of a massive chondrodystrophic lesion accompanied by a progressive curvature of the shaft. The curvature of the growing radius was a secondary effect due to the firm, immovable, anatomical connection of the ulna and radius. The positional changes of the wrist and paw were likewise effects secondary to the changed form of the ulna and radius. The bowing abnormality occurred only in certain families of pure bred Beveren, Belgian, French Silver, and Dutch rabbits and was found to be inherited. The mode of inheritance was on the basis of a single recessive unit factor (5). PMID:13733755
On the curvature effect of thin membranes
NASA Astrophysics Data System (ADS)
Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James
2013-01-01
We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.
NASTRAN modifications for recovering strains and curvatures
NASA Technical Reports Server (NTRS)
Hennrich, C. W.
1975-01-01
Modifications to the NASTRAN structural analysis computer program are described. The modifications allow the recovery of strain and curvature data for the general two-dimensional elements, in addition to the usual stress data. Option features allow the transformation of the strain/curvature (or stress) data to a common coordinate system and representation at the grid points of the structural model rather than at the conventional element center locations. Usage information is provided which will allow present users of NASTRAN to easily utilize the new capability.
Equal-Curvature X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Zhang, William
2002-01-01
We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.
Cholesterol Mediates Membrane Curvature during Fusion Events
NASA Astrophysics Data System (ADS)
Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David
2012-06-01
Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41’s membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.
Ray Curvature and Refraction of Wave Packets.
1978-09-01
1!~~~~~ _ ‘ AD AOM 302 FLORIDA STATE UNIV TALLAHASSEE DEPT OF OCEANOGRAPHY FIG B/3 RAY CURVATURE AND REFRACTION OF WAVE PACKETS. (U) SEP 78 .J E...BREEDING N00014—77—C—0329 UNCLASSIFIED TR JE6 3 NL _ _ _ rwii__ _ ~iU ir!I I -~~ RAYOJR\\1L~[UREAND REFRACI ION OF WAVE F1~\\CKET~S ~y J. Ernest Breeding...01 29 014 -~ Technical Report No. JEB-3 Department of Oceanography • Florida State University RAY CURVATURE AND REFRACTION OF WAVE PACKETS b O G • J
Curvature-driven capillary migration and assembly of rod-like particles.
Cavallaro, Marcello; Botto, Lorenzo; Lewandowski, Eric P; Wang, Marisa; Stebe, Kathleen J
2011-12-27
Capillarity can be used to direct anisotropic colloidal particles to precise locations and to orient them by using interface curvature as an applied field. We show this in experiments in which the shape of the interface is molded by pinning to vertical pillars of different cross-sections. These interfaces present well-defined curvature fields that orient and steer particles along complex trajectories. Trajectories and orientations are predicted by a theoretical model in which capillary forces and torques are related to Gaussian curvature gradients and angular deviations from principal directions of curvature. Interface curvature diverges near sharp boundaries, similar to an electric field near a pointed conductor. We exploit this feature to induce migration and assembly at preferred locations, and to create complex structures. We also report a repulsive interaction, in which microparticles move away from planar bounding walls along curvature gradient contours. These phenomena should be widely useful in the directed assembly of micro- and nanoparticles with potential application in the fabrication of materials with tunable mechanical or electronic properties, in emulsion production, and in encapsulation.
Graph Curvature for Differentiating Cancer Networks
Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen
2015-01-01
Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480
Riemann curvature of a boosted spacetime geometry
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco
2016-10-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.
Stability and control of compressible flows over a surface with concave-conves curvature
NASA Technical Reports Server (NTRS)
Maestrello, L.; Bayliss, A.; Parikh, P.; Turkel, E.
1986-01-01
The active control of spatially unstable disturbances in a laminar, two-dimensional, compressible boundary layer over a curved surface is numerically simulated. The control is effected by localized time-periodic surface heating. We consider two similar surfaces of different heights with concave-convex curvature. In one, the height is sufficiently large so that the favorable pressure gradient is sufficient to stabilize a particular disturbance. In the other case the pressure gradient induced by the curvature is destabilizing. It is shown that by using active control that the disturbance can be stabilized. The results demonstrate that the curvature induced mean pressure gradient significantly enhances the receptivity of the flow localized time-periodic surface heating and that this is a potentially viable mechanism in air.
Seismological Constraints on Fault Plane Curvature
NASA Astrophysics Data System (ADS)
Reynolds, K.
2015-12-01
The down-dip geometry of seismically active normal faults is not well known. Many examples of normal faults with down-dip curvature exist, such as listric faults revealed in cross-section or in seismic reflection data, or the exposed domes of core complexes. However, it is not understood: (1) whether curved faults fail in earthquakes, and (2) if those faults have generated earthquakes, is the curvature a primary feature of the rupture or due to later modification of the plane? Even if an event is surface-rupturing, because of the limited depth-extent over which observations can be made, it is difficult to reliably constrain the change in dip with depth (if any) and therefore the fault curvature. Despite the uncertainty in seismogenic normal fault geometries, published slip inversions most commonly use planar fault models. We investigate the seismological constraints on normal fault geometry using a forward-modelling approach and present a seismological technique for determining down-dip geometry. We demonstrate that complexity in the shape of teleseismic body waveforms may be used to investigate the presence of down-dip fault plane curvature. We have applied this method to a catalogue of continental and oceanic normal faulting events. Synthetic models demonstrate that the shapes of SH waveforms at along-strike stations are particularly sensitive to fault plane geometry. It is therefore important to consider the azimuthal station coverage before modelling an event. We find that none of the data require significant down-dip curvature, although the modelling results for some events remain ambiguous. In some cases we can constrain that the down-dip fault geometry is within 20° of planar.
How to calculate normal curvatures of sampled geological surfaces
NASA Astrophysics Data System (ADS)
Bergbauer, Stephan; Pollard, David D.
2003-02-01
Curvature has been used both to describe geological surfaces and to predict the distribution of deformation in folded or domed strata. Several methods have been proposed in the geoscience literature to approximate the curvature of surfaces; however we advocate a technique for the exact calculation of normal curvature for single-valued gridded surfaces. This technique, based on the First and Second Fundamental Forms of differential geometry, allows for the analytical calculation of the magnitudes and directions of principal curvatures, as well as Gaussian and mean curvature. This approach is an improvement over previous methods to calculate surface curvatures because it avoids common mathematical approximations, which introduce significant errors when calculated over sloped horizons. Moreover, the technique is easily implemented numerically as it calculates curvatures directly from gridded surface data (e.g. seismic or GPS data) without prior surface triangulation. In geological curvature analyses, problems arise because of the sampled nature of geological horizons, which introduces a dependence of calculated curvatures on the sample grid. This dependence makes curvature analysis without prior data manipulation problematic. To ensure a meaningful curvature analysis, surface data should be filtered to extract only those surface wavelengths that scale with the feature under investigation. A curvature analysis of the top-Pennsylvanian horizon at Goose Egg dome, Wyoming shows that sampled surfaces can be smoothed using a moving average low-pass filter to extract curvature information associated with the true morphology of the structure.
Inequalities for scalar curvature of pseudo-Riemannian submanifolds
NASA Astrophysics Data System (ADS)
Tripathi, Mukut Mani; Gülbahar, Mehmet; Kılıç, Erol; Keleş, Sadık
2017-02-01
Some basic inequalities, involving the scalar curvature and the mean curvature, for a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold are obtained. We also find inequalities for spacelike submanifolds. Equality cases are also discussed.
Measuring Intrinsic Curvature of Space with Electromagnetism
NASA Astrophysics Data System (ADS)
Mabin, Mason; Becker, Maria; Batelaan, Herman
2016-10-01
The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.
Tube curvature measuring probe and method
Sokol, George J.
1990-01-01
The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.
Streamline curvature in supersonic shear layers
NASA Technical Reports Server (NTRS)
Kibens, V.
1992-01-01
Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.
Static optical designs for Wavefront Curvature Sensing
NASA Astrophysics Data System (ADS)
Bharmal, Nazim A.
2006-06-01
A bulk optic is presented, the Parallel Output Beamsplitter, which allows simultaneous imaging of two planes either side of the focus using static imaging optics. The POB is used to create novel optical configurations for Wavefront Curvature Sensing and two designs are presented. The first is suited to small-amplitude aberration measurements in situations where compactness, a large field of view, and high optical throughput are desirable. A laboratory experiment using a POB to make such a wavefront sensor was undertaken, and results are presented. The second design is a conceptual idea which offers image-scale invariant imaging of two planes whose conjugation satisfies the requirements of a conventional Wavefront Curvature Sensor concept.
Cosmological signatures of anisotropic spatial curvature
Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo E-mail: mena@iem.cfmac.csic.es
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07
Breeding curvature from extended gauge covariance
NASA Astrophysics Data System (ADS)
Aldrovandi, R.
1991-05-01
Independence between spacetime and “internal” space in gauge theories is related to the adjoint-covariant behaviour of the gauge potential. The usual gauge scheme is modified to allow a coupling between both spaces. Gauging spacetime translations produce field equations similar to Einstein equations. A curvature-like quantity of mixed differential-algebraic character emerges. Enlarged conservation laws are present, pointing to the presence of an covariance.
Curvature of spacetime: A simple student activity
NASA Astrophysics Data System (ADS)
Wood, Monika; Smith, Warren; Jackson, Matthew
2016-12-01
The following is a description of an inexpensive and simple student experiment for measuring the differences between the three types of spacetime topology—Euclidean (flat), Riemann (spherical), and Lobachevskian (saddle) curvatures. It makes use of commonly available tools and materials, and requires only a small amount of construction. The experiment applies to astronomical topics such as gravity, spacetime, general relativity, as well as geometry and mathematics.
CURVATURE EFFECT QUANTIFICATION FOR IN-VIVO IR THERMOGRAPHY
Cheng, Tze-Yuan; Deng, Daxiang; Herman, Cila
2013-01-01
Medical Infrared (IR) Imaging has become an important diagnostic tool over recent years. However, one underlying problem in medical diagnostics is associated with accurate quantification of body surface temperatures. This problem is caused by the artifacts induced by the curvature of objects, which leads to inaccurate temperature mapping and biased diagnostic results. Therefore, in our study, an experiment-based analysis is conducted to address the curvature effects toward the 3D temperature reconstruction of the IR thermography image. For quantification purposes, an isothermal copper plate with flat surface, and a cylindrical metal container filled with water are imaged. For the flat surface, the tilting angle measured from camera axis was varied incrementally from 0° to 60 °, such that the effects of surface viewing angle and travel distance on the measured temperature can be explored. On the cylindrical curved surface, the points viewed from 0° to 90° with respect to the camera axis are simultaneously imaged at different temperature levels. The experimental data obtained for the flat surface indicate that both viewing angle and distance effects become noticeable for angles over 40 °. The travel distance contributes a minor change when compared with viewing angle. The experimental results from the curved surface indicate that the curvature effect becomes pronounced when the viewing angle is larger than 60 °. The measurement error on the curved surface is compared with the simulation using the non-dielectric model, and the normalized temperature difference relative to 0° viewing angle was analyzed at six temperature levels. These results indicate that the linear formula associated with directional emissivity is a reasonable approximation for the measurement error, and the normalized error curves change consistently with viewing angle at various temperatures. Therefore, the analysis in this study implies that the directional emissivity based on the non
Superintegrable systems on spaces of constant curvature
Gonera, Cezary Kaszubska, Magdalena
2014-07-15
Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.
Intrinsically disordered proteins drive membrane curvature
NASA Astrophysics Data System (ADS)
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-07-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
Intrinsically disordered proteins drive membrane curvature
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-01-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
Intrinsically disordered proteins drive membrane curvature.
Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C
2015-07-24
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
NASA Astrophysics Data System (ADS)
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the
Induction of Plant Curvature by Magnetophoresis and Cytoskeletal Changes during Root Graviresponse
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.; Kuznetsov, Oleg A.; Blancaflor, Eilson B.
1996-01-01
High gradient magnetic fields (HGMF) induce curvature in roots and shoots. It is considered that this response is likely to be based on the intracellular displacement of bulk starch (amyloplasts) by the ponderomotive force generated by the HGMF. This process is called magnetophoresis. The differential elongation during the curvature along the concave and convex flanks of growing organs may be linked to the microtubular and/or microfilament cytoskeleton. The possible existence of an effect of the HGMF on the cytoskeleton was tested for, but none was found. The application of cytoskeletal stabilizers or depolymerizers showed that neither microtubules, nor microfilaments, are involved in the graviresponse.
NASA Astrophysics Data System (ADS)
Enea Romano, Antonio; Sanes Negrete, Sergio; Sasaki, Misao; Starobinsky, Alexei A.
2014-06-01
We study effects on the luminosity distance of a local inhomogeneity seeded by primordial curvature perturbations of the type predicted by the inflationary scenario and constrained by the cosmic microwave background radiation. We find that a local underdensity originated from a one, two or three standard deviations peaks of the primordial curvature perturbations field can induce corrections to the value of a cosmological constant of the order of 0.6{%},1{%},1.5{%} , respectively. These effects cannot be neglected in the precision cosmology era in which we are entering. Our results can be considered an upper bound for the effect of the monopole component of the local non-linear structure which can arise from primordial curvature perturbations and requires a fully non-perturbative relativistic treatment.
Biophysical and genetic aspects of light-potentiated gravitropic curvature in the maize primary root
Fantin, D.M.
1991-04-01
This thesis explores issues related to light-induced gravitotropic curvature in maize primary roots, such as the root cap as the potential photosensor, entrainment by light of curvature in the gravistimulated root, and the possibility of genetic control of bending response variation. Central to this thesis is a mathematical model, emphasizing physical forces and molecular flows, linking the stages of light-stimulated gravitropic curvature. The model assumes a growth inhibitor is produced in the root cap, transported by diffusion to the extension zone, transported by convection around the extension zone where it retards growth at a rate proportional to its concentration. Model predictions were compared to experimental data to evaluate these assumptions. The root cap is shown to be the photosensor, and genetic crosses show that more than two genes must control the bending response. 140 refs., 31 figs., 11 tabs.
Curvature-driven lateral segregation of membrane constituents in Golgi cisternae
NASA Astrophysics Data System (ADS)
Derganc, Jure
2007-12-01
Lateral segregation of mobile membrane constituents (e.g. lipids, proteins or membrane domains) into the regions of their preferred curvature relaxes stresses in the membrane. The equilibrium distribution of the constituents in the membrane is thus a balance between the gains in the membrane elastic energy and the segregation-induced loss of entropy. The membrane in the Golgi cisternae is particularly susceptible to the curvature-driven segregation because it possesses two very different curvatures—the highly curved membrane in the cisternal rims and the flat membrane in the cisternal sides. In this work, we calculate the extent of lateral segregation in the Golgi cisternae in the case where the segregation is driven by the Helfrich bending energy. It is assumed that the membrane bending constant and spontaneous curvature depend on the local membrane composition. A simple analytical expression for the extent of the lateral segregation is derived. The results show that the segregation depends on the ratio between the bending constant and the thermal energy, the difference of the preferred curvatures of the constituents and the sizes of the constituents. Applying the model to a typical Golgi cisterna, it was found that entropy can effectively limit the extent of the curvature-driven lateral segregation.
Free-streaming radiation in cosmological models with spatial curvature
NASA Technical Reports Server (NTRS)
Wilson, M. L.
1982-01-01
The effects of spatial curvature on radiation anisotropy are examined for the standard Friedmann-Robertson-Walker model universes. The effect of curvature is found to be very important when considering fluctuations with wavelengths comparable to the horizon. It is concluded that the behavior of radiation fluctuations in models with spatial curvature is quite different from that in spatially flat models, and that models with negative curvature are most strikingly different. It is therefore necessary to take the curvature into account in careful studies of the anisotropy of the microwave background.
Fiber Fabry-Perot interferometer for curvature sensing
NASA Astrophysics Data System (ADS)
Monteiro, Catarina S.; Ferreira, Marta S.; Silva, Susana O.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando
2016-12-01
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
Steering electromagnetic beams with conical curvature singularities.
Zhang, Yong-Liang; Dong, Xian-Zi; Zheng, Mei-Ling; Zhao, Zhen-Sheng; Duan, Xuan-Ming
2015-10-15
We describe how the transformation-optics technique can be used to design an effective medium mimicking the conical curvature singularity. Anholonomic coordinate transformation gives rise to linear topological defects that break the rotational symmetry. The bending and splitting of the optical beams are found analytically and numerically, depending on the incident direction and the topological charge. Beyond their practical applications to omnidirectional beam steering for photonics, our findings set forth an attractive realm to simulate the relevant physical phenomena in the optical laboratory.
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.
Solitons in curved space of constant curvature
Batz, Sascha; Peschel, Ulf
2010-05-15
We consider spatial solitons as, for example, self-confined optical beams in spaces of constant curvature, which are a natural generalization of flat space. Due to the symmetries of these spaces we are able to define respective dynamical parameters, for example, velocity and position. For positively curved space we find stable multiple-hump solitons as a continuation from the linear modes. In the case of negatively curved space we show that no localized solution exists and a bright soliton will always decay through a nonlinear tunneling process.
Double curvature mirrors for linear concentrators
NASA Astrophysics Data System (ADS)
Lance, Tamir; Ackler, Harold; Finot, Marc
2012-10-01
Skyline Solar's medium concentration photovoltaic system uses quasi-parabolic mirrors and one axis tracking. Improvements in levelized cost of energy can be achieved by effective management of non-uniformity of the flux line on the panels. To reduce non uniformity of the flux line due to mirror to mirror gaps, Skyline developed a dual curvature mirror that stretches the flux line along the panel. Extensive modeling and experiments have been conducted to analyze the impact of this new design and to optimize the design.
Curvature sensor for ocular wavefront measurement.
Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O
2006-08-01
We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.
A PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature
Pang, Xiaoyun; Fan, Jun; Zhang, Yan; Zhang, Kai; Gao, Bingquan; Ma, Jun; Li, Jian; Deng, Yuchen; Zhou, Qiangjun; Egelman, Edward H.; Hsu, Victor W.; Sun, Fei
2014-01-01
SUMMARY The BAR (Bin-Amphiphysin-Rvs) domain undergoes dimerization to produce a curved protein structure, which superimposes onto membrane through electrostatic interactions to sense and impart membrane curvature. In some cases, a BAR domain also possesses an amphipathic helix that inserts into the membrane to induce curvature. ACAP1 (Arfgap with Coil coil, Ankyrin repeat and PH domain protein 1) contains a BAR domain. Here, we show that this BAR domain can neither bind membrane nor impart curvature, but instead, requires a neighboring PH (Pleckstrin Homology) domain to achieve these functions. Specific residues within the PH domain are responsible for both membrane binding and curvature generation. The BAR domain adjacent to the PH domain instead interacts with the BAR domains of neighboring ACAP1 proteins to enable clustering at the membrane. Thus, we have uncovered the molecular basis for an unexpected and unconventional collaboration between PH and BAR domains in membrane bending. PMID:25284369
Local curvature measurements of a lean, partially premixed swirl-stabilised flame
NASA Astrophysics Data System (ADS)
Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.
2012-04-01
A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is
Effects of streamline curvature on separation prediction
NASA Astrophysics Data System (ADS)
Arolla, Sunil K.; Durbin, Paul A.
2009-11-01
In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.
ODE/PDE analysis of corneal curvature.
Płociniczak, Lukasz; Griffiths, Graham W; Schiesser, William E
2014-10-01
The starting point for this paper is a nonlinear, two-point boundary value ordinary differential equation (BVODE) that defines corneal curvature according to a static force balance. A numerical solution to the BVODE is computed by first converting the BVODE to a parabolic partial differential equation (PDE) by adding an initial value (t, pseudo-time) derivative to the BVODE. A numerical solution to the PDE is then computed by the method of lines (MOL) with the calculation proceeding to a sufficiently large value of t such that the derivative in t reduces to essentially zero. The PDE solution at this point is also the solution for the BVODE. This procedure is implemented in R (an open source scientific programming system) and the programming is discussed in some detail. A series approximation to the solution is derived from which an estimate for the rate of convergence is obtained. This is compared to a fitted exponential model. Also, two linear approximations are derived, one of which leads to a closed form solution. Both provide solutions very close to that obtained from the full nonlinear model. An estimate for the cornea radius of curvature is also derived. The paper concludes with a discussion of the features of the solution to the ODE/PDE system.
Vortex motion on surfaces of small curvature
Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.
2013-12-15
We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.
Particles and curvatures in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.
Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.
Emergent gravity in spaces of constant curvature
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2017-03-01
In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.
Radius of Curvature of Off-Axis Paraboloids
NASA Technical Reports Server (NTRS)
Robinson, Brian; Reardon, Patrick; Hadaway, James; Geary, Joseph; Russell, Kevin (Technical Monitor)
2002-01-01
We present several methods for measuring the vertex radius of curvature of off-axis paraboloidal mirrors. One is based on least-squares fitting of interferometer output, one on comparison of sagittal and tangential radii of curvature, and another on measurement of displacement of the nulled test article from the ideal reference wave. Each method defines radius of curvature differently and, as a consequence, produces its own sort of errors.
Curvature and Tangency Handles for Control of Convex Cubic Shapes
2000-01-01
looked at A-splines constructed with segments of singular al- gebraic cubics, which are just rational cubics, with new, geometrically more meaningful...contact interpolation , and curvatures at three prescribed points, see Figures 1-4. Curve and Surface Design: Saint-Malo 1999 91 Pierre-Jean Laurent...curvature at one contact point. §2. Barycentric Coordinates and Curvature at the Endpoints The general algebraic cubic in cartesian coordinates x, y is
Inconsistency of scale invariant curvature coupled to gravity
Zoller, D.
1990-01-01
We show that the scale invariant curvature action for paths, the point particle version of Polyakov's extrinsic curvature action for surfaces, does not couple consistently to gravity. Although the curvature action for paths yields a massless representation of the Poincare group with fixed helicity and so potentially provides a description of single photons and gravitons, the inconsistent coupling to gravity apparently suggests such a description is not viable. We present a physical interpretation of the inconsistency in terms of the non-localizability of the photon and point out a conceptual kinship between the local symmetry of the curvature theory and the local supersymmetry of a spinning particle or spinning string. 11 refs.
Evolving extrinsic curvature and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Capistrano, Abraão J. S.; Cabral, Luis A.
2016-10-01
The concept of smooth deformation of Riemannian manifolds associated with the extrinsic curvature is explained and applied to the Friedmann-Lemaître-Robertson-Walker cosmology. We show that such deformation can be derived from the Einstein-Hilbert-like dynamical principle may produce an observable effect in the sense of Noether. As a result, we show how the extrinsic curvature compensates both quantitative and qualitative differences between the cosmological constant Λ and the vacuum energy {ρ }{vac} obtaining the observed upper bound for the cosmological constant problem at electroweak scale. The topological characteristics of the extrinsic curvature are discussed showing that the produced extrinsic scalar curvature is an evolving dynamical quantity.
Plane wave gravitons, curvature singularities and string physics
Brooks, R. . Center for Theoretical Physics)
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
The curvature index and synchronization of dynamical systems.
Chen, Yen-Sheng; Chang, Chien-Cheng
2012-06-01
We develop a quantity, named the curvature index, for dynamical systems. This index is defined as the limit of the average curvature of the trajectory during evolution, which measures the bending of the curve on an attractor. The curvature index has the ability to differentiate the topological change of an attractor, as its alterations exhibit the structural changes of a dynamical system. Thus, the curvature index may indicate thresholds of some synchronization regimes. The Rössler system and a time-delay system are simulated to demonstrate the effectiveness of the index, respectively.
Multi-scale curvature tensor analysis of machined surfaces
NASA Astrophysics Data System (ADS)
Bartkowiak, Tomasz; Brown, Christopher
2016-12-01
This paper demonstrates the use of multi-scale curvature analysis, an areal new surface characterization technique for better understanding topographies, for analyzing surfaces created by conventional machining and grinding. Curvature, like slope and area, changes with scale of observation, or calculation, on irregular surfaces, therefore it can be used for multi-scale geometric analysis. Curvatures on a surface should be indicative of topographically dependent behavior of a surface and curvatures are, in turn, influenced by the processing and use of the surface. Curvatures have not been well characterized previously. Curvature has been used for calculations in contact mechanics and for the evaluation of cutting edges. In the current work two parts were machined and then one of them was ground. The surface topographies were measured with a scanning laser confocal microscope. Plots of curvatures as a function of position and scale are presented, and the means and standard deviations of principal curvatures are plotted as a function of scale. Statistical analyses show the relations between curvature and these two manufacturing processes at multiple scales.
Wang,W.; Yang, L.; Huang, H.
2007-01-01
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.
Hawking temperature of constant curvature black holes
Cai Ronggen; Myung, Yun Soo
2011-05-15
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Band geometry, Berry curvature, and superfluid weight
NASA Astrophysics Data System (ADS)
Liang, Long; Vanhala, Tuomas I.; Peotta, Sebastiano; Siro, Topi; Harju, Ari; Törmä, Päivi
2017-01-01
We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-Cooper-Schrieffer (BCS) mean-field framework. We show how to separate the geometric contribution to the superfluid weight from the conventional one, and that the geometric contribution is associated with the interband matrix elements of the current operator. Our theory can be applied to systems with or without time-reversal symmetry. In both cases the geometric superfluid weight can be related to the quantum metric of the corresponding noninteracting systems. This leads to a lower bound on the superfluid weight given by the absolute value of the Berry curvature. We apply our theory to the attractive Kane-Mele-Hubbard and Haldane-Hubbard models, which can be realized in ultracold atom gases. Quantitative comparisons are made to state of the art dynamical mean-field theory and exact diagonalization results.
Influences of aortic motion and curvature on vessel expansion in murine experimental aneurysms
Goergen, Craig J.; Azuma, Junya; Barr, Kyla N.; Magdefessel, Lars; Kallop, Dara Y.; Gogineni, Alvin; Grewall, Amarjeet; Weimer, Robby M.; Connolly, Andrew J.; Dalman, Ronald L.; Taylor, Charles A.; Tsao, Philip S.; Greve, Joan M.
