A Critical Reassessment of Penetratin Translocation Across Lipid Membranes
Bárány-Wallje, Elsa; Keller, Sandro; Serowy, Steffen; Geibel, Sebastian; Pohl, Peter; Bienert, Michael; Dathe, Margitta
2005-01-01
Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10−13 m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides. PMID:16040762
Penetratin Story: An Overview.
Dupont, Edmond; Prochiantz, Alain; Joliot, Alain
2015-01-01
Cell-penetrating peptides are short, often hydrophilic peptides that get access to the intracellular milieu. They have aroused great interest both in academic and applied research. First, cellular internalization of CPPs often involves the crossing of a biological membrane (plasma or vesicular), thus challenging the view of the non-permeability of these structures to large hydrophilic molecules. Secondly, CPPs can drive the internalization of hydrophilic cargoes into cells, a rate-limiting step in the development of many therapeutic substances. Interestingly, the two most used CPPs, TAT and penetratin peptides, are derived from natural proteins, HIV Tat and Antennapedia homeoprotein, respectively. The identification of the penetratin peptide, summarized in this review, is intimately linked to the study of its parental natural protein. PMID:26202260
Induced gravity from curvature density preserving diffeomorphisms
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-08-01
We construct not only an induced gravity model with restricted diffeomorphisms, that is, transverse diffeomorphisms that preserve the curvature density, but also with full diffeomorphisms. By solving the equations of motion, it turns out that these models produce Einstein's equations with a certain Newton constant in addition to the constraint for the curvature density. In the limit of the infinite Newton constant, the models give rise to induced gravity. Moreover, we discuss cosmological solutions on the basis of the gravitational models at hand.
Yesylevskyy, Semen; Marrink, Siewert-Jan; Mark, Alan E.
2009-01-01
Abstract Cell-penetrating peptides (CPPs) have recently attracted much interest due to their apparent ability to penetrate cell membranes in an energy-independent manner. Here molecular-dynamics simulation techniques were used to study the interaction of two CPPs: penetratin and the TAT peptide with 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipid bilayers shed light on alternative mechanisms by which these peptides might cross biological membranes. In contrast to previous simulation studies of charged peptides interacting with lipid bilayers, no spontaneous formation of transmembrane pores was observed. Instead, the simulations suggest that the peptides may enter the cell by micropinocytosis, whereby the peptides induce curvature in the membrane, ultimately leading to the formation of small vesicles within the cell that encapsulate the peptides. Specifically, multiple peptides were observed to induce large deformations in the lipid bilayer that persisted throughout the timescale of the simulations (hundreds of nanoseconds). Pore formation could be induced in simulations in which an external potential was used to pull a single penetratin or TAT peptide into the membrane. With the use of umbrella-sampling techniques, the free energy of inserting a single penetratin peptide into a DPPC bilayer was estimated to be ∼75 kJmol−1, which suggests that the spontaneous penetration of single peptides would require a timescale of at least seconds to minutes. This work also illustrates the extent to which the results of such simulations can depend on the initial conditions, the extent of equilibration, the size of the system, and the conditions under which the simulations are performed. The implications of this with respect to the current systems and to simulations of membrane-peptide interactions in general are discussed. PMID:19580742
Hydrophobic surfactant proteins strongly induce negative curvature.
Chavarha, Mariya; Loney, Ryan W; Rananavare, Shankar B; Hall, Stephen B
2015-07-01
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism. PMID:26153706
Negative Gaussian curvature from induced metric changes.
Modes, Carl D; Warner, Mark
2015-07-01
We revisit the light or heat-induced changes in topography of initially flat sheets of a solid that elongate or contract along patterned in-plane director fields. For radial or azimuthal directors, negative Gaussian curvature is generated-so-called "anticones." We show that azimuthal material displacements are required for the distorted state to be stretch free and bend minimizing. The resultant shapes are smooth and asterlike and can become reentrant in the azimuthal coordinate for large deformations. We show that care is needed when considering elastomers rather than glasses, although the former offer huge deformations. PMID:26274106
Adsorbate-induced curvature and stiffening of graphene.
Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H
2015-01-14
The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625
Facile Noninvasive Retinal Gene Delivery Enabled by Penetratin.
Liu, Chang; Jiang, Kuan; Tai, Lingyu; Liu, Yu; Wei, Gang; Lu, Weiyue; Pan, Weisan
2016-08-01
Gene delivery to the posterior segment of the eye is severely hindered by the impermeability of defensive barriers; therefore, in clinical settings, genomic medicines are mainly administered by intravitreal injection. We previously found that penetratin could transport the covalently conjugated fluorophore to the fundus oculi by topical instillation. In this study, gene delivery systems enabled by penetratin were designed based on electrostatic binding to target the retina via a noninvasive administration route and prepared with red fluorescent protein plasmid (pRFP) and/or poly(amidoamine) dendrimer of low molecular weight (G3 PAMAM). Formulation optimization, structure confirmation, and characterization were subsequently conducted. Penetratin alone showed limited ability to condense the plasmid but had powerful uptake and transfection by corneal and conjunctival cells. G3 PAMAM was nontoxic to the ocular cells, and when introduced into the penetratin-incorporated complex, the plasmid was condensed more compactly. Therefore, further improved cellular uptake and transfection were observed. After being instilled in the conjunctival sac of rats, the intact complexes penetrated rapidly from the ocular surface into the fundus and resided in the retina for more than 8 h, which resulted in efficient expression of RFP in the posterior segment. Intraocular distribution of the complexes suggested that the plasmids were absorbed into the eyes through a noncorneal pathway during which penetratin played a crucial role. This study provides a facile and friendly approach for intraocular gene delivery and is an important step toward the development of noninvasive gene therapy for posterior segment diseases. PMID:27400087
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers
NASA Astrophysics Data System (ADS)
Tourdot, Richard W.; Ramakrishnan, N.; Radhakrishnan, Ravi
2014-08-01
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane—in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers
Tourdot, Richard W.; Ramakrishnan, N.; Radhakrishnan, Ravi
2015-01-01
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane—in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer
Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers.
Tourdot, Richard W; Ramakrishnan, N; Radhakrishnan, Ravi
2014-08-01
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane-in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer
Kegulian, Natalie C; Sankhagowit, Shalene; Apostolidou, Melania; Jayasinghe, Sajith A; Malmstadt, Noah; Butler, Peter C; Langen, Ralf
2015-10-23
Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet β-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well. PMID:26283787
Gil-Parrado, Shirley; Assfalg-Machleidt, Irmgard; Fiorino, Ferdinando; Deluca, Dominga; Pfeiler, Dietmar; Schaschke, Norbert; Moroder, Luis; Machleidt, Werner
2003-03-01
The ubiquitous calpains, mu- and m-calpain, have been implicated in essential physiological processes and various pathologies. Cell-permeable specific inhibitors are important tools to elucidate the roles of calpains in cultivated cells and animal models. The synthetic N-acetylated 27-mer peptide derived from exon B of the inhibitory domain 1 of human calpastatin (CP1B) is unique as a potent and highly selective reversible calpain inhibitor, but is poorly cell-permeant. By addition of N-terminal cysteine residues we have generated a disulfide-conjugated CP1B with the cell-penetrating 16-mer peptide penetratin derived from the third helix of the Antennapedia homeodomain protein. The inhibitory potency and selectivity of CP1B for calpain versus cathepsin B and L, caspase 3 and the proteasome was not affected by the conjugation with penetratin. The conjugate was shown to efficiently penetrate into living LCLC 103H cells, since it prevents ionomycin-induced calpain activation at 200-fold lower concentration than the non-conjugated inhibitor and is able to reduce calpain-triggered apoptosis of these cells. Penetratin-conjugated CP1B seems to be a promising alternative to the widely used cell-permeable peptide aldehydes (e.g. calpain inhibitor 1) which inhibit the lysosomal cathepsins and partially the proteasome as well or even better than the calpains. PMID:12715890
Curvature-induced radiation of surface plasmon polaritons propagating around bends
Hasegawa, Keisuke; Noeckel, Jens U.; Deutsch, Miriam
2007-06-15
We present a theoretical study of the curvature-induced radiation of surface plasmon polaritons propagating around bends at metal-dielectric interfaces. We explain qualitatively how the curvature leads to distortion of the phase front, causing the fields to radiate energy away from the metal-dielectric interface. We then quantify, both analytically and numerically, radiation losses and energy transmission efficiencies of surface plasmon polaritons propagating around bends with varying radii as well as sign of curvature.
Cosmology of a holographic induced gravity model with curvature effects
Bouhmadi-Lopez, Mariam; Errahmani, Ahmed; Ouali, Taoufiq
2011-10-15
We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.
An Experimental Study of Laminarization Induced by Acceleration and Curvature
NASA Astrophysics Data System (ADS)
Jackson, R. Brian
The Generation IV Very High Temperature Reactor (VHTR) design is being actively studied in various countries for application due to its inherent passive safe design, higher thermal efficiencies, and proposed capability of providing high temperature process heat. The pebble bed core is one of two core designs used in gas reactors. In the pebble bed core there are mechanisms present which can cause the flow to laminarize, thus reducing its heat transfer effectiveness. Wind tunnel experiments were conducted using Particle Image Velocimetry (PIV) to investigate boundary layer laminarization due to flow acceleration and convex curvature effects. The flow was subject to acceleration and curvature both separately and together and the flow behavior characterized with velocity flow profiles, mean boundary layer parameters, and turbulence quantities. Laminarization was identified and the influence of acceleration and curvature was characterized.
Protein-Induced Membrane Curvature Alters Local Membrane Tension
Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George
2014-01-01
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814
Stress-induced curvature engineering in surface-micromachined devices
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir A.; Pardo, Flavio; Bishop, David J.
1999-03-01
Residual stress and stress gradients play an important role in determining equilibrium shape and behavior of various Si surface-micromachined devices under applied loads. This is particularly true for system having large-area plates and long beams where curvature resulting from stress can lead to significant deviations from stress-free shape. To gain better understanding of these properties, we have measured the equilibrium shapes of various structures built on the MCNC MUMPs using an interferometric profiler. The structures were square plates and long beams composed of various combinations of polysilicon an oxide layers. Some of the structures had additional MUMPs metal layer on top, while on others in-house chromium-gold stacks of varying thickness have been deposited. Temperature dependence of the curvature was measured for some plates. We have used these data in conjunction with simple models to significantly improve the performance of our micromachined devices. While for some structures such as large area reflectors the curvature had to be minimized, it could be advantageously exploited by others, for example vertical actuators for self-assembly.
NASA Astrophysics Data System (ADS)
Bracken, Paul
2007-05-01
The generalized Weierstrass (GW) system is introduced and its correspondence with the associated two-dimensional nonlinear sigma model is reviewed. The method of symmetry reduction is systematically applied to derive several classes of invariant solutions for the GW system. The solutions can be used to induce constant mean curvature surfaces in Euclidean three space. Some properties of the system for the case of nonconstant mean curvature are introduced as well.
Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.
1988-01-01
We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.
Lipid membrane-mediated attraction between curvature inducing objects.
van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J
2016-01-01
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles. PMID:27618764
The cellular response to curvature-induced stress
NASA Astrophysics Data System (ADS)
Biton, Y. Y.; Safran, S. A.
2009-12-01
We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.
Membrane curvature induced by Arf1-GTP is essential for vesicle formation
Beck, Rainer; Sun, Zhe; Adolf, Frank; Rutz, Chistoph; Bassler, Jochen; Wild, Klemens; Sinning, Irmgard; Hurt, Ed; Brügger, Britta; Béthune, Julien; Wieland, Felix
2008-01-01
The GTPase Arf1 is considered as a molecular switch that regulates binding and release of coat proteins that polymerize on membranes to form transport vesicles. Here, we show that Arf1-GTP induces positive membrane curvature and find that the small GTPase can dimerize dependent on GTP. Investigating a possible link between Arf dimerization and curvature formation, we isolated an Arf1 mutant that cannot dimerize. Although it was capable of exerting the classical role of Arf1 as a coat receptor, it could not mediate the formation of COPI vesicles from Golgi-membranes and was lethal when expressed in yeast. Strikingly, this mutant was not able to deform membranes, suggesting that GTP-induced dimerization of Arf1 is a critical step inducing membrane curvature during the formation of coated vesicles. PMID:18689681
Relaxation of curvature-induced elastic stress by the Asaro-Tiller-Grinfeld instability
NASA Astrophysics Data System (ADS)
Köhler, C.; Backofen, R.; Voigt, A.
2015-08-01
A two-dimensional crystal on the surface of a sphere experiences elastic stress due to the incompatibility of the crystal axes and the curvature. A common mechanism to relax elastic stress is the Asaro-Tiller-Grinfeld (ATG) instability. With a combined numerical and analytical approach, we demonstrate that also curvature-induced stress in surface crystals can be relaxed by the long-wavelength ATG instability. The numerical results are obtained using a surface phase-field crystal (PFC) model, from which we determine the characteristic wave numbers of the ATG instability for various surface coverages corresponding to different curvature-induced compressions. The results are compared with an analytic expression for the characteristic wave number, obtained from a continuum approach which accounts for hexagonal crystals and intrinsic PFC symmetries. We find our numerical results in accordance with the analytical predictions.
Curvature-induced activation of a passive tracer in an active bath
NASA Astrophysics Data System (ADS)
Mallory, S. A.; Valeriani, C.; Cacciuto, A.
2014-09-01
We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low-density suspension of self-propelled particles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational and rotational motion in an active environment. We find that even very small amounts of curvature are sufficient for the active bath to impart directed motion to the tracer, which results in its effective activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport properties of passive tracers in an active medium by carefully tailoring their geometry.
Curvature-induced activation of a passive tracer in an active bath.
Mallory, S A; Valeriani, C; Cacciuto, A
2014-09-01
We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low-density suspension of self-propelled particles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational and rotational motion in an active environment. We find that even very small amounts of curvature are sufficient for the active bath to impart directed motion to the tracer, which results in its effective activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport properties of passive tracers in an active medium by carefully tailoring their geometry. PMID:25314448
Smrt, Sean T.; Draney, Adrian W.; Lorieau, Justin L.
2015-01-01
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. PMID:25398882
Alves, Isabel D.; Bechara, Cherine; Walrant, Astrid; Zaltsman, Yefim; Jiao, Chen-Yu; Sagan, Sandrine
2011-01-01
Background Penetratin is a positively charged cell-penetrating peptide (CPP) that has the ability to bind negatively charged membrane components, such as glycosaminoglycans and anionic lipids. Whether this primary interaction of penetratin with these cell surface components implies that the peptide will be further internalized is not clear. Methodology Using mass spectrometry, the amount of internalized and membrane bound penetratin remaining after washings, were quantified in three different cell lines: wild type (WT), glycosaminoglycans- (GAGneg) and sialic acid-deficient (SAneg) cells. Additionally, the affinity and kinetics of the interaction of penetratin to membrane models composed of pure lipids and membrane fragments from the referred cell lines was investigated, as well as the thermodynamics of such interactions using plasmon resonance and calorimetry. Principal Findings Penetratin internalized with the same efficacy in the three cell lines at 1 µM, but was better internalized at 10 µM in SAneg>WT>GAGneg. The heat released by the interaction of penetratin with these cells followed the ranking order of internalization efficiency. Penetratin had an affinity of 10 nM for WT cells and µM for SAneg and GAGneg cells and model membrane of phospholipids. The remaining membrane-bound penetratin after cells washings was similar in WT and GAGneg cells, which suggested that these binding sites relied on membrane phospholipids. The interaction of penetratin with carbohydrates was more superficial and reversible while it was stronger with phospholipids, likely because the peptide can intercalate between the fatty acid chains. Conclusion/Significance These results show that accumulation and high-affinity binding of penetratin at the cell-surface do not reflect the internalization efficacy of the peptide. Altogether, these data further support translocation (membrane phospholipids interaction) as being the internalization pathway used by penetratin at low
Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Schwuchow, J.; Sack, F. D.; Hasenstein, K. H.
1999-01-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm-3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity.
Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus.
Kuznetsov, O A; Schwuchow, J; Sack, F D; Hasenstein, K H
1999-02-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm-3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity. PMID:9952461
Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers.
Wei, Chengli; Menyuk, Curtis R; Hu, Jonathan
2016-05-30
We study bend loss in chalcogenide negative curvature fibers with different polarizations, different tube wall thicknesses, and different bend directions relative to the mode polarization. The coupling between the core mode and tube modes induces bend loss peaks in the two non-degenerate modes at the same bend radius. There is as much as a factor of 28 difference between the losses of the two polarization modes. The fiber with a larger tube wall thickness, corresponding to a smaller inner tube diameter, can sustain a smaller bend radius. The bend loss is sensitive to the bend direction when coupling occurs between the core mode and tube modes. A bend loss of 0.2 dB/m at a bend radius of 16 cm, corresponding to 0.2 dB/turn, can be achieved in a chalcogenide negative curvature fiber. PMID:27410139
Modeling of stress-induced curvature in surface-micromachined devices
NASA Astrophysics Data System (ADS)
Cowan, William D.; Bright, Victor M.; Elvin, Alex A.; Koester, David A.
1997-09-01
This paper compares measured to modeled stress-induced curvature of simple piston micromirrors. Two similar flexure-beam micromirror designs were fabricate using the 11th DARPA-supported multi-user MEMS processes (MUMPs) run. The test devices vary only in the MUMPs layers used for fabrication. In one case the mirror plate is the 1.5 micrometers thick Poly2 layer. The other mirror design employs stacked Poly1 and Poly2 layers for a total thickness of 3.5 micrometers . Both mirror structures are covered with the standard MUMPs metallization of approximately 200 angstrom of chromium and 0.5 micrometers of gold. Curvature of these devices was measured to within +/- 5 nm with a computer controlled microscope laser interferometer system. As intended, the increased thickness of the stacked polysilicon layers reduces the mirror curvature by a factor of 4. The two micromirror designs were modeled using IntelliCAD, a commercial CAD system for MEMS. The basis of analysis was the finite element method. Simulated results using MUMPs 11 film parameters showed qualitative agreement with measured data, but obvious quantitative differences. Subsequent remeasurement of the metal stress and use of the new value significantly improved model agreement with the measured data. The paper explores the effect of several film parameters on the modeled structures. Implications for MEMS film metrology, and test structures are considered.
NASA Astrophysics Data System (ADS)
van der Gucht, Jasper; Ershov, Dmitry
2014-03-01
Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together in space-saving hexagons to minimize the disruption of the liquid interface. Micrometer-sized colloidal particles embedded in a liquid interface normally do not disrupt the interface, so that such clustering does not occur. Here, we show that this is different when the interface has a curvature that is anisotropic. We find that in this case the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature.
Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.
Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi
2014-10-01
Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this
Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins
NASA Astrophysics Data System (ADS)
Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi
2014-10-01
Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham-Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the
Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins
Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi
2014-01-01
Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this
Picard, G.; Schneider-Henriquez, J.E.; Fendler, J.H. )
1990-01-25
Two-exposure interferometric holograms have been shown to sensitively report ultrasmall-pressure (10 natm)-induced curvature changes in glyceryl monooleate (GMO) bilayer lipid membranes (BLMs). The number of concentric fringes observed, and hence the lateral distance between the plane of the Teflon and the BLM, increased linearly with increasing transmembrane pressure and led to a value of 1.1 {plus minus} 0.05 dyn/cm for the surface tension of the BLM. BLMs with appreciable Plateau-Gibbs borders have been shown to undergo nonuniform deformation; the bilayer portion is distorted less than the surrounding Plateau-Gibbs border upon the application of a transmembrane pressure gradient.
Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends
Rui Li
2006-01-04
The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.
Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature
Li, Yanhong; Lipowsky, Reinhard; Dimova, Rumiana
2011-01-01
Tubular membrane structures are widespread in eukaryotic cells, but the mechanisms underlying their formation and stability are not well understood. Previous work has focused on tube extrusion from cells and model membranes under the application of external forces. Here, we present novel membrane/polymer systems, where stable tubes form in the absence of externally applied forces. Solutions of two water-soluble polymers, polyethylene glycol and dextran, were encapsulated in giant lipid vesicles, cell-size model systems. Hypertonic deflation induced phase separation of the enclosed solution. The excess membrane area created during the deflation process was stored in a large number of membrane nanotubes inside the vesicle. The tubes had a diameter below optical resolution and became visible only when fluorescently labeled. The tubes were rather stable: In the absence of external forces, they existed for several days. A theoretical analysis of the shapes of the deflated vesicles reveals that these shapes would be unstable if the membranes had no spontaneous curvature. Using the large separation of length scales between the tube diameter and the overall size of the vesicles, the spontaneous curvature can be calculated and is found to be about -1/(240 nm) for a certain range of polymer concentrations. The nanotubes could also be retracted back into the mother vesicle by increasing the membrane tension via micropipette aspiration of the vesicle. Membrane tubes, which can form and be retracted easily, should be relevant for lipid storage in cells. PMID:21383120
Gravitational induced particle production through a nonminimal curvature-matter coupling
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.; Pavón, Diego
2015-08-01
We consider the possibility of a gravitationally induced particle production through the mechanism of a nonminimal curvature-matter coupling. An interesting feature of this gravitational theory is that the divergence of the energy-momentum tensor is nonzero. As a first step in our study we reformulate the model in terms of an equivalent scalar-tensor theory, with two arbitrary potentials. By using the formalism of open thermodynamic systems, we interpret the energy balance equations in this gravitational theory from a thermodynamic point of view, as describing irreversible matter creation processes. The particle number creation rates, the creation pressure, and the entropy production rates are explicitly obtained as functions of the scalar field and its potentials, as well as of the matter Lagrangian. The temperature evolution laws of the newly created particles are also obtained. The cosmological implications of the model are briefly investigated, and it is shown that the late-time cosmic acceleration may be due to particle creation processes. Furthermore, it is also shown that due to the curvature-matter coupling, during the cosmological evolution a large amount of comoving entropy is also produced.
Muto, Keiya; Kamei, Noriyasu; Yoshida, Mia; Takayama, Kozo; Takeda-Morishita, Mariko
2016-06-01
Nasal vaccination is considered an attractive strategy to prevent the infection and spread of viruses. However, the vaccine formulations available on the market remain imperfect on account of their limited effectiveness. In the present study, we hypothesized that the nasal coadministration of antigens with cell-penetrating peptides promotes antigen delivery immune response in the nasal mucosa, thereby enhancing the production of mucosal IgA and systemic IgG. The levels of ovalbumin (OVA)-specific IgG and IgA in plasma and nasal perfusate, respectively, increased after 2 or 4 weeks on nasal coadministration of OVA with l- or d-penetratin, suggesting that OVA antigen was effectively delivered by penetratin to the nasal epithelium. An additional study demonstrated that the production of systemic IgG and nasal mucosal IgA against influenza A virus was specifically promoted by nasal coadministration of influenza A virus with d-penetratin. The results of this study suggested that cell-penetrating peptides are a promising tool for the delivery of vaccines to the nasal mucosa and for the subsequent dual stimulation of systemic and mucosal immune responses. PMID:27155764
Nielsen, Ebbe Juel Bech; Yoshida, Shinya; Kamei, Noriyasu; Iwamae, Ruisha; Khafagy, El-Sayed; Olsen, Jørgen; Rahbek, Ulrik Lytt; Pedersen, Betty Lomstein; Takayama, Kozo; Takeda-Morishita, Mariko
2014-09-10
Oral delivery of insulin is blocked by low intestinal absorption caused by the poor permeability of insulin across cellular membranes and the susceptibility to enzymatic degradation in the gastrointestinal tract. Cell-penetrating peptides (CPPs) have been investigated for a number of years as oral absorption enhancers for hydrophilic macromolecules. Penetratin, a cationic and amphipathic CPP, effectively enhances insulin absorption and we were able to alleviate the enzymatic barrier by using the enzymatic resistant D-form of penetratin. In this study, mice were dosed orally with a physical mixture of insulin and penetratin. Blood glucose concentrations were measured and a pharmacological availability (PA) of 18.2% was achieved in mice dosed with insulin and D-penetratin. Following the promising data, we investigated the degradation parameters of insulin and penetratin in rat intestinal fluid. As expected, L-penetratin was degraded rapidly whereas D-penetratin had a halflife of 67±7min in 10-fold diluted gastrointestinal fluid. Insulin degradation was slowed by the presence of penetratin in intestinal fluid. The half-life of insulin increased from 24.9±4.5min to 55.6±14min and 90.5±11.8min in the presence of L- and D-penetratin respectively. In conclusion, both Land D-penetratin acted as oral absorption enhancers at select CPP concentrations for insulin and the current study is the first solid evidence of pharmacological activity of oral insulin delivery systems based on non-covalent intermolecular interactions with penetratin. PMID:24973720
Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends
Li, Rui
2008-02-01
Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping- induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes.
Curvature-induced crosshatched order in two-dimensional semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Vrusch, Cyril; Storm, Cornelis
2015-12-01
A recurring motif in the organization of biological tissues are networks of long, fibrillar protein strands effectively confined to cylindrical surfaces. Often, the fibers in such curved, quasi-two-dimensional (2D) geometries adopt a characteristic order: the fibers wrap around the central axis at an angle which varies with radius and, in several cases, is strongly bimodally distributed. In this Rapid Communication, we investigate the general problem of a 2D crosslinked network of semiflexible fibers confined to a cylindrical substrate, and demonstrate that in such systems the trade-off between bending and stretching energies, very generically, gives rise to crosshatched order. We discuss its general dependency on the radius of the confining cylinder, and present an intuitive model that illustrates the basic physical principle of curvature-induced order. Our findings shed new light on the potential origin of some curiously universal fiber orientational distributions in tissue biology, and suggests novel ways in which synthetic polymeric soft materials may be instructed or programmed to exhibit preselected macromolecular ordering.
Endoplasmatic reticulum shaping by generic mechanisms and protein-induced spontaneous curvature.
Sackmann, Erich
2014-06-01
The endoplasmatic reticulum (ER) comprises flattened vesicles (cisternae) with worm holes dubbed with ribosomes coexisting with a network of interconnected tubes which can extend to the cell periphery or even penetrate nerve axons. The coexisting topologies enclose a continuous luminal space. The complex ER topology is specifically controlled by a group of ER-shaping proteins often called reticulons (discovered by the group of Tom Rapoport). They include atlastin, reticulon, REEP and the MT severing protein spastin. A generic ER shape controlling factor is the necessity to maximize the area-to-volume ratio of ER membranes in the highly crowded cytoplasmic space. I present a model of the ER-shaping function of the reticulons based on the Helfrich bending elasticity concept of soft shell shape changes. Common structural motifs of the reticulons are hydrophobic sequences forming wedge shaped hairpins which penetrate the lipid bilayer of the cell membranes. The wedge-like hydrophobic anchors can both induce the high curvature of the tubular ER fraction and ensure the preferred distribution of the reticulons along the tubules. Tubular junctions may be stabilized by the reticulons forming two forceps twisted by 90°. The ER extensions to the cell periphery and the axons are mediated by coupling of the tubes to the microtubules which is mediated by REEP and spastin. At the end I present a model of the tension driven homotype fusion of ER-membranes by atlastin, based on analogies to the SNARE-complexin-SNARE driven heterotype fusion process. PMID:24607001
Yin, Tiantian; Xie, Wenjie; Sun, Jing; Yang, Licong; Liu, Jie
2016-08-01
The structural changes of amyloid-beta (Aβ) from nontoxic monomers into neurotoxic aggregates are implicated with pathogenesis of Alzheimer's disease (AD). Over the past decades, weak disaggregation ability and low permeability to the blood-brain barrier (BBB) may be the main obstacles for major Aβ aggregation blockers. Here, we synthesized penetratin (Pen) peptide loaded poly(ethylene glycol) (PEG)-stabilized gold nanostars (AuNS) modified with ruthenium complex (Ru@Pen@PEG-AuNS), and Ru(II) complex as luminescent probes for tracking drug delivery. We revealed that Ru@Pen@PEG-AuNS could obviously inhibit the formation of Aβ fibrils as well as dissociate preformed fibrous Aβ under the irradiation of near-infrared (NIR) due to the NIR absorption characteristic of AuNS. More importantly, this novel design could be applied in medicine as an appropriate nanovehicle, being highly biocompatible and hemocompatible. In addition, Ru@Pen@PEG-AuNS had excellent neuroprotective effect on the Aβ-induced cellular toxicity by applying NIR irradiation. Meanwhile, Pen peptide could effectively improve the delivery of nanoparticles to the brain in vitro and in vivo, which overcame the major limitation of Aβ aggregation blockers. These consequences illustrated that the enhanced BBB permeability and efficient photothermolysis of Ru@Pen@PEG-AuNS are promising agents in AD therapy. PMID:27411476
Second Variation of Induced Curvature Term in Brane-World Action
NASA Astrophysics Data System (ADS)
Iofa, Mikhail Z.
In a 5D spacetime with a 3-brane embedded we calculate the second variation of the scalar 4D curvature term on the brane under variations of the 5D metric. It is shown that the second variation of the 4D scalar curvature term in adapted coordinates is expressed only through variations of the components of the 5D metric with 4D indices.
Pannuzzo, Martina; Raudino, Antonio; Böckmann, Rainer A
2014-07-14
Peptide- or protein-induced curvatures of lipid membranes may be studied in molecular dynamics (MD) simulations. In these, membranes are usually modeled as infinitely extended bilayers by using periodic boundary conditions. However, the enforced periodicity results in an underestimation of the bending power of peptides, unless the patch size is much larger than the induced curvature radii. In this letter, we propose a novel approach to evaluate the bending power of a given distribution and/or density of peptides based on the use of flat open-edged lipid patches. To ensure long-lived metastable structures, the patch rim is stabilized in MD simulations by a local enrichment with short-chain lipids. By combining the theory of continuum elastic media with MD simulations, we prove that open-edged patches evolve from a planar state to a closed vesicle, with a transition rate that strongly depends on the concentration of lipid soluble peptides. For close-to-critical values for the patch size and edge energy, the response to even small changes in peptide concentration adopts a transition-like behavior (buckling instability). The usage of open-edged membrane patches amplifies the bending power of peptides, thereby enabling the analysis of the structural properties of membrane-peptide systems. We applied the presented method to investigate the curvature induced by aggregating β -amyloid peptides, unraveling a strong sensitivity of membrane deformation to the peptide concentration. PMID:25028040
NASA Astrophysics Data System (ADS)
Pannuzzo, Martina; Raudino, Antonio; Böckmann, Rainer A.
2014-07-01
Peptide- or protein-induced curvatures of lipid membranes may be studied in molecular dynamics (MD) simulations. In these, membranes are usually modeled as infinitely extended bilayers by using periodic boundary conditions. However, the enforced periodicity results in an underestimation of the bending power of peptides, unless the patch size is much larger than the induced curvature radii. In this letter, we propose a novel approach to evaluate the bending power of a given distribution and/or density of peptides based on the use of flat open-edged lipid patches. To ensure long-lived metastable structures, the patch rim is stabilized in MD simulations by a local enrichment with short-chain lipids. By combining the theory of continuum elastic media with MD simulations, we prove that open-edged patches evolve from a planar state to a closed vesicle, with a transition rate that strongly depends on the concentration of lipid soluble peptides. For close-to-critical values for the patch size and edge energy, the response to even small changes in peptide concentration adopts a transition-like behavior (buckling instability). The usage of open-edged membrane patches amplifies the bending power of peptides, thereby enabling the analysis of the structural properties of membrane-peptide systems. We applied the presented method to investigate the curvature induced by aggregating β -amyloid peptides, unraveling a strong sensitivity of membrane deformation to the peptide concentration.
Curvature-Induced Anomalous Enhancement in the Work Function of Nanostructures.
Kaur, Jasmin; Kant, Rama
2015-08-01
An analytical theory to estimate the electronic work function in curved geometries is formulated under Thomas-Fermi approximation. The work function is framed as the work against the electrostatic self-capacitive energy. The contribution of surface curvature is characterized by mean and Gaussian curvature (through multiple scattering expansion). The variation in work function of metal and semimetal nanostructures is shown as the consequence of surface radius of curvature comparable to electronic screening length. For ellipsoidal particles, the maximum value of work function is observed at the equator and poles for oblate and prolate particles, respectively, whereas triaxial ellipsoid shows nonuniform distribution of the work function over the surface. Similarly, theory predicts manifold increase in the work function for a particle with atomic scale roughness. Finally, the theory is validated with experimental data, and it is concluded that the work function of a nanoparticle can be tailored through its shape. PMID:26267172
Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature.
Holkar, Sachin S; Kamerkar, Sukrut C; Pucadyil, Thomas J
2015-06-01
Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding. PMID:25837255
Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature*♦
Holkar, Sachin S.; Kamerkar, Sukrut C.; Pucadyil, Thomas J.
2015-01-01
Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding. PMID:25837255
Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.
2013-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948
Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells.
Pouniotis, Dodie; Tang, Choon-Kit; Apostolopoulos, Vasso; Pietersz, Geoffrey
2016-08-01
Cell-penetrating peptides (CPP) or membrane-translocating peptides such as penetratin from Antennapedia homeodomain or TAT from human immunodeficiency virus are useful vectors for the delivery of protein antigens or their cytotoxic (Tc) or helper (Th) T cell epitopes to antigen-presenting cells. Mice immunized with CPP containing immunogens elicit antigen-specific Tc and/or Th responses and could be protected from tumor challenges. In the present paper, we investigate the mechanism of class I and class II antigen presentation of ovalbumin covalently linked to penetratin (AntpOVA) by bone marrow-derived dendritic cells with the use of biochemical inhibitors of various pathways of antigen processing and presentation. Results from our study suggested that uptake of AntpOVA is via a combination of energy-independent (membrane fusion) and energy-dependent pathways (endocytosis). Once internalized by either mechanism, multiple tap-dependent or independent antigen presentation pathways are accessed while not completely dependent on proteasomal processing but involving proteolytic trimming in the ER and Golgi compartments. Our study provides an understanding on the mechanism of antigen presentation mediated by CPP and leads to greater insights into future development of vaccine formulations. PMID:27138940
NASA Astrophysics Data System (ADS)
Lowengrub, John; Allard, Jun; Aland, Sebastian
2016-03-01
The formation of membrane vesicles from a larger membrane that occurs during endocytosis and other cell processes is typically orchestrated by curvature-inducing molecules attached to the membrane. Recent reports demonstrate that vesicles can form de novo in a few milliseconds. Membrane dynamics at these scales are strongly influenced by hydrodynamic interactions. To study this problem, we develop new diffuse interface models for the dynamics of inextensible vesicles in a viscous fluid with stiff, curvature-inducing molecules. The model couples the Navier-Stokes equations with membrane-induced bending forces that incorporate concentration-dependent bending stiffness coefficients and spontaneous curvatures, with equations for molecule transport and for a Lagrange multiplier to enforce local inextensibility. Two forms of surface transport equations are considered: Fickian surface diffusion and Cahn-Hilliard surface dynamics, with the former being more appropriate for small molecules and the latter being better for large molecules. The system is solved using adaptive finite element methods in 3D axisymmetric geometries. The results demonstrate that hydrodynamics can indeed enable the rapid formation of a small vesicle attached to the membrane by a narrow neck. When the Fickian model is used, this is a transient state with the steady state being a flat membrane with a uniformly distributed molecule concentration due to diffusion. When the Cahn-Hilliard model is used, molecule concentration gradients are sustained, the neck stabilizes and the system evolves to a steady-state with a small, compact vesicle attached to the membrane. By varying the membrane coverage of molecules in the Cahn-Hilliard model, we find that there is a critical (smallest) neck radius and a critical (fastest) budding time. These critical points are associated with changes in the vesicle morphology from spherical to mushroom-like as the molecule coverage on the membrane is increased.
H2O adsorption-induced curvature of a silicon nanocantilever based on a semi-continuum method
NASA Astrophysics Data System (ADS)
Li, Bing; Huang, Qing-An
2013-10-01
Nano-sized silicon cantilevers have been widely studied in nanoelectromechanical systems (NEMS) because of their simplicity and ability to function in small sizes as sensors. The nanocantilever bends when adsorption is confined to a single side of the cantilever, and small molecule adsorption on the surface of the cantilever will directly cause its mechanical bending due to surface stress induced by intermolecular forces. When the cantilever is scaled down to nano level, the classical mechanical theory cannot be used to accurately model, analyze and predict its bending. And, native oxide may be unintentionally formed on the silicon nanocantilever of both sides during fabrication. In this paper, based on a semi-continuum method, a model is proposed to calculate H2O adsorption-induced curvature of the silicon nanocantilever with native oxide. According to the energy transfer between potential energy of adsorbates and elastic energy of the bending cantilever, the beam deflection is determined by using the energy theory in which the total energy in terms of beam curvature will reach a minimum value when the adsorption is stable. The model was tested with the molecular dynamics method using Material Studio software. The results agree with theoretical prediction. This model could be a simple method to analyze and estimate adsorption-induced bending of the nanocantilever.
Self-assembled penetratin-deferasirox micelles as potential carriers for hydrophobic drug delivery.
Goswami, Dibakar; Vitorino, Hector Aguilar; Machini, M Teresa; Espósito, Breno P
2015-11-01
There has been a growing interest in the use of micelles with nanofiber geometry as nanocarriers for hydrophobic drugs. Here we show that the conjugate of penetratin, a cell-penetrating peptide (CPP) with blood-brain barrier (BBB) permeability, and deferasirox (DFX), a hydrophobic iron chelator, self-assembles to form micelles at a very low concentration (∼15 mg/L). The critical micelle concentration (CMC) was determined, and the micelles were used for solubilizing curcumin, a hydrophobic anti-neurodegenerative drug, for successful delivery across RBE4 cells, a BBB model. Transmission Electron Microscope images of the curcumin-loaded micelles confirmed the formation of nanofibers. These results indicate the potential of CPP-drug conjugates for use as nanocarriers. PMID:25973759
A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth.
