Science.gov

Sample records for penicillium subgenus penicillium

  1. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium

    PubMed Central

    Samson, R.A.; Yilmaz, N.; Houbraken, J.; Spierenburg, H.; Seifert, K.A.; Peterson, S.W.; Varga, J.; Frisvad, J.C.

    2011-01-01

    The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified in Talaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticillium sensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. For detailed phylogenetic analysis of species relationships, the ITS region (incl. 5.8S nrDNA) was sequenced for the available type strains and/or representative isolates of Talaromyces and related biverticillate anamorphic species. Extrolite profiles were compiled for all type strains and many supplementary cultures. All evidence supports our conclusions that Penicillium subgenus Biverticillium is distinct from other subgenera in Penicillium and should be taxonomically unified with the Talaromyces species that reside in the same clade. Following the concepts of nomenclatural priority and single name nomenclature, we transfer all accepted species of Penicillium subgenus Biverticillium to Talaromyces. A holomorphic generic diagnosis for the expanded concept of Talaromyces, including teleomorph and anamorph characters, is provided. A list of accepted Talaromyces names and newly combined Penicillium names is given. Species of biotechnological and medical importance, such as P. funiculosum and P. marneffei, are now combined in Talaromyces. Excluded species and taxa that need further taxonomic study are discussed. An appendix lists other generic names, usually considered synonyms of Penicillium sensu lato that

  2. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium

    PubMed Central

    Samson, R.A.; Yilmaz, N.; Houbraken, J.; Spierenburg, H.; Seifert, K.A.; Peterson, S.W.; Varga, J.; Frisvad, J.C.

    2011-01-01

    The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified in Talaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticillium sensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. For detailed phylogenetic analysis of species relationships, the ITS region (incl. 5.8S nrDNA) was sequenced for the available type strains and/or representative isolates of Talaromyces and related biverticillate anamorphic species. Extrolite profiles were compiled for all type strains and many supplementary cultures. All evidence supports our conclusions that Penicillium subgenus Biverticillium is distinct from other subgenera in Penicillium and should be taxonomically unified with the Talaromyces species that reside in the same clade. Following the concepts of nomenclatural priority and single name nomenclature, we transfer all accepted species of Penicillium subgenus Biverticillium to Talaromyces. A holomorphic generic diagnosis for the expanded concept of Talaromyces, including teleomorph and anamorph characters, is provided. A list of accepted Talaromyces names and newly combined Penicillium names is given. Species of biotechnological and medical importance, such as P. funiculosum and P. marneffei, are now combined in Talaromyces. Excluded species and taxa that need further taxonomic study are discussed. An appendix lists other generic names, usually considered synonyms of Penicillium sensu lato that

  3. Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate.

    PubMed

    Frisvad, Jens C; Houbraken, Jos; Popma, Suuske; Samson, Robert A

    2013-02-01

    Penicillium buchwaldii sp. nov. (type strain CBS 117181(T)  = IBT 6005(T)  = IMI 30428(T) ) and Penicillium spathulatum sp. nov. (CBS 117192(T)  = IBT 22220(T) ) are described as new species based on a polyphasic taxonomic approach. Isolates of P. buchwaldii typically have terverticillate conidiophores with echinulate thick-walled conidia and produce the extrolites asperphenamate, citreoisocoumarin, communesin A and B, asperentin and 5'-hydroxy-asperentin. Penicillium spathulatum is unique in having restricted colonies on Czapek yeast agar (CYA) with an olive grey reverse, good growth on CYA supplemented with 5% NaCl, terverticillate bi- and ter-ramulate conidiophores and consistently produces the extrolites benzomalvin A and D and asperphenamate. The two new species belong to Penicillium section Brevicompacta and are phylogenetically closely related to Penicillium tularense. With exception of Penicillium fennelliae, asperphenamate is also produced by all other species in section Brevicompacta (P. tularense, Penicillium brevicompactum, Penicillium bialowiezense, Penicillium olsonii, Penicillium astrolabium and Penicillium neocrassum). Both new species have a worldwide distribution. The new species were mainly isolated from indoor environments and food and feedstuffs. The fact that asperphenamate has been found in many widely different plants may indicate that endophytic fungi rather than the plants are the actual producers.

  4. Tremorgenic Mycotoxin from Penicillium paraherquei

    PubMed Central

    Yoshizawa, Takumi; Morooka, Nobuichi; Sawada, Yuzuru; Udagawa, Shun-Ichi

    1976-01-01

    A tremorgenic mycotoxin was isolated from Penicillium paraherquei Abe ex G. Smith and identified as verruculogen. It was produced at the rate of approximately 1 mg/g of the dried fungal mycelium cultured on peptone-enriched Czapek-Dox medium at 28°C. PMID:984820

  5. Tremorgenic mycotoxin from Penicillium paraherquei.

    PubMed

    Yoshizawa, T; Morooka, N; Sawada, Y; Udagawa, S I

    1976-09-01

    A tremorgenic mycotoxin was isolated from Penicillium paraherquei Abe ex G. Smith and identified as verruculogen. It was produced at the rate of approximately 1 mg/g of the dried fungal mycelium cultured on peptone-enriched Czapek-Dox medium at 28 degrees C. PMID:984820

  6. Polyphasic approach for differentiating Penicillium nordicum from Penicillium verrucosum.

    PubMed

    Berni, E; Degola, F; Cacchioli, C; Restivo, F M; Spotti, E

    2011-04-01

    The aim of this research was to use a polyphasic approach to differentiate Penicillium verrucosum from Penicillium nordicum, to compare different techniques, and to select the most suitable for industrial use. In particular, (1) a cultural technique with two substrates selective for these species; (2) a molecular diagnostic test recently set up and a RAPD procedure derived from this assay; (3) an RP-HPLC analysis to quantify ochratoxin A (OTA) production and (4) an automated system based on fungal carbon source utilisation (Biolog Microstation™) were used. Thirty strains isolated from meat products and originally identified as P. verrucosum by morphological methods were re-examined by newer cultural tests and by PCR methods. All were found to belong to P. nordicum. Their biochemical and chemical characterisation supported the results obtained by cultural and molecular techniques and showed the varied ability in P. verrucosum and P. nordicum to metabolise carbon-based sources and to produce OTA at different concentrations, respectively.

  7. Penicillium kongii, a new terverticillate species isolated from plant leaves in China.

    PubMed

    Wang, Bo; Wang, Long

    2013-01-01

    A new Penicillium species isolated from plant leaves, characterized by restricted growth, terverticillate penicilli, ovoid to ellipsoidal conidia and a red soluble pigment on yeast extract sucrose agar is reported here. Penicillium kongii sp. nov. belongs to subgenus Penicillium section Brevicompacta and is morphologically similar to P. bialowiezense and P. brevicompactum. Phylogenetic analyses based on sequence data from calmodulin gene, β-tubulin gene and rDNA ITS1-5.8S-ITS2 show that P. kongii forms a distinctive clade.

  8. New sections in Penicillium containing novel species producing patulin, pyripyropens or other bioactive compounds.

    PubMed

    Houbraken, J; Wang, L; Lee, H B; Frisvad, J C

    2016-06-01

    Subgenera and sections have traditionally been used in Penicillium classifications. In the past, this sectional classification was based on macro- and microscopic characters, and occasionally supplemented with physiological and/or extrolite data. Currently, 25 sections are accepted, largely based on phylogenetic data. Certain sections of subgenus Penicillium were never studied in detail using a multigene sequence approach combined with phenotypic, ecological and extrolite data. Based on a combined partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) multigene sequence dataset, we introduce two new sections (Osmophila and Robsamsonia) in subgenus Penicillium and synonymize section Digitata with section Penicillium. The phylogeny correlates well with phenotypic, physiological and ecological data, and some extrolites were diagnostic for certain Penicillium sections. Furthermore, four new species belonging to the newly introduced sections are described using a polyphasic approach, including BenA, CaM and RPB2 sequences, macro- and micromorphological data and extrolite profiles. The new section Robsamsonia and the new species Penicillium robsamsonii and Penicillium samsonianum were introduced to celebrate Dr. Robert A. Samson's 70th birthday. PMID:27616794

  9. Tremorgenic toxin from Penicillium veruculosum.

    PubMed

    Cole, R J; Kirksey, J W; Moore, J H; Blankenship, B R; Diener, U L; Davis, N D

    1972-08-01

    A new mycotoxin that produces severe tremors and acute toxicity when administered orally or intraperitoneally (ip) to mice and 1-day-old cockerels was obtained from a strain of Penicillium verruculosum Peyronel isolated from peanuts. The ip 50% lethal dose (LD(50)) of this tremorgen was 2.4 mg/kg in mice and 15.2 mg/kg in chickens. Orally administered LD(50) values for the toxin were 126.7 mg/kg in mice and 365.5 mg/kg in chickens. The trivial name "verruculogen" is proposed for this tremorgenic mycotoxin. Physical and chemical characteristics of the mycotoxin are described. PMID:4341967

  10. Tremorgenic Toxin from Penicillium verruculosum

    PubMed Central

    Cole, R. J.; Kirksey, J. W.; Moore, J. H.; Blankenship, B. R.; Diener, U. L.; Davis, N. D.

    1972-01-01

    A new mycotoxin that produces severe tremors and acute toxicity when administered orally or intraperitoneally (ip) to mice and 1-day-old cockerels was obtained from a strain of Penicillium verruculosum Peyronel isolated from peanuts. The ip 50% lethal dose (LD50) of this tremorgen was 2.4 mg/kg in mice and 15.2 mg/kg in chickens. Orally administered LD50 values for the toxin were 126.7 mg/kg in mice and 365.5 mg/kg in chickens. The trivial name „verruculogen” is proposed for this tremorgenic mycotoxin. Physical and chemical characteristics of the mycotoxin are described. PMID:4341967

  11. Penicillium species present in Uruguayan salami.

    PubMed

    Galvalisi, Umberto; Lupo, Sandra; Piccini, Juan; Bettucci, Lina

    2012-01-01

    The surface coverage of certain dry fermented sausages such as Italian salami by some species of Penicillium provides their characteristic flavor and other beneficial properties. One of them is the protective effect by means of a uniform film of white mold against undesirable microorganisms. The aim of this work was to identify and to isolate the fungal species present in mature Italian type of salami and to evaluate if it is possible to obtain some of them as starters. In addition, the effects of temperature (14 °C and 25 °C), water activity (a w) (0.90, 0.95 and 0.995) and 2.5 % sodium chloride (NaCl) on fungal growth were determined. Similarly, the proteolytic and lipolytic activity and the ability to produce toxic secondary metabolites were evaluated in order to characterize some possible starter strain. All species found belong to the genus Penicillium, including a performing starter as Penicillium nalgiovense and some potentially toxicogenic species. All the strains showed a higher growth rate at 25 °C. The production of extracellular proteases and lipases was significantly higher at 25 °C than at 14 °C with and without sodium chloride. Only Penicillium expansum produced patulin. On the other hand, Penicillium griseofulvum was the only species that produced ciclopiazonic acid but none of the strains produced penicillin. The species present on salami, Penicillium nalgiovense, Penicillium minioluteum, Penicillium brevicompactum and Penicillium puberulum were unable to produce any of the evaluated toxins. These findings suggest that some fungal isolates from the surface of salami such as P. nalgiovense are potentially useful as starters in sausage manufacture.

  12. Fifteen new species of Penicillium.

    PubMed

    Visagie, C M; Renaud, J B; Burgess, K M N; Malloch, D W; Clark, D; Ketch, L; Urb, M; Louis-Seize, G; Assabgui, R; Sumarah, M W; Seifert, K A

    2016-06-01

    We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others. PMID:27616792

  13. Fifteen new species of Penicillium.

    PubMed

    Visagie, C M; Renaud, J B; Burgess, K M N; Malloch, D W; Clark, D; Ketch, L; Urb, M; Louis-Seize, G; Assabgui, R; Sumarah, M W; Seifert, K A

    2016-06-01

    We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others.

  14. Taxonomy of Penicillium section Citrina

    PubMed Central

    Houbraken, J.; Frisvad, J.C.; Samson, R.A.

    2011-01-01

    Species of Penicillium section Citrina have a worldwide distribution and occur commonly in soils. The section is here delimited using a combination of phenotypic characters and sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA (ITS) and partial RPB2 sequences. Species assigned to section Citrina share the production of symmetrically biverticillate conidiophores, flask shaped phialides (7.0–9.0 μm long) and relatively small conidia (2.0–3.0 μm diam). Some species can produce greyish-brown coloured cleistothecia containing flanged ascospores. In the present study, more than 250 isolates presumably belonging to section Citrina were examined using a combined analysis of phenotypic and physiological characters, extrolite profiles and ITS, β-tubulin and/or calmodulin sequences. Section Citrina includes 39 species, and 17 of those are described here as new. The most important phenotypic characters for distinguishing species are growth rates and colony reverse colours on the agar media CYA, MEA and YES; shape, size and ornamentation of conidia and the production of sclerotia or cleistothecia. Temperature-growth profiles were made for all examined species and are a valuable character characters for species identification. Species centered around P. citrinum generally have a higher maximum growth temperature (33–36 °C) than species related to P. westlingii (27–33 °C). Extrolite patterns and partial calmodulin and β-tubulin sequences can be used for sequence based identification and resolved all species. In contrast, ITS sequences were less variable and only 55 % of the species could be unambiguously identified with this locus. Taxonomic novelties: Penicillium argentinense Houbraken, Frisvad & Samson, P. atrofulvum Houbraken, Frisvad & Samson, P. aurantiacobrunneum Houbraken, Frisvad & Samson, P. cairnsense Houbraken, Frisvad & Samson, P. christenseniae Houbraken, Frisvad & Samson

  15. Ochratoxin A production by Penicillium thymicola.

    PubMed

    Nguyen, Hai D T; McMullin, David R; Ponomareva, Ekaterina; Riley, Robert; Pomraning, Kyle R; Baker, Scott E; Seifert, Keith A

    2016-08-01

    Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species that grow on economically important agricultural crops and food products. OTA is classified as Group 2B carcinogen and is potently nephrotoxic, which is the basis for its regulation in some jurisdictions. Using high resolution mass spectroscopy, OTA and ochratoxin B (OTB) were detected in liquid culture extracts of Penicillium thymicola DAOMC 180753 isolated from Canadian cheddar cheese. The genome of this strain was sequenced, assembled and annotated to probe for putative genes involved in OTA biosynthesis. Known OTA biosynthetic genes from Penicillium verrucosum or Penicillium nordicum, two related Penicillium species that produce OTA, were not found in P. thymicola. However, a gene cluster containing a polyketide synthase (PKS) and PKS-nonribosomal peptide synthase (NRPS) hybrid encoding genes were located in the P. thymicola genome that showed a high degree of similarity to OTA biosynthetic enzymes of Aspergillus carbonarius and Aspergillus ochraceus. This is the first report of ochratoxin from P. thymicola and a new record of the species in Canada.