2010-01-01
Objective The purpose of this study was to quantitatively compare aortic curvature and motion to resulting aneurysm location, direction of expansion, and pathophysiology in experimental abdominal aortic aneurysms (AAAs). Methods and Results Magnetic resonance imaging was performed at 4.7T with: 1) a 3D acquisition for vessel geometry and 2) a 2D cardiac-gated acquisition to quantify luminal motion. Male 24-week-old mice were imaged before and after AAA formation induced by angiotensin II (AngII)-filled osmotic pump implantation or infusion of elastase. AngII-induced AAAs formed near the location of maximum abdominal aortic curvature, and the leftward direction of expansion was correlated with the direction of suprarenal aortic motion. Elastase-induced AAAs formed in a region of low vessel curvature and had no repeatable direction of expansion. AngII significantly increased mean blood pressure (22.7mmHg; p<0.05), while both models showed a significant two-fold decrease in aortic cyclic strain (p<0.05). Differences in patterns of elastin degradation and localization of fluorescent signal from protease-activated probes were also observed. Conclusions The direction of AngII aneurysm expansion correlated with the direction of motion, medial elastin dissection, and adventitial remodeling. Anterior infrarenal aortic motion correlated with medial elastin degradation in elastase-induced aneurysms. Results from both models suggest a relationship between aneurysm pathology and aortic geometry and motion. PMID:21071686
Holographic curvature perturbations in a cosmology with a space-like singularity
Ferreira, Elisa G.M.; Brandenberger, Robert
2016-07-19
We study the evolution of cosmological perturbations in an anti-de-Sitter (AdS) bulk through a cosmological singularity by mapping the dynamics onto the boundary conformal fields theory by means of the AdS/CFT correspondence. We consider a deformed AdS space-time obtained by considering a time-dependent dilaton which induces a curvature singularity in the bulk at a time which we call t=0, and which asymptotically approaches AdS both for large positive and negative times. The boundary field theory becomes free when the bulk curvature goes to infinity. Hence, the evolution of the fluctuations is under better controle on the boundary than in the bulk. To avoid unbounded particle production across the bounce it is necessary to smooth out the curvature singularity at very high curvatures. We show how the bulk cosmological perturbations can be mapped onto boundary gauge field fluctuations. We evolve the latter and compare the spectrum of fluctuations on the infrared scales relevant for cosmological observations before and after the bounce point. We find that the index of the power spectrum of fluctuations is the same before and after the bounce.
Tight-binding approach to strain and curvature in monolayer transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Pearce, Alexander J.; Mariani, Eros; Burkard, Guido
2016-10-01
We present a model of the electronic properties of monolayer transition-metal dichalcogenides based on a tight-binding approach which includes the effects of strain and curvature of the crystal lattice. Mechanical deformations of the lattice offer a powerful route for tuning the electronic structure of the transition-metal dichalcogenides, as changes to bond lengths lead directly to corrections in the electronic Hamiltonian while curvature of the crystal lattice mixes the orbital structure of the electronic Bloch bands. We first present an effective low-energy Hamiltonian describing the electronic properties near the K point in the Brillouin zone, then present the corrections to this Hamiltonian due to arbitrary mechanical deformations and curvature in a way which treats both effects on an equal footing. This analysis finds that local area variations of the lattice allow for tuning of the band gap and effective masses, while the application of uniaxial strain decreases the magnitude of the direct band gap at the K point. Additionally, strain induced bond length modifications create a fictitious gauge field with a coupling strength that is smaller than that seen in related materials like graphene. We also find that curvature of the lattice leads to the appearance of both an effective in-plane magnetic field which couples to spin degrees of freedom and a Rashba-like spin-orbit coupling due to broken mirror inversion symmetry.
Gaussian and mean curvatures for discrete asymptotic nets
NASA Astrophysics Data System (ADS)
Schief, W. K.
2017-04-01
We propose discretisations of Gaussian and mean curvatures of surfaces parametrised in terms of asymptotic coordinates and examine their relevance in the context of integrable discretisations of classical classes of surfaces and their underlying integrable systems. We also record discrete analogues of the classical relation between the Gaussian curvature of hyperbolic surfaces and the torsion of their asymptotic lines.
An analytical approach to estimate curvature effect of coseismic deformations
NASA Astrophysics Data System (ADS)
Dong, Jie; Sun, Wenke; Zhou, Xin; Wang, Rongjiang
2016-08-01
We present an analytical approach to compute the curvature effect by the new analytical solutions of coseismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth and the other with a larger radius can approximate a half-space model. Then, we calculate the coseismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum coseismic displacement. The results show that the maximum curvature effect is about 4 per cent for source depths of less than 100 km, and about 30 per cent for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100 per cent. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.
Coherent gradient sensing method and system for measuring surface curvature
NASA Technical Reports Server (NTRS)
Rosakis, Ares J. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor); Moore, Jr., Nicholas R. (Inventor)
2000-01-01
A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.
Curvature dependence of the interfacial heat and mass transfer coefficients
NASA Astrophysics Data System (ADS)
Glavatskiy, K. S.; Bedeaux, D.
2014-03-01
Nucleation is often accompanied by heat transfer between the surroundings and a nucleus of a new phase. The interface between two phases gives an additional resistance to this transfer. For small nuclei the interfacial curvature is high, which affects not only equilibrium quantities such as surface tension, but also the transport properties. In particular, high curvature affects the interfacial resistance to heat and mass transfer. We develop a framework for determining the curvature dependence of the interfacial heat and mass transfer resistances. We determine the interfacial resistances as a function of a curvature. The analysis is performed for a bubble of a one-component fluid and may be extended to various nuclei of multicomponent systems. The curvature dependence of the interfacial resistances is important in modeling transport processes in multiphase systems.
Effect of curvature on cholesteric liquid crystals in toroidal geometries
NASA Astrophysics Data System (ADS)
Fialho, Ana R.; Bernardino, Nelson R.; Silvestre, Nuno M.; Telo da Gama, Margarida M.
2017-01-01
The confinement of liquid crystals inside curved geometries leads to exotic structures, with applications ranging from biosensors to optical switches and privacy windows. Here we study how curvature affects the alignment of a cholesteric liquid crystal. We model the system on the mesoscale using the Landau-de Gennes model. Our study was performed in three stages, analyzing different curved geometries from cylindrical walls and pores, to toroidal domains, in order to isolate the curvature effects. Our results show that the stresses introduced by the curvature influence the orientation of the liquid crystal molecules, and cause distortions in the natural periodicity of the cholesteric that depend on the radius of curvature, on the pitch, and on the dimensions of the system. In particular, the cholesteric layers of toroidal droplets exhibit a symmetry breaking not seen in cylindrical pores and that is driven by the additional curvature.
Nastic curvatures of wheat coleoptiles that develop in true microgravity
NASA Technical Reports Server (NTRS)
Heathcote, D. G.; Chapman, D. K.; Brown, A. H.
1995-01-01
Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.
Effects of Iris Surface Curvature on Iris Recognition
Thompson, Joseph T; Flynn, Patrick J; Bowyer, Kevin W; Santos-Villalobos, Hector J
2013-01-01
To focus on objects at various distances, the lens of the eye must change shape to adjust its refractive power. This change in lens shape causes a change in the shape of the iris surface which can be measured by examining the curvature of the iris. This work isolates the variable of iris curvature in the recognition process and shows that differences in iris curvature degrade matching ability. To our knowledge, no other work has examined the effects of varying iris curvature on matching ability. To examine this degradation, we conduct a matching experiment across pairs of images with varying degrees of iris curvature differences. The results show a statistically signi cant degradation in matching ability. Finally, the real world impact of these ndings is discussed
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
Curvature sensor based on a Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Monteiro, Catarina; Ferreira, Marta S.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando
2016-05-01
A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m-1 for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/°C.
Nastic curvatures of wheat coleoptiles that develop in true microgravity.
Heathcote, D G; Chapman, D K; Brown, A H
1995-07-01
Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.
NASA Astrophysics Data System (ADS)
Torgoev, Almaz; Havenith, Hans-Balder
2016-07-01
A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.
Dynamical and statistical effects of the intrinsic curvature of internal space of molecules.
Teramoto, Hiroshi; Takatsuka, Kazuo
2005-02-15
The Hamilton dynamics of a molecule in a translationally and/or rotationally symmetric field is kept rigorously constrained in its phase space. The relevant dynamical laws should therefore be extracted from these constrained motions. An internal space that is induced by a projection of such a limited phase space onto configuration space is an intrinsically curved space even for a system of zero total angular momentum. In this paper we discuss the general effects of this curvedness on dynamics and structures of molecules in such a manner that is invariant with respect to the selection of coordinates. It is shown that the regular coordinate originally defined by Riemann is particularly useful to expose the curvature correction to the dynamics and statistical properties of molecules. These effects are significant both qualitatively and quantitatively and are studied in two aspects. One is the direct effect on dynamics: A trajectory receives a Lorentz-like force from the curved space as though it was placed in a magnetic field. The well-known problem of the trapping phenomenon at the transition state is analyzed from this point of view. By showing that the trapping force is explicitly described in terms of the curvature of the internal space, we clarify that the physical origin of the trapped motion is indeed originated from the curvature of the internal space and hence is not dependent of the selection of coordinate system. The other aspect is the effect of phase space volume arising from the curvedness: We formulate a general expression of the curvature correction of the classical density of states and extract its physical significance in the molecular geometry along with reaction rate in terms of the scalar curvature and volume loss (gain) due to the curvature. The transition state theory is reformulated from this point of view and it is applied to the structural transition of linear chain molecules in the so-called dihedral angle model. It is shown that the
Mean curvature flow of a hyperbolic surface
Ovchinnikov, Yu. N.; Sigal, I. M.
2011-12-15
A four-parameter family of self-similar solutions is obtained to the mean curvature flow equation for a surface. This family is shown to be stable with respect to a small deformation of a hyperbolic surface. At time instant t*, a singular point is formed within a finite time interval, that is accompanied by a change in the topology of the surface. The solution is continued beyond the singular point. A relationship between the parameters describing the hyperbolic surface before and after the change in the surface topology is obtained. A particular case is analyzed when the unperturbed surface is a cylinder. A cylindrical surface is weakly unstable with respect to a perturbation in the form of a 'wide neck.' At the final stage of the development of the neck when its transverse size becomes much less than the cylinder radius at large distances from the neck, the surface flow in a wide region in the neighborhood of the neck is described by a universal two-parameter family of self-similar solutions. These solutions are stable with respect to small perturbations of the surface.
Actin filament curvature biases branching direction
NASA Astrophysics Data System (ADS)
Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel
2012-02-01
Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.
BICEP2, the curvature perturbation and supersymmetry
Lyth, David H.
2014-11-01
The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.
Cosmic acceleration from matter-curvature coupling
NASA Astrophysics Data System (ADS)
Zaregonbadi, Raziyeh; Farhoudi, Mehrdad
2016-10-01
We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.
Cosmological spatial curvature probed by microwave polarization
Matzner, R.A.; Tolman, B.W.
1982-11-15
If there is a large-scale anisotropy in the expansion of the universe, the microwave background radiation is expected to be linearly polarized. This communication shows that spatial curvature is capable of rotating the polarization of the microwaves relative to its direction at last scattering, which is directly correlated with the expansion anisotropy (and so also the observed intensity anisotropy). In Friedmann-Robertson-Walker models of the universe with additional small expansion anisotropy, the observed rotation relative to the intensity anisotropy would be appreciable and constant over the celestial sphere in the closed (type IX) model, but in the flat and open models, it must either vanish (types I and V) or vary ina complicated way over the celestial sphere (type VII/sub h/). These facts suggest a clear observational test of the closure of the universe. Also, an ambiguity inherent in the homogeneity of the universe does not allow prediction of the direction of rotation; thus homogeneous universes possess a property which might be called ''handedness.''
Programming curvature using origami tessellations.
Dudte, Levi H; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L
2016-05-01
Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.
Gradient expansion, curvature perturbations, and magnetized plasmas
Giovannini, Massimo; Rezaei, Zahra
2011-04-15
The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.
Effect of curvature on domain wall motion in elliptical nanorings
NASA Astrophysics Data System (ADS)
Kaya, Fikriye Idil; Bickel, Jessica; Aidala, Katherine
2014-03-01
Understanding domain wall (DW) motion in ferromagnetic nanostructures is important to realize proposed magnetic data storage and logic devices. We investigate the effect of curvature on DW pinning and motion by studying elliptical rings using micromagnetic simulations. Elliptical rings with constant width have varying curvature, with the lowest curvature at the minor axis, and the greatest curvature at the major axis. DWs can be created at any angular position within the ellipse by the application of an appropriate uniform magnetic field. However, only some of these positions are stable when the field is removed. We study the stability and depinning of the DWs by applying a slowly increasing elliptical magnetic field to determine the magnitude of the field at which the DWs begin to move. By varying the major to minor axis ratio, we examine the effect of curvature on DW pinning. A larger field is required to move DWs in regions of higher curvature (near the major axis) than lower curvature (near the minor axis). Overall, we see that increasing the major to minor axis ratio of elliptical nanorings requires increasing field strength to depin the DWs along the major axis. Work supported in part by NSF DMR-1207924 and NSF CMMI-1025020. Simulations performed at the CNS computational facilities at Harvard University, a member of the NNIN supported by NSF Award No. ECS-0335765.
On 3-gauge transformations, 3-curvatures, and Gray-categories
Wang, Wei
2014-04-15
In the 3-gauge theory, a 3-connection is given by a 1-form A valued in the Lie algebra g, a 2-form B valued in the Lie algebra h, and a 3-form C valued in the Lie algebra l, where (g,h,l) constitutes a differential 2-crossed module. We give the 3-gauge transformations from one 3-connection to another, and show the transformation formulae of the 1-curvature 2-form, the 2-curvature 3-form, and the 3-curvature 4-form. The gauge configurations can be interpreted as smooth Gray-functors between two Gray 3-groupoids: the path 3-groupoid P{sub 3}(X) and the 3-gauge group G{sup L} associated to the 2-crossed module L, whose differential is (g,h,l). The derivatives of Gray-functors are 3-connections, and the derivatives of lax-natural transformations between two such Gray-functors are 3-gauge transformations. We give the 3-dimensional holonomy, the lattice version of the 3-curvature, whose derivative gives the 3-curvature 4-form. The covariance of 3-curvatures easily follows from this construction. This Gray-categorical construction explains why 3-gauge transformations and 3-curvatures have the given forms. The interchanging 3-arrows are responsible for the appearance of terms with the Peiffer commutator (, )
3D curvature of muscle fascicles in triceps surae.
Rana, Manku; Hamarneh, Ghassan; Wakeling, James M
2014-12-01
Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus.
Curvature-induced symmetry breaking determines elastic surface patterns
NASA Astrophysics Data System (ADS)
Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M.; Dunkel, Jörn
2015-03-01
Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces—which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces—have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift-Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-09
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
Holomorphic bisectional curvatures, supersymmetry breaking, and Affleck-Dine baryogenesis
NASA Astrophysics Data System (ADS)
Dutta, Bhaskar; Sinha, Kuver
2012-11-01
Working in D=4, N=1 supergravity, we utilize relations between holomorphic sectional and bisectional curvatures of Kahler manifolds to constrain Affleck-Dine baryogenesis. We show the following no-go result: Affleck-Dine baryogenesis cannot be performed if the holomorphic sectional curvature at the origin is isotropic in tangent space; as a special case, this rules out spaces of constant holomorphic sectional curvature (defined in the above sense) and in particular maximally symmetric coset spaces. We also investigate scenarios where inflationary supersymmetry breaking is identified with the supersymmetry breaking responsible for mass splitting in the visible sector, using conditions of sequestering to constrain manifolds where inflation can be performed.
Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis
NASA Astrophysics Data System (ADS)
Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful
2016-02-01
This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.
Motion on constant curvature spaces and quantization using Noether symmetries.
Bracken, Paul
2014-12-01
A general approach is presented for quantizing a metric nonlinear system on a manifold of constant curvature. It makes use of a curvature dependent procedure which relies on determining Noether symmetries from the metric. The curvature of the space functions as a constant parameter. For a specific metric which defines the manifold, Lie differentiation of the metric gives these symmetries. A metric is used such that the resulting Schrödinger equation can be solved in terms of hypergeometric functions. This permits the investigation of both the energy spectrum and wave functions exactly for this system.
LPG-based sensor for curvature and vibration
NASA Astrophysics Data System (ADS)
Nascimento, I. M.; Chesini, G.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, P. A. S.
2016-05-01
A long-period grating (LPG) written on a standard single mode fiber is investigated as a curvature and vibration sensor. It is demonstrated a high sensitivity to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using an intensity based interrogation scheme with the LPG sensor operating in the curvature regime. Results have shown a reproducible frequency discrimination in the 30 Hz to 2000 Hz, with resolutions between 11 mHz and 913 mHz. Frequency retrieval could be performed independent of temperature up to 86 °C.
Inconsistency of scale-invariant curvature coupled to gravity
Zoller, D. )
1990-10-29
We show that the scale-invariant curvature action for paths, the point-particle version of Polyakov's extrinsic-curvature action for surfaces, does not couple consistently to gravity. The curvature action for paths yields a massless representation of the Poincare group with fixed helicity and so potentially provides a description of single photons and gravitons. We present a physical interpretation of the inconsistency in terms of the nonlocalizability of the photon and point out a conceptual kinship with the local supersymmetry of a spinning particle.
Inconsistency of scale-invariant curvature coupled to gravity
NASA Astrophysics Data System (ADS)
Zoller, D.
1990-10-01
We show that the scale-invariant curvature action for paths, the point-particle version of Polyakov's extrinsic-curvature action for surfaces, does not couple consistently to gravity. The curvature action for paths yields a massless representation of the Poincaré group with fixed helicity and so potentially provides a description of single photons and gravitons. We present a physical interpretation of the inconsistency in terms of the nonlocalizability of the photon and point out a conceptual kinship with the local supersymmetry of a spinning particle.
Characterizing the curvature and its first derivative for imperfect fluids
NASA Astrophysics Data System (ADS)
Machado Ramos, Maria da Piedade
2017-04-01
The curvature tensor and its derivatives up to any order can be covariantly characterized by a minimal set of spinor quantities. On the other hand it might be useful, particularly in cosmology, to describe the geometry of a spacetime in a (1+3) formalism, based on an invariantly defined fluid velocity. In this work, we consider an imperfect fluid possessing both isotropic and anisotropic pressure. For these fluids, we determine the (1+3) matter terms of the curvature as well as the parts of the first order covariant derivative of the curvature (\
Enhancing magnetoelectric effect via the curvature of composite cylinder
NASA Astrophysics Data System (ADS)
Wang, H. M.; Pan, E.; Chen, W. Q.
2010-05-01
We solved analytically the magnetoelectric (ME) effect in a bilayered piezoelectric/piezomagnetic cylinder under harmonic excitation. We revealed that at a fixed thickness ratio of the layers, the static or low-frequency ME effect can be substantially enhanced by increasing the curvature of the cylinder. In the megahertz frequency domain, on the other hand, we observed that the peak ME effect can be considerably increased by decreasing the curvature. We further showed that at a fixed curvature, the ME effect can be tuned to be around the resonant frequency for giant output by varying the boundary condition and thickness ratio.
Berry curvature and dynamics of a magnetic bubble
NASA Astrophysics Data System (ADS)
Koshibae, Wataru; Nagaosa, Naoto
2016-04-01
Magnetic bubbles have been the subject of intensive studies aiming to investigate their applications to memory devices. A bubble can be regarded as the closed domain wall and is characterized by the winding number of the in-plane components or the skyrmion number N sk , which are related to the number of Bloch lines (BLs). For the magnetic bubbles without BLs, the Thiele equation assuming no internal distortion describes the center-of-mass motion of the bubbles very well. For the magnetic bubbles with BLs, on the other hand, their dynamics is affected seriously by that of BLs along the domain wall. Here we show theoretically, that the distribution of the Berry curvature b z , i.e., the solid angle formed by the magnetization vectors, in the bubble plays the key role in the dynamics of a bubble with {N}{sk}=0 in a dipolar magnet. In this case, the integral of b z over the space is zero, while the nonuniform distribution of b z and associated Magnus force induce several nontrivial coupled dynamics of the internal deformation and center-of-mass motion as explicitly demonstrated by numerical simulations of Landau-Lifshitz-Gilbert equation. These findings give an alternative view and will pave a new route to design the bubble dynamics.
Geometry of matrix product states: Metric, parallel transport, and curvature
Haegeman, Jutho Verstraete, Frank; Mariën, Michaël; Osborne, Tobias J.
2014-02-15
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.
Curvature-driven assembly in soft matter.
Liu, Iris B; Sharifi-Mood, Nima; Stebe, Kathleen J
2016-07-28
Control over the spatial arrangement of colloids in soft matter hosts implies control over a wide variety of properties, ranging from the system's rheology, optics, and catalytic activity. In directed assembly, colloids are typically manipulated using external fields to form well-defined structures at given locations. We have been developing alternative strategies based on fields that arise when a colloid is placed within soft matter to form an inclusion that generates a potential field. Such potential fields allow particles to interact with each other. If the soft matter host is deformed in some way, the potential allows the particles to interact with the global system distortion. One important example is capillary assembly of colloids on curved fluid interfaces. Upon attaching, the particle distorts that interface, with an associated energy field, given by the product of its interfacial area and the surface tension. The particle's capillary energy depends on the local interface curvature. We explore this coupling in experiment and theory. There are important analogies in liquid crystals. Colloids in liquid crystals elicit an elastic energy response. When director fields are moulded by confinement, the imposed elastic energy field can couple to that of the colloid to define particle paths and sites for assembly. By improving our understanding of these and related systems, we seek to develop new, parallelizable routes for particle assembly to form reconfigurable systems in soft matter that go far beyond the usual close-packed colloidal structures.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
NASA Astrophysics Data System (ADS)
Angel, J. Roger P.; Burge, James H.; Hege, E. Keith; Kenworthy, Matthew A.; Woolf, Neville J.
2000-07-01
Very large space telescopes with primary mirrors made of flat segments have been recently proposed. The segments would be extremely lightweight, made like pellicles from stretched, reflective membranes. Here we consider the use of such membrane primary mirrors in which slight concave curvature is induced by electrostatic force, by application of a potential difference between the membrane and a control electrode behind. In this way segmented spherical or paraboloidal primaries of long focal length can be made directly, eliminating the correction optics needed when flat segments are used. The electric potential would be spatially and temporally controlled to obtain uniform curvature despite non-uniformity in membrane tension, to create slight asphericity if needed and to provide active damping of vibrations. We report the operation of a small prototype telescope with a SEMC primary.
Nonlinear dynamics of the tearing mode with two-fluid and curvature effects in tokamaks
Meshcheriakov, Dmytro; Maget, Patrick; Garbet, Xavier; Lütjens, Hinrich; Beyer, Peter
2014-01-15
Curvature and diamagnetic effects are both known to have an influence on tearing mode dynamics. In this paper, we investigate the impact of these effects on the nonlinear stability and saturation of a (2, 1) island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments, where its behavior is not well understood from the single fluid MHD model. Simulations show that a metastable state induced by diamagnetic effect exists for this mode and that it also produces a reduction of the saturated island size, in presence of toroidal curvature. The mode is found to be nonlinearly destabilized by a seed island and it saturates at a macroscopic level causing a significant confinement degradation. The interpretation of dual states, with either no island on q = 2 or a large one, observed on discharges with high non inductive current source on Tore Supra, is revisited.
NASA Astrophysics Data System (ADS)
Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan
2014-11-01
Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.
Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai
2015-01-01
Purpose Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Methods Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Results Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Conclusions Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm. PMID:26398847
Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y
2013-10-01
Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.
Stability of the cylindrical shell of variable curvature
NASA Technical Reports Server (NTRS)
Marguerre, Karl
1951-01-01
This report is a first attempt to devise a calculation method for representing the buckling behavior of cylindrical shells of variable curvature. The problem occurs, for instance, in dimensioning wing noses, the stability of which is decisively influenced by the variability of curvature. The calculation is made possible by simplifying the stability equations (permissible for the shell of small curvature) and by assuming that the curvature 1/R as a function of the arc lengths can be represented by a very few Fourier terms. The formulas for the special case of an ellipse-like half oval with an axis ratio 1/3 ?= e ?= 1 under compression in longitudinal direction,shear, and a combination of shear and compression were evaluated. However, the results can also be applied approximately to an unsymmetrical oval-shell segment under compression, shear, and bending so that the numerical values contained in the diagrams 10 to 12 represent directly dimensioning data for the wing nose.
Curvature Control of Silicon Microlens for THz Dielectric Antenna
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran
2012-01-01
We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.
Changes on the corneal thickness and curvature after orthokeratology
NASA Astrophysics Data System (ADS)
Mitsui, Iwane; Yamada, Yoshiya
2004-07-01
To evaluate the corneal thickness and curvature changes after Orthokeratology contact lens wear, using the ORBSCAN II corneal topography system, corneal thickness and corneal curvature were measured on one hundred and twenty eyes of sixty patients before and after wearing the custom rigid gas permeable contact lenses for Orthokeratology. The contact lenses were specially designed for each eye. The subjects wore the orthokeratology lenses for approximately Four hours with their eyes closed. The corneal thickness of the subjects was increased on fifty-five eyes at not only the peripheral zone but also the center of the cornea. The average increase of central and peripheral corneal thickness was 18 micrometer and 22micrometer, respectively. The mean anterior curvature of corneal surface changed 1.25D. The mean posterior curvature of corneal endothelium side changed 0.75D.
16. Detail of curvature of northern parapet, with 1932 concrete ...
16. Detail of curvature of northern parapet, with 1932 concrete extension of parapet in foreground, facing east. - Dubbs Bridge, Spinnerstown Road (State Route 2031) spanning Hosensack Creek, Dillingerville, Lehigh County, PA
Bacterial cell curvature through mechanical control of cell growth
Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine
2009-01-01
The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668
Curvature-Squared Cosmology In The First-Order Formalism
NASA Technical Reports Server (NTRS)
Shahid-Saless, Bahman
1993-01-01
Paper presents theoretical study of some of general-relativistic ramifications of gravitational-field energy density proportional to R - alpha R(exp 2) (where R is local scalar curvature of space-time and alpha is a constant).
Uniform background curvature: Foam families and frustrated discs
NASA Astrophysics Data System (ADS)
Modes, Carl Douglas
The introduction of background curvature to systems in soft condensed matter, and across all of physics, has a long standing history of success. Particularly in cases where the role of curvature is a surprise, a great deal of new insight may be derived from this technique. This thesis carries on in that tradition, applying uniform background curvature to study varied systems. The glass transition of amorphous materials, and the hard sphere interactions that underlie it, is modeled with hard discs in a space of constant negative curvature. We examine random packing on negatively curved, triply periodic surfaces. Continuous families of Plateau's Laws-commensurate foam bubbles are generated by conformal projection of regular foams in positively-curved space.
Three dimensional computer vision: Potential applications with curvature tracking
Sanford, Adam
1996-05-01
The purpose of this project is to develop a method of tracking data points for computer vision systems using curvature analysis. This is of particular importance to fellow researchers at the Lab, who have developed a markerless video computer vision system and are in need of such a method to track data points. A three dimensional viewing program was created to analyze the geometry of surface patches. Virtual surfaces were plotted and processed by the program to determine the Mean and Gaussian Curvature parameters for each point on the surface, thus defining each point`s surface geometry type. The same computer processes are then applied to each frame of data acquired by the computer vision system to find surface {open_quotes}landmarks{close_quotes} that hold constant curvature during motion. Preliminary results indicate that curvature analysis shows great promise and could solve the tracking dilemma faced by those in the field of markerless imaging systems.