Alves, Isabel D; Carré, Manon; Montero, Marie-Pierre; Castano, Sabine; Lecomte, Sophie; Marquant, Rodrigue; Lecorché, Pascaline; Burlina, Fabienne; Schatz, Christophe; Sagan, Sandrine; Chassaing, Gérard; Braguer, Diane; Lavielle, Solange
2014-08-01
The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics. PMID:24796502
Berry curvature induced nonlinear Hall effect in time-reversal invariant materials
NASA Astrophysics Data System (ADS)
Sodemann, Inti; Fu, Liang
2015-03-01
It is well-known that a non-vanishing Hall conductivity requires time-reversal symmetry breaking. However, in this work, we demonstrate that a Hall-like transverse current can occur in second-order response to an external electric field in a wide class of time-reversal invariant and inversion breaking materials. This nonlinear Hall effect arises from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. We show that the nonlinear Hall coefficient is a rank-two pseudo-tensor, whose form is determined by point group symmetry. We will describe the optimal conditions and candidate materials to observe this effect. IS is supported by the Pappalardo Fellowship in Physics. LF is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.
Virialisation-induced curvature as a physical explanation for dark energy
Roukema, Boudewijn F.; Ostrowski, Jan J.; Buchert, Thomas E-mail: Jan.Ostrowski@astro.uni.torun.pl
2013-10-01
The geometry of the dark energy and cold dark matter dominated cosmological model (ΛCDM) is commonly assumed to be given by a Friedmann-Lemaître-Robertson-Walker (FLRW) metric, i.e. it assumes homogeneity in the comoving spatial section. The homogeneity assumption fails most strongly at (i) small distance scales and (ii) recent epochs, implying that the FLRW approximation is most likely to fail at these scales. We use the virialisation fraction to quantify (i) and (ii), which approximately coincide with each other on the observational past light cone. For increasing time, the virialisation fraction increases above 10% at about the same redshift ( ∼ 1–3) at which Ω{sub Λ} grows above 10% ( ≈ 1.8). Thus, instead of non-zero Ω{sub Λ}, we propose an approximate, general-relativistic correction to the matter-dominated (Ω{sub m}; = 1,Ω{sub Λ} = 0), homogeneous metric (Einstein-de Sitter, EdS). A low-redshift effective matter-density parameter of Ω{sub m}{sup eff}(0) = 0.26±0.05 is inferred. Over redshifts 0 < z < 3, the distance modulus of the virialisation-corrected EdS model approximately matches the ΛCDM distance modulus. This rough approximation assumes ''old physics'' (general relativity), not ''new physics''. Thus, pending more detailed calculations, we strengthen the claim that ''dark energy'' should be considered as an artefact of emerging average curvature in the void-dominated Universe, via a novel approach that quantifies the relation between virialisation and average curvature evolution.
Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B36.
Liu, Chun-Sheng; Wang, Xiangfu; Ye, Xiao-Juan; Yan, Xiaohong; Zeng, Zhi
2014-11-21
The synthesis of quasiplanar boron clusters (B36) with a central hexagonal hole provides the first experimental evidence that a single-atomic-layer borophene with hexagonal vacancies is potentially viable [Z. Piazza, H. Hu, W. Li, Y. Zhao, J. Li, and L. S. Wang, Nat. Commun. 5, 3113 (2014)]. However, owing to the hexagonal holes, tunning the electronic and physical properties of B36 through chemical modifications is not fully understood. Based on (van der Waals corrected-) density functional theory, we show that Li adsorbed on B36 and B36 (-) clusters can serve as reversible hydrogen storage media. The present results indicate that the curvature and ionization of substrates can enhance the bond strength of Li due to the energetically favorable B 2p-Li 2p orbitals hybridization. Both the polarization mechanism and the orbital hybridization between H-s orbitals and Li-2s2p orbitals contribute to the adsorption of H2 molecules and the resulting adsorption energy lies between the physisorbed and chemisorbed states. Interestingly, the number of H2 in the hydrogen storage medium can be measured by the appearance of the negative differential resistance behavior at different bias voltage regions. Furthermore, the cluster-assembled hydrogen storage materials constructed by metalized B36 clusters do not cause a decrease in the number of adsorbed hydrogen molecules per Li. The system reported here is favorable for the reversible hydrogen adsorption/desorption at ambient conditions. PMID:25416890
Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B{sub 36}
Liu, Chun-Sheng Wang, Xiangfu; Yan, Xiaohong; Ye, Xiao-Juan; Zeng, Zhi
2014-11-21
The synthesis of quasiplanar boron clusters (B{sub 36}) with a central hexagonal hole provides the first experimental evidence that a single-atomic-layer borophene with hexagonal vacancies is potentially viable [Z. Piazza, H. Hu, W. Li, Y. Zhao, J. Li, and L. S. Wang, Nat. Commun. 5, 3113 (2014)]. However, owing to the hexagonal holes, tunning the electronic and physical properties of B{sub 36} through chemical modifications is not fully understood. Based on (van der Waals corrected-) density functional theory, we show that Li adsorbed on B{sub 36} and B{sub 36}{sup −} clusters can serve as reversible hydrogen storage media. The present results indicate that the curvature and ionization of substrates can enhance the bond strength of Li due to the energetically favorable B 2p-Li 2p orbitals hybridization. Both the polarization mechanism and the orbital hybridization between H-s orbitals and Li-2s2p orbitals contribute to the adsorption of H{sub 2} molecules and the resulting adsorption energy lies between the physisorbed and chemisorbed states. Interestingly, the number of H{sub 2} in the hydrogen storage medium can be measured by the appearance of the negative differential resistance behavior at different bias voltage regions. Furthermore, the cluster-assembled hydrogen storage materials constructed by metalized B{sub 36} clusters do not cause a decrease in the number of adsorbed hydrogen molecules per Li. The system reported here is favorable for the reversible hydrogen adsorption/desorption at ambient conditions.
NASA Technical Reports Server (NTRS)
Hasenstein, K. H.; Kuznetsov, O. A.
1999-01-01
Shoots of the lazy-2 mutant of tomato (Lycopersicon esculentum Mill., cv. Ailsa Craig) exhibit negative gravitropism in the dark, but respond positively gravitropically in (red) light. In order to test whether high-gradient magnetic fields (HGMFs) exert only ponderomotive effects on amyloplasts or affect other physiological processes, we induced magnetophoretic curvature in wild-type (WT) and lazy-2 mutant seedlings. Straight hypocotyls of 4-d-old plants were selected and the tips of their hooks were placed in an HGMF near the edge of a magnetized ferromagnetic wedge [grad (H2/2) approximately 10(9)-10(10) Oe2/cm] and mounted on a 1-rpm clinostat. After 4 h in the dark, 85% of WT hypocotyls and 67% of mutant hypocotyls curved toward the wedge. When the seedlings were exposed to red light for 1 h prior to and during the application of the HGMF, 78% of the WT seedlings curved toward the magnetic gradient, but the majority of the lazy-2 seedlings (75%) curved away from the stronger field area. Intracellular amyloplast displacement in the HGMF was similar for both varieties and resembled the displacement after horizontal reorientation. The WT showed a distinct graviresponse pattern depending on the orientation of the hook, even after excision of the apex. Application of HGMFs to decapitated hypocotyls resulted in curvature consistent with that obtained after horizontal reorientation. After light exposure, decapitated lazy-2 seedlings did not respond positively gravitropically. The data imply that the lazy-2 mutants perceive the displacement of amyloplasts in a similar manner to the WT and that the HGMF does not affect the graviresponse mechanism. The study demonstrates that ponderomotive forces due to HGMFs are useful for the analysis of the gravity-sensing mechanism in plants.
Watahiki, M K; Yamamoto, K T
1997-10-01
Unilateral application of indole-3-acetic acid (IAA) in a lanolin base to hypocotyls of partially etiolated seedlings of wild-type Arabidopsis thaliana induced growth curvature in a dose-dependent manner. The effects of IAA in concentrations from 1 to 1000 microM were studied, with maximum IAA-induced curvature at 100 microM. Three IAA-insensitive mutants were isolated and are all in the same locus, massugu1 (msg1). They did not undergo hypocotyl growth curvature at any of the IAA concentrations tested. msg1 is recessive and is located on chromosome 5. msg 1 hypocotyl growth is resistant to 2,4-dichlorophenoxyacetic acid (2,4-D), but the roots are as sensitive to 2,4-D as the wild type. Growth of the hypocotyl was inhibited to essentially the same extent as the wild type by 6-benzylaminopurine, abscisic acid, and 1-aminocyclopropane-1-carboxylate, an ethylene precursor. The msg1 leaves were also resistant to 2,4-D-induced chlorosis. The gravitropic response of the msg1 hypocotyl takes much more time to initiate and achieve the wild-type degree of curvature, whereas the msg1 roots responded normally to gravity. The mature plants and the etiolated seedlings of msg1 were generally wild type in appearance, except that their rosette leaves were either epinastic or hyponastic. msg1 is the first auxin-insensitive mutant in which it effects are mostly restricted to the hypocotyl and leaf, and msg1 also appears to be auxin specific. PMID:9342863
Kamei, Noriyasu; Aoyama, Yukina; Khafagy, El-Sayed; Henmi, Mao; Takeda-Morishita, Mariko
2015-08-01
Our recent studies have shown that the coadministration of cell-penetrating peptides (CPPs) is a potential strategy for oral delivery of peptide- and protein-based biopharmaceuticals. The intermolecular interaction between drug and CPP is an essential factor in the effective delivery of these drugs, but the characteristics of the interaction under the conditions of the intestinal lumen remain unknown. In this study, therefore, we examined the characteristics of binding of the amphipathic CPP penetratin to insulin and the efficiency of its enhancement of epithelial insulin transport at different pH and in simulated intestinal fluids (SIFs). The binding between insulin and penetratin was pH dependent and particularly decreased at pH 5.0. In addition, we clarified that the sodium taurocholate (NaTC) present in two types of SIF (fasted-state SIF [FaSSIF] and fed-state SIF [FeSSIF]) affected binding efficiency. However, the permeation of insulin through a Caco-2 cell monolayer was significantly facilitated by coincubation with l- or d-penetratin at various pH values. Moreover, the permeation-stimulating effect of l-penetratin was observed in FaSSIF containing NaTC and lecithin, but not in 3mM NaTC solution, suggesting that the presence of lecithin was the key factor in maintaining the ability of penetratin to enhance the intestinal absorption of biopharmaceuticals. This report describes the essential considerations for in vivo use and clinical application of a CPP-based oral delivery strategy. PMID:25960330
NASA Astrophysics Data System (ADS)
Tourdot, Richard W.; Ramakrishnan, N.; Baumgart, Tobias; Radhakrishnan, Ravi
2015-10-01
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.
Tourdot, Richard W; Ramakrishnan, N; Baumgart, Tobias; Radhakrishnan, Ravi
2015-10-01
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension. PMID:26565280
Tourdot, Richard W.; Ramakrishnan, N.; Baumgart, Tobias; Radhakrishnan, Ravi
2016-01-01
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension. PMID:26565280
Takano, Kazunari; Toyooka, Kiminori; Suetsugu, Shiro
2008-01-01
Extended Fer-CIP4 homology (EFC)/FCH-BAR (F-BAR) domains generate and bind to tubular membrane structures of defined diameters that are involved in the formation and fission of endocytotic vesicles. Formin-binding protein 17 (FBP17) and Toca-1 contain EFC/F-BAR domains and bind to neural Wiskott–Aldrich syndrome protein (N-WASP), which links phosphatidylinositol (4,5)-bisphosphate (PIP2) and the Rho family GTPase Cdc42 to the Arp2/3 complex. The N-WASP–WASP-interacting protein (WIP) complex, a predominant form of N-WASP in cells, is known to be activated by Toca-1 and Cdc42. Here, we show that N-WASP–WIP complex-mediated actin polymerization is activated by phosphatidylserine-containing membranes depending on membrane curvature in the presence of Toca-1 or FBP17 and in the absence of Cdc42 and PIP2. Cdc42 further promoted the activation of actin polymerization by N-WASP–WIP. Toca-1 or FBP17 recruited N-WASP–WIP to the membrane. Conserved acidic residues near the SH3 domain of Toca-1 and FBP17 positioned the N-WASP–WIP to be spatially close to the membrane for activation of actin polymerization. Therefore, curvature-dependent actin polymerization is stimulated by spatially appropriate interactions of EFC/F-BAR proteins and the N-WASP–WIP complex with the membrane. PMID:18923421
Ogunyankin, Maria O; Huber, Dale L; Sasaki, Darryl Y; Longo, Marjorie L
2013-05-21
This work describes a technique for forming high-density arrays and patterns of membrane-bound proteins through binding to a curvature-organized compositional pattern of metal-chelating lipids (Cu(2+)-DOIDA or Cu(2+)-DSIDA). In this bottom-up approach, the underlying support is an e-beam formed, square lattice pattern of hemispheres. This curvature pattern sorts Cu(2+)-DOIDA to the 200 nm hemispherical lattice sites of a 600 nm × 600 nm unit cell in Ld - Lo phase separated lipid multibilayers. Binding of histidine-tagged green fluorescent protein (His-GFP) creates a high density array of His-GFP-bound pixels localized to the square lattice sites. In comparison, the negative pixel pattern is created by sorting Cu(2+)-DSIDA in Ld - Lβ' phase separated lipid multibilayers to the flat grid between the lattice sites followed by binding to His-GFP. Lattice defects in the His-GFP pattern lead to interesting features such as pattern circularity. We also observe defect-free arrays of His-GFP that demonstrate perfect arrays can be formed by this method suggesting the possibility of using this approach for the localization of various active molecules to form protein, DNA, or optically active molecular arrays. PMID:23642033
Urade, Vikrant N; Bollmann, Luis; Kowalski, Jonathan D; Tate, Michael P; Hillhouse, Hugh W
2007-04-10
The double-gyroid phase of nanoporous silica films has been shown to possess facile mass-transport properties and may be used as a mold to fabricate a variety of highly ordered inverse double-gyroid metal and semiconductor films. This phase exists only over a very small region of the binary phase diagram for most surfactants, and it has been very difficult to synthesize metal oxide films with this structure by evaporation-induced self-assembly (EISA). Here, we show the interplay of the key parameters needed to synthesize these structures reproducibly and show that the interfacial curvature may be systematically controlled. Grazing angle of incidence small-angle X-ray scattering (GISAXS) is used to determine the structure and orientation of nanostructured silica films formed by EISA from dilute silica/(poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl) surfactant solutions. Four different highly ordered film structures are observed by changing only the concentration of the surfactant, the relative humidity during dip-coating, and the aging time of the solution prior to coating. The highly ordered films progress from rhombohedral (Rm) to 2D rectangular (c2m) to double-gyroid (distorted Iad) to lamellar systematically as interfacial curvature decreases. Under all experimental conditions investigated, increasing the aging time of the coating solution was found to decrease the interfacial curvature. In particular, this parameter was critical to being able to synthesize highly ordered, pure-phase double-gyroid films. The key role of the aging time is shown via processing diagrams that map out the interplay between the aging time, composition, and relative humidity. 29Si nuclear magnetic resonance (NMR) spectroscopy and solution-phase small-angle X-ray scattering (SAXS) of the aged coating solutions presented in part I of this series are then used to interpret the effects of aging prior to dip-coating. Specifically, it was found that a predictive model based on volume
Chrometzka, P
1967-12-01
1. High atmospheric pressure causes an increase of the 3-indoleacetic-acid-induced curvature of Avena coleoptiles in the Went-test, regardless of whether the applied gas is nitrogen, hydrogen, oxygen, or air. 2. The highest increase was caused by high pressure of oxygen, the lowest by lack of oxygen. 3. The high pressure effect was also observed with coleoptiles which were treated 20 hours prior to the test and which were then kept under normal pressure. 4. High pressure of oxygen for a long period (20 hours) had a poisonous effect on the coleoptiles. They ceased to grow. Preliminary studies have shown that the respiration is enhanced if the coleoptiles have been kept under high pressure. PMID:24554325
NASA Astrophysics Data System (ADS)
Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng
2013-09-01
Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.
Spatial curvature, spacetime curvature, and gravity
NASA Astrophysics Data System (ADS)
Price, Richard H.
2016-08-01
The belief that curved spacetime gravity cannot be simply and correctly presented results in such misleading presentations as elastic two-dimensional sheets deformed as they support heavy objects. This article attempts to show that the conceptual basis of curved spacetime gravity can be simply and correctly presented, and that the spatial curvature of a deformed elastic sheet is very different from the spacetime curvature underlying gravity. This article introduces the idea of a "splittable" spacetime that has spatial curvature, but is missing most of the manifestations of gravity. A section in which no mathematics is used is directed at students who have studied no more than introductory physics. A separate section, for students who have taken only an introductory course in general relativity, gives mathematical arguments centering on splittable spacetimes.
Ngamskulrungroj, Popchai; Chang, Yun; Hansen, Bryan; Bugge, Cliff; Fischer, Elizabeth; Kwon-Chung, Kyung J.
2012-01-01
Cryptococcus neoformans, an opportunistic fungal pathogen, manifests an intrinsic adaptive mechanism of resistance toward fluconazole (FLC) termed heteroresistance. Heteroresistance is characterized by the emergence of minor resistant subpopulations at levels of FLC that are higher than the strain’s minimum inhibitory concentration. The heteroresistant clones that tolerate high concentrations of FLC often contain disomic chromosome 4 (Chr4). SEY1, GLO3 and GCS2 on Chr4 are responsible for ER integrity and important for Chr4 disomy formation under FLC stress. We sought an evidence of a direct relationship between ER morphology and Chr4 disomy formation. Deletion of the YOP1 gene on Chr7, which encodes an ER curvature-stabilizing protein that interacts with Sey1, perturbed ER morphology without affecting FLC susceptibility or the frequency of FLC-induced disomies. However, deletion of both YOP1 and SEY1, not only perturbed ER morphology more severely than in sey1Δ or yop1Δ strains but also abrogated the FLC-induced disomy. Although the heteroresistance phenotype was retained in the sey1Δyop1Δ strains, tolerance to FLC appeared to have resulted not from chromosome duplication but from gene amplification restricted to the region surrounding ERG11 on Chr1. These data support the importance of ER integrity in C. neoformans for the formation of disomy under FLC stress. PMID:22731401
Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes.
Bradley, Ryan P; Radhakrishnan, Ravi
2016-08-30
We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height-height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function. PMID:27531962
Curvature of the penis is an abnormal bend in the penis that occurs during erection. It is also called Peyronie's disease. ... tissue develops in the deep tissues of the penis. The cause of this fibrous tissue is often ...
Krauss, Michael; Jia, Jun-Yong; Roux, Aurélien; Beck, Rainer; Wieland, Felix T.; De Camilli, Pietro; Haucke, Volker
2008-01-01
ADP-ribosylation factor (Arf) and related small GTPases play crucial roles in membrane traffic within the exo- and endocytic pathways. Arf proteins in their GTP-bound state are associated with curved membrane buds and tubules, frequently together with effector coat proteins to which they bind. Here we report that Arf1 is found on membrane tubules originating from the Golgi complex where it colocalizes with COPI and GGA1 vesicle coat proteins. Arf1 also induces tubulation of liposomes in vitro. Mutations within the amino-terminal amphipathic helix (NTH) of Arf1 affect the number of Arf1-positive tubules in vivo and its property to tubulate liposomes. Moreover, hydrophilic substitutions within the hydrophobic part of its NTH impair Arf1-catalyzed budding of COPI vesicles in vitro. Our data indicate that GTP-controlled local induction of high curvature membranes is an important property of Arf1 that might be shared by a subgroup of Arf/Arl family GTPases. PMID:18693248
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1992-01-01
Calculations are presented of the coefficient of thermal expansion (CTE) of the radius of curvature of the reflector face sheets made of a quasi-isotropic composite. It is shown that, upon cooling, the change of the CTE of the focal distance of the mirror is equal to that of the radius of the curvature of the reflector face sheet. The CTE of the radius of the curvature of a quasi-isotropic composite face sheet depends on both the in-plane and the out-of-plane CTEs. The zero in-plane CTE of a face sheet does not guarantee mirrors with no focal length changes.
Bollmann, Luis; Urade, Vikrant N; Hillhouse, Hugh W
2007-04-10
The double-gyroid phase of nanoporous silica films formed by evaporation-induced self-assembly (EISA) has been shown to possess facile mass-transport properties and may be used as a robust template for the nanofabrication of metal and semiconductor nanostructures. Recently, we developed a new synthesis of double-gyroid nanoporous silica films where the aging time of the coating solution prior to EISA was the key parameter required to control the interfacial curvature that results upon self-assembly of the film. Here, we use 29Si nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) to investigate the nanoscale structure of the coating solutions used to obtain double-gyroid nanoporous silica films. NMR and SAXS were carried out on the water, ethanol, silica, and poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl (EO17-PO12-C14) surfactant coating solutions as well as similar solutions that excluded either the silica or the surfactant. NMR data reveal that the silica monomers in the coating solution condense very rapidly to form rings and connected ring species. After 1 day of aging, all monomers and dimers have disappeared, and the distribution is dominated by Q2 and Q3 species, where the superscript in Qn describes the number of silicon atoms in the second coordination shell of the central silicon. Over the course of the next 9 days, the Q3 population slowly rises at the expense of the Q2 and Q3t populations. Absolute intensity SAXS measurements reveal that the size of the silica clusters increases steadily during this aging period, reaching an average radius of gyration of 9.0 A after 9 days of aging. Longer aging results in the continued growth of clusters with a mass fractal dimension of 1.8. Absolute intensity SAXS data also reveals that micelles are not present in the coating solution. At 9% volume fraction of surfactant, the coating solution is far above the aqueous critical micellar concentration. However, even a small amount of ethanol
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides.
Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin
2016-01-01
Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. PMID:26745422
Gravitropic basis of leaf blade nastic curvatures
NASA Technical Reports Server (NTRS)
Hayes, A. B.
1982-01-01
The curvatures produced in leaf blades by auxin treatment have been described as nastic curvatures because the initial differential growth is always enhanced on the lower side, regardless of the side of application. It is now known, however, that blades can show differential growth of either the upper or the lower side depending on the conditions of treatment. The dorsiventrality of the blade therefore influences but does not limit the direction of curvature. The dorsiventral directionality of response to growth regulators and the response to changes in the orientation to gravity are seen as indicating that blade curvatures are analogous to negative or positive gravitropism. It is noted that neither blade hyponasty or epinasty can be accounted for by ethylene alone. Petiole responses, however, are not directional, and the leaf angle changes induced by rotation or auxin treatment can be accounted for by ethylene production.
Curvature calculations with GEOCALC
NASA Astrophysics Data System (ADS)
Moussiaux, A.; Tombal, Ph.
1987-04-01
A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. We show how to apply this package to the Schwarzchild case and we discuss the different results.
Curvature calculations with GEOCALC
Moussiaux, A.; Tombal, P.
1987-04-01
A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.
Wrinkles and splay conspire to give positive disclinations negative curvature.
Matsumoto, Elisabetta A; Vega, Daniel A; Pezzutti, Aldo D; García, Nicolás A; Chaikin, Paul M; Register, Richard A
2015-10-13
Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations. PMID:26420873
Wrinkles and splay conspire to give positive disclinations negative curvature
Matsumoto, Elisabetta A.; Vega, Daniel A.; Pezzutti, Aldo D.; García, Nicolás A.; Chaikin, Paul M.; Register, Richard A.
2015-01-01
Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations. PMID:26420873
Photon Drag Effect due to Berry Curvature
NASA Astrophysics Data System (ADS)
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-01
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.
Photon Drag Effect due to Berry Curvature.
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-19
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results. PMID:27588858
Forman curvature for complex networks
NASA Astrophysics Data System (ADS)
Sreejith, R. P.; Mohanraj, Karthikeyan; Jost, Jürgen; Saucan, Emil; Samal, Areejit
2016-06-01
We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, while the distribution is broad in scale-free and real-world networks. In most networks, Forman curvature is found to display significant negative correlation with degree and centrality measures. However, Forman curvature is uncorrelated with clustering coefficient in most networks. Importantly, we find that both model and real networks are vulnerable to targeted deletion of nodes with highly negative Forman curvature. Our results suggest that Forman curvature can be employed to gain novel insights on the organization of complex networks.
Curvature perturbation and waterfall dynamics in hybrid inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao E-mail: firouz@mail.ipm.ir
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
Robust pupil center detection using a curvature algorithm
NASA Technical Reports Server (NTRS)
Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)
1999-01-01
Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.
Novel imaging system for measuring microscale curvatures at high temperatures
NASA Astrophysics Data System (ADS)
Tada, Haruna; Kumpel, Amy E.; Lathrop, Richard E.; Slanina, John B.; Nieva, Patricia; Zavracky, Paul; Miaoulis, Ioannis N.; Wong, Peter Y.
2000-01-01
An innovative system was designed to optically measure the curvature of microelectromechanical system at high temperatures. The system takes advantage of the limited numerical aperture of the imaging system to detect the curvature of cantilever beams. Images of the beam are used to determine beam curvature at high temperatures of up to 850 °C by analyzing the apparent change in beam length as seen by the camera during an experimental trial. The system is designed to operate at very high temperatures, which is difficult in conventional microscale curvature measurement techniques such as scanning electron microscopy or stylus profilometry due to excess heating of peripheral equipment. The system can measure curvatures as small as 300 m-1, which corresponds to tip deflections of 1.5 μm for a 100 μm beam. The resolution of the system is limited by the image resolution of the charge-coupled device camera, and increases at large curvatures. The maximum curvature that can be measured by the system is limited by the increase in system resolution, and is estimated to be 4500 m-1, corresponding to 22 μm deflection for a 100 μm beam. The apparatus was demonstrated to measure the thermally induced curvature of multilayered thin-film cantilever beams. The beams bend at high temperatures due to mismatch in thermal expansion coefficients between the layers. One innovative application of such curvature measurement is the determination of thermophysical properties of thin films at elevated temperatures. This article presents the experimental setup and operational theory of apparatus, as well as curvature measurements obtained by the system. The thermal expansion coefficient of polycrystalline silicon, determined from the curvature measurements, are also discussed.
Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert
2011-03-31
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
Cosmic curvature and condensation
NASA Technical Reports Server (NTRS)
Harwit, Martin
1992-01-01
It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.
John Paul Wallace, Ganapati Rao Myneni, and Robert Pike
2011-03-01
The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.
Ionic liquid tunes microemulsion curvature.
Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng
2009-02-17
Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325
Sigma models with negative curvature
NASA Astrophysics Data System (ADS)
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-05-01
We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O (n , 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
Transformation optics, curvature and beyond (Conference Presentation)
NASA Astrophysics Data System (ADS)
McCall, Martin W.
2016-04-01
Although the transformation algorithm is very well established and implemented, some intriguing questions remain unanswered. 1) In what precise mathematical sense is the transformation optics algorithm `exact'? The invariance of Maxwell's equations is well understood, but in what sense does the same principle not apply to acoustics (say)? 2) Even if the fields are transformed in a way that apparently mimic vacuum perfectly, it is easy to construct very simple examples where the impedance of the transformed medium is no longer isotropic and homogeneous. This would seem to imply a fundamental shortcoming in any claim that electromagnetic cloaking has been reduced to technology. 3) Transformations are known to exist that introduce a discrepancy between the Poynting vector and the wave-vector. Does this distinction carry any physical significance? We have worked extensively on understanding a commonality between transformation theories that operates at the level of rays - being interpreted as geodesics of an appropriate manifold. At this level we now understand that the *key* problem underlying all attempts to unify the transformational approach to disparate areas of physics is how to relate the transformation of the base metric (be it Euclidean for spatial transformation optics, or Minkowskian for spacetime transformation optics) to the medium parameters of a given physical domain (e.g. constitutive parameters for electromagnetism, bulk modulus and mass density for acoustics, diffusion constant and number density for diffusion physics). Another misconception we will seek to address is the notion of the relationship between transformation optics and curvature. Many have indicated that transformation optics evinces similarities with Einstein's curvature of spacetime. Here we will show emphatically that transformation optics cannot induce curvature. Inducing curvature in an electromagnetic medium requires the equivalent of a gravitational source. We will propose a scheme
Boumann, Henry A.; Gubbens, Jacob; Koorengevel, Martijn C.; Oh, Chan-Seok; Martin, Charles E.; Heck, Albert J.R.; Patton-Vogt, Jana; Henry, Susan A.; de Kruijff, Ben; de Kroon, Anton I.P.M.
2006-01-01
To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC. During PC depletion, the remaining PC was subject to acyl chain remodeling with monounsaturated species replacing diunsaturated species, as shown by mass spectrometry. The remodeling of PC did not require turnover by the SPO14-encoded phospholipase D. The changes in the PC species profile were found to reflect an overall shift in the cellular acyl chain composition that exhibited a 40% increase in the ratio of C16 over C18 acyl chains, and a 10% increase in the degree of saturation. The shift was stronger in the phospholipid than in the neutral lipid fraction and strongest in the species profile of PE. The shortening and increased saturation of the PE acyl chains were shown to decrease the nonbilayer propensity of PE. The results point to a regulatory mechanism in yeast that maintains intrinsic membrane curvature in an optimal range. PMID:16339082
Boumann, Henry A; Gubbens, Jacob; Koorengevel, Martijn C; Oh, Chan-Seok; Martin, Charles E; Heck, Albert J R; Patton-Vogt, Jana; Henry, Susan A; de Kruijff, Ben; de Kroon, Anton I P M
2006-02-01
To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC. During PC depletion, the remaining PC was subject to acyl chain remodeling with monounsaturated species replacing diunsaturated species, as shown by mass spectrometry. The remodeling of PC did not require turnover by the SPO14-encoded phospholipase D. The changes in the PC species profile were found to reflect an overall shift in the cellular acyl chain composition that exhibited a 40% increase in the ratio of C16 over C18 acyl chains, and a 10% increase in the degree of saturation. The shift was stronger in the phospholipid than in the neutral lipid fraction and strongest in the species profile of PE. The shortening and increased saturation of the PE acyl chains were shown to decrease the nonbilayer propensity of PE. The results point to a regulatory mechanism in yeast that maintains intrinsic membrane curvature in an optimal range. PMID:16339082
On the Weyl curvature hypothesis
NASA Astrophysics Data System (ADS)
Stoica, Ovidiu Cristinel
2013-11-01
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity.
Curvature calculations with spacetime algebra
Hestenes, D.
1986-06-01
A new method for calculating the curvature tensor is developed and applied to the Scharzschild case. The method employs Clifford algebra and has definite advantages over conventional methods using differential forms or tensor analysis.
MARCKS-ED Peptide as a Curvature and Lipid Sensor
Morton, Leslie A.; Yang, Hengwen; Saludes, Jonel P.; Fiorini, Zeno; Beninson, Lida; Chapman, Edwin R.; Fleshner, Monika; Xue, Ding; Yin, Hang
2012-01-01
Membrane curvature and lipid composition regulate important biological processes within a cell. Currently, several proteins have been reported to sense and/or induce membrane curvatures, e.g. Synaptotagmin-1 and Amphiphysin. However, the large protein scaffold of these curvature sensors limits their applications in complex biological systems. Our interest focuses on identifying and designing peptides that can sense membrane curvature based on established elements observed in natural curvature-sensing proteins. Membrane curvature remodeling also depends on their lipid composition, suggesting strategies to specifically target membrane shape and lipid components simultaneously. We have successfully identified a 25-mer peptide, MARCKS-ED, based on the effector domain sequence of the intracellular membrane protein myristoylated alanine-rich C-kinase substrate that can recognize PS with preferences for highly curved vesicles in a sequence specific manner. These studies further contribute to the understanding of how proteins and peptides sense membrane curvature, as well as provide potential probes for membrane shape and lipid composition. PMID:23075500
Influence of Coanda surface curvature on performance of bladeless fan
NASA Astrophysics Data System (ADS)
Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2014-10-01
The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.
Spatial curvature endgame: Reaching the limit of curvature determination
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Bull, Philip; Allison, Rupert
2016-07-01
Current constraints on spatial curvature show that it is dynamically negligible: |ΩK|≲5 ×10-3 (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on ΩK at around the 10-4 level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Λ CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like ΩK with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.
Nanoscale Membrane Curvature detected by Polarized Localization Microscopy
NASA Astrophysics Data System (ADS)
Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin
Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.
On the Weyl curvature hypothesis
Stoica, Ovidiu Cristinel
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.
Spontaneous Curvature of Polymer Brushes
NASA Astrophysics Data System (ADS)
Sheiko, Sergei; da Silva, Marcelo; Shirvaniants, David; Rodrigues, Carlos; Beers, Kathryn; Matyjaszewski, Krzysztof; Potemkin, Igor; Moeller, Martin
2003-03-01
Experimental studies of cylindrical brushes on surfaces revealed peculiar shape of brush molecules with a curved backbone. According to scaling analysis, spontaneous bending of the backbone can be driven by entropic elasticity of the side chains: smaller extension of the chains is attained due to their asymmetric distribution with respect to the backbone. An equilibrium, i.e. spontaneous curvature results from the balance of the elasticity of the side chains and the elasticity of the interface. The curvature is predicted to increase with the side chain length. The system is of general interest because cylindrical brushes confined to a flat surface represent a two-dimensional cross-section of a planar brush grafted on both sides. Here we present systematic studies of cylindrical brushes with different length of the side chains. The curvature of cylindrical brushes confined to a flat substrate was investigated by atomic force microscopy. The method allowed visualization of individual molecules and quantitative analysis of their conformation. In agreement with theory, adsorbed brushes demonstrated spontaneous curvature, however the curvature was shown to decrease with the side chain length.
Spatial curvature falsifies eternal inflation
NASA Astrophysics Data System (ADS)
Kleban, Matthew; Schillo, Marjorie
2012-06-01
Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are Script O(10-5). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ωk. On this basis we argue that a measurement of |Ωk| > 10-4 would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ωk < -10-4 (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ωk measurements and constitute a sharp test of these predictions.
Membrane curvature at a glance.
McMahon, Harvey T; Boucrot, Emmanuel
2015-03-15
Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. PMID:25774051
Curvature sensors: noise and its propagation.
Kellerer, Aglae
2010-11-01
The signal measured with a curvature sensor is analyzed. At the outset, we derive the required minimum number of sensing elements at the pupil edges, depending on the total number of sensing elements. The distribution of the sensor signal is further characterized in terms of its mean, variance, kurtosis, and skewness. It is established that while the approximation in terms of a Gaussian distribution is correct down to fairly low photon numbers, much higher numbers are required to obtain meaningful sensor measurements for small wavefront distortions. Finally, we indicate a closed expression for the error propagation factor and for the photon-noise-induced Strehl loss. PMID:21045888
Curvature generation in nematic surfaces
NASA Astrophysics Data System (ADS)
Mostajeran, Cyrus
2015-06-01
In recent years there has been a growing interest in the study of shape formation using modern responsive materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular, nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been made in achieving a variety of shape transitions in thin sheets of nematic solids by engineering isolated points of concentrated Gaussian curvature using topological defects in the nematic director field across textured surfaces. In this paper, we consider ways of achieving shape transitions in thin sheets of nematic glass by generation of nonlocalized Gaussian curvature in the absence of topological defects in the director field. We show how one can blueprint any desired Gaussian curvature in a thin nematic sheet by controlling the nematic alignment angle across the surface and highlight specific patterns which present feasible initial targets for experimental verification of the theory.
Cosmic strings with curvature corrections
NASA Astrophysics Data System (ADS)
Boisseau, Bruno; Letelier, Patricio S.
1992-08-01
A generic model of string described by a Lagrangian density that depends on the extrinsic curvature of the string worldsheet is studied. Using a system of coordinates adapted to the string world sheet the equation of motion and the energy-momentum tensor are derived for strings evolving in curved spacetime. We find that the curvature corrections may change the relation between the string energy density and the tension. It can also introduce heat propagation along the string. We also find for the Polyakov as well as Nambu strings with a topological term that the open string end points can travel with a speed less than the velocity of light.
Nonlinear Sorting, Curvature Generation, and Crowding of Endophilin N-BAR on Tubular Membranes
Zhu, Chen; Das, Sovan L.; Baumgart, Tobias
2012-01-01
The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin function, experimental measurements need to be compared to quantitative theoretical models. We present measurements of curvature sorting and curvature generation of the endophilin A1 N-BAR domain on tubular membranes pulled from giant unilamellar vesicles. At low concentration, endophilin functions primarily as a membrane curvature sensor; at high concentrations, it also generates curvature. We determine the spontaneous curvature induced by endophilin and observe sigmoidal curvature/composition coupling isotherms that saturate at high membrane tensions and protein solution concentrations. The observation of saturation is supported by a strong dependence of lateral diffusion coefficients on protein density on the tether membrane. We develop a nonlinear curvature/composition coupling model that captures our experimental observations. Our model predicts a curvature-induced phase transition among two states with varying protein density and membrane curvature. This transition could act as a switch during endocytosis. PMID:22768939
Monomeric Synucleins Generate Membrane Curvature*
Westphal, Christopher H.; Chandra, Sreeganga S.
2013-01-01
Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αβγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins. PMID:23184946
Space Curvature and the "Heavy Banana 'Paradox.'"
ERIC Educational Resources Information Center
Gruber, Ronald P.; And Others
1991-01-01
Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)
Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia E-mail: enfmarti@mppmu.mpg.de E-mail: liciaverde@icc.ub.edu
2010-03-01
Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d{sub A}(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω{sub k} in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d{sub A}(z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω{sub k} degeneracy.
Classification and quantification of leaf curvature
Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke
2010-01-01
Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533
Non-linear curvature inhomogeneities and backreaction for relativistic viscous fluids
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2015-08-01
The non-perturbative curvature inhomogeneities induced by relativistic viscous fluids are not conserved in the large-scale limit. However, when the bulk viscosity is a function of the total energy density of the plasma (or of the trace of the extrinsic curvature), the relevant evolution equations develop a further symmetry preventing the nonlinear growth of curvature perturbations. In this situation the fully inhomogeneous evolution can be solved to leading order in the gradient expansion. Over large scales, both the acceleration and the curvature inhomogeneities are determined by the bulk viscosity coefficients. Conversely the shear viscosity does not affect the evolution of the curvature and does not produce any acceleration. The curvature modes analyzed here do not depend on the choice of time hypersurfaces and are invariant for infinitesimal coordinate transformations in the perturbative regime.
Curvature-Controlled Defect Localization in Elastic Surface Crystals
NASA Astrophysics Data System (ADS)
Jiménez, Francisco López; Stoop, Norbert; Lagrange, Romain; Dunkel, Jörn; Reis, Pedro M.