  16. Ochratoxin A production by Penicillium thymicola.

    PubMed

    Nguyen, Hai D T; McMullin, David R; Ponomareva, Ekaterina; Riley, Robert; Pomraning, Kyle R; Baker, Scott E; Seifert, Keith A

    2016-08-01

    Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species that grow on economically important agricultural crops and food products. OTA is classified as Group 2B carcinogen and is potently nephrotoxic, which is the basis for its regulation in some jurisdictions. Using high resolution mass spectroscopy, OTA and ochratoxin B (OTB) were detected in liquid culture extracts of Penicillium thymicola DAOMC 180753 isolated from Canadian cheddar cheese. The genome of this strain was sequenced, assembled and annotated to probe for putative genes involved in OTA biosynthesis. Known OTA biosynthetic genes from Penicillium verrucosum or Penicillium nordicum, two related Penicillium species that produce OTA, were not found in P. thymicola. However, a gene cluster containing a polyketide synthase (PKS) and PKS-nonribosomal peptide synthase (NRPS) hybrid encoding genes were located in the P. thymicola genome that showed a high degree of similarity to OTA biosynthetic enzymes of Aspergillus carbonarius and Aspergillus ochraceus. This is the first report of ochratoxin from P. thymicola and a new record of the species in Canada. PMID:27521635

  17. Microbial transformation of citral by Penicillium sp..

    PubMed

    Esmaeili, Akbar; Tavassoli, Afsaneh

    2010-01-01

    Thymol is present in the essential oils from herbs and spices, such as thyme. It is produced by these plant species as a chemical defense against phytopathogenic microorganisms. Therefore, this compound has attracted great attention in food industry, i.e., it has been used as a natural preservative in foods such as cheese to prevent fungal growth. Previous studies concerning the biotransformation of nerol by Penicillium sp. and microbial transformation of citral by sporulated surface cultures method (SSCM) of Penicillium digitatum have been reported. The objective of this research was to study the pathway involved during biotransformation of citral by Penicillium sp. using two methods. The culture preparation was done using different microbial methods and incubation periods to obtain Penicillium for citral biotransformation. The biotransformation products were identified by gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS). A comparison of the two methods showed that SSCM was more effective, its major products were thymol (21.5 %), geranial (18.6 %) and nerol (13.7 %). LM produced only one compound — thymol — with a low efficiency. PMID:20842292

  18. Construction of transformation system in Penicillium purpurogenum.

    PubMed

    Kojima, Ryo; Arai, Teppei; Kasumi, Takafumi; Ogihara, Jun

    2015-03-01

    Penicillium purpurogenum attracts attention in the food industry and biomass degradation. We expressed green fluorescent protein (GFP) with pBPE, a novel vector, and constructed a transformation system for P. purpurogenum. The accumulation of GFP was confirmed by fluorescence microscopy. In future, this system may prove useful for the genetic modification of P. purpurogenum.

  19. Identification and nomenclature of the genus Penicillium

    PubMed Central

    Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.-B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A.

    2014-01-01

    Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, β-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus. PMID:25505353

  20. Penicillium daejeonium sp. nov., a new species isolated from a grape and schisandra fruit in Korea.

    PubMed

    Sang, Hyunkyu; An, Tae-Jin; Kim, Chang Sun; Choi, Young Phil; Deng, Jian-Xin; Paul, Narayan Chandra; Sung, Gi-Ho; Yu, Seung Hun

    2013-08-01

    Two isolates of monoverticillate Penicillium species were collected from a grape and schisandra fruit in Korea. Multigene phylogenetic analyses with the nuclear ribosomal internal transcribed spacer (ITS) region and genes encoding β-tubulin (benA) and calmodulin (cmd), as well as morphological analyses revealed that the two isolates are members of the P. sclerotiorum complex in Penicillium subgenus Aspergilloides, but different from species of the P. sclerotiorum complex. The isolates are closely related to P. cainii, P. jacksonii, and P. viticola in terms of their multigene phylogeny, but their colony and conidiophore morphologies differ from those of closely related species. The name P. daejeonium is proposed for this unclassified new species belonging to the P. sclerotiorum complex in subgenus Aspergilloides.

  1. A taxonomic and phylogenetic revision of the Penicillium sclerotiorum complex

    PubMed Central

    Rivera, K.G.; Seifert, K.A.

    2011-01-01

    The morphological concept of Penicillium sclerotiorum (subgenus Aspergilloides) includes strains with monoverticillate, vesiculate conidiophores, and vivid orange to red colony colours, with colourful sclerotia sometimes produced. Multigene phylogenetic analyses with the nuclear ribosomal internal transcribed spacer (ITS) region, cytochrome c oxidase subunit 1 (cox1), β-tubulin (benA), translation elongation factor 1-α (tef1-α), and calmodulin (cmd), reveal that the P. sclerotiorum morphospecies is a complex of seven phylogenetically distinct species, three of which were recently described, namely P. guanacastense, P. mallochii, and P. viticola. Three previously unidentified species are described here as P. cainii, P. jacksonii, and P. johnkrugii. The phylogenetic species are morphologically similar, but differ in combinations of colony characters, sclerotium production, conidiophore stipe roughening and branching, and conidial shape. Ecological characters and differences in geographical distribution further characterise some of the species, but increased sampling is necessary to confirm these differences. The fungal DNA barcode, the ITS, and the animal DNA barcode, cox1, have lower species resolving ability in our phylogenetic analyses, but still allow identification of all the species. Tef1-α and cmd were superior in providing fully resolved, statistically well-supported phylogenetic trees for this species complex, whereas benA resolved all species but had some issues with paraphyly. Penicillium adametzioides and P. multicolor, considered synonyms of P. sclerotiorum by some previous authors, do not belong to the P. sclerotiorum complex. Taxonomic novelties: New species: Penicillium cainii K.G. Rivera, Malloch & Seifert, P. jacksonii K.G. Rivera, Houbraken & Seifert, P. johnkrugii K.G. Rivera, Houbraken & Seifert. PMID:22308047

  2. Gluconic acid production by Penicillium puberulum.

    PubMed

    Elnaghy, M A; Megalla, S E

    1975-01-01

    Twenty-five Penicillium species isolated from Egyptian soil were examined for their ability to produce gluconic acid in surface culture. Of the eight species capable of producing gluconic acid, Penicillium puberulum gave the maximum yield (91% gluconic acid from glucose after 7 days of fermentation with 3% CaCO3). Peptone was the best nitrogen source for acid fermentation and glucose was superior to sucrose. Addition of low concentrations of KH2PO4 and MgSO4 - 7 H2O stimulated acid production. An initial pH of 6.1 was most favourable for acid accumulation and addition of CaCO3 was necessary for maximum acid production.

  3. Steroids' transformations in Penicillium notatum culture.

    PubMed

    Bartmańska, Agnieszka; Dmochowska-Gładysz, Jadwiga; Huszcza, Ewa

    2005-03-01

    The application of Penicillium notatum genus for biotransformations of steroids has been investigated. The reactions observed include insertion of an oxygen atom into D-ring of steroids, 15alpha-hydroxylation of 17alpha-methyl testosterone derivatives, ester bond hydrolysis, and degradation of a testosterone derivatives side chain. Microbial production of testolactones, the biologically active compounds, was also achieved using this strain in up to 98% yield. PMID:15763598

  4. Biosynthesis of radiolabeled verruculogen by Penicillium simplicissimum.

    PubMed Central

    Day, J B; Mantle, P G

    1982-01-01

    In surface culture of Penicillium simplicissimum, verruculogen was shown to be biosynthesized from the intact carbon skeletons of tryptophan and proline, isoprenoid derivatives of mevalonic acid, and a methyl group donated by methionine. Selected radiolabeled precursors (1 mCi) pulse-fed at the optimum stage of fermentation yielded verruculogen (specific activity, 5.89 X 10(2) microCi mmol-1) labeled in the prolyl and isoprenyl regions of the molecule and suitable for metabolic studies. PMID:7041819

  5. Biosynthesis of radiolabeled verruculogen by Penicillium simplicissimum.

    PubMed

    Day, J B; Mantle, P G

    1982-03-01

    In surface culture of Penicillium simplicissimum, verruculogen was shown to be biosynthesized from the intact carbon skeletons of tryptophan and proline, isoprenoid derivatives of mevalonic acid, and a methyl group donated by methionine. Selected radiolabeled precursors (1 mCi) pulse-fed at the optimum stage of fermentation yielded verruculogen (specific activity, 5.89 X 10(2) microCi mmol-1) labeled in the prolyl and isoprenyl regions of the molecule and suitable for metabolic studies. PMID:7041819

  6. Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of isolates genetically similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a Basic Local Alignment Search Tool (BLAST) search of internal transcribed spacer (ITS) similarity among described (GenBank) and undescribed Penicillium isolates...

  7. Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis.

    PubMed

    Davolos, Domenico; Pietrangeli, Biancamaria; Persiani, Anna Maria; Maggi, Oriana

    2012-02-01

    The morphology of three phenetically identical Penicillium isolates, collected from the bioaerosol in a restoration laboratory in Italy, displayed macro- and microscopic characteristics that were similar though not completely ascribable to Penicillium raistrickii. For this reason, a phylogenetic approach based on DNA sequencing analysis was performed to establish both the taxonomic status and the evolutionary relationships of these three peculiar isolates in relation to previously described species of the genus Penicillium. We used four nuclear loci (both rRNA and protein coding genes) that have previously proved useful for the molecular investigation of taxa belonging to the genus Penicillium at various evolutionary levels. The internal transcribed spacer region (ITS1-5.8S-ITS2), domains D1 and D2 of the 28S rDNA, a region of the tubulin beta chain gene (benA) and part of the calmodulin gene (cmd) were amplified by PCR and sequenced. Analysis of the rRNA genes and of the benA and cmd sequence data indicates the presence of three isogenic isolates belonging to a genetically distinct species of the genus Penicillium, here described and named Penicillium simile sp. nov. (ATCC MYA-4591(T)  = CBS 129191(T)). This novel species is phylogenetically different from P. raistrickii and other related species of the genus Penicillium (e.g. Penicillium scabrosum), from which it can be distinguished on the basis of morphological trait analysis.

  8. Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis.

    PubMed

    Davolos, Domenico; Pietrangeli, Biancamaria; Persiani, Anna Maria; Maggi, Oriana

    2012-02-01

    The morphology of three phenetically identical Penicillium isolates, collected from the bioaerosol in a restoration laboratory in Italy, displayed macro- and microscopic characteristics that were similar though not completely ascribable to Penicillium raistrickii. For this reason, a phylogenetic approach based on DNA sequencing analysis was performed to establish both the taxonomic status and the evolutionary relationships of these three peculiar isolates in relation to previously described species of the genus Penicillium. We used four nuclear loci (both rRNA and protein coding genes) that have previously proved useful for the molecular investigation of taxa belonging to the genus Penicillium at various evolutionary levels. The internal transcribed spacer region (ITS1-5.8S-ITS2), domains D1 and D2 of the 28S rDNA, a region of the tubulin beta chain gene (benA) and part of the calmodulin gene (cmd) were amplified by PCR and sequenced. Analysis of the rRNA genes and of the benA and cmd sequence data indicates the presence of three isogenic isolates belonging to a genetically distinct species of the genus Penicillium, here described and named Penicillium simile sp. nov. (ATCC MYA-4591(T)  = CBS 129191(T)). This novel species is phylogenetically different from P. raistrickii and other related species of the genus Penicillium (e.g. Penicillium scabrosum), from which it can be distinguished on the basis of morphological trait analysis. PMID:21460135

  9. Non-gravitational effects on genus penicillium

    SciTech Connect

    Loup, M.

    1995-09-01

    In September 1994, Shuttle Orbiter Discovery, STS-64, launched into space. Aboard that shuttle was a payload containing Fungi spores, genus Penicillium. With the over looking help of Dr. Audrey Gabel, Associate Professor of Biology at Black Hills State University, investigations on differing media types began. Basis for this experimentation was to determine if there was any differences between the space exposed spores and control spores. Studies concluded that there were differences and those differences were then recorded. It was hypothesized the spores may have been effected causing differences in growth rate, colony size, depth and margins, coloring, germination, and growth on different media.

  10. MYCOTOXINS: AFLATOXIN ISOLATED FROM PENICILLIUM PUBERULUM.

    PubMed

    HODGES, F A; ZUST, J R; SMITH, H R; NELSON, A A; ARMBRECHT, B H; CAMPBELL, A D

    1964-09-25

    Penicillium puberulum Bainer was found growing on a sample of moldy peanuts. It also grows on shredded wheat, potatoes, and laboratory culture media such as wort, potato dextrose, and Sabouraud agars, and synthesizes aflatoxin on these substrates. Thin-layer chromatograms of the chloroform-soluble toxin produced by the mold when grown on shredded wheat show fluorescent bands with R(F) values identical with those of the fractions B(1), B(2), G(1), and G(2) of the toxin produced by Aspergillus flavus. This extract produces typical bile duct proliferation type of liver damage in 2-to 3-day-old Peking white ducklings.

  11. Non-gravitational effects on genus penicillium

    NASA Technical Reports Server (NTRS)

    Loup, Mackenzie

    1995-01-01

    In September 1994, Shuttle Orbiter Discovery, STS-64, launched into space. Aboard that shuttle was a payload containing Fungi spores, genus Penicillium. With the over looking help of Dr. Audrey Gabel, Associate Professor of Biology at Black Hills State University, investigations on differing media types began. Basis for this experimentation was to determine if there was any differences between the space exposed spores and control spores. Studies concluded that there were differences and those differences were then recorded. It was hypothesized the spores may have been effected causing differences in growth rate, colony size, depth and margins, coloring, germination, and growth on different media.