Correlation between thoracolumbar curvatures and respiratory function in older adults.
Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond
2017-01-01
Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were -46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=-0.23, P<0.05; forced vital capacity: r=-0.32, P<0.05), quiet expiration intercostal thickness (r=-0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=-0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=-0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=-0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures
Correlation between thoracolumbar curvatures and respiratory function in older adults
Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond
2017-01-01
Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar
Curvature-driven acceleration: a utopia or a reality?
NASA Astrophysics Data System (ADS)
Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh
2006-06-01
The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.
Hedgehogs in higher dimensional gravity with curvature self-interactions
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2001-04-01
Static solutions of the higher dimensional Einstein-Hilbert gravity supplemented by quadratic curvature self-interactions are discussed in the presence of hedgehog configurations along the transverse dimensions. The quadratic part of the action is parametrized in terms of the (ghost-free) Euler-Gauss-Bonnet curvature invariant. Spherically symmetric profiles of the transverse metric admit exponentially decaying warp factors both for positive and negative bulk cosmological constants.
A novel curvature-controllable steerable needle for percutaneous intervention.
Bui, Van Khuyen; Park, Sukho; Park, Jong-Oh; Ko, Seong Young
2016-08-01
Over the last few decades, flexible steerable robotic needles for percutaneous intervention have been the subject of significant interest. However, there still remain issues related to (a) steering the needle's direction with less damage to surrounding tissues and (b) increasing the needle's maximum curvature for better controllability. One widely used approach is to control the fixed-angled bevel-tip needle using a "duty-cycle" algorithm. While this algorithm has shown its applicability, it can potentially damage surrounding tissue, which has prevented the widespread adoption of this technology. This situation has motivated the development of a new steerable flexible needle that can change its curvature without axial rotation, while at the same time producing a larger curvature. In this article, we propose a novel curvature-controllable steerable needle. The proposed robotic needle consists of two parts: a cannula and a stylet with a bevel-tip. The curvature of the needle's path is controlled by a control offset, defined by the offset between the bevel-tip and the cannula. As a result, the necessity of rotating the whole needle's body is decreased. The duty-cycle algorithm is utilized to a limited degree to obtain a larger radius of curvature, which is similar to a straight path. The first prototype of 0.46 mm (outer diameter) was fabricated and tested with both in vitro gelatin phantom and ex vivo cow liver tissue. The maximum curvatures measured 0.008 mm(-1) in 6 wt% gelatin phantom, 0.0139 mm(-1) in 10 wt% gelatin phantom, and 0.0038 mm(-1) in cow liver. The experimental results show a linear relationship between the curvature and the control offset, which can be utilized for future implementation of this control algorithm.
Fresnel diffractive imaging: Experimental study of coherence and curvature
Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.; Peele, A. G.; Paterson, D.; Jonge, M. D. de; McNulty, I.
2008-03-01
A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length.
NASA Technical Reports Server (NTRS)
Ishikawa, H.; Evans, M. L.
1992-01-01
We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.
The effect of illuminant position on perceived curvature.
Curran, W; Johnston, A
1996-05-01
In shaded scenes surface features can appear either concave or convex, depending upon the viewer's judgement about the direction of the prevailing illumination. If other curvature cues are added to the image this ambiguity can be removed. However, it is not clear to what extent, if any, illuminant position exerts an influence on the perceived magnitude of surface curvature. Subjects were presented with pairs of spherical surface patches in a curvature matching task. The patches were defined by shading and texture cues. The perceived curvature of a standard patch was measured as a function of light source position. We found a clear effect of light source position on apparent curvature. Perceived curvature decreased as light source tilt increased and as light source slant decreased. We also found that the strength of this effect is determined partly by a surface's reflectance function and partly by the relative weight of the texture cue. When a specular component was added to the stimuli, the effect of light source orientation was weakened. The weight of the texture cue was manipulated by disrupting the regular distribution of texture elements. We found an inverse relationship between the strength of the effect and the weight of the texture cue: lowering the texture cue weight resulted in an enhancement of the illuminant position effect.
Non-additive compositional curvature energetics of lipid bilayers
Sodt, A.J.; Venable, R.M.; Lyman, E.; Pastor, R.W.
2016-01-01
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface in turn govern the formation of membrane structures and membrane reshaping processes, and will thus underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. The letter describes observations from simulations of unexpected non-additive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature. PMID:27715135
Arenavirus budding resulting from viral-protein-associated cell membrane curvature.
Schley, David; Whittaker, Robert J; Neuman, Benjamin W
2013-09-06
Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.
Arenavirus budding resulting from viral-protein-associated cell membrane curvature
Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.
2013-01-01
Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502
Kapnisis, Konstantinos K; Halwani, Dina O; Brott, Brigitta C; Anderson, Peter G; Lemons, Jack E; Anayiotos, Andreas S
2013-04-01
Preliminary studies have revealed that some stents undergo corrosion and fatigue-induced fracture in vivo, with significant release of metallic ions into surrounding tissues. A direct link between corrosion and in-stent restenosis has not been clearly established; nonetheless in vitro studies have shown that relatively high concentrations of heavy metal ions can stimulate both inflammatory and fibrotic reactions, which are the main steps in the process of restenosis. To isolate the mechanical effects from the local biochemical effects, accelerated biomechanical testing was performed on single and overlapping Nickel-Titanium (NiTi) stents subjected to various degrees of curvature. Post testing, stents were evaluated using Scanning Electron Microscopy (SEM) to identify the type of surface alterations. Fretting wear was observed in overlapping cases, in both straight and curved configurations. Stent strut fractures occurred in the presence of geometric curvature. Fretting wear and fatigue fractures observed on stents following mechanical simulation were similar to those from previously reported human stent explants. It has been shown that biomechanical factors such as arterial curvature combined with stent overlapping enhance the incidence and degree of wear and fatigue fracture when compared to single stents in a straight tube configuration.
NASA Astrophysics Data System (ADS)
Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng
2017-03-01
The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.
Frame-covariant formulation of inflation in scalar-curvature theories
NASA Astrophysics Data System (ADS)
Burns, Daniel; Karamitsos, Sotirios; Pilaftsis, Apostolos
2016-06-01
We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, Higgs inflation and F (R) models of inflation, and obtain more accurate results, without making additional approximations to the potential. Our results are shown to be consistent to lowest order with those presented in the literature. Finally, we outline how our frame-covariant formalism can be naturally extended beyond the tree-level approximation, within the framework of the Vilkovisky-DeWitt effective action.
The curvature of material surfaces in isotropic turbulence
NASA Astrophysics Data System (ADS)
Pope, S. B.; Yeung, P. K.; Girimaji, S. S.
1989-12-01
Direct numerical simulation is used to study the curvature of material surfaces in isotropic turbulence. The Navier-Stokes equation is solved by a 643 pseudospectral code for constant-density homogeneous isotropic turbulence, which is made statistically stationary by low-wavenumber forcing. The Taylor-scale Reynolds number is 39. An ensemble of 8192 infinitesimal material surface elements is tracked through the turbulence. For each element, a set of exact ordinary differential equations is integrated in time to determine, primarily, the two principal curvatures k1 and k2. Statistics are then deduced of the mean-square curvature M= (1)/(2) (k21+k22), and of the mean radius of curvature R=(k21+k22)-1/2. Curvature statistics attain an essentially stationary state after about 15 Kolmogorov time scales. Then the area-weighted expectation of R is found to be 12η, where η is the Kolmogorov length scale. For moderate and small radii (less than 10η) the probability density function (pdf) of R is approximately uniform, there being about 5% probability of R being less than η. The uniformity of the pdf of R, for small R, implies that the expectation of M is infinite. It is found that the surface elements with large curvatures are nearly cylindrical in shape (i.e., ‖k1‖≫‖k2‖ or ‖k2‖≫‖k1‖), consistent with the folding of the surface along nearly straight lines. Nevertheless the variance of the Gauss curvature K=k1k2 is infinite.
Turning maneuvers in sharks: Predicting body curvature from axial morphology.
Porter, Marianne E; Roque, Cassandra M; Long, John H
2009-08-01
Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size-matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r(2) values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non-vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming.
A novel approach in assessment of root canal curvature
Sadeghi, Shiva; Poryousef, Vahideh
2009-01-01
Introduction: The purpose of this in vitro study was to introduce a new method to describe root canal curvatures and to assess the degree of curvature of human permanent mandibular teeth with curved root canals. Materials and Methods: One hundred and thirty five mesial root canals of mandibular first and second molar teeth were selected. Access cavities were prepared. After inserting a K-file size #10 into each canal, radiographs were taken. Canal curvature was determined by measuring the Schneider angle, canal access angle, as well as the canal radius, length, height and curvature starting distance on scanned radiographs using a computerized image processing system. Data was evaluated statistically using Pearson correlation. Results: The mean canal access angle (CAA) and Schneider angle (S) were 8.04◦ (3.46) and 19◦ (6.99), respectively. The Pearson correlation analysis found significant positive correlation between S and CAA (r=0.826, P<0.0001). Negative correlations were found between radius and length (r= –0.4, P<0.0001), radius and Schneider angle (r= –0.4, P<0.0001), radius and CAA (r= –0.24, P=0.004) and CAA and curvature starting distance (r= 0.4, P<0.0001). There was no correlation between height and distance (r=0.013, P=0.789), as well as CAA and height (r=0.654, P=0.001). Conclusion: Under the limitations of this study, the results indicated that the shape of root canal curvature can be more accurately described using two angles, Schneider in combination with Canal access angle. The related parameters included radius, length, distance and height of curvature. [Iranian Endodontic Journal 2009;4(4):131-4] PMID:24019833
Clinical workflow for spinal curvature measurement with portable ultrasound
NASA Astrophysics Data System (ADS)
Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.
On the determination of curvature and dynamical dark energy
Virey, J-M; Taxil, P; Talon-Esmieu, D; Ealet, A; Tilquin, A E-mail: talon@cppm.in2p3.fr E-mail: taxil@cpt.univ-mrs.fr
2008-12-15
Constraining simultaneously the dark energy (DE) equation of state and the curvature of the universe is difficult due to strong degeneracies. To circumvent this problem when analyzing data it is usual to assume flatness to constrain the DE or, conversely, to assume that the DE is a cosmological constant to constrain the curvature. In this paper, we quantify the impact of such assumptions with an eye to future large surveys. We simulate future data for type Ia supernovae, the cosmic microwave background and baryon acoustic oscillations for a large range of fiducial cosmologies allowing a small spatial curvature. We take into account a possible time evolution of DE through a parameterized equation of state: w(a) = w{sub 0}+(1-a)w{sub a}. We then fit the simulated data with a wrong assumption on the curvature or on the DE parameters. For a fiducial {Lambda}CDM cosmology, if flatness is incorrectly assumed in the fit and if the true curvature is within the ranges 0.01<{Omega}{sub k}<0.03 and -0.07<{Omega}{sub k}<-0.01, one will be led to conclude erroneously that an evolving DE is present, even with high statistics. On the other hand, models with curvature and dynamical DE can be confused with a flat {Lambda}CDM model when the fit ignores a possible DE evolution. We find that, in the future, with high statistics, such risks of confusion should be limited, but they are still possible, and biases in the cosmological parameters might be important. We conclude by recalling that, in the future, it will be mandatory to perform some complete multi-probe analyses, leaving the DE parameters as well as the curvature as free parameters.
Curvature Sorting of Peripheral Proteins on Solid-Supported Wavy Membranes
Hsieh, Wan-Ting; Hsu, Chih-Jung; Capraro, Benjamin R.; Wu, Tingting; Chen, Chi-Mon; Yang, Shu; Baumgart, Tobias
2013-01-01
Cellular membrane deformation and the associated redistribution of membrane-bound proteins are important aspects of membrane function. Current model membrane approaches for studying curvature sensing are limited to positive curvatures, and often require complex and delicate experimental setups. To overcome these challenges, we fabricated a wavy substrate imposing a range of curvatures onto an adhering lipid bilayer membrane. We examined the curvature sorting of several peripheral proteins binding to the wavy membrane and observed them to partition into distinct regions of curvature. Furthermore, single molecule imaging experiments suggested that curvature sensing of proteins on low-curvature substrates requires cooperative interactions. PMID:22881196
Re-acceleration Model for Radio Relics with Spectral Curvature
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2016-05-01
Most of the observed features of radio gischt relics, such as spectral steepening across the relic width and a power-law-like integrated spectrum, can be adequately explained by a diffusive shock acceleration (DSA) model in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, the steep spectral curvature in the integrated spectrum above ˜2 GHz detected in some radio relics, such as the Sausage relic in cluster CIZA J2242.8+5301, may not be interpreted by the simple radiative cooling of postshock electrons. In order to understand such steepening, we consider here a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage relic, we show that both the integrated radio spectrum and the surface brightness profile can be fitted reasonably well, if a shock of speed {u}s ˜ 2.5-2.8 × {10}3 {km} {{{s}}}-1 and a sonic Mach number {M}s ˜ 2.7-3.0 traverses a fossil cloud for ˜45 Myr, and the postshock electrons cool further for another ˜10 Myr. This attempt illustrates that steep curved spectra of some radio gischt relics could be modeled by adjusting the shape of the fossil electron spectrum and adopting the specific configuration of the fossil cloud.
The role of curvature in silica mesoporous crystals
Miyasaka, Keiichi; Garcia Bennett, Alfonso; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu
2012-01-01
Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. PMID:24098848
Representation of tactile curvature in macaque somatosensory area 2
Connor, Charles E.; Hsiao, Steven S.
2013-01-01
Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717
Curvature properties of some class of warped product manifolds
NASA Astrophysics Data System (ADS)
Deszcz, Ryszard; Głogowska, Małgorzata; Jełowicki, Jan; Zafindratafa, Georges
2016-10-01
We prove that warped product manifolds with p-dimensional base, p = 1, 2, satisfy some pseudosymmetry type curvature conditions. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result of the paper states that if p = 2 and the fiber is a semi-Riemannian space of constant curvature (when n is greater or equal to 5) then the (0, 6)-tensors R ṡ R - Q(S,R) and C ṡ C of such warped products are proportional to the (0, 6)-tensor Q(g,C) and the tensor C is a linear combination of some Kulkarni-Nomizu products formed from the tensors g and S. We also obtain curvature properties of this kind of quasi-Einstein and 2-quasi-Einstein manifolds, and in particular, of the Goedel metric, generalized spherically symmetric metrics and generalized Vaidya metrics.
Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies
Kawasaki, Masahiro; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp
2014-05-01
Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.
Particle acceleration and curvature TeV emission by rotating, supermassive black holes
Levinson
2000-07-31
It is shown that particles accelerating near the event horizon of a spinning supermassive black hole that is threaded by externally supported magnetic field lines suffer severe curvature losses that limit the maximum energy they can attain to values well below that imposed by the maximum voltage drop induced by the black hole dynamo. It is further shown that the dominant fraction of the rotational energy extracted from the black hole is radiated in the TeV band. The implications for vacuum breakdown and the observational consequences are discussed.
Emergent Gauge Fields from Curvature in Single Layers of Transition-Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Ochoa, Héctor; Zarzuela, Ricardo; Tserkovnyak, Yaroslav
2017-01-01
We analyze the electron dynamics in corrugated layers of transition-metal dichalcogenides. Due to the strong spin-orbit coupling, the intrinsic (Gaussian) curvature leads to an emergent gauge field associated with the Berry connection of the spinor wave function. We discuss the gauge field created by topological defects of the lattice, namely, tetragonal and octogonal disclinations and edge dislocations. Ripples and topological disorder induce the same dephasing effects as a random magnetic field, suppressing the weak localization effects. This geometric magnetic field can be detected in an Aharonov-Bohm interferometry experiment by measuring the local density of states in the vicinity of corrugations.
Curvature affects Doppler investigation of vessels: implications for clinical practice.
Balbis, S; Roatta, S; Guiot, C
2005-01-01
In clinical practice, blood velocity estimations from Doppler examination of curved vascular segments are normally different from those of nearby straight segments. The observed "accelerations," sometimes considered as a sort of stochastic disturbances, can actually be related to very specific physical effects due to vessel curvature (i.e., the development of nonaxial velocity [NAV] components) and the spreading of the axial velocity direction in the Doppler sample volume with respect to the insonation axis. The relevant phenomena and their dependence on the radius of curvature of the vessels and on the insonation angle are investigated with a beam-vessel geometry as close as possible to clinical setting, with the simplifying assumptions of steady flow, mild vessel curvature, uniform ultrasonic beam and complete vessel insonation. The insonation angles that minimize the errors are provided on the basis of the study results.
Curvature-dependent surface energy and implications for nanostructures
NASA Astrophysics Data System (ADS)
Chhapadia, P.; Mohammadi, P.; Sharma, P.
2011-10-01
At small length scales, several size-effects in both physical phenomena and properties can be rationalized by invoking the concept of surface energy. Conventional theoretical frameworks of surface energy, in both the mechanics and physics communities, assume curvature independence. In this work we adopt a simplified and linearized version of a theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy. Connecting the theory to atomistic calculations and the solution to an illustrative paradigmatical problem of a bent cantilever beam, we catalog the influence of curvature-dependence of surface energy on the effective elastic modulus of nanostructures. The observation in atomistic calculations that the elastic modulus of bent nanostructures is dramatically different than under tension - sometimes softer, sometimes stiffer - has been a source of puzzlement to the scientific community. We show that the corrected surface mechanics framework provides a resolution to this issue. Finally, we propose an unambiguous definition of the thickness of a crystalline surface.
Spinor description of the curvatures of D = 5 gauge fields
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2017-03-01
Spinor description of the curvatures of D = 5 Yang-Mills, Rarita-Schwinger and gravitational fields is considered. Restrictions imposed on the curvature spinors by the dynamical equations and Bianchi identities are studied. In the absence of sources symmetric curvature spinors with 2 s indices obey first-order equations that in the linearized limit reduce to Dirac-type equations for massless free fields. These equations allow for a higher-spin generalization similarly to 4 d case. Their solution in the form of the integral over Lorentz-harmonic variables parametrizing coset manifold SO(1, 4)/( SO(1,1) × ISO(3)) isomorphic to the three-sphere is considered.
Curvature of the spectral energy distributions of blazars
Chen, Liang
2014-06-20
In this paper, spectral energy distributions (SED) of both synchrotron and inverse Compton (IC) components of a sample of Fermi bright blazars are fitted by a log-parabolic law. The second-degree term of the log parabola measures the curvature of an SED. We find a statistically significant correlation between the synchrotron peak frequency and its curvature. This result is in agreement with the theoretical prediction and confirms previous studies that dealt with a single source with observations at various epochs or a small sample. If a broken power law is employed to fit the SED, the difference between the two spectral indices (i.e., |α{sub 2} – α{sub 1}|) can be considered a 'surrogate' of the SED curvature. We collect data from the literature and find a correlation between the synchrotron peak frequency and the spectral difference. We do not find a significant correlation between the IC peak frequency and its curvature, which may be caused by a complicated seed photon field. It is also found that the synchrotron curvatures are on average larger than those of IC curvatures, and there is no correlation between these two parameters. As suggested by previous works, both the log-parabolic law of the SED and the above correlation can be explained by statistical and/or stochastic particle accelerations. Based on a comparison of the slops of the correlation, our result seems to favor stochastic acceleration mechanisms and emission processes. Additional evidence, including SED modeling, particle acceleration simulation, and comparisons between some predictions and empirical relations/correlations, also seems to support the idea that the electron energy distribution (and/or synchrotron SED) may be log-parabolic.
Curvature and gravity actions for matrix models
NASA Astrophysics Data System (ADS)
Blaschke, Daniel N.; Steinacker, Harold
2010-08-01
We show how gravitational actions, in particular the Einstein-Hilbert action, can be obtained from additional terms in Yang-Mills matrix models. This is consistent with recent results on induced gravitational actions in these matrix models, realizing spacetime as four-dimensional brane solutions. It opens up the possibility for a controlled non-perturbative description of gravity through simple matrix models, with interesting perspectives for the problem of vacuum energy. The relation with UV/IR mixing and non-commutative gauge theory is discussed.
Adiabatic approximation via hodograph translation and zero-curvature equations
NASA Astrophysics Data System (ADS)
Karasev, M. V.
2014-04-01
For quantum as well classical slow-fast systems, we develop a general method which allows one to compute the adiabatic invariant (approximate integral of motion), its symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization, but is based on the ideas of isospectral deformation and zero-curvature equations, where the role of "time" is played by the adiabatic (quantization) parameter. The algorithm includes the construction of the zero-curvature adiabatic connection and its splitting generated by averaging up to an arbitrary order in the small parameter.
NASA Technical Reports Server (NTRS)
Bagshaw, S. L.; Cleland, R. E.
1990-01-01
Gravitropic curvature results from unequal growth rates on the upper and lower sides of horizontal stems. These unequal growth rates could be due to differences in wall extensibility between the two sides. To test this, the time course of curvature of horizontal sunflower (Helianthus annuus L.) hypocotyls was determined and compared with the time courses of changes in Instron-measured wall extensibility (PEx) of the upper and lower epidermal layers. As gravicurvature developed, so did the difference in PEx between the upper and lower epidermis. The enhanced growth rate on the lower side during the period of maximum increase in curvature was matched by PEx values greater than those of the vertical control, while the inhibited growth rate on the upper side was accompanied by PEx values below that of the control. The close correlation between changes in growth rates and alterations in PEx demonstrates that changes in wall extensibility play a major role in controlling gravicurvature.
Park, Sungryul; Choi, Donghee; Yi, Jihhyeon; Lee, Songil; Lee, Ja Eun; Choi, Byeonghwa; Lee, Seungbae; Kyung, Gyouhyung
2017-04-01
This study examined the effects of display curvature (400, 600, 1200 mm, and flat), display zone (5 zones), and task duration (15 and 30 min) on legibility and visual fatigue. Each participant completed two 15-min visual search task sets at each curvature setting. The 600-mm and 1200-mm settings yielded better results than the flat setting in terms of legibility and perceived visual fatigue. Relative to the corresponding centre zone, the outermost zones of the 1200-mm and flat settings showed a decrease of 8%-37% in legibility, whereas those of the flat setting showed an increase of 26%-45% in perceived visual fatigue. Across curvatures, legibility decreased by 2%-8%, whereas perceived visual fatigue increased by 22% during the second task set. The two task sets induced an increase of 102% in the eye complaint score and a decrease of 0.3 Hz in the critical fusion frequency, both of which indicated an increase in visual fatigue. In summary, a curvature of around 600 mm, central display zones, and frequent breaks are recommended to improve legibility and reduce visual fatigue.
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
Effect of asymmetric auxin application on Helianthus hypocotyl curvature
NASA Technical Reports Server (NTRS)
Migliaccio, F.; Rayle, D. L.
1989-01-01
Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.
Frustration and curvature - Glasses and the cholesteric blue phase
NASA Technical Reports Server (NTRS)
Sethna, J. P.
1983-01-01
An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.
In vitro dimensions and curvatures of human lenses.
Rosen, Alexandre M; Denham, David B; Fernandez, Viviana; Borja, David; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie; Augusteyn, Robert C
2006-03-01
The purpose of this study was to determine dimensions and curvatures of excised human lenses using the technique of shadowphotogrammetry. A modified optical comparator and digital camera were used to photograph magnified sagittal and coronal lens profiles. Equatorial diameter, anterior and posterior sagittal thickness, anterior and posterior curvatures, and shape factors were obtained from these images. The data were used to calculate lens volumes, which were compared with the lens weights. Measurements were made on 37 human lenses ranging in age from 20 to 99 years. These showed that lens dimensions and the anterior radius of curvature increase linearly throughout adult life while posterior curvature remains constant. The relative shape (or aspect ratio) of the posterior lens is unchanged through adult life since both equatorial diameter and posterior thickness increase at the same rate. The ratio of anterior thickness to posterior thickness is constant at 0.70. It is suggested that in vivo forces alter the apparent location of the lens equator, that the in vitro lens shape corresponds to the maximally accommodated shape in vivo and that the shapes of the accommodated and unaccommodated lens progressively converge toward each other due to lens growth with age, with a convergence point located near the age of total loss of accommodation (55-60 years). Together, these observations provide additional support for the Helmholtz theory of accommodation.
Equilibrium models of coronal loops that involve curvature and buoyancy
Hindman, Bradley W.; Jain, Rekha
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.
Active optics for high-dynamic variable curvature mirrors.
Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard R; Madec, Fabrice; Vives, Sébastien; Chardin, Elodie; Le Mignant, David; Cuby, Jean-Gabriel
2009-10-01
Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 mum sag with an optical quality better than lambda/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.
Origins of chemoreceptor curvature sorting in Escherichia coli
Draper, Will; Liphardt, Jan
2017-01-01
Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems. PMID:28322223
Positivity of Curvature-Squared Corrections in Gravity.
Cheung, Clifford; Remmen, Grant N
2017-02-03
We study the Gauss-Bonnet (GB) term as the leading higher-curvature correction to pure Einstein gravity. Assuming a tree-level ultraviolet completion free of ghosts or tachyons, we prove that the GB term has a nonnegative coefficient in dimensions greater than 4. Our result follows from unitarity of the spectral representation for a general ultraviolet completion of the GB term.
Simple partitions of a hyperbolic plane of positive curvature
Romakina, Lyudmila N
2012-09-30
We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane H of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code (m, n) is proved. Bibliography: 14 titles.
Determination of light beam curvature in a rotating Luneburg lens
NASA Astrophysics Data System (ADS)
Gladyshev, V. O.; Bazleva, D. D.; Tereshin, A. A.; Gladysheva, T. M.
2016-09-01
We have determined the curvature of a beam of coherent electromagnetic radiation and its angular and linear deviation in a rotating microsatellite representing a Luneburg lens in the optical segment of accuracy augmentation for new-generation global navigation satellite systems.
Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy
NASA Astrophysics Data System (ADS)
Hindman, Bradley W.; Jain, Rekha
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.
Negative voltage bandgap reference with multilevel curvature compensation technique
NASA Astrophysics Data System (ADS)
Xi, Liu; Qian, Liu; Xiaoshi, Jin; Yongrui, Zhao; Lee, Jong-Ho
2016-05-01
A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with many high order terms in itself, in a lower temperature range (TR) and a multilevel curvature compensation (MLCC) term in a higher TR, a flattened and better effect of curvature compensation over the TR of 165 °C (-40 to 125 °C) is realised. The MLCC circuit adds two convex curves by using two sub-threshold operated NMOS. The proposed NBGR implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm BCD technology demonstrates an accurate voltage of -1.183 V with a temperature coefficient (TC) as low as 2.45 ppm/°C over the TR of 165 °C at a -5.0 V power supply; the line regulation is 3 mV/V from a -5 to -2 V supply voltage. The active area of the presented NBGR is 370 × 180 μm2. Project supported by the Fund of Liaoning Province Education Department (No. L2013045).