2016-03-01
We investigate the influence of curvature and topology on crystalline dimpled patterns on the surface of generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal, and toroidal surfaces over a wide range of system sizes. However, both the localization of individual defects and the orientation of defect chains depend strongly on the local Gaussian curvature and its gradients across a surface. Our results imply that curvature and topology can be utilized to pattern defects in elastic materials, thus promising improved control over hierarchical bending, buckling, or folding processes. Generally, this study suggests that bilayer systems provide an inexpensive yet valuable experimental test bed for exploring the effects of geometrically induced forces on assemblies of topological charges.
Nonminimal coupling of perfect fluids to curvature
Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge
2008-09-15
In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f{sub 2}(R)]L{sub m}, where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L{sub m}=p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L{sub m} do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.
SLED phenomenology: curvature vs. volume
NASA Astrophysics Data System (ADS)
Niedermann, Florian; Schneider, Robert
2016-03-01
We assess the question whether the SLED (Supersymmetric Large Extra Dimensions) model admits phenomenologically viable solutions with 4D maximal symmetry. We take into account a finite brane width and a scale invariance (SI) breaking dilaton-brane coupling, both of which should be included in a realistic setup. Provided that the brane tension and the microscopic size of the brane take generic values set by the fundamental bulk Planck scale, we find that either the 4D curvature or the size of the extra dimensions is unacceptably large. Since this result is independent of the dilaton-brane couplings, it provides the biggest challenge to the SLED program.
Intracellular magnetophoresis of amyloplasts and induction of root curvature
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1996-01-01
High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.
Mirror with thermally controlled radius of curvature
Neil, George R.; Shinn, Michelle D.
2010-06-22
A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.
Canards and curvature: nonsmooth approximation by pinching
NASA Astrophysics Data System (ADS)
Desroches, M.; Jeffrey, M. R.
2011-05-01
In multiple time-scale (singularly perturbed) dynamical systems, canards are counterintuitive solutions that evolve along both attracting and repelling invariant manifolds. In two dimensions, canards result in periodic oscillations whose amplitude and period grow in a highly nonlinear way: they are slowly varying with respect to a control parameter, except for an exponentially small range of values where they grow extremely rapidly. This sudden growth, called a canard explosion, has been encountered in many applications ranging from chemistry to neuronal dynamics, aerospace engineering and ecology. Canards were initially studied using nonstandard analysis, and later the same results were proved by standard techniques such as matched asymptotics, invariant manifold theory and parameter blow-up. More recently, canard-like behaviour has been linked to surfaces of discontinuity in piecewise-smooth dynamical systems. This paper provides a new perspective on the canard phenomenon by showing that the nonstandard analysis of canard explosions can be recast into the framework of piecewise-smooth dynamical systems. An exponential coordinate scaling is applied to a singularly perturbed system of ordinary differential equations. The scaling acts as a lens that resolves dynamics across all time-scales. The changes of local curvature that are responsible for canard explosions are then analysed. Regions where different time-scales dominate are separated by hypersurfaces, and these are pinched together to obtain a piecewise-smooth system, in which curvature changes manifest as discontinuity-induced bifurcations. The method is used to classify canards in arbitrary dimensions, and to derive the parameter values over which canards form either small cycles (canards without head) or large cycles (canards with head).
x-y curvature wavefront sensor.
Cagigal, Manuel P; Valle, Pedro J
2015-04-15
In this Letter, we propose a new curvature wavefront sensor based on the principles of optical differentiation. The theoretically modeled setup consists of a diffractive optical mask placed at the intermediate plane of a classical two-lens coherent optical processor. The resulting image is composed of a number of local derivatives of the entrance pupil function whose proper combination provides the wavefront curvature. In contrast to the common radial curvature sensors, this one is able to provide the x and y wavefront curvature maps simultaneously. The sensor offers other additional advantages like having high spatial resolution, adjustable dynamic range, and not being sensitive to misalignment. PMID:25872040
Radius of curvature controlled mirror
Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.
2006-01-17
A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.
Robust contour decomposition using a constant curvature criterion
NASA Technical Reports Server (NTRS)
Wuescher, Daniel M.; Boyer, Kim L.
1991-01-01
The problem of decomposing an extended boundary or contour into simple primitives is addressed with particular emphasis on Laplacian-of-Gaussian (LoG) zero-crossing contours. A technique is introduced for partitioning such contours into constant curvature segments. A nonlinear `blip' filter matched to the impairment signature of the curvature computation process, an overlapped voting scheme, and a sequential contiguous segment extraction mechanism are used. This technique is insensitive to reasonable changes in algorithm parameters and robust to noise and minor viewpoint-induced distortions in the contour shape, such as those encountered between stereo image pairs. The results vary smoothly with the data, and local perturbations induce only local changes in the result. Robustness and insensitivity are experimentally verified.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results. PMID:27408830
Bcl-2 apoptosis proteins, mitochondrial membrane curvature, and cancer
NASA Astrophysics Data System (ADS)
Hwee Lai, Ghee; Schmidt, Nathan; Sanders, Lori; Mishra, Abhijit; Wong, Gerard; Ivashyna, Olena; Christenson, Eric; Schlesinger, Paul; Akabori, Kiyotaka; Santangelo, Christian
2012-02-01
Critical interactions between Bcl-2 family proteins permeabilize the outer mitochondrial membrane, a common decision point early in the intrinsic apoptotic pathway that irreversibly commits the cell to death. However, a unified picture integrating the essential non-passive role of lipid membranes with the contested dynamics of Bcl-2 regulation remains unresolved. Correlating results between synchrotron x-ray diffraction and microscopy in cell-free assays, we report activation of pro-apoptotic Bax induces strong pure negative Gaussian membrane curvature topologically necessary for pore formation and membrane remodeling events. Strikingly, Bcl-xL suppresses not only Bax-induced pore formation, but also membrane remodeling by disparate systems including cell penetrating, antimicrobial or viral fusion peptides, and bacterial toxin, none of which have BH3 allosteric domains to mediate direct binding. We propose a parallel mode of Bcl-2 pore regulation in which Bax and Bcl-xL induce antagonistic and mutually interacting Gaussian membrane curvatures. The universal nature of curvature-mediated interactions allows synergy with direct binding mechanisms, and potentially accounts for the Bcl-2 family modulation of mitochondrial fission/fusion dynamics.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Evans, M. L.
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.
Lee, June S.; Chang, Wha-Kyung; Evans, Michael L.
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus. PMID:11537475
Lee, J S; Chang W-K; Evans, M L
1990-01-01
We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus. PMID:11537475
Gao, Dengliang
2013-03-01
In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.
Programming curvature using origami tessellations
NASA Astrophysics Data System (ADS)
Dudte, Levi H.; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L.
2016-05-01
Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures--we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.
Magnetophoretic Induction of Root Curvature
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.
1997-01-01
The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.
Soliton curvatures of surfaces and spaces
Konopelchenko, B.G.
1997-01-01
An intrinsic geometry of surfaces and three-dimensional Riemann spaces is discussed. In the geodesic coordinates the Gauss equation for two-dimensional Riemann spaces (surfaces) is reduced to the one-dimensional Schr{umlt o}dinger equation, where the Gaussian curvature plays a role of potential. The use of this fact provides an infinite set of explicit expressions for curvature and metric of surface. A special case is governed by the KdV equation for the Gaussian curvature. Integrable dynamics of curvature via the KdV equation, higher KdV equations, and 2+1-dimensional integrable equations with breaking solitons is considered. For a special class of three-dimensional Riemann spaces the relation between metric and scalar curvature is given by the two-dimensional stationary Schr{umlt o}dinger or perturbed string equations. This provides us an infinite family of Riemann spaces with explicit scalar curvature and metric. Particular class of spaces and their integrable evolutions are described by the Nizhnik{endash}Veselov{endash}Novikov equation and its higher analogs. Surfaces and three-dimensional Riemann spaces with large curvature and slow dependence on the variable are considered. They are associated with the Burgers and Kadomtsev{endash}Petviashvili equations, respectively. {copyright} {ital 1997 American Institute of Physics.}
Curvature and torsion in growing actin networks
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.; Fletcher, Daniel A.
2008-06-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.
Distributed curvature and stability of fullerenes.
Fowler, Patrick W; Nikolić, Sonja; De Los Reyes, Rasthy; Myrvold, Wendy
2015-09-21
Energies of non-planar conjugated π systems are typically described qualitatively in terms of the balance of π stabilisation and the steric strain associated with geometric curvature. Curvature also has a purely graph-theoretical description: combinatorial curvature at a vertex of a polyhedral graph is defined as one minus half the vertex degree plus the sum of reciprocal sizes of the faces meeting at that vertex. Prisms and antiprisms have positive combinatorial vertex curvature at every vertex. Excluding these two infinite families, we call any other polyhedron with everywhere positive combinatorial curvature a PCC polyhedron. Cubic PCC polyhedra are initially common, but must eventually die out with increasing vertex count; the largest example constructed so far has 132 vertices. The fullerenes Cn have cubic polyhedral molecular graphs with n vertices, 12 pentagonal and (n/2 - 10) hexagonal faces. We show that there are exactly 39 PCC fullerenes, all in the range 20 ≤n≤ 60. In this range, there is only partial correlation between PCC status and stability as defined by minimum pentagon adjacency. The sum of vertex curvatures is 2 for any polyhedron; for fullerenes the sum of squared vertex curvatures is linearly related to the number of pentagon adjacencies and hence is a direct measure of relative stability of the lower (n≤ 60) fullerenes. For n≥ 62, non-PCC fullerenes with a minimum number of pentagon adjacencies minimise mean-square curvature. For n≥ 70, minimum mean-square curvature implies isolation of pentagons, which is the strongest indicator of stability for a bare fullerene. PMID:26283188
Magnetic curvature effects on plasma interchange turbulence
NASA Astrophysics Data System (ADS)
Li, B.; Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.
2016-06-01
The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.
Ueki, Ayaka; Kidoaki, Satoru
2015-02-01
Directional cell migration induced by the stiffness gradient of cell culture substrates is known as a subset of the mechanical-cue-induced taxis, so-called mechanotaxis, typically durotaxis toward hard region. To establish the general conditions of biomaterials to manipulate the mechanotaxis, the effect of the shape of the elasticity transition boundary between hard and soft regions of a substrate on mechanotaxis should be systematically determined as well as the conditions of elasticity gradient strength. Here, as a simplified factor of expressing variations in the shape of the elasticity boundary in living tissues, we focus on the curvature of the elasticity boundary. Mask-free photolithographic microelasticity patterning of photocurable gelatin gel was employed to systematically prepare elasticity boundaries with various curvatures, and the efficiency of mechanotaxis of fibroblast cells around each curved boundary was examined. Highly efficient usual durotaxis was induced on a convex boundary with 100 μm in radius and on a concave boundary with 750 μm in radius of curvature. Interestingly, biased migration toward soft regions of the gel, i.e., inverse durotaxis, was first observed for concave boundaries with 50 μm or 100 μm in radius of curvature, which was named as "negative mechanotaxis". The curvature of the elasticity boundary was found to markedly affect the efficiency of induction and the direction of mechanotaxis. The mechanism responsible for this phenomenon and the implication for the curvature effect in in vivo systems are discussed. PMID:25522964
Visually discerning the curvature of the Earth.
Lynch, David K
2008-12-01
Reports and photographs claiming that visual observers can detect the curvature of the Earth from high mountains or high-flying commercial aircraft are investigated. Visual daytime observations show that the minimum altitude at which curvature of the horizon can be detected is at or slightly below 35,000 ft, providing that the field of view is wide (60 degrees ) and nearly cloud free. The high-elevation horizon is almost as sharp as the sea-level horizon, but its contrast is less than 10% that of the sea-level horizon. Photographs purporting to show the curvature of the Earth are always suspect because virtually all camera lenses project an image that suffers from barrel distortion. To accurately assess curvature from a photograph, the horizon must be placed precisely in the center of the image, i.e., on the optical axis. PMID:19037349
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been
Curvature tensors unified field equations on SEXn
NASA Astrophysics Data System (ADS)
Chung, Kyung Tae; Lee, Il Young
1988-09-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.
The role of curvature in entanglement
NASA Astrophysics Data System (ADS)
Buck, Gregory
2015-10-01
Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.
Spherical gravitational curvature boundary-value problem
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2016-08-01
Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.
Cosmological attractor models and higher curvature supergravity
NASA Astrophysics Data System (ADS)
Cecotti, Sergio; Kallosh, Renata
2014-05-01
We study cosmological α-attractors in superconformal/supergravity models, where α is related to the geometry of the moduli space. For α = 1 attractors [1] we present a generalization of the previously known manifestly superconformal higher curvature supergravity model [2]. The relevant standard 2-derivative supergravity with a minimum of two chiral multiplets is shown to be dual to a 4-derivative higher curvature supergravity, where in general one of the chiral superfields is traded for a curvature superfield. There is a degenerate case when both matter superfields become non-dynamical and there is only a chiral curvature superfield, pure higher derivative supergravity. Generic α-models [3] interpolate between the attractor point at α = 0 and generic chaotic inflation models at large α, in the limit when the inflaton moduli space becomes flat. They have higher derivative duals with the same number of matter fields as the original theory or less, but at least one matter multiplet remains. In the context of these models, the detection of primordial gravity waves will provide information on the curvature of the inflaton submanifold of the Kähler manifold, and we will learn if the inflaton is a fundamental matter multiplet, or can be replaced by a higher derivative curvature excitation.
Spherical gravitational curvature boundary-value problem
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2016-05-01
Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.
Damage detection for beam-like structures using the normalized curvature of a uniform load surface
NASA Astrophysics Data System (ADS)
Sung, S. H.; Jung, H. J.; Jung, H. Y.
2013-03-01
This paper presents a new vibration-based damage detection method for beam-like structures that uses the normalized uniform load surface (NULS) curvature obtained by modal flexibility. Analytical studies on the NULS curvature method for beam-like structures, which follow Bernoulli-Euler beam theory, have shown that changes in NULS curvature only occur at damaged elements and not at intact ones because the internal forces induced by damage only act on the damaged elements and not on the undamaged elements. Therefore, computing the changes in NULS curvature set indicating only damaged elements at a normalized level is central to the approach. Also, a damage index is proposed based on outlier analysis to account for measurement noise. In order to confirm the feasibility of the proposed method, a cantilever beam and a simply supported beam were numerically investigated for two damage scenarios by using modal parameters obtained by eigenvalue analysis and simulations of an impact test using MATLAB/Simulink. The results showed that the proposed method could accurately localize multiple damage locations as well as single damage locations without any false-positive or false-negative detections. For comparison, damage detection was also conducted using the uniform load surface (ULS) curvature method and the mode shape curvature method. The ULS curvature method clearly identified single damage locations but some missed multiple damage locations. For the mode shape curvature method, it was shown that the false-positive and false-negative detections were performed at several damaged or undamaged locations. The comparison showed that the proposed detection method can more effectively identify single and multiple damage locations than the other two methods. In conclusion, the proposed method performed better in detecting damages than the other two methods in terms of sensitivity to damage regardless of location and robustness against noisy signals generated from calculating the
No large scale curvature perturbations during the waterfall phase transition of hybrid inflation
Abolhasani, Ali Akbar; Firouzjahi, Hassan
2011-03-15
In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.
Strong curvature effects in Neumann wave problems
Willatzen, M.; Pors, A.; Gravesen, J.
2012-08-15
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
Strong curvature effects in Neumann wave problems
NASA Astrophysics Data System (ADS)
Willatzen, M.; Pors, A.; Gravesen, J.
2012-08-01
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
A new algorithm for evaluating 3D curvature and curvature gradient for improved fracture detection
NASA Astrophysics Data System (ADS)
Di, Haibin; Gao, Dengliang
2014-09-01
In 3D seismic interpretation, both curvature and curvature gradient are useful seismic attributes for structure characterization and fault detection in the subsurface. However, the existing algorithms are computationally intensive and limited by the lateral resolution for steeply-dipping formations. This study presents new and robust volume-based algorithms that evaluate both curvature and curvature gradient attributes more accurately and effectively. The algorithms first instantaneously fit a local surface to seismic data and then compute attributes using the spatial derivatives of the built surface. Specifically, the curvature algorithm constructs a quadratic surface by using a rectangle 9-node grid cell, whereas the curvature gradient algorithm builds a cubic surface by using a diamond 13-node grid cell. A dip-steering approach based on 3D complex seismic trace analysis is implemented to enhance the accuracy of surface construction and to reduce computational time. Applications to two 3D seismic surveys demonstrate the accuracy and efficiency of the new curvature and curvature gradient algorithms for characterizing faults and fractures in fractured reservoirs.
Curvature constraints from large scale structure
NASA Astrophysics Data System (ADS)
Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien
2016-06-01
We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.
Unfolding the Berry curvature of supercell calculations
NASA Astrophysics Data System (ADS)
Bianco, Raffaello; Resta, Raffaele; Souza, Ivo
2014-03-01
Unfolding band structures of supercell calculations has become a valuable tool for visualizing the influence of point impurities on the electronic states in crystals. In the same spirit, we introduce a procedure which maps the k-space Berry curvature of the occupied states from the small BZ of a supercell onto the normal BZ of the perfect (or virtual) crystal. As an application, we analyze the k-space distribution of the unfolded curvature of bcc Fe1-xCox ordered alloys, to better understand the influence of alloying on the anomalous Hall conductivity. Comparing with the ordinary curvature calculated in the virtual-crystal approximation, we find that the lowering of translational symmetry by the Co ``impurities'' introduces ``extrinsic'' contributions, which correlate with changes in the spectral function near the Fermi surface. In particular, the unfolded curvature displays additional sharp peaks associated with low-energy pseudovertical transitions. These occur in regions of k-space where two unfolded bands, which in the virtual crystal would be separated in k-space (and therefore would not jointly contribute to its Berry curvature), lie on either side of the Fermi level and are coupled by the impurity potential.
Curvature constraints from the causal entropic principle
Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel
2009-07-15
Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m} for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.
Curvature Sensing by a Viral Scission Protein.
Martyna, Agnieszka; Gómez-Llobregat, Jordi; Lindén, Martin; Rossman, Jeremy S
2016-06-28
Membrane scission is the final step in all budding processes wherein a membrane neck is sufficiently constricted so as to allow for fission and the release of the budded particle. For influenza viruses, membrane scission is mediated by an amphipathic helix (AH) domain in the viral M2 protein. While it is known that the M2AH alters membrane curvature, it is not known how the protein is localized to the center neck of budding virions where it would be able to cause membrane scission. Here, we use molecular dynamics simulations on buckled lipid bilayers to show that the M2AH senses membrane curvature and preferentially localizes to regions of high membrane curvature, comparable to that seen at the center neck of budding influenza viruses. These results were then validated using in vitro binding assays to show that the M2AH senses membrane curvature by detecting lipid packing defects in the membrane. Our results show that the M2AH senses membrane curvature and suggest that the AH domain may localize the protein at the viral neck where it can then mediate membrane scission and the release of budding viruses. PMID:27299375
Lipids, curvature, and nano-medicine*
Mouritsen, Ole G
2011-01-01
The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature. Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy. PMID:22164124
Zhao, Chunyu; Burge, James H
2013-12-16
Zernike polynomials are an orthonormal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. In optical testing, slope or curvature of a surface or wavefront is sometimes measured instead, from which the surface or wavefront map is obtained. Previously we derived an orthonormal set of vector polynomials that fit to slope measurement data and yield the surface or wavefront map represented by Zernike polynomials. Here we define a 3-element curvature vector used to represent the second derivatives of a continuous surface, and derive a set of orthonormal curvature basis functions that are written in terms of Zernike polynomials. We call the new curvature functions the C polynomials. Closed form relations for the complete basis set are provided, and we show how to determine Zernike surface coefficients from the curvature data as represented by the C polynomials. PMID:24514717
Curvature and geometric modules of noncommutative spheres and tori
Arnlind, Joakim
2014-04-15
When considered as submanifolds of Euclidean space, the Riemannian geometry of the round sphere and the Clifford torus may be formulated in terms of Poisson algebraic expressions involving the embedding coordinates, and a central object is the projection operator, projecting tangent vectors in the ambient space onto the tangent space of the submanifold. In this note, we point out that there exist noncommutative analogues of these projection operators, which implies a very natural definition of noncommutative tangent spaces as particular projective modules. These modules carry an induced connection from Euclidean space, and we compute its scalar curvature.
Curvature and geometric modules of noncommutative spheres and tori
NASA Astrophysics Data System (ADS)
Arnlind, Joakim
2014-04-01
When considered as submanifolds of Euclidean space, the Riemannian geometry of the round sphere and the Clifford torus may be formulated in terms of Poisson algebraic expressions involving the embedding coordinates, and a central object is the projection operator, projecting tangent vectors in the ambient space onto the tangent space of the submanifold. In this note, we point out that there exist noncommutative analogues of these projection operators, which implies a very natural definition of noncommutative tangent spaces as particular projective modules. These modules carry an induced connection from Euclidean space, and we compute its scalar curvature.
Curvature effect on tearing modes in presence of neoclassical friction
Maget, Patrick; Mellet, Nicolas; Meshcheriakov, Dmytro; Garbet, Xavier; Lütjens, Hinrich
2013-11-15
Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.
Renormalization of curvature elastic constants for elastic and fluid membranes
NASA Astrophysics Data System (ADS)
Ami, S.; Kleinert, H.
1987-02-01
We study the fluctuations of membranes with area and curvature elasticity and calculate the renormalization of the curvature elastic constants due to thermal fluctuations. For the mean curvature elastic constant the result is the same as obtained previously for “ideal membranes” which resist only to curvature deformations. The renormalization of the gaussian curvature, on the other hand, depends on the elastic contants. In an incompressible membrane, it is five times weaker than in an ideal membrane.
Curvature corrections and Kac Moody compatibility conditions
NASA Astrophysics Data System (ADS)
Damour, Thibault; Hanany, Amihay; Henneaux, Marc; Kleinschmidt, Axel; Nicolai, Hermann
2006-10-01
We study possible restrictions on the structure of curvature corrections to gravitational theories in the context of their corresponding Kac Moody algebras, following the initial work on E 10 in Damour and Nicolai [Class Quant Grav 22:2849 (2005)]. We first emphasize that the leading quantum corrections of M-theory can be naturally interpreted in terms of (non-gravity) fundamental weights of E 10. We then heuristically explore the extent to which this remark can be generalized to all over-extended algebras by determining which curvature corrections are compatible with their weight structure, and by comparing these curvature terms with known results on the quantum corrections for the corresponding gravitational theories.
Substrate Curvature Gradient Drives Rapid Droplet Motion
NASA Astrophysics Data System (ADS)
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-01
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.
Substrate curvature gradient drives rapid droplet motion.
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-11
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces. PMID:25062213
Superintegrable systems on spaces of constant curvature
NASA Astrophysics Data System (ADS)
Gonera, Cezary; Kaszubska, Magdalena
2014-07-01
Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand's theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay-Turbine-Winternitz (TTW) and Post-Winternitz (PW) models which have recently attracted some interest).
Extrinsic and intrinsic curvatures in thermodynamic geometry
NASA Astrophysics Data System (ADS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham
2016-08-01
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
On the curvature effect of thin membranes
NASA Astrophysics Data System (ADS)
Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James
2013-01-01
We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.
Wavefront reconstruction from tangential and sagittal curvature.
Canales, Javier; Barbero, Sergio; Portilla, Javier; López-Alonso, José Manuel
2014-12-10
In a previous contribution [Appl. Opt.51, 8599 (2012)], a coauthor of this work presented a method for reconstructing the wavefront aberration from tangential refractive power data measured using dynamic skiascopy. Here we propose a new regularized least squares method where the wavefront is reconstructed not only using tangential but also sagittal curvature data. We prove that our new method provides improved quality reconstruction for typical and also for highly aberrated wavefronts, under a wide range of experimental error levels. Our method may be applied to any type of wavefront sensor (not only dynamic skiascopy) able to measure either just tangential or tangential plus sagittal curvature data. PMID:25608069
Hybrid curvature and modal wavefront sensor
NASA Astrophysics Data System (ADS)
Dong, Shihao; Haist, Tobias; Dietrich, Tom; Osten, Wolfgang
2014-09-01
The crosstalk effect considerably limits the capability of holography-based modal wavefront sensing (HMWS) when measuring wavefronts with large aberrations. In this contribution, we introduce a curvature-based measurement technique into HMWS to extend the dynamic range and the sensitivity of HMWS via a compact holographic design. If the input aberrations are large, the dominating aberration modes are first detected via curvature sensing and compensated using a wavefront correcting device, e.g. a membrane mirror. The system then switches to HMWS to obtain better sensitivity and accuracy with reduced aberrations. Different approaches for the reconstruction of the wavefront have been tested and extensive simulations for different aberrations have been analyzed.
Scaling of curvature in subcritical gravitational collapse
NASA Astrophysics Data System (ADS)
Garfinkle, David; Duncan, G. Comer
1998-09-01
We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for the black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.
NASTRAN modifications for recovering strains and curvatures
NASA Technical Reports Server (NTRS)
Hennrich, C. W.
1975-01-01
Modifications to the NASTRAN structural analysis computer program are described. The modifications allow the recovery of strain and curvature data for the general two-dimensional elements, in addition to the usual stress data. Option features allow the transformation of the strain/curvature (or stress) data to a common coordinate system and representation at the grid points of the structural model rather than at the conventional element center locations. Usage information is provided which will allow present users of NASTRAN to easily utilize the new capability.
Modulus stabilization in higher curvature dilaton gravity
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan; Mitra, Joydip; SenGupta, Soumitra
2014-08-01
We propose a framework of modulus stabilization in two brane warped geometry scenario in presence of higher curvature gravity and dilaton in bulk space-time. In the prescribed setup we study various features of the stabilized potential for the modulus field, generated by a bulk scalar degrees of freedom with quartic interactions localized on the two 3-branes placed at the orbifold fixed points. We determine the parameter space for the gravidilaton and Gauss-Bonnet couplings required to stabilize the modulus in such higher curvature dilaton gravity setup.
A methodology for quantifying seated lumbar curvatures.
Leitkam, Samuel T; Bush, Tamara Reid; Li, Mingfei
2011-11-01
To understand the role seating plays in the support of posture and spinal articulation, it is necessary to study the interface between a human and the seat. However, a method to quantify lumbar curvature in commercially available unmodified seats does not currently exist. This work sought to determine if the lumbar curvature for normal ranges of seated posture could be documented by using body landmarks located on the anterior portion of the body. The development of such a methodology will allow researchers to evaluate spinal articulation of a seated subject while in standard, commercially available seats and chairs. Anterior measurements of boney landmarks were used to quantify the relative positions of the ribcage and pelvis while simultaneous posterior measurements were made of lumbar curvature. The relationship between the anterior and the posterior measures was compared. The predictive capacity of this approach was evaluated by determining linear and second-order regressions for each of the four postures across all subjects and conducting a leave-one-out cross validation. The relationships between the anterior and posterior measures were approximated by linear and second-order polynomial regressions (r(2 ) = 0.829, 0.935 respectively) across all postures. The quantitative analysis showed that openness had a significant relationship with lumbar curvature, and a first-order regression was superior to a second-order regression. Average standard errors in the prediction were 5.9° for the maximum kyphotic posture, 9.9° for the comfortable posture, 12.8° for the straight and tall, and 22.2° for the maximum lordotic posture. These results show predictions of lumbar curvature are possible in seated postures by using a motion capture system and anterior measures. This method of lumbar curvature prediction shows potential for use in the assessment of seated spinal curvatures and the corresponding design of seating to accommodate those curvatures; however
Constraining inverse curvature gravity with supernovae
Mena, Olga; Santiago, Jose; Weller, Jochen; /University Coll., London /Fermilab
2005-10-01
We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.
Geometrical constraint on curvature with BAO experiments
NASA Astrophysics Data System (ADS)
Takada, Masahiro; Doré, Olivier
2015-12-01
The spatial curvature (K or ΩK) is one of the most fundamental parameters of an isotropic and homogeneous universe and has a close link to the physics of the early Universe. Combining the radial and angular diameter distances measured via the baryon acoustic oscillation (BAO) experiments allows us to unambiguously constrain the curvature. The method is primarily based on the metric theory, and is less sensitive to the theory of structure formation (other than the existence of the BAO scale) and is free of any model of dark energy. In this paper, we estimate a best achievable accuracy of constraining the curvature with the BAO experiments. We show that an all-sky, cosmic-variance-limited galaxy survey covering the Universe up to z ≳4 enables a precise determination of the curvature to an accuracy of σ (ΩK)≃1 0-3. When we assume a model of dark energy—either the cosmological constraint or the (w0,wa) model—it can achieve a precision of σ (ΩK)≃a few×10-4. These forecasts require a high sampling density of galaxies, and are degraded by up to a factor of a few for a survey with a finite number density of ˜10-3 (h /Mpc )3 .
Membrane Curvature Sensing by Amphipathic Helices
Jensen, Martin Borch; Bhatia, Vikram Kjøller; Jao, Christine C.; Rasmussen, Jakob Ewald; Pedersen, Søren L.; Jensen, Knud J.; Langen, Ralf; Stamou, Dimitrios
2011-01-01
Preferential binding of proteins on curved membranes (membrane curvature sensing) is increasingly emerging as a general mechanism whereby cells may effect protein localization and trafficking. Here we use a novel single liposome fluorescence microscopy assay to examine a common sensing motif, the amphipathic helix (AH), and provide quantitative measures describing and distinguishing membrane binding and sensing behavior. By studying two AH-containing proteins, α-synuclein and annexin B12, as well as a range of AH peptide mutants, we reveal that both the hydrophobic and hydrophilic faces of the helix greatly influence binding and sensing. Although increased hydrophobic and electrostatic interactions with the membrane both lead to greater densities of bound protein, the former yields membrane curvature-sensitive binding, whereas the latter is not curvature-dependent. However, the relative contributions of both components determine the sensing of AHs. In contrast, charge density in the lipid membrane seems important primarily in attracting AHs to the membrane but does not significantly influence sensing. These observations were made possible by the ability of our assay to distinguish within our samples liposomes with and without bound protein as well as the density of bound protein. Our findings suggest that the description of membrane curvature-sensing requires consideration of several factors such as short and long range electrostatic interactions, hydrogen bonding, and the volume and structure of inserted hydrophobic residues. PMID:21953452
Graph Curvature for Differentiating Cancer Networks
Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen
2015-01-01
Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480
Graph Curvature for Differentiating Cancer Networks
NASA Astrophysics Data System (ADS)
Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen
2015-07-01
Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks.
Stability and control of compressible flows over a surface with concave-conves curvature
NASA Technical Reports Server (NTRS)
Maestrello, L.; Bayliss, A.; Parikh, P.; Turkel, E.
1986-01-01
The active control of spatially unstable disturbances in a laminar, two-dimensional, compressible boundary layer over a curved surface is numerically simulated. The control is effected by localized time-periodic surface heating. We consider two similar surfaces of different heights with concave-convex curvature. In one, the height is sufficiently large so that the favorable pressure gradient is sufficient to stabilize a particular disturbance. In the other case the pressure gradient induced by the curvature is destabilizing. It is shown that by using active control that the disturbance can be stabilized. The results demonstrate that the curvature induced mean pressure gradient significantly enhances the receptivity of the flow localized time-periodic surface heating and that this is a potentially viable mechanism in air.
Curvature recognition and force generation in phagocytosis
2010-01-01
Background The uptake of particles by actin-powered invagination of the plasma membrane is common to protozoa and to phagocytes involved in the immune response of higher organisms. The question addressed here is how a phagocyte may use geometric cues to optimize force generation for the uptake of a particle. We survey mechanisms that enable a phagocyte to remodel actin organization in response to particles of complex shape. Results Using particles that consist of two lobes separated by a neck, we found that Dictyostelium cells transmit signals concerning the curvature of a surface to the actin system underlying the plasma membrane. Force applied to a concave region can divide a particle in two, allowing engulfment of the portion first encountered. The phagosome membrane that is bent around the concave region is marked by a protein containing an inverse Bin-Amphiphysin-Rvs (I-BAR) domain in combination with an Src homology (SH3) domain, similar to mammalian insulin receptor tyrosine kinase substrate p53. Regulatory proteins enable the phagocyte to switch activities within seconds in response to particle shape. Ras, an inducer of actin polymerization, is activated along the cup surface. Coronin, which limits the lifetime of actin structures, is reversibly recruited to the cup, reflecting a program of actin depolymerization. The various forms of myosin-I are candidate motor proteins for force generation in particle uptake, whereas myosin-II is engaged only in retracting a phagocytic cup after a switch to particle release. Thus, the constriction of a phagocytic cup differs from the contraction of a cleavage furrow in mitosis. Conclusions Phagocytes scan a particle surface for convex and concave regions. By modulating the spatiotemporal pattern of actin organization, they are capable of switching between different modes of interaction with a particle, either arresting at a concave region and applying force in an attempt to sever the particle there, or extending the cup
How to calculate normal curvatures of sampled geological surfaces
NASA Astrophysics Data System (ADS)
Bergbauer, Stephan; Pollard, David D.
2003-02-01
Curvature has been used both to describe geological surfaces and to predict the distribution of deformation in folded or domed strata. Several methods have been proposed in the geoscience literature to approximate the curvature of surfaces; however we advocate a technique for the exact calculation of normal curvature for single-valued gridded surfaces. This technique, based on the First and Second Fundamental Forms of differential geometry, allows for the analytical calculation of the magnitudes and directions of principal curvatures, as well as Gaussian and mean curvature. This approach is an improvement over previous methods to calculate surface curvatures because it avoids common mathematical approximations, which introduce significant errors when calculated over sloped horizons. Moreover, the technique is easily implemented numerically as it calculates curvatures directly from gridded surface data (e.g. seismic or GPS data) without prior surface triangulation. In geological curvature analyses, problems arise because of the sampled nature of geological horizons, which introduces a dependence of calculated curvatures on the sample grid. This dependence makes curvature analysis without prior data manipulation problematic. To ensure a meaningful curvature analysis, surface data should be filtered to extract only those surface wavelengths that scale with the feature under investigation. A curvature analysis of the top-Pennsylvanian horizon at Goose Egg dome, Wyoming shows that sampled surfaces can be smoothed using a moving average low-pass filter to extract curvature information associated with the true morphology of the structure.
Blood, Philip D.; Swenson, Richard D.; Voth, Gregory A.
2008-01-01
N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain. PMID:18469070
Improving the Sensitivity of Astronomical Curvature Wavefront Sensor Using Dual-Stroke Curvature
NASA Astrophysics Data System (ADS)
Guyon, Olivier; Blain, Celia; Takami, Hideki; Hayano, Yutaka; Hattori, Masayuki; Watanabe, Makoto
2008-06-01
Curvature wavefront sensors measure wavefront phase aberration by acquiring two intensity images on either side of the pupil plane. Low-order adaptive optics (AO) systems using curvature wavefront sensing (CWFS) have proved to be highly efficient for astronomical applications: they are more sensitive, use fewer detector elements, and achieve, for the same number of actuators, higher Strehl ratios than AO systems using more traditional Shack-Hartmann wavefront sensors. In higher-order systems, however, curvature wavefront sensors lose sensitivity to low spatial frequencies wavefront aberrations. This effect, often described as "noise propagation," limits the usefulness of curvature wavefront sensing for high-order AO systems and/or large telescopes. In this paper, we first explain how this noise propagation effect occurs and then show that this limitation can be overcome by acquiring four defocused images of the pupil instead of two. This solution can be implemented without significant technology development and can run with a simple linear wavefront reconstruction algorithm at >kHz speed. We have successfully demonstrated in the laboratory that the four conjugation planes can be sequentially obtained at >kHz speed using a speaker-vibrating membrane assembly commonly used in current curvature AO systems. Closed loop simulations show that implementing this scheme is equivalent to making the guide star 1 to 1.5 magnitude brighter for the configuration tested (188 actuator elements on 8-m telescope). Higher sensitivity gains are expected on curvature systems with higher number of actuators.
An Optical Method For Surface Curvature Testing
NASA Astrophysics Data System (ADS)
Jarisch, W.
1985-01-01
Inspection and measurement of surface quality play increasingly an important role in most machining and polishing processes. A typical example is the manufacturing of magnetic disks. The quality of a disk file essentially depends on the surface flatness of the substrate material. For many measurement aspects largearea topography variations are of less interest than high local changes of slope and curvature of the surface to be tested. Mathematically, the surface curvature is expressed as the second derivative of the profile function of the substrate, while the first derivative is known as the slope. Rapid local variations of the slope, that means high curvature values, cause high vertical accelerations of the magnetic head flying over the disk surface in fractions of a micrometer flight-height. Such irregularities of the substrate in the azimuthal disk direction would lead to uncontrolled fluctuations of the air gap between disk and head causing an attenuation of the write/read signal, to head vibrations, or even to a direct contact of the head with the disk (head crash). In the radial direction, the high-speed radial positioning of the head by voice coil driven motors also may cause a head crash at high local changes of the disk slope. Limits of the tolerable head accelerations, found by experience and theoretically by calculations, are listed in manufacturing specifications. For a fast, large area disk quality inspection and evaluation, a compact and highly sensitive measuring method has been developed. A testing tool based on this method displays the test area superimposed with a clear fringe pattern on a TV screen. The fringe pattern represents the surface curvature. From this, both components of the disk curvature, the azimuthal as well as the radial component, can be measured. Coherent optical interference and Moire techniques are the basic principles of the method providing the fringe pattern of the surface area under test. Each fringe interconnects
Curvature Dependence of Hydrophobic Hydration Dynamics
NASA Astrophysics Data System (ADS)
Weiß, R. Gregor; Heyden, Matthias; Dzubiella, Joachim
2015-05-01
We investigate the solute curvature dependence of water dynamics in the vicinity of hydrophobic spherical solutes using molecular dynamics simulations. For both the lateral and perpendicular diffusivity, as well as for H-bond kinetics of water in the first hydration shell, we find a nonmonotonic solute-size dependence, exhibiting extrema close to the well-known structural crossover length scale for hydrophobic hydration. Additionally, we find an apparent anomalous diffusion for water moving parallel to the surface of small solutes, which, however, can be explained by topology effects. Our findings regarding the intimate connection between solute curvature and water dynamics has implications for our understanding of hydration dynamics at heterogeneous biomolecular surfaces.