  12. Factors affecting patulin production by Penicillium expansum.

    PubMed

    McCallum, J L; Tsao, R; Zhou, T

    2002-12-01

    Patulin, a mycotoxin produced by Penicillium spp. during fruit spoilage, is a major concern with regard to human health because exposure can result in severe acute and chronic toxicity, including carcinogenic, mutagenic, and teratogenic effects. In this study, we investigated the effects of Penicillium expansum isolate, apple cultivar, storage temperature and time, and pH on the production of patulin. Patulin was analyzed by a previously developed micellar electrokinetic capillary electrophoresis method. P. expansum isolates originating from across Ontario produced widely differing levels of patulin, ranging from 0 to >6 mg/g by dry mycelial weight. The highest patulin levels were those for isolates displaying aggressive growth (characterized by rapidly increasing acidity) accompanied by profuse mycelial development. Distinct patterns in fungal growth rates and patulin production were evident among isolates grown in McIntosh, Empire, and Mutsu ciders. Extensive fungal growth and higher patulin levels (538 to 1,822 microg/ml on day 14) in apple ciders were associated with incubation at room temperature (25 degrees C), although potentially toxic patulin levels (75 to 396 microg/ml on day 24) were also found in refrigerated ciders (4 degrees C) inoculated with P. expansum. PMID:12495013

  13. Avian penicilliosis caused by Penicillium griseofulvum in a captive toucanet.

    PubMed

    Aho, R; Westerling, B; Ajello, L; Padhye, A A; Samson, R A

    1990-01-01

    A sudden fatal illness developed in a group of New World toucanets held captive in Finland. Necropsy studies on one of the birds revealed the presence of invasive, hyaline, septate, branched mycelium in the lungs, air sacs, liver and other tissues. In addition, conidiophores and conidial chains, typical of members of the genus Penicillium were present in the lungs and air sacs. Cultures yielded a mould which was subsequently identified as Penicillium griseofulvum. A critical review of the literature revealed that only seven other species of Penicillium have been convincingly documented as agents of penicilliosis on the basis of histologic and cultural findings. PMID:2283582

  14. Comparison of glucose oxidases from Penicillium adametzii, Penicillium Funiculosum and Aspergillus Niger in the design of amperometric glucose biosensors.

    PubMed

    Ramanavicius, Arunas; Voronovic, Jaroslav; Semashko, Tatiana; Mikhailova, Raisa; Kausaite-Minkstimiene, Asta; Ramanaviciene, Almira

    2014-01-01

    The properties of amperometric glucose biosensors based on three different glucose oxidases and various redox mediators were evaluated. Glucose oxidases (GOx) from Penicillium adametzii, Penicillium funiculosum and Aspergillus niger and artificial redox mediators, such as ferrocene, ferrocenecarboxaldehyde, α-methylferrocene methanol and ferrocenecarboxylic acid, were used for modifying the graphite rod electrode and amperometrical reagent-less glucose detection. The obtained results were compared using N-methylphenazonium methyl sulphate in the solution. Taking into account the experimental kinetic parameters and the stability of the tested enzymatic electrodes, GOx from Penicillium funiculosum proved to be more suitable for glucose biosensor design in comparison with other evaluated enzymes. PMID:25492463

  15. Ultraviolet Radiation Induction of Mutation in Penicillium Claviforme.

    ERIC Educational Resources Information Center

    New, June; Jolley, Ray

    1986-01-01

    Cites reasons why Penicillium claviforme is an exceptionally good species for ultraviolet induced mutation experiments. Provides a set of laboratory instructions for teachers and students. Includes a discussion section. (ML)

  16. Functional characterization of Penicillium occitanis Pol6 and Penicillium funiculosum GH11 xylanases.

    PubMed

    Driss, Dorra; Berrin, Jean Guy; Juge, Nathalie; Bhiri, Fatma; Ghorbel, Raoudha; Chaabouni, Semia Ellouz

    2013-08-01

    Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of heteroxylans constituting the lignocellulosic plant cell wall. Xylanases from the GH11 family are considered as true xylanases because of their high substrate specificity. In order to study in depth a crucial difference in the thumb region between two closely related xylanases from Penicillium in terms of kinetic parameters and inhibition sensitivity, the GH11 xylanases from Penicillium occitanis Pol6 (PoXyn3) and from Penicillium funiculosum (PfXynC) were heterologously expressed in Pichia pastoris. The PoXyn3 and PfXynC cDNAs encoding mature xylanases were cloned into pGAPZαA vectors and integrated into the genome of P. pastoris X-33 under the control of the glyceraldehyde 3-phosphate dehydrogenase constitutive promoter. PfXynC was expressed as a His-tagged recombinant protein and purified from the supernatant homogeneity by a one-step purification protocol using immobilized metal affinity chromatography. The recombinant PoXyn3 was purified using a single anion-exchange chromatography. The purified recombinant enzymes were optimally active at 45°C and pH 4.0 for PoXyn3 and 40°C and pH 3.0 for PfXynC. The measured kinetic parameters (k(cat) and Vmax) showed that PfXynC was five times more active than PoXyn3 irrespective of the substrate whereas the apparent affinity (K(m)) was similar. The recombinant enzymes showed distinct sensitivity to the Triticum aestivum xylanase inhibitor TAXI-I.

  17. Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expansum

    PubMed Central

    Julca, Irene; Droby, Samir; Sela, Noa; Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Penicillium digitatum and Penicillium expansum are two closely related fungal plant pathogens causing green and blue mold in harvested fruit, respectively. The two species differ in their host specificity, being P. digitatum restricted to citrus fruits and P. expansum able to infect a wide range of fruits after harvest. Although host-specific Penicillium species have been found to have a smaller gene content, it is so far unclear whether these different host specificities impact genome variation at the intraspecific level. Here we assessed genome variation across four P. digitatum and seven P. expansum isolates from geographically distant regions. Our results show very high similarity (average 0.06 SNPs [single nucleotide polymorphism] per kb) between globally distributed isolates of P. digitatum pointing to a recent expansion of a single lineage. This low level of genetic variation found in our samples contrasts with the higher genetic variability observed in the similarly distributed P. expansum isolates (2.44 SNPs per kb). Patterns of polymorphism in P. expansum indicate that recombination exists between genetically diverged strains. Consistent with the existence of sexual recombination and heterothallism, which was unknown for this species, we identified the two alternative mating types in different P. expansum isolates. Patterns of polymorphism in P. digitatum indicate a recent clonal population expansion of a single lineage that has reached worldwide distribution. We suggest that the contrasting patterns of genomic variation between the two species reflect underlying differences in population dynamics related with host specificities and related agricultural practices. It should be noted, however, that this results should be confirmed with a larger sampling of strains, as new strains may broaden the diversity so far found in P. digitatum. PMID:26672008

  18. Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expansum.

    PubMed

    Julca, Irene; Droby, Samir; Sela, Noa; Marcet-Houben, Marina; Gabaldón, Toni

    2015-12-14

    Penicillium digitatum and Penicillium expansum are two closely related fungal plant pathogens causing green and blue mold in harvested fruit, respectively. The two species differ in their host specificity, being P. digitatum restricted to citrus fruits and P. expansum able to infect a wide range of fruits after harvest. Although host-specific Penicillium species have been found to have a smaller gene content, it is so far unclear whether these different host specificities impact genome variation at the intraspecific level. Here we assessed genome variation across four P. digitatum and seven P. expansum isolates from geographically distant regions. Our results show very high similarity (average 0.06 SNPs [single nucleotide polymorphism] per kb) between globally distributed isolates of P. digitatum pointing to a recent expansion of a single lineage. This low level of genetic variation found in our samples contrasts with the higher genetic variability observed in the similarly distributed P. expansum isolates (2.44 SNPs per kb). Patterns of polymorphism in P. expansum indicate that recombination exists between genetically diverged strains. Consistent with the existence of sexual recombination and heterothallism, which was unknown for this species, we identified the two alternative mating types in different P. expansum isolates. Patterns of polymorphism in P. digitatum indicate a recent clonal population expansion of a single lineage that has reached worldwide distribution. We suggest that the contrasting patterns of genomic variation between the two species reflect underlying differences in population dynamics related with host specificities and related agricultural practices. It should be noted, however, that this results should be confirmed with a larger sampling of strains, as new strains may broaden the diversity so far found in P. digitatum.

  19. Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expansum.

    PubMed

    Julca, Irene; Droby, Samir; Sela, Noa; Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Penicillium digitatum and Penicillium expansum are two closely related fungal plant pathogens causing green and blue mold in harvested fruit, respectively. The two species differ in their host specificity, being P. digitatum restricted to citrus fruits and P. expansum able to infect a wide range of fruits after harvest. Although host-specific Penicillium species have been found to have a smaller gene content, it is so far unclear whether these different host specificities impact genome variation at the intraspecific level. Here we assessed genome variation across four P. digitatum and seven P. expansum isolates from geographically distant regions. Our results show very high similarity (average 0.06 SNPs [single nucleotide polymorphism] per kb) between globally distributed isolates of P. digitatum pointing to a recent expansion of a single lineage. This low level of genetic variation found in our samples contrasts with the higher genetic variability observed in the similarly distributed P. expansum isolates (2.44 SNPs per kb). Patterns of polymorphism in P. expansum indicate that recombination exists between genetically diverged strains. Consistent with the existence of sexual recombination and heterothallism, which was unknown for this species, we identified the two alternative mating types in different P. expansum isolates. Patterns of polymorphism in P. digitatum indicate a recent clonal population expansion of a single lineage that has reached worldwide distribution. We suggest that the contrasting patterns of genomic variation between the two species reflect underlying differences in population dynamics related with host specificities and related agricultural practices. It should be noted, however, that this results should be confirmed with a larger sampling of strains, as new strains may broaden the diversity so far found in P. digitatum. PMID:26672008

  20. Reminiscence of phospholipase B in Penicillium notatum

    PubMed Central

    SAITO, Kunihiko

    2014-01-01

    Since the phospholipase B (PLB) was reported as a deacylase of both lecithin and lysolecithin yielding fatty acids and glycerophosphocholine (GPC), there was a question as to whether it is a single enzyme or a mixture of a phospholipase A2 (PLA2) and a lysophospholipase (LPL). We purified the PLB in Penicillium notatum and showed that it catalyzed deacylation of sn-1 and sn-2 fatty acids of 1,2-diacylphospholipids and also sn-1 or sn-2 fatty acids of 1- or 2-monoacylphospholipids (lysophospholipids). Further, it also has a monoacyllipase activity. The purified PLB is a glycoprotein with m.w. of 91,300. The sugar moiety is M9 only and the protein moiety consists of 603 amino acids. PLB, different from PLA2, shows other enzymatic activities, such as transacylase, lipase and acylesterase. PLB activity is influenced by various substances, e.g. detergents, deoxycholate, diethylether, Fe3+, and endogenous protease. Therefore, PLB might have broader roles than PLA2 in vivo. The database shows an extensive sequence similarity between P. notatum PLB and fungal PLB, cPLA2 and patatin, suggesting a homologous relationship. The catalytic triad of cPLA2, Ser, Asp and Arg, is also present in P. notatum PLB. Other related PLBs, PLB/Lipases are discussed. PMID:25391318

  1. Polyketides, Toxins and Pigments in Penicillium marneffei

    PubMed Central

    Tam, Emily W. T.; Tsang, Chi-Ching; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2015-01-01

    Penicillium marneffei (synonym: Talaromyces marneffei) is the most important pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS pandemic, particularly in China and other Southeast Asian countries, has led to the emergence of P. marneffei infection as an important AIDS-defining condition. Recently, we published the genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. This number is much higher than those of Coccidioides immitis and Histoplasma capsulatum, important pathogenic thermally dimorphic fungi in the Western world. Phylogenetically, these polyketide synthase genes were distributed evenly with their counterparts found in Aspergillus species and other fungi, suggesting that polyketide synthases in P. marneffei did not diverge from lineage-specific gene duplication through a recent expansion. Gene knockdown experiments and ultra-high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase genes were involved in the biosynthesis of various pigments in P. marneffei, including melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and ankaflavin, some of which were mycotoxins and virulence factors of the fungus. PMID:26529013

  2. Polyketides, toxins and pigments in Penicillium marneffei.

    PubMed

    Tam, Emily W T; Tsang, Chi-Ching; Lau, Susanna K P; Woo, Patrick C Y

    2015-10-30

    Penicillium marneffei (synonym: Talaromyces marneffei) is the most important pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS pandemic, particularly in China and other Southeast Asian countries, has led to the emergence of P. marneffei infection as an important AIDS-defining condition. Recently, we published the genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. This number is much higher than those of Coccidioides immitis and Histoplasma capsulatum, important pathogenic thermally dimorphic fungi in the Western world. Phylogenetically, these polyketide synthase genes were distributed evenly with their counterparts found in Aspergillus species and other fungi, suggesting that polyketide synthases in P. marneffei did not diverge from lineage-specific gene duplication through a recent expansion. Gene knockdown experiments and ultra-high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase genes were involved in the biosynthesis of various pigments in P. marneffei, including melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and ankaflavin, some of which were mycotoxins and virulence factors of the fungus.

  3. Reminiscence of phospholipase B in Penicillium notatum.

    PubMed

    Saito, Kunihiko

    2014-01-01

    Since the phospholipase B (PLB) was reported as a deacylase of both lecithin and lysolecithin yielding fatty acids and glycerophosphocholine (GPC), there was a question as to whether it is a single enzyme or a mixture of a phospholipase A2 (PLA2) and a lysophospholipase (LPL). We purified the PLB in Penicillium notatum and showed that it catalyzed deacylation of sn-1 and sn-2 fatty acids of 1,2-diacylphospholipids and also sn-1 or sn-2 fatty acids of 1- or 2-monoacylphospholipids (lysophospholipids). Further, it also has a monoacyllipase activity. The purified PLB is a glycoprotein with m.w. of 91,300. The sugar moiety is M9 only and the protein moiety consists of 603 amino acids. PLB, different from PLA2, shows other enzymatic activities, such as transacylase, lipase and acylesterase. PLB activity is influenced by various substances, e.g. detergents, deoxycholate, diethylether, Fe(3+), and endogenous protease. Therefore, PLB might have broader roles than PLA2 in vivo. The database shows an extensive sequence similarity between P. notatum PLB and fungal PLB, cPLA2 and patatin, suggesting a homologous relationship. The catalytic triad of cPLA2, Ser, Asp and Arg, is also present in P. notatum PLB. Other related PLBs, PLB/Lipases are discussed. PMID:25391318

  4. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species.