Special-holonomy manifolds and quartic-curvature string corrections
NASA Astrophysics Data System (ADS)
Stelle, K. S.
2004-06-01
The quartic-curvature corrections derived from string theory have a very specific impact on the geometry of target-space manifolds of special holonomy. In the cases of Calabi-Yau manifolds and D = 7 manifolds of G2 holonomy, we show how the corrections conspire to preserve the unbroken supersymmetry of these backgrounds.
Controlling Protein Oligomerization with Surface Curvature on the Nanoscale
NASA Astrophysics Data System (ADS)
Kurylowicz, Marty; Dutcher, John
2011-03-01
We investigate the effect of surface curvature on the conformation of beta-lactoglobulin (β LG) using Single Molecule Force Spectroscopy. β LG is a model interfacial protein which stabilizes oil droplets in milk and is known to undergo structural rearrangement when adsorbed onto a surface. We reliably control nanoscale surface curvature by creating close-packed monolayers of monodisperse polystyrene (PS) nanoparticles with diameters of 20, 40, 60, 80 and 140 nm, which are stable in aqueous buffer. By adsorbing β LG onto these hydrophobic surfaces and collecting force-extension curves in the fluid phase we can compare the conformation of β LG on 5 different surface curvatures with that on a flat PS film. We demonstrate a transition from oligomeric to monomeric β LG as the surface curvature is increased. Histograms of contour length from fits to peaks in the force-extension curves show a single maximum near 30 nm for β LG adsorbed onto nanoparticles with diameters less than 80 nm. For the larger nanoparticles, the histogram approaches that observed for β LG adsorbed onto a flat PS film, with maxima indicative of β LG dimers and trimers.
Biostereometric Analysis Of Spine Curvatures On Living Human Body
NASA Astrophysics Data System (ADS)
Pineau, J.-C.; Ignazi, G.; Prudent, J.
1986-07-01
An analysis of the external and internal curvatures of spine was carried out on a sample of nine males from biostereometric measurements for different imposed postures. The results concerning the modifications of the external shape of the curves are used for the 3-D human body modeling in C.A.D. applications.
Symmetric curvature descriptors for label-free analysis of DNA
Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo
2014-01-01
High-resolution microscopy techniques such as electron microscopy, scanning tunnelling microscopy and atomic force microscopy represent well-established, powerful tools for the structural characterization of adsorbed DNA molecules at the nanoscale. Notably, the analysis of DNA contours allows mapping intrinsic curvature and flexibility along the molecular backbone. This is particularly suited to address the impact of the base-pairs sequence on the local conformation of the strands and plays a pivotal role for investigations relating the inherent DNA shape and flexibility to other functional properties. Here, we introduce novel chain descriptors aimed to characterize the local intrinsic curvature and flexibility of adsorbed DNA molecules with unknown orientation. They consist of stochastic functions that couple the curvatures of two nanosized segments, symmetrically placed on the DNA contour. We show that the fine mapping of the ensemble-averaged functions along the molecular backbone generates characteristic patterns of variation that highlight all pairs of tracts with large intrinsic curvature or enhanced flexibility. We demonstrate the practical applicability of the method for DNA chains imaged by atomic force microscopy. Our approach paves the way for the label-free comparative analysis of duplexes, aimed to detect nanoscale conformational changes of physical or biological relevance in large sample numbers. PMID:25248631
Cosmological models with positive scalar spatial curvature and Λ>0
NASA Astrophysics Data System (ADS)
Ponce de Leon, J.
1987-12-01
Some exact spherically symmetric solutions of the Einstein field equations with Λ>0 and positive three-curvature are given. They have reasonable physical properties and represent universes which do not undergo inflation but have a non-de Sitter behaviour for large times. This paper extends some previous results in the literature. Permanent address: Apartado 2816, Caracas 1010-A, Venezuela.
Positivity of Curvature-Squared Corrections in Gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2017-02-01
We study the Gauss-Bonnet (GB) term as the leading higher-curvature correction to pure Einstein gravity. Assuming a tree-level ultraviolet completion free of ghosts or tachyons, we prove that the GB term has a nonnegative coefficient in dimensions greater than 4. Our result follows from unitarity of the spectral representation for a general ultraviolet completion of the GB term.
Three-dimensional ultrasound palmprint recognition using curvature methods
NASA Astrophysics Data System (ADS)
Iula, Antonio; Nardiello, Donatella
2016-05-01
Palmprint recognition systems that use three-dimensional (3-D) information of the palm surface are the most recently explored techniques to overcome some two-dimensional palmprint difficulties. These techniques are based on light structural imaging. In this work, a 3-D ultrasound palmprint recognition system is proposed and evaluated. Volumetric images of a region of the human hand are obtained by moving an ultrasound linear array along its elevation direction and one by one acquiring a number of B-mode images, which are then grouped in a 3-D matrix. The acquisition time was contained in about 5 s. Much information that can be exploited for 3-D palmprint recognition is extracted from the ultrasound volumetric images, including palm curvature and other under-skin information as the depth of the various traits. The recognition procedure developed in this work is based on the analysis of the principal curvatures of palm surface, i.e., mean curvature image, Gaussian curvature image, and surface type. The proposed method is evaluated by performing verification and identification experiments. Preliminary results have shown that the proposed system exhibits an acceptable recognition rate. Further possible improvements of the proposed technique are finally highlighted and discussed.
On the Surprising Salience of Curvature in Grouping by Proximity
ERIC Educational Resources Information Center
Strother, Lars; Kubovy, Michael
2006-01-01
The authors conducted 3 experiments to explore the roles of curvature, density, and relative proximity in the perceptual organization of ambiguous dot patterns. To this end, they developed a new family of regular dot patterns that tend to be perceptually grouped into parallel contours, dot-sampled structured grids (DSGs). DSGs are similar to the…
The Gaussian curvature elastic energy of intermediates in membrane fusion.
Siegel, David P
2008-12-01
The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate
Phantomlike behavior in a brane-world model with curvature effects
Bouhmadi-Lopez, Mariam; Moniz, Paulo Vargas
2008-10-15
Recent observational evidence seems to allow the possibility that our Universe may currently be under a dark energy effect of a phantom nature. A suitable effective phantom fluid behavior can emerge in brane cosmology; in particular, within the normal non-self-accelerating Dvali-Gabadadze-Porrati branch, without any exotic matter and due to curvature effects from induced gravity. The phantomlike behavior is based in defining an effective energy density that grows as the brane expands. This effective description breaks down at some point in the past when the effective energy density becomes negative and the effective equation of state parameter blows up. In this paper we investigate if the phantomlike regime can be enlarged by the inclusion of a Gauss-Bonnet (GB) term into the bulk. The motivation is that such a GB component would model additional curvature effects on the brane setting. More precisely, our aim is to determine if the GB term, dominating and modifying the early behavior of the brane universe, may eventually extend the regime of validity of the phantom mimicry on the brane. However, we show that the opposite occurs: the GB effect seems instead to induce a breakdown of the phantomlike behavior at an even smaller redshift.
Stimulation of root elongation and curvature by calcium.
Takahashi, H; Scott, T K; Suge, H
1992-01-01
Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.
Stimulation of root elongation and curvature by calcium
NASA Technical Reports Server (NTRS)
Takahashi, H.; Scott, T. K.; Suge, H.
1992-01-01
Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.
Cam radius of curvature modification for improved manufacturability
Doughty, S.
1995-12-31
The design of IC engine cams using the popular polynomial design techniques often results in very high accelerations (and associated high contact forces) as the follower approaches the base circle. In those same parts of the cam action, the cam radius of curvature is likely to change signs, going from convex to concave, and this leads to manufacturing difficulties. When the cam is concave, the radius of the grinding wheel that can be used in manufacture is controlled by the minimum concave radius of curvature of the cam, and this is often much smaller than the wheel size that would result in most economic production. Further, the arc of contact is extended, resulting in loss of coolant flow and rapid loss of wheel dress. A solution is presented, based on substituting a convex circular arc to replace a segment of the cam profile including the concavity. The ramifications of such a modification with regard to the follower motion is also presented.
Membrane curvature in cell biology: An integration of molecular mechanisms.
Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L
2016-08-15
Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.
Glauber theory and the quantum coherence of curvature inhomogeneities
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2017-02-01
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose–Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third- and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
NASA Astrophysics Data System (ADS)
Reeves, Matthew; Stratford, Kevin; Thijssen, Job H. J.
Bicontinuous Pickering emulsions (bijels) are a physically interesting class of soft materials with many potential applications including catalysis, microfluidics and tissue engineering. They are created by arresting the spinodal decomposition of a partially-miscible liquid with a (jammed) layer of interfacial colloids. Porosity $L$ (average interfacial separation) of the bijel is controlled by varying the radius ($r$) and volume fraction ($\\phi$) of the colloids ($L \\propto r/\\phi$). However, to optimize the bijel structure with respect to other parameters, e.g. quench rate, characterizing by $L$ alone is insufficient. Hence, we have used confocal microscopy and X-ray CT to characterize a range of bijels in terms of local and area-averaged interfacial curvatures. In addition, the curvatures of bijels have been monitored as a function of time, which has revealed an intriguing evolution up to 60 minutes after bijel formation, contrary to previous understanding.
Couple sex therapy for dysfunctions associated with congenital penile curvature.
Zukerman, Z; Goldberg, I; Neri, A; Ovadia, J
1988-05-01
Three couples presented to our clinic with congenital ventral curvature of the penis resulting in unconsummated marriage in 2 cases and dyspareunia in 1. Intensive sex therapy was initiated, including use of vaginal dilators for vaginismus and dyspareunia, sex education, sensate focus exercises, and sexual techniques and methods to increase communication. Two highly motivated couples succeeded in having painless, normal, pleasurable sexual relations after short-term sex therapy. The problems of couple 3 were compounded by the wife's admitted lesbianism. However, this patient insisted on corrective surgery for her husband but she divorced him shortly thereafter. This nonsurgical approach for the treatment of sexual dysfunction secondary to penile curvature appears to be effective in selected cases. When corrective surgery is undertaken sex therapy is recommended to reinforce the operative results.
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Gogotsi, Yury G.; Yushin, Gleb; Portet, Cristelle
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors
Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.
2011-01-31
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Distorted Plane Waves on Manifolds of Nonpositive Curvature
NASA Astrophysics Data System (ADS)
Ingremeau, Maxime
2017-03-01
We will consider the high frequency behaviour of distorted plane waves on manifolds of nonpositive curvature which are Euclidean or hyperbolic near infinity, under the assumption that the curvature is negative close to the trapped set of the geodesic flow and that the topological pressure associated to half the unstable Jacobian is negative. We obtain a precise expression for distorted plane waves in the high frequency limit, similar to the one in Guillarmou and Naud (Am J Math 136:445-479, 2014) in the case of convex co-compact manifolds. In particular, we will show {L_{loc}^∞} bounds on distorted plane waves that are uniform with frequency. We will also show a small-scale equidistribution result for the real part of distorted plane waves, which implies sharp bounds for the volume of their nodal sets.
Preference for Curvature: A Historical and Conceptual Framework
Gómez-Puerto, Gerardo; Munar, Enric; Nadal, Marcos
2016-01-01
That people find curved contours and lines more pleasurable than straight ones is a recurrent observation in the aesthetic literature. Although such observation has been tested sporadically throughout the history of scientific psychology, only during the last decade has it been the object of systematic research. Recent studies lend support to the idea that human preference for curved contours is biologically determined. However, it has also been argued that this preference is a cultural phenomenon. In this article, we review the available evidence, together with different attempts to explain the nature of preference for curvature: sensoriomotor-based and valuation-based approaches. We also argue that the lack of a unifying framework and clearly defined concepts might be undermining our efforts towards a better understanding of the nature of preference for curvature. Finally, we point to a series of unresolved matters as the starting point to further develop a consistent research program. PMID:26793092
Effect of curvature on three-dimensional boundary layer stability
NASA Technical Reports Server (NTRS)
Malik, M. R.; Poll, D. I. A.
1984-01-01
The problem of the stability of a three-dimensional laminar boundary layer formed on a curved surface is considered. A calculation scheme, which takes account of the curvature of the flow streamlines and of the surface is proposed for the prediction of the development of small amplitude temporal disturbances. Computations have been performed for the flow over the windward face of an infinitely long yawed cylinder and comparisons have been made with experimental data. These indicate that the theory correctly predicts many of the features of the unstable laminar flow. The theory also suggests that transition, in this particular situation, is dominated by traveling disturbance waves and that, at the experimentally observed transition location, the wave which has undergone greatest total amplification has an amplitude ratio of approximately e to the 11th. When the effects of curvature are omitted the maximum amplitude ratio at transition is about e to the 17th.
Membrane curvature in cell biology: An integration of molecular mechanisms
Daste, Frederic
2016-01-01
Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656
Membrane tension controls the assembly of curvature-generating proteins
NASA Astrophysics Data System (ADS)
Simunovic, Mijo; Voth, Gregory A.
2015-05-01
Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell.
Constructing Graphs over with Small Prescribed Mean-Curvature
NASA Astrophysics Data System (ADS)
Carley, Holly; Kiessling, Michael K.-H.
2015-12-01
In this paper nonlinear Hodge theory and Banach algebra estimates are employed to construct a convergent series expansion which solves the prescribed mean curvature equation for n-dimensional hypersurfaces in (+ sign) and (- sign) which are graphs of a smooth function , and whose mean curvature function H is α-Hölder continuous and integrable, with small norm. The radius of convergence is estimated explicitly from below. Our approach is inspired by, and applied to, the Maxwell-Born-Infeld theory of electromagnetism in , for which our method yields the first systematic way of explicitly computing the electrostatic potential for regular charge densities and small Born parameter, with explicit error estimates at any order of truncation of the series. In particular, our results level the ground for a controlled computation of Born-Infeld effects on the Hydrogen spectrum.
Generating ekpyrotic curvature perturbations before the big bang
Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.
2007-11-15
We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97
CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION
Kaganovich, Alexander; Lyubarsky, Yuri
2010-10-01
The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.
Novel Topological Phase with a Zero Berry Curvature
NASA Astrophysics Data System (ADS)
Liu, Feng; Wakabayashi, Katsunori
2017-02-01
We present a two-dimensional (2D) lattice model that exhibits a nontrivial topological phase in the absence of the Berry curvature. Instead, the Berry connection provides the topological nontrivial phase in the model, whose integration over the momentum space, the so-called 2D Zak phase, yields a fractional wave polarization in each direction. These fractional wave polarizations manifest themselves as degenerated edge states with opposite parities in the model.
Global and local curvature in density functional theory
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Higher Curvature Effects in the ADD and RS Models
Rizzo, Thomas G.; /SLAC
2006-07-05
Over the last few years several extra-dimensional models have been introduced in attempt to deal with the hierarchy problem. These models can lead to rather unique and spectacular signatures at Terascale colliders such as the LHC and ILC. The ADD and RS models, though quite distinct, have many common feature including a constant curvature bulk, localized Standard Model(SM) fields and the assumption of the validity of the EH action as a description of gravitational interactions.
Abdus Salam and quadratic curvature gravity: Classical solutions
NASA Astrophysics Data System (ADS)
Stelle, K. S.
2017-03-01
In 1978, Salam and Strathdee suggested on the basis of Froissart boundedness that curvature-squared terms should be included in the gravitational Lagrangian. Despite the presence of ghosts in such theories, the subject has remained a persistent topic in approaches to quantum gravity and cosmology. In this article, the space of spherically symmetric solutions to such theories is explored, highlighting horizonless solutions, wormholes and non-Schwarzschild black holes.
NASA Astrophysics Data System (ADS)
RóŻycki, Bartosz; Lipowsky, Reinhard
2016-08-01
Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are typically exposed to different aqueous solutions. We consider solutions of "particles" that experience effectively repulsive interactions with these membranes and form depletion layers in front of the membrane leaflets. The particles considered here are water-soluble, have a size between a few angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall interactions between these particles and the membrane. For this system, we obtain exact expressions for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact results for the hard-core system also show that the spontaneous curvature can be directly deduced from the planar membrane geometry. Our results for the hard-core system apply both to ions and solutes that are small compared to the membrane thickness and to nanoparticles with a size that is comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We then corroborate the different relationships found for the hard-core system by extensive simulations of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear relationships obtained for the hard-core system. Both our analytical and our simulation results show that the spontaneous curvature induced by a single particle species can be quite large. When one leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire a spontaneous curvature of ±1
Curvature wavefront sensing for the large synoptic survey telescope.
Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian
2015-10-20
The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from four curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1 mm on either side of focus. In this paper, we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intrafocal and extrafocal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.
Curvature forces in membrane lipid-protein interactions.
Brown, Michael F
2012-12-11
Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids
Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.
2016-01-01
We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777
On the scalar curvature for the noncommutative four torus
NASA Astrophysics Data System (ADS)
Fathizadeh, Farzad
2015-06-01
The scalar curvature for noncommutative four tori TΘ 4 , where their flat geometries are conformally perturbed by a Weyl factor, is computed by making the use of a noncommutative residue that involves integration over the 3-sphere. This method is more convenient since it does not require the rearrangement lemma and it is advantageous as it explains the simplicity of the final functions of one and two variables, which describe the curvature with the help of a modular automorphism. In particular, it readily allows to write the function of two variables as the sum of a finite difference and a finite product of the one variable function. The curvature formula is simplified for dilatons of the form sp, where s is a real parameter and p ∈ C ∞ ( TΘ 4 ) is an arbitrary projection, and it is observed that, in contrast to the two dimensional case studied by Connes and Moscovici, J. Am. Math. Soc. 27(3), 639-684 (2014), unbounded functions of the parameter s appear in the final formula. An explicit formula for the gradient of the analog of the Einstein-Hilbert action is also calculated.
Curvature Forces in Membrane Lipid-Protein Interactions
Brown, Michael F.
2012-01-01
Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284
Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2001-01-01
The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.
Generic properties of curvature sensing through vision and touch.
Dresp-Langley, Birgitta
2013-01-01
Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1). Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality.
(Curvature) 2-terms for supergravity in three dimensions
NASA Astrophysics Data System (ADS)
Nishino, Hitoshi; Rajpoot, Subhash
2006-08-01
We investigate the effect of (curvature)2-terms on N = 1 and N = 2 supergravity in three dimensions. We use the off-shell component fields (meμ ,ψμ , S) for N = 1 and (meμ ,ψμ ,ψμ∗ ,Aμ , B ,B∗) for N = 2 supergravity. The S ,Aμ and B are respectively a real scalar, a real vector and a complex scalar auxiliary fields. Both for N = 1 and N = 2, only two invariant actions for (curvature)2-terms exist, while only the actions with (scalar curvature)2 are free of negative energy ghosts. Interestingly, the originally non-physical graviton and gravitino fields start propagating, together with the scalar field S for the N = 1 case, or the complex scalar B and the longitudinal component ∂μAμ for N = 2. These new propagating fields form two new physical massive supermultiplets of spins (1/2 , 0) with 2 × (1 + 1) degrees of freedom for the N = 1 case, and two physical massive N = 2 supermultiplets of spins (1/2 ,1/2 , 0 , 0) with 2 × (2 + 2) degrees of freedom for the N = 2 case.
Voronoi-Based Curvature and Feature Estimation from Point Clouds.
Mérigot, Quentin; Ovsjanikov, Maks; Guibas, Leonidas
2011-06-01
We present an efficient and robust method for extracting curvature information, sharp features, and normal directions of a piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.
Finger vein extraction using gradient normalization and principal curvature
NASA Astrophysics Data System (ADS)
Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan
2009-02-01
Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.
Effect of Interface Curvature on Super-Hydrophobic Drag Reduction
NASA Astrophysics Data System (ADS)
Rastegari, Amirreza; Akhavan, Rayhaneh
2015-11-01
The effect of interface curvature on Super-Hydrophobic (SH) Drag Reduction (DR) has been investigated using DNS with lattice Boltzmann methods in laminar (Rebulk = 50) and turbulent (Rebulk = 3600 , Reτ0 ~ 223) channel flows. SH surfaces with longitudinal arrays of micro-grooves (MG) of size 0 . 1 <= g / h <= 0 . 47 & g / w = 1 , 7 were investigated, where g and w denote the width of the MG and the separation in between them, respectively, and h denotes the channel half-height. The liquid/gas interfaces on the SH MG were modeled as `idealized', stationary, curved, shear-free boundaries, with the interface curvatures determined from the Young-Laplace equation. The presence of interface curvature leads to enhancements of DR by up to 10% in laminar flow, and more modest enhancements or even decreases in DR in turbulent flow, compared to flat, shear-free interfaces. These enhancements or decreases in DR, relative to flat, shear-free interfaces, in both laminar and turbulent flow, are shown to arise primarily from the modified shape of the cross section of the channel in the presence of the curved interface.
NASA Astrophysics Data System (ADS)
Termini, Donatella
2016-12-01
The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.
Barreto-Ortiz, Sebastian F; Zhang, Shuming; Davenport, Matthew; Fradkin, Jamie; Ginn, Brian; Mao, Hai-Quan; Gerecht, Sharon
2013-01-01
In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100-400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature.
The geometric curvature of the spine of runners during maximal incremental effort test.
Campos, Mário Hebling; de Paula, Marcelo Costa; Deprá, Pedro Paulo; Brenzikofer, René
2015-04-13
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter
Goley, Erin D.; Dye, Natalie A.; Werner, John N.; Gitai, Zemer; Shapiro, Lucy
2010-01-01
SUMMARY FtsZ is an essential bacterial GTPase that polymerizes at midcell, recruits the division machinery, and may generate constrictive forces necessary for cytokinesis. However, many of the mechanistic details underlying these functions are unknown. We sought to identify FtsZ-binding proteins that influence FtsZ function in Caulobacter crescentus. Here, we present a microscopy-based screen through which we discovered two FtsZ-binding proteins, FzlA and FzlC. FzlA is conserved in α-proteobacteria and was found to be functionally critical for cell division in Caulobacter. FzlA altered FtsZ structure both in vivo and in vitro, forming stable higher order structures that were resistant to depolymerization by MipZ, a spatial determinant of FtsZ assembly. Electron microscopy revealed that FzlA organizes FtsZ protofilaments into striking helical bundles. The degree of curvature induced by FzlA depended on the nucleotide bound to FtsZ. Induction of FtsZ curvature by FzlA carries implications for regulating FtsZ function by modulating its superstructure. PMID:20864042
Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Giuliani, James E.
1994-01-01
The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.
Lee, Sang-Mok; Choi, Hyuk Jin; Choi, Heejin; Kim, Mee Kum; Wee, Won Ryang
2016-10-07
BACKGROUND: Though the development and fitting of scleral contact lenses are expanding steadily, there is no simple method to provide scleral metrics for scleral contact lens fitting yet. The aim of this study was to establish formulae for estimation of the axial radius of curvature (ARC) of the anterior sclera using ocular biometric parameters that can be easily obtained with conventional devices.
A novel setup for wafer curvature measurement at very high heating rates
NASA Astrophysics Data System (ADS)
Islam, T.; Zechner, J.; Bernardoni, M.; Nelhiebel, M.; Pippan, R.
2017-02-01
The curvature evolution of a thin film layer stack containing a top Al layer is measured during temperature cycles with very high heating rates. The temperature cycles are generated by means of programmable electrical power pulses applied to miniaturized polysilicon heater systems embedded inside a semiconductor chip and the curvature is measured by a fast wafer curvature measurement setup. Fast temperature cycles with heating duration of 100 ms are created to heat the specimen up to 270 °C providing an average heating rate of 2500 K/s. As a second approach, curvature measurement utilizing laser scanning Doppler vibrometry is also demonstrated which verifies the results obtained from the fast wafer curvature measurement setup. Film stresses calculated from the measured curvature values compare well to literature results, indicating that the new method can be used to measure curvature during fast temperature cycling.
Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions
NASA Astrophysics Data System (ADS)
Kravchuk, Volodymyr P.; Rößler, Ulrich K.; Volkov, Oleksii M.; Sheka, Denis D.; van den Brink, Jeroen; Makarov, Denys; Fuchs, Hagen; Fangohr, Hans; Gaididei, Yuri
2016-10-01
Topologically stable structures include vortices in a wide variety of matter, skyrmions in ferro- and antiferromagnets, and hedgehog point defects in liquid crystals and ferromagnets. These are characterized by integer-valued topological quantum numbers. In this context, closed surfaces are a prominent subject of study as they form a link between fundamental mathematical theorems and real physical systems. Here we perform an analysis on the topology and stability of equilibrium magnetization states for a thin spherical shell with easy-axis anisotropy in normal directions. Skyrmion solutions are found for a range of parameters. These magnetic skyrmions on a spherical shell have two distinct differences compared to their planar counterpart: (i) they are topologically trivial and (ii) can be stabilized by curvature effects, even when Dzyaloshinskii-Moriya interactions are absent. Due to its specific topological nature a skyrmion on a spherical shell can be simply induced by a uniform external magnetic field.
Determination of biplane geometry and centerline curvature in vascular imaging
NASA Astrophysics Data System (ADS)
Nazareth, Daryl; Hoffmann, Kenneth R.; Walczak, Alan; Dmochowski, Jacek; Guterman, Lee R.; Rudin, Stephen; Bednarek, Daniel R.
2002-05-01
Three-dimensional (3-D) vessel trees can provide useful visual and quantitative information during interventional procedures. To calculate the 3-D vasculature from biplane images, the transformation relating the imaging systems (i.e., the rotation matrix R and the translation vector t) must be determined. We have developed a technique to calculate these parameters, which requires only the identification of approximately corresponding vessel regions in the two images. Initial estimates of R and t are generated based on the gantry angles, and then refined using an optimization technique. The objective function to be minimized is determined as follows. For each endpoint of each vessel in the first image, an epipolar line in the second image is generated. The intersection points between these two epipolar lines and the corresponding vessel centerline in the second image are determined. The vessel arclength between these intersection points is calculated as a fraction of the entire vessel region length in the image. This procedure is repeated for every vessel in each image. The value of the objective function is calculated from the sum of these fractions, and is smallest when the total fractional arclength is greatest. The 3-D vasculature is obtained from the optimal R and t using triangulation, and vessel curvature is then determined. This technique was evaluated using simulated curves and vessel centerlines obtained from clinical images, and provided rotational, magnification and relative curvature errors of 1 degree(s), 1% and 14% respectively. Accurate 3-D and curvature measures may be useful in clinical decision making, such as in assessing vessel tortuousity and access, during interventional procedures.