Cosmological signatures of anisotropic spatial curvature
NASA Astrophysics Data System (ADS)
Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
Coarse-grained modeling of DNA curvature
NASA Astrophysics Data System (ADS)
Freeman, Gordon S.; Hinckley, Daniel M.; Lequieu, Joshua P.; Whitmer, Jonathan K.; de Pablo, Juan J.
2014-10-01
The interaction of DNA with proteins occurs over a wide range of length scales, and depends critically on its local structure. In particular, recent experimental work suggests that the intrinsic curvature of DNA plays a significant role on its protein-binding properties. In this work, we present a coarse grained model of DNA that is capable of describing base-pairing, hybridization, major and minor groove widths, and local curvature. The model represents an extension of the recently proposed 3SPN.2 description of DNA [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)], into which sequence-dependent shape and mechanical properties are incorporated. The proposed model is validated against experimental data including melting temperatures, local flexibilities, dsDNA persistence lengths, and minor groove width profiles.
Tube curvature measuring probe and method
Sokol, George J.
1990-01-01
The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.
CURVATURE EFFECT QUANTIFICATION FOR IN-VIVO IR THERMOGRAPHY.
Cheng, Tze-Yuan; Deng, Daxiang; Herman, Cila
2012-01-01
Medical Infrared (IR) Imaging has become an important diagnostic tool over recent years. However, one underlying problem in medical diagnostics is associated with accurate quantification of body surface temperatures. This problem is caused by the artifacts induced by the curvature of objects, which leads to inaccurate temperature mapping and biased diagnostic results. Therefore, in our study, an experiment-based analysis is conducted to address the curvature effects toward the 3D temperature reconstruction of the IR thermography image. For quantification purposes, an isothermal copper plate with flat surface, and a cylindrical metal container filled with water are imaged. For the flat surface, the tilting angle measured from camera axis was varied incrementally from 0° to 60 °, such that the effects of surface viewing angle and travel distance on the measured temperature can be explored. On the cylindrical curved surface, the points viewed from 0° to 90° with respect to the camera axis are simultaneously imaged at different temperature levels. The experimental data obtained for the flat surface indicate that both viewing angle and distance effects become noticeable for angles over 40 °. The travel distance contributes a minor change when compared with viewing angle. The experimental results from the curved surface indicate that the curvature effect becomes pronounced when the viewing angle is larger than 60 °. The measurement error on the curved surface is compared with the simulation using the non-dielectric model, and the normalized temperature difference relative to 0° viewing angle was analyzed at six temperature levels. These results indicate that the linear formula associated with directional emissivity is a reasonable approximation for the measurement error, and the normalized error curves change consistently with viewing angle at various temperatures. Therefore, the analysis in this study implies that the directional emissivity based on the non
Induction of Plant Curvature by Magnetophoresis and Cytoskeletal Changes during Root Graviresponse
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.; Kuznetsov, Oleg A.; Blancaflor, Eilson B.
1996-01-01
High gradient magnetic fields (HGMF) induce curvature in roots and shoots. It is considered that this response is likely to be based on the intracellular displacement of bulk starch (amyloplasts) by the ponderomotive force generated by the HGMF. This process is called magnetophoresis. The differential elongation during the curvature along the concave and convex flanks of growing organs may be linked to the microtubular and/or microfilament cytoskeleton. The possible existence of an effect of the HGMF on the cytoskeleton was tested for, but none was found. The application of cytoskeletal stabilizers or depolymerizers showed that neither microtubules, nor microfilaments, are involved in the graviresponse.
Intrinsically disordered proteins drive membrane curvature
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-01-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
Intrinsically disordered proteins drive membrane curvature
NASA Astrophysics Data System (ADS)
Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.
2015-07-01
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.
Effects of wall curvature on turbulence statistics
NASA Technical Reports Server (NTRS)
Moser, R. D.; Moin, P.
1985-01-01
A three-dimensional, time-dependent, direct numerical simulation of low-Reynolds number turbulent flow in a mildly curved channel was performed, and the results examined to determine the mechanism by which curvature affects wall-bounded turbulent shear flows. A spectral numerical method with about one-million modes was employed, and no explicit subgrid scale model was used. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides is in the Reynolds shear stress. This is accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Goertler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by enhancing the difference between the wall shear stresses.
Superintegrable systems on spaces of constant curvature
Gonera, Cezary Kaszubska, Magdalena
2014-07-15
Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.
Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''
NASA Astrophysics Data System (ADS)
Binder, Bernd
2009-03-01
In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the
Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers
Meinhardt, Sebastian; Vink, Richard L. C.; Schmid, Friederike
2013-01-01
According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered “raft” domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here, we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) phase and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer-sized lo domains in an ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phases induces elastic interactions, which reduce the line tension between the lo and ld phases and can stabilize raft domains with a characteristic size of the order of a few nanometers. Our findings suggest that rafts in multicomponent bilayers might be closely related to the modulated ripple phase in one-component bilayers. PMID:23487780
Control of defect localization in crystalline wrinkling by curvature and topology
NASA Astrophysics Data System (ADS)
Lopez Jimenez, Francisco
We investigate the influence of curvature and topology on crystalline wrinkling patterns in generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal and toroidal surfaces over a wide range of system sizes. However, both the localization of individual defects and the orientation of defect chains depend strongly on the local Gaussian curvature and its gradients across a surface. Our results imply that curvature and topology can be utilized to pattern defects in elastic materials, thus promising improved control over hierarchical bending, buckling or folding processes. Generally, this study suggests that bilayer systems provide an inexpensive yet valuable experimental test-bed for exploring the effects of geometrically induced forces on assemblies of topological charges. Joint work with Norbert Stoop, Romain Lagrange, Jorn Dunkel and Pedro M. Reis.
Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature.
Sarin, V B
1993-03-01
Curvature forms an important feature of thoracic aorta and this paper deals with the flow of an idealized elastico-viscous liquid in a curved pipe of circular cross-section and slowly varying curvature, under a pressure gradient. The flow is assumed to be steady and at low Reynolds numbers. By using the series expansion method of Dean (Phil Mag 4 (1927) 208-223; Phil Mag 5 (1928) 673-693) in powers of a parameter L, which can be considered as the square of ratio of the centrifugal force induced by the circular motion of the fluid to the viscous force, it is shown that in a tube of increasing curvature, there will be delay in setting up of the secondary motion. The wall shear stress, an important parameter in physiological flows, is calculated. The flow of Newtonian fluid in a tube of circular cross section is discussed, as a particular case. PMID:8449591
Calculation of free energies in fluid membranes subject to heterogeneous curvature fields
NASA Astrophysics Data System (ADS)
Agrawal, Neeraj J.; Radhakrishnan, Ravi
2009-07-01
We present a computational methodology for incorporating thermal effects and calculating relative free energies for elastic fluid membranes subject to spatially dependent intrinsic curvature fields using the method of thermodynamic integration. Based on a simple model for the intrinsic curvature imposed only in a localized region of the membrane, we employ thermodynamic integration to calculate the free-energy change as a function of increasing strength of the intrinsic curvature field and a thermodynamic cycle to compute free-energy changes for different sizes of the localized region. By explicitly computing the free-energy changes and by quantifying the loss of entropy accompanied with increasing membrane deformation, we show that the membrane stiffness increases with increasing intrinsic field, thereby, renormalizing the membrane bending rigidity. The second main conclusion of this work is that the entropy of the membrane decreases with increasing size of the localized region subject to the curvature field. Our results help to quantify the free-energy change when a planar membrane deforms under the influence of curvature-inducing proteins at a finite temperature.
Stable hypersurfaces with zero scalar curvature in Euclidean space
NASA Astrophysics Data System (ADS)
Alencar, Hilário; do Carmo, Manfredo; Neto, Gregório Silva
2016-04-01
In this paper we prove some results concerning stability of hypersurfaces in the four dimensional Euclidean space with zero scalar curvature. First we prove there is no complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball which contains the domain.
Distributed mean curvature on a discrete manifold for Regge calculus
NASA Astrophysics Data System (ADS)
Conboye, Rory; Miller, Warner A.; Ray, Shannon
2015-09-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.
Yoshida, Kenji; Takagi, Toshimi
1999-07-01
Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.
Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration
Zhao, Yuting; Liu, Jianglan; Yang, Changsong; Capraro, Benjamin R.; Baumgart, Tobias; Bradley, Ryan P.; Ramakrishnan, N.; Xu, Xiaowei; Radhakrishnan, Ravi; Svitkina, Tatyana; Guo, Wei
2013-01-01
Dynamic shape changes of the plasma membrane are fundamental to many processes ranging from morphogenesis and cell migration to phagocytosis and viral propagation. Here we demonstrate that Exo70, a component of the exocyst complex, induces tubular membrane invaginations towards the lumen of synthetic vesicles in vitro and generates protrusions on the surface of cells. Biochemical analyses using Exo70 mutants and independent molecular dynamics simulations based on Exo70 structure demonstrate that Exo70 generates negative membrane curvature through an oligomerization-based mechanism. In cells, the membrane-deformation function of Exo70 is required for protrusion formation and directional cell migration. Exo70 thus represents a membrane-bending protein that may couple actin dynamics and plasma membrane remodeling for morphogenesis. PMID:23948253
Higher Curvature Gravity in TeV-Scale Extra Dimensions
Rizzo, Thomas G.
2006-03-31
We begin a general exploration of the phenomenology of TeV-scale extra-dimensional models with gravitational actions that contain higher curvature terms. In particular, we examine how the classic collider signatures of the models of Arkani-Hamed, Dimopoulos and Dvali (missing energy and new dimension-8 contact interactions) and of Randall and Sundrum (TeV-scale graviton Kaluza-Klein resonances) are altered by these modifications to the usual Einstein-Hilbert action. We find that not only are the detailed signatures for these gravitationally induced processes altered but new contributions are found to arise due to the existence of additional scalar Kaluza-Klein states in the spectrum.
The curvature adaptive optics system modeling
NASA Astrophysics Data System (ADS)
Yang, Qiang
A curvature adaptive optics (AO) simulation system has been built. The simulation is based on the Hokupa'a-36 AO system for the NASA IRTF 3m telescope and the Hokupa'a-85 AO system for the Gemini Near Infrared Coronagraphic Imager. Several sub-models are built separately for the AO simulation system, and they are: (1) generation and propagation of atmospheric phase screens, (2) the bimorph deformable mirror (DM), (3) the curvature wave-front sensor (CWFS), (4) generation of response functions, interaction matrices and calculation of command matrices, (5) Fresnel propagation from the DM pupil to the lenslet pupil, (6) AO servo loop, and (7) post processing. The AO simulation system is then applied to the effects of DM hysteresis, and to the optimization of DM actuator patterns for the Hokupa'a-85 and Hokupa'a-36 AO systems. In the first application, an enhancing Coleman-Hodgdon model is introduced to approximate the hysteresis curves, and then the Lambert W function is introduced to calculate the inverse of the Coleman-Hodgdon equation. Step response, transfer functions and Strehl Ratios from the AO system have been compared under the cases with/without DM hysteresis. The servo-loop results show that the bandwidth of an AO system is improved greatly after the DM hysteresis is corrected. In the second application, many issues of the bimorph mirror will be considered to optimize the DM patterns, and they include the type and length of the edge benders, gap size of electrodes, DM size, and DM curvature limit.
Constant mean curvature foliations in cosmological spacetimes.
NASA Astrophysics Data System (ADS)
Rendall, A. D.
1996-11-01
Foliations by constant mean curvature hypersurfaces provide a possibility of defining a preferred time coordinate in general relativity. In the following various conjectures are made about the existence of foliations of this kind in spacetimes satisfying the strong energy condition and possessing compact Cauchy hypersurfaces. Recent progress on proving these conjectures under supplementary assumptions is reviewed. The method of proof used is explained and the prospects for generalizing it discussed. The relations of these questions to cosmic censorship and the closed universe recollapse conjecture are pointed out.
Curvature and temperature of complex networks
NASA Astrophysics Data System (ADS)
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Curvature sensor for ocular wavefront measurement.
Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O
2006-08-01
We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes. PMID:16832447
Amplification of curvature perturbations in cyclic cosmology
Zhang Jun; Liu Zhiguo; Piao Yunsong
2010-12-15
We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.
Double curvature mirrors for linear concentrators
NASA Astrophysics Data System (ADS)
Lance, Tamir; Ackler, Harold; Finot, Marc
2012-10-01
Skyline Solar's medium concentration photovoltaic system uses quasi-parabolic mirrors and one axis tracking. Improvements in levelized cost of energy can be achieved by effective management of non-uniformity of the flux line on the panels. To reduce non uniformity of the flux line due to mirror to mirror gaps, Skyline developed a dual curvature mirror that stretches the flux line along the panel. Extensive modeling and experiments have been conducted to analyze the impact of this new design and to optimize the design.
Holographic entropy increases in quadratic curvature gravity
NASA Astrophysics Data System (ADS)
Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.
2015-09-01
Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.
Spacetime Curvature and Higgs Stability after Inflation.
Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A
2015-12-11
We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe. PMID:26705621
Steering electromagnetic beams with conical curvature singularities.
Zhang, Yong-Liang; Dong, Xian-Zi; Zheng, Mei-Ling; Zhao, Zhen-Sheng; Duan, Xuan-Ming
2015-10-15
We describe how the transformation-optics technique can be used to design an effective medium mimicking the conical curvature singularity. Anholonomic coordinate transformation gives rise to linear topological defects that break the rotational symmetry. The bending and splitting of the optical beams are found analytically and numerically, depending on the incident direction and the topological charge. Beyond their practical applications to omnidirectional beam steering for photonics, our findings set forth an attractive realm to simulate the relevant physical phenomena in the optical laboratory. PMID:26469619
NASA Astrophysics Data System (ADS)
Liu, Huilian; Li, Weijun; Li, Hongbo; Sun, Yunfei; Song, Junlin; Yang, Jinghai; Gao, Ming; Liu, Xiaoyan
2015-07-01
The influence of substrate curvature on structural, optical properties of Cu, Co codoped ZnO thin films were investigated in this study. XRD analysis indicated that the crystal quality of the ZnO films could been influenced by the substrate curvature. The biaxial stress of our samples was measured by side-inclination X-ray diffraction technique. The results indicated that the type of the stress was biaxial compressive stress. Optical absorption spectra showed the absorption edge of our samples displayed blueshift with decreasing substrate curvature. Gauss fit for PL emission spectra showed that the substrate curvature affected the PL properties of the Cu, Co codoped ZnO thin films deposited on polystyrene particles. The various substrates induced defect-related emission increased in visible region.
A PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature.
Pang, Xiaoyun; Fan, Jun; Zhang, Yan; Zhang, Kai; Gao, Bingquan; Ma, Jun; Li, Jian; Deng, Yuchen; Zhou, Qiangjun; Egelman, Edward H; Hsu, Victor W; Sun, Fei
2014-10-13
The BAR (Bin-Amphiphysin-Rvs) domain undergoes dimerization to produce a curved protein structure, which superimposes onto membrane through electrostatic interactions to sense and impart membrane curvature. In some cases, a BAR domain also possesses an amphipathic helix that inserts into the membrane to induce curvature. ACAP1 (Arfgap with Coil coil, Ankyrin repeat, and PH domain protein 1) contains a BAR domain. Here, we show that this BAR domain can neither bind membrane nor impart curvature, but instead requires a neighboring PH (Pleckstrin Homology) domain to achieve these functions. Specific residues within the PH domain are responsible for both membrane binding and curvature generation. The BAR domain adjacent to the PH domain instead interacts with the BAR domains of neighboring ACAP1 proteins to enable clustering at the membrane. Thus, we have uncovered the molecular basis for an unexpected and unconventional collaboration between PH and BAR domains in membrane bending. PMID:25284369
Local curvature measurements of a lean, partially premixed swirl-stabilised flame
NASA Astrophysics Data System (ADS)
Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.
2012-04-01
A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is
Turbulent boundary layers subjected to multiple curvatures and pressure gradients
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R.; Ahmed, Anwar
1993-01-01
The effects of abruptly applied cycles of curvatures and pressure gradients on turbulent boundary layers are examined experimentally. Two two-dimensional curved test surfaces are considered: one has a sequence of concave and convex longitudinal surface curvatures and the other has a sequence of convex and concave curvatures. The choice of the curvature sequences were motivated by a desire to study the asymmetric response of turbulent boundary layers to convex and concave curvatures. The relaxation of a boundary layer from the effects of these two opposite sequences has been compared. The effect of the accompaying sequences of pressure gradient has also been examined but the effect of curvature dominates. The growth of internal layers at the curvature junctions have been studied. Measurements of the Gortler and corner vortex systems have been made. The boundary layer recovering from the sequence of concave to convex curvature has a sustained lower skin friction level than in that recovering from the sequence of convex to concave curvature. The amplification and suppression of turbulence due to the curvature sequences have also been studied.
Detonation Front Curvatures and Detonation Rates
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark
2015-06-01
We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kinetic information from detonation front curvature
Souers, P. C., LLNL
1998-06-15
The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction
Particles and curvatures in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.
Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.
Effects of streamline curvature on separation prediction
NASA Astrophysics Data System (ADS)
Arolla, Sunil K.; Durbin, Paul A.
2009-11-01
In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.
Vortex motion on surfaces of small curvature
Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.
2013-12-15
We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.
Asymptotic behavior of curvature of surface elements in isotropic turbulence
NASA Technical Reports Server (NTRS)
Girimaji, S. S.
1991-01-01
The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.
Compact surfaces of constant Gaussian curvature in Randers manifolds
NASA Astrophysics Data System (ADS)
Cui, Ningwei
2016-08-01
The flag curvature of a Finsler surface is called the Gaussian curvature in Finsler geometry. In this paper, we characterize the surfaces of constant Gaussian curvature (CGC) in the Randers 3-manifold. Then we give a classification of the orientable closed CGC surfaces in two Randers space forms, which are the non-Euclidean Minkowski-Randers 3-space (K = 0) and the Bao-Shen sphere (K = 1).
Eddy-Current Measurement Of Turning Or Curvature
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.
Evolution of the curvature perturbations during warm inflation
Matsuda, Tomohiro
2009-06-15
This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.
Mean Curvature Flow in a Ricci Flow Background
NASA Astrophysics Data System (ADS)
Lott, John
2012-07-01
Following work of Ecker (Comm Anal Geom 15:1025-1061, 2007), we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-with-boundary. We compute its variational properties and its time derivative under Perelman's modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton's differential Harnack expression for the mean curvature flow in Euclidean space. We also derive the evolution equations for the second fundamental form and the mean curvature, under a mean curvature flow in a Ricci flow background. In the case of a gradient Ricci soliton background, we discuss mean curvature solitons and Huisken monotonicity.
Plane wave gravitons, curvature singularities and string physics
Brooks, R. . Center for Theoretical Physics)
1991-03-21
This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.
Natural curvature for manifest T-duality
NASA Astrophysics Data System (ADS)
Poláček, Martin; Siegel, Warren
2014-01-01
We reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincaré/Lorentz. This construction initially doubles not only the (spacetime) coordinates for translations but also those for Lorentz transformations (and their "dual"). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced ad hoc to the covariant derivative as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections).
Hawking temperature of constant curvature black holes
Cai Ronggen; Myung, Yun Soo
2011-05-15
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Wang, Wangchen; Yang, Lin; Huang, Huey W.
2007-01-01
Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature. PMID:17259270
Soil Moisture, Coastline Curvature, and Sea Breeze Initiated Precipitation Over Florida
NASA Technical Reports Server (NTRS)
Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo
1999-01-01
Land surface-atmosphere interaction plays a key role in the development of summertime convection and precipitation over the Florida peninsula. Land-ocean temperature contrasts induce sea-breeze circulations along both coasts. Clouds develop along sea-breeze fronts, and significant precipitation can occur during the summer months. However, other factors such as soil moisture distribution and coastline curvature may modulate the timing, location, and intensity of sea breeze initiated precipitation. Here, we investigate the role of soil moisture and coastline curvature on Florida precipitation using the 3-D Goddard Cumulus Ensemble (GCE) cloud model coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data from the Convection and Precipitation Electrification Experiment (CaPE) collected on 27 July 1991. Our numerical simulations suggest that a realistic distribution of soil moisture influences the location and intensity of precipitation but not the timing of precipitation. In contrast, coastline curvature affects the timing and location of precipitation but has little influence on peak rainfall rates. However, both factors (soil moisture and coastline curvature) are required to fully account for observed rainfall amounts.
Holographic curvature perturbations in a cosmology with a space-like singularity
NASA Astrophysics Data System (ADS)
Ferreira, Elisa G. M.; Brandenberger, Robert
2016-07-01
We study the evolution of cosmological perturbations in an anti-de-Sitter (AdS) bulk through a cosmological singularity by mapping the dynamics onto the boundary conformal fields theory by means of the AdS/CFT correspondence. We consider a deformed AdS space-time obtained by considering a time-dependent dilaton which induces a curvature singularity in the bulk at a time which we call t = 0, and which asymptotically approaches AdS both for large positive and negative times. The boundary field theory becomes free when the bulk curvature goes to infinity. Hence, the evolution of the fluctuations is under better controle on the boundary than in the bulk. To avoid unbounded particle production across the bounce it is necessary to smooth out the curvature singularity at very high curvatures. We show how the bulk cosmological perturbations can be mapped onto boundary gauge field fluctuations. We evolve the latter and compare the spectrum of fluctuations on the infrared scales relevant for cosmological observations before and after the bounce point. We find that the index of the power spectrum of fluctuations is the same before and after the bounce.
Molecular Modeling of Lipid Membrane Curvature Induction by a Peptide: More than Simply Shape
Sodt, Alexander J.; Pastor, Richard W.
2014-01-01
Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes. PMID:24806928
Coherent gradient sensing method and system for measuring surface curvature
NASA Technical Reports Server (NTRS)
Rosakis, Ares J. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor); Moore, Jr., Nicholas R. (Inventor)
2000-01-01
A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.
Effects of curvature on asymmetric steady states in catalyst particles
Lucier, B J
1981-02-01
The effects of curvature on steady states of chemical catalytic reactions are investigated by studying the cases of the catalytic particle being a spherical or cylindrical shell. Existence and stability of solutions are studied. It is shown that the solutions converge to the solutions for the catalytic slab when the curvature goes to 0 in each case.
An analytical approach to estimate curvature effect of coseismic deformations
NASA Astrophysics Data System (ADS)
Dong, Jie; Sun, Wenke; Zhou, Xin; Wang, Rongjiang
2016-06-01
We present an analytical approach to compute the curvature effect by the new analytical solutions of co-seismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth, the other with a larger radius can approximate a half-space model. Then, we calculate the co-seismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum co-seismic displacement. The results show that the maximum curvature effect is about 4% for source depths of less than 100 km, and about 30% for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100%. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.
Determination of Radius of Curvature for Teeth With Cycloid Profile
NASA Astrophysics Data System (ADS)
Shatalov, E. V.; Efremenkov, E. A.; Shibinskiy, K. G.
2016-04-01
In the article the geometric determination of curvature radius is considered for teeth with cycloid profile. The equations are obtained for the determination of a radius of curvature with point coordinates of a cycloid profile. The conditions of convexo-concavity of a teeth profile are defined for transmission with intermediate rollers.
An analytical approach to estimate curvature effect of coseismic deformations
NASA Astrophysics Data System (ADS)
Dong, Jie; Sun, Wenke; Zhou, Xin; Wang, Rongjiang
2016-08-01
We present an analytical approach to compute the curvature effect by the new analytical solutions of coseismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth and the other with a larger radius can approximate a half-space model. Then, we calculate the coseismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum coseismic displacement. The results show that the maximum curvature effect is about 4 per cent for source depths of less than 100 km, and about 30 per cent for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100 per cent. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.
Effects of Iris Surface Curvature on Iris Recognition
Thompson, Joseph T; Flynn, Patrick J; Bowyer, Kevin W; Santos-Villalobos, Hector J
2013-01-01
To focus on objects at various distances, the lens of the eye must change shape to adjust its refractive power. This change in lens shape causes a change in the shape of the iris surface which can be measured by examining the curvature of the iris. This work isolates the variable of iris curvature in the recognition process and shows that differences in iris curvature degrade matching ability. To our knowledge, no other work has examined the effects of varying iris curvature on matching ability. To examine this degradation, we conduct a matching experiment across pairs of images with varying degrees of iris curvature differences. The results show a statistically signi cant degradation in matching ability. Finally, the real world impact of these ndings is discussed
Nastic curvatures of wheat coleoptiles that develop in true microgravity
NASA Technical Reports Server (NTRS)
Heathcote, D. G.; Chapman, D. K.; Brown, A. H.
1995-01-01
Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.
Elliptic inflation: generating the curvature perturbation without slow-roll
NASA Astrophysics Data System (ADS)
Matsuda, Tomohiro
2006-09-01
There are many inflationary models in which the inflaton field does not satisfy the slow-roll condition. However, in such models, it is always difficult to generate the curvature perturbation during inflation. Thus, to generate the curvature perturbation, one must introduce another component into the theory. To cite a case, curvatons may generate the dominant part of the curvature perturbation after inflation. However, we question whether it is realistic to consider the generation of the curvature perturbation during inflation without slow-roll. Assuming multifield inflation, we encounter the generation of curvature perturbation during inflation without slow-roll. The potential along the equipotential surface is flat by definition and thus we do not have to worry about symmetry. We also discuss KKLT (Kachru Kallosh Linde Trivedi) models, in which corrections lifting the inflationary direction may not become a serious problem if there is a symmetry enhancement at the tip (not at the moving brane) of the inflationary throat.
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
NASA Astrophysics Data System (ADS)
Torgoev, Almaz; Havenith, Hans-Balder
2016-01-01
A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.
NASA Astrophysics Data System (ADS)
Torgoev, Almaz; Havenith, Hans-Balder
2016-07-01
A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.
Cosmological spatial curvature probed by microwave polarization
Matzner, R.A.; Tolman, B.W.
1982-11-15
If there is a large-scale anisotropy in the expansion of the universe, the microwave background radiation is expected to be linearly polarized. This communication shows that spatial curvature is capable of rotating the polarization of the microwaves relative to its direction at last scattering, which is directly correlated with the expansion anisotropy (and so also the observed intensity anisotropy). In Friedmann-Robertson-Walker models of the universe with additional small expansion anisotropy, the observed rotation relative to the intensity anisotropy would be appreciable and constant over the celestial sphere in the closed (type IX) model, but in the flat and open models, it must either vanish (types I and V) or vary ina complicated way over the celestial sphere (type VII/sub h/). These facts suggest a clear observational test of the closure of the universe. Also, an ambiguity inherent in the homogeneity of the universe does not allow prediction of the direction of rotation; thus homogeneous universes possess a property which might be called ''handedness.''
Actin filament curvature biases branching direction
NASA Astrophysics Data System (ADS)
Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel
2012-02-01
Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.
Geodesic Curvature Effects in the WCMs
NASA Astrophysics Data System (ADS)
Zhou, Tianchun
2015-11-01
The favorable features of the steady state I-Regime discovered on Alcator C-Mod recently make this regime a hopeful working regime for future burning plasma experiments. Accompanying the I-regime are the weakly coherent modes (WCMs) with frequency around 200 kHz that propagate poloidally in the electron diamagnetic drift direction in the lab frame. The WCMs were interpreted as certain type of heavy impurity modes in the 3-fluid framework in a 1-D plane magnetic field geometry. Once considering in a simplified toroidal magnetic field geometry, the geodesic curvature will play important roles in that the contribution of the geodesic compression may catch up with or outweighs that of the parallel compression in the plasma edge region where the fluctuations are highly localized. This geodesic coupling to the neighboring bands modifies the marginal stability condition and mode profiles in Refs.. In the same framework, attempts will be made to interpret the concomitant low frequency (~ 20kHz) fluctuations as a type of impurity drift wave-like modes propagating in the ion diamagnetic drift direction. Supported by China National MCFE Research Program under Grant No. 2015GB11000.
BICEP2, the curvature perturbation and supersymmetry
NASA Astrophysics Data System (ADS)
Lyth, David H.
2014-11-01
The tensor fraction r simeq 0.16 found by BICEP2 corresponds to a Hubble parameter H simeq 1.0 × 1014 GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index ns. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.
Characterizing repulsive gravity with curvature eigenvalues
NASA Astrophysics Data System (ADS)
Luongo, Orlando; Quevedo, Hernando
2014-10-01
Repulsive gravity has been investigated in several scenarios near compact objects by using different intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity, associated to black holes and naked singularities. Our method is based upon the behavior of the curvature tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion regions can lead to coordinate-dependent results whereas, in our approach, repulsion emerges as a consequence of the spacetime geometry in a completely invariant way. Our definition is tested in the spacetime of an electrically charged Kerr naked singularity and in all its limiting cases. We show that a positive mass can generate repulsive gravity if it is equipped with an electric charge or an angular momentum. We obtain reasonable results for the spacetime regions contained inside the repulsion sphere whose size and shape depend on the value of the mass, charge and angular momentum. Consequently, we define repulsive gravity as a classical relativistic effect by using the geometry of spacetime only.
Gradient expansion, curvature perturbations, and magnetized plasmas
Giovannini, Massimo; Rezaei, Zahra
2011-04-15
The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.
BICEP2, the curvature perturbation and supersymmetry
Lyth, David H.
2014-11-01
The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.
Nonlinear diffusion filtering influenced by mean curvature
NASA Astrophysics Data System (ADS)
Kollár, Michal; Mikula, Karol; Čunderlík, Róbert
2016-04-01
The presentation introduces a new nonlinear diffusion filtering method on closed surfaces such as a sphere, ellipsoid or the Earth's surface. Our new model extends the regularized surface Perona-Malik model by including a local extrema detector based on a mean curvature of processed data. The model is thus represented by a nonlinear diffusion equation which filters noise while preserves main edges, local extrema and details important for a correct interpretation of data. We define a surface finite-volume method to approximate numerically the nonlinear parabolic partial differential equation on a closed surface. The closed surface is approximated by a polyhedral surface created by planar triangles representing subdivision of an initial icosahedron grid and we use a piece-wise linear approximation of a solution in space and the backward Euler time discretization. Numerical experiments present nonlinear diffusion filtering of artificial data and real measurements, namely the GOCE satellite observations. They aim to point out a main advantage of the new nonlinear model which, on the contrary of Perona-Malik model, preserves local extremal values of filtered data.
Curvature-tuned preparation of nanoliposomes.
Genç, Rükan; Ortiz, Mayreli; O'Sullivan, Ciara K
2009-11-01
Numerous methods have been reported for the preparation of liposomes, many of which, in addition to requiring time-consuming preparative steps and the use of organic solvents, result in heterogeneous liposome populations of incontrollable size. Taking into consideration the phenomenon of spontaneous vesiculation and the theory of curvature, here we present an extremely rapid and simple, solvent-free method for the preparation of monodisperse solutions of highly stable small unilamellar vesicles using both charged and zwitterionic lipids mixed with lyso-palmitoylphosphatidylcholine, exploiting a combination of a rapid pH change followed by a defined period of equilibration. Various experimental parameters and their interactions were evaluated in terms of their effect on resulting liposome size and shape, as well as on liposome stability and size distribution, with transmission electron microscope imaging being used to visualize the formed liposomes, and photon correlation spectroscopy to obtain statistical data on mean diameter and monodispersity of the liposome population. zeta potential measurements also provided information about the interpretation of vesiculation kinetics and liposome stability. The time interval of pH jump, operation temperature, equilibration time, and lipid type were shown to be the determining factors controlling the size, shape, and monodispersity of the liposomes. Buffer type was also found to be important for the long-term storage of the liposomes. Ongoing work is looking at the application of the developed method for encapsulation of bioactive molecules, such as drugs, genetic materials, and enzymes. PMID:19856992
Curvature-induced and thermal strain in polyhedral gold nanocrystals
Kim, J. W.; Dietze, S. H.; Ulvestad, A.; Fohtung, E.; Shpyrko, O. G.; Manna, S.; Fullerton, E. E.; Harder, R.
2014-10-27
We use coherent x-ray diffractive imaging to map the local distribution of strain in gold (Au) polyhedral nanocrystals grown on a silicon (Si) substrate by a single-step thermal chemical vapor deposition process. The lattice strain at the surface of the octahedral nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface. We attribute this discrepancy to the dissimilar interfacial energies between Au/Air and Au/Si and to the difference in thermal expansion between the nanocrystal and the substrate during the cooling process.
Spontaneous curvature of phosphatidic acid and lysophosphatidic acid.
Kooijman, Edgar E; Chupin, Vladimir; Fuller, Nola L; Kozlov, Michael M; de Kruijff, Ben; Burger, Koert N J; Rand, Peter R
2005-02-15
The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission. PMID:15697235
On 3-gauge transformations, 3-curvatures, and Gray-categories
Wang, Wei
2014-04-15
In the 3-gauge theory, a 3-connection is given by a 1-form A valued in the Lie algebra g, a 2-form B valued in the Lie algebra h, and a 3-form C valued in the Lie algebra l, where (g,h,l) constitutes a differential 2-crossed module. We give the 3-gauge transformations from one 3-connection to another, and show the transformation formulae of the 1-curvature 2-form, the 2-curvature 3-form, and the 3-curvature 4-form. The gauge configurations can be interpreted as smooth Gray-functors between two Gray 3-groupoids: the path 3-groupoid P{sub 3}(X) and the 3-gauge group G{sup L} associated to the 2-crossed module L, whose differential is (g,h,l). The derivatives of Gray-functors are 3-connections, and the derivatives of lax-natural transformations between two such Gray-functors are 3-gauge transformations. We give the 3-dimensional holonomy, the lattice version of the 3-curvature, whose derivative gives the 3-curvature 4-form. The covariance of 3-curvatures easily follows from this construction. This Gray-categorical construction explains why 3-gauge transformations and 3-curvatures have the given forms. The interchanging 3-arrows are responsible for the appearance of terms with the Peiffer commutator (, )
Berry curvature and dynamics of a magnetic bubble
NASA Astrophysics Data System (ADS)
Koshibae, Wataru; Nagaosa, Naoto
2016-04-01
Magnetic bubbles have been the subject of intensive studies aiming to investigate their applications to memory devices. A bubble can be regarded as the closed domain wall and is characterized by the winding number of the in-plane components or the skyrmion number N sk , which are related to the number of Bloch lines (BLs). For the magnetic bubbles without BLs, the Thiele equation assuming no internal distortion describes the center-of-mass motion of the bubbles very well. For the magnetic bubbles with BLs, on the other hand, their dynamics is affected seriously by that of BLs along the domain wall. Here we show theoretically, that the distribution of the Berry curvature b z , i.e., the solid angle formed by the magnetization vectors, in the bubble plays the key role in the dynamics of a bubble with {N}{sk}=0 in a dipolar magnet. In this case, the integral of b z over the space is zero, while the nonuniform distribution of b z and associated Magnus force induce several nontrivial coupled dynamics of the internal deformation and center-of-mass motion as explicitly demonstrated by numerical simulations of Landau–Lifshitz-Gilbert equation. These findings give an alternative view and will pave a new route to design the bubble dynamics.
Geometry of matrix product states: Metric, parallel transport, and curvature
Haegeman, Jutho Verstraete, Frank; Mariën, Michaël; Osborne, Tobias J.
2014-02-15
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.
Geometry-specific scaling of detonation parameters from front curvature
Jackson, Scott I; Short, Mark
2011-01-20
It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.
Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis
NASA Astrophysics Data System (ADS)
Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful
2016-02-01
This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.
Complete manifolds with bounded curvature and spectral gaps
NASA Astrophysics Data System (ADS)
Schoen, Richard; Tran, Hung
2016-08-01
We study the spectrum of complete noncompact manifolds with bounded curvature and positive injectivity radius. We give general conditions which imply that their essential spectrum has an arbitrarily large finite number of gaps. In particular, for any noncompact covering of a compact manifold, there is a metric on the base so that the lifted metric has an arbitrarily large finite number of gaps in its essential spectrum. Also, for any complete noncompact manifold with bounded curvature and positive injectivity radius we construct a metric uniformly equivalent to the given one (also of bounded curvature and positive injectivity radius) with an arbitrarily large finite number of gaps in its essential spectrum.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-01
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464
Numerical studies of transverse curvature effects on transonic flow stability
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Motion on constant curvature spaces and quantization using Noether symmetries.
Bracken, Paul
2014-12-01
A general approach is presented for quantizing a metric nonlinear system on a manifold of constant curvature. It makes use of a curvature dependent procedure which relies on determining Noether symmetries from the metric. The curvature of the space functions as a constant parameter. For a specific metric which defines the manifold, Lie differentiation of the metric gives these symmetries. A metric is used such that the resulting Schrödinger equation can be solved in terms of hypergeometric functions. This permits the investigation of both the energy spectrum and wave functions exactly for this system. PMID:25554048
Motion on constant curvature spaces and quantization using noether symmetries
NASA Astrophysics Data System (ADS)
Bracken, Paul
2014-12-01
A general approach is presented for quantizing a metric nonlinear system on a manifold of constant curvature. It makes use of a curvature dependent procedure which relies on determining Noether symmetries from the metric. The curvature of the space functions as a constant parameter. For a specific metric which defines the manifold, Lie differentiation of the metric gives these symmetries. A metric is used such that the resulting Schrödinger equation can be solved in terms of hypergeometric functions. This permits the investigation of both the energy spectrum and wave functions exactly for this system.
LPG-based sensor for curvature and vibration
NASA Astrophysics Data System (ADS)
Nascimento, I. M.; Chesini, G.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, P. A. S.
2016-05-01
A long-period grating (LPG) written on a standard single mode fiber is investigated as a curvature and vibration sensor. It is demonstrated a high sensitivity to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using an intensity based interrogation scheme with the LPG sensor operating in the curvature regime. Results have shown a reproducible frequency discrimination in the 30 Hz to 2000 Hz, with resolutions between 11 mHz and 913 mHz. Frequency retrieval could be performed independent of temperature up to 86 °C.
Curvature-driven assembly in soft matter.