    PubMed

    Houbraken, Jos; de Vries, Ronald P; Samson, Robert A

    2014-01-01

    Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are commonly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion. Misidentification of strains used in biotechnology can be traced back to (1) recent changes in nomenclature, (2) new taxonomic insights, including description of new species, and/or (3) incorrect identifications. Changes in the recent published International Code of Nomenclature for Algae, Fungi and Plants will lead to numerous name changes of existing Aspergillus and Penicillium species and an overview of the current names of biotechnological important species is given. Furthermore, in (biotechnological) literature old and invalid names are still used, such as Aspergillus awamori, A. foetidus, A. kawachii, Talaromyces emersonii, Acremonium cellulolyticus, and Penicillium funiculosum. An overview of these and other species with their correct names is presented. Furthermore, the biotechnologically important species Talaromyces thermophilus is here combined in Thermomyces as Th. dupontii. The importance of Aspergillus, Penicillium, and related genera is also illustrated by the high number of undertaken genome sequencing projects. A number of these strains are incorrectly identified or atypical strains are selected for these projects. Recommendations for correct strain selection are given here. Phylogenetic analysis shows a close relationship between the genome-sequenced strains of Aspergillus, Penicillium, and Monascus. Talaromyces stipitatus and T. marneffei (syn. Penicillium marneffei) are closely related to Thermomyces lanuginosus and Th. dupontii (syn. Talaromyces thermophilus), and these species appear to be distantly related to Aspergillus and Penicillium. In the last part of

  5. Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum Strains.

    PubMed

    Lafuente, María T; Alférez, Fernando

    2015-11-01

    Studies on the antimicrobial properties of light have considerably increased due in part to the development of resistance to actual control methods. This study investigates the potential of light-emitting diodes (LED) blue light for controlling Penicillium digitatum and Penicillium italicum. These fungi are the most devastating postharvest pathogens of citrus fruit and cause important losses due to contaminations and the development of resistant strains against fungicides. The effect of different periods and quantum fluxes, delaying light application on the growth and morphology of P. digitatum strains resistant and sensitive to fungicides, and P. italicum cultured at 20°C was examined. Results showed that blue light controls the growth of all strains and that its efficacy increases with the quantum flux. Spore germination was always avoided by exposing the cultures to high quantum flux (700 μmol m(-2) s(-1) ) for 18 h. Continuous light had an important impact on the fungus morphology and a fungicidal effect when applied at a lower quantum flux (120 μmol m(-2) s(-1) ) to a growing fungus. Sensitivity to light increased with mycelium age. Results show that blue light may be a tool for P. digitatum and P. italicum infection prevention during handling of citrus fruits.

  6. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum.

    PubMed

    Tao, Nengguo; Jia, Lei; Zhou, Haien

    2014-06-15

    The chemical composition of Citrus reticulata Blanco essential oil was analysed using GC/MS. Monoterpene hydrocarbons (C10H16) constituted the majority (88.96%, w/w) of the total oil. The oils dose-dependently inhibited Penicillium italicum and Penicillium digitatum. The anti-fungal activity of the oils against P. italicum was attributed to citronellol, octanal, citral, decanal, nonanal, β-pinene, linalool, and γ-terpinene, whereas anti-fungal activity against P. digitatum is attributed to octanal, decanal, nonanal, limonene, citral, γ-terpinene, linalool, and α-terpineol. The oils altered the hyphal morphology of P. italicum and P. digitatum by causing loss of cytoplasm and distortion of the mycelia. The oils significantly altered extracellular conductivity, the release of cell constituents, and the total lipid content of P. italicum and P. digitatum. The results suggest that C. reticulata Blanco essential oils generate cytotoxicity in P. italicum and P. digitatum by disrupting cell membrane integrity and causing the leakage of cell components. PMID:24491729

  7. Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum Strains.

    PubMed

    Lafuente, María T; Alférez, Fernando

    2015-11-01

    Studies on the antimicrobial properties of light have considerably increased due in part to the development of resistance to actual control methods. This study investigates the potential of light-emitting diodes (LED) blue light for controlling Penicillium digitatum and Penicillium italicum. These fungi are the most devastating postharvest pathogens of citrus fruit and cause important losses due to contaminations and the development of resistant strains against fungicides. The effect of different periods and quantum fluxes, delaying light application on the growth and morphology of P. digitatum strains resistant and sensitive to fungicides, and P. italicum cultured at 20°C was examined. Results showed that blue light controls the growth of all strains and that its efficacy increases with the quantum flux. Spore germination was always avoided by exposing the cultures to high quantum flux (700 μmol m(-2) s(-1) ) for 18 h. Continuous light had an important impact on the fungus morphology and a fungicidal effect when applied at a lower quantum flux (120 μmol m(-2) s(-1) ) to a growing fungus. Sensitivity to light increased with mycelium age. Results show that blue light may be a tool for P. digitatum and P. italicum infection prevention during handling of citrus fruits. PMID:26288067

  8. First morphomolecular identification of Penicillium griseofulvum and Penicillium aurantiogriseum toxicogenic isolates associated with blue mold on apple.

    PubMed

    Moslem, Mohmed; Abd-Elsalam, Kamel; Yassin, Mohamed; Bahkali, Ali

    2010-07-01

    Postharvest blue mold decay caused by Penicillium spp. is the most important disease of fresh apple fruit in the world, which extend from the field to the store. Two new Penicillium spp. responsible for apple fruit decay were recovered. The morphological and molecular features of Penicillium griseofulvum and Penicillium aurantiogriseum isolated from apple fruits were characterized morphologically and molecularly. Pathogenicity test exhibited that both P. griseofulvum and P. aurantiogriseum were responsible for blue mold decay in storage apple fruits. Lesion diameter indicated that P. aurantiogriseum was more aggressive than P. griseofulvum. All tested isolates were able to synthesize citrinin in addition to patulin. Not all of the isolates belonging to the same species showed the same profile of secondary metabolites. Microsatellite-primed polymerase chain reaction was able to differentiate these isolates at the species level and divided the analyzed isolates into two genetically different groups. Little intraspecific variability was evident. Microsatellite-primed polymerase chain reaction analysis proved to be an objective, rapid, and reliable tool to identify Penicillium spp. involved in blue mold of apple. This is the first report of occurrence of P. griseofulvum and P. aurantiogriseum on imported apple fruits in Saudi Arabia.

  9. Penicillium koreense sp. nov., isolated from various soils in Korea.

    PubMed

    You, Young-Hyun; Cho, Hye Sun; Song, Jaekyeong; Kim, Dae-Ho; Houbraken, Jos; Hong, Seung-Beom

    2014-12-28

    During an investigation of the fungal diversity of Korean soils, four Penicillium strains could not be assigned to any described species. The strains formed monoverticillate conidiophores with occasionally a divaricate branch. The conidia were smooth or finely rough-walled, globose to broadly ellipsoidal and 2.5-3.5 × 2.0-3.0 μm in size. Their taxonomic novelty was determined using partial β-tubulin gene sequences and the ribosomal internal transcribed spacer region. The phylogenetic analysis showed that the isolates belonged to section Lanata- Divaricata and were most closely related to Penicillium raperi. Phenotypically, the strains differed from P. raperi in having longer and thicker stipes and thicker phialides. Strain KACC 47721(T) from bamboo field soil was designated as the type strain of the new species, and the species was named Penicillium koreense sp. nov., as it was isolated from various regions in Korea.

  10. Toxigenic Aspergillus and Penicillium Isolates from Weevil-Damaged Chestnuts

    PubMed Central

    Wells, John M.; Payne, Jerry A.

    1975-01-01

    Aspergillus and Penicillium were among the most common genera of fungi isolated on malt-salt agar from weevil-damaged Chinese chestnut kernels (16.8 and 40.7% occurrence, respectively). Chloroform extracts of 21 of 50 Aspergillus isolates and 18 of 50 representative Penicillium isolates, grown for 4 weeks at 21.1 C on artificial medium, were toxic to day-old cockerels. Twelve of the toxic Aspergillus isolates were identified as A. wentii, eight as A. flavus, and one as A. flavus var. columnaris. Nine of the toxic Penicillium isolates were identified as P. terrestre, three as P. steckii, two each as P. citrinum and P. funiculosum, and one each as P. herquei (Series) and P. roqueforti (Series). Acute diarrhea was associated with the toxicity of A. wentii and muscular tremors with the toxicity of P. terrestre, one isolate of P. steckii, and one of P. funiculosum. PMID:1190758

  11. Penicillium Mycelium Waste as Protein Supplement in Animals

    PubMed Central

    Doctor, V. M.; Kerur, L.

    1968-01-01

    Dried Penicillium mycelium served as a protein source in animal diet when it was supplemented at 7.5% protein level along with 7.5% protein level from peanut meal. Under these conditions, the food consumption was optimal, and the rat growth response was comparable with 15% casein diet. The role of peanut meal appears to be twofold; it makes the mycelium diet more palatable and it supplies protein. The amino acids, lysine and threonine, which are found to be limiting in peanut meal, are reported to be present in the Penicillium mycelium. This type of formulation affords considerable economic advantage because both the peanut meal and the Penicillium mycelium are by-products and, therefore, are inexpensive sources of protein. Images Fig. 1 Fig. 2 PMID:16349822

  12. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.

    PubMed

    Marjamaa, Kaisa; Toth, Karolina; Bromann, Paul Andrew; Szakacs, George; Kruus, Kristiina

    2013-05-10

    The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35°C while at 45°C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.

  13. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes.

    PubMed

    Krogh, Kristian B R; Mørkeberg, Astrid; Jørgensen, Henning; Frisvad, Jens C; Olsson, Lisbeth

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from genus Penicillium and compared with that of T. reesei. Either Solka-Floc cellulose or oat spelt xylan was used as carbon source in shake flask cultivations. All the fungi investigated showed coinduction of cellulolytic and xylanolytic enzymes during growth on cellulose as well as on xylan. The highest filter paper activity was measured after cultivation of Penicillium brasilianum IBT 20888 on cellulose.

  14. Sargassopenillines A–G, 6,6-Spiroketals from the Alga-Derived Fungi Penicillium thomii and Penicillium lividum

    PubMed Central

    Zhuravleva, Olesya I.; Sobolevskaya, Maria P.; Afiyatullov, Shamil Sh.; Kirichuk, Natalya N.; Denisenko, Vladimir A.; Dmitrenok, Pavel S.; Yurchenko, Ekaterina A.; Dyshlovoy, Sergey A.

    2014-01-01

    Seven new 6,6-spiroketals, sargassopenillines A–G (1–7) were isolated from the alga-derived fungi Penicillium thomii KMM 4645 and Penicillium lividum KMM 4663. The structures of these metabolites were determined by HR-MS and 1D and 2D NMR. The absolute configurations of compounds 1, 5 and 6 were assigned by the modified Mosher’s method and by CD data. Sargassopenilline C (3) inhibited the transcriptional activity of the oncogenic nuclear factor AP-1 with an IC50 value of 15 µM. PMID:25501795

  15. HEMOLYSIN, CHRYSOLYSIN FROM PENICILLIUM CHRYSOGENUM PROMOTES INFLAMMATORY RESPONSE

    EPA Science Inventory

    Some strains of Penicillium chrysogenum produce a proteinaceous hemolysin, chrysolysin, when incubated on sheep's blood agar at 37 �C but not at 23 �C. Chrysolysin is an aggregating protein composed of approximately 2 kDa monomers, contains one cysteine amino acid, and has an is...

  16. EVALUATION OF FUNGAL GROWTH (PENICILLIUM GLABRUM) ON A CEILING TILE

    EPA Science Inventory

    The paper gives results of a study employing static chambers to study the impact of different equilibrium relative humidities (RHs) and moisture conditions on the ability of a new ceiling tile to support fungal growth. Amplification of the mold, Penicillium glabrum, occurred at R...

  17. DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES TO PENICILLIUM CHRYSOGENUM

    EPA Science Inventory

    ABSTRACT
    Indoor mold has been associated with development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and its viable conidia can induce allergic responses in a mouse model of allergic penicilliosis. The hypothesis o...

  18. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  19. Meroterpenes from Penicillium sp found in association with Melia azedarach.

    PubMed

    Geris dos Santos, Regina M; Rodrigues-Fo, Edson

    2002-12-01

    A Penicillium sp was isolated from the root bark of Melia azedarach and cultivated over sterilized rice. After chromatographic procedures, two meroterpenes, named preaustinoid A and B, were obtained in addition to the known alkaloid verruculogen. Their structures were identified by extensive spectroscopic studies, and they exhibited moderate bacteriostatic effects on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus sp. PMID:12453515

  20. Growth and enzyme production by three Penicillium species on monosaccharides.

    PubMed

    Jørgensen, Henning; Mørkeberg, Astrid; Krogh, Kristian B R; Olsson, Lisbeth

    2004-04-29

    The growth and preference for utilisation of various sugar by the Penicillium species Penicillium pinophilum IBT 4186, Penicillium persicinum IBT 13226 and Penicillium brasilianum IBT 20888 was studied in batch cultivations using various monosaccharides as carbon source, either alone or in mixtures. P. pinophilum IBT 4186 and P. persicinum IBT 13226 had a micro(max) around 0.08-0.09 h(-1) using either glucose or xylose as carbon source. The micro(max) of P. brasilianum IBT 20888 was 0.16 and 0.14 h(-1) on glucose and xylose, respectively. Glucose was found to exert repression on the catabolism of mannose, galactose, xylose and arabinose. The three species were able to utilise all the tested monosaccharides, but arabinose was only slowly metabolised. Glucose was also found to repress the production of endoglucanases, endoxylanases and beta-xylosidases. After glucose depletion, the fungi started producing beta-glucosidase and endoglucanases. Xylose did not repress the enzyme production and it induced the production of endoxylanases and beta-xylosidases.

  1. Evaluation of several culture media for production of patulin by Penicillium species.

    PubMed

    Dombrink-Kurtzman, Mary Ann; Blackburn, Judy A

    2005-02-15

    The aim of this study was to evaluate different species of Penicillium to identify those which have the potential to produce the greatest amount of the mycotoxin, patulin. Additionally, six different culture media were compared to determine maximum patulin production. Eleven different strains of Penicillium species were selected because they had previously been reported to be producers of patulin. The strains included Penicillium expansum, Penicillium griseofulvum (formerly Penicillium urticae), Penicillium clavigerum, and Penicillium coprobium and a recent Penicillium sp. isolated from an apple. Cultures were grown in duplicate in three different liquid media: potato dextrose, malt extract, and glucose/yeast extract/peptone, both with and without manganese supplementation. Patulin production was compared at 24, 48, 72, and 96 h. Variability in patulin production occurred among the different species, growth media used, and time of incubation. All three of the P. griseofulvum isolates were the highest producers of patulin at 96 h. For most of the strains, potato dextrose broth supplemented with manganese was optimal for maximum production of patulin. Although P. expansum is frequently cited as the most likely source of patulin in apple juice, certain other Penicillium species are capable of producing more patulin than strains of P. expansum. The apple juice industry should be alert to the possibility that Penicillium species other than P. expansum can be responsible for the occurrence of patulin.