An Improved Method to Measure the Cosmic Curvature
NASA Astrophysics Data System (ADS)
Wei, Jun-Jie; Wu, Xue-Feng
2017-04-01
In this paper, we propose an improved model-independent method to constrain the cosmic curvature by combining the most recent Hubble parameter H(z) and supernovae Ia (SNe Ia) data. Based on the H(z) data, we first use the model-independent smoothing technique, Gaussian processes, to construct a distance modulus μ H (z), which is susceptible to the cosmic curvature parameter Ω k . In contrary to previous studies, the light-curve-fitting parameters, which account for the distance estimation of SN (μ SN(z)), are set free to investigate whether Ω k has a dependence on them. By comparing μ H (z) to μ SN(z), we put limits on Ω k . Our results confirm that Ω k is independent of the SN light-curve parameters. Moreover, we show that the measured Ω k is in good agreement with zero cosmic curvature, implying that there is no significant deviation from a flat universe at the current observational data level. We also test the influence of different H(z) samples and different Hubble constant H 0 values, finding that different H(z) samples do not have a significant impact on the constraints. However, different H 0 priors can affect the constraints of Ω k to some degree. The prior of H 0 = 73.24 ± 1.74 km s‑1 Mpc‑1 gives a value of Ω k , a little bit above the 1σ confidence level away from 0, but H 0 = 69.6 ± 0.7 km s‑1 Mpc‑1 gives it below 1σ.
Chang-Ileto, Belle; Frere, Samuel G.; Chan, Robin B.; Voronov, Sergey V.; Roux, Aurélien; Di Paolo, Gilbert
2011-01-01
SUMMARY Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] plays a fundamental role in clathrin-mediated endocytosis. However, precisely how PI(4,5)P2 metabolism is spatially and temporally regulated during membrane internalization and the functional consequences of endocytosis-coupled PI(4,5)P2 dephosphorylation remain to be explored. Using cell free assays with liposomes of varying curvatures, we show that the major synaptic phosphoinositide phosphatase, synaptojanin 1 (Synj1), acts with membrane curvature generators/sensors, such as the BAR protein endophilin, to preferentially remove PI(4,5)P2 from curved membranes as opposed to relatively flat ones. Moreover, in vivo recruitment of Synj1’s inositol 5-phosphatase domain to endophilin-induced membrane tubules results in fragmentation and condensation of these structures largely in a dynamin-dependent fashion. Our study raises the possibility that geometry-based mechanisms may contribute to spatially restricting PI(4,5)P2 elimination during membrane internalization and suggests that the PI(4,5)P2-to-PI4P conversion achieved by Synj1 at sites of high curvature may cooperate with dynamin to achieve membrane fission. PMID:21316588
Holographic dark energy model from Ricci scalar curvature
Gao Changjun; Wu Fengquan; Chen Xuelei; Shen Yougen
2009-02-15
Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area of the event horizon of the Universe. However, such a model would have a causality problem. In this paper, we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We show that this model does not only avoid the causality problem and is phenomenologically viable, but also naturally solves the coincidence problem of dark energy. Our analysis of the evolution of density perturbations show that the matter power spectra and cosmic microwave background temperature anisotropy is only slightly affected by such modification.
Curvature effects on heat transfer in the free jet boundary
Diggs, I.W.; Kim, K.H.
1982-10-01
The Coanda effect, which is known to exist in flows associated with velocity discontinuities around airfoils, may include the effects of high temperature and thermal radiation. A physical interpretation of the steady, two-dimensional incompressible flowfield for such cases, and the boundary conditions which apply, are presented. It is found that the radiative boundary layer displays a sensitivity to curvature that grows more pronounced as Reynolds number value increases. Attention is given to flow behavior for the cases of the predominance of conduction and of radiation.
Inflation, Bifurcations of Nonlinear Curvature Lagrangians and Dark Energy
NASA Astrophysics Data System (ADS)
Mielke, Eckehard W.; Kusmartsev, Fjodor V.; Schunck, Franz E.
2008-09-01
A possible equivalence of scalar dark matter, the inflaton, and modified gravity is analyzed. After a conformal mapping, the dependence of the effective Lagrangian on the curvature is not only singular but also bifurcates into several almost Einsteinian spaces, distinguished only by a different effective gravitational strength and cosmological constant. A swallow tail catastrophe in the bifurcation set indicates the possibility for the coexistence of different Einsteinian domains in our Universe. This 'triple unification' may shed new light on the nature and large scale distribution not only of dark matter but also on 'dark energy', regarded as an effective cosmological constant, and inflation.
A momentum calculation for charged tracks with minute curvature
NASA Astrophysics Data System (ADS)
Treadwell, Elliott
1982-07-01
ADJUST is a calculational method written in A.N.S.I. Fortran IV to correct the momenta of charged tracks with minute radius of curvature and large fractional momentum error [ K<0.0014 (GeV/ c) -1 and Δp/ p⩾0.30]. Single application of the method to straight tracks eliminates remeasurements and avoids creating additional biases against high multiplicity events ( NCH>8 tracks). Although ADJUST originated from the analysis of bubble-chamber events, the method is not restricted to bubble-chamber data.
Closeness to spheres of hypersurfaces with normal curvature bounded below
Borisenko, A A; Drach, K D
2013-11-30
For a Riemannian manifold M{sup n+1} and a compact domain Ω⊂ M{sup n+1} bounded by a hypersurface ∂Ω with normal curvature bounded below, estimates are obtained in terms of the distance from O to ∂Ω for the angle between the geodesic line joining a fixed interior point O in Ω to a point on ∂Ω and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented. Bibliography: 9 titles.
On the connectivity of seams of conical intersection: seam curvature.
Yarkony, David R
2005-11-22
The seam of conical intersection of two electronic states is said to be curved when the span of the basis vectors describing the branching plane varies along the seam. In this work degenerate perturbation theory is used to determine an approximately diabatic Hamiltonian that can reliably reproduce the potential-energy surfaces in the vicinity of a point of conical intersection. This Hamiltonian provides a rigorous description of seam curvature, and a means for obtaining the full (N(int)-2)-dimensional seam of conical intersection connected to a point of conical intersection.
Constant mean curvature slicings of Kantowski-Sachs spacetimes
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Direct and alignment-insensitive measurement of cantilever curvature
Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.
2013-07-15
We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
NASA Astrophysics Data System (ADS)
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-12-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
Effect of compliance on haptic perception of curvature.
Song, Weilai; Flanders, Martha; Soechting, John F
2004-01-01
The haptic sense of geometric properties such as the curvature of a contour is derived from somatosensory cues about the motions and forces experienced during exploratory actions. This study addressed the question of whether compliance, the relationship between force and displacement, influences haptic perception of curvature. Subjects traced a curved 30 cm long compliant contour by grasping the handle of a manipulandum and reported whether the contour curved towards or away from them. The contour at which there was equal probability of responding either way was taken to represent one that was sensed as being straight. The compliance of the contour was varied, being constant, greatest in the middle or greatest at the ends. Subjects exhibited a bias in what they sensed to be a straight edge. However, the actual handpath that was judged to be straight did not vary across the three compliance profiles. Our results rule out a hypothetical strategy in which an intended motion is planned and the actual trajectory is then inferred by sensing force feedback. Another strategy in which the force against the contour is controlled and the handpath is inferred from proprioceptive feedback is more consistent with the observations.
Extrinsic curvature, geometric optics, and lamellar order on curved substrates.
Kamien, Randall D; Nelson, David R; Santangelo, Christian D; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Directing peptide crystallization through curvature control of nanotubes.
Gobeaux, Frédéric; Tarabout, Christophe; Fay, Nicolas; Meriadec, Cristelle; Ligeti, Melinda; Buisson, David-Alexandre; Cintrat, Jean-Christophe; Artzner, Franck; Paternostre, Maïté
2014-07-01
In the absence of efficient crystallization methods, the molecular structures of fibrous assemblies have so far remained rather elusive. In this paper, we present a rational method to crystallize the lanreotide octapeptide by modification of a residue involved in a close contact. Indeed, we show that it is possible to modify the curvature of the lanreotide nanotubes and hence their diameter. This fine tuning leads to crystallization because the radius of curvature of the initially bidimensional peptide wall can be increased up to a point where the wall is essentially flat and a crystal is allowed to grow along a third dimension. By comparing X-ray diffraction data and Fourier transform Raman spectra, we show that the nanotubes and the crystals share similar cell parameters and molecular conformations, proving that there is indeed a structural continuum between these two morphologies. These results illustrate a novel approach to crystallization and represent the first step towards the acquisition of an Å-resolution structure of the lanreotide nanotubes β-sheet assembly.
Using curvature extrema to track the evolution of axisymmetric interfaces
NASA Astrophysics Data System (ADS)
Vogel, M. J.; Nitsche, M.; Steen, P. H.
2003-11-01
The temporal evolution of the shape of an interface can exhibit phenomena such as break-up or pinch-off, which are fundamental events that must be controlled in many capillary systems of technological importance. For an axisymmetric surface, lemmas rooted in differential geometry dictate that curvature extrema coincide with curvature crossings or profile extrema. These features provide a convenient means to characterize the profiles of interfaces and to track their evolution even up to singularities, such as occurs at pinch-off. Being solely geometric in nature, this characterization is not limited by the physical properties of the system, e.g., Newtonian versus non-Newtonian behavior, viscous versus inviscid etc. We illustrate by tracking images from evolving soap-films (passive) and polymeric films (non-Newtonian), both observed in experiment, and a deforming mathematical surface predicted by the inviscid vortex-sheet model in simulation. We will discuss extensions of this approach that bring in some model of the flow (e.g. inviscid) and thereby lead to a dynamical system for the motion of the extrema.
Magnetophoretic induction of curvature in coleoptiles and hypocotyls.
Kuznetsov, O A; Hasenstein, K H
1997-11-01
Coleoptiles of barley (Hordeum vulgare) were positioned in a high gradient magnetic field (HGMF, dynamic factor gradient of H(2)/2 of 10(9)-10(10) Oe2 cm-1), generated by a ferromagnetic wedge in a uniform magnetic field and rotated on a 1 rpm clinostat. After 4 h 90% of coleoptiles had curved toward the HGMF. The cells affected by HGMF showed clear intracellular displacement of amyloplasts. Coleoptiles in a magnetic field next to a non-ferromagnetic wedge showed no preferential curvature. The small size of the area of nonuniformity of the HGMF allowed mapping of the sensitivity of the coleoptiles by varying the initial position of the wedge relative to the coleoptile apex. When the ferromagnetic wedge was placed 1 mm below the coleoptile tip only 58% of the coleoptiles curved toward the wedge indicating that the cells most sensitive to intracellular displacement of amyloplasts and thus gravity sensing are confined to the top 1 mm portion of barley coleoptiles. Similar experiments with tomato hypocotyls (Lycopersicum esculentum) also resulted in curvature toward the HGMF. The data strongly support the amyloplast-based gravity-sensing system in higher plants and the usefulness of HGMF to substitute gravity in shoots.
Magnetophoretic induction of curvature in coleoptiles and hypocotyls
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1997-01-01
Coleoptiles of barley (Hordeum vulgare) were positioned in a high gradient magnetic field (HGMF, dynamic factor gradient of H(2)/2 of 10(9)-10(10) Oe2 cm-1), generated by a ferromagnetic wedge in a uniform magnetic field and rotated on a 1 rpm clinostat. After 4 h 90% of coleoptiles had curved toward the HGMF. The cells affected by HGMF showed clear intracellular displacement of amyloplasts. Coleoptiles in a magnetic field next to a non-ferromagnetic wedge showed no preferential curvature. The small size of the area of nonuniformity of the HGMF allowed mapping of the sensitivity of the coleoptiles by varying the initial position of the wedge relative to the coleoptile apex. When the ferromagnetic wedge was placed 1 mm below the coleoptile tip only 58% of the coleoptiles curved toward the wedge indicating that the cells most sensitive to intracellular displacement of amyloplasts and thus gravity sensing are confined to the top 1 mm portion of barley coleoptiles. Similar experiments with tomato hypocotyls (Lycopersicum esculentum) also resulted in curvature toward the HGMF. The data strongly support the amyloplast-based gravity-sensing system in higher plants and the usefulness of HGMF to substitute gravity in shoots.
On the breakdown of the curvature perturbation ζ during reheating
Algan, Merve Tarman; Kaya, Ali; Kutluk, Emine Seyma E-mail: ali.kaya@boun.edu.tr
2015-04-01
It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0φ-dot =, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0φ=, where φ denotes the inflaton perturbation, breaks down when 0φ-dot =. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation φ in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.
Gauss-Bonnet black holes with nonconstant curvature horizons
Maeda, Hideki
2010-06-15
We investigate static and dynamical n({>=}6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasilocal mass that satisfies the unified first law, we show that most of the properties of the quasilocal mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is nonconstant. The quasilocal mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the nonzero cosmological constant, it cannot be globally stable for the positive cosmological constant.
Residual Stress Determination from a Laser-Based Curvature Measurement
Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil
2000-05-01
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
Residual stress determination from a laser-based curvature measurement
W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright
2000-05-08
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Dynamic cutaneous information is sufficient for precise curvature discrimination
Cheeseman, Jacob R.; Norman, J. Farley; Kappers, Astrid M. L.
2016-01-01
Our tactual perceptual experiences occur when we interact, actively and passively, with environmental objects and surfaces. Previous research has demonstrated that active manual exploration often enhances the tactual perception of object shape. Nevertheless, the factors that contribute to this enhancement are not well understood. The present study evaluated the ability of 28 younger (mean age was 23.1 years) and older adults (mean age was 71.4 years) to discriminate curved surfaces by actively feeling objects with a single index finger and by passively feeling objects that moved relative to a restrained finger. While dynamic cutaneous stimulation was therefore present in both conditions, active exploratory movements only occurred in one. The results indicated that there was a significant and large effect of age, such that the older participants’ thresholds were 43.8 percent higher than those of the younger participants. Despite the overall adverse effect of age, the pattern of results across the active and passive touch conditions was identical. For both age groups, the curvature discrimination thresholds obtained for passive touch were significantly lower than those that occurred during active touch. Curvature discrimination performance was therefore best in the current study when dynamic cutaneous stimulation occurred in the absence of active movement. PMID:27137417
NASA Astrophysics Data System (ADS)
Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan
2016-03-01
We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.
NASA Astrophysics Data System (ADS)
Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki
2016-01-01
Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales.
Chen, Jun; Friesen, W Otto; Iwasaki, Tetsuya
2012-01-15
Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body-fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body-fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic
Radius of Curvature Measurements: An Independent Look at Accuracy Using Novel Optical Metrology
NASA Technical Reports Server (NTRS)
Taylor, Bryon; Kahan, Mark; Russell, Kevin (Technical Monitor)
2002-01-01
The AMSD (Advanced Mirror System Demonstrator) program mirror specifications include the ability to manufacture the mirror to a radius of curvature of 10 m +/- 1 mm and to control its radius at 30K to the same specification. Therefore, it is necessary for the Government Team to be able to measure mirror radius of curvature to an accuracy of better than 0.5 mm. This presentation discusses a novel optical metrology system for measuring radius of curvature.
3D Curves With a Prescribed Curvature and Torsion for a Flying Robot
Bestaoui, Yasmina
2008-06-12
The objective of this paper is to generate a desired flight path to be followed by an flying robot. A curve with discontinuous curvature and torsion is not appropriate for smooth motions for any vehicle architecture. Three different classes of curves are presented. First, constant curvature and torsion followed by a linear variation versus the curvilinear abscissa then a quadratic variation. Finally, the problem of maneuvers between two trim helices of different curvature and torsion is tackled with.
Zhang, Jiliang; Zuo, Zhenghong; Wang, Yuqing; Yu, Ang; Chen, Yixin; Wang, Chonggang
2011-01-01
Tributyltin (TBT) is a ubiquitous marine environmental contaminant characterized primarily by its reproductive toxicity. However, the embryotoxicity of TBT has not been extensively described, especially in fishes. The aim of this study was to investigate the developmental toxicity of waterborne TBT at environmental levels (0, 0.1, 1, and 10 ng L(-1) as Sn) on Sebastiscus marmoratus embryos. Our study showed that TBT reduced the hatchability and caused apparent morphological abnormalities including dorsal curvature, severely twisted tails and pericardial edema. In addition, localized apoptosis was found in the tail regions of embryos after TBT exposure. The study provided a possible mechanistic link between apoptosis and TBT-induced twisted tails abnormality. TBT exposure induced retinoid X receptor α expression in S. marmoratus embryos at the 0.1 and 1 ng L(-1) group, which would be responsible for the increasing apoptotic cells induced by TBT. The results of the present study have widespread implications for environmental ecological assessment, management and the etiology of developmental defects.
The effects of out-of-plane curvature on the growth of epithelia
NASA Astrophysics Data System (ADS)
Yevick, Hannah; Duclos, Guillaume; Bonnet, Isabelle; Silberzan, Pascal
2015-03-01
Collective cell migration is at play in many well documented in vivo processes for example, wound re-epithelialization, cancer metastasis and dorsal closure. We present a study describing the effect of out of plane curvature on the collective properties of epithelial tissue. Microfabricated environments are used to deconstruct a monolayer's response to geometry. Specifically, fibers with a radius of curvature between 1um-100um are populated with MDCK cells, a model epithelial, kidney-derived, cell line. Migration dynamics as well as cell architecture are quantified and the effects of curvature compared with confinement alone. Large curvatures trigger specific cellular behaviors and organization that may shed light on tubulogenesis.
Actuation curvature limits for a composite beam with embedded shape memory alloy wires
NASA Astrophysics Data System (ADS)
Naghashian, S.; Fox, B. L.; Barnett, M. R.
2014-06-01
Shape memory alloy composites were manufactured using NiTi wires and woven glass fiber pre-impregnated fabrics. A closed form analytical model was developed to investigate the curvature achievable during actuation. The experimental results of actuation showed reasonable agreement with the model. Actuation temperatures were between ˜55 and 110 °C, curvatures of 0.25-0.5 m-1 were obtained and the stresses in the wires were estimated to have reached 265 MPa during actuation. An actuation curvature map was produced, which shows the actuation limits and approximate temperature-curvature curves for the general case of a composite containing shape memory alloy wires.
Detecting curvatures in digital images using filters derived from differential geometry
NASA Astrophysics Data System (ADS)
Toro Giraldo, Juanita
2015-09-01
Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.
Finite element analysis of a femur to deconstruct the paradox of bone curvature.
Jade, Sameer; Tamvada, Kelli H; Strait, David S; Grosse, Ian R
2014-01-21
Most long limb bones in terrestrial mammals exhibit a longitudinal curvature and have been found to be loaded in bending. Bone curvature poses a paradox in terms of the mechanical function of limb bones, for many believe the curvature in these bones increases bending stress, potentially reducing the bone's load carrying capacity (i.e., its mechanical strength). The aim of this study is to investigate the role of longitudinal bone curvature in the design of limb bones. In particular, it has been hypothesized that bone curvature results in a trade-off between the bone's mechanical strength and its bending predictability. We employed finite element analysis (FEA) of abstract and realistic human femora to address this issue. Geometrically simplified human femur models with different curvatures were developed and analyzed with a commercial FEA tool to examine how curvature affects the bone's bending predictability and load carrying capacity. Results were post-processed to yield probability density functions (PDFs) describing the circumferential location of maximum equivalent stress for various curvatures in order to assess bending predictability. To validate our findings, a finite element model was built from a CT scan of a real human femur and compared to the simplified femur model. We found general agreement in trends but some quantitative differences most likely due to the geometric differences between the digitally reconstructed and the simplified finite element models. As hypothesized by others, our results support the hypothesis that bone curvature can increase bending predictability, but at the expense of bone strength.
Measurement of curvature and twist of a deformed object using digital holography
Chen Wen; Quan Chenggen; Cho Jui Tay
2008-05-20
Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method.
The association between cervical spine curvature and neck pain
Grob, D.; Frauenfelder, H.
2006-01-01
Degenerative changes of the cervical spine are commonly accompanied by a reduction or loss of the segmental or global lordosis, and are often considered to be a cause of neck pain. Nonetheless, such changes may also remain clinically silent. The aim of this study was to examine the correlation between the presence of neck pain and alterations of the normal cervical lordosis in people aged over 45 years. One hundred and seven volunteers, who were otherwise undergoing treatment for lower extremity problems in our hospital, took part. Sagittal radiographs of the cervical spine were taken and a questionnaire was completed, enquiring about neck pain and disability in the last 12 months. Based on the latter, subjects were divided into a group with neck pain (N = 54) and a group without neck pain (N = 53). The global curvature of the cervical spine (C2–C7) and each segmental angle were measured from the radiographs, using the posterior tangent method, and examined in relation to neck complaints. No significant difference between the two groups could be found in relation to the global curvature, the segmental angles, or the incidence of straight-spine or kyphotic deformity (P > 0.05). Twenty-three per cent of the people with neck pain and 17% of those without neck pain showed a segmental kyphosis deformity of more than 4° in at least one segment—most frequently at C4/5, closely followed by C5/6 and C3/4. The average segmental angle at the kyphotic level was 6.5° in the pain group and 6.3° in the group without pain, with a range of 5–10° in each group. In the group with neck pain, there was no association between any of the clinical characteristics (duration, frequency, intensity of pain; radiating pain; sensory/motor disturbances; disability; healthcare utilisation) and either global cervical curvature or segmental angles. The presence of such structural abnormalities in the patient with neck pain must be considered coincidental, i.e. not necessarily
Yang, L.; Gordon, V.D.; Trinkle, D.R.; Schmidt, N.W.; Davis, M.A.; DeVries, C.; Som, A.; Cronan, J.E., Jr.; Tew, G.N.; Wong, G.C.L.
2009-05-28
Phenylene ethynylenes comprise a prototypical class of synthetic antimicrobial compounds that mimic antimicrobial peptides produced by eukaryotes and have broad-spectrum antimicrobial activity. We show unambiguously that bacterial membrane permeation by these antimicrobials depends on the presence of negative intrinsic curvature lipids, such as phosphatidylethanolamine (PE) lipids, found in high concentrations within bacterial membranes. Plate-killing assays indicate that a PE-knockout mutant strain of Escherichia coli drastically out-survives the wild type against the membrane-active phenylene ethynylene antimicrobials, whereas the opposite is true when challenged with traditional metabolic antibiotics. That the PE deletion is a lethal mutation in normative environments suggests that resistant bacterial strains do not evolve because a lethal mutation is required to gain immunity. PE lipids allow efficient generation of negative curvature required for the circumferential barrel of an induced membrane pore; an inverted hexagonal HII phase, which consists of arrays of water channels, is induced by a small number of antimicrobial molecules. The estimated antimicrobial occupation in these water channels is nonlinear and jumps from {approx}1 to 3 per 4 nm of induced water channel length as the global antimicrobial concentration is increased. By comparing to exactly solvable 1D spin models for magnetic systems, we quantify the cooperativity of these antimicrobials.
Lipid Geometry and Bilayer Curvature Modulate LC3/GABARAP-Mediated Model Autophagosomal Elongation
Landajuela, Ane; Hervás, Javier H.; Antón, Zuriñe; Montes, L. Ruth; Gil, David; Valle, Mikel; Rodriguez, J. Francisco; Goñi, Felix M.; Alonso, Alicia
2016-01-01
Autophagy, an important catabolic pathway involved in a broad spectrum of human diseases, implies the formation of double-membrane-bound structures called autophagosomes (AP), which engulf material to be degraded in lytic compartments. How APs form, especially how the membrane expands and eventually closes upon itself, is an area of intense research. Ubiquitin-like ATG8 has been related to both membrane expansion and membrane fusion, but the underlying molecular mechanisms are poorly understood. Here, we used two minimal reconstituted systems (enzymatic and chemical conjugation) to compare the ability of human ATG8 homologs (LC3, GABARAP, and GATE-16) to mediate membrane fusion. We found that both enzymatically and chemically lipidated forms of GATE-16 and GABARAP proteins promote extensive membrane tethering and fusion, whereas lipidated LC3 does so to a much lesser extent. Moreover, we characterize the GATE-16/GABARAP-mediated membrane fusion as a phenomenon of full membrane fusion, independently demonstrating vesicle aggregation, intervesicular lipid mixing, and intervesicular mixing of aqueous content, in the absence of vesicular content leakage. Multiple fusion events give rise to large vesicles, as seen by cryo-electron microscopy observations. We also show that both vesicle diameter and selected curvature-inducing lipids (cardiolipin, diacylglycerol, and lyso-phosphatidylcholine) can modulate the fusion process, smaller vesicle diameters and negative intrinsic curvature lipids (cardiolipin, diacylglycerol) facilitating fusion. These results strongly support the hypothesis of a highly bent structural fusion intermediate (stalk) during AP biogenesis and add to the growing body of evidence that identifies lipids as important regulators of autophagy. PMID:26789764
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-10-01
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
NASA Astrophysics Data System (ADS)
Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro
2016-07-01
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.
Wang, Tuo; Hong, Mei
2015-01-01
A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state NMR methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static 31P NMR spectra of magnetically oriented DMPC/DHPC bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the peptide with the ability to generate a high-curvature phase. 2D 31P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. 31P- and 13C-detected 1H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the 31P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. Based on this resolution, 2D 1H-31P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not the DHPC 31P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the M2 amphipathic helix induces high membrane curvature and localizes the protein to this phase, in excellent agreement with the membrane-scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are
Topological implications of negative curvature for biological and social networks
NASA Astrophysics Data System (ADS)
Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim
2014-03-01
Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.
Curvature-driven bubbles or droplets on the spiral surface
Li, Shanpeng; Liu, Jianlin; Hou, Jian
2016-01-01
Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration. PMID:27885261
Converting entropy to curvature perturbations after a cosmic bounce
Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward
2016-10-04
We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.
Curvature-driven bubbles or droplets on the spiral surface
NASA Astrophysics Data System (ADS)
Li, Shanpeng; Liu, Jianlin; Hou, Jian
2016-11-01
Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration.
The effect of wellbore curvature on tubular buckling and lockup
Wu, J.; Juvkam-Wold, H.C.
1995-09-01
This paper studies tubular buckling in curved wellbores (such as the build section of horizontal wells) and its effect on tubular ``lockup`` in horizontal or extended-reach wells. New buckling load equations are derived to properly predict tubular sinusoidal and helical buckling in such wellbores. The results show that the buckling loads to initiate sinusoidal and helical buckling to tubulars in curved wellbores are usually much larger than those in straight wellbores. This is because the curved wellbore tends to hold the axially compressed tubular against the outer-curve side of the wellbore. The tubular becomes less easy to buckle until higher axial compressive loads are applied. Less tubular lockup risk is then predicted for tubulars in horizontal or extended-reach wells by using the new buckling load equations. The new buckling loads in curved wellbores agree with those in straight wellbores when wellbore curvature approaches zero. Small-scale laboratory experiments also confirmed these theoretically derived buckling loads.