Liu, Iris B; Sharifi-Mood, Nima; Stebe, Kathleen J
2016-07-28
Control over the spatial arrangement of colloids in soft matter hosts implies control over a wide variety of properties, ranging from the system's rheology, optics, and catalytic activity. In directed assembly, colloids are typically manipulated using external fields to form well-defined structures at given locations. We have been developing alternative strategies based on fields that arise when a colloid is placed within soft matter to form an inclusion that generates a potential field. Such potential fields allow particles to interact with each other. If the soft matter host is deformed in some way, the potential allows the particles to interact with the global system distortion. One important example is capillary assembly of colloids on curved fluid interfaces. Upon attaching, the particle distorts that interface, with an associated energy field, given by the product of its interfacial area and the surface tension. The particle's capillary energy depends on the local interface curvature. We explore this coupling in experiment and theory. There are important analogies in liquid crystals. Colloids in liquid crystals elicit an elastic energy response. When director fields are moulded by confinement, the imposed elastic energy field can couple to that of the colloid to define particle paths and sites for assembly. By improving our understanding of these and related systems, we seek to develop new, parallelizable routes for particle assembly to form reconfigurable systems in soft matter that go far beyond the usual close-packed colloidal structures.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298434
Curvature instability of a vortex ring
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide; Hattori, Yuji
2005-03-01
A global stability analysis of Kelvin's vortex ring to three-dimensional disturbances of infinitesimal amplitude is made. The basic state is a steady asymptotic solution of the Euler equations, in powers of the ratio ɛ of the core radius to the ring radius, for an axisymmetric vortex ring with vorticity proportional to the distance from the symmetric axis. The effect of ring curvature appears at first order, in the form of a dipole field, and a local straining field, which is a quadrupole field, follows at second order. The eigenvalue problem of the Euler equations, retaining the terms to first order, is solved in closed form, in terms of the Bessel and the modified Bessel functions. We show that the dipole field causes a parametric resonance instability between a pair of Kelvin waves whose azimuthal wavenumbers are separated by 1. The most unstable mode occurs in the short-wavelength limit, under the constraint that the radial and the azimuthal wavenumbers are of the same magnitude, and the limiting value of maximum growth rate coincides with the value 165/256 ɛ obtained by Hattori & Fukumoto (Phys. Fluids, vol. 15, 2003, p. 3151) by means of the geometric optics method. The instability mechanism is traced to stretching of disturbance vorticity in the toroidal direction. In the absence of viscosity, the dipole effect outweighs the straining field effect of O(ɛ2) known as the Moore-Saffman-Tsai-Widnall instability. The viscosity acts to damp the former preferentially and these effects compete with each other.
Nonlinear dynamics of the tearing mode with two-fluid and curvature effects in tokamaks
Meshcheriakov, Dmytro; Maget, Patrick; Garbet, Xavier; Lütjens, Hinrich; Beyer, Peter
2014-01-15
Curvature and diamagnetic effects are both known to have an influence on tearing mode dynamics. In this paper, we investigate the impact of these effects on the nonlinear stability and saturation of a (2, 1) island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments, where its behavior is not well understood from the single fluid MHD model. Simulations show that a metastable state induced by diamagnetic effect exists for this mode and that it also produces a reduction of the saturated island size, in presence of toroidal curvature. The mode is found to be nonlinearly destabilized by a seed island and it saturates at a macroscopic level causing a significant confinement degradation. The interpretation of dual states, with either no island on q = 2 or a large one, observed on discharges with high non inductive current source on Tore Supra, is revisited.
NASA Astrophysics Data System (ADS)
Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan
2014-11-01
Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.
Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai
2015-01-01
Purpose Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Methods Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Results Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Conclusions Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm. PMID:26398847
Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar A.; Davis, Ryan Wesley; Sasaki, Darryl Yoshio
2013-10-01
Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.
Curvature Control of Silicon Microlens for THz Dielectric Antenna
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran
2012-01-01
We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.
16. Detail of curvature of northern parapet, with 1932 concrete ...
16. Detail of curvature of northern parapet, with 1932 concrete extension of parapet in foreground, facing east. - Dubbs Bridge, Spinnerstown Road (State Route 2031) spanning Hosensack Creek, Dillingerville, Lehigh County, PA
Wavefront curvature of an opticaly pumped waveguide laser
Tacke, M.
1983-05-01
The influence of inhomogeneous gain on the wavefront shape is discussed for waveguide lasers. As an example, the curvature of the EH(11) mode of an optically pumped FIR laser is computed, its influence on the output beam is discussed.
Curvature-Squared Cosmology In The First-Order Formalism
NASA Technical Reports Server (NTRS)
Shahid-Saless, Bahman
1993-01-01
Paper presents theoretical study of some of general-relativistic ramifications of gravitational-field energy density proportional to R - alpha R(exp 2) (where R is local scalar curvature of space-time and alpha is a constant).
Curvature and bow of bulk GaN substrates
NASA Astrophysics Data System (ADS)
Foronda, Humberto M.; Romanov, Alexey E.; Young, Erin C.; Roberston, Christian A.; Beltz, Glenn E.; Speck, James S.
2016-07-01
We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.
Electric current measurement using fiber-optic curvature sensor
NASA Astrophysics Data System (ADS)
Di, Haiting; Xin, Ying; Sun, Suping
2016-02-01
A novel fiber-optic curvature sensor, which can measure curvature directly, has been developed in recent years. The electric current measurements system based on fiber-optic curvature sensor and electromagnetic principle is developed. A fiber-optic curvature sensor is bonded to a thin-walled cantilever and two circular magnet targets with the same parameters are configured at the tip of the cantilever symmetrically. In this case, the throughput of the sensor will be changed due to the bending deformation of cantilever, which is proportional to the electromagnetic force caused by measured electric current. Direct and alternate characteristics of the proposed measurement system are studied experimentally. The results show that the measurement errors are within the range of ±5.5 mA and the corresponding accuracy is within 1% at the current measurement range from -300 mA to 300 mA, which indicate the feasibility of the proposed measurement system.
Constraints on the geometric and dynamic spatial curvature
NASA Astrophysics Data System (ADS)
Yu, Bo
2015-10-01
In this paper, the geometric and dynamic spatial curvature parameters of the Universe are constrained by type Ia supernova, baryon acoustic oscillation, and cosmic microwave background data. Compared with the previous result, a more stringent constraint is obtained, especially for the dynamic spatial curvature in the case of variable dark energy. No evidence is found that the geometric spatial curvature deviates from the dynamic spatial curvature, which is consistent with general relativity. In the case of dark energy with constant equation of state, it is found that -8.4 ×1 0-3≤ΩKgeo≤6.6 ×1 0-3 (95% C.L.). This supports the hypothesis of a flat Universe in a very general meaning.
Bacterial cell curvature through mechanical control of cell growth
Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine
2009-01-01
The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668
NASA Technical Reports Server (NTRS)
Ishikawa, H.; Evans, M. L.
1992-01-01
We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.
Wang, Dan; Yin, Yajun; Wu, Jiye; Wang, Xugui; Zhong, Zheng
2016-01-01
The interaction potential between a curved surface body and a particle located on the surface of the body is studied in this paper. Based on the negative exponential pair potential (1/R(n)) between particles, the interaction potential is proved to be of the curvature-based form, i.e., it can be written as a function of curvatures of the surface. Idealized numerical experiments are designed to test the accuracy of curvature-based potential. Based on the curvature-based potential, propositions below are confirmed: a highly curved surface body will induce driving forces on the particle located on the surface, and curvatures and the gradients of curvatures are essential factors forming the driving forces. In addition, the tangent driving force acting on the particle from the curved surface body is studied. Based on duality, the following rule is proved: for a convex or concave curved body sharing the same curved surface, the curvature-based interaction potential between them and a particle on the surface can make up the potential of a particle in the whole space. PMID:26538079
A novel curvature-controllable steerable needle for percutaneous intervention.
Bui, Van Khuyen; Park, Sukho; Park, Jong-Oh; Ko, Seong Young
2016-08-01
Over the last few decades, flexible steerable robotic needles for percutaneous intervention have been the subject of significant interest. However, there still remain issues related to (a) steering the needle's direction with less damage to surrounding tissues and (b) increasing the needle's maximum curvature for better controllability. One widely used approach is to control the fixed-angled bevel-tip needle using a "duty-cycle" algorithm. While this algorithm has shown its applicability, it can potentially damage surrounding tissue, which has prevented the widespread adoption of this technology. This situation has motivated the development of a new steerable flexible needle that can change its curvature without axial rotation, while at the same time producing a larger curvature. In this article, we propose a novel curvature-controllable steerable needle. The proposed robotic needle consists of two parts: a cannula and a stylet with a bevel-tip. The curvature of the needle's path is controlled by a control offset, defined by the offset between the bevel-tip and the cannula. As a result, the necessity of rotating the whole needle's body is decreased. The duty-cycle algorithm is utilized to a limited degree to obtain a larger radius of curvature, which is similar to a straight path. The first prototype of 0.46 mm (outer diameter) was fabricated and tested with both in vitro gelatin phantom and ex vivo cow liver tissue. The maximum curvatures measured 0.008 mm(-1) in 6 wt% gelatin phantom, 0.0139 mm(-1) in 10 wt% gelatin phantom, and 0.0038 mm(-1) in cow liver. The experimental results show a linear relationship between the curvature and the control offset, which can be utilized for future implementation of this control algorithm. PMID:27206444
Layered devices having surface curvature and method of constructing same
Woodbury, Richard C.; Perkins, Raymond T.; Thorne, James M.
1989-01-01
A method of treating a substrate having first and second sides with corresponding oppositely facing first and second surfaces, to produce curvature in the first surface. The method includes the steps of removing material, according to a predetermined pattern, from the second side of the substrate, and applying a stress-producing film of material to at least one surface of the substrate to thereby cause the substrate to bend to produce the desired curvature in the first surface.
Topology of codimension-one foliations of nonnegative curvature
Bolotov, Dmitry V
2013-05-31
We show that a transversely oriented C{sup 2}-foliation of codimension one with nonnegative Ricci curvature on a closed orientable manifold is a foliation with almost no holonomy. This allows us to decompose the manifold into blocks on which this foliation has a simple structure. We also show that a manifold homeomorphic to a 5-dimensional sphere does not admit a codimension-one C{sup 2}-foliation with nonnegative sectional curvature. Bibliography: 29 titles.
Hedgehogs in higher dimensional gravity with curvature self-interactions
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2001-04-01
Static solutions of the higher dimensional Einstein-Hilbert gravity supplemented by quadratic curvature self-interactions are discussed in the presence of hedgehog configurations along the transverse dimensions. The quadratic part of the action is parametrized in terms of the (ghost-free) Euler-Gauss-Bonnet curvature invariant. Spherically symmetric profiles of the transverse metric admit exponentially decaying warp factors both for positive and negative bulk cosmological constants.
The Induction of Negative Curvature as a Mechanism of Cell Toxicity by Amyloidogenic Peptides
Smith, Pieter E. S.; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy
2009-01-01
The death of insulin-producing β-cells is a key step in the pathogenesis of type 2 diabetes. The amyloidogenic peptide Islet Amyloid Polypeptide (IAPP, also known as amylin) has been shown to disrupt β-cell membranes leading to β-cell death. Despite the strong evidence linking IAPP to the destruction of β-cell membrane integrity and cell death, the mechanism of IAPP toxicity is poorly understood. In particular, the effect of IAPP on the bilayer structure has largely been uncharacterized. In this study, we have determined the effect of the amyloidogenic and toxic hIAPP1-37 peptide and the non-toxic and non-amyloidogenic rIAPP1-37 peptide on membranes by a combination of DSC and solid-state NMR spectroscopy. We also characterized the toxic but largely non-amyloidogenic rIAPP1-19 and hIAPP1-19 fragments. DSC shows that both amyloidogenic (hIAPP1-37) and largely non-amyloidogenic (hIAPP1-19 and rIAPP1-19) toxic versions of the peptide strongly favor the formation of negative curvature in lipid bilayers, while the non-toxic full-length rat IAPP1-37 peptide does not. This result was confirmed by solid-state NMR spectroscopy which shows that in bicelles composed of regions of high curvature and low curvature, non-toxic rIAPP1-37 binds to the regions of low curvature while toxic rIAPP1-19 binds to regions of high curvature. Similarly, solid-state NMR spectroscopy shows that the toxic rIAPP1-19 peptide significantly disrupts the lipid bilayer structure, whereas the non-toxic rIAPP1-37 does not have a significant effect. These results indicate IAPP may induce the formation of pores by the induction of excess membrane curvature and can be used to guide the design of compounds that can prevent the cell-toxicity of IAPP. This mechanism may be important to understand the toxicity of other amyloidogenic proteins. Our solid-state NMR results also demonstrate the possibility of using bicelles to measure the affinity of biomolecules for negatively or positively curved regions of
Overriding plate thickness control on subducting slab curvature
NASA Astrophysics Data System (ADS)
Holt, A.; Buffett, B. A.; Becker, T. W.
2014-12-01
The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is
Frame-covariant formulation of inflation in scalar-curvature theories
NASA Astrophysics Data System (ADS)
Burns, Daniel; Karamitsos, Sotirios; Pilaftsis, Apostolos
2016-06-01
We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, Higgs inflation and F (R) models of inflation, and obtain more accurate results, without making additional approximations to the potential. Our results are shown to be consistent to lowest order with those presented in the literature. Finally, we outline how our frame-covariant formalism can be naturally extended beyond the tree-level approximation, within the framework of the Vilkovisky-DeWitt effective action.
Kapnisis, Konstantinos K; Halwani, Dina O; Brott, Brigitta C; Anderson, Peter G; Lemons, Jack E; Anayiotos, Andreas S
2013-04-01
Preliminary studies have revealed that some stents undergo corrosion and fatigue-induced fracture in vivo, with significant release of metallic ions into surrounding tissues. A direct link between corrosion and in-stent restenosis has not been clearly established; nonetheless in vitro studies have shown that relatively high concentrations of heavy metal ions can stimulate both inflammatory and fibrotic reactions, which are the main steps in the process of restenosis. To isolate the mechanical effects from the local biochemical effects, accelerated biomechanical testing was performed on single and overlapping Nickel-Titanium (NiTi) stents subjected to various degrees of curvature. Post testing, stents were evaluated using Scanning Electron Microscopy (SEM) to identify the type of surface alterations. Fretting wear was observed in overlapping cases, in both straight and curved configurations. Stent strut fractures occurred in the presence of geometric curvature. Fretting wear and fatigue fractures observed on stents following mechanical simulation were similar to those from previously reported human stent explants. It has been shown that biomechanical factors such as arterial curvature combined with stent overlapping enhance the incidence and degree of wear and fatigue fracture when compared to single stents in a straight tube configuration. PMID:23313643
Controlling carbon-nanotube-phospholipid solubility by curvature-dependent self-assembly.
Määttä, Jukka; Vierros, Sampsa; Sammalkorpi, Maria
2015-03-12
Control of aqueous dispersion is central in the processing and usage of nanoscale hydrophobic objects. However, selecting dispersive agents based on the size and form of the hydrophobic object and the role of coating morphology in dispersion efficiency remain important open questions. Here, the effect of the substrate and the dispersing molecule curvature, as well as, the influence of dispersant concentration on the adsorption morphology are examined by molecular simulations of graphene and carbon nanotube (CNT) substrates with phospholipids of varying curvature as the dispersing agents. Lipid spontaneous curvature is increased from close to zero (effectively cylindrical lipid) to highly positive (effectively conical lipid) by studying double tailed dipalmitoylphosphadidylcholine (DPPC) and single tailed lysophosphadidylcholine (LPC) which differ in the number of acyl chains but have identical headgroup. We find that lipids are good dispersion agents for both planar and curved nanoparticles and induce a dispersive barrier nonsize selectively. Differences in dispersion efficiency arise from lipid headgroup density and their extension from the hydrophobic substrate in the adsorption morphology. We map the packing morphology contributing factors and report that the aggregate morphologies depend on the competition of interactions rising from (1) hydrophobicity driven maximization of lipid-substrate contacts and lipid self-adhesion, (2) tail bending energy cost, (3) preferential alignment along the graphitic substrate principal axes, and (4) lipid headgroup preferential packing. Curved substrates adjust the morphology by changing the balance between the interaction strengths. Jointly, the findings show substrate curvature and dimensions are a way to tune lipid adsorption to desired, self-assembling patterns. Besides engineering dispersion efficiency, the findings could bear significance in designing materials with defined molecular scale, molecular coatings for
Clinical workflow for spinal curvature measurement with portable ultrasound
NASA Astrophysics Data System (ADS)
Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.
A novel approach in assessment of root canal curvature
Sadeghi, Shiva; Poryousef, Vahideh
2009-01-01
Introduction: The purpose of this in vitro study was to introduce a new method to describe root canal curvatures and to assess the degree of curvature of human permanent mandibular teeth with curved root canals. Materials and Methods: One hundred and thirty five mesial root canals of mandibular first and second molar teeth were selected. Access cavities were prepared. After inserting a K-file size #10 into each canal, radiographs were taken. Canal curvature was determined by measuring the Schneider angle, canal access angle, as well as the canal radius, length, height and curvature starting distance on scanned radiographs using a computerized image processing system. Data was evaluated statistically using Pearson correlation. Results: The mean canal access angle (CAA) and Schneider angle (S) were 8.04◦ (3.46) and 19◦ (6.99), respectively. The Pearson correlation analysis found significant positive correlation between S and CAA (r=0.826, P<0.0001). Negative correlations were found between radius and length (r= –0.4, P<0.0001), radius and Schneider angle (r= –0.4, P<0.0001), radius and CAA (r= –0.24, P=0.004) and CAA and curvature starting distance (r= 0.4, P<0.0001). There was no correlation between height and distance (r=0.013, P=0.789), as well as CAA and height (r=0.654, P=0.001). Conclusion: Under the limitations of this study, the results indicated that the shape of root canal curvature can be more accurately described using two angles, Schneider in combination with Canal access angle. The related parameters included radius, length, distance and height of curvature. [Iranian Endodontic Journal 2009;4(4):131-4] PMID:24019833
Variable Curvature Mirrors for ELT Laser Guide Star refocusing systems
NASA Astrophysics Data System (ADS)
Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Madec, Fabrice; Le Mignant, David; Cuby, Jean-Gabriel
2011-09-01
The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, LGS defocusing is one of the system issues that can be tackled using active refocusing mirrors such as Variable Curvature Mirrors (VCM). Indeed, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope, and induces a large defocusing at the LGS wave-front sensor focal plane. To compensate for that, we propose an original concept including a VCM specifically designed to keep a focused spot on the wave-front sensor: the mirror is made of a thin meniscus bend using a pressure applied on its back face. Due to the large defocusing, the LGS-VCM must be able to change its shape from F/12.5 to F/5, leading to more than 1 mm sag. The VCM benefits of a specific shape with a variable radial thickness distribution, allowing keeping an optical quality better than λ/5 over this very large range of deformation. The work presented here details the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Two prototypes have been manufactured to compare the real behaviour of the mirror and the simulations data. Results obtained on the prototypes show that the deformation of the VCM is very close to the simulation, and leads to a realistic concept.
Re-acceleration Model for Radio Relics with Spectral Curvature
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Ryu, Dongsu
2016-05-01
Most of the observed features of radio gischt relics, such as spectral steepening across the relic width and a power-law-like integrated spectrum, can be adequately explained by a diffusive shock acceleration (DSA) model in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, the steep spectral curvature in the integrated spectrum above ∼2 GHz detected in some radio relics, such as the Sausage relic in cluster CIZA J2242.8+5301, may not be interpreted by the simple radiative cooling of postshock electrons. In order to understand such steepening, we consider here a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage relic, we show that both the integrated radio spectrum and the surface brightness profile can be fitted reasonably well, if a shock of speed {u}s ∼ 2.5–2.8 × {10}3 {km} {{{s}}}-1 and a sonic Mach number {M}s ∼ 2.7–3.0 traverses a fossil cloud for ∼45 Myr, and the postshock electrons cool further for another ∼10 Myr. This attempt illustrates that steep curved spectra of some radio gischt relics could be modeled by adjusting the shape of the fossil electron spectrum and adopting the specific configuration of the fossil cloud.
Curvature Sorting of Peripheral Proteins on Solid-Supported Wavy Membranes
Hsieh, Wan-Ting; Hsu, Chih-Jung; Capraro, Benjamin R.; Wu, Tingting; Chen, Chi-Mon; Yang, Shu; Baumgart, Tobias
2013-01-01
Cellular membrane deformation and the associated redistribution of membrane-bound proteins are important aspects of membrane function. Current model membrane approaches for studying curvature sensing are limited to positive curvatures, and often require complex and delicate experimental setups. To overcome these challenges, we fabricated a wavy substrate imposing a range of curvatures onto an adhering lipid bilayer membrane. We examined the curvature sorting of several peripheral proteins binding to the wavy membrane and observed them to partition into distinct regions of curvature. Furthermore, single molecule imaging experiments suggested that curvature sensing of proteins on low-curvature substrates requires cooperative interactions. PMID:22881196
Representation of tactile curvature in macaque somatosensory area 2
Connor, Charles E.; Hsiao, Steven S.
2013-01-01
Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717
Intermembrane Docking Reactions Are Regulated by Membrane Curvature
Kunding, Andreas H.; Mortensen, Michael W.; Christensen, Sune M.; Bhatia, Vikram K.; Makarov, Ivan; Metzler, Ralf; Stamou, Dimitrios
2011-01-01
The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes. PMID:22261058
The weighted curvature approximation in scattering from sea surfaces
NASA Astrophysics Data System (ADS)
Guérin, Charles-Antoine; Soriano, Gabriel; Chapron, Bertrand
2010-07-01
A family of unified models in scattering from rough surfaces is based on local corrections of the tangent plane approximation through higher-order derivatives of the surface. We revisit these methods in a common framework when the correction is limited to the curvature, that is essentially the second-order derivative. The resulting expression is formally identical to the weighted curvature approximation, with several admissible kernels, however. For sea surfaces under the Gaussian assumption, we show that the weighted curvature approximation reduces to a universal and simple expression for the off-specular normalized radar cross-section (NRCS), regardless of the chosen kernel. The formula involves merely the sum of the NRCS in the classical Kirchhoff approximation and the NRCS in the small perturbation method, except that the Bragg kernel in the latter has to be replaced by the difference of a Bragg and a Kirchhoff kernel. This result is consistently compared with the resonant curvature approximation. Some numerical comparisons with the method of moments and other classical approximate methods are performed at various bands and sea states. For the copolarized components, the weighted curvature approximation is found numerically very close to the cut-off invariant two-scale model, while bringing substantial improvement to both the Kirchhoff and small-slope approximation. However, the model is unable to predict cross-polarization in the plane of incidence. The simplicity of the formulation opens new perspectives in sea state inversion from remote sensing data.
Nonlinear Development of Goertler Vortices Over Variable Curvature Walls.
NASA Astrophysics Data System (ADS)
Benmalek, Ali
The development of Gortler vortices over walls of variable curvature is studied. This is of interest because of stability and transition studies of boundary layers over surfaces which may have a combination of concave and convex or flat regions such as the lower surface of supercritical low drag suction laminar flow airfoils. The question arises regarding the nature of stabilization of the convex and zero curvature of the wall and whether it is sufficient to overcome the destabilization of the concave region. The parabolized disturbance equations governing the problem for small curvature, high Reynolds number and order one Gortler number are integrated numerically. Cases with concave, convex and zero curvatures are analyzed. The results show significant stabilization of the disturbances in the convex region, where new sets of vortices are successively created with opposite rotation to the preceding set. The "mushroom-shaped" distributions of low-momentum fluid riding above high-momentum fluid that are subject to secondary instability are predicted. The convex curvature tends to eliminate the inflection points from the spanwise and normal profiles of the streamwise velocity and, hence, suppresses the oscillatory secondary instability that leads to turbulence. Stabilization of Gortler vortices in a flat region is found to be less significant than in a convex region. Finally, the question as to whether the Gortler -Witting mechanism is important in boundary-layer transition is addressed.
Brannigan, Grace; Brown, Frank L. H.
2007-01-01
An elastic model for membrane deformations induced by integral membrane proteins is presented. An earlier theory is extended to account for nonvanishing saddle splay modulus within lipid monolayers and perturbations to lipid volume proximal to the protein. Analytical results are derived for the deformation profile surrounding a single cylindrical protein inclusion, which compare favorably to coarse-grained simulations over a range of protein sizes. Numerical results for multi-protein systems indicate that membrane-mediated interactions between inclusions are strongly affected by Gaussian curvature and display nonpairwise additivity. Implications for the aggregation of proteins are discussed. PMID:17098794
Higher curvature effects in Arkani-Hamed-Dimopoulos-Dvali and Randall-Sundrum models
NASA Astrophysics Data System (ADS)
Rizzo, T. G.
2007-11-01
We explore the collider phenomenology of terascale extra-dimensional models with gravitational actions that contain higher curvature terms. In particular, we examine how the classic collider signatures of the models of Arkani-Hamed, Dimopoulos and Dvali (ADD) and of Randall and Sundrum (RS) are altered by these modifications to the usual Einstein--Hilbert (EH) action. Not only are the detailed signatures for gravitationally induced processes altered but new contributions are found to arise due to the existence of additional scalar Kaluza--Klein (KK) states in the spectrum.
Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies
Kawasaki, Masahiro; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp
2014-05-01
Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.
Kinetics for phototropic curvature by etiolated seedlings of Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Orbovic, V.; Poff, K. L.
1991-01-01
An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16 degrees about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6 degrees during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics.
Robust disparity estimation based on color monogenic curvature phase.
Zang, Di; Li, Jie; Zhang, Dongdong; Zhang, Junqi
2012-07-01
Disparity estimation for binocular images is an important problem for many visual tasks such as 3D environment reconstruction, digital hologram, virtual reality, robot navigation, etc. Conventional approaches are based on brightness constancy assumption to establish spatial correspondences between a pair of images. However, in the presence of large illumination variation and serious noisy contamination, conventional approaches fail to generate accurate disparity maps. To have robust disparity estimation in these situations, we first propose a model - color monogenic curvature phase to describe local features of color images by embedding the monogenic curvature signal into the quaternion representation. Then a multiscale framework to estimate disparities is proposed by coupling the advantages of the color monogenic curvature phase and mutual information. Both indoor and outdoor images with large brightness variation are used in the experiments, and the results demonstrate that our approach can achieve a good performance even in the conditions of large illumination change and serious noisy contamination. PMID:22772192
Numerical Estimation of the Curvature of Biological Surfaces
NASA Technical Reports Server (NTRS)
Todd, P. H.
1985-01-01
Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.
Tensor analysis and curvature in quantum space-time
Namsrai, K.
1987-03-01
Introducing quantum space-time into physics by means of the transformation language of noncommuting coordinates gives a simple scheme of generalizing the tensor analysis. The general covariance principle for the quantum space-time case is discussed, within which one can obtain the covariant structure of basic tensor quantities and the motion equation for a particle in a gravitational field. Definitions of covariant derivatives and curvature are also generalized in the give case. It turns out that the covariant structure of the Riemann-Christoffel curvature tensor is not preserved in quantum space-time. However, if the curvature tensor R/sub ..mu.. nu lambda chi/(z) is redetermined up to the value of the L/sup 2/ term, then its covariant structure is achieved, and it, in turn, allows them to reconstruct the Einstein equation in quantum space-time.
Exploiting cantilever curvature for noise reduction in atomic force microscopy.
Labuda, Aleksander; Grütter, Peter H
2011-01-01
Optical beam deflection is a widely used method for detecting the deflection of atomic force microscope (AFM) cantilevers. This paper presents a first order derivation for the angular detection noise density which determines the lower limit for deflection sensing. Surprisingly, the cantilever radius of curvature, commonly not considered, plays a crucial role and can be exploited to decrease angular detection noise. We demonstrate a reduction in angular detection shot noise of more than an order of magnitude on a home-built AFM with a commercial 450 μm long cantilever by exploiting the optical properties of the cantilever curvature caused by the reflective gold coating. Lastly, we demonstrate how cantilever curvature can be responsible for up to 45% of the variability in the measured sensitivity of cantilevers on commercially available AFMs. PMID:21280834
Studies of the effects of curvature on dilution jet mixing
NASA Astrophysics Data System (ADS)
Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.
1992-02-01
An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.
[Frequency and most common localisation of root canal curvature].
Blasković-Subat, V
1991-01-01
The root canal therapy of the curved canals is a complex operative procedure. Therefore 260 root canals were analysed radiologically to determine the frequency and the most common localisation of the root canal curvature. The frequency of the curved canals averaged at 59%, being greater in the sample of posterior than in the anterior teeth (p less than 0.05). The root canal curvature was most frequently localised at the apical third part (53.9%), followed by the cervical (33.3%) and the middle (12.8%) third part. The apical curvature was predominant in the sample of the anterior, while the cervical predominant (45.2%) in the sample of the posterior teeth. This study pointed out that the frequency of the curved canals is rather high. Consequently, the necessity for practising the modern root canal preparation techniques, bearing in mind their potential danger, is emphasized. PMID:1819932
DNA origami with complex curvatures in three-dimensional space.
Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao
2011-04-15
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature--such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask--were assembled. PMID:21493857
Waterfall field in hybrid inflation and curvature perturbation
Gong, Jinn-Ouk; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp
2011-03-01
We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.
Characterization of inherent curvature in DNA lacking polyadenine runs.
McNamara, P T; Harrington, R E
1991-07-01
Sequence-directed DNA curvature is most commonly associated with AA dinucleotides in the form of polyadenine runs. We demonstrate inherent curvature in DNA which lacks AA/TT dinucleotides using the criteria of polyacrylamide gel mobility and efficiency of DNA cyclization. These studies are based upon two 21-base pair synthetic DNA fragments designed to exhibit fixed curvature according to deflections made to the helical axis by non-AA dinucleotide stacks. Repeats of these sequences display anomalously slow migration in polyacrylamide gels. Moreover, both sequences describe helical conformations that are closed into circles by DNA ligase at much smaller sizes than is typical of nondeformed DNA. Chemical cleavage of these DNA molecules with hydroxyl radical is also consistent with local variation in helical conformation at specific dinucleotide steps. PMID:1648100
Effect of curvature on the backscattering from leaves
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Effect of curvature on the backscattering from a leaf
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Electron energy transport and magnetic curvature driven modes
Coppi, B.; Tang, W.M.
1984-10-01
A transport coefficient for anomalous electron thermal conduction is constructed on the basis of the so-called Principle of Profile Consistency. It is assumed that the relevant modes in plasma where a substantial fraction of the electron population is magnetically trapped produce magnetic reconnection at a microscopic level and are driven by the combined effects of the plasma pressure gradient and the magnetic field curvature. Consequently, the scaling for the electron energy confinement time exhibits a strongly favorable dependence on the radius of magnetic curvature.
Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions
NASA Astrophysics Data System (ADS)
Delisle, L.; Hussin, V.; Zakrzewski, W. J.
2013-04-01
We present a general procedure for constructing constant curvature holomorphic maps of 2-spheres into Grassmannian manifolds G(m,n). Our procedure allows us to make a couple of conjectures as to the possible values of this curvature. We prove our conjectures for G(2,4), G(2,5), present explicit formulae for the relevant maps and show that they agree with those found by other methods. We also make some comments about the maps into G(2,n) for n≥6.
Focal Length Controllable Ultrasonic Array Transducer with Adjustable Curvature
NASA Astrophysics Data System (ADS)
Kim, Jungsoon; Kim, Moojoon; Ha, Kanglyel
2012-07-01
In the underwater imaging field, the control of the focal length of a transducer is very useful. As one of the control methods, we suggested an ultrasonic array transducer with adjustable curvature by using air pressure. The curvature of the transducer was investigated according to the air pressure level in the back space of the transducer. Concave-, planar-, and convex-type transducers were obtained with different air pressure levels. The acoustic fields of the transducer were measured for different shapes of the radiation surface.
NASA Technical Reports Server (NTRS)
Bagshaw, S. L.; Cleland, R. E.
1990-01-01
Gravitropic curvature results from unequal growth rates on the upper and lower sides of horizontal stems. These unequal growth rates could be due to differences in wall extensibility between the two sides. To test this, the time course of curvature of horizontal sunflower (Helianthus annuus L.) hypocotyls was determined and compared with the time courses of changes in Instron-measured wall extensibility (PEx) of the upper and lower epidermal layers. As gravicurvature developed, so did the difference in PEx between the upper and lower epidermis. The enhanced growth rate on the lower side during the period of maximum increase in curvature was matched by PEx values greater than those of the vertical control, while the inhibited growth rate on the upper side was accompanied by PEx values below that of the control. The close correlation between changes in growth rates and alterations in PEx demonstrates that changes in wall extensibility play a major role in controlling gravicurvature.
Yu, Gaobo; Zhou, Jian
2016-08-24
In nanobiotechnology applications, curvature of nanoparticles has a significant effect on protein activities. In this work, lysozyme adsorption on different-sized silica nanoparticles (SNPs) was simulated at the microsecond timescale by using mesoscopic coarse-grained molecular dynamics simulations. It is found that, with the increase of nanoparticle size, which indicates a decrease of surface curvature, adsorbed lysozyme shows a narrower orientation distribution and a greater conformation change, as the electrostatic attraction dominates lysozyme adsorption, and this trend is more pronounced on larger SNPs. Interestingly, the effect induced by different SNP surface curvatures is not related to the direct contact area between lysozyme and SNPs, but to the interfacial hydration layer above the silica surface, since a smaller curvature can lead to a stronger interfacial hydration and make the distribution of interfacial water molecules more ordered. Besides, at higher ionic strength, lysozyme conformation is less affected by strongly negatively charged SNPs, especially for larger nanoparticles. This work might shed some light on how to prepare protein coronas with higher bioactivities in nanobiotechnology. PMID:27465065
Controlling Protein Oligomerization with Surface Curvature on the Nanoscale
NASA Astrophysics Data System (ADS)
Kurylowicz, Marty; Dutcher, John
2011-03-01
We investigate the effect of surface curvature on the conformation of beta-lactoglobulin (β LG) using Single Molecule Force Spectroscopy. β LG is a model interfacial protein which stabilizes oil droplets in milk and is known to undergo structural rearrangement when adsorbed onto a surface. We reliably control nanoscale surface curvature by creating close-packed monolayers of monodisperse polystyrene (PS) nanoparticles with diameters of 20, 40, 60, 80 and 140 nm, which are stable in aqueous buffer. By adsorbing β LG onto these hydrophobic surfaces and collecting force-extension curves in the fluid phase we can compare the conformation of β LG on 5 different surface curvatures with that on a flat PS film. We demonstrate a transition from oligomeric to monomeric β LG as the surface curvature is increased. Histograms of contour length from fits to peaks in the force-extension curves show a single maximum near 30 nm for β LG adsorbed onto nanoparticles with diameters less than 80 nm. For the larger nanoparticles, the histogram approaches that observed for β LG adsorbed onto a flat PS film, with maxima indicative of β LG dimers and trimers.
Stiffness, not inertial coupling, determines path curvature of wrist motions.
Charles, Steven K; Hogan, Neville
2012-02-01
When humans rotate their wrist in flexion-extension, radial-ulnar deviation, and combinations, the resulting paths (like the path of a laser pointer on a screen) exhibit a distinctive pattern of curvature. In this report we show that the passive stiffness of the wrist is sufficient to account for this pattern. Simulating the dynamics of wrist rotations using a demonstrably realistic model under a variety of conditions, we show that wrist stiffness can explain all characteristics of the observed pattern of curvature. We also provide evidence against other possible causes. We further demonstrate that the phenomenon is robust against variations in human wrist parameters (inertia, damping, and stiffness) and choice of model inputs. Our findings explain two previously observed phenomena: why faster wrist rotations exhibit more curvature and why path curvature rotates with pronation-supination of the forearm. Our results imply that, as in reaching, path straightness is a goal in the planning and control of wrist rotations. This requires humans to predict and compensate for wrist dynamics, but, unlike reaching, nonlinear inertial coupling (e.g., Coriolis acceleration) is insignificant. The dominant term to be compensated is wrist stiffness. PMID:22131378
Effect of asymmetric auxin application on Helianthus hypocotyl curvature
NASA Technical Reports Server (NTRS)
Migliaccio, F.; Rayle, D. L.
1989-01-01
Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.
Wormhole geometries supported by a nonminimal curvature-matter coupling
Garcia, Nadiezhda Montelongo; Lobo, Francisco S. N.
2010-11-15
Wormhole geometries in curvature-matter coupled modified gravity are explored, by considering an explicit nonminimal coupling between an arbitrary function of the scalar curvature, R, and the Lagrangian density of matter. It is the effective stress-energy tensor containing the coupling between matter and the higher order curvature derivatives that is responsible for the null energy condition violation, and consequently for supporting the respective wormhole geometries. The general restrictions imposed by the null energy condition violation are presented in the presence of a nonminimal R-matter coupling. Furthermore, obtaining exact solutions to the gravitational field equations is extremely difficult due to the nonlinearity of the equations, although the problem is mathematically well defined. Thus, we outline several approaches for finding wormhole solutions, and deduce an exact solution by considering a linear R nonmiminal curvature-matter coupling and by considering an explicit monotonically decreasing function for the energy density. Although it is difficult to find exact solutions of matter threading the wormhole satisfying the energy conditions at the throat, an exact solution is found where the nonminimal coupling does indeed minimize the violation of the null energy condition of normal matter at the throat.
Special-holonomy manifolds and quartic-curvature string corrections
NASA Astrophysics Data System (ADS)
Stelle, K. S.
2004-06-01
The quartic-curvature corrections derived from string theory have a very specific impact on the geometry of target-space manifolds of special holonomy. In the cases of Calabi-Yau manifolds and D = 7 manifolds of G2 holonomy, we show how the corrections conspire to preserve the unbroken supersymmetry of these backgrounds.
Three-dimensional ultrasound palmprint recognition using curvature methods
NASA Astrophysics Data System (ADS)
Iula, Antonio; Nardiello, Donatella
2016-05-01
Palmprint recognition systems that use three-dimensional (3-D) information of the palm surface are the most recently explored techniques to overcome some two-dimensional palmprint difficulties. These techniques are based on light structural imaging. In this work, a 3-D ultrasound palmprint recognition system is proposed and evaluated. Volumetric images of a region of the human hand are obtained by moving an ultrasound linear array along its elevation direction and one by one acquiring a number of B-mode images, which are then grouped in a 3-D matrix. The acquisition time was contained in about 5 s. Much information that can be exploited for 3-D palmprint recognition is extracted from the ultrasound volumetric images, including palm curvature and other under-skin information as the depth of the various traits. The recognition procedure developed in this work is based on the analysis of the principal curvatures of palm surface, i.e., mean curvature image, Gaussian curvature image, and surface type. The proposed method is evaluated by performing verification and identification experiments. Preliminary results have shown that the proposed system exhibits an acceptable recognition rate. Further possible improvements of the proposed technique are finally highlighted and discussed.