  2. Patulin Accumulation In Apples During Storage by Penicillium Expansum and Penicillium Griseofulvum Strains

    PubMed Central

    Welke, Juliane Elisa; Hoeltz, Michele; Dottori, Horacio Alberto; Noll, Isa Beatriz

    2011-01-01

    A part of apples destined to juice production is generally of poor quality. Apples from cold storage or recently harvest (ground harvested or low quality apples) are stored under ambient conditions until they are processed. Since Penicillium expansum and P. griseofulvum are the principal fungal species isolated from stored apples in Brazil, the objective of this study was to investigate the ability of these strains to produce patulin in apples and report the consequences of this type of storage in loss of quality. The toxin was quantified using thin layer chromatography and charge-coupled device camera (TLC-CCD). The rate and quantities that P. expansum and P. griseofulvum can grow and produce patulin are highly dependent on the fungal strain and time. Lesion diameter resulted to be independent of the strain considered. The maximum period of time which apples were kept at cold storage (4 °C) without patulin accumulation was 27 days. When these apples were kept at 25 °C during 3 days, both factors lesion diameter and patulin production increased significantly. These results confirm that time in which apples are taken out from cold storage room before juice production is critical in order to prevent patulin accumulation. PMID:24031618

  3. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon

    2016-10-01

    A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea. PMID:27687226

  4. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    DOEpatents

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2012-10-09

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A)) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  5. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    DOEpatents

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2008-11-11

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  6. Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea.

    PubMed

    Peterson, Stephen W; Jurjević, Željko; Frisvad, Jens C

    2015-01-01

    A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research.

  7. Secondary metabolites from Penicillium corylophilum isolated from damp buildings.

    PubMed

    McMullin, David R; Nsiama, Tienabe K; Miller, J David

    2014-01-01

    Indoor exposure to the spores and mycelial fragments of fungi that grow on damp building materials can result in increased non-atopic asthma and upper respiratory disease. The mechanism appears to involve exposure to low doses of fungal metabolites. Penicillium corylophilum is surprisingly common in damp buildings in USA, Canada and western Europe. We examined isolates of P. corylophilum geographically distributed across Canada in the first comprehensive study of secondary metabolites of this fungus. The sesquiterpene phomenone, the meroterpenoids citreohybridonol and andrastin A, koninginin A, E and G, three new alpha pyrones and four new isochromans were identified from extracts of culture filtrates. This is the first report of koninginins, meroterpenoids and alpha pyrones from P. corylophilum. These secondary metabolite data support the removal of P. corylophilum from Penicillium section Citrina and suggest that further taxonomic studies are required on this species.

  8. Expanding the Species and Chemical Diversity of Penicillium Section Cinnamopurpurea

    PubMed Central

    Peterson, Stephen W.; Jurjević, Željko; Frisvad, Jens C.

    2015-01-01

    A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research. PMID:25853891

  9. Sequential synthesis and secretion of pectinases by Penicillium frequentans.

    PubMed

    Chellegatti, M A; Kawano, C Y; Said, S; Fonseca, M J

    2000-01-01

    Penicillium frequentans synthesized eleven polygalacturonases and three pectinesterases when grown in the presence of pectin, sodium polypectate or monogalacturonic acid. When glucose was the sole carbohydrate source in the medium two of these polygalacturonases and one pectinesterase were produced. The enzymes produced under any of these conditions degraded pectic substrates to monogalacturonic acid, suggesting that this monosaccharide or its metabolites should induce the pectinolytic complex. All pectinesterases and most of the extracellular polygalacturonases were synthesized after the 2nd hour of incubation. The pectinases produced by Penicillium frequentans were not secreted at the same time but after 5 hours of incubation all of them could be detected outside the cell those detected only inside the cell were probably membrane-associated or unglycosylated forms of the extracellular pectinases.

  10. Penicillium subrubescens, a new species efficiently producing inulinase.

    PubMed

    Mansouri, S; Houbraken, J; Samson, R A; Frisvad, J C; Christensen, M; Tuthill, D E; Koutaniemi, S; Hatakka, A; Lankinen, P

    2013-06-01

    Inulin is a reserve carbohydrate in about 15 % of the flowering plants and is accumulated in underground tubers of e.g. chicory, dahlia and Jerusalem artichoke. This carbohydrate consists of linear chains of β-(2,1)-linked fructose attached to a sucrose molecule. Inulinases hydrolyse inulin into fructose and glucose. To find efficient inulin degrading fungi, 126 fungal strains from the Fungal Biotechnology Culture Collection (FBCC) at University of Helsinki and 74 freshly isolated strains from soil around Jerusalem artichoke tubers were screened in liquid cultures with inulin as a sole source of carbon or ground Jerusalem artichoke tubers, which contains up to 19 % (fresh weight) inulin. Inulinase and invertase activities were assayed by the dinitrosalicylic acid (DNS) method and a freshly isolated Penicillium strain originating from agricultural soil (FBCC 1632) was the most efficient inulinase producer. When it was cultivated at pH 6 and 28 °C in 2 litre bioreactors using inulin and Jerusalem artichoke as a carbon source, inulinase and invertase activities were on day 4 7.7 and 3.1 U mL(-1), respectively. The released sugars analysed by TLC and HPLC showed that considerable amounts of fructose were released while the levels of oligofructans were low, indicating an exoinulinase type of activity. Taxonomic study of the inulinase producing strain showed that this isolate represents a new species belonging in Penicillium section Lanata-divaricata. This new species produces a unique combination of extrolites and is phenotypically and phylogenetically closely related to Penicillium pulvillorum. We propose the name Penicillium subrubescens sp. nov. (CBS 132785(T) = FBCC 1632(T)) for this new species.

  11. Marine natural products sourced from marine-derived Penicillium fungi.

    PubMed

    Ma, Hong-Guang; Liu, Qiang; Zhu, Guo-Liang; Liu, Hai-Shan; Zhu, Wei-Ming

    2016-01-01

    Marine micro-organisms have been proven to be a major source of marine natural products (MNPs) in recent years, in which filamentous fungi are a vital source of bioactive natural products for their large metagenomes and more complex genetic backgrounds. This review highlights the 390 new MNPs from marine-derived Penicillium fungi during 1991 to 2014. These new MNPs are categorized based on the environment sources of the fungal hosts and their bioactivities are summarized.

  12. Penicillium subrubescens, a new species efficiently producing inulinase.

    PubMed

    Mansouri, S; Houbraken, J; Samson, R A; Frisvad, J C; Christensen, M; Tuthill, D E; Koutaniemi, S; Hatakka, A; Lankinen, P

    2013-06-01

    Inulin is a reserve carbohydrate in about 15 % of the flowering plants and is accumulated in underground tubers of e.g. chicory, dahlia and Jerusalem artichoke. This carbohydrate consists of linear chains of β-(2,1)-linked fructose attached to a sucrose molecule. Inulinases hydrolyse inulin into fructose and glucose. To find efficient inulin degrading fungi, 126 fungal strains from the Fungal Biotechnology Culture Collection (FBCC) at University of Helsinki and 74 freshly isolated strains from soil around Jerusalem artichoke tubers were screened in liquid cultures with inulin as a sole source of carbon or ground Jerusalem artichoke tubers, which contains up to 19 % (fresh weight) inulin. Inulinase and invertase activities were assayed by the dinitrosalicylic acid (DNS) method and a freshly isolated Penicillium strain originating from agricultural soil (FBCC 1632) was the most efficient inulinase producer. When it was cultivated at pH 6 and 28 °C in 2 litre bioreactors using inulin and Jerusalem artichoke as a carbon source, inulinase and invertase activities were on day 4 7.7 and 3.1 U mL(-1), respectively. The released sugars analysed by TLC and HPLC showed that considerable amounts of fructose were released while the levels of oligofructans were low, indicating an exoinulinase type of activity. Taxonomic study of the inulinase producing strain showed that this isolate represents a new species belonging in Penicillium section Lanata-divaricata. This new species produces a unique combination of extrolites and is phenotypically and phylogenetically closely related to Penicillium pulvillorum. We propose the name Penicillium subrubescens sp. nov. (CBS 132785(T) = FBCC 1632(T)) for this new species. PMID:23559042

  13. Antigenic characterization of Penicillium camemberti and related common cheese contaminants.

    PubMed Central

    Polonelli, L; Morace, G; Rosa, R; Castagnola, M; Frisvad, J C

    1987-01-01

    Twenty-four isolates of Penicillium (including a green-spored mutant from a French Brie cheese, Penicillium camemberti) with a proposed relationship to the white cheese mold P. camemberti were investigated by immunological procedures. These penicillia, which are representative of species that have caused considerable taxonomic confusion, had common micromorphology (terverticillate penicilli with rough and smooth stipes and smooth ellipsoidal to subglobose [(3 to 5) X 2 1/2 to 4 1/2 microns] conidia); growth rates; good growth on creatine sucrose agar, cheese, and other products with a high amount of protein and lipid as a primary habitat; production (with the exception of Penicillium solitum) of cyclopiazonic acid; and the ability to grow at low temperatures and water activities. The isolates that were investigated proved to be strictly antigenically related. Absorbed antiserum of the green-spored mutant of P. camemberti showed a specific precipitin band when tested by immunodiffusion either with its homologous reference antigen or with the exoantigens obtained from different isolates. The precipitin band was not present in any P. camemberti starter culture but in many unwanted cheese contaminants. The precipitin band can be used in the purity control of P. camemberti starter culture spore preparations. Analysis of the exoantigens of all the cultures by reversed phase high-performance liquid chromatography allowed us to subdivide these penicillia into nine groups below the species level. The results indicate that P. commune Thom is the wild-type ancestor of P. camemberti. Images PMID:3579286

  14. Blue mold to genomics and beyond: Insights into the biology and virulence of phytopathogenic Penicillium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pomes, mainly apples and pears, are economically important fruits produced and consumed worldwide. The United States is the second largest producer of pome fruit in the world behind China. Penicillium expansum and other Penicillium spp. are the most common fungal plant pathogens that cause blue mold...

  15. Multi-Locus Analysis of a Citreoviridin-Producing Isolate Previously Identified as Penicillium NRRL 13013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cole et al (1981) reported a citreoviridin-producing isolate of Penicillium charlesii (NRRL 13013) from molded pecans. Wicklow later identified it as a variant of Penicillium citreoviride, noting that it produced sclerotia, although the species as a whole is not known to do so. We sequenced the IT...

  16. Genome Sequence of Penicillium solitum RS1, Which Causes Postharvest Apple Decay.

    PubMed

    Yu, Jiujiang; Wu, Guangxi; Jurick, Wayne M; Gaskins, Verneta L; Yin, Yanbin; Yin, Guohua; Bennett, Joan W; Shelton, Daniel R

    2016-01-01

    Penicillium species cause postharvest decay, commonly known as blue mold, in pome fruits, such as apples and pears. To devise novel strategies to prevent and reduce economic losses during storage, the genome sequence of Penicillium solitum RS1 is reported here for the first time. PMID:27174276

  17. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  18. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium exp...

  19. Genome Sequence of Penicillium solitum RS1, Which Causes Postharvest Apple Decay.

    PubMed

    Yu, Jiujiang; Wu, Guangxi; Jurick, Wayne M; Gaskins, Verneta L; Yin, Yanbin; Yin, Guohua; Bennett, Joan W; Shelton, Daniel R

    2016-01-01

    Penicillium species cause postharvest decay, commonly known as blue mold, in pome fruits, such as apples and pears. To devise novel strategies to prevent and reduce economic losses during storage, the genome sequence of Penicillium solitum RS1 is reported here for the first time.

  20. Genome Sequence of Penicillium solitum RS1, Which Causes Postharvest Apple Decay

    PubMed Central

    Wu, Guangxi; Jurick, Wayne M.; Gaskins, Verneta L.; Yin, Yanbin; Bennett, Joan W.; Shelton, Daniel R.

    2016-01-01

    Penicillium species cause postharvest decay, commonly known as blue mold, in pome fruits, such as apples and pears. To devise novel strategies to prevent and reduce economic losses during storage, the genome sequence of Penicillium solitum RS1 is reported here for the first time. PMID:27174276

  1. Genetic and Morphological Diversity of the Genus Penicillium From Mazandaran and Tehran Provinces, Iran

    PubMed Central

    Abastabar, Mahdi; Mirhendi, Hossein; Hedayati, Mohammad Taghi; Shokohi, Tahereh; Rezaei-Matehkolaei, Ali; Mohammadi, Rasoul; Badali, Hamid; Moazeni, Maryam; Haghani, Iman; Ghojoghi, Aynaz; Akhtari, Javad

    2016-01-01

    Background: The genus Penicillium contains a large number of ubiquitous environmental taxa, of which some species are clinically important. Identification of Penicillium down to the species level is currently based on polyphasic criteria, including phenotypic features and genetic markers. Biodiversity of the genus Penicillium from Mazandaran and Tehran provinces has not been described. Objectives: The current paper focused on the environmental biodiversity of Penicillium isolates within some areas of Mazandaran and Tehran provinces, based on morphological traits and the molecular data from partial sequence of the β-tubulin (BT2) gene. Materials and Methods: A total of 400 strains were isolated from the environment and investigated using morphological tests and sequencing of BT2, in order to characterize the spectrum of the Penicillium species. Results: Sequence analysis of BT2 and morphological criteria of 20 strains representative of 10 species showed that Penicillium chrysogenum was the most prevalent species (n = 6), followed by P. polonicum (n = 3), P. glabrum (n = 2), P. palitans (n = 2), P. melanoconidium (n = 2), and other species, including P. expansum, P. canescense, P. griseofulvum, P. italicum, and P. raistrickii with one case each. Conclusions: It was shown that partial β-tubulin sequence, as a reliable genetic target, supported specific morphological criteria for identification of the Penicillium species. Like other assessments throughout the world, P. chrysogenum remains the most frequent environmental Penicillium species in Mazandaran and Tehran Provinces. PMID:27099684

  2. Host ranges of North American isolates of Penicillium causing blue mold of bulb crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single isolates of four Penicillium species belonging to series Corymbifera (Penicillium allii, P. hirsutum, P. tulipae, P. venetum) plus an isolate of P. polonicum, all from North American sources, were inoculated individually into Crocus sativus, Allium sativum (garlic), A. cepa (onion), Iris holl...

  3. Cyclohexanone derivatives with cytotoxicity from the fungus Penicillium commune.

    PubMed

    Liu, Fang-zhi; Ren, Jin-wei; Tang, Jin-shan; Liu, Xing-zhong; Che, Yong-sheng; Yao, Xin-sheng

    2013-06-01

    Four new cyclohexanone derivatives (2-5) and one known analog, (-)-Palitantin (1) were isolated from the EtOAc extract of Penicillium commune, a fungal strain of low-temperature habitats. The structures of 2-5 were determined on the basis of extensive spectroscopic analysis. Furthermore, the absolute configuration of 2 was assigned by electronic circular dichroism (ECD) calculations, whereas that 3-5 were deduced via the CD data. Cytotoxicities of 2-5 against five human carcinoma cell lines (Hela, A549, MCF7, HCT116, T24) were evaluated.