Buckling of Low Arches or Curved Beams of Small Curvature
NASA Technical Reports Server (NTRS)
Fung, Y C; Kaplan, A
1952-01-01
A general solution, based on the classical buckling criterion, is given for the problem of buckling of low arches under a lateral loading acting toward the center of curvature. For a sinusoidal arch under sinusoidal loading, the critical load can be expressed exactly as a simple function of the beam dimension parameters. For other arch shapes and load distributions, approximate values of the critical load can be obtained by summing a few terms of a rapidly converging Fourier series. The effects of initial end thrust and axial and lateral elastic support are discussed. The buckling load based on energy criterion of Karman and Tsien is also calculated. Results for both the classical and the energy criteria are compared with experimental results.
Thermodynamic curvature for attractive and repulsive intermolecular forces.
May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George
2013-09-01
The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.
Negative bending mode curvature via Robin boundary conditions
NASA Astrophysics Data System (ADS)
Adams, Samuel D. M.; Craster, Richard V.; Guenneau, Sébastien
2009-06-01
We examine the band spectrum, and associated Floquet-Bloch eigensolutions, arising in straight walled acoustic waveguides that have periodic structure along the guide. Homogeneous impedance (Robin) conditions are imposed along the guide walls and we find that in certain circumstances, negative curvature of the lowest (bending) mode can be achieved. This is unexpected, and has not been observed in a variety of physical situations examined by other authors. Further unexpected properties include the existence of the bending mode only on a subset of the Brillouin zone, as well as permitting otherwise unobtainable velocities of energy transmission. We conclude with a discussion of how such boundary conditions might be physically reproduced using effective conditions and homogenization theory, although the methodology to achieve these effective conditions is an open problem. To cite this article: S.D.M. Adams et al., C. R. Physique 10 (2009).
Camera-based curvature measurement of a large incandescent object
NASA Astrophysics Data System (ADS)
Ollikkala, Arttu V. H.; Kananen, Timo P.; Mäkynen, Anssi J.; Holappa, Markus
2013-04-01
The goal of this work was to implement a low-cost machine vision system to help the roller operator to estimate the amount of strip camber during the rolling process. The machine vision system composing of a single camera, a standard PC-computer and a LabVIEW written program using straightforward image analysis determines the magnitude and direction of camber and presents the results both in numerical and graphical form on the computer screen. The system was calibrated with LED set-up which was also used to validate the accuracy of the system by mimicking the strip curvatures. The validation showed that the maximum difference between the true and measured values was less than +/-4 mm (k=0.95) within the 22 meter long test pattern.
Theory for the curvature dependence of delta front progradation
NASA Astrophysics Data System (ADS)
Ke, Wun-Tao; Capart, Hervé
2015-12-01
When Gilbert-type deltas respond to uneven sediment supply or advance over irregular basin bathymetry, they develop curved, creased fronts prograding at speeds that vary with location along the shoreline. Relations governing the progradation rate, however, have so far been proposed only for simple special cases. In this paper, we exploit the special properties of solutions to the eikonal equation to derive a general progradation relation, applicable to delta fronts of finite angle of repose and arbitrary shoreline planform. In these circumstances, the theory explicitly relates the progradation rate to the local shoreline curvature. We illustrate the resulting morphodynamics with numerical and analytical solutions for a sinuous delta front. The proposed relation can be used to model deltaic evolution or deduce spanwise distributions of sediment supply rates from observations of foreset evolution.
Curvature ductility of reinforced and prestressed concrete columns
Suprenant, B.A.
1984-01-01
Engineers are concerned with the survival of reinforced and prestressed concrete columns during earthquakes. The prediction of column survival can be deduced from moment-curvature curves of the column section. An analytical approach is incorporated into a computer model. The computer program is based on assumed stress-strain relations for confined and unconfined concrete, nonprestressed and prestressing steel. The results of studies on reinforced and prestressed concrete columns indicate that reinforced concrete columns may be designed to resist earthquakes, while prestressed concrete columns may not. The initial reduction in moment capacity, after concrete cover spalling, of a prestressed concrete column could be as much as 50%. Analyses indicate that the bond between concrete and prestressing strand after concrete cover spalling is not critical.
Implications on the cosmic coincidence by a dynamical extrinsic curvature
NASA Astrophysics Data System (ADS)
Capistrano, Abraão J. S.; Cabral, Luis A.
2016-12-01
In this work, we apply the smooth deformation concept in order to obtain a modification of Friedmann’s equations. It is shown that the cosmic coincidence can be at least alleviated using the dynamical properties of the extrinsic curvature. We investigate the transition from nucleosynthesis to the coincidence era obtaining a very small variation of the ratio r=\\tfrac{{ρ }{{m}}}{{ρ }{{ext}}} that compares the matter energy density to extrinsic energy density, compatible with the known behavior of the deceleration parameter. We also show that the calculated ‘equivalence’ redshift matches the transition redshift from a deceleration to accelerated phase and the coincidence ceases to be. The dynamics on r is also studied based on Hubble parameter observations as the latest Baryons Acoustic Oscillations/Cosmic Microwave Background Radiation (BAO/CMBR) + SNIa.
Surface Curvature in Island Groups and Discontinuous Cratonic Structures
NASA Astrophysics Data System (ADS)
McDowell, M. S.
2002-05-01
The Canadian Archipelago includes eight major islands and a host of smaller ones. They are separated by water bodies, of varying widths attributable to glacial activity and ocean currents. Land form varies from relatively rugged mountains (~2000 m) in eastern, glacial, islands, to low lying western, similar to the continental topography adjacent. The Arctic region is thought to have been low average elevation before the Pleistocene. To a picture puzzler, it all looks like it fit together. Experimentally cutting apart the islands from large scale maps shows that the rough edges match fairly well. However, when those independent pieces are sutured together, without restraint, as in free air, the fit is far better. Far more importantly, they consistently form a noticeably concave surface. This tendency is not at all apparent in flat surface or computer screen manipulation; the pieces need to be "hand joined" or on a molded surface to allow the assembly to freely form as it will. Fitting together the coastlines above 60 \\deg north, from 120 \\deg west to 45 \\deg east, and comparing the resulting contracted area to the original, obtains an 8 percent area reduction. The curvature "humps" a trial planar section of 15 cms by 1.6 cm, a substantial difference in the radius of curvature. If you rashly suggest applying that formula globally, the resulting sphere would have a surface area of 4.7 x108,(down from 5 x108), and therefore radius of 6117 km, down from 6400, which is a rather preposterous conclusion. As nobody would believe it, I tested the idea elsewhere. The Huronian succession of six named cratons is adjacent on the south. I cut this map apart, too, and fit it together, once again getting a curvature, this time more pronounced. I am trying it with the Indonesian Archipelago, although this area has volcanic complications, and with Precambrian Basins in western Australia and Nimibia, Africa. Indications are - an essentially similar pattern of fit, but non uniform
Conditions on holographic entangling surfaces in higher curvature gravity
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Sleight, Charlotte
2014-06-01
We study the extremal surfaces of functionals recently proposed for the holographic calculation of entanglement entropy in general higher curvature theories, using New Massive gravity and Gauss-Bonnet gravity as concrete examples. We show that the entropy functionals admit closed extremal surfaces, which for black hole backgrounds can encircle the event horizon of the black hole. In the examples considered, such closed surfaces correspond to a lower value of the entropy functional than expected from CFT calculations, implying a seeming mismatch between the bulk and boundary calculations. For Lorentzian settings we show that this problem can be resolved by imposing a causality constraint on the extremal surfaces. The possibility of deriving conditions from an alternative conical boundary condition method as proposed by Lewkowycz and Maldacena is explored.
Membrane curvature and its generation by BAR proteins
Mim, Carsten; Unger, Vinzenz M
2012-01-01
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040
Curvature of the energy landscape and folding of model proteins.
Mazzoni, Lorenzo N; Casetti, Lapo
2006-11-24
We study the geometric properties of the energy landscape of coarse-grained, off-lattice models of polymers by endowing the configuration space with a suitable metric, depending on the potential energy function, such that the dynamical trajectories are the geodesics of the metric. Using numerical simulations, we show that the fluctuations of the curvature clearly mark the folding transition, and that this quantity allows to distinguish between polymers having a proteinlike behavior (i.e., that fold to a unique configuration) and polymers which undergo a hydrophobic collapse but do not have a folding transition. These geometrical properties are defined by the potential energy without requiring any prior knowledge of the native configuration.
Curvature detection by entanglement generation using a beam splitter
NASA Astrophysics Data System (ADS)
Mahdifar, Ali; Dehdashti, Shahram; Roknizadeh, Rasoul; Chen, Hongsheng
2015-08-01
In this paper, we investigate the behavior of radiation field, whose state is described by the so-called sphere coherent state, through a beam splitter. These states are realization of coherent states of two-dimensional harmonic oscillator, which lives on a sphere, as radiation field. By using the linear entropy as a measure of entanglement, we show that the entanglement depends on the curvature of the sphere. So, by using the appropriating sphere coherent states, we can control the entanglement of the output states of the beam splitter in the laboratory. In addition, as the convince measures of non-classical behaviors, we consider Mandel parameters of the output states of the beam splitter and their quadrature squeezing.
Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D.; Katsaras, John; Atkinson, Jeffrey
2015-01-21
Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. In this paper, we examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. Finally, α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.
Non-Gaussianities and curvature perturbations from hybrid inflation
NASA Astrophysics Data System (ADS)
Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi
2014-03-01
For the original hybrid inflation as well as the supersymmetric F-term and D-term hybrid models, we calculate the level of non-Gaussianities and the power spectrum of curvature perturbations generated during the waterfall, taking into account the contribution of entropic modes. We focus on the regime of mild waterfall, in which inflation continues for more than about 60 e-folds N during the waterfall. We find that the associated fNL parameter goes typically from fNL≃-1/Nexit in the regime with N ≫60, where Nexit is the number of e-folds between the time of Hubble exit of a pivot scale and the end of inflation, down to fNL˜-0.3 when N ≳60, i.e., much smaller in magnitude than the current bound from Planck. Considering only the adiabatic perturbations, the power spectrum is red, with a spectral index ns=1-4/Nexit in the case N ≫60, whereas in the case N≳60, it increases up to unity. Including the contribution of entropic modes does not change observable predictions in the first case, and the spectral index is too low for this regime to be viable. In the second case, entropic modes are a relevant source for the power spectrum of curvature perturbations, of which the amplitude increases by several orders of magnitude. When spectral index values are consistent with observational constraints, the primordial spectrum amplitude is much larger than the observed value and can even lead to black hole formation. We conclude that, due to the important contribution of entropic modes, the parameter space leading to a mild waterfall phase is excluded by cosmic microwave background observations for all the considered models.
3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed
Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M.; Stopczynski, Nathan; Sousa-Neves, Rui
2017-01-01
Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the ‘landscape’ using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method. PMID:28280723
Thermodynamic curvature from the critical point to the triple point.
Ruppeiner, George
2012-08-01
I evaluate the thermodynamic curvature R for fourteen pure fluids along their liquid-vapor coexistence curves, from the critical point to the triple point, using thermodynamic input from the NIST Chemistry WebBook. In this broad overview, R is evaluated in both the coexisting liquid and vapor phases. R is an invariant whose magnitude |R| is a measure of the size of mesoscopic organized structures in a fluid, and whose sign specifies whether intermolecular interactions are effectively attractive (R<0) or repulsive (R>0). I discuss five principles for R in pure fluids: (1) Near the critical point, the attractive part of the interactions forms loose structures of size |R| proportional to the correlation volume ξ(3), and the sign of R is negative. (2) In the vapor phase, there are instances of compact clusters of size |R| formed by the attractive part of the interactions and prevented from collapse by the repulsive part of the interactions, and the sign of R is positive. (3) In the asymptotic critical point regime, the R's in the coexisting liquid and vapor phases are equal to each other, i.e., commensurate. (4) Outside the asymptotic critical-point regime incommensurate R's may be associated with metastability. (5) The compact liquid phase has |R| on the order of the volume of a molecule, with the sign of R being negative for a liquidlike state held together by attractive interactions and the sign of R being positive for a solidlike state held up by repulsive interactions. These considerations amplify and extend the application of thermodynamic curvature in pure fluids.
Small Peptides Derived from Penetratin as Antibacterial Agents.
Parravicini, Oscar; Somlai, Csaba; Andujar, Sebastián A; Garro, Adriana D; Lima, Beatriz; Tapia, Alejandro; Feresin, Gabriela; Perczel, Andras; Tóth, Gabor; Cascales, Javier López; Rodríguez, Ana M; Enriz, Ricardo D
2016-04-01
The synthesis, in vitro evaluation and conformational study of several small-size peptides acting as antibacterial agents are reported. Among the compounds evaluated, the peptides Arg-Gln-Ile-Lys-Ile-Trp-Arg-Arg-Met-Lys-Trp-Lys-Lys-NH2 , Arg-Gln-Ile-Lys-Ile-Arg-Arg-Met-Lys-Trp-Arg-NH2 , and Arg-Gln-Ile-Trp-Trp-Trp-Trp-Gln-Arg-NH2 exhibited significant antibacterial activity. These were found to be very active antibacterial compounds, considering their small molecular size. In order to better understand the antibacterial activity obtained for these peptides, an exhaustive conformational analysis was performed, using both theoretical calculations and experimental measurements. Molecular dynamics simulations using two different media (water and trifluoroethanol/water) were employed. The results of these theoretical calculations were corroborated by experimental circular dichroism measurements. A brief discussion on the possible mechanism of action of these peptides at molecular level is also presented. Some of the peptides reported here constitute very interesting structures to be used as starting compounds for the design of new small-size peptides possessing antibacterial activity.
The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.
Nguyen, Duc D; Wei, Guo-Wei
2017-01-05
This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.; Barr, R. Graham
2009-02-01
Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for the imaging of the anatomical basis of emphysema and quantification of the underlying disease state. Several measures have been introduced for the quantification emphysema directly from CT data; most,however, are based on the analysis of density information provided by the CT scans, which vary by scanner and can be hard to standardize across sites and time. Given that one of the anatomical variations associated with the progression of emphysema is the flatting of the diaphragm due to the loss of elasticity in the lung parenchyma, curvature analysis of the diaphragm would provide information about emphysema from CT. Therefore, we propose a new, non-density based measure of the curvature of the diaphragm that would allow for further quantification methods in a robust manner. To evaluate the new method, 24 whole-lung scans were analyzed using the ratios of the lung height and diaphragm width to diaphragm height as curvature estimates as well as using the emphysema index as comparison. Pearson correlation coefficients showed a strong trend of several of the proposed diaphragm curvature measures to have higher correlations, of up to r=0.57, with DLCO% and VA than did the emphysema index. Furthermore, we found emphysema index to have only a 0.27 correlation to the proposed measures, indicating that the proposed measures evaluate different aspects of the disease.
The role of the epidermis and cortex in gravitropic curvature of maize roots
NASA Technical Reports Server (NTRS)
Bjorkman, T.; Cleland, R. E.
1988-01-01
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53 degrees in 5 h) than in intact roots (82 degrees), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.
The effects of streamline curvature and swirl on turbulent flows in curved ducts
NASA Technical Reports Server (NTRS)
Cheng, Chih-Hsiung; Farokhi, Saeed
1990-01-01
A technique for improving the numerical predictions of turbulent flows with the effect of streamline curvature is developed. Separated flows, the flow in a curved duct, and swirling flows are examples of flow fields where streamline curvature plays a dominant role. A comprehensive literature review on the effect of streamline curvature was conducted. New algebraic formulations for the eddy viscosity incorporating the kappa-epsilon turbulence model are proposed to account for various effects of streamline curvature. The loci of flow reversal of the separated flows over various backward-facing steps are employed to test the capability of the proposed turbulence model in capturing the effect of local curvature. The inclusion of the effect of longitudinal curvature in the proposed turbulence model is validated by predicting the distributions of the static pressure coefficients in an S-bend duct and in 180 degree turn-around ducts. The proposed turbulence model embedded with transverse curvature modification is substantiated by predicting the decay of the axial velocities in the confined swirling flows. The numerical predictions of different curvature effects by the proposed turbulence models are also reported.
Elongation growth and gravitropic curvature in the Flammulina velutipes (Agaricales) fruiting body.
Haindl, E; Monzer, J
1994-06-01
Differential elongation of stipe hyphae drives the gravitropic reorientation of Flammulina velutipes (Agaricales) fruiting bodies. The gravitropic curvature is strictly dependent on the presence of the transition zone between pileus and stipe. Elongation growth, providing the driving force for curvature, is also promoted by the pileus. Gravitropic curvature is successfully suppressed by clinostatic rotation, but the elongation rate is not affected. Explantation of fruiting body stipes lowers curvature and elongation rates corresponding to explant size reduction. In Flammulina, 25 mm length of transition zone explants is an efficient size for reproducible curvature and elongation during 48- to 72-h curvature tests. Submersion of specimens in aqueous medium causes cessation of the gravitropic curvature, but does not affect elongation. Thus the involvement of a diffusible factor in transmission of the curvature signal is probable. Splitting the fruiting body stipe in segments of 1/8 diameter does not suppress the gravitropic response, and the segments are individually reoriented to the vertical. It is concluded that the graviresponse of the Flammulina fruiting body is based on cellular perception of the gravistimulus and that a differential growth signal is transmitted in the stipe by a soluble factor that regulates hyphal elongation.
Geometric quantization of curvature energy in equipotential surfaces of ionic crystals
NASA Astrophysics Data System (ADS)
Gandy, Paul J. F.; Klinowski, Jacek
2002-06-01
The curvature energies of triply periodic minimal surfaces (TPMS) and zero equipotential surfaces (ZEPS) of ionic crystals are both quantized with the Euler-Poincaré characteristic as the "quantum number," and the curvature energy of the TPMS larger than that of the corresponding ZEPS. Quantization is imposed by the charge-defined metric.
The role of the epidermis and cortex in gravitropic curvature of maize roots.
Björkman, T; Cleland, R E
1988-12-01
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53 degrees in 5 h) than in intact roots (82 degrees), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.
Constant curvature surfaces of the supersymmetric ℂP{sup N−1} sigma model
Delisle, L.; Hussin, V.; Yurduşen, İ.; Zakrzewski, W. J.
2015-02-15
Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂP{sup N−1} sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.
Some remarks on the symmetries of the curvature and Weyl tensors
NASA Astrophysics Data System (ADS)
Hall, G. S.; Lonie, D. P.; Kashif, A. R.
2008-06-01
This paper considers the symmetries of the curvature tensor (curvature collineations) and of the Weyl conformal tensor (Weyl conformal collineations) in general relativity. Some general results are reviewed for later application, some new ones proved and many special cases are investigated. Particular emphasis is laid on the interrelations between these two types of symmetries. A number of instructive examples of such symmetries are given.
Noriega, Arturo; Cervantes, Emilio; Tocino, Angel
2008-06-16
Recently, curvature was described as a new trait useful in the analysis of root apex shape. Treating the root profile as a geometric curve revealed that root apex curvature values are lower in ethylene-insensitive mutants (Cervantes E, Tocino A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J Plant Physiol 2005;162:1038-45). This fact suggests that curvature is regulated by ethylene. In this work, we have determined the curvature values in embryonic roots of wild-type Columbia as well as in ethylene signal-transduction mutants, and found smaller values in embryos of the mutants. We also report on the evolution of root curvature during early development after seed germination. The line Lt16b that expresses GFP in the cell wall has allowed us to investigate the evolution of curvature values in three successive cell layers of seedling roots by confocal microscopy. Treatment of seedlings with norbornadiene resulted in lower curvature values. Our results show details illustrating the effect of ethylene in root curvature.
Equal-Curvature X-ray Telescope Designs for Constellation-X Mission
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Content, David A.; Zhang, William W.
2003-01-01
We study grazing incidence Equal-Curvature telescope designs for the Constellation-X mission. These telescopes have nearly spherical axial surfaces. The telescopes are designed so that the axial curvature is the same on the primary and secondary. The optical performance of these telescopes is for all practical purposes identical to the equivalent Wolter telescopes.
Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature
Cheney, Philip P.; Weisgerber, Alan W.; Feuerbach, Alec M.; Knowles, Michelle K.
2017-01-01
The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed. PMID:28294967
Real-time GPU surface curvature estimation on deforming meshes and volumetric data sets.
Griffin, Wesley; Wang, Yu; Berrios, David; Olano, Marc
2012-10-01
Surface curvature is used in a number of areas in computer graphics, including texture synthesis and shape representation, mesh simplification, surface modeling, and nonphotorealistic line drawing. Most real-time applications must estimate curvature on a triangular mesh. This estimation has been limited to CPU algorithms, forcing object geometry to reside in main memory. However, as more computational work is done directly on the GPU, it is increasingly common for object geometry to exist only in GPU memory. Examples include vertex skinned animations and isosurfaces from GPU-based surface reconstruction algorithms. For static models, curvature can be precomputed and CPU algorithms are a reasonable choice. For deforming models where the geometry only resides on the GPU, transferring the deformed mesh back to the CPU limits performance. We introduce a GPU algorithm for estimating curvature in real time on arbitrary triangular meshes. We demonstrate our algorithm with curvature-based NPR feature lines and a curvature-based approximation for an ambient occlusion. We show curvature computation on volumetric data sets with a GPU isosurface extraction algorithm and vertex-skinned animations. We present a graphics pipeline and CUDA implementation. Our curvature estimation is up to ~18x faster than a multithreaded CPU benchmark.
Curvature energy effects on strange quark matter nucleation at finite density
Horvath, J.E. Department of Space Physics and Astronomy, Rice University, P.O. Box 1892, Houston, Texas 77251 )
1994-05-15
We consider the effects of the curvature energy term on thermal strange quark matter nucleation in dense neutron matter. Lower bounds on the temperature at which this process can take place are given and compared to those without the curvature term.
Sequence-dependent DNA curvature and flexibility from scanning force microscopy images.
Scipioni, Anita; Anselmi, Claudio; Zuccheri, Giampaolo; Samori, Bruno; De Santis, Pasquale
2002-01-01
This paper reports a study of the sequence-dependent DNA curvature and flexibility based on scanning force microscopy (SFM) images. We used a palindromic dimer of a 1878-bp pBR322 fragment and collected a large pool of SFM images. The curvature of each imaged chain was measured in modulus and direction. It was found that the ensemble curvature modulus does not allow the separation of static and dynamic contributions to the curvature, whereas the curvature, when its direction in the two dimensions is taken into account, permits the direct separation of the intrinsic curvature contributions static and dynamic contributions. The palindromic symmetry also acted as an internal gauge of the validity of the SFM images statistical analysis. DNA static curvature resulted in good agreement with the predicted sequence-dependent intrinsic curvature. Furthermore, DNA sequence-dependent flexibility was found to correlate with the occurrence of A.T-rich dinucleotide steps along the chain and, in general, with the normalized basepair stacking energy distribution. PMID:12414677
NASA Astrophysics Data System (ADS)
Fries, Dan; Ochs, Bradley; Ranjan, Devesh; Menon, Suresh
2016-11-01
A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with uRMS' /SL0 = 6 . 9 - 22 , L11 /δF = 44 - 68 and Reλ = 190 - 550 . The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at Ū = 30 m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development. This work was supported by the Air Force Office of Scientific Research under basic research Grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li).
Sha, Haoyan; Faller, Roland
2016-07-20
Quantum chemistry calculations were performed to investigate the effect of the surface curvature of a Boron Nitride (BN) nanotube/nanosheet on gas adsorption. Curved boron nitride layers with different curvatures interacting with a number of different gases including noble gases, oxygen, and water on both their convex and concave sides of the surface were studied using density functional theory (DFT) with a high level dispersion corrected functional. Potential energy surfaces of the gas molecules interacting with the selected BN surfaces were investigated. In addition, the charge distribution and electrostatic potential contour of the selected BN surfaces are discussed. The results reveal how the curvature of the BN surfaces affects gas adsorption. In particular, small curvatures lead to a slight difference in the physisorption energy, while large curvatures present distinct potential energy surfaces, especially for the short-range repulsion.
Applications of Bayesian model averaging to the curvature and size of the Universe
NASA Astrophysics Data System (ADS)
Vardanyan, Mihran; Trotta, Roberto; Silk, Joseph
2011-05-01
Bayesian model averaging is a procedure to obtain parameter constraints that account for the uncertainty about the correct cosmological model. We use recent cosmological observations and Bayesian model averaging to derive tight limits on the curvature parameter, as well as robust lower bounds on the curvature radius of the Universe and its minimum size, while allowing for the possibility of an evolving dark energy component. Because flat models are favoured by Bayesian model selection, we find that model-averaged constraints on the curvature and size of the Universe can be considerably stronger than non-model-averaged ones. For the most conservative prior choice (based on inflationary considerations), our procedure improves on non-model-averaged constraints on the curvature by a factor of ˜2. The curvature scale of the Universe is conservatively constrained to be Rc > 42 Gpc (99 per cent), corresponding to a lower limit to the number of Hubble spheres in the Universe NU > 251 (99 per cent).
Curvature of blended rolled edge reflectors at the shadow boundary contour
NASA Technical Reports Server (NTRS)
Ellingson, S. W.
1988-01-01
A technique is advanced for computing the radius of curvature of blended rolled edge reflector surfaces at the shadow boundary, in the plane perpendicular to the shadow boundary contour. This curvature must be known in order to compute the spurious endpoint contributions in the physical optics (PO) solution for the scattering from reflectors with rolled edges. The technique is applicable to reflectors with radially-defined rim-shapes and rolled edge terminations. The radius of curvature for several basic reflector systems is computed, and it is shown that this curvature can vary greatly along the shadow boundary contour. Finally, the total PO field in the target zone of a sample compact range system is computed and corrected using the shadow boundary radius of curvature, obtained using the technique. It is shown that the fields obtained are a better approximation to the true scattered fields.
Non-perturbative approach for curvature perturbations in stochastic δ N formalism
Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp
2014-10-01
In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.
How does relativity affect magnetically induced currents?
Berger, R J F; Repisky, M; Komorovsky, S
2015-09-21
Magnetically induced probability currents in molecules are studied in relativistic theory. Spin-orbit coupling (SOC) enhances the curvature and gives rise to a previously unobserved current cusp in AuH or small bulge-like distortions in HgH2 at the proton positions. The origin of this curvature is magnetically induced spin-density arising from SOC in the relativistic description.
Unique physical signature of DNA curvature and its implications for structure and dynamics.