On a modified streamline curvature method for the Euler equations
NASA Technical Reports Server (NTRS)
Cordova, Jeffrey Q.; Pearson, Carl E.
1988-01-01
A modification of the streamline curvature method leads to a quasilinear second-order partial differential equation for the streamline coordinate function. The existence of a stream function is not required. The method is applied to subsonic and supersonic nozzle flow, and to axially symmetric flow with swirl. For many situations, the associated numerical method is both fast and accurate.
Effect of track asymmetry and curvature on shingle writing scheme
NASA Astrophysics Data System (ADS)
Liu, Feng; Li, Shaoping; Bai, Daniel; Mendez, Hector; Pan, Tao; Han, Dehua; Mao, Sining
2011-04-01
Written transition curvature in perpendicular magnetic recording is generally understood to result in increased transition jitter noise and degraded signal to noise ratio or byte error rate (BER) performance. For the shingle writing scheme, asymmetry or curvature in written tracks is considered inherent due to the erasure and track edge writing characteristics. It is proposed that such a track asymmetry is more prominent at high track density/smaller track pitch recording conditions. In this report we present spin stand experimental results to study the effect of the possible track asymmetry or curvature by shingle writing and reading back in different skews. By comparing shingle writing BER bathtub profiles in different writing skew conditions 0°, +/-2°, +/-4°, +/-6°, the effect of varying shingle track asymmetry and curvature is analyzed via subsequent skewed reading process. The shingle writing BER bathtub profiles as well as the read back amplitude cross track profile are generally symmetric upon one sided erasure at different track pitches. We found that the 0° skew writing and reading process provides both the maximum BER and amplitude.
The influence of curvature on film cooling performance
NASA Astrophysics Data System (ADS)
Schwarz, S. G.; Goldstein, R. J.; Eckert, E. R. G.
1990-06-01
The effects of injection rate and strength of curvature on film cooling performance of gas injected through a row of holes on a convex surface is studied. Comparisons are made to film cooling of concave and flat surfaces. Three different relative strengths of curvature (ratio of radius of curvature to radius of injection hole), two density ratios (0.95 and 2.0), and a wide range of blowing rates (0.3 to 2.7) are considered. A foreign gas injection technique (mass transfer analogy) is used. The strength of curvature was controlled by varying the injection hole diameter. At low blowing rates, film cooling is more effective on the convex surface than on a flat or a concave surface. The cross stream pressure gradient present in curved flows tends to push the jet into the convex wall. As the injection rate is increased, normal and tangential jet momentum promote lift-off from the convex surface, thereby lowering performance. In contrast, previous studies show that a concave surface, tangential jet momentum, flow instabilities, and blockage improve performance on a concave surface as blowing rate is increased.
Negative voltage bandgap reference with multilevel curvature compensation technique
NASA Astrophysics Data System (ADS)
Xi, Liu; Qian, Liu; Xiaoshi, Jin; Yongrui, Zhao; Lee, Jong-Ho
2016-05-01
A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with many high order terms in itself, in a lower temperature range (TR) and a multilevel curvature compensation (MLCC) term in a higher TR, a flattened and better effect of curvature compensation over the TR of 165 °C (‑40 to 125 °C) is realised. The MLCC circuit adds two convex curves by using two sub-threshold operated NMOS. The proposed NBGR implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm BCD technology demonstrates an accurate voltage of ‑1.183 V with a temperature coefficient (TC) as low as 2.45 ppm/°C over the TR of 165 °C at a ‑5.0 V power supply; the line regulation is 3 mV/V from a ‑5 to ‑2 V supply voltage. The active area of the presented NBGR is 370 × 180 μm2. Project supported by the Fund of Liaoning Province Education Department (No. L2013045).
Frustration and curvature - Glasses and the cholesteric blue phase
NASA Technical Reports Server (NTRS)
Sethna, J. P.
1983-01-01
An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.
Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy
NASA Astrophysics Data System (ADS)
Hindman, Bradley W.; Jain, Rekha
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.
Equilibrium models of coronal loops that involve curvature and buoyancy
Hindman, Bradley W.; Jain, Rekha
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.
Simple partitions of a hyperbolic plane of positive curvature
Romakina, Lyudmila N
2012-09-30
We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane H of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code (m, n) is proved. Bibliography: 14 titles.
The flow curvature method applied to canard explosion
NASA Astrophysics Data System (ADS)
Ginoux, Jean-Marc; Llibre, Jaume
2011-11-01
The aim of this work is to establish that the bifurcation parameter value leading to a canard explosion in dimension 2 obtained by the so-called geometric singular perturbation method can be found according to the flow curvature method. This result will be then exemplified with the classical Van der Pol oscillator.
NASA Technical Reports Server (NTRS)
Khurana, J. P.; Best, T. R.; Poff, K. L.
1989-01-01
Phototropic and gravitropic curvature by hypocotyls of Arabidopsis thaliana is minimal when the side of the hook with the cotyledons attached is positioned toward the direction of tropistic curvature, and maximal when that side of the hook is positioned away from the direction of tropistic curvature. Based on these data, it is proposed that the position of the hook with attached cotyledons affects curvature and not stimulus perception. A randomly oriented population of plants exhibited considerable heterogeneity in tropistic curvature. This heterogeneity arises at least in part from the dependence of curvature on the position of the hook.
Stimulation of root elongation and curvature by calcium
NASA Technical Reports Server (NTRS)
Takahashi, H.; Scott, T. K.; Suge, H.
1992-01-01
Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.
Suyama, Teruaki; Yokoyama, Jun'ichi
2011-10-15
If more than one curvaton dominate the Universe at different epochs from each other, curvature perturbations can be temporarily enhanced to a value much larger than the observed one 10{sup -5}. The traces of the enhancement may be left as higher order correlation functions, that is, as non-Gaussianity, the stochastic gravitational waves that are sourced by scalar-scalar mode couplings, as well as the primordial black holes that are formed by the gravitational collapse of the enhanced curvature perturbations. We first confirm that such a temporal enhancement indeed occurs by solving the linearized perturbation equations both numerically and analytically. We then derive an analytic expression of the full-order curvature perturbation which does not rely on the frequently used sudden decay approximation and is exact on superhorizon scales. By using this analytic formula, we provide expressions of the nonlinearity parameters f{sub NL}, {tau}{sub NL} and g{sub NL}. If both two curvatons contribute to the final curvature perturbations, the strong non-Gaussianity appears in the trispectrum rather than in the bispectrum. We also find a unique consistency relation between {tau}{sub NL} and g{sub NL} without f{sub NL}. By using the second-order perturbation theory, we numerically show that the spectrum of the induced gravitational waves has a plateau corresponding to duration of the enhancement and such gravitational waves can be probed by ultimate-DECIGO and space-based atomic interferometers. We finally calculate the abundance of the primordial black holes and put a constraint on the amplitude of the enhanced curvature perturbations.
A classification result for helix surfaces with parallel mean curvature in product spaces
NASA Astrophysics Data System (ADS)
Fetcu, Dorel
2015-10-01
We determine all helix surfaces with parallel mean curvature vector field which are not minimal or pseudo-umbilical in spaces of type , where M n ( c) is a simply connected n-dimensional manifold with constant sectional curvature c.
Do adult men with untreated ventral penile curvature have adverse outcomes?
Menon, Vani; Breyer, Benjamin; Copp, Hillary L.; Baskin, Laurence; Disandro, Michael; Schlomer, Bruce J.
2016-01-01
Summary Introduction Congenital ventral penile curvature without hypospadias is often treated surgically in childhood. The history of untreated ventral curvature is unknown. Objective This study’s aim was to examine the association of untreated ventral penile curvature with various sexual and psychosexual outcomes. Study design An electronic survey was advertised to men older than 18 years on Facebook. Men with possible ventral penile curvature identified themselves by choosing sketches that most closely represented their anatomy. Outcomes assessed included: Sexual Health Inventory for Men, difficulty of intercourse because of curvature, International Prostate Symptom Score, Penile Perception Score, psychosexual milestones, paternity, infertility, sitting to urinate, and the CDC HRQOL-4 module. Results Among participants, 81 out of 684 men (11.8%) reported untreated ventral penile curvature. Participants with self-reported curvature noted more difficulty with intercourse because of curvature (4.5 vs 4.9, p < 0.001), more unhealthy mental days (8.6 vs 6.2, p = 0.02), and increased dissatisfaction with penile self-perception compared with men without reported curvature (8.6 vs 9.5, p < 0.001). Discussion Men with possible untreated ventral curvature reported worse penile perception scores, more mentally unhealthy days, and increased difficulty with intercourse secondary to curvature compared with men without curvature. A limitation to this study is selection bias; responses collected were self-reported from survey volunteers. Additionally, the question identifying ventral penile curvature is not validated but performed well in pretesting. Most questions were from validated surveys, but some were modeled after validated surveys and/or contained high face validity types of questions. Conclusion Men with possible untreated ventral penile curvature reported more dissatisfaction with penile appearance, increased difficulty with intercourse, and more unhealthy mental
Constructing Graphs over with Small Prescribed Mean-Curvature
NASA Astrophysics Data System (ADS)
Carley, Holly; Kiessling, Michael K.-H.
2015-12-01
In this paper nonlinear Hodge theory and Banach algebra estimates are employed to construct a convergent series expansion which solves the prescribed mean curvature equation for n-dimensional hypersurfaces in (+ sign) and (- sign) which are graphs of a smooth function , and whose mean curvature function H is α-Hölder continuous and integrable, with small norm. The radius of convergence is estimated explicitly from below. Our approach is inspired by, and applied to, the Maxwell-Born-Infeld theory of electromagnetism in , for which our method yields the first systematic way of explicitly computing the electrostatic potential for regular charge densities and small Born parameter, with explicit error estimates at any order of truncation of the series. In particular, our results level the ground for a controlled computation of Born-Infeld effects on the Hydrogen spectrum.
Generating ekpyrotic curvature perturbations before the big bang
Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.
2007-11-15
We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97
Curvature boundary condition for a moving contact line
NASA Astrophysics Data System (ADS)
Luo, J.; Hu, X. Y.; Adams, N. A.
2016-04-01
Effective wall boundary conditions are very important for simulating multi-phase flows involving a moving contact line. In this paper we present a curvature boundary condition to circumvent the difficulties of previous approaches on explicitly imposing the contact angle and with respect to mass-loss artifacts near the wall boundary. While employing the asymptotic theory of Cox for imposing an effective curvature directly at the wall surface, the present method avoids a mismatch between the exact and the numerical contact angles. Test simulations on drop spreading and multi-phase flow in a channel show that the present method achieves grid-convergent results and ensures mass conservation, and delivers good agreement with theoretical, numerical and experimental data.
Membrane tension controls the assembly of curvature-generating proteins
Simunovic, Mijo; Voth, Gregory A.
2015-01-01
Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell. PMID:26008710
Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors
Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.
2011-01-31
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Gogotsi, Yury G.; Yushin, Gleb; Portet, Cristelle
2010-01-01
Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.
Confinement for Thin Film on Substrates with Different Geometric Curvatures
NASA Astrophysics Data System (ADS)
Xu, Jie; Chen, Jiao; Xue, Gi
2014-03-01
Molecular chain conformation in thin polymer film on substrates with different geometric curvature was examined using fluorescence non-radiative energy transfer (NRET) spectroscopy. We find that thin film on concave substrate exihibits significant differences in vitrification behavior, in both magnitude and thickness dependence, from the planar film. NRET measured a more compact morphology, while dynamical scanning calorimetry detected an increased glass transition temperature (Tg) for the concave thin film, with respect to bulk film. In contrast to planar film where properties are thickness dependent, polymer concave film shows that its conformation and Tg are solely dependent on curvature radius. Surprisingly, these properties converted back to the bulk values when the substrate was removed, indicating the crucial importance of interaction imposed by the concave hard wall. These spectroscopic data matched perfectly the calorimetric results and provided a new implication to understanding geometric confinement on dynamics.
Dynamic Chord-wise Tip Curvature on Flexible Flapping Plates
NASA Astrophysics Data System (ADS)
Martin, Nathan; Gharib, Morteza
2014-11-01
The aerodynamic characteristics of long rectangular flapping plates are strongly influenced by the interaction between tip and edge vortices. This has led to the development of many tip actuation mechanisms to independently bend or rotate the tip towards the root of the plate in the span-wise direction. In our current work, the influence of dynamically altering the chord-wise curvature of the tip on the generation of aerodynamic forces is investigated; for this case, the two free corners of the flat plate bend towards each other. The parameters of actuation timing, maximum curvature, Reynolds number, flexibility, and tip speed are independently varied to determine their influence. These results will further the fundamental understanding of unsteady aerodynamics. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship and the Gordon and Betty Moore foundation.
Control of repeat protein curvature by computational protein design
Park, Keunwan; Shen, Betty W.; Parmeggiani, Fabio; Huang, Po-Ssu; Stoddard, Barry L.; Baker, David
2014-01-01
Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat protein scaffolds, and apply it to leucine rich repeat proteins. First, a set of self-compatible building block modules are designed that when polymerized each generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom designed shapes are generated by appropriately combining building block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat protein curvature. PMID:25580576
Spontaneous curvature in chiral polar filaments near interfaces
NASA Astrophysics Data System (ADS)
Olmsted, Peter D.; Riley, Emily E.; Jordens, Sophia; Usov, Ivan; Isa, Lucio; Mezzenga, Raffaele
2015-03-01
Chiral filaments (actin, DNA, alpha helical strands, ...) are ubiquitous in biology, and they frequently come into contact with interfaces or inhomogeneous environments, either in biology (e.g. actin on membranes) or use and processing of biomaterials (fibrils at solvent boundaries or nanoparticle surfaces). Recent experiments have shown that amyloid fibrils can develop unusual curvatures at the air-water interface. Here we show that spontaneous curvature follows, on symmetry grounds, for chiral polar filaments placed in inhomgeneous environments such as near surfaces. We demonstrate this for simple model surface-fibril interactions, and discuss some of the implications. Financial support is acknowledged from: ETH Zurich (ETHIIRA TH 32-1), SNF (2-77002-11), and SNSF (IZK072_141955, PP00P2_144646/1, PZ00P2_142532/1).
Preference for Curvature: A Historical and Conceptual Framework
Gómez-Puerto, Gerardo; Munar, Enric; Nadal, Marcos
2016-01-01
That people find curved contours and lines more pleasurable than straight ones is a recurrent observation in the aesthetic literature. Although such observation has been tested sporadically throughout the history of scientific psychology, only during the last decade has it been the object of systematic research. Recent studies lend support to the idea that human preference for curved contours is biologically determined. However, it has also been argued that this preference is a cultural phenomenon. In this article, we review the available evidence, together with different attempts to explain the nature of preference for curvature: sensoriomotor-based and valuation-based approaches. We also argue that the lack of a unifying framework and clearly defined concepts might be undermining our efforts towards a better understanding of the nature of preference for curvature. Finally, we point to a series of unresolved matters as the starting point to further develop a consistent research program. PMID:26793092
DNA Origami with Complex Curvatures in Three-Dimensional Space
Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao
2011-04-14
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.
Effect of curvature on three-dimensional boundary layer stability
NASA Technical Reports Server (NTRS)
Malik, M. R.; Poll, D. I. A.
1984-01-01
The problem of the stability of a three-dimensional laminar boundary layer formed on a curved surface is considered. A calculation scheme, which takes account of the curvature of the flow streamlines and of the surface is proposed for the prediction of the development of small amplitude temporal disturbances. Computations have been performed for the flow over the windward face of an infinitely long yawed cylinder and comparisons have been made with experimental data. These indicate that the theory correctly predicts many of the features of the unstable laminar flow. The theory also suggests that transition, in this particular situation, is dominated by traveling disturbance waves and that, at the experimentally observed transition location, the wave which has undergone greatest total amplification has an amplitude ratio of approximately e to the 11th. When the effects of curvature are omitted the maximum amplitude ratio at transition is about e to the 17th.
On the breakdown of the curvature perturbation ζ during reheating
NASA Astrophysics Data System (ADS)
Tarman Algan, Merve; Kaya, Ali; Seyma Kutluk, Emine
2015-04-01
It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0dot phi=, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0varphi=, where varphi denotes the inflaton perturbation, breaks down when 0dot phi=. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation varphi in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.
Membrane curvature in cell biology: An integration of molecular mechanisms.
Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L
2016-08-15
Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656
Chowdhury, Debashree Basu, B.
2013-02-15
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has also been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.
A three-dimensional validation of crack curvature in muscovite mica
J. C. Hill; J. W. Foulk III; P. A. Klein; E. P. Chen
2001-01-07
Experimental and computational efforts focused on characterizing crack tip curvature in muscovite mica. Wedge-driven cracks were propagated under monochromatic light. Micrographs verified the subtle curvature of the crack front near the free surface. A cohesive approach was employed to model mixed-mode fracture in a three-dimensional framework. Finite element calculations captured the crack curvature observed in experiment.
Digital elevation model visibility including Earth's curvature and atmosphere refraction
NASA Astrophysics Data System (ADS)
Santossilva, Ewerton; Vieiradias, Luiz Alberto
1990-03-01
There are some instances in which the Earth's curvature and the atmospheric refraction, optical or electronic, are important factors when digital elevation models are used for visibility calculations. This work deals with this subject, suggesting a practical approach to solve this problem. Some examples, from real terrain data, are presented. The equipment used was an IBM-PC like computer with a SITIM graphic card.
Global and local curvature in density functional theory
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Entropy production and curvature perturbation from dissipative curvatons
Matsuda, Tomohiro
2010-09-01
Considering the curvaton field that follows dissipative slow-roll equation, we show that the field can lead to entropy production and generation of curvature perturbation after reheating. Spectral index is calculated to discriminate warm and thermal scenarios of dissipative curvatons from the standard curvaton model. In contrast to the original curvaton model, quadratic potential is not needed in the dissipative scenario, since the growth in the oscillating period is not essential for the model.
Higher Curvature Effects in the ADD and RS Models
Rizzo, Thomas G.; /SLAC
2006-07-05
Over the last few years several extra-dimensional models have been introduced in attempt to deal with the hierarchy problem. These models can lead to rather unique and spectacular signatures at Terascale colliders such as the LHC and ILC. The ADD and RS models, though quite distinct, have many common feature including a constant curvature bulk, localized Standard Model(SM) fields and the assumption of the validity of the EH action as a description of gravitational interactions.
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide. PMID:27497541
Reheating via a generalized nonminimal coupling of curvature to matter
Bertolami, Orfeu; Frazao, Pedro; Paramos, Jorge
2011-02-15
In this work, one shows that a generalized nonminimal coupling between geometry and matter is compatible with Starobinsky inflation and leads to a successful process of preheating, a reheating scenario based on the production of massive particles via parametric resonance. The model naturally extends the usual preheating mechanism, which resorts to an ad hoc scalar curvature-dependent mass term for a scalar field {chi}, and also encompasses a previously studied preheating channel based upon a nonstandard kinetic term.
Resolution of curvature singularities from quantum mechanical and loop perspective
NASA Astrophysics Data System (ADS)
Tahamtan, T.; Svítek, O.
2014-08-01
We analyze the persistence of curvature singularities when analyzed using quantum theory. First, quantum test particles obeying the Klein-Gordon and Chandrasekhar-Dirac equation are used to probe the classical timelike naked singularity. We show that the classical singularity is felt even by our quantum probes. Next, we use loop quantization to resolve a singularity hidden beneath the horizon. The singularity is resolved in this case.
CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION
Kaganovich, Alexander; Lyubarsky, Yuri
2010-10-01
The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.
Toward assessing the effects of crack front curvature /CFC/.
NASA Technical Reports Server (NTRS)
Swedlow, J. L.; Ritter, M. A.
1972-01-01
Consideration of the effect of crack front curvature (CFC) on the K calibration of five special geometries in which CFC occurs. The five cases considered include an elliptical crack in an infinite medium, an internal annular crack in a thick-walled cylinder, a through crack in a flat plate, a part-through crack in a plate, and an irregularly shaped crack in a solid. It is shown that K depends on CFC differently in each case.
Różycki, Bartosz; Lipowsky, Reinhard
2016-08-21
Biomimetic and biological membranes consist of molecular bilayers with two leaflets that are typically exposed to different aqueous solutions. We consider solutions of "particles" that experience effectively repulsive interactions with these membranes and form depletion layers in front of the membrane leaflets. The particles considered here are water-soluble, have a size between a few angstrom and a few nanometers as well as a rigid, more or less globular shape, and do neither adsorb onto the membranes nor permeate these membranes. Examples are provided by ions, small sugar molecules, globular proteins, or inorganic nanoparticles with a hydrophilic surface. We first study depletion layers in a hard-core system based on ideal particle solutions as well as hard-wall interactions between these particles and the membrane. For this system, we obtain exact expressions for the coverages and tensions of the two leaflets as well as for the spontaneous curvature of the bilayer membrane. All of these quantities depend linearly on the particle concentrations. The exact results for the hard-core system also show that the spontaneous curvature can be directly deduced from the planar membrane geometry. Our results for the hard-core system apply both to ions and solutes that are small compared to the membrane thickness and to nanoparticles with a size that is comparable to the membrane thickness, provided the particle solutions are sufficiently dilute. We then corroborate the different relationships found for the hard-core system by extensive simulations of a soft-core particle system using dissipative particle dynamics. The simulations confirm the linear relationships obtained for the hard-core system. Both our analytical and our simulation results show that the spontaneous curvature induced by a single particle species can be quite large. When one leaflet of the membrane is exposed, e.g., to a 100 mM solution of glucose, a lipid bilayer can acquire a spontaneous curvature of ±1
Curvature wavefront sensing for the large synoptic survey telescope.
Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian
2015-10-20
The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from four curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1 mm on either side of focus. In this paper, we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intrafocal and extrafocal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing. PMID:26560396
Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2001-01-01
The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.
Curvature wavefront sensing for the large synoptic survey telescope
NASA Astrophysics Data System (ADS)
Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian
2015-10-01
The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intra- and extra-focal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.
Berry Curvature and Chiral Plasmons in Massive Dirac Materials
NASA Astrophysics Data System (ADS)
Song, Justin; Rudner, Mark
2015-03-01
In the semiclassical model of carrier dynamics, quasiparticles are described as nearly free electrons with modified characteristics modified characteristics such as effective masses which may differ significantly from those of an electron in vacuum. In addition to being influenced by external electric and magnetic fields, the trajectories of electrons in topological materials are also affected by the presence of an interesting quantum mechanical field - the Berry curvature - which is responsible for a number of anomalous transport phenomena recently observed in Dirac materials including G/hBN, and MoS2. Here we discuss how Berry curvature can affect the collective behavior of electrons in these systems. In particular, we show that the collective electronic excitations in metallic massive Dirac materials can feature a chirality even in the absence of an applied magnetic field. The chirality of these plasmons arises from the Berry curvature of the massive Dirac bands. The corresponding dispersion is split between left- and right-handed modes. We also discuss experimental manifestations.
Curvature-dependent excitation propagation in cultured cardiac tissue
NASA Astrophysics Data System (ADS)
Kadota, S.; Kay, M. W.; Magome, N.; Agladze, K.
2012-02-01
The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.
Damage identification techniques via modal curvature analysis: Overview and comparison
NASA Astrophysics Data System (ADS)
Dessi, Daniele; Camerlengo, Gabriele
2015-02-01
This paper aims to compare several damage identification methods based on the analysis of modal curvature and related quantities (natural frequencies and modal strain energy) by evaluating their performances on the same test case, a damaged Euler-Bernoulli beam. Damage is modelled as a localized and uniform reduction of stiffness so that closed-form expressions of the mode-shape curvatures can be analytically computed and data accuracy, which affects final results, can be controlled. The selected techniques belong to two categories: one includes several methods that need reference data for detecting structural modifications due to damage, the second group, including the modified Laplacian operator and the fractal dimension, avoids the knowledge of the undamaged behavior for issuing a damage diagnosis. To explain better the different performances of the methods, the mathematical formulation has been revised in some cases so as to fit into a common framework where the underlying hypotheses are clearly stated. Because the various damage indexes are calculated on 'exact' data, a sensitivity analysis has been carried out with respect to the number of points where curvature information is available, to the position of damage between adjacent points, to the modes involved in the index computation. In this way, this analysis intends to point out comparatively the capability of locating and estimating damage of each method along with some critical issues already present with noiseless data.
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Curvature Forces in Membrane Lipid-Protein Interactions
NASA Astrophysics Data System (ADS)
Brown, Michael F.
2012-02-01
Membrane protein conformational changes, folding, and stability may all involve elastic deformation of the bilayer. Non-specific properties of the bilayer play a significant role in modulating protein conformational energetics. A flexible-surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. The FSM describes elastic coupling of membrane lipids to integral membrane proteins. Curvature and hydrophobic matching to the lipid bilayer entails a stress field that explains membrane protein stability. Rhodopsin provides an important example, where solid-state NMR and FTIR spectroscopy characterize the energy landscape of the dynamically activated receptor. Time-resolved UV-visible and FTIR spectroscopic studies show how membrane lipids affect the metarhodopsin equilibrium due to non-specific material properties. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress on rhodopsin function are all explained by the new biomembrane model. By contrast, the older fluid-mosaic model fails to account for such effects on membrane protein activity. According to the FSM proteins are regulated by membrane lipids whose spontaneous curvature most closely matches the activated state within the lipid membrane.
The Hydrophobic Insertion Mechanism of Membrane Curvature Generation by Proteins
Campelo, Felix; McMahon, Harvey T.; Kozlov, Michael M.
2008-01-01
A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Here we suggest, for the first time to our knowledge, a quantitative mechanism of lipid membrane bending by hydrophobic or amphipathic rodlike inclusions which simulate amphipathic α-helices—structures shown to sculpt membranes. Considering the lipid monolayer matrix as an anisotropic elastic material, we compute the intramembrane stresses and strains generated by the embedded inclusions, determine the resulting membrane shapes, and the accumulated elastic energy. We characterize the ability of an inclusion to bend membranes by an effective spontaneous curvature, and show that shallow rodlike inclusions are more effective in membrane shaping than are lipids having a high propensity for curvature. Our computations provide experimentally testable predictions on the protein amounts needed to generate intracellular membrane shapes for various insertion depths and membrane thicknesses. We also predict that the ability of N-BAR domains to produce membrane tubules in vivo can be ascribed solely to insertion of their amphipathic helices. PMID:18515373
Effect of Interface Curvature on Super-Hydrophobic Drag Reduction
NASA Astrophysics Data System (ADS)
Rastegari, Amirreza; Akhavan, Rayhaneh
2015-11-01
The effect of interface curvature on Super-Hydrophobic (SH) Drag Reduction (DR) has been investigated using DNS with lattice Boltzmann methods in laminar (Rebulk = 50) and turbulent (Rebulk = 3600 , Reτ0 ~ 223) channel flows. SH surfaces with longitudinal arrays of micro-grooves (MG) of size 0 . 1 <= g / h <= 0 . 47 & g / w = 1 , 7 were investigated, where g and w denote the width of the MG and the separation in between them, respectively, and h denotes the channel half-height. The liquid/gas interfaces on the SH MG were modeled as `idealized', stationary, curved, shear-free boundaries, with the interface curvatures determined from the Young-Laplace equation. The presence of interface curvature leads to enhancements of DR by up to 10% in laminar flow, and more modest enhancements or even decreases in DR in turbulent flow, compared to flat, shear-free interfaces. These enhancements or decreases in DR, relative to flat, shear-free interfaces, in both laminar and turbulent flow, are shown to arise primarily from the modified shape of the cross section of the channel in the presence of the curved interface.
Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids
Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.
2016-01-01
We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777
Formation of Curvature Subunit of Carbon in Combustion.
Wu, Xin-Zhou; Yao, Yang-Rong; Chen, Miao-Miao; Tian, Han-Rui; Xiao, Jun; Xu, Yun-Yan; Lin, Min-Song; Abella, Laura; Tian, Cheng-Bo; Gao, Cong-Li; Zhang, Qianyan; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun
2016-08-01
Curvature prevalently exists in the world of carbon materials (e.g., fullerenes, buckyl bowls, carbon nanotubes, and onions), but traditional C2-addition mechanisms fail to elucidate the mechanism responsible for the formation of carbon curvature starting from a pentagonal carbon ring in currently available chemical-physical processes such as combustion. Here, we show a complete series of nascent pentagon-incorporating C5-C18 that are online produced in the flame of acetylene-cyclopentadiene-oxygen and in situ captured by C60 or trapped as polycyclic aromatic hydrocarbons for clarifying the growth of the curved subunit of C20H10. A mechanism regarding C1-substitution and C2-addition has been proposed for understanding the formation of curvature in carbon materials, as exemplified by the typical curved molecule containing a single pentagon completely surrounded by five hexagons. The present mechanism, supported by the intermediates characterized by X-ray crystallography as well as NMR, has been experimentally validated for the rational synthesis of curved molecule in the commercially useful combustion process. PMID:27377559
Finger vein extraction using gradient normalization and principal curvature
NASA Astrophysics Data System (ADS)
Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan
2009-02-01
Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.
Sensitivity to curvatures in orientation-based texture segmentation.
Ben-Shahar, Ohad; Zucker, Steven W
2004-02-01
Texture segregation has long been attributed to changes in the distribution of elementary features across the visual field [Nature 290 (12) (1981) 91; Biol. Cybernet. 54 (1986) 245]. The study of orientation, a conspicuous feature, has led to models of orientation-based texture segmentation (OBTS) that depend on the magnitude of one or two orientation gradients [Vis. Res. 31 (4) (1991) 679; Vis. Res. 31 (6) (1991) 1073] and influenced further by the relative configuration between the orientation textons and the global orientation edge [Percept. Psychophys. 52 (4) (1992) 255; Vis. Res. 35 (20) (1995) 2863]. Here we show that these models are at best partial and that the notion of orientation gradient has been incompletely used in the study of OBTS. To do so, we first study the behavior of orientation in orientation-defined texture patches. Geometrical analysis identifies two texture curvatures and reveals the incompleteness of previous stimuli. Psychophysical experimentation then demonstrates that segmentation is strongly affected by discontinuities in these curvatures. Importantly, we show that this sensitivity to curvature is independent of the orientation gradients and inconsistent with the simple configural considerations proposed in the past. PMID:14642898
Generic Properties of Curvature Sensing through Vision and Touch
2013-01-01
Generic properties of curvature representations formed on the basis of vision and touch were examined as a function of mathematical properties of curved objects. Virtual representations of the curves were shown on a computer screen for visual scaling by sighted observers (experiment 1). Their physical counterparts were placed in the two hands of blindfolded and congenitally blind observers for tactile scaling. The psychophysical data show that curvature representations in congenitally blind individuals, who never had any visual experience, and in sighted observers, who rely on vision most of the time, are statistically linked to the same mathematical properties of the curves. The perceived magnitude of object curvature, sensed through either vision or touch, is related by a mathematical power law, with similar exponents for the two sensory modalities, to the aspect ratio of the curves, a scale invariant geometric property. This finding supports biologically motivated models of sensory integration suggesting a universal power law for the adaptive brain control and balance of motor responses to environmental stimuli from any sensory modality. PMID:24454538
NASA Astrophysics Data System (ADS)
Chowdhury, Debashree; Basu, B.
2013-02-01
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has also been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived.
Barreto-Ortiz, Sebastian F.; Zhang, Shuming; Davenport, Matthew; Fradkin, Jamie; Ginn, Brian; Mao, Hai-Quan; Gerecht, Sharon
2013-01-01
In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100–400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature. PMID:24278378
Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature.
Tahir, Mukarram A; Van Lehn, Reid C; Choi, S H; Alexander-Katz, Alfredo
2016-06-01
The stochastic protrusion of hydrophobic lipid tails into solution, a subclass of hydrophobic membrane defects, has recently been shown to be a critical step in a number of biological processes like membrane fusion. Understanding the factors that govern the appearance of lipid tail protrusions is critical for identifying membrane features that affect the rate of fusion or other processes that depend on contact with solvent-exposed lipid tails. In this work, we utilize atomistic molecular dynamics simulations to characterize the likelihood of tail protrusions in phosphotidylcholine lipid bilayers of varying composition, curvature, and hydration. We distinguish two protrusion modes corresponding to atoms near the end of the lipid tail or near the glycerol group. Through potential of mean force calculations, we demonstrate that the thermodynamic cost for inducing a protrusion depends on tail saturation but is insensitive to other bilayer structural properties or hydration above a threshold value. Similarly, highly curved vesicles or micelles increase both the overall frequency of lipid tail protrusions as well as the preference for splay protrusions, both of which play an important role in driving membrane fusion. In multi-component bilayers, however, the incidence of protrusion events does not clearly depend on the mismatch between tail length or tail saturation of the constituent lipids. Together, these results provide significant physical insight into how system components might affect the appearance of protrusions in biological membranes, and help explain the roles of composition or curvature-modifying proteins in membrane fusion. PMID:26828121
Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Giuliani, James E.
1994-01-01
The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.
Mészáros, Noémi; Cibulka, Jakub; Mendiburo, Maria Jose; Romanauska, Anete; Schneider, Maren; Köhler, Alwin
2015-01-01
Summary Nuclear pore complexes (NPCs) are selective transport channels embedded in the nuclear envelope. The cylindrical NPC core forms a protein coat lining a highly curved membrane opening and has a basket-like structure appended to the nucleoplasmic side. How NPCs interact with lipids, promoting membrane bending and NPC integrity, is poorly understood. Here we show that the NPC basket proteins Nup1 and Nup60 directly induce membrane curvature by amphipathic helix insertion into the lipid bilayer. In a cell-free system, both Nup1 and Nup60 transform spherical liposomes into highly curved membrane structures. In vivo, high levels of the Nup1/Nup60 amphipathic helices cause deformation of the yeast nuclear membrane, whereas adjacent helical regions contribute to anchoring the basket to the NPC core. Basket amphipathic helices are functionally linked to distinct transmembrane nucleoporins of the NPC core, suggesting a key contribution to the membrane remodeling events that underlie NPC assembly. PMID:25942622
A bivariate approach to the variation of the parietal curvature in the genus homo.
Bruner, Emiliano; De La Cuétara, José Manuel; Holloway, Ralph
2011-09-01
The parietal bones approximately cover the extension of the underlying parietal lobes. Although the boundaries of these two anatomical elements do not coincide, during morphogenesis the growth of the parietal bones is largely induced by the pressure exerted by the parietal lobes. Modern humans display larger parietal chords and arcs compared with non-modern human species. However, the variation of these variables have not been analyzed before according to the covariation with the general endocranial diameters. When the curvature of the parietal bones is regressed onto the main neurocranial distances, modern humans show larger relative values, suggesting not only an absolute enlargement but a definite allometric change. Taking into account the morphogenetic relationships with the parietal lobes, these results further support previous hypotheses suggesting a relative enlargement of these cortical areas in Homo sapiens, by using simple and reliable homologous neurocranial arcs. PMID:21809464
Higher order statistics of curvature perturbations in IFF model and its Planck constraints
Fujita, Tomohiro; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp
2013-09-01
We compute the power spectrum P{sub ζ} and non-linear parameters f{sub NL} and τ{sub NL} of the curvature perturbation induced during inflation by the electromagnetic fields in the kinetic coupling model (IFF model). By using the observational result of P{sub ζ},f{sub NL} and τ{sub NL} reported by the Planck collaboration, we study the constraint on the model comprehensively. Interestingly, if the single slow-rolling inflaton is responsible for the observed P{sub ζ}, the constraint from τ{sub NL} is most stringent. We also find a general relationship between f{sub NL} and τ{sub NL} generated in this model. Even if f{sub NL} ∼ O(1), a detectable τ{sub NL} can be produced.
The influence of pipe organ reed curvature on tone quality.
Plitnik, George R; Angster, Judit
2012-11-01
Although organ flue pipes have been widely studied, the same claim cannot be made for pipe organ reed stops. Given certain design constraints, such as the type of reed stop being voiced and the desired tone quality, the reed voicer must use consummate skill to curve the reed tongue so as to produce the best and most stable tone as well as to guarantee that each pipe blends with its neighbors. The amount and type of curve given to a reed tongue influences not only the harmonic structure of the steady-state sound but also the attack. There are two fundamentally different types of curvature that can be given to a reed tongue, the trompette (chorus reed) curve (which gives a bright sound) and the smooth-toned curve employed for clarinet pipes. This study investigated the effect of reed curvature on the vibration and tone (as assessed by professionals) on reed tongues of both types. Two F2 (8'F, 87.3 Hz) pipes (a trompette and a clarinet) were constructed and voiced with differently curved tongues to produce a variety of tones. The vibration of the reed tongue was measured under typical conditions by laser vibrometer; the pressure waves in the boot and in the shallot were measured by means of one-quarter inch microphones, and the pipe's sound was recorded at the egress. By performing various measurements simultaneously, phase differences were also determined, the extreme sensitivity of tone to reed curvature was demonstrated, and a recently proposed theory of reed vibration was shown to be more accurate than the standard model. PMID:23145630
Closeness to spheres of hypersurfaces with normal curvature bounded below
Borisenko, A A; Drach, K D
2013-11-30
For a Riemannian manifold M{sup n+1} and a compact domain Ω⊂ M{sup n+1} bounded by a hypersurface ∂Ω with normal curvature bounded below, estimates are obtained in terms of the distance from O to ∂Ω for the angle between the geodesic line joining a fixed interior point O in Ω to a point on ∂Ω and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented. Bibliography: 9 titles.