  4. [Study on secondary metabolites of endophytic fungi Penicillium dangeardii].

    PubMed

    Lv, Hai-ning; Ding, Guang-zhi; Liu, Yun-bao; Qu, Jing

    2015-05-01

    Endophytic fungi Penicillium dangeardii, isolated from Lysidice rhodostegia Hance root, was fermented and the secondary metabolites were studied. By means of Sephadex LH-20 column chromatography, ODS column chromatography and PHPLC over the fermented culture, 5 compounds were isolated. By using ESI-MS and NMR, the structures of the compounds were determined as N-[9-(β- D-ribofuranosyl)-9H-purin-6-yl]-L-aspartic acid (1), 3-caffeoylquinic acid (2), 4-caffeoylquinic acid (3), and 5-caffeoylquinic acid (4), 3-hydroxy-benzoic acid-4-O-β-D-glucopyranoside (5).

  5. Methylenolactocin, a novel antitumor antibiotic from Penicillium sp.

    PubMed

    Park, B K; Nakagawa, M; Hirota, A; Nakayama, M

    1988-06-01

    A novel antitumor antibiotic, methylenolactocin, was isolated from the culture filtrate of a new isolate of fungus identified as Penicillium sp. The fermentation yield reached about 100 mg per liter of the broth. Methylenolactocin has the molecular formula of C11H16O4 and possess an exomethylene lactone structure. Its structure was determined to be 3-carboxy-2-methylene-4-nonanolide by spectroscopic data. It is active against some Gram-positive bacteria and it prolongs the life span of mice inoculated with Ehrlich carcinoma. PMID:3403369

  6. Selective cytotoxic eremophilane-type sesquiterpenes from Penicillium citreonigrum.

    PubMed

    Yuan, Wei-Hua; Goto, Masuo; Hsieh, Kan-Yen; Yuan, Bo; Zhao, Yu; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2015-01-01

    One new eremophilane-type sesquiterpene (1, citreopenin) was isolated from Penicillium citreonigrum (HQ738282), and the structure was elucidated by a combination of spectroscopic data interpretation and single-crystal X-ray diffraction analysis using Cu Kα radiation (CCDC 1030588). Compound 1 showed weak activity against KB-VIN (IC50 = 11.0 ± 0.156 μM), while the known compound 3 exhibited selective cytotoxicity against MDA-MB-231 triple-negative breast cancer (TNBC) (IC50 = 5.42 ± 0.167 μM).

  7. Dihydroisocoumarins from the Mangrove-Derived Fungus Penicillium citrinum

    PubMed Central

    Huang, Guo-Lei; Zhou, Xue-Ming; Bai, Meng; Liu, Yu-Xin; Zhao, Yan-Lei; Luo, You-Ping; Niu, Yan-Yan; Zheng, Cai-Juan; Chen, Guang-Ying

    2016-01-01

    Three new dihydroisocoumarin penicimarins G–I (1–3), together with one known dihydroisocoumarin (4) and three known meroterpenoids (5–7), were obtained from a fungus Penicillium citrinum isolated from the mangrove Bruguiera sexangula var. rhynchopetala collected in the South China Sea. Their structures were elucidated by the detailed analysis of spectroscopic data. The absolute configuration of 1 was determined by the X-ray diffraction analysis using Cu Kα radiation. The absolute configurations of 2 and 3 were determined by comparison of their circular dichroism (CD) spectra with the literature. All compounds were evaluated for their antibacterial activities and cytotoxic activities. PMID:27735855

  8. [Thermal inactivation of alpha-galactosidase from Penicillium canescens].

    PubMed

    Borzova, N V; Varbanets, L D

    2010-01-01

    The kinetics and mechanism of thermal inactivation of Penicillium canescens alpha-galactosidase in the temperature range of 55-65 degrees C have been studied. The kinetic scheme of alpha-galactosidase thermal inactivation was proposed which included the reversible dissociation of active hexamers into associating monomers and irreversible denaturation of monomers. The kinetic constants of thermal inactivation have been determined. The effect of enzyme concentration and purification efficiency has been investigated. A possibility of defence of protein molecule from thermal inactivation in the presence of BSA, glycerol, melibiose, raffinose and stachyose is shown.

  9. Selective cytotoxic eremophilane-type sesquiterpenes from Penicillium citreonigrum.

    PubMed

    Yuan, Wei-Hua; Goto, Masuo; Hsieh, Kan-Yen; Yuan, Bo; Zhao, Yu; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2015-01-01

    One new eremophilane-type sesquiterpene (1, citreopenin) was isolated from Penicillium citreonigrum (HQ738282), and the structure was elucidated by a combination of spectroscopic data interpretation and single-crystal X-ray diffraction analysis using Cu Kα radiation (CCDC 1030588). Compound 1 showed weak activity against KB-VIN (IC50 = 11.0 ± 0.156 μM), while the known compound 3 exhibited selective cytotoxicity against MDA-MB-231 triple-negative breast cancer (TNBC) (IC50 = 5.42 ± 0.167 μM). PMID:26666171

  10. Production of verruculogen by Penicillium estinogenum in stirred fermenters.

    PubMed

    Day, J B; Mantle, P G; Shaw, B I

    1980-04-01

    A spectrofluorometric assay for the estimation of the tremorgenic mycotoxin verruculogen in crude mycelial extract has been devised and used to determine concentrations as low as 0.2 microgram ml-1. Verruculogen production by Penicillium estinogenum has been extended from surface culture to submerged culture in 60 1 stirred fermenters, in which the maximum cell-associated mycotoxin yield [5 mg (100 ml culture)-1] was obtained within 7 d. It was found necessary to supplement the medium (Czapek Dox broth plus 0.5% yeast extract) with calcium chloride (2%) to induce profuse sporulation (2 X 10(7) conidia ml-1). PMID:7420051

  11. Experimental and theoretical investigations of the adhesion time of Penicillium spores to cedar wood surface.

    PubMed

    Soumya, Elabed; Ibnsouda, Saad Koraichi; Abdellah, Houari; Hassan, Latrache

    2013-04-01

    In this study, the adhesion of 4 Penicillium strains (Penicillium granulatum, Penicillium crustosum, Penicillium commune and Penicillium chrysogenum) on cedar wood was examined qualitatively and quantitatively by using the extended DLVO (XDLVO) approach and the environmental scanning electronic microscopy (ESEM) technique. A comparison between the XDLVO theories and the ESEM technique was also investigated. The adhesion tests revealed that P. chrysogenum was not able to adhere on the cedar wood substrata, as predicted by the XDLVO approach. We have also found by ESEM that the three Penicillium strains (P. granulatum, P. crustosum, P. commune) adhered on wood, as not predicted theoretically. Moreover, the time of adhesion (3 h and 24 h) was used not only to compare the capacity of adhesion according to contact time but also to explain the discrepancies between the XDLVO approach prediction and the adhesion experiments. A positive relationship between the XDLVO approach and adhesion experiments has been observed after 3h of adhesion. In contrast, a contradiction between the XDLVO predictions and the adhesion test results has been noted after 24h of adhesion of Penicillium strains to the wood surface.

  12. Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile.

    PubMed

    Santini, Antonello; Mikušová, Petra; Sulyok, Michael; Krska, Rudolf; Labuda, Roman; Srobárová, Antónia

    2014-11-01

    The secondary metabolite profiles of microfungi of the genus Penicillium isolated from samples of grape berries collected in two different phases during two vegetative seasons in Slovakia is described to assess the taxonomy. Three Slovak vine regions have been selected for this study, based on their climatic differences and national economic importance. Cultures of microfungi isolated from berries were incubated on different selective media for macro and micromorphology identification. The species Penicillium brevicompactum, Penicillium crustosum, Penicillium chrysogenum, Penicillium expansum, Penicillium palitans and Penicillium polonicum were identified according to growth and morphology. The related strains were found to produce a broad spectrum of fungal metabolites, including roquefortine C, chaetoglobosin A, penitrem A, cyclopeptin, cyclopenin, viridicatin, methylviridicatin, verrucofortine, secalonic acid D, cyclopiazonic acid, fumigaclavine and mycophenolic acid. Chemotaxonomy was performed using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Dried grape berries were also analyzed allowing to assess the presence of patulin, roquefortine C and penicillic acid; this last one has been identified in dried berries but not in vitro.

  13. Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile.

    PubMed

    Santini, Antonello; Mikušová, Petra; Sulyok, Michael; Krska, Rudolf; Labuda, Roman; Srobárová, Antónia

    2014-11-01

    The secondary metabolite profiles of microfungi of the genus Penicillium isolated from samples of grape berries collected in two different phases during two vegetative seasons in Slovakia is described to assess the taxonomy. Three Slovak vine regions have been selected for this study, based on their climatic differences and national economic importance. Cultures of microfungi isolated from berries were incubated on different selective media for macro and micromorphology identification. The species Penicillium brevicompactum, Penicillium crustosum, Penicillium chrysogenum, Penicillium expansum, Penicillium palitans and Penicillium polonicum were identified according to growth and morphology. The related strains were found to produce a broad spectrum of fungal metabolites, including roquefortine C, chaetoglobosin A, penitrem A, cyclopeptin, cyclopenin, viridicatin, methylviridicatin, verrucofortine, secalonic acid D, cyclopiazonic acid, fumigaclavine and mycophenolic acid. Chemotaxonomy was performed using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Dried grape berries were also analyzed allowing to assess the presence of patulin, roquefortine C and penicillic acid; this last one has been identified in dried berries but not in vitro. PMID:25109845

  14. Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2014-01-01

    To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.

  15. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  16. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    SciTech Connect

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  17. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum

    NASA Astrophysics Data System (ADS)

    Knoshaug, Eric P.; Selig, Michael J.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.; Adney, William S.

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  18. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium Funiculosum

    SciTech Connect

    Knoshaug, E. P.; Selig, M. J.; Baker, J. O.; Decker, S. R.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  19. The paf gene product modulates asexual development in Penicillium chrysogenum.

    PubMed

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-06-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum. PMID:21298690

  20. The paf gene product modulates asexual development in Penicillium chrysogenum

    PubMed Central

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-01-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum. PMID:21298690

  1. Removal of lead from aqueous solutions by Penicillium biomass

    SciTech Connect

    Hui Niu; Xue Shu Xu; Jian Hua Wang . Dept. of Chemical Engineering); Volesky, B. . Dept. of Chemical Engineering)

    1993-09-05

    The removal of lead ions from aqueous solutions by adsorption on nonliving Penicillium chrysogenum biomass was studied. Biosorption of the Pb[sup +2] ion was strongly affected by pH. Within a pH range of 4 to 5, the saturated sorption uptake of Pb[sup +2] was 116 mg/g dry biomass, higher than that of activated charcoal and some other microorganisms. At pH 4.5, P. chrysogenum biomass exhibited selectivity for Pb[sup +2] over other metal ions such as Cd[sup +2], Cu[sup +2], Zn [sup +2], and As[sub +3]. Sorption preference for metals decreased in the following order: Pb > Cd > Cu > Zn > As. The sorption uptake of Pb[sup +2] remained unchanged in the presence of Cu[sup +2] and As [sup +3], it decreased in the presence of Zn[sup +2], and increased in the presence of Cd[sup +2].

  2. Biosynthesis of penitrems and roquefortine by Penicillium crustosum.

    PubMed Central

    Mantle, P G; Perera, K P; Maishman, N J; Mundy, G R

    1983-01-01

    Roquefortine and the penitrems were biosynthesised concurrently at an approximately equimolar rate by Penicillium crustosum after growth and sporulation. [14C]mevalonic acid was incorporated (15% efficiency) into the isoprenoid regions of the penitrem and roquefortine molecules to an extent consistent with their 6:1 molar ratio of isoprenoid components. [14C]penitrem A (specific activity, 3.4 X 10(2) mu Ci mmol-1) and 14C-penitrems B, C, and E readministered to young cultures were metabolically interconverted, indicating considerable metabolic flux, though generally directed towards penitrem A as the end product and suggesting a metabolic grid for the penitrem metabolites. Addition of bromide to the medium preferentially favored the production of bromo-analogs rather than the usual chloropenitrems. PMID:6870239

  3. Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx.

    PubMed Central

    Zhang, Y Z; Sundaram, S T; Sharma, A; Brodman, B W

    1997-01-01

    Penicillium corylophilum Dierckx, isolated from a contaminated water wet, double-base propellant, was able to completely degrade glyceryl trinitrate (GTN) in a buffered medium (pH 7.0) containing glucose and ammonium nitrate. In the presence of 12 mg of initial fungal inoculum, GTN (48.5 to 61.6 mumol) was quantitatively transformed in a stepwise process to glyceryl dinitrate (GDN) and glyceryl mononitrate (GMN) within 48 h followed by a decrease in the GDN content with a concomitant increase in the GMN level. GDN was totally transformed to GMN within 168 h, and the complete degradation of GMN was achieved within 336 h. The presence of glucose and ammonium nitrate in the growth medium was essential for completion of the degradation of GTN and its metabolites. Complete degradation of GTN by a fungal culture has not been previously reported in the literature. PMID:9143106

  4. Persistent karyomegaly caused by Penicillium nephrotoxins in the rat.

    PubMed

    Mantle, P G; McHugh, K M; Adatia, R; Gray, T; Turner, D R

    1991-12-23

    Continuous or intermittent consumption by rats of food moulded by Penicillium aurantiogriseum induced prominent and extensive histopathological changes within several weeks seen specifically at the renal cortico-medullary junction. Many cells of the P3 segment of proximal tubules contained either giant nuclei or multiple enlarged nuclei, described in this text as karyomegaly, but also included within a cytomegalic change. The changes contrasted with the tubular cell necrosis and concomitant mitosis elicited after only four days consumption of nephrotoxic mould. Unilateral nephrectomy enabled persistence of histopathological changes to be assessed directly after detailed histology at an earlier stage. After ten days consumption of food with a 100-fold excess of fungal extract containing the amphoteric nephrotoxins, the typical acute histopathology evolved, over a period of three weeks on normal diet, into the bizarre karyomegalic histopathology, implying a latent effect. Karyomegaly persisted for at least twelve months after nephrotoxin dosage ceased. P. aurantiogriseum karyomegaly was much more striking than that induced by a relatively high chronic dose of another Penicillium nephrotoxin, ochratoxin A. Although the study does not attempt to measure relative potencies, qualitatively similar ultrastructural changes (enlarged nuclei, proliferation of smooth endoplasmic reticulum and thickening of proximal tubule basement membranes) were induced by the two types of nephrotoxin. The broadly toxic ochratoxin A is the popular putative aetiological agent in the mysterious and insidious Balkan endemic nephropathy and associated urinary tract tumours. As the renal carcinogenicity of ochratoxin A in rats follows karyomegaly, the striking karyomegaly induced by P. aurantiogriseum in the proximal tubules of the kidney must be considered as a potential factor in human chronic renal disease.