Porschke, Dietmar
2007-10-18
A particularly sensitive birefringence technique is used to analyze a curved DNA fragment with 118 bp and a standard DNA with 119 bp. At salt concentrations from 0.5 to 10 mM, both fragments show the usual negative stationary birefringence and monotonic transients - differences are relatively small. At 100 mM salt the curved DNA shows a positive stationary birefringence and non-monotonic transients with processes having amplitudes of opposite sign, whereas signals of the standard DNA remain as usual. Transients induced by reversal of the field vector indicate the existence of a permanent dipole for the curved DNA. 2-MHz-ac pulses induce a negative stationary birefringence in both DNAs. These results are consistent with calculations on models for curved DNA predicting a quasi-permanent dipole and a positive dichroism/birefringence. The quasi-permanent dipole results from the loss of symmetry in the charge distribution of the curved polyelectrolyte. The appearance of the unique signature of curvature at high salt is mainly due to a strong decrease of the polarizability by about 2 orders of magnitude. The special mode of orientation resulting from the quasi-permanent dipole is expected to contribute to the gel migration anomaly. The time constants of birefringence decay for the curved fragment are shorter than those of the 119 bp fragment by a factor of approximately 1.10 at 0.6 mM salt, whereas this factor is approximately 1.20 at 100 mM Na+. If both fragments were normal DNA with 3.4 A rise per base pair, the factor would be approximately 1.02. At high salt and high electric field strengths the factor increases up to 1.37. The implications for the bending dynamics and the potential to distinguish static from dynamic persistence by field reversal experiments are discussed. The dependence of the curvature on the salt concentration indicated by the time constants is consistent with a clear decrease of the electrophoretic anomaly at decreasing salt concentration.
The effect of wellbore curvature on tubular buckling and lockup
Wu, J.; Juvkam-Wold, H.C.
1994-12-31
This paper describes sinusoidal and helical buckling of tubulars in curved wellbores (such as the build section of horizontal wells) and the effect on `lockup` of tubulars when drilling horizontal or extended-reach wells. New buckling load equations are derived to properly predict sinusoidal and helical buckling of tubulars in such wellbores. The results show that the buckling loads to ultimate sinusoidal and helical buckling of tubulars in curved wellbores are usually much larger than those in straight wellbores. This is because the curved wellbore tends to hold the axially compressed tubular against the outer-curve side of the wellbore. It is difficult to buckle a tubular into a sinusoidal or helical shape in curved wellbores, unless a very high axial compressive load is applied. The risk of tubular lockup when chilling horizontal or extended-reach wells is therefore reduced, because there is likely to be very little, if any, tubular buckling in the curved wellbore. The buckling loads derived in this paper also agree with those in straight wellbores when wellbore curvature approaches zero. Small scale laboratory experiments confirmed the theoretically derived buckling loads.
Curvature regulation of the ciliary beat through axonemal twist.
Sartori, Pablo; Geyer, Veikko F; Howard, Jonathon; Jülicher, Frank
2016-10-01
Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.
Turned head--adducted hip--truncal curvature syndrome.
Hamanishi, C; Tanaka, S
1994-01-01
One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823
Dual curvature acoustically damped concentrating collector. Final technical report
Smith, G.A.; Rausch, R.A.
1980-05-01
A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.
Moment transport equations for the primordial curvature perturbation
Mulryne, David J.; Seery, David; Wesley, Daniel E-mail: d.seery@sussex.ac.uk
2011-04-01
In a recent publication, we proposed that inflationary perturbation theory can be reformulated in terms of a probability transport equation, whose moments determine the correlation properties of the primordial curvature perturbation. In this paper we generalize this formulation to an arbitrary number of fields. We deduce ordinary differential equations for the evolution of the moments of ζ on superhorizon scales, which can be used to obtain an evolution equation for the dimensionless bispectrum, f{sub NL}. Our equations are covariant in field space and allow identification of the source terms responsible for evolution of f{sub NL}. In a model with M scalar fields, the number of numerical integrations required to obtain solutions of these equations scales like O(M{sup 3}). The performance of the moment transport algorithm means that numerical calculations with M >> 1 fields are straightforward. We illustrate this performance with a numerical calculation of f{sub NL} in Nflation models containing M ∼ 10{sup 2} fields, finding agreement with existing analytic calculations. We comment briefly on extensions of the method beyond the slow-roll approximation, or to calculate higher order parameters such as g{sub NL}.
Primordial magnetic field and kinetic theory with Berry curvature
NASA Astrophysics Data System (ADS)
Bhatt, Jitesh R.; Pandey, Arun Kumar
2016-08-01
We study the generation of a magnetic field in primordial plasma of standard model particles at a temperature T >80 TeV —much higher than the electroweak scale. It is assumed that there is an excess number of right-handed electrons compared to left-handed positrons in the plasma. Using the Berry-curvature modified kinetic theory to incorporate the effect of the Abelian anomaly, we show that this chiral imbalance leads to the generation of a hypermagnetic field in the plasma in both the collision dominated and collisionless regimes. It is shown that, in the collision dominated regime, the chiral-vorticity effect can generate finite vorticity in the plasma together with the magnetic field. Typical strength of the generated magnetic field is 1 027 G at T ˜80 TeV with the length scale 1 05/T , whereas the Hubble length scale is 1 013/T . Furthermore, the instability can also generate a magnetic field of the order 1 031 G at a typical length scale 10 /T . But there may not be any vorticity generation in this regime. We show that the estimated values of the magnetic field are consistent with the bounds obtained from current observations.
System Estimates Radius of Curvature of a Segmented Mirror
NASA Technical Reports Server (NTRS)
Rakoczy, John
2008-01-01
A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.
Bond strength optimization between adherends with different curvatures
Randow, C.L.; Dillard, D.A.
1996-12-31
Due to the increasing use of adhesives in various industrial applications, the accurate prediction of bond behavior becomes more important. This information may also be used to optimize bond design. In particular, the following analysis focuses on bond geometries involving a curvature mismatch between adherends. For example, consider the profile view of a typical laminated counter-top. This involves bonding an initially flat adherend to a rigid substrate with a flat top, a curved corner of radius {rho}, and a flat landing at the bond edge. Questions arise regarding the behavior of the bond and how to optimize the design to minimize stresses resulting from the initially flat adherend being fixed to the rigid, curved substrate. The deflection of the adherend is modeled using beam on elastic foundation analysis. These results, which can be used to calculate peel stresses, are used to determine the optimal design of the laminated counter-top geometry as presented above. Experimental results are also correlated to the analytical solution.
Curvature regulation of the ciliary beat through axonemal twist
NASA Astrophysics Data System (ADS)
Sartori, Pablo; Geyer, Veikko F.; Howard, Jonathon; Jülicher, Frank
2016-10-01
Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.
Capillary-bridge–derived particles with negative Gaussian curvature
Wang, Liming; McCarthy, Thomas J.
2015-01-01
We report the preparation of millimeter-scale particles by thermal polymerization of liquid monomer capillary bridges to form catenoid-shaped particles that exhibit negative Gaussian curvature. The shape of the capillary bridges and resulting particles can be finely tuned using several addressable parameters: (i) the shape, size, and orientation of lithographic pinning features on the spanned surfaces; (ii) the distance between opposing support surfaces; and (iii) the lateral displacement (shear) of opposing features. The catenoid-shaped particles exhibit controllable optical properties as a result of their concave menisci, the shape of which can be easily manipulated. The particles self assemble in the presence of a condensing liquid (water) to form reversible neck-to-neck pairs and less reversible end-to-end aggregates. We argue that this approach could be scaled down to micrometer dimensions by fabricating an array of micrometer-scale particles. We also argue, with a discussion of dynamic wetting, that these particles will exhibit interesting anisotropic adhesive properties. PMID:25730873
The speed–curvature power law in Drosophila larval locomotion
2016-01-01
We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. PMID:28120807
How curvature-generating proteins build scaffolds on membrane nanotubes
Evergren, Emma; Golushko, Ivan; Prévost, Coline; Renard, Henri-François; Johannes, Ludger; McMahon, Harvey T.; Lorman, Vladimir; Voth, Gregory A.; Bassereau, Patricia
2016-01-01
Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube’s length. Our work implies that the nature of local protein–membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30–40% of a tube’s surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes. PMID:27655892
Modeling Normal Shock Velocity Curvature Relation for Heterogeneous Explosives
NASA Astrophysics Data System (ADS)
Yoo, Sunhee; Crochet, Michael; Pemberton, Steve
2015-06-01
The normal shock velocity and curvature, Dn(κ) , relation on a detonation shock surface has been an important functional quantity to measure to understand the shock strength exerted against the material interface between a main explosive charge and the case of an explosive munition. The Dn(κ) relation is considered an intrinsic property of an explosive, and can be experimentally deduced by rate stick tests at various charge diameters. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of the many possibilities, the asymmetric character may be attributed to the heterogeneity of the explosives, a hypothesis which begs two questions: (1) is there any simple hydrodynamic model that can explain such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart studied constitutive models for derivation of the Dn(κ) relation on porous `homogeneous' explosives and carried out simulations in a spherical coordinate frame. In this paper, we extend their model to account for `heterogeneity' and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. (96TW-2015-0004)
The hybrid inflation waterfall and the primordial curvature perturbation
NASA Astrophysics Data System (ADS)
Lyth, David H.
2012-05-01
Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k*, and goes like k3 for k Lt k*, making it typically negligible on cosmological scales. The scale k* can be outside the horizon at the end of inflation, in which case ζ = -(g2-langg2rang) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if mlsimH. Coming to the contribution to ζ from the rest of the waterfall, we are led to consider the use of the `end-of-inflation' formula, giving the contribution to ζ generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflation. A preliminary version of this paper appeared as arXiv:1107.1681.
Impact of oculomotor retraining on the visual perception of curvature.
Miller, J; Festinger, L
1977-05-01
Observers viewed a computer-generated display consisting of horizontally oriented, concave-up curved lines. The position of these curves was contingent on the horizontal position of the eye so that, in order to change fixation errorlessly, from one point to another on the curve, the eye would have to execute a purely horizontal movement. In Condition H this was achieved by moving the curves horizontally, so that the minimum point was always at the horizontal eye position location, thus simulating the effect of viewing a line through a wedge prism on a contact lens. In Condition V it was achieved by moving the curves vertically so that the point fixated always had the same vertical location. In both conditions eye movements were reprogrammed rapidly to eliminate the vertical components of the saccades that were present at the start. While a small, but significant, amount of perceptual adaptation was obtained in Condition H, none at all was obtained in Condition V. The results are interpreted as not in support of such theories of perceptual adaptation to curvature distortion as require a close relationship between motor learning and perceptual change.
NASA Technical Reports Server (NTRS)
Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne
2000-01-01
Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.
PICK-UP ION DISTRIBUTIONS AND THEIR INFLUENCE ON ENERGETIC NEUTRAL ATOM SPECTRAL CURVATURE
Livadiotis, G.; McComas, D. J.; Randol, B. M.; Schwadron, N. A.; Dayeh, M. A.; Funsten, H. O.; Moebius, E. S.; Zank, G. P.; Frisch, P. C.
2012-05-20
This paper focuses on the analysis and significance of the spectral curvature of energetic neutral atoms (ENAs) detected by the Interstellar Boundary Explorer. The flux versus energy spectrum is analytically expressed in terms of the source proton distributions, namely: (1) the solar wind kappa distribution of protons and (2) the coexisting filled spherical shell distribution of pick-up ions (PUIs). The influence of PUIs on the spectral index and curvature is modeled and investigated in detail. It is analytically shown that (1) the PUI speed upper limit is restricted by the Earthward PUI velocity vector, (2) the PUI distribution causes a positive spectral curvature, and (3) the exact expressions of the spectral index and curvature can be used to extract information about the governing parameters of the parent proton distributions. The sky maps of the spectral curvature reveal a possible band-like configuration of positive spectral curvature that is missing in the original flux sky maps. This band can be roughly separated into the north/south polar regions and two ecliptic meridional 'columns' located around the ecliptic longitudes {approx}5 Degree-Sign and {approx}150 Degree-Sign . The geometric locus between the two cones with noseward axis, and apertures {approx}60 Degree-Sign and {approx}120 Degree-Sign , configures the band-like region of (1) the positive curvature and (2) the maximum values of PUI distribution. Indeed, the observed curvature band is highly correlated with PUI distributions, and is possibly caused by the influence of PUIs on bending the spectrum from linear (log-log scale) to concave upward, thus increasing its spectral curvature.
Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone
Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno
2015-01-01
Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests
Plan curvature and landslide probability in regions dominated by earth flows and earth slides
Ohlmacher, G.C.
2007-01-01
Damaging landslides in the Appalachian Plateau and scattered regions within the Midcontinent of North America highlight the need for landslide-hazard mapping and a better understanding of the geomorphic development of landslide terrains. The Plateau and Midcontinent have the necessary ingredients for landslides including sufficient relief, steep slope gradients, Pennsylvanian and Permian cyclothems that weather into fine-grained soils containing considerable clay, and adequate precipitation. One commonly used parameter in landslide-hazard analysis that is in need of further investigation is plan curvature. Plan curvature is the curvature of the hillside in a horizontal plane or the curvature of the contours on a topographic map. Hillsides can be subdivided into regions of concave outward plan curvature called hollows, convex outward plan curvature called noses, and straight contours called planar regions. Statistical analysis of plan-curvature and landslide datasets indicate that hillsides with planar plan curvature have the highest probability for landslides in regions dominated by earth flows and earth slides in clayey soils (CH and CL). The probability of landslides decreases as the hillsides become more concave or convex. Hollows have a slightly higher probability for landslides than noses. In hollows landslide material converges into the narrow region at the base of the slope. The convergence combined with the cohesive nature of fine-grained soils creates a buttressing effect that slows soil movement and increases the stability of the hillside within the hollow. Statistical approaches that attempt to determine landslide hazard need to account for the complex relationship between plan curvature, type of landslide, and landslide susceptibility. ?? 2007 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lim, Ik Soo; Leek, E. Charles
2012-01-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately,…
Effects of long-range interactions on curvature energies of viral shells
NASA Astrophysics Data System (ADS)
Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf
2016-05-01
We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.
Effects of Berry Curvature on the Collective Modes of Ultracold Gases
NASA Astrophysics Data System (ADS)
Price, Hannah M.; Cooper, Nigel R.
2013-11-01
Topological energy bands have important geometrical properties described by the Berry curvature. We show that the Berry curvature changes the hydrodynamic equations of motion for a trapped Bose-Einstein condensate, and causes significant modifications to the collective mode frequencies. We illustrate our results for the case of two-dimensional Rashba spin-orbit coupling in a Zeeman field. Using an operator approach, we derive the effects of Berry curvature on the dipole mode in very general settings. We show that the sizes of these effects can be large and readily detected in experiment. Collective modes therefore provide a sensitive way to measure geometrical properties of energy bands.
Buckling Analysis of Anisotropic Curved Panels and Shells with Variable Curvature
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1998-01-01
A buckling formulation for anisotropic curved panels with variable curvature is presented in this paper. The variable curvature panel is assumed to consists of two or more panels of constant but different curvatures. Bezier functions are used as Ritz functions Displacement (C(sup 0)), and slope (C(sup 1)) continuities between segments are imposed by manipulation of the Bezier control points. A first-order shear-deformation theory is used in the buckling formulation. Results obtained from the present formulation are compared with those from finite element simulations and are found to be in good agreement.
Curvature aided long range propagation of short laser pulses in the atmosphere
Yedierler, Burak
2013-03-15
The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.
Shape and curvature error estimation in polished surfaces of ground glass molds
NASA Astrophysics Data System (ADS)
Savio, Gianpaolo; Pal, Raj Kumar; Meneghello, Roberto; D'Angelo, Luciano; Concheri, Gianmaria
2017-02-01
In the fabrication process of aspheric glass lens and molds, shape characterization is a fundamental task to control geometrical errors. Nevertheless, the more significant geometrical functional aspect related to the optical properties is the curvature, which is rarely investigated in the manufacturing process of lenses. Algorithms for the assessment of shape and curvature errors on aspheric surface profile are presented. The method has been investigated on profiles measured before and at different steps of the membrane polishing process. The results show how surface roughness, shape, and curvature change during the polishing process as a function of the machining time.
Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.
2004-01-01
DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells. PMID:15298910
RNA regulatory networks diversified through curvature of the PUF protein scaffold
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin
2015-01-01
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks. PMID:26364903
RNA regulatory networks diversified through curvature of the PUF protein scaffold
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...
2015-09-14
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
RNA regulatory networks diversified through curvature of the PUF protein scaffold
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin
2015-09-14
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.
Effect of Surface Curvature and Chemistry on Protein Stability, Adsorption and Aggregation
NASA Astrophysics Data System (ADS)
Radhakrishna, Mithun
Enzyme immobilization has been of great industrial importance because of its use in various applications like bio-fuel cells, bio-sensors, drug delivery and bio-catalytic films. Although research on enzyme immobilization dates back to the 1970's, it has been only in the past decade that scientists have started to address the problems involved systematically. Most of the previous works on enzyme immobilization have been retrospective in nature i.e enzymes were immobilized on widely used substrates without a compatibility study between the enzyme and the substrate. Consequently, most of the enzymes lost their activity upon immobilization onto these substrates due to many governing factors like protein-surface and inter-protein interactions. These interactions also play a major role biologically in cell signaling, cell adhesion and inter-protein interactions specifically is believed to be the major cause for neurodegenerative diseases like Alzheimer's and Parkinson's disease. Therefore understanding the role of these forces on proteins is the need of the hour. In my current research, I have mainly focused on two factors a) Surface Curvature b) Surface Chemistry as both of these play a pivotal role in influencing the activity of the enzymes upon immobilization. I study the effect of these factors computationally using a stochastic method known as Monte Carlo simulations. My research work carried out in the frame work of a Hydrophobic-Polar (HP) lattice model for the protein shows that immobilizing enzymes inside moderately hydrophilic or hydrophobic pores results in an enhancement of the enzymatic activity compared to that in the bulk. Our results also indicate that there is an optimal value of surface curvature and hydrophobicity/hydrophilicity where this enhancement of enzymatic activity is highest. Further, our results also show that immobilization of enzymes inside hydrophobic pores of optimal sizes are most effective in mitigating protein-aggregation. These
Locomotion of C. elegans: A Piecewise-Harmonic Curvature Representation of Nematode Behavior
Padmanabhan, Venkat; Khan, Zeina S.; Solomon, Deepak E.; Armstrong, Andrew; Rumbaugh, Kendra P.; Vanapalli, Siva A.; Blawzdziewicz, Jerzy
2012-01-01
Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase. PMID:22792224
Measuring the composition-curvature coupling in binary lipid membranes by computer simulations
Barragán Vidal, I. A. Müller, M.; Rosetti, C. M.; Pastorino, C.
2014-11-21
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Kaza, K. R. V.
1976-01-01
The nonlinear curvature expressions for a twisted rotor blade or a beam undergoing transverse bending in two planes, torsion, and extension were developed. The curvature expressions were obtained using simple geometric considerations. The expressions were first developed in a general manner using the geometrical nonlinear theory of elasticity. These general nonlinear expressions were then systematically reduced to four levels of approximation by imposing various simplifying assumptions, and in each of these levels the second degree nonlinear expressions were given. The assumptions were carefully stated and their implications with respect to the nonlinear theory of elasticity as applied to beams were pointed out. The transformation matrices between the deformed and undeformed blade-fixed coordinates, which were needed in the development of the curvature expressions, were also given for three of the levels of approximation. The present curvature expressions and transformation matrices were compared with corresponding expressions existing in the literature.
Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon
2016-05-11
Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat.
Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon
2016-01-01
Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. DOI: http://dx.doi.org/10.7554/eLife.13258.001 PMID:27166516
NASA Astrophysics Data System (ADS)
Remirez, Andria A.; Webster, Robert J.
2016-03-01
Many applications in medicine require flexible surgical manipulators and endoscopes capable of reaching tight curvatures. The maximum curvature these devices can achieve is often restricted either by a strain limit, or by a maximum actuation force that the device's components can tolerate without risking mechanical failure. In this paper we propose the use of precurvature to "bias" the workspace of the device in one direction. Combined with axial shaft rotation, biasing increases the size of the device's workspace, enabling it to reach tighter curvatures than a comparable device without biasing can achieve, while still being able to fully straighten. To illustrate this effect, we describe several example prototype devices which use flexible nitinol strips that can be pushed and pulled to generate bending. We provide a statics model that relates the manipulator curvature to actuation force, and validate it experimentally.
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
Baumgart, Tobias; Capraro, Benjamin R; Zhu, Chen; Das, Sovan L
2011-01-01
Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations.
Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion.
Gattass, Rafael R; Rhonehouse, Daniel; Gibson, Daniel; McClain, Collin C; Thapa, Rajesh; Nguyen, Vinh Q; Bayya, Shyam S; Weiblen, R Joseph; Menyuk, Curtis R; Shaw, L Brandon; Sanghera, Jasbinder S
2016-10-31
Negative curvature fibers have been gaining attention as fibers for high power infrared light. Currently, these fibers have been made of silica glass and infrared glasses solely through stack and draw. Infrared glasses' lower softening point presents the opportunity to perform low-temperature processing methods such as direct extrusion of pre-forms. We demonstrate an infrared-glass based negative curvature fiber fabricated through extrusion. The fiber shows record low losses in 9.75 - 10.5 µm range (which overlaps with the CO_{2} emission bands). We show the fiber's lowest order mode and measure the numerical aperture in the longwave infrared transmission band. The possibility to directly extrude a negative curvature fiber with no penalties in losses is a strong motivation to think beyond the limitations of stack-and-draw to novel shapes for negative curvature fibers.
Estimation of the curvature of an interface from a digital 2D image
Frette, O.I.; Virnovsky, G.; Silin, D.
2008-10-15
In this paper a method for the estimation of the curvature along a condensed phase interface is presented. In a previous paper in this journal [1] a mathematical relationship was established between this curvature and a template disk located at a given point along the interface. The portion of the computed area of the template disk covering one of the phases was shown to be asymptotically linear in the mean curvature. Instead of utilizing this relationship, an empirical approach was proposed in [1] in order to compensate for discrete uncertainties. In this paper, we show that this linear relationship can be used directly along the interface avoiding the empirical approach proposed earlier. Modifications of the algorithm are however needed, and with good data smoothing techniques, our method provides good quantitative curvature estimates.
The effect of specimen surface curvature on x-ray diffraction peak profiles.
Zhigachev, Andrey O
2013-09-01
The effect of specimen surface curvature on profiles of asymmetric X-ray diffraction peaks obtained using the Bragg-Brentano geometry with a position sensitive detector (PSD) was studied. Asymmetric diffraction peaks were experimentally obtained from cylindrical surfaces with controlled curvature. Peaks were collected for a set of curvature radii, diffraction angles, and materials. A mathematical approach and a computer model for calculations of peak profiles were developed: a general method for computation of peak profiles is consideration of diffraction cones intersection with the PSD surface. Effects of axial and radial divergence, finite sample size, and local surface tilt were included in the model. Calculated peak profiles agree with reflections obtained experimentally at a wide range of curvature radii and diffraction angle values. Computation of important characteristics such as the peak centroid and change in position of the maximum and full-width-half-maximum is provided.
ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update
Wang, Jy-An John; Wang, Hong
2016-10-10
Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.
Experimental determination of the radius of curvature of an isotropic Gaussian Schell-model beam.
Zhu, Shijun; Chen, Yahong; Cai, Yangjian
2013-02-01
We propose a method to determine the radius of curvature of an isotropic Gaussian Schell-model (GSM) beam by measuring the transverse beam widths and the transverse coherence widths at two different planes. Furthermore, we carry out experimental determination of the radius of curvature of a GSM beam. Using the measured beam parameters, we carry out a comparative study of the propagation properties of a GSM beam both theoretically and experimentally. Our experimental results agree well with theoretical predictions.
Synchro-curvature radiation of charged particles in the strong curved magnetic fields
Kelner, S. R.; Prosekin, A. Yu.; Aharonian, F. A. E-mail: Anton.Prosekin@mpi-hd.mpg.de
2015-01-01
It is generally believed that the radiation of relativistic particles in a curved magnetic field proceeds in either the synchrotron or the curvature radiation modes. In this paper we show that in strong curved magnetic fields a significant fraction of the energy of relativistic electrons can be radiated away in the intermediate, the so-called synchro-curvature regime. Because of the persistent change of the trajectory curvature, the radiation varies with the frequency of particle gyration. While this effect can be ignored in the synchrotron and curvature regimes, the variability plays a key role in the formation of the synchro-curvature radiation. Using the Hamiltonian formalism, we find that the particle trajectory has the form of a helix wound around the drift trajectory. This allows us to calculate analytically the intensity and energy distribution of prompt radiation in the general case of magnetic bremsstrahlung in the curved magnetic field. We show that the transition to the limit of the synchrotron and curvature radiation regimes is determined by the relation between the drift velocity and the component of the particle velocity perpendicular to the drift trajectory. The detailed numerical calculations, which take into account the energy losses of particles, confirm the principal conclusions based on the simplified analytical treatment of the problem, and allow us to analyze quantitatively the transition between different radiation regimes for a broad range of initial pitch angles. These calculations demonstrate that even very small pitch angles may lead to significant deviations from the spectrum of the standard curvature radiation when it is formally assumed that a charged particle moves strictly along the magnetic line. We argue that in the case of realization of specific configurations of the electric and magnetic fields, the gamma-ray emission of the pulsar magnetospheres can be dominated by the component radiated in the synchro-curvature regime.
FlyEyes: A CCD-Based Wavefront Sensor for PUEO, the CFHT Curvature AO System
2010-09-28
but have been known to fail. Furthermore, curvature systems with large numbers of subapertures are now in operation and the cost of individual APDs...Astronomy and Astrophysics , National Taiwan University, Taipei, Taiwan, R.O.C. Gerry Luppino GL Scientific, 3367 Waialae avenue, Honolulu, Hawaii 96816...Furthermore, curvature systems with large numbers of subapertures are now in operation and the cost of individual APDs may become prohibitive for
Diaphragm curvature modulates the relationship between muscle shortening and volume displacement.
Greybeck, Brad J; Wettergreen, Matthew; Hubmayr, Rolf D; Boriek, Aladin M
2011-07-01
During physiological spontaneous breathing maneuvers, the diaphragm displaces volume while maintaining curvature. However, with maximal diaphragm activation, curvature decreases sharply. We tested the hypotheses that the relationship between diaphragm muscle shortening and volume displacement (VD) is nonlinear and that curvature is a determinant of such a relationship. Radiopaque markers were surgically placed on three neighboring muscle fibers in the midcostal region of the diaphragm in six dogs. The three-dimensional locations were determined using biplanar fluoroscopy and diaphragm VD, curvature, and muscle shortening were computed in the prone and supine postures during spontaneous breathing (SB), spontaneous inspiration efforts after airway occlusion at lung volumes ranging from functional residual capacity (FRC) to total lung capacity, and during bilateral maximal phrenic nerve stimulation at those same lung volumes. In supine dogs, diaphragm VD was approximately two- to three-fold greater during maximal phrenic nerve stimulation than during SB. The contribution of muscle shortening to VD nonlinearly increases with level of diaphragm activation independent of posture. During submaximal diaphragm activation, the contribution is essentially linear due to constancy of diaphragm curvature in both the prone and supine posture. However, the sudden loss of curvature during maximal bilateral phrenic nerve stimulation at muscle shortening values greater than 40% (ΔL/L(FRC)) causes a nonlinear increase in the contribution of muscle shortening to diaphragm VD, which is concomitant with a nonlinear change in diaphragm curvature. We conclude that the nonlinear relationship between diaphragm muscle shortening and its VD is, in part, due to a loss of its curvature at extreme muscle shortening.