Constant mean curvature slicings of Kantowski-Sachs spacetimes
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Curvature singularities from gravitational contraction in f(R) gravity
NASA Astrophysics Data System (ADS)
Reverberi, Lorenzo
2013-04-01
The discovery of the accelerated expansion of the Universe has had a vast resonance on a number of physical disciplines. In recent years several viable modified gravity models have been proposed, which naturally lead to a late-time de Sitter stage while basically reducing to General Relativity in the early Universe. We consider a contracting cloud of pressureless dust, having arbitrary mass and initial density, and study some aspects of these modified gravity models. We show how the increasing energy/mass density may lead to a curvature singularity and discuss the typical time scales for its development.
Research on stretched membrane with electrostatic curvature (SMEC) mirrors
NASA Astrophysics Data System (ADS)
Sun, X. W.; Jin, G.
Stretched Membrane with Electrostatic Curvature SMEC Mirrors is a new spatial optical technology recently developed in foreign countries which performed modification of figuration of SMEC Mirror in control of Electrostatic With the folding property of membrane when it was loaded this technology have taken on important prospect in system of spatial remote sensing in the future In this paper the fundamental of SMEC Mirror was introduced the more deeply analyzing of cybernetic model completed and at present research method based on synthesis of foreign development in the field was put forward
CIRCULAR POLARIZATION IN PULSARS DUE TO CURVATURE RADIATION
Gangadhara, R. T.
2010-02-10
The beamed radio emission from relativistic plasma (particles or bunches), constrained to move along the curved trajectories, occurs in the direction of velocity. We have generalized the coherent curvature radiation model to include the detailed geometry of the emission region in pulsar magnetosphere and deduced the polarization state in terms of Stokes parameters. By considering both the uniform and modulated emissions, we have simulated a few typical pulse profiles. The antisymmetric type of circular polarization survives only when there is modulation or discrete distribution in the emitting sources. Our model predicts a correlation between the polarization angle swing and sign reversal of circular polarization as a geometric property of the emission process.
Direct and alignment-insensitive measurement of cantilever curvature
Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.
2013-07-15
We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.
Third MACAO-VLTI Curvature Adaptive Optics System now installed
NASA Astrophysics Data System (ADS)
Arsenault, R.; Donaldson, R.; Dupuy, C.; Fedrigo, E.; Hubin, N.; Ivanescu, L.; Kasper, M.; Oberti, S.; Paufique, J.; Rossi, S.; Silber, A.; Delabre, B.; Lizon, J.-L.; Gigan, P.
2004-09-01
IN JULY of this year the MACAO team returned to Paranal for the third time to install another MACAOVLTI system. These are 4 identical 60 element curvature adaptive optics systems, located in the Coudé room of each UT whose aim is to feed a turbulence corrected wavefront to the VLTI Recombination Laboratory. This time the activities took place on Yepun (UT4). The naming convention has been to associate the MACAO-VLTI number to the UT number where it is installed. Therefore, although we speak here of MACAO#4, it is the third system installed in Paranal.
Pattern curvature to control pore shape and its ordering
NASA Astrophysics Data System (ADS)
Yu, Guiduk; Shin, Kyusoon
2013-03-01
Triangular pore in inverse-hexagonal packing was fabricated by anodizing Al with convex pattern in hexagonal packing. The convexly patterned Al was prepared via replication of the concave structure formed in self-assembled anodized aluminum oxide (AAO). Self-assembled AAO without pre-patterning produces hexagonal packing circular pores. Exploitation of the inversed structure was found to create well-defined triangular pores in inverse-hexagonal packing. Anisotropic pore feature was discussed to come from the alternating distance between the pits and the curvature of the pattern. Also, by controlling the topography of the convex pattern around pits, we investigated the effect of pattern topography on pore initiation.
Berry curvature as a lower bound for multiparameter estimation
NASA Astrophysics Data System (ADS)
Guo, Wei; Zhong, Wei; Jing, Xiao-Xing; Fu, Li-Bin; Wang, Xiaoguang
2016-04-01
Quantum Fisher information (QFI) is a key concept in quantum state estimation, and Berry curvature (BC) is another basic concept to describe geometric properties of quantum states. In this paper, we consider pure states undergoing unitary parametrization processes and show that the BC serves as a lower bound for the product of QFIs corresponding to two different parameters through the Heisenberg uncertainty relation. This relation between QFI and BC implies that the estimation precisions of two different parameters are mutually restrictive due to finite BC, and the notion of QFI squeezing is introduced. A scenario of general su(2) parametrization is considered in detail to verify the relation between the QFI and BC.
Metrics with prescribed Ricci curvature on homogeneous spaces
NASA Astrophysics Data System (ADS)
Pulemotov, Artem
2016-08-01
Let G be a compact connected Lie group and H a closed subgroup of G. Suppose the homogeneous space G / H is effective and has dimension 3 or higher. Consider a G-invariant, symmetric, positive-semidefinite, nonzero (0, 2)-tensor field T on G / H. Assume that H is a maximal connected Lie subgroup of G. We prove the existence of a G-invariant Riemannian metric g and a positive number c such that the Ricci curvature of g coincides with cT on G / H. Afterwards, we examine what happens when the maximality hypothesis fails to hold.
3D Hole Inspection Using Lens with High Field Curvature
NASA Astrophysics Data System (ADS)
Zavyalov, Petr
2015-02-01
One of the actual 3D measurement problems is the optical inspection of various holes. In this respect, the task of plane image formation of holes as extended 3D objects using optical methods turns out to be of primary importance. We have developed specialized lenses that perform such transformations due to specially increased aberrations (field curvature, astigmatism) for the formation of extended objects plane images. The calculations of the lens parameters are presented. The detail analysis of the imaging properties was carried out. The presented hole inspection lens has been designed, constructed and used for inspection of the fuel assembly spacer grids.
Information content in F (R ) brane models with nonconstant curvature
NASA Astrophysics Data System (ADS)
Correa, R. A. C.; Moraes, P. H. R. S.; Dutra, A. de Souza; da Rocha, Roldão
2015-12-01
In this work we investigate the entropic information measure in the context of braneworlds with nonconstant curvature. The braneworld entropic information is studied for gravity modified by the square of the Ricci scalar, besides the usual Einstein-Hilbert term. We showed that the minimum value of the brane configurational entropy provides a stricter bound on the parameter that is responsible for the F (R ) model differing from the Einstein-Hilbert standard one. Our results are moreover consistent to a negative bulk cosmological constant.
2008 ULTRASONIC BENCHMARK STUDIES OF INTERFACE CURVATURE--A SUMMARY
Schmerr, L. W.; Huang, R.; Raillon, R.; Mahaut, S.; Leymarie, N.; Lonne, S.; Spies, M.; Lupien, V.
2009-03-03
In the 2008 QNDE ultrasonic benchmark session researchers from five different institutions around the world examined the influence that the curvature of a cylindrical fluid-solid interface has on the measured NDE immersion pulse-echo response of a flat-bottom hole (FBH) reflector. This was a repeat of a study conducted in the 2007 benchmark to try to determine the sources of differences seen in 2007 between model-based predictions and experiments. Here, we will summarize the results obtained in 2008 and analyze the model-based results and the experiments.
Statistical anisotropy of the curvature perturbation from vector field perturbations
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co
2009-05-15
The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.
An algorithm for prescribed mean curvature using isogeometric methods
NASA Astrophysics Data System (ADS)
Chicco-Ruiz, Aníbal; Morin, Pedro; Pauletti, M. Sebastian
2016-07-01
We present a Newton type algorithm to find parametric surfaces of prescribed mean curvature with a fixed given boundary. In particular, it applies to the problem of minimal surfaces. The algorithm relies on some global regularity of the spaces where it is posed, which is naturally fitted for discretization with isogeometric type of spaces. We introduce a discretization of the continuous algorithm and present a simple implementation using the recently released isogeometric software library igatools. Finally, we show several numerical experiments which highlight the convergence properties of the scheme.
Long-time behavior of material-surface curvature in isotropic turbulence
NASA Technical Reports Server (NTRS)
Girimaji, S. S.
1992-01-01
The behavior at large times of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. The main objectives are: to study the asymptotic behavior of the pdf curvature as a function of initial curvature and shape; and to establish whether the curvature of an initially plane material element goes to a stationary probability distribution. The evidence available in the literature about the asymptotic curvature-pdf of initially flat surfaces is ambiguous, and the conjecture is that it is quasi-stationary. In this work several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times the moments of the logarithm of curvature are independent of the initial pdf of curvature. This, it is argued, supports the view that the curvature attains a stationary distribution at long times. It is also shown that, irrespective of initial shape or curvature, the shape of any material element at long times is cylindrical with a high probability.
Compact optical fiber curvature sensor based on concatenating two tapers.
Monzon-Hernandez, D; Martinez-Rios, A; Torres-Gomez, I; Salceda-Delgado, G
2011-11-15
A low-loss, compact, and highly sensitive optical fiber curvature sensor is presented. The device consists of two identical low-loss fused fiber tapers in tandem separated by a distance L. When the optical fiber is kept straight and fixed, no interference pattern appears in the transmitted spectrum. However, when the device is bent, the symmetry of the straight taper is lost and the first taper couples light into the cladding modes. In the second taper, a fraction of the total light guided by the cladding modes will be coupled back to the fundamental mode, producing an interference pattern in the transmitted spectrum. As the fiber device is bent, visibility of the interference fringes grows, reaching values close to 1. The dynamic range of the device can be tailored by the proper selection of taper diameter and separation between tapers. The effects of temperature and refractive index of the external medium on the response of the curvature sensor is also discussed. PMID:22089570
Grain boundary curvature and grain growth kinetics with particle pinning
NASA Astrophysics Data System (ADS)
Shahandeh, Sina; Militzer, Matthias
2013-08-01
Second-phase particles are used extensively in design of polycrystalline materials to control the grain size. According to Zener's theory, a distribution of particles creates a pinning pressure on a moving grain boundary. As a result, a limiting grain size is observed, but the effect of pinning on the detail of grain growth kinetics is less known. The influence of the particles on the microstructure occurs in multiple length scales, established by particle radius and the grain size. In this article, we use a meso-scale phase-field model that simulates grain growth in the presence of a uniform pinning pressure. The curvature of the grain boundary network is measured to determine the driving pressure of grain growth in 2D and 3D systems. It was observed that the grain growth continues, even under conditions where the average driving pressure is smaller than the pinning pressure. The limiting grain size is reached when the maximum of driving pressure distribution in the structure is equal to the pinning pressure. This results in a limiting grain size, larger than the one predicted by conventional models, and further analysis shows consistency with experimental observations. A physical model is proposed for the kinetics of grain growth using parameters based on the curvature analysis of the grain boundaries. This model can describe the simulated grain growth kinetics.
Residual stress determination from a laser-based curvature measurement
W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright
2000-05-08
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
Residual Stress Determination from a Laser-Based Curvature Measurement
Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil
2000-05-01
Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.
Ring polymer simulations with global radius of curvature.
Neuhaus, T; Zimmermann, O; Hansmann, Ulrich H E
2007-05-01
We simulate three-dimensional flexible off-lattice ring polymers of length L up to L=4000 for various values of the global radius of curvature Rgrc=0.25 , 0.48, and 1.0 and Rgrc=2.0 . We utilize two different ensembles: one with a delta -function constraint on the radius, and the other with a theta -function. For both cases the global radius of curvature provides a valid regularization of polymers with thickness D=2Rgrc . The Flory-type critical exponent nu SAW of self-avoiding rings at D=2 is found to be nu SAW=0.5869(5) from the radii of gyration chain length scaling, while other D values produce consistent results. For our current implementation, the numerical effort of chain thickness calculations is bounded by a number O(LlnL) per single update. We also study low-temperature configurations of spatially dense Lennard-Jones homopolymers on a ring and identify some conformational building blocks. PMID:17677089
Reeves, Matthew; Stratford, Kevin; Thijssen, Job H J
2016-05-14
Bicontinuous Pickering emulsions (bijels) are a physically interesting class of soft materials with many potential applications including catalysis, microfluidics and tissue engineering. They are created by arresting the spinodal decomposition of a partially-miscible liquid with a (jammed) layer of interfacial colloids. Porosity L (average interfacial separation) of the bijel is controlled by varying the radius (r) and volume fraction (ϕ) of the colloids (L∝r/ϕ). However, to optimize the bijel structure with respect to other parameters, e.g. quench rate, characterizing by L alone is insufficient. Hence, we have used confocal microscopy and X-ray CT to characterize a range of bijels in terms of local and area-averaged interfacial curvatures; we further demonstrate that bijels are bicontinuous using an image-analysis technique known as 'region growing'. In addition, the curvatures of bijels have been monitored as a function of time, which has revealed an intriguing evolution up to 60 minutes after bijel formation, contrary to previous understanding. PMID:27035101
Dynamic cutaneous information is sufficient for precise curvature discrimination.
Cheeseman, Jacob R; Norman, J Farley; Kappers, Astrid M L
2016-01-01
Our tactual perceptual experiences occur when we interact, actively and passively, with environmental objects and surfaces. Previous research has demonstrated that active manual exploration often enhances the tactual perception of object shape. Nevertheless, the factors that contribute to this enhancement are not well understood. The present study evaluated the ability of 28 younger (mean age was 23.1 years) and older adults (mean age was 71.4 years) to discriminate curved surfaces by actively feeling objects with a single index finger and by passively feeling objects that moved relative to a restrained finger. While dynamic cutaneous stimulation was therefore present in both conditions, active exploratory movements only occurred in one. The results indicated that there was a significant and large effect of age, such that the older participants' thresholds were 43.8 percent higher than those of the younger participants. Despite the overall adverse effect of age, the pattern of results across the active and passive touch conditions was identical. For both age groups, the curvature discrimination thresholds obtained for passive touch were significantly lower than those that occurred during active touch. Curvature discrimination performance was therefore best in the current study when dynamic cutaneous stimulation occurred in the absence of active movement. PMID:27137417
Controls on thrust belt curvature, Wyoming-Idaho thrust belt
Montgomery, J.M. Jr. . Dept. of Geological Sciences)
1993-04-01
Structural curvature in the northern part of the Wyoming-Idaho thrust belt (WITB) may be the result of either along-strike variations in pre-thrust stratigraphy or a buttress which physically concentrated shortening, or possibly both. Most thrust sheets of the WITB strike northward and were translated eastward, but in the Snake River Range (SRR) (the northernmost range in the WITB), structural strike curves from northward to nearly westward. Structural cross sections of the SRR are generally drawn in a radial pattern creating a volumetric imbalance in regional palinspastic restorations. Stratigraphic separation diagrams of major, through-going thrust faults in the SRR show extensive cut off in upper Paleozoic strata. New measured sections of upper Paleozoic stratigraphy at locations in several major thrust sheets of the WITB and in the foreland, new structural cross sections and mapping, and existing paleomagnetic data are used in a new interpretation of the origin of structural curvature in the WITB. Published paleomagnetic data require counterclockwise rotation of frontal thrust sheets along the northern boundary of the WITB, but no rotation of eastward-translated thrust sheets farther south along most of the WITB. Evidence for both a pre-existing west-trending depositional margin and rotation of frontal thrust sheets suggests that buttressing and modification of structural strike occurred along an oblique ramp where differences in stratigraphic thickness and possible pre-existing fault partitioning of the Paleozoic strata are localized.
Determination of Thermal Spray Coating Property with Curvature Measurements
NASA Astrophysics Data System (ADS)
Dwivedi, Gopal; Nakamura, Toshio; Sampath, Sanjay
2013-12-01
Real-time curvature measurement of a coating-substrate system during deposition has facilitated the monitoring of coating stresses and provided additional insights into thermal spray deposition mechanisms. However, the non-equilibrium state of coating formation along with harsh spray booth environment introduces complexity not only in data interpretation but also in the coating properties estimation. In this paper, a new procedure is proposed to estimate the elastic modulus of thermal sprayed ceramic coatings using in situ curvature and temperature measurements. In order to correlate the measurable parameters to coating elastic modulus, a systematic study is conducted to develop a suitable methodology. First, various finite element model analyses are carried out to formulate suitable relations between the measurements and elastic modulus. Subsequently, experiments are conducted to validate the procedure to estimate coating moduli. The results are compared with more accurate measurements obtained from post-deposition characterization technique under low temperature thermal cycles. The comparison suggests that the moduli estimated using the proposed procedure are in good agreements with those obtained from the post-deposition technique. Further, the nonlinear response of coatings are evaluated from the estimated moduli during deposition and cool down, which offer additional information on the characteristics of thermal spray coatings.
Polydimethylsiloxane bilayer films with an embedded spontaneous curvature.
Egunov, A I; Korvink, J G; Luchnikov, V A
2016-01-01
Elastomer polydimethylsiloxane (PDMS) films with embedded in-plane gradient stress are created by making PDMS/(PDMS + silicone oil) crosslinked bilayers and extracting the oil in a suitable organic solvent bath. The collapse of the elastomer after oil extraction generates differential stress in the films that is manifested through their out-of-plane deformation. The curvature κ of narrow stripes of the bilayer, which is composed of layers of approximately equal thicknesses and elasticity moduli, is satisfactorily described by the simple relationship κ = 1.5δH(-1), where δ is the mechanical strain, and H is the total thickness of the bilayer. Curvature mapping of triangular PDMS plates reveals the existence of spherical and cylindrical types of deformation at different locations of the plates. Various 3D-shaped objects can be formed by the self-folding of appropriately designed 2D patterns that are cut from the films, or by nonuniform distribution of the collapsing layer. Thin PDMS bilayers with embedded stress roll up into microtubes of almost perfect cylindrical shape when released in a controlled manner from a substrate. PMID:26539638
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Gauss-Bonnet black holes with nonconstant curvature horizons
Maeda, Hideki
2010-06-15
We investigate static and dynamical n({>=}6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasilocal mass that satisfies the unified first law, we show that most of the properties of the quasilocal mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is nonconstant. The quasilocal mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the nonzero cosmological constant, it cannot be globally stable for the positive cosmological constant.
Magnetophoretic induction of curvature in coleoptiles and hypocotyls
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1997-01-01
Coleoptiles of barley (Hordeum vulgare) were positioned in a high gradient magnetic field (HGMF, dynamic factor gradient of H(2)/2 of 10(9)-10(10) Oe2 cm-1), generated by a ferromagnetic wedge in a uniform magnetic field and rotated on a 1 rpm clinostat. After 4 h 90% of coleoptiles had curved toward the HGMF. The cells affected by HGMF showed clear intracellular displacement of amyloplasts. Coleoptiles in a magnetic field next to a non-ferromagnetic wedge showed no preferential curvature. The small size of the area of nonuniformity of the HGMF allowed mapping of the sensitivity of the coleoptiles by varying the initial position of the wedge relative to the coleoptile apex. When the ferromagnetic wedge was placed 1 mm below the coleoptile tip only 58% of the coleoptiles curved toward the wedge indicating that the cells most sensitive to intracellular displacement of amyloplasts and thus gravity sensing are confined to the top 1 mm portion of barley coleoptiles. Similar experiments with tomato hypocotyls (Lycopersicum esculentum) also resulted in curvature toward the HGMF. The data strongly support the amyloplast-based gravity-sensing system in higher plants and the usefulness of HGMF to substitute gravity in shoots.
Using curvature extrema to track the evolution of axisymmetric interfaces
NASA Astrophysics Data System (ADS)
Vogel, M. J.; Nitsche, M.; Steen, P. H.
2003-11-01
The temporal evolution of the shape of an interface can exhibit phenomena such as break-up or pinch-off, which are fundamental events that must be controlled in many capillary systems of technological importance. For an axisymmetric surface, lemmas rooted in differential geometry dictate that curvature extrema coincide with curvature crossings or profile extrema. These features provide a convenient means to characterize the profiles of interfaces and to track their evolution even up to singularities, such as occurs at pinch-off. Being solely geometric in nature, this characterization is not limited by the physical properties of the system, e.g., Newtonian versus non-Newtonian behavior, viscous versus inviscid etc. We illustrate by tracking images from evolving soap-films (passive) and polymeric films (non-Newtonian), both observed in experiment, and a deforming mathematical surface predicted by the inviscid vortex-sheet model in simulation. We will discuss extensions of this approach that bring in some model of the flow (e.g. inviscid) and thereby lead to a dynamical system for the motion of the extrema.
Assessment of RANS to predict flows with large streamline curvature
NASA Astrophysics Data System (ADS)
Yin, J. L.; Wang, D. Z.; Cheng, H.; Gu, W. G.
2013-12-01
In order to provide a guideline for choosing turbulence models in computation of complex flows with large streamline curvature, this paper presents a comprehensive comparison investigation of different RANS models widely used in engineering to check each model's sensibility on the streamline curvature. First, different models including standard k-ε, Realizable k-ε, Renormalization-group (RNG) k-ε model, Shear-stress transport k-ω model and non-linear eddy-viscosity model v2-f model are tested to simulated the flow in a 2D U-bend which has the standard bench mark available. The comparisons in terms of non-dimensional velocity and turbulent kinetic energy show that large differences exist among the results calculated by various models. To further validate the capability to predict flows with secondary flows, the involved models are tested in a 3D 90° bend flow. Also, the velocities are compared. As a summary, the advantages and disadvantages of each model are analysed and guidelines for choice of turbulence model are presented.
Conversion of radius of curvature to power (and vice versa)
NASA Astrophysics Data System (ADS)
Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.
2015-09-01
Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.
Dynamic cutaneous information is sufficient for precise curvature discrimination
Cheeseman, Jacob R.; Norman, J. Farley; Kappers, Astrid M. L.
2016-01-01
Our tactual perceptual experiences occur when we interact, actively and passively, with environmental objects and surfaces. Previous research has demonstrated that active manual exploration often enhances the tactual perception of object shape. Nevertheless, the factors that contribute to this enhancement are not well understood. The present study evaluated the ability of 28 younger (mean age was 23.1 years) and older adults (mean age was 71.4 years) to discriminate curved surfaces by actively feeling objects with a single index finger and by passively feeling objects that moved relative to a restrained finger. While dynamic cutaneous stimulation was therefore present in both conditions, active exploratory movements only occurred in one. The results indicated that there was a significant and large effect of age, such that the older participants’ thresholds were 43.8 percent higher than those of the younger participants. Despite the overall adverse effect of age, the pattern of results across the active and passive touch conditions was identical. For both age groups, the curvature discrimination thresholds obtained for passive touch were significantly lower than those that occurred during active touch. Curvature discrimination performance was therefore best in the current study when dynamic cutaneous stimulation occurred in the absence of active movement. PMID:27137417
PEAPOD regulates lamina size and curvature in Arabidopsis
White, Derek W. R.
2006-01-01
Although a complex pattern of interspersed cell proliferation and cell differentiation is known to occur during leaf blade development in eudicot plants, the genetic mechanisms coordinating this growth are unclear. In Arabidopsis, deletion of the PEAPOD (PPD) locus increases leaf lamina size and results in dome-shaped rather than flat leaves. Siliques are also altered in shape because of extra lamina growth. The curvature of a Δppd leaf reflects the difference between excess growth of the lamina and a limitation to the extension capacity of its perimeter. Excess lamina growth in Δppd plants is due to a prolonged phase of dispersed meristematic cell (DMC) proliferation (for example, the meristemoid and procambium cells that form stomatal stem cells and vascular cells, respectively) during blade development. The PPD locus is composed of two homologous genes, PPD1 and PPD2, which encode plant-specific putative DNA-binding proteins. Overexpression of PPD reduces lamina size by promoting the early arrest of DMC proliferation during leaf and silique development. Therefore, by regulating the arrest of DMC proliferation, the PPD genes coordinate tissue growth, modulate lamina size, and limit curvature of the leaf blade. I propose a revised model of leaf development with two cell-cycle arrest fronts progressing from the tip to the base: the known primary front, which determines arrest of general cell proliferation, followed by a secondary front that involves PPD and arrests DMC division. PMID:16916932
Left ventricle wall motion tracking using curvature properties
NASA Astrophysics Data System (ADS)
Chandra, Kambhamettu; Goldgof, Dmitry B.
1992-06-01
This paper presents the complete implementation of the new algorithm for tracking points on the left ventricle (LV) surface from volumetric cardiac images. We define the local surface stretching as an additional motion parameter of nonrigid transformation. Stretching is constant at all points on the surface for homothetic motion, or follows a polynomial function of certain order (linear in our implementation) in conformal motion. The wall deformation and correspondence information between successive frames of LV in a heart cycle are considered important in evaluating heart behavior and improved diagnosis. We utilize small motion assumption between consecutive frames, hypothesize all possible correspondences, and compute curvature changes for each hypothesis. The computed curvature change is then compared with the one predicted by conformal motion assumption for hypotheses evaluation. We demonstrate the improved performance of the new algorithm utilizing conformal motion with linear stretching assumption over constant stretching assumption on simulated data. Then, the algorithm is applied to real cardiac (CT) images and the stretching of the LV wall is determined. The data set used in our experiments was provided by Dr. Eric Hoffman at University of Pennsylvania Medical school and consists of 16 volumetric (128 by 128 by 118) images taken through the heart cycle.
Effect of nano-scale curvature on the intrinsic blood coagulation system
NASA Astrophysics Data System (ADS)
Kushida, Takashi; Saha, Krishnendu; Subramani, Chandramouleeswaran; Nandwana, Vikas; Rotello, Vincent M.
2014-11-01
The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation.The intrinsic coagulation activity of silica nanoparticles strongly depends on their surface curvature. Nanoparticles with higher surface curvature do not denature blood coagulation factor XII on its surface, providing a coagulation `silent' surface, while nanoparticles with lower surface curvature show denaturation and concomitant coagulation. Electronic supplementary information (ESI) available: Physical properties and scanning electron micrographs (SEM) of silica NPs, intrinsic coagulation activity after 3 h. See DOI: 10.1039/c4nr04128c
NASA Astrophysics Data System (ADS)
Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki
2016-01-01
Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air-smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales.
Kim, Dae Seok; Cha, Yun Jeong; Kim, Mun Ho; Lavrentovich, Oleg D.; Yoon, Dong Ki
2016-01-01
Soft materials with layered structure such as membranes, block copolymers and smectics exhibit intriguing morphologies with nontrivial curvatures. Here, we report restructuring the Gaussian and mean curvatures of smectic A films with free surface in the process of sintering, that is, reshaping at elevated temperatures. The pattern of alternating patches of negative, zero and positive mean curvature of the air–smectic interface has a profound effect on the rate of sublimation. As a result of sublimation, condensation and restructuring, initially equilibrium smectic films with negative and zero Gaussian curvature are transformed into structures with pronounced positive Gaussian curvature of layers packing, which are rare in the samples obtained by cooling from the isotropic melt. The observed relationship between the curvatures, bulk elastic behaviour and interfacial geometries in sintering of smectic liquid crystals might pave the way for new approaches to control soft morphologies at micron and submicron scales. PMID:26725975
NASA Astrophysics Data System (ADS)
Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan
2016-03-01
We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.
Yang, L.; Gordon, V.D.; Trinkle, D.R.; Schmidt, N.W.; Davis, M.A.; DeVries, C.; Som, A.; Cronan, J.E., Jr.; Tew, G.N.; Wong, G.C.L.
2009-05-28
Phenylene ethynylenes comprise a prototypical class of synthetic antimicrobial compounds that mimic antimicrobial peptides produced by eukaryotes and have broad-spectrum antimicrobial activity. We show unambiguously that bacterial membrane permeation by these antimicrobials depends on the presence of negative intrinsic curvature lipids, such as phosphatidylethanolamine (PE) lipids, found in high concentrations within bacterial membranes. Plate-killing assays indicate that a PE-knockout mutant strain of Escherichia coli drastically out-survives the wild type against the membrane-active phenylene ethynylene antimicrobials, whereas the opposite is true when challenged with traditional metabolic antibiotics. That the PE deletion is a lethal mutation in normative environments suggests that resistant bacterial strains do not evolve because a lethal mutation is required to gain immunity. PE lipids allow efficient generation of negative curvature required for the circumferential barrel of an induced membrane pore; an inverted hexagonal HII phase, which consists of arrays of water channels, is induced by a small number of antimicrobial molecules. The estimated antimicrobial occupation in these water channels is nonlinear and jumps from {approx}1 to 3 per 4 nm of induced water channel length as the global antimicrobial concentration is increased. By comparing to exactly solvable 1D spin models for magnetic systems, we quantify the cooperativity of these antimicrobials.
Radius of Curvature Measurements: An Independent Look at Accuracy Using Novel Optical Metrology
NASA Technical Reports Server (NTRS)
Taylor, Bryon; Kahan, Mark; Russell, Kevin (Technical Monitor)
2002-01-01
The AMSD (Advanced Mirror System Demonstrator) program mirror specifications include the ability to manufacture the mirror to a radius of curvature of 10 m +/- 1 mm and to control its radius at 30K to the same specification. Therefore, it is necessary for the Government Team to be able to measure mirror radius of curvature to an accuracy of better than 0.5 mm. This presentation discusses a novel optical metrology system for measuring radius of curvature.
Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides.
de Jesus, Armando J; White, Ormacinda R; Flynn, Aaron D; Yin, Hang
2016-05-10
It is increasingly recognized that membrane curvature plays an important role in various cellular activities such as signaling and trafficking, as well as key issues involving health and disease development. Thus, curvature-sensing peptides are essential to the study and detection of highly curved bilayer structures. The effector domain of myristoylated alanine-rich C-kinase substrate (MARCKS-ED) has been demonstrated to have curvature-sensing ability. Research of the MARCKS-ED has further revealed that its Lys and Phe residues play an essential role in how MARCKS-ED detects and binds to curved bilayers. MARCKS-ED has the added property of being a lower-molecular-weight curvature sensor, which offers advantages in production. With that in mind, this work investigates peptide-sequence-related factors that influence curvature sensing and explores whether peptide fragments of even shorter length can function as curvature sensors. Using both experimental and computational methods, we studied the curvature-sensing capabilities of seven fragments of MARCKS-ED. Two of the longer fragments were designed from approximately the two halves of the full-length peptide whereas the five shorter fragments were taken from the central stretch of MARCKS-ED. Fully atomistic molecular dynamics simulations show that the fragments that remain bound to the bilayer exhibit interactions with the bilayer similar to that of the full-length MARCKS-ED peptide. Fluorescence enhancement and anisotropy assays, meanwhile, reveal that five of the MARCKS fragments possess the ability to sense membrane curvature. Based on the sequences of the curvature-sensing fragments, it appears that the ability to sense curvature involves a balance between the numbers of positively charged residues and hydrophobic anchoring residues. Together, these findings help crystallize our understanding of the molecular mechanisms underpinning the curvature-sensing behaviors of peptides, which will prove useful in the
Constant curvature solutions of Grassmannian sigma models: (2) Non-holomorphic solutions
NASA Astrophysics Data System (ADS)
Delisle, L.; Hussin, V.; Zakrzewski, W. J.
2013-09-01
We generalize here our general procedure for constructing constant curvature maps of 2-spheres into Grassmannian manifolds G(m,n) this time concentrating our attention on maps which are non-holomorphic. We present some expressions describing these solutions in the general case and discuss how to use these results to construct solutions of constant curvature. We also discuss possible values of this constant curvature.
Connections defining representations of zero curvature and their Lax and Bäcklund mappings
NASA Astrophysics Data System (ADS)
Bracken, Paul
2013-08-01
Systems of differential forms are considered which define representations of zero curvature on specified fiber bundles through a set of structure equations. The curvature term which appears in the structure equations generates the partial differential equation. Bäcklund and Lax connections on associated bundles can also be established. This allows a unified treatment of Bäcklund transformations and Lax systems for the cases in which the differential equation appears as the curvature term in the structure equations.
3D Curves With a Prescribed Curvature and Torsion for a Flying Robot
Bestaoui, Yasmina
2008-06-12
The objective of this paper is to generate a desired flight path to be followed by an flying robot. A curve with discontinuous curvature and torsion is not appropriate for smooth motions for any vehicle architecture. Three different classes of curves are presented. First, constant curvature and torsion followed by a linear variation versus the curvilinear abscissa then a quadratic variation. Finally, the problem of maneuvers between two trim helices of different curvature and torsion is tackled with.
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-10-01
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
NASA Astrophysics Data System (ADS)
Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro
2016-07-01
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.
Relativistic electron loss process by pitch angle scattering due to field curvature
NASA Astrophysics Data System (ADS)
Lee, J. J.; Parks, G. K.; Lee, E.; McCarthy, M. P.; Min, K.; Kim, H.; Park, J.; Hwang, J.
2006-12-01
Relativistic electron dropout (RED) events are characterized by fast electron flux decrease at the geostationary orbit. It is known that the main loss process is non adiabatic and more effective for the high energy particles. RED events generally start to occur at midnight sector and propagate to noon sector and are correlated with magnetic field stretching. We discuss this kind of event can be caused from pitch angle diffusion induced when the gyro radius of the electrons is comparable to the radius of curvature of the magnetic field and the magnetic moment is not conserved any more. While this process has been studied theoretically, the question is whether electron precipitation could be explained with this process for the real field configuration. This paper will show that this process can successfully explain the precipitation that occurred on June 14, 2004 observed by the low-altitude (680 km) polar orbiting Korean satellite, STSAT-1. In this precipitation event, the energy dispersion showed higher energy electron precipitation occurred at lower L values. This feature is a good indicator that precipitation was caused by the magnetic moment scattering in the geomagnetic tail. This interpretation is supported by the geosynchronous satellite GOES observations that showed significant magnetic field distortion occurred on the night side accompanying the electron flux depletion. Tsyganenko-01 model also shows the magnetic moment scattering could occur under the geomagnetic conditions existing at that time. We suggest the pitch angle scattering by field curvature violating the first adiabatic invariant as a possible candidate for loss mechanism of relativistic electrons in radiation belt.
Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism
NASA Technical Reports Server (NTRS)
Malik, M. R.; Balakumar, P.
1993-01-01
In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.
Detecting curvatures in digital images using filters derived from differential geometry
NASA Astrophysics Data System (ADS)
Toro Giraldo, Juanita
2015-09-01
Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.
Femoral condyle curvature is correlated with knee walking kinematics in ungulates.
Sylvester, Adam D
2015-12-01
The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the "angle to low curvature". This low-curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. PMID:26414648
Finite element analysis of a femur to deconstruct the paradox of bone curvature.
Jade, Sameer; Tamvada, Kelli H; Strait, David S; Grosse, Ian R
2014-01-21
Most long limb bones in terrestrial mammals exhibit a longitudinal curvature and have been found to be loaded in bending. Bone curvature poses a paradox in terms of the mechanical function of limb bones, for many believe the curvature in these bones increases bending stress, potentially reducing the bone's load carrying capacity (i.e., its mechanical strength). The aim of this study is to investigate the role of longitudinal bone curvature in the design of limb bones. In particular, it has been hypothesized that bone curvature results in a trade-off between the bone's mechanical strength and its bending predictability. We employed finite element analysis (FEA) of abstract and realistic human femora to address this issue. Geometrically simplified human femur models with different curvatures were developed and analyzed with a commercial FEA tool to examine how curvature affects the bone's bending predictability and load carrying capacity. Results were post-processed to yield probability density functions (PDFs) describing the circumferential location of maximum equivalent stress for various curvatures in order to assess bending predictability. To validate our findings, a finite element model was built from a CT scan of a real human femur and compared to the simplified femur model. We found general agreement in trends but some quantitative differences most likely due to the geometric differences between the digitally reconstructed and the simplified finite element models. As hypothesized by others, our results support the hypothesis that bone curvature can increase bending predictability, but at the expense of bone strength. PMID:24099719
Wright, Anthony R; McKenzie, Ross H
2014-02-26
We show that in a layered metal, the angle dependent, finite frequency, interlayer magnetoresistance is altered due to the presence of a non-zero Berry curvature at the Fermi surface. At zero frequency, we find a conservation law which demands that the 'magic angle' condition for interlayer magnetoresistance extrema as a function of magnetic field tilt angle is essentially both field and Berry curvature independent. In the finite frequency case, however, we find that surprisingly large signatures of a finite Berry curvature occur in the periodic orbit resonances. We outline a method whereby the presence and magnitude of the Berry curvature at the Fermi surface can be extracted. PMID:24501195
NASA Astrophysics Data System (ADS)
Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan
2012-02-01
Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.
The effects of out-of-plane curvature on the growth of epithelia
NASA Astrophysics Data System (ADS)
Yevick, Hannah; Duclos, Guillaume; Bonnet, Isabelle; Silberzan, Pascal
2015-03-01
Collective cell migration is at play in many well documented in vivo processes for example, wound re-epithelialization, cancer metastasis and dorsal closure. We present a study describing the effect of out of plane curvature on the collective properties of epithelial tissue. Microfabricated environments are used to deconstruct a monolayer's response to geometry. Specifically, fibers with a radius of curvature between 1um-100um are populated with MDCK cells, a model epithelial, kidney-derived, cell line. Migration dynamics as well as cell architecture are quantified and the effects of curvature compared with confinement alone. Large curvatures trigger specific cellular behaviors and organization that may shed light on tubulogenesis.
Shardt, Nadia; Elliott, Janet A W
2016-04-14
The effect of interface curvature on phase equilibrium has been much more studied for single-component than multicomponent systems. We isolate the effect of curvature on multicomponent vapor-liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the ideal system methanol/ethanol and the nonideal system ethanol/water as illustrative examples. An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in future nanoscale prediction and design. PMID:27028744
Measurement of curvature and twist of a deformed object using digital holography
Chen Wen; Quan Chenggen; Cho Jui Tay
2008-05-20
Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method.
Wang, Tuo; Hong, Mei
2015-01-01
A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state NMR methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static 31P NMR spectra of magnetically oriented DMPC/DHPC bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the peptide with the ability to generate a high-curvature phase. 2D 31P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. 31P- and 13C-detected 1H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the 31P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. Based on this resolution, 2D 1H-31P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not the DHPC 31P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the M2 amphipathic helix induces high membrane curvature and localizes the protein to this phase, in excellent agreement with the membrane-scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are
A miniature curvature wavefront sensor with coherent fiber image bundle
NASA Astrophysics Data System (ADS)
Zheng, Jessica; Richards, Samuel; Goodwin, Michael; Lawrence, Jon; Leon-Saval, Sergio; Argyros, Alexander
2014-08-01
A miniature curvature wavefront sensor with a coherent fiber image bundle is proposed in which a miniature lateral displacement beamsplitter is designed to obtain the intra- and extra- focus images from a telescope simultaneously at its exit. The two images are received and relayed by two coherent fiber image bundles. The relayed images are then re-imaged to one camera and processed to obtain the input wavefront at telescope pupil. The whole device is quite compact and can be driven by a "Starbug" fiber positioning device currently under development within the Australian Astronomical Observatory. In this paper, the performance of the proposed sensor is investigated in details by applying a simulated atmospheric turbulence at the telescope pupil plane. We study the offset distance of two image measurement planes, fiber core size, fiber fill factor and the magnitude of natural guide star effects to its performance. This study provides guidance to the sensor design.