  5. Peniamidienone and penidilamine, plant growth regulators produced by the fungus Penicillium sp. No. 13.

    PubMed

    Kimura, Y; Mizuno, T; Kawano, T; Okada, K; Shimada, A

    2000-04-01

    Peniamidienone and penidilamine were isolated from cultures of the fungus Penicillium sp. No. 13 as new plant growth regulators and their structures were established by NMR spectroscopic studies. Peniamidienone showed weak inhibition of lettuce seedling growth.

  6. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine.

    PubMed

    Lorenzini, Marilinda; Mainente, Federica; Zapparoli, Giacomo; Cecconi, Daniela; Simonato, Barbara

    2016-05-15

    The study of withered grape infection by Penicillium, a potentially toxigenic fungus, is relevant to preserve grape quality during the post-harvest dehydration process. This report describes the first proteomic analysis of Amarone wine grapes, infected by two strains of Penicillium expansum (Pe1) and Penicillium crustosum (Pc4). Protein identification by MS analysis allowed a better understanding of physiological mechanisms underlying the pathogen attack. The Pe1 strain had a major impact on Vitis vinifera protein expression inducing pathogenesis-related proteins and other protein species involved in energy metabolism. A greater expression of new Penicillium proteins involved in energy metabolism and some protein species related to redox homeostasis has been observed on grapes infected by Pc4 strain. Moreover, the new induced proteins in infected grapes could represent potential markers in withered grapes, thus creating the chance to develop case-sensitive prevention strategies to inhibit fungal growth.

  7. Molecular Identification of Species from the Penicillium roqueforti Group Associated with Spoiled Animal Feed

    PubMed Central

    Boysen, Marianne E.; Jacobsson, Karl-Gustav; Schnürer, Johan

    2000-01-01

    The Penicillium roqueforti group has recently been split into three species, P. roqueforti, Penicillium carneum, and Penicillium paneum, on the basis of differences in ribosomal DNA sequences and secondary metabolite profiles. We reevaluated the taxonomic identity of 52 livestock feed isolates from Sweden, previously identified by morphology as P. roqueforti, by comparing the sequences of the ribosomal internal transcribed spacer region. Identities were confirmed with random amplified polymorphic DNA analysis and secondary metabolite profiles. Of these isolates, 48 were P. roqueforti, 2 were P. paneum, and 2 were Penicillium expansum. No P. carneum isolates were found. The three species produce different mycotoxins, but no obvious relationship between mold and animal disease was detected, based on medical records. P. roqueforti appears to dominate in silage, but the ecological and toxicological importance of P. carneum and P. paneum as feed spoilage fungi is not clear. This is the first report of P. expansum in silage. PMID:10742236

  8. The janthitrems: fluorescent tremorgenic toxins produced by Penicillium janthinellum isolates from ryegrass pastures.

    PubMed Central

    Gallagher, R T; Latch, G C; Keogh, R G

    1980-01-01

    New tremorgenic mycotoxins named janthitrem A, B, and C (molecular weights 601, 585, and 569, respectively) were produced by more than half of 21 Penicillium janthinellum isolates obtained from ryegrass pastures involved in ryegrass staggers outbreaks in sheep. PMID:7356319

  9. [Nitrogen-containing mycotoxins of fungi of Aspergillus and Penicillium species infesting grain and its products].

    PubMed

    Reshetilova, T A; Vinokurova, N G; L'vova, L S

    1993-01-01

    The review summarizes the literature data on distribution of nitrogen-containing mycotoxins (alkaloids) among Penicillium and Aspergillus fungi infesting grain and products of grain processing. Particular attention in given to clavins (ergotalkaloids) and tremorgens (roquefortine, verruculogen, penitrems). PMID:8295871

  10. [Secondary metabolites of a marine mangrove fungus (Penicillium sp. no. 2556) from South China Sea].

    PubMed

    Li, Chun-Yuan; Ding, Wei-Jia; Shao, Chang-Lun; She, Zhi-Gang; Lin, Yong-Cheng

    2008-07-01

    The metabolites of a marine mangrove fungus (Penicillium sp. No. 2556) were studied in this paper and six compounds were isolated from the fermentation liquid. Their structures were elucidated by spectroscopy methods as Sch54796 (1), Sch54794 (2), 4-hydroxybenzoic acid (3), urail (4), succinic acid (5), Vermopyrone (6). Among them, compounds 1, 2 and 6 were firstly isolated from Penicillium sp., Coumpounds 1 and 2 remarkably inhibited the growth of cancer cell lines hep2 and hepG2.

  11. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon

    2014-08-01

    The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.

  12. Clinical, morphological, and molecular characterization of Penicillium canis sp. nov., isolated from a dog with osteomyelitis.

    PubMed

    Langlois, Daniel K; Sutton, Deanna A; Swenson, Cheryl L; Bailey, Chris J; Wiederhold, Nathan P; Nelson, Nathan C; Thompson, Elizabeth H; Wickes, Brian L; French, Stephanie; Fu, Jianmin; Vilar-Saavedra, Paulo; Peterson, Stephen W

    2014-07-01

    Infections caused by Penicillium species are rare in dogs, and the prognosis in these cases is poor. An unknown species of Penicillium was isolated from a bone lesion in a young dog with osteomyelitis of the right ilium. Extensive diagnostic evaluation did not reveal evidence of dissemination. Resolution of lameness and clinical stability of disease were achieved with intravenous phospholipid-complexed amphotericin B initially, followed by long-term combination therapy with terbinafine and ketoconazole. A detailed morphological and molecular characterization of the mold was undertaken. Sequence analysis of the internal transcribed spacer revealed the isolate to be closely related to Penicillium menonorum and Penicillium pimiteouiense. Additional sequence analysis of β-tubulin, calmodulin, minichromosome maintenance factor, DNA-dependent RNA polymerase, and pre-rRNA processing protein revealed the isolate to be a novel species; the name Penicillium canis sp. nov. is proposed. Morphologically, smooth, ovoid conidia, a greenish gray colony color, slow growth on all media, and a failure to form ascomata distinguish this species from closely related Penicillium species.

  13. High throughput de novo RNA sequencing elucidates novel responses in Penicillium chrysogenum under microgravity.

    PubMed

    Sathishkumar, Yesupatham; Krishnaraj, Chandran; Rajagopal, Kalyanaraman; Sen, Dwaipayan; Lee, Yang Soo

    2016-02-01

    In this study, the transcriptional alterations in Penicillium chrysogenum under simulated microgravity conditions were analyzed for the first time using an RNA-Seq method. The increasing plethora of eukaryotic microbial flora inside the spaceship demands the basic understanding of fungal biology in the absence of gravity vector. Penicillium species are second most dominant fungal contaminant in International Space Station. Penicillium chrysogenum an industrially important organism also has the potential to emerge as an opportunistic pathogen for the astronauts during the long-term space missions. But till date, the cellular mechanisms underlying the survival and adaptation of Penicillium chrysogenum to microgravity conditions are not clearly elucidated. A reference genome for Penicillium chrysogenum is not yet available in the NCBI database. Hence, we performed comparative de novo transcriptome analysis of Penicillium chrysogenum grown under microgravity versus normal gravity. In addition, the changes due to microgravity are documented at the molecular level. Increased response to the environmental stimulus, changes in the cell wall component ABC transporter/MFS transporters are noteworthy. Interestingly, sustained increase in the expression of Acyl-coenzyme A: isopenicillin N acyltransferase (Acyltransferase) under microgravity revealed the significance of gravity in the penicillin production which could be exploited industrially. PMID:26603994

  14. High throughput de novo RNA sequencing elucidates novel responses in Penicillium chrysogenum under microgravity.

    PubMed

    Sathishkumar, Yesupatham; Krishnaraj, Chandran; Rajagopal, Kalyanaraman; Sen, Dwaipayan; Lee, Yang Soo

    2016-02-01

    In this study, the transcriptional alterations in Penicillium chrysogenum under simulated microgravity conditions were analyzed for the first time using an RNA-Seq method. The increasing plethora of eukaryotic microbial flora inside the spaceship demands the basic understanding of fungal biology in the absence of gravity vector. Penicillium species are second most dominant fungal contaminant in International Space Station. Penicillium chrysogenum an industrially important organism also has the potential to emerge as an opportunistic pathogen for the astronauts during the long-term space missions. But till date, the cellular mechanisms underlying the survival and adaptation of Penicillium chrysogenum to microgravity conditions are not clearly elucidated. A reference genome for Penicillium chrysogenum is not yet available in the NCBI database. Hence, we performed comparative de novo transcriptome analysis of Penicillium chrysogenum grown under microgravity versus normal gravity. In addition, the changes due to microgravity are documented at the molecular level. Increased response to the environmental stimulus, changes in the cell wall component ABC transporter/MFS transporters are noteworthy. Interestingly, sustained increase in the expression of Acyl-coenzyme A: isopenicillin N acyltransferase (Acyltransferase) under microgravity revealed the significance of gravity in the penicillin production which could be exploited industrially.

  15. Clinical, Morphological, and Molecular Characterization of Penicillium canis sp. nov., Isolated from a Dog with Osteomyelitis

    PubMed Central

    Sutton, Deanna A.; Swenson, Cheryl L.; Bailey, Chris J.; Wiederhold, Nathan P.; Nelson, Nathan C.; Thompson, Elizabeth H.; Wickes, Brian L.; French, Stephanie; Fu, Jianmin; Vilar-Saavedra, Paulo

    2014-01-01

    Infections caused by Penicillium species are rare in dogs, and the prognosis in these cases is poor. An unknown species of Penicillium was isolated from a bone lesion in a young dog with osteomyelitis of the right ilium. Extensive diagnostic evaluation did not reveal evidence of dissemination. Resolution of lameness and clinical stability of disease were achieved with intravenous phospholipid-complexed amphotericin B initially, followed by long-term combination therapy with terbinafine and ketoconazole. A detailed morphological and molecular characterization of the mold was undertaken. Sequence analysis of the internal transcribed spacer revealed the isolate to be closely related to Penicillium menonorum and Penicillium pimiteouiense. Additional sequence analysis of β-tubulin, calmodulin, minichromosome maintenance factor, DNA-dependent RNA polymerase, and pre-rRNA processing protein revealed the isolate to be a novel species; the name Penicillium canis sp. nov. is proposed. Morphologically, smooth, ovoid conidia, a greenish gray colony color, slow growth on all media, and a failure to form ascomata distinguish this species from closely related Penicillium species. PMID:24789186

  16. Influence of storage temperature on growth of Penicillium polonicum and Penicillium glabrum and potential for deterioration of frozen chicken nuggets.

    PubMed

    Saccomori, Fernanda; Wigmann, Évelin Francine; Bernardi, Angélica Olivier; Alcano-González, María de Jesús; Copetti, Marina Venturini

    2015-05-01

    The practice of freezing food is one of the main processes used by the industry to prolong the shelf life of foods. Its use has expanded in recent years due to the increased consumption of convenience products, many of which are sold in frozen form. The temperature at which these foods are maintained during marketing in supermarkets or stored in the consumer's home is critical to ensure microbiological stability of products. Temperature abuse can allow microbial growth, especially growth of filamentous psychrophilic fungi. Besides economic losses in the industrial sector due to the return of products and loss of confidence by consumers, the development of fungi in foods is a public health problem due to the possibility of mycotoxin production. The aim of this study was to assess the growth at temperatures of 5, 0, -5 and -18°C for two species of fungi involved in the deterioration of frozen chicken nuggets, Penicillium polonicum (33/12 NGT) and Penicillium glabrum (29/12 NGT), inoculated both in culture medium and in the food. The results demonstrated that P. polonicum was able to form microcolonies on potato dextrose agar plates at 0°C and form visible colonies on the surface of the frozen chicken nuggets kept at -5°C for 120 days, regardless of brand. For P. glabrum the limiting growth temperature was 5°C in the culture medium and 0°C on frozen chicken nuggets, regardless of the brand analyzed. Thus, it is essential to adhere to the storage temperatures recommended to ensure the stability and safety of this food product.

  17. Penicillium salamii, a new species occurring during seasoning of dry-cured meat.

    PubMed

    Perrone, Giancarlo; Samson, Robert A; Frisvad, Jens C; Susca, Antonia; Gunde-Cimerman, Nina; Epifani, Filomena; Houbraken, Jos

    2015-01-16

    Fungi have an important role in the production of dry-cured meat products, especially during the seasoning period. In general, both industrially and handmade salami are quickly colonized by a composite mycobiota during seasoning, often with a strong predominance of Penicillium species. These species are involved in the improvement of the characteristics and taste, and in the prevention of the growth of pathogenic, toxigenic or spoilage fungi. During the survey of fungal species occurring on the salami surface and in the air of the seasoning and storage areas of a salami plant (Calabria, Italy), two Penicillium species were predominantly present. One species was identified as Penicillium nalgiovense, and the other was related to, but distinct from, Penicillium olsonii. Further molecular and biochemical analyses showed that this strain has high homology with the not yet described species named "Penicillium milanense" isolated in Denmark and Slovenia on cured meats. The taxonomic position of these strains in Penicillium was investigated using calmodulin, β tubulin and ITS sequences, phenotypic characters and extrolite patterns, and resulted in the discovery of a new Penicillium species, described here as P. salamii. A literature search showed that this species occurs on (cured) meat products worldwide. In our study, P. salamii predominated the salami and capocollo surface in levels similar to the commonly known starter culture P. nalgiovense, irrespective of the room or age of seasoning. Preliminary inoculation trials with P. salamii showed that it was able to colonize salami during seasoning, indicating that this species could be used as a fungal starter for dry-cured meat.

  18. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides

    PubMed Central

    Houbraken, J.; Visagie, C.M.; Meijer, M.; Frisvad, J.C.; Busby, P.E.; Pitt, J.I.; Seifert, K.A.; Louis-Seize, G.; Demirel, R.; Yilmaz, N.; Jacobs, K.; Christensen, M.; Samson, R.A.

    2014-01-01

    Species belonging to Penicillium section Aspergilloides have a world-wide distribution with P. glabrum, P. spinulosum and P. thomii the most well-known species of this section. These species occur commonly and can be isolated from many substrates including soil, food, bark and indoor environments. The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Section Aspergilloides is subdivided into 12 clades and 51 species. Twenty-five species are described here as new and P. yezoense, a species originally described without a Latin diagnosis, is validated. Species belonging to section Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe roughness. PMID:25492984

  19. The Penicillium echinulatum secretome on sugar cane bagasse.

    PubMed

    Ribeiro, Daniela A; Cota, Júnio; Alvarez, Thabata M; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M P; Pauletti, Bianca A; Jackson, George; Pimenta, Maria T B; Murakami, Mario T; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J P; Pradella, Jose G C; Paes Leme, Adriana F; Squina, Fabio M

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.

  20. Antifungal, phytotoxic and toxic metabolites produced by Penicillium purpurogenum.

    PubMed

    Li, He; Wei, Jing; Pan, Shi-Yin; Gao, Jin-Ming; Tian, Jun-Mian

    2014-01-01

    Nine known metabolites, 6,8,1'-tri-O-methyl averantin (1), 6,8-di-O-methyl averufnin (2), 6,8-di-O-methyl averufanin (3), aversin (4), 1,3-dihydroxy-6,8-dimethoxy-9,10-anthraquinone (5), 6,8-di-O-methylnidurufin (6), 6,8-di-O-methyl versiconol (7), 5-methyoxysterigmatocystin (8) and (S)-ornidazole (9), were isolated from the extracts of Penicillium purpurogenum, and their structures were elucidated by using spectroscopic methods. The brine shrimp toxicity, anti-phytopathogenic and phytotoxic effects of these compounds were evaluated. Among them, compounds 1 and 8 exhibited the strongest toxicity against brine shrimp (Artemia salina), with lethality rates of 100% at a low concentration of 10 μM, comparable to the positive control toosendanin. Compounds 1, 4 and 7 moderately inhibited the growth of Botrytis cinerea. Moreover, 4 displayed moderate antifungal effects on Gibberella saubinettii. In addition, compounds 6, 7 and 9 produced the phytotoxic effects on radish seedlings at 100 μM. This is the first report on the isolation of these metabolites from this organism. PMID:25103412

  1. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    NASA Astrophysics Data System (ADS)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  2. Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species.

    PubMed

    Gupta, Mahiti; Saxena, Sanjai; Goyal, Dinesh

    2015-02-01

    Pancreatic lipase (PL) is considered as one of the safest target for diet-induced anti-obesity drug development. Orlistat is the only PL inhibitor approved for anti-obesity treatment till date. In the process of exploration of new PL inhibitors, we have screened culture filtrates of 70 endophytic fungi of medicinal plants using qualitative as well as quantitative in-vitro PL assays. The qualitative assays indicated potential PL inhibition in only three isolates, namely #57 TBBALM, #33 TBBALM and #1 CSSTOT. Only ethyl acetate extracts of the culture filtrates of these isolates exhibited the PL inhibition. #57 TBBLAM ethyl acetate extract of culture filtrate exhibited potential PL inhibition with an IC50 of 3.69 µg/ml which was comparable to the positive control, i.e. Orlistat exhibiting IC50 value of 2.73 µg/ml. Further molecular phylogenetic tools and morphological studies were used to identify the isolate #57 TBBALM as Penicillium species. PMID:24417211

  3. Safety evaluation of nuclease P1 from Penicillium citrinum.

    PubMed

    Okado, Nobuo; Hasegawa, Kazushige; Mizuhashi, Fukutaro; Lynch, Barry S; Vo, Trung D; Roberts, Ashley S

    2016-02-01

    Nuclease P1 has been widely used in the food industry to enhance or create flavor. One commercial source of this enzyme is Penicillium citrinum, an anamorphic mesophilic fungus with a long history of safe use in Europe and Asia as a fermentation organism used in the production of ribonucleases. Given the intended use in food for human consumption, and noting its potential presence at trace levels in finished products, a series of safety studies including an in vitro Ames and chromosome aberration assay, an in vivo rat erythrocyte micronucleus assay and a 90-day oral toxicity study in rats were conducted. No mutagenic activity was observed in the Ames assay. Equivocal activity in the chromosome aberration assay was not replicated in the micronucleus assay at doses of up to 1007 mg total organic solids (TOS)/kg body weight (bw)/day. Following oral administration of nuclease P1 at dosages of 10.1, 101 or 1007 mg TOS/kg bw/day to Sprague-Dawley rats, no adverse effects on any study parameter were observed. The no-observed-adverse-effect level was considered to be 1007 mg TOS/kg bw/day. The results of the genotoxicity studies and subchronic rat study support the safe use in food production of nuclease P1 produced from P. citrinum.

  4. Prenyl Ethers: Novel Fungal Volatiles Formed by Penicillium digitatum.

    PubMed

    Amrein, Thomas M; Frey, Peter; Meier, Roberto; Baumann, Heidi; Tanner, Miriam; Gassenmeier, Klaus F

    2014-10-01

    Prenyl ethyl ether (PEE) was previously described as the cause for a solvent-like off-note in ground hazelnuts, but its origin remained unclear. Investigations were carried out by analytical groups of Coop and Givaudan over four years to elucidate this phenomenon. From mouldy citrus fruits a strain of Penicillium digitatum was isolated and found to form PEE. Formation on citrus and other fruits was prominent and contributed to the particular smell of decayed fruits. Several strains of P. digitatum formed PEE, while other fungal species did not. In contrast to citrus fruit, prenyl methyl ether (PME) was formed as dominant prenyl ether on hazelnuts while only small amounts of PEE were found. PME has not been previously described as volatile metabolite of fungi or as a food-taint. Spiking experiments with deuterated ethanol showed that the ethyl group is likely incorporated into PEE via the aldehyde form. On hazelnuts strongly decayed by P. digitatum yet another prenyl ether was tentatively identified: Prenyl isopropyl ether. Prenyl ethers present a novel group of volatile metabolites of P. digitatum. They are likely typical for this species and have not been described before. Prenyl ethers seem to play a significant role in the smell of food decayed by P. digitatum and should be considered in cases of off-notes and taints. PMID:25437159

  5. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found. PMID:26010032

  6. Taxonomy of Penicillium nalgiovense isolates from mould-fermented sausages.

    PubMed

    Andersen, S J

    1995-08-01

    A large number of Penicillium nalgiovense isolates from mould fermented sausages and the ex type culture were examined for characters of morphology, physiology and production of secondary metabolites. To separate biotypes within the P. nalgiovense species, the data obtained were evaluated using multivariate statistical methods. The macromorphological characters of the ex type culture and isolates from meat products appeared to be distinctive. The ex type culture is characterized by a brown reverse on both Czapek yeast extract and malt extract agar while the isolates from meat products have a yellow to orange reverse. Proteolytic and/or lipolytic activity was demonstrated by 75% of the examined cultures and all of them demonstrated ability to utilize lactate as sole carbon source. Growth on creatine sucrose agar was very inhibited and acid production was absent or very weak. TLC analysis showed production of three unknown secondary metabolites that constituted the characteristic profile. HPLC analysis showed production of only three known secondary metabolites; chrysogine (96%), nalgiolaxin and nalgiovensin (9%). The ex type culture produced nalgiolaxin and nalgiovensin but not chrysogine. The chemometric evaluation showed that P. nalgiovense isolates from meat products from a homogenous species, which can not be divided into biotypes. The only indication of grouping, beside a separation of the ex type culture, was related to the conidium colour (white, turquoise or grey green). The examined P. nalgiovense isolates showed some resemblance (morphologically and chemically) to P. chrysogenum.

  7. The Penicillium echinulatum Secretome on Sugar Cane Bagasse

    PubMed Central

    Ribeiro, Daniela A.; Cota, Júnio; Alvarez, Thabata M.; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M. P.; Pauletti, Bianca A.; Jackson, George; Pimenta, Maria T. B.; Murakami, Mario T.; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J. P.; Pradella, Jose G. C.; Paes Leme, Adriana F.; Squina, Fabio M.

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated. PMID:23227186

  8. Antimicrobial and allelopathic metabolites produced by Penicillium brasilianum.

    PubMed

    Tang, Hao-Yu; Zhang, Qiang; Li, He; Gao, Jin-Ming

    2015-01-01

    Six known compounds, isoroquefortine C (1), griseofulvin (2), ergosterol peroxide (3), 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (4), cerevisterol (5) and (22E,24R)-6β-methoxyergosta-7,22-diene-3β,5α-diol (6), were produced by the fungus Penicillium brasilianum, and their structures were elucidated by spectroscopic methods. This is the first report on isoroquefortine C as naturally occurring compound. Their bioactivities against five phytopathogenic fungi (Gibeberalla saubinetti, Fusarium solani, Botrytis cinerea, Colletotrichum gloeosporioides and Alternaria solani) and four pathogenic bacteria (Escherichia coli, Bacillus subtilis, Staphyloccocus aureus and Bacillus cereus), as well as allelopathic activities on Raphanus sativus were tested. Compound 1 exhibited a remarkable antifungal activity with minimum inhibitory concentration (MIC) of 12.5 μM against C. gloeosporioides, in comparison with positive control hymexazol (MIC 25 μM). Compound 2 displayed strong inhibitory effects on the growth of A. solani and S. aureus with MIC of 3.13 μM for each. Compounds 2 and 3 displayed a significant growth-inhibition activity on R. sativus. PMID:25103127

  9. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found.

  10. Insights into Penicillium roqueforti Morphological and Genetic Diversity.

    PubMed

    Gillot, Guillaume; Jany, Jean-Luc; Coton, Monika; Le Floch, Gaétan; Debaets, Stella; Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana; Coton, Emmanuel

    2015-01-01

    Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection. PMID:26091176

  11. Substrate specificities of Penicillium simplicissimum alpha-galactosidases.

    PubMed

    Luonteri, E; Tenkanen, M; Viikari, L

    1998-02-15

    The substrate specificities of three Penicillium simplicissimum alpha-galactosidases, AGLI, AGLII, and AGLIII, were determined by using various isolated galactose-containing oligosaccharides and polymeric galacto(gluco)mannans. AGLI released galactose from melibiose and raffinose-family oligosaccharides but the amount of galactose released was decreased from 96% to 35% by the increasing chain length of the substrate from raffinose to verbascose. It was able to release galactose linked to the nonreducing end and less efficiently to the internal residues of the galactomanno-oligomers. AGLI was able to hydrolyze 60-92% of galactose from polymeric galacto(gluco)mannans alone but its action was facilitated by mannanase and beta-mannosidase. In addition, it was able to release about 10% of the galactose from softwood kraft pulp alone and about 22% in combination with mannanase. AGLII was highly specific toward small galactose-containing oligosaccharides in which the galactose is linked to the nonreducing end of the substrate. It released 90-100% of galactose present in melibiose, raffinose, stachyose, and verbascose; however, it was able to degrade polymeric substrates only in combination with mannanase and beta-mannosidase. AGLIII had only low activity toward the oligomeric substrates tested. It was able to release some galactose from the polymeric galacto(gluco)mannans alone, but its action was clearly enhanced by the backbone degrading enzymes.

  12. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum

    PubMed Central

    Huang, Song; Chen, Haiyan; Li, Wensheng; Zhu, Xinwei; Ding, Weijia; Li, Chunyuan

    2016-01-01

    A novel chaetoglobosin named penochalasin I (1) with a unprecedented six-cyclic 6/5/6/5/6/13 fused ring system, and another new chaetoglobosin named penochalasin J (2), along with chaetoglobosins G, F, C, A, E, armochaetoglobosin I, and cytoglobosin C (3–9) were isolated from the culture of Penicillium chrysogenum V11. Their structures were elucidated by 1D, 2D NMR spectroscopic analysis and high resolution mass spectroscopic data. The absolute configuration of compounds 1 and 2 were determined by comparing the theoretical electronic circular dichroism (ECD) calculation with the experimental CD. Compound 1 was the first example, with a six-cyclic fused ring system formed by the connection of C-5 and C-2′ of the chaetoglobosin class. Compounds 5–8 remarkably inhibited the plant pathogenic fungus R. solani (minimum inhibitory concentrations (MICs) = 11.79–23.66 μM), and compounds 2, 6, and 7 greatly inhibited C. gloeosporioides (MICs = 23.58–47.35 μM), showing an antifungal activity higher than that of carbendazim. Compound 1 exhibited marked cytotoxicity against MDA-MB-435 and SGC-7901 cells (IC50 < 10 μM), and compounds 6 and 9 showed potent cytotoxicity against SGC-7901 and A549 cells (IC50 < 10 μM). PMID:27690061

  13. Fatty Acid Oxidation by Spores of Penicillium roqueforti

    PubMed Central

    Gehrig, R. F.; Knight, S. G.

    1963-01-01

    When 1 μm sodium octanoate was the substrate for spores, most of the molecule was recovered as CO2 and no ketone was produced. However, when larger concentrations (20 μm) were used as substrate, part of the molecule was converted to methyl ketone and part was completely oxidized. Optimal conditions for the production of 2-heptanone were determined because of the importance of this compound in giving aroma and flavor to mold-ripened cheeses. Optimal ketone formation was not dependent upon the temperature and length of time at which the spores were stored. The spore suspensions were stored for over 36 months at 4 C without losing their ability to convert octanoic acid to 2-heptanone. The oxidation of octanoic acid was inhibited by cyanide, carbon monoxide, mercury, 2,3-dimercapto-1-propanol, and α, α-dipyridyl. No ketone was produced under anaerobic conditions. Although no intermediates of fatty acid oxidation were isolated, since an active cell-free preparation could not be obtained, this investigation has yielded some evidence for the beta oxidation of the fatty acids by spores of Penicillium roqueforti. PMID:13947000

  14. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    PubMed

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  15. Potential of Penicillium Species in the Bioremediation Field

    PubMed Central

    Leitão, Ana Lúcia

    2009-01-01

    The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs), and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation. PMID:19440525

  16. Antifungal effect and mechanism of garlic oil on Penicillium funiculosum.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Liang, Qing; Huang, Xiao-Mo; Chen, Yi-Ben

    2014-10-01

    Garlic oil is a kind of fungicide, but little is known about its antifungal effects and mechanism. In this study, the chemical constituents, antifungal activity, and effects of garlic oil were studied with Penicillium funiculosum as a model strain. Results showed that the minimum fungicidal concentrations (MFCs, v/v) were 0.125 and 0.0313 % in agar medium and broth medium, respectively, suggesting that the garlic oil had