An analysis of curvature effects for the control of wall-bounded shear flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Savill, A. M.
1989-01-01
The Reynolds stress transport equations are used to predict the effects of simultaneous and sequential combinations of distortions on turbulent boundary layers. The equations are written in general orthogonal curvilinear coordinates, with the curvature terms expressed in terms of the principal radii of curvature of the respective coordinate surfaces. Results are obtained for the cases of two-dimensional and three-dimensional flows in the limit where production and pressure-strain redistribution dominate over diffusion effects.
NASA Astrophysics Data System (ADS)
Dereli, Tekin; Yetişmişoǧlu, Cem
2016-09-01
We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti-de Sitter space AdS3) and constant torsion provide exact solutions.
Femoral curvature in Neanderthals and modern humans: a 3D geometric morphometric analysis.
De Groote, Isabelle
2011-05-01
Since their discovery, Neanderthals have been described as having a marked degree of anteroposterior curvature of the femoral shaft. Although initially believed to be pathological, subsequent discoveries of Neanderthal remains lead femoral curvature to be considered as a derived Neanderthal feature. A recent study on Neanderthals and middle and early Upper Palaeolithic modern humans found no differences in femoral curvature, but did not consider size-corrected curvature. Therefore, the objectives of this study were to use 3D morphometric landmark and semi-landmark analysis to quantify relative femoral curvature in Neanderthals, Upper Palaeolithic and recent modern humans, and to compare adult bone curvature as part of the overall femoral morphology among these populations. Comparisons among populations were made using geometric morphometrics (3D landmarks) and standard multivariate methods. Comparative material involved all available complete femora from Neanderthal and Upper Palaeolithic modern human, archaeological (Mesolithic, Neolithic, Medieval) and recent human populations representing a wide geographical and lifestyle range. There are significant differences in the anatomy of the femur between Neanderthals and modern humans. Neanderthals have more curved femora than modern humans. Early modern humans are most similar to recent modern humans in their anatomy. Femoral curvature is a good indicator of activity level and habitual loading of the lower limb, indicating higher activity levels in Neanderthals than modern humans. These differences contradict robusticity studies and the archaeological record, and would suggest that femoral morphology, and curvature in particular, in Neanderthals may not be explained by adult behavior alone and could be the result of genetic drift, natural selection or differences in behavior during ontogeny.
Hydrogen peroxide treatment results in reduced curvature values in the Arabidopsis root apex.
Noriega, Arturo; Tocino, Angel; Cervantes, Emilio
2009-03-15
Curvature of a plane curve is a measurement related to its shape. A Mathematica code was developed [Cervantes E, Tocino A. J Plant Physiol 2005;162:1038-1045] to obtain parametric equations from microscopic images of the Arabidopsis thaliana root apex. In addition, curvature values for these curves were given. It was shown that ethylene-insensitive mutants (etr1-1 and ein2-1) have reduced curvature values in the root apex. It has also been shown that blocking ethylene action by norbornadiene, an ethylene inhibitor, results in reduced curvature values in the two outer cell layers of the root apex [Noriega A, Cervantes E, Tocino A. J Plant Physiol 2008, in press]. Because ethylene action has been related with hydrogen peroxide [Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. Plant Physiol 2005;137:831-834], the effect of a treatment with hydrogen peroxide in the curvature values of three successive layers of the root apex in Arabidopsis thaliana was investigated by confocal microscopy. Treatment with 10mM hydrogen peroxide resulted in reduced curvature values in the three layers. The effect was associated with smaller cells having higher circularity indices. The results are discussed in the context of the role of ethylene in development.
Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton
Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia
2016-01-01
Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896
Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.
Yan, Lei; de Jesus, Armando Jerome; Tamura, Ryo; Li, Victoria; Cheng, Kui; Yin, Hang
2015-07-01
Membrane curvature and lipid composition plays a critical role in interchanging of matter and energy in cells. Peptide curvature sensors are known to activate signaling pathways and promote molecular transport across cell membranes. Recently, the 25-mer MARCKS-ED peptide, which is derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, has been reported to selectively recognize highly curved membrane surfaces. Our previous studies indicated that the naturally occurring L-MARCKS-ED peptide could simultaneously detect both phosphatidylserine and curvature. Here, we demonstrate that D-MARCKS-ED, composed by unnatural D-amino acids, has the same activities as its enantiomer, L-MARCKS-ED, as a curvature and lipid sensor. An atomistic molecular dynamics simulation suggests that D-MARCKS-ED may change from linear to a boat conformation upon binding to the membrane. Comparable enhancement of fluorescence intensity was observed between D- and L-MARCKS-ED peptides, indicating similar binding affinities. Meanwhile, circular dichroism spectra of D- and L-MARCKS-ED are almost symmetrical both in the presence and absence of liposomes. These results suggest similar behavior of artificial D- and natural L-MARCKS-ED peptides when binding to curved membranes. Our studies may contribute to further understanding of how MARCKS-ED senses membrane curvature as well as provide a new direction to develop novel membrane curvature probes.
Evaluating curvature for the volume of fluid method via interface reconstruction
NASA Astrophysics Data System (ADS)
Evrard, Fabien; Denner, Fabian; van Wachem, Berend
2016-11-01
The volume of fluid method (VOF) is widely adopted for the simulation of interfacial flows. A critical step in VOF modelling is to evaluate the local mean curvature of the fluid interface for the computation of surface tension. Most existing curvature evaluation techniques exhibit errors due to the discrete nature of the field they are dealing with, and potentially to the smoothing of this field that the method might require. This leads to the production of inaccurate or unphysical results. We present a curvature evaluation method which aims at greatly reducing these errors. The interface is reconstructed from the volume fraction field and the curvature is evaluated by fitting local quadric patches onto the resulting triangulation. The patch that best fits the triangulated interface can be found by solving a local minimisation problem. Combined with a partition of unity strategy with compactly supported radial basis functions, the method provides a semi-global implicit expression for the interface from which curvature can be exactly derived. The local mean curvature is then integrated back on the Eulerian mesh. We show a detailed analysis of the associated errors and comparisons with existing methods. The method can be extended to unstructured meshes. Financial support from Petrobras is gratefully acknowledged.
The intermediate state of DMPG is stabilized by enhanced positive spontaneous curvature.
Alakoskela, Juha-Matti; Parry, Mikko J; Kinnunen, Paavo K J
2010-04-06
1,2-Dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) at low salt concentrations has a complex endotherm with at least four components and extending over the span of 20 degrees. During this ongoing melting, the solution becomes viscous and scatters light poorly. This multipeak endotherm was suggested to result from the effects of curvature on the relative free energies of gel and fluid DMPG bilayers, further relating to the formation of an intermediate sponge phase between the lamellar gel and fluid phases. Although later studies appear to exclude a connected bilayer network, the relation of the endotherm peaks to curvature remains an appealing hypothesis. This was tested by including in the system both water-soluble small molecules (dimethyl sulfoxide, ethanol, and urea) as well as amphiphiles (myristoyl-lyso-PG, cholesterol, cholesterol-3-sulfate, and dimyristoylglycerol) known to alter the spontaneous curvature of bilayers. All compounds increasing the monolayer positive spontaneous curvature (ethanol, urea, myristoyl-lyso-PG, cholesterol-3-sulfate) increased the temperature span of the intermediate state and elevated the temperature of its dissolution, while all compounds increasing the negative spontaneous curvature (dimethyl sulfoxide, cholesterol, dimyristoylglycerol) had the opposite effect, implying that the intermediate state contains a structure with positive curvature. The results support the view that the intermediate state consists of vesicles with a large number of holes. The viscosity increase could be related to vesicle expansion needed to accommodate the numerous holes.
Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators
NASA Astrophysics Data System (ADS)
Dong, Kaichen; Lou, Shuai; Choe, Hwan Sung; Liu, Kai; You, Zheng; Yao, Jie; Wu, Junqiao
2016-07-01
Due to its thermally driven structural phase transition, vanadium dioxide (VO2) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO2 actuators severely obstructs the actuation performance and application. Here, we introduce a "seesaw" method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO2 actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO2 actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This "seesaw" method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.
Measurement of spinal sagittal curvatures using the laser triangulation method.
Celan, Dusan; Palfy, Miroslav; Bracun, Drago; Turk, Zmago; Mozina, Janez; Komadina, Radko
2012-03-01
The purpose of the first part of the study was to establish the variability of repeated measurements in different measuring conditions. In the second part, we performed in a large number of patients, a measurement of thoracic kyphosis and lumbar lordosis and compared them to age, gender, and level of nourishment. In the first part, measurements were performed on a plastic model of the back of a patient with a rigid and a normal spine. In the second part, 250 patients participated in the study (126 men and 124 women). For measuring spinal curvatures we used an apparatus for laser triangulation constructed at the Faculty of Mechanical Engineering, University of Ljubljana. A comparison of 30 repeated measurements was shown as the average value +/- 2 SD which included 95% of the results. Thirty repeated readings of one 3D measurement: thoracic kyphosis 41.2 degrees +/- 0.6 degrees, lumbar lordosis 4.4 degrees +/- 1.2 degrees; 30 measurements on a plastic model: thoracic kyphosis 36.8 degrees +/- 1.2 degrees, lumbar lordosis 30.9 degrees +/- 2.0 degrees; 30 measurements on a patient with a rigid spine: thoracic kyphosis 41.5 degrees +/- 2.4 degrees, lumbar lordosis 4.0 degrees +/- 1.8 degrees; 30 measurements on a patient with a normal spine: thoracic kyphosis 48.8 degrees +/- 7.4 degrees, lumbar lordosis 21.1 degrees +/- 4.4 degrees. The average size of thoracic kyphosis in 250 patients was 46.8 degrees (SD 10.1 degrees) and lumbar lordosis 31.7 degrees (SD 12.5 degrees). The angle size was statistically significantly correlated to gender (increased thoracic kyphosis and lumbar lordosis in women) and body mass index (increased thoracic kyphosis and lumbar lordosis in more nourished patients). Age was not significantly correlated to the observed angles. During measurements of the spinal angles it was important to pay attention to relaxation and the patient's position as well as to perform more measurements providing the average value. The age and the level of
Modeling normal shock velocity curvature relations for heterogeneous explosives
NASA Astrophysics Data System (ADS)
Yoo, Sunhee; Crochet, Michael; Pemberton, Steven
2017-01-01
The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous
Marcum, H; Moore, R
1990-04-01
Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.
NASA Technical Reports Server (NTRS)
Marcum, H.; Moore, R.
1990-01-01
Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.
2015-01-01
In striated muscles, invaginations from the plasma membrane, termed transverse tubules (T-tubule), function in the excitation–contraction coupling machinery. BIN1 (isoform8) plays a critical role in the biogenesis of T-tubules. BIN1 contains an N-terminal BAR domain to sense and induce membrane curvature, an isoform8-specific polybasic motif (exon10) as the phosphoinositide binding module and a C-terminal Src homology 3 (SH3) domain for the recruitment of downstream proteins such as dynamin 2. Previous studies of N-BAR domains focused on elucidating mechanisms of membrane curvature sensing and generation (MC-S&G). Less is known about how MC-S&G is regulated. We found that the SH3 domain binds to the exon10 motif more strongly compared to the proline-rich domain (PRD) of dynamin 2. Furthermore, we found that the MC-S&G ability of full-length BIN1 is inhibited on membranes lacking PI(4,5)P2. Addition of PI(4,5)P2 in the membrane activates BIN1 to sense and induce membrane curvature. Co-presence of the SH3 domain and exon10 motif leads to the strongest phosphoinositide-mediated control of BIN1 function. Addition of SH3 domain ligand (such as PRD peptides), as well as addition of the water-soluble PI(4,5)P2 analogue, can both enhance the MC-S&G ability of BIN1 on membranes without PI(4,5)P2, indicating that the key to activate BIN1 is to disrupt the exon10–SH3 interaction. The nonsense mutation K436X, found in centronuclear myopathy (CNM) patients, abolishes SH3 domain binding with either exon10 or the PRD motif, resulting in increased membrane deformation capacity. Our results suggest an autoinhibition model for BIN1 that involves a synergistic regulation by membrane composition and protein–protein interactions. PMID:25350771
Rajagopal, Karthikan; Mahmud, Abdullah; Christian, David A; Pajerowski, J David; Brown, Andre E X; Loverde, Sharon M; Discher, Dennis E
2010-12-14
Crystallization processes are in general sensitive to detailed conditions, but our present understanding of underlying mechanisms is insufficient. A crystallizable chain within a diblock copolymer assembly is expected to couple curvature to crystallization and thereby impact rigidity as well as preferred morphology, but the effects on dispersed phases have remained unclear. The hydrophobic polymer polycaprolactone (PCL) is semi-crystalline in bulk (T(m) = 60°C) and is shown here to generate flexible worm micelles or rigid vesicles in water from several dozen polyethyleneoxide-based diblocks (PEO-PCL). Despite the fact that `worms' have a mean curvature between that of vesicles and spherical micelles, `worms' are seen only within a narrow, process-dependent wedge of morphological phase space that is deep within the vesicle phase. Fluorescence imaging shows worms are predominantly in one of two states - either entirely flexible with dynamic thermal undulations or fully rigid; only a few worms appear rigid at room temperature (T < T(m)), indicating suppression of crystallization by both curvature and PCL hydration. Worm rigidification, which depends on molecular weight, is also prevented by copolymerization of caprolactone with just 10% racemic lactide that otherwise has little impact on bulk crystallinity. In contrast to worms, vesicles of PEO-PCL are always rigid and typically leaky. Defects between crystallite domains induce dislocation-roughening with focal leakiness although select PEO-PCL - which classical surfactant arguments would predict make worms - yield vesicles that retain encapsulant and appear smooth, suggesting a gel or glassy state. Hydration in dispersion thus tends to selectively soften high curvature microphases.
Zhu, Wei; Wang, Ya-Fang; Dong, Xiao-Feng; Feng, Hong-Xuan; Zhao, He-Qing; Liu, Chun-Feng
2016-09-01
Vertebral artery dominance (VAD), which is a common congenital variation of vertebral artery, may be associated with an increased risk of cerebral posterior circulation infarction (PCI). The aims of this study were to investigate the correlation of VAD with incidence and laterality of PCI, and oblige the correlation of VAD and basilar artery (BA) curvature. Incidence of separate territory infarction in posterior circulation and incidence of BA curvature were compared between 78 VAD patients and 68 controls. VA dominance, laterality of BA curvature and separate territory infarction, and their directional relationships were observed in VAD group. The incidence of BA curvature in VAD group was significantly higher than that in controls (P = 0.000). 89.7 % (35/39) of patients had an opposite directional relationship between dominant VA and BA curvature. The total incidence of PCI in VAD group was significantly higher than that in controls (P = 0.001). The incidences of posterior inferior cerebellar artery (PICA) and BA territory infarction were both significantly higher than those in controls [11.5 % (9/78) vs. 1.5 % (1/68), P = 0.016; 20.5 % (16/78) vs. 7.4 % (5/68), P = 0.024]. No differences were found in superior cerebellar artery and posterior cerebral artery territory infarction between two groups. 77.8 % (7/9) of PICA infarction were on the opposite side of dominant VA. 75.0 % (12/16) of BA infarction were on the side of dominant VA. The incidence of PCI in BA curvature patients was significantly higher than that in BA straight patients. The incidence of BA curvature is higher in VAD patients, and BA usually bends to the opposite side of dominant VA. The incidence of PCI is higher in VAD patients, especially in PICA infarction and BA infarction patients.
How flat can you get? A model comparison perspective on the curvature of the Universe
NASA Astrophysics Data System (ADS)
Vardanyan, Mihran; Trotta, Roberto; Silk, Joseph
2009-07-01
The question of determining the spatial geometry of the Universe is of greater relevance than ever, as precision cosmology promises to verify inflationary predictions about the curvature of the Universe. We revisit the question of what can be learnt about the spatial geometry of the Universe from the perspective of a three-way Bayesian model comparison. By considering two classes of phenomenological priors for the curvature parameter, we show that, given the current data, the probability that the Universe is spatially infinite lies between 67 and 98 per cent, depending on the choice of priors. For the strongest prior choice, we find odds of the order of 50:1 (200:1) in favour of a flat Universe when compared with a closed (open) model. We also report a robust, prior-independent lower limit to the number of Hubble spheres in the Universe, NU >~ 5 (at 99 per cent confidence). We forecast the accuracy with which future cosmic microwave background (CMB) and baryonic acoustic oscillation (BAO) observations will be able to constrain curvature, finding that a cosmic variance-limited CMB experiment together with an Square Kilometer Array (SKA)-like BAO observation will constrain curvature independently of the equation of state of dark energy with a precision of about σ ~ 4.5 × 10-4. We demonstrate that the risk of `model confusion' (i.e. wrongly favouring a flat Universe in the presence of curvature) is much larger than might be assumed from parameter error forecasts for future probes. We argue that a 5σ detection threshold guarantees a confusion- and ambiguity-free model selection. Together with inflationary arguments, this implies that the geometry of the Universe is not knowable if the value of the curvature parameter is below |Ωκ| ~ 10-4. This bound is one order of magnitude larger than what one would naively expect from the size of curvature perturbations, ~10-5.
NASA Technical Reports Server (NTRS)
Young, L. M.; Evans, M. L.; Hertel, R.
1990-01-01
We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.
Annular force based variable curvature mirror aiming to realize non-moving element optical zooming
NASA Astrophysics Data System (ADS)
Zhao, Hui; Xie, Xiaopeng; Wei, Jingxuan; Ren, Guorui; Pang, Zhihai; Xu, Liang
2015-10-01
Recently, a new kind of optical zooming technique in which no moving elements are involved has been paid much attention. The elimination of moving elements makes optical zooming suitable for applications which has exacting requirements in space, power cost and system stability. The mobile phone and the space-borne camera are two typical examples. The key to realize non-moving elements optical zooming lies in the introduction of variable curvature mirror (VCM) whose radius of curvature could be changed dynamically. When VCM is about to be used to implement optical zoom imaging, two characteristics should be ensured. First, VCM has to provide large enough saggitus variation in order to obtain a big magnification ratio. Second, after the radius of curvature has been changed, the corresponding surface figure accuracy should still be maintained superior to a threshold level to make the high quality imaging possible. In this manuscript, based on the elasticity theory, the physical model of the annular force based variable curvature mirror is established and numerically analyzed. The results demonstrate that when the annular force is applied at the half-the-aperture position, the actuation force is reduced and a smaller actuation force is required to generate the saggitus variation and thus the maintenance of surface figure accuracy becomes easier during the variation of radius of curvature. Besides that, a prototype VCM, whose diameter and thickness are 100mm and 3mm respectively, have been fabricated and the maximum saggitus variation that could be obtained approaches more than 30 wavelengths. At the same time, the degradation of surface figure accuracy is weakly correlated to the curvature radius variation. Keywords: optical zooming; variable curvature mirror; surface figure accuracy; saggitus;
Bending-induced extension in two-dimensional crystals
NASA Astrophysics Data System (ADS)
Pan, Douxing; Li, Yao; Wang, Tzu-Chiang; Guo, Wanlin
2017-02-01
We find by ab initio simulations that significant overall tensile strain can be induced by pure bending in a wide range of two-dimensional crystals perpendicular to the bending moment, just like an accordion being bent to open. This bending-induced tensile strain increases in a power law with bent curvature and can be over 20% in monolayered black phosphorus and transition metal dichalcogenides at a moderate curvature of 2 nm^{-1} but more than an order weaker in graphene and hexagon boron nitride. This accordion effect is found to be a quantum mechanical effect raised by the asymmetric response of chemical bonds and electron density to the bending curvature.
Detection of zones of abnormal strains in structures using Gaussian curvature analysis
Lisle, R.J.
1994-12-01
Whereas some folds, such as those produced by flexural slip, do not theoretically entail strain within the folded surfaces, any surface involving double curvature (such as domes and saddles) cannot form without some stretching or contraction of the bedding. Whether straining of the surfaces is required during folding depends on the three-dimensional fold shape and, in particular, on the Gaussian curvature at points on the folded surface. Using this as a basis, I present a method for detecting zones of anomalously high strain in oil-field structures from Gaussian curvature analysis (GCA) of natural structures. The new method of GCA is suitable for analyzing surfaces that have been mapped seismically. A Gaussian curvature map of the structure is a principal outcome of the analysis and can be used to predict the density of strain-related subseismic structures, such as small-scale fracturing. The Goose Egg dome, near Casper, Wyoming, is analyzed and provides an example of GCA. In this structure, a relationship is observed between fracture densities and Gaussian curvature.
Multiscale Lagrangian Statistics of Curvature Angle in Pore-Scale Turbulence
NASA Astrophysics Data System (ADS)
He, Bryan; Kadoch, Benjamin; Apte, Sourabh; Farge, Marie; Schneider, Kai
2016-11-01
Porescale turbulent flow physics are investigated using Direct Numeric Simulation (DNS) of flow through a periodic face centered cubic (FCC) unit cell at Reynolds numbers of 300, 500 and 1000. The simulations are performed using a fictitious domain approach, which uses non-body conforming Cartesian grids. Lagrangian statistics of scale dependent curvature angle and acceleration are calculated by tracking a large number of fluid particle trajectories. For isotropic turbulence, it has been shown that the mean curvature angle varies linearly with time initially, reaches an inertial range and asymptotes to a value of π / 2 at long times, corresponding to the decorrelation and equipartition of the cosine of the curvature angle. Similar trends are observed at early times for turbulence in porous medium; however, the mean curvature angle asymptotes to a value larger than π / 2 , due to the effect of confinement on the fluid particle trajectories that result in preferred directions at large times. A Monte-Carlo based stochastic model to predict the long-time behavior of curvature angles is developed and shown to correctly predicts an angle larger than π / 2 at large times. NSF Project Numbers 1336983, 1133363.
NASA Astrophysics Data System (ADS)
Karimi, Davood; Ward, Rabab K.
2016-03-01
Reducing the radiation dose in computed tomography (CT) requires reducing the number or the energy of the photons that pass through the patient's body. An image reconstructed from such noisy or undersampled measurements will contain much noise and artifacts that can significantly reduce the diagnostic value of the image. Effective sinogram denoising or interpolation can reduce these noise and artifacts. In this paper, we present a novel approach to sinogram smoothing and interpolation. The proposed method iteratively estimates the local slope and curvature of the sinogam and forces the sinogram to follow the estimated slope and curvature. This is performed by projection onto the set of constraints that define the slope and the curvature. The constraints on the slope and curvature correspond to very simple convex sets. Projection onto these sets have simple analytical solutions. Moreover, these operations are highly parallelizable because the equations defining the slope and curvature constraints for all the points in a sinogram can be summarized as five convex sets, regardless of the length of the sinogram. We apply the proposed method on simulated and real data and examine its effect on the quality of the reconstructed image. Our results show that the proposed method is highly effective and can lead to a substantial improvement in the quality of the images reconstructed from noisy sinogram measurements. A comparison with the K-SVD denoising algorithm shows that the proposed algorithm achieves better results. We suggest that the proposed method can be a useful tool for low-dose CT.
Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2015-01-01
Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.
NASA Astrophysics Data System (ADS)
Sprlak, M.; Novak, P.; Pitonak, M.; Hamackova, E.
2015-12-01
Values of scalar, vectorial and second-order tensorial parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and are well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. This fact may be documented by the terrestrial experiments Dulkyn and Magia, as well as by the proposal of the gravity-dedicated satellite mission called OPTIMA. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, we derive integral transforms between the gravitational potential and gravitational curvatures, i.e., we find analytical solutions of the boundary value problems with gravitational curvatures as boundary conditions. Secondly, properties of the corresponding Green kernel functions are studied in the spatial and spectral domains. Thirdly, the correctness of the new analytical solutions is tested in a simulation study. The presented mathematical apparatus reveal important properties of the gravitational curvatures. It also extends the Meissl scheme, i.e., an important theoretical paradigm that relates various parameters of the Earth's gravitational field.
NASA Astrophysics Data System (ADS)
Zhou, Chi; Liao, Juan; Zhu, Yin; Chen, Zhenjiao
2010-06-01
Advanced High Strength Steels (AHSS) are used increasingly in automobile structure parts to reduce the vehicle weight while keeping the safety standard. But their high values of the ratio of strength to Young's modulus cause more springback problems. A method of calculating the compensated tool shape for complex bending shapes is proposed in this paper. The method is composed of 3 steps: firstly the cross-section profile of a part was discretized into points and their corresponding curvatures; then an analytic algorithm based on plastic bending theory is applied to calculate the compensated curvatures of each point; finally, a numerical algorithm based on differential geometry is used to construct the tool shape according to the compensated curvatures of each point. A wave-shaped AHSS part with three different curvatures had been used to evaluate this method. The experimental results showed that the max curvature variance between the actual bending parts and desired shape is less than 4%, which is satisfying for most engineering applications.
A few mode fiber curvature sensor based on two spherical-shape structures modal interferometer
NASA Astrophysics Data System (ADS)
Fu, Xinghu; Wang, Siwen; Zhang, Shunyang; Liu, Qin; Li, Qifeng; Xie, Haiyang; Fu, Guangwei; Bi, Weihong; Li, Yanjun
2016-10-01
In order to improve the equilibrium between fiber sensor performance and cost, a curvature sensor based on Few Mode Fiber(FMF) is proposed. A length of FMF is spliced with waist enlarge between two Single mode Fibers(SMFs) to form two spherical- shape structure. Fiber core mode interfere with clad mode due to the excite and couple function of spherical-shape structure, respectively. The phase difference between the cladding and core regions of the fiber changes with the external strain increase, and then the interference spectrum changes. Two sensors with different length of FMF are fabricated, and the transmission spectrum are obtained. The result shows the optical power at certain wavelength is increasing with the curvature increasing. When the curvature range is 0 0.42m-1 and the FMF is 5.7cm, the curvature sensitivity can be 11.22dB/m-1. When the FMF is 5.9cm, the curvature sensitivity can be climbed to 14.08dB/m-1.