Camera-based curvature measurement of a large incandescent object
NASA Astrophysics Data System (ADS)
Ollikkala, Arttu V. H.; Kananen, Timo P.; Mäkynen, Anssi J.; Holappa, Markus
2013-04-01
The goal of this work was to implement a low-cost machine vision system to help the roller operator to estimate the amount of strip camber during the rolling process. The machine vision system composing of a single camera, a standard PC-computer and a LabVIEW written program using straightforward image analysis determines the magnitude and direction of camber and presents the results both in numerical and graphical form on the computer screen. The system was calibrated with LED set-up which was also used to validate the accuracy of the system by mimicking the strip curvatures. The validation showed that the maximum difference between the true and measured values was less than +/-4 mm (k=0.95) within the 22 meter long test pattern.
Curvature ductility of reinforced and prestressed concrete columns
Suprenant, B.A.
1984-01-01
Engineers are concerned with the survival of reinforced and prestressed concrete columns during earthquakes. The prediction of column survival can be deduced from moment-curvature curves of the column section. An analytical approach is incorporated into a computer model. The computer program is based on assumed stress-strain relations for confined and unconfined concrete, nonprestressed and prestressing steel. The results of studies on reinforced and prestressed concrete columns indicate that reinforced concrete columns may be designed to resist earthquakes, while prestressed concrete columns may not. The initial reduction in moment capacity, after concrete cover spalling, of a prestressed concrete column could be as much as 50%. Analyses indicate that the bond between concrete and prestressing strand after concrete cover spalling is not critical.
DNA curvature and flexibility in vitro and in vivo
Peters, Justin P.; Maher, L. James
2014-01-01
It has been more than 50 years since the elucidation of the structure of double-helical DNA. Despite active research and progress in DNA biology and biochemistry, much remains to be learned in the field of DNA biophysics. Predicting the sequence-dependent curvature and flexibility of DNA is difficult. Applicability of the conventional worm-like chain polymer model of DNA has been challenged. The fundamental forces responsible for the remarkable resistance of DNA to bending and twisting remain controversial. The apparent “softening” of DNA measured in vivo in the presence of kinking proteins and superhelical strain is incompletely understood. New methods and insights are being applied to these problems. This review places current work on DNA biophysics in historical context and illustrates the ongoing interplay between theory and experiment in this exciting field. PMID:20478077
Membrane curvature and its generation by BAR proteins
Mim, Carsten; Unger, Vinzenz M
2012-01-01
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040
Hypersurfaces with constant mth mean curvature in the spheres
NASA Astrophysics Data System (ADS)
Wei, Guoxin; Wen, Guohua
2016-06-01
In this paper, we prove that, for 1 ≤ m ≤ n - 1, n ≥ 3, k ≥ 2, given a constant c between (cotπ/k) m and k2/-2n (k2+m/-2n-m)m-2/2, there exists at least one compact non-isoparametric embedded hypersurface with mth mean curvature Hm = c in a unit sphere S n + 1. As corollaries, we also prove that for m = n - 1 , n - 2 and m ≥ 2, given any positive constant c, there exists at least one compact non-isoparametric embedded hypersurface with Hm = c in S n + 1. Moreover, our results are the generalization of the results of Perdomo [9] (when m = 1), Wei et al. [7] (when m = 2 , 4).
Curvature and anisotropy estimation through the CRS approximation
NASA Astrophysics Data System (ADS)
Xu, Shibo; Stovas, Alexey
2015-12-01
Multiparameter stacking is a crucial tool to get a high-quality time image of the subsurface, which can provide a basis for many important applications. We analyse the CRS approximation for a circular reflector embedded into effective anisotropic media. In this case, the CRS attributes depend on both reflector curvature and anisotropy parameters. We consider the effective anisotropic model from two anisotropic cases—elliptical isotropic and transversely isotropic with vertical symmetry axis—and one vertically heterogeneous isotropic case, i.e. two-layer model. By performing a sensitivity analysis, we show how the estimates depend on anisotropy parameters. We convert the CRS attributes into parameters for the isotropic model and analyse these estimates’ behaviour along the seismic line. From this behaviour, we estimate both structure and anisotropy parameters.
Nonlinear dynamics and primordial curvature perturbations from preheating
NASA Astrophysics Data System (ADS)
Frolov, Andrei V.
2010-06-01
In this paper I review the theory and numerical simulations of nonlinear dynamics of preheating, a stage of dynamical instability at the end of inflation during which the homogeneous inflaton explosively decays and deposits its energy into excitation of other matter fields. I focus on preheating in chaotic inflation models, which proceeds via broad parametric resonance. I describe a simple method to evaluate Floquet exponents, calculating stability diagrams of Mathieu and Lame equations describing development of instability in m2phi2 and λphi4 preheating models. I discuss basic numerical methods and issues, and present simulation results highlighting non-equilibrium transitions, topological defect formation, late-time universality, turbulent scaling and approach to thermalization. I explain how preheating can generate large-scale primordial (non-Gaussian) curvature fluctuations manifest in cosmic microwave background anisotropy and large-scale structure, and discuss potentially observable signatures of preheating.
Conditions on holographic entangling surfaces in higher curvature gravity
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Sleight, Charlotte
2014-06-01
We study the extremal surfaces of functionals recently proposed for the holographic calculation of entanglement entropy in general higher curvature theories, using New Massive gravity and Gauss-Bonnet gravity as concrete examples. We show that the entropy functionals admit closed extremal surfaces, which for black hole backgrounds can encircle the event horizon of the black hole. In the examples considered, such closed surfaces correspond to a lower value of the entropy functional than expected from CFT calculations, implying a seeming mismatch between the bulk and boundary calculations. For Lorentzian settings we show that this problem can be resolved by imposing a causality constraint on the extremal surfaces. The possibility of deriving conditions from an alternative conical boundary condition method as proposed by Lewkowycz and Maldacena is explored.
The X-Ray Transform for Connections in Negative Curvature
NASA Astrophysics Data System (ADS)
Guillarmou, Colin; Paternain, Gabriel P.; Salo, Mikko; Uhlmann, Gunther
2016-04-01
We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e., vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connection, which is presented in a general form, and a precise analysis of the singularities of solutions of transport equations when there are trapped geodesics. In the case of closed manifolds, we obtain similar results modulo the obstruction given by twisted conformal Killing tensors, and we also study this obstruction.
Theory for the curvature dependence of delta front progradation
NASA Astrophysics Data System (ADS)
Ke, Wun-Tao; Capart, Hervé
2015-12-01
When Gilbert-type deltas respond to uneven sediment supply or advance over irregular basin bathymetry, they develop curved, creased fronts prograding at speeds that vary with location along the shoreline. Relations governing the progradation rate, however, have so far been proposed only for simple special cases. In this paper, we exploit the special properties of solutions to the eikonal equation to derive a general progradation relation, applicable to delta fronts of finite angle of repose and arbitrary shoreline planform. In these circumstances, the theory explicitly relates the progradation rate to the local shoreline curvature. We illustrate the resulting morphodynamics with numerical and analytical solutions for a sinuous delta front. The proposed relation can be used to model deltaic evolution or deduce spanwise distributions of sediment supply rates from observations of foreset evolution.
Topological implications of negative curvature for biological and social networks
NASA Astrophysics Data System (ADS)
Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim
2014-03-01
Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.
Rapid pedobarographic image registration based on contour curvature and optimization.
Oliveira, Francisco P M; Tavares, João Manuel R S; Pataky, Todd C
2009-11-13
Image registration, the process of optimally aligning homologous structures in multiple images, has recently been demonstrated to support automated pixel-level analysis of pedobarographic images and, subsequently, to extract unique and biomechanically relevant information from plantar pressure data. Recent registration methods have focused on robustness, with slow but globally powerful algorithms. In this paper, we present an alternative registration approach that affords both speed and accuracy, with the goal of making pedobarographic image registration more practical for near-real-time laboratory and clinical applications. The current algorithm first extracts centroid-based curvature trajectories from pressure image contours, and then optimally matches these curvature profiles using optimization based on dynamic programming. Special cases of disconnected images (that occur in high-arched subjects, for example) are dealt with by introducing an artificial spatially linear bridge between adjacent image clusters. Two registration algorithms were developed: a 'geometric' algorithm, which exclusively matched geometry, and a 'hybrid' algorithm, which performed subsequent pseudo-optimization. After testing the two algorithms on 30 control image pairs considered in a previous study, we found that, when compared with previously published results, the hybrid algorithm improved overlap ratio (p=0.010), but both current algorithms had slightly higher mean-squared error, assumedly because they did not consider pixel intensity. Nonetheless, both algorithms greatly improved the computational efficiency (25+/-8 and 53+/-9 ms per image pair for geometric and hybrid registrations, respectively). These results imply that registration-based pixel-level pressure image analyses can, eventually, be implemented for practical clinical purposes. PMID:19647829
Non-Gaussianities and curvature perturbations from hybrid inflation
NASA Astrophysics Data System (ADS)
Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi
2014-03-01
For the original hybrid inflation as well as the supersymmetric F-term and D-term hybrid models, we calculate the level of non-Gaussianities and the power spectrum of curvature perturbations generated during the waterfall, taking into account the contribution of entropic modes. We focus on the regime of mild waterfall, in which inflation continues for more than about 60 e-folds N during the waterfall. We find that the associated fNL parameter goes typically from fNL≃-1/Nexit in the regime with N ≫60, where Nexit is the number of e-folds between the time of Hubble exit of a pivot scale and the end of inflation, down to fNL˜-0.3 when N ≳60, i.e., much smaller in magnitude than the current bound from Planck. Considering only the adiabatic perturbations, the power spectrum is red, with a spectral index ns=1-4/Nexit in the case N ≫60, whereas in the case N≳60, it increases up to unity. Including the contribution of entropic modes does not change observable predictions in the first case, and the spectral index is too low for this regime to be viable. In the second case, entropic modes are a relevant source for the power spectrum of curvature perturbations, of which the amplitude increases by several orders of magnitude. When spectral index values are consistent with observational constraints, the primordial spectrum amplitude is much larger than the observed value and can even lead to black hole formation. We conclude that, due to the important contribution of entropic modes, the parameter space leading to a mild waterfall phase is excluded by cosmic microwave background observations for all the considered models.
Wu, Tingting; Baumgart, Tobias
2014-11-25
In striated muscles, invaginations from the plasma membrane, termed transverse tubules (T-tubule), function in the excitation-contraction coupling machinery. BIN1 (isoform8) plays a critical role in the biogenesis of T-tubules. BIN1 contains an N-terminal BAR domain to sense and induce membrane curvature, an isoform8-specific polybasic motif (exon10) as the phosphoinositide binding module and a C-terminal Src homology 3 (SH3) domain for the recruitment of downstream proteins such as dynamin 2. Previous studies of N-BAR domains focused on elucidating mechanisms of membrane curvature sensing and generation (MC-S&G). Less is known about how MC-S&G is regulated. We found that the SH3 domain binds to the exon10 motif more strongly compared to the proline-rich domain (PRD) of dynamin 2. Furthermore, we found that the MC-S&G ability of full-length BIN1 is inhibited on membranes lacking PI(4,5)P2. Addition of PI(4,5)P2 in the membrane activates BIN1 to sense and induce membrane curvature. Co-presence of the SH3 domain and exon10 motif leads to the strongest phosphoinositide-mediated control of BIN1 function. Addition of SH3 domain ligand (such as PRD peptides), as well as addition of the water-soluble PI(4,5)P2 analogue, can both enhance the MC-S&G ability of BIN1 on membranes without PI(4,5)P2, indicating that the key to activate BIN1 is to disrupt the exon10-SH3 interaction. The nonsense mutation K436X, found in centronuclear myopathy (CNM) patients, abolishes SH3 domain binding with either exon10 or the PRD motif, resulting in increased membrane deformation capacity. Our results suggest an autoinhibition model for BIN1 that involves a synergistic regulation by membrane composition and protein-protein interactions. PMID:25350771
A METHODOLOGY FOR ANALYZING CURVATURE IN THE DEVELOPING BRAIN FROM PRETERM TO ADULT
PIENAAR, R.; FISCHL, B.; CAVINESS, V.; MAKRIS, N.; GRANT, P. E.
2009-01-01
The character and timing of gyral development is one manifestation of the complex orchestration of human brain development. The ability to quantify these changes would not only allow for deeper understanding of cortical development, but also conceivably allow for improved detection of pathologies. This paper describes a FreeSurfer based image-processing analysis “pipeline” or methodology that inputs an MRI volume, corrects possible contrast defects, creates surface reconstructions, and outputs various curvature-based function analyses. A technique of performing neonate reconstructions using FreeSurfer, which has not been possible previously due to inverted image contrast in pre-myelinated brains, is described. Once surfaces are reconstructed, the analysis component of the pipeline incorporates several surface-based curvature functions found in literature (principle curvatures, Gaussian, mean curvature, “curvedness”, and Willmore Bending Energy). We consider the problem of analyzing curvatures from different sized brains by introducing a Gaussian-curvature based variable-radius filter. Segmented volume data is also analyzed for folding measures: a gyral folding index (gyrification-white index GWI), and a gray-white matter junction folding index (WMF). A very simple curvature-based classifier is proposed that has the potential to discriminate between certain classes of subjects. We also present preliminary results of this curvature analysis pipeline on nine neonate subjects (30.4 weeks through 40.3 weeks Corrected Gestational Age), 3 children (2, 3, and 7 years) and 3 adults (33, 37, and 39 years). Initial results demonstrate that curvature measures and functions across our subjects peaked at term, with a gradual decline through early childhood and further decline continuing through to adults. We can also discriminate older neonates, children, and adults based on curvature analysis. Using a variable radius Gaussian-curvature filter, we also observed that the
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Reeves, Anthony P.; Yankelevitz, David F.; Henschke, Claudia I.; Barr, R. Graham
2009-02-01
Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for the imaging of the anatomical basis of emphysema and quantification of the underlying disease state. Several measures have been introduced for the quantification emphysema directly from CT data; most,however, are based on the analysis of density information provided by the CT scans, which vary by scanner and can be hard to standardize across sites and time. Given that one of the anatomical variations associated with the progression of emphysema is the flatting of the diaphragm due to the loss of elasticity in the lung parenchyma, curvature analysis of the diaphragm would provide information about emphysema from CT. Therefore, we propose a new, non-density based measure of the curvature of the diaphragm that would allow for further quantification methods in a robust manner. To evaluate the new method, 24 whole-lung scans were analyzed using the ratios of the lung height and diaphragm width to diaphragm height as curvature estimates as well as using the emphysema index as comparison. Pearson correlation coefficients showed a strong trend of several of the proposed diaphragm curvature measures to have higher correlations, of up to r=0.57, with DLCO% and VA than did the emphysema index. Furthermore, we found emphysema index to have only a 0.27 correlation to the proposed measures, indicating that the proposed measures evaluate different aspects of the disease.
How does relativity affect magnetically induced currents?
Berger, R J F; Repisky, M; Komorovsky, S
2015-09-21
Magnetically induced probability currents in molecules are studied in relativistic theory. Spin-orbit coupling (SOC) enhances the curvature and gives rise to a previously unobserved current cusp in AuH or small bulge-like distortions in HgH2 at the proton positions. The origin of this curvature is magnetically induced spin-density arising from SOC in the relativistic description. PMID:26243659
Constant curvature surfaces of the supersymmetric ℂP{sup N−1} sigma model
Delisle, L.; Hussin, V.; Yurduşen, İ.; Zakrzewski, W. J.
2015-02-15
Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂP{sup N−1} sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.
Intra- and intermanual curvature aftereffect can be obtained via tool-touch.
Denisova, Kristina; Kibbe, Melissa M; Cholewiak, Steven A; Kim, Sung-Ho
2014-03-01
We examined the perception of virtual curved surfaces explored with a tool. We found a reliable curvature aftereffect, suggesting neural representation of the curvature in the absence of direct touch. Intermanual transfer of the aftereffect suggests that this representation is somewhat independent of the hand used to explore the surface. PMID:24845746
Real-time GPU surface curvature estimation on deforming meshes and volumetric data sets.
Griffin, Wesley; Wang, Yu; Berrios, David; Olano, Marc
2012-10-01
Surface curvature is used in a number of areas in computer graphics, including texture synthesis and shape representation, mesh simplification, surface modeling, and nonphotorealistic line drawing. Most real-time applications must estimate curvature on a triangular mesh. This estimation has been limited to CPU algorithms, forcing object geometry to reside in main memory. However, as more computational work is done directly on the GPU, it is increasingly common for object geometry to exist only in GPU memory. Examples include vertex skinned animations and isosurfaces from GPU-based surface reconstruction algorithms. For static models, curvature can be precomputed and CPU algorithms are a reasonable choice. For deforming models where the geometry only resides on the GPU, transferring the deformed mesh back to the CPU limits performance. We introduce a GPU algorithm for estimating curvature in real time on arbitrary triangular meshes. We demonstrate our algorithm with curvature-based NPR feature lines and a curvature-based approximation for an ambient occlusion. We show curvature computation on volumetric data sets with a GPU isosurface extraction algorithm and vertex-skinned animations. We present a graphics pipeline and CUDA implementation. Our curvature estimation is up to ~18x faster than a multithreaded CPU benchmark. PMID:22508906
The role of curvature in Diels-Alder functionalization of carbon-based materials.
Willocq, B; Lemaur, V; El Garah, M; Ciesielski, A; Samorì, P; Raquez, J-M; Dubois, Ph; Cornil, J
2016-06-18
We have estimated theoretically the impact of curvature on the free energies of activation and reaction associated with Diels-Alder reactions on carbon-based materials. Significant reduction is observed for both energy values with increasing curvature for core-functionalization, while the opposite trend prevails for edge-functionalization, as further supported by SEM/fluorescence measurements. PMID:27226252
Variation and Heritability in Hair Diameter and Curvature in an Australian Twin Sample.
Ho, Yvonne Y W; Brims, Mark; McNevin, Dennis; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E
2016-08-01
Hair diameter and curvature are two characteristics of human scalp hair used in forensic contexts. While previous data show that subjective categorization of hair curvature is highly heritable, the heritability of objectively measured curvature and diameter, and variability of hair characteristics within each individual have not yet been studied. The present study measured hair diameter and curvature using an optical fiber diameter analyzer in a sample of 2,332 twins and siblings. Heritability was estimated using maximum likelihood structural equation modeling. Results show sex differences in the magnitude of genetic influence for mean diameter and curvature, with the vast majority of the variance accounted for by genetic effects in males (diameter = 86%, curvature = 53%) and females (diameter = 77%, curvature = 61%). The consistency of diameter (variance within an individual) was also highly heritable, but did not show sex limitation, with 68% of the variance accounted for by genetic factors. Moderate phenotypic correlations were seen between diameter and consistency (r = 0.3) but there was little correlation between diameter and curvature (r = -0.13). A bivariate Cholesky analysis was used to estimate the genetic and environmental correlations between hair diameter and consistency, yielding genetic correlations of r gF = 0.27 for females and r gM = 0.25 for males. PMID:27291867
The effects of streamline curvature and swirl on turbulent flows in curved ducts
NASA Technical Reports Server (NTRS)
Cheng, Chih-Hsiung; Farokhi, Saeed
1990-01-01
A technique for improving the numerical predictions of turbulent flows with the effect of streamline curvature is developed. Separated flows, the flow in a curved duct, and swirling flows are examples of flow fields where streamline curvature plays a dominant role. A comprehensive literature review on the effect of streamline curvature was conducted. New algebraic formulations for the eddy viscosity incorporating the kappa-epsilon turbulence model are proposed to account for various effects of streamline curvature. The loci of flow reversal of the separated flows over various backward-facing steps are employed to test the capability of the proposed turbulence model in capturing the effect of local curvature. The inclusion of the effect of longitudinal curvature in the proposed turbulence model is validated by predicting the distributions of the static pressure coefficients in an S-bend duct and in 180 degree turn-around ducts. The proposed turbulence model embedded with transverse curvature modification is substantiated by predicting the decay of the axial velocities in the confined swirling flows. The numerical predictions of different curvature effects by the proposed turbulence models are also reported.
Effect of Gaussian curvature modulus on the shape of deformed hollow spherical objects.
Quilliet, C; Farutin, A; Marmottant, P
2016-06-01
A popular description of soft membranes uses the surface curvature energy introduced by Helfrich, which includes a spontaneous curvature parameter. In this paper we show how the Helfrich formula can also be of interest for a wider class of spherical elastic surfaces, namely with shear elasticity, and likely to model other deformable hollow objects. The key point is that when a stress-free state with spherical symmetry exists before subsequent deformation, its straightforwardly determined curvature ("geometrical spontaneous curvature") differs most of the time from the Helfrich spontaneous curvature parameter that should be considered in order to have the model being correctly used. Using the geometrical curvature in a set of independent parameters unveils the role of the Gaussian curvature modulus, which appears to play on the shape of an elastic surface even though this latter is closed, contrary to what happens for surfaces without spontaneous curvature. In appendices, clues are given to apply this alternative and convenient formulation of the elastic surface model to the particular case of thin spherical shells of isotropic material (TSSIMs). PMID:27255647
Sequence-dependent DNA curvature and flexibility from scanning force microscopy images.
Scipioni, Anita; Anselmi, Claudio; Zuccheri, Giampaolo; Samori, Bruno; De Santis, Pasquale
2002-01-01
This paper reports a study of the sequence-dependent DNA curvature and flexibility based on scanning force microscopy (SFM) images. We used a palindromic dimer of a 1878-bp pBR322 fragment and collected a large pool of SFM images. The curvature of each imaged chain was measured in modulus and direction. It was found that the ensemble curvature modulus does not allow the separation of static and dynamic contributions to the curvature, whereas the curvature, when its direction in the two dimensions is taken into account, permits the direct separation of the intrinsic curvature contributions static and dynamic contributions. The palindromic symmetry also acted as an internal gauge of the validity of the SFM images statistical analysis. DNA static curvature resulted in good agreement with the predicted sequence-dependent intrinsic curvature. Furthermore, DNA sequence-dependent flexibility was found to correlate with the occurrence of A.T-rich dinucleotide steps along the chain and, in general, with the normalized basepair stacking energy distribution. PMID:12414677
Constant curvature surfaces of the supersymmetric ℂPN-1 sigma model
NASA Astrophysics Data System (ADS)
Delisle, L.; Hussin, V.; Yurduşen, I.; Zakrzewski, W. J.
2015-02-01
Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂPN-1 sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.
Incisor crown bending strength correlates with diet and incisor curvature in anthropoid primates.
Deane, Andrew S
2015-02-01
Anthropoid incisors are large relative to the postcanine dentition and function in the preprocessing of food items. Previous analyses of anthropoid incisor allometry and shape demonstrate that incisor morphology is correlated with preferred foods and that more frugivorous anthropoids have larger and more curved incisors. Although the relationship between incisal crown curvature and preferred foods has been well documented in extant and fossil anthropoids, the functional significance of curvature variation has yet to be conclusively established. Given that an increase in crown curvature will increase maximum linear crown dimensions, and bending resistance is a function of linear crown dimensions, it is hypothesized that incisor crown curvature functons to increase incisor crown resistance to bending forces. This study uses beam theory to calculate the mesiodistal and labiolingual bending strengths of the maxillary and mandibular incisors of hominoid and platyrrhine taxa with differing diets and variable degrees of incisal curvature. Results indicate that bending strength correlates with incisal curvature and that frugivores have elevated incisor bending resistance relative to folivores. Maxillary central incisor bending strengths further discriminate platyrrhine and hominoid hard- and soft-object frugivores suggesting this crown is subjected to elevated occlusal loading relative to other incisors. These results are consistent with the hypothesis that incisor crown curvature functions to increase incisor crown resistance to bending forces but does not preclude the possibility that incisor bending strength is a composite function of multiple dentognathic variables including, but not limited to, incisor crown curvature. PMID:25156755
Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces
NASA Astrophysics Data System (ADS)
Fu, Yu
2013-12-01
In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces.
The role of the epidermis and cortex in gravitropic curvature of maize roots
NASA Technical Reports Server (NTRS)
Bjorkman, T.; Cleland, R. E.
1988-01-01
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53 degrees in 5 h) than in intact roots (82 degrees), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.
Curvature energy effects on strange quark matter nucleation at finite density
Horvath, J.E. Department of Space Physics and Astronomy, Rice University, P.O. Box 1892, Houston, Texas 77251 )
1994-05-15
We consider the effects of the curvature energy term on thermal strange quark matter nucleation in dense neutron matter. Lower bounds on the temperature at which this process can take place are given and compared to those without the curvature term.
de Jesus, Armando J.; Espinoza, Arianna; Yin, Hang
2014-01-01
Curved membranes are a common and important attribute in cells. Protein and peptide curvature sensors are known to activate signaling pathways, initiate vesicle budding, trigger membrane fusion, and facilitate molecular transport across cell membranes. Nonetheless, there is little understanding how these proteins and peptides achieve preferential binding of different membrane curvatures. The current study is to elucidate specific factors required for curvature sensing. As a model system, we employed a recently identified peptide curvature sensor, MARCKS-ED, derived from the effector domain of the myristoylated alanine-rich C-kinase substrate protein, for these biophysical investigations. An atomistic molecular dynamics (MD) simulation suggested an important role played by the insertion of the Phe residues within MARCKS-ED. To test these observations from our computational simulations, we performed electron paramagnetic resonance (EPR) studies to determine the insertion depth of MARCKS-ED into differently curved membrane bilayers. Next, studies with varied lipid compositions revealed their influence on curvature sensing by MARCKS-ED, suggesting contributions from membrane fluidity, rigidity, as well as various lipid structures. Finally, we demonstrated that the curvature sensing by MARCKS-ED is configuration independent. In summary, our studies have shed further light to the understanding of how MARCKS-ED differentiates between membrane curvatures, which may be generally applicable to protein curvature sensing behavior. PMID:25195712
Some Effects of Spacetime Curvature in General Relativity
NASA Astrophysics Data System (ADS)
McClune, James Cephas
This dissertation is about the physical effects of spacetime curvature and consists of the following three major topics: Relativistic tidal impulse, a new derivation of the Bel-Robinson tensor, and the study of the Bel-Robinson tensor for the rotating gravitational wave metric. In the study of relativistic tidal impulse, one considers the impulse per unit mass acting on a highly relativistic particle as it passes by a rotating mass. For the spacetime metric describing the field of the rotating mass, the 'weak' field approximation of the uncharged Kerr metric is employed. It follows from this relativistic treatment that the impulse, as felt by the particle, is in general velocity dependent for any given impact parameter, as opposed to the Newtonian result that the impulse is only dependent on the impact parameter. Some physical consequences of this fact are briefly explored. The Bel-Robinson tensor is a fourth rank tensor quadratic in the spacetime curvature and has been known since 1958. The new derivation of the Bel-Robinson tensor is the most significant part of this dissertation. This new derivation puts on a solid footing the physical meaning of the Bel-Robinson tensor and the analogy to electromagnetism that it draws on for its construction. In the Fermi frame used in this derivation, a gravitational Faraday tensor, gravitoelectromagnetic field equations, and a gravitational analog of the Lorentz force law can be identified. The gravitational Faraday tensor is used to construct an energy-momentum-stress tensor for the gravitational field in complete analogy with that of electromagnetism. This construction is then identified, via a limiting procedure, as the projection of the Bel-Robinson tensor on the tetrad frame of the fiducial observer of the Fermi frame. The former, less rigorous, arguments which were used to construct the Bel-Robinson tensor gave a less rigorous interpretation of some of its elements as the Poynting 4-vector. This derivation provides a
Non-perturbative approach for curvature perturbations in stochastic δ N formalism
Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp
2014-10-01
In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.
Sha, Haoyan; Faller, Roland
2016-07-20
Quantum chemistry calculations were performed to investigate the effect of the surface curvature of a Boron Nitride (BN) nanotube/nanosheet on gas adsorption. Curved boron nitride layers with different curvatures interacting with a number of different gases including noble gases, oxygen, and water on both their convex and concave sides of the surface were studied using density functional theory (DFT) with a high level dispersion corrected functional. Potential energy surfaces of the gas molecules interacting with the selected BN surfaces were investigated. In addition, the charge distribution and electrostatic potential contour of the selected BN surfaces are discussed. The results reveal how the curvature of the BN surfaces affects gas adsorption. In particular, small curvatures lead to a slight difference in the physisorption energy, while large curvatures present distinct potential energy surfaces, especially for the short-range repulsion. PMID:27399852
NASA Technical Reports Server (NTRS)
Moore, Joan G.; Moore, John
1992-01-01
The flow in the NASA Low-Speed Impeller is affected by both curvature and rotation. The flow curves due to the following: (1) geometric curvature, e.g. the curvature of the hub and shroud profiles in the meridional plane and the curvature of the backswept impeller blades; and (2) secondary flow vortices, e.g. the tip leakage vortex. Changes in the turbulence and effective turbulent viscosity in the impeller are investigated. The effects of these changes on three-dimensional flow development are discussed. Two predictions of the flow in the impeller, one with, and one without modification to the turbulent viscosity due to rotation and curvature, are compared. Some experimental and theoretical background for the modified mixing length model of turbulent viscosity will also be presented.
NASA Astrophysics Data System (ADS)
Kolesnikov, D. V.; Ivanchenko, G. S.; Lebedev, N. G.
2016-06-01
A method of surface curvature of carbon nanotubes has been proposed for quantitative estimation of the longitudinal conductivity of nanotubes. A dispersion relation for the electron spectrum of single-walled carbon nanotubes has been obtained analytically. The change in the zone structure of nanotubes of various types and diameters caused by taking into account the surface curvature has been analyzed. The temperature dependence of the longitudinal component of conductivity with allowance for the surface curvature for a series of nanotubes has been calculated. The comparison with the conductivity of a plane graphene has been performed. It has been shown that, in zig-zag tubes, the correction of the conductivity for the surface curvature decreases with an increase in temperature as well as with an increase in the radius of curvature.
Curvature of blended rolled edge reflectors at the shadow boundary contour
NASA Technical Reports Server (NTRS)
Ellingson, S. W.
1988-01-01
A technique is advanced for computing the radius of curvature of blended rolled edge reflector surfaces at the shadow boundary, in the plane perpendicular to the shadow boundary contour. This curvature must be known in order to compute the spurious endpoint contributions in the physical optics (PO) solution for the scattering from reflectors with rolled edges. The technique is applicable to reflectors with radially-defined rim-shapes and rolled edge terminations. The radius of curvature for several basic reflector systems is computed, and it is shown that this curvature can vary greatly along the shadow boundary contour. Finally, the total PO field in the target zone of a sample compact range system is computed and corrected using the shadow boundary radius of curvature, obtained using the technique. It is shown that the fields obtained are a better approximation to the true scattered fields.
Curvature effects on the stability of laminar boundary layers on swept wings
NASA Technical Reports Server (NTRS)
Collier, F. S., Jr.; Bartlett, D. W.; Wagner, R. D.
1989-01-01
The stability of the laminar boundary layer on a swept wing is examined. An improved linear stability theory which includes the effects of body and streamline curvature and compressibility is utilized for the calculations. The computed N-factor is correlated with the onset of transition. For this study, only test conditions where transition is due to the growth of highly amplified crossflow instabilities on convex surfaces are examined. The calculations show that the effect of the curvature terms is to dramatically reduce local amplification rates in regions where body and streamline curvature are large. For the cases where transition occurred ahead of the pressure minimum on the upper surface of the wing, the N-factor at transition onset is near 9 when the effects of body and streamline curvature are included in the computations. When the curvature terms are neglected, the average N-factor is about 17. The calculations show that traveling crossflow waves are most amplified.
Spinning particles in vacuum spacetimes of different curvature types
NASA Astrophysics Data System (ADS)
Semerák, O.; Šrámek, M.
2015-09-01
We consider the motion of spinning test particles with nonzero rest mass in the "pole-dipole" approximation, as described by the Mathisson-Papapetrou-Dixon (MPD) equations, and examine its properties in dependence on the spin supplementary condition added to close the system. In order to better understand the spin-curvature interaction, the MPD equation of motion is decomposed in the orthonormal tetrad whose time vector is given by the four-velocity Vμ chosen to fix the spin condition (the "reference observer") and the first spatial vector by the corresponding spin sμ; such projections do not contain the Weyl scalars Ψ0 and Ψ4 obtained in the associated Newman-Penrose (NP) null tetrad. One natural option of how to choose the remaining two spatial basis vectors is shown to follow "intrinsically" whenever Vμ has been chosen; it is realizable if the particle's four-velocity and four-momentum are not parallel. In order to see how the problem depends on the algebraic type of curvature, one first identifies the first vector of the NP tetrad kμ with the highest-multiplicity principal null direction of the Weyl tensor, and then sets Vμ so that kμ belong to the spin-bivector eigenplane. In spacetimes of any algebraic type but III, it is known to be possible to rotate the tetrads so as to become "transverse," namely so that Ψ1 and Ψ3 vanish. If the spin-bivector eigenplane could be made to coincide with the real-vector plane of any of such transverse frames, the spinning particle motion would consequently be fully determined by Ψ2 and the cosmological constant; however, this can be managed in exceptional cases only. Besides focusing on specific Petrov types, we derive several sets of useful relations that are valid generally and check whether/how the exercise simplifies for some specific types of motion. The particular option of having four-velocity parallel to four-momentum is advocated, and a natural resolution of nonuniqueness of the corresponding reference
Marzke, M W; Tocheri, M W; Steinberg, B; Femiani, J D; Reece, S P; Linscheid, R L; Orr, C M; Marzke, R F
2010-01-01
Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B-spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric-based calculation of curvature to compare modern humans and wild-caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. PMID:19544574
Turned head--adducted hip--truncal curvature syndrome.
Hamanishi, C; Tanaka, S
1994-01-01
One hundred and eight neonates and infants who showed the clinical triad of a head turned to one side, adduction contracture of the hip joint on the occipital side of the turned head, and truncal curvature, which we named TAC syndrome, were studied. These cases included seven with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one were among 7103 neonates examined by one of the authors. An epidemiological analysis confirmed the aetiology of the syndrome to be environmental. The side to which the head was turned and that of the adducted hip contracture showed a high correlation with the side of the maternal spine on which the fetus had been lying. TAC syndrome is an important asymmetrical deformity that should be kept in mind during neonatal examination, and may be aetiologically related to the unilateral dislocation of the hip joint, torticollis, and infantile scoliosis which develop after a vertex presentation. Images PMID:8048823
System Estimates Radius of Curvature of a Segmented Mirror
NASA Technical Reports Server (NTRS)
Rakoczy, John
2008-01-01
A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.
Bond strength optimization between adherends with different curvatures
Randow, C.L.; Dillard, D.A.
1996-12-31
Due to the increasing use of adhesives in various industrial applications, the accurate prediction of bond behavior becomes more important. This information may also be used to optimize bond design. In particular, the following analysis focuses on bond geometries involving a curvature mismatch between adherends. For example, consider the profile view of a typical laminated counter-top. This involves bonding an initially flat adherend to a rigid substrate with a flat top, a curved corner of radius {rho}, and a flat landing at the bond edge. Questions arise regarding the behavior of the bond and how to optimize the design to minimize stresses resulting from the initially flat adherend being fixed to the rigid, curved substrate. The deflection of the adherend is modeled using beam on elastic foundation analysis. These results, which can be used to calculate peel stresses, are used to determine the optimal design of the laminated counter-top geometry as presented above. Experimental results are also correlated to the analytical solution.
Dual curvature acoustically damped concentrating collector. Final technical report
Smith, G.A.; Rausch, R.A.
1980-05-01
A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.
Negative curvature fibres: exploiting the potential for novel optical sensors
NASA Astrophysics Data System (ADS)
Novo, C. C.; Urich, A.; Choudhury, D.; Carter, R.; Hand, D. P.; Thomson, R. R.; Yu, F.; Knight, J. C.; Brooks, S.; Mcculloch, S.; Shephard, J. D.
2015-09-01
One of the main challenges for fibre optic based sensing is robust operation in the mid-infrared (mid-IR) region. This is of major interest because this wavelength region is where the characteristic absorption spectra for a wide range of molecules lie. However, due to the high absorption of silica (above 2 μm), mid-IR sensors based on solid core silica fibres are not practical. Of the many alternatives to solid silica fibres, hollow core microstrutured optical fibres are being explored and show great promise. One relatively new fibre, the hollow core negative curvature fibre (NCF) is promising for novel optical devices due to the simple structure (in comparison to other microstructured fibres) in combination with a hollow core which enables low loss mid-IR infrared guidance in a silica based fibre. In this paper, an all silica NCF that is post-processed with a fs laser, in order to increase access to the hollow core, is presented with acceptable loss and significant potential for mid-IR gas sensing.
Capillary-bridge–derived particles with negative Gaussian curvature
Wang, Liming; McCarthy, Thomas J.
2015-01-01
We report the preparation of millimeter-scale particles by thermal polymerization of liquid monomer capillary bridges to form catenoid-shaped particles that exhibit negative Gaussian curvature. The shape of the capillary bridges and resulting particles can be finely tuned using several addressable parameters: (i) the shape, size, and orientation of lithographic pinning features on the spanned surfaces; (ii) the distance between opposing support surfaces; and (iii) the lateral displacement (shear) of opposing features. The catenoid-shaped particles exhibit controllable optical properties as a result of their concave menisci, the shape of which can be easily manipulated. The particles self assemble in the presence of a condensing liquid (water) to form reversible neck-to-neck pairs and less reversible end-to-end aggregates. We argue that this approach could be scaled down to micrometer dimensions by fabricating an array of micrometer-scale particles. We also argue, with a discussion of dynamic wetting, that these particles will exhibit interesting anisotropic adhesive properties. PMID:25730873
Curvature and Frontier Orbital Energies in Density Functional Theory
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi
2012-12-20
Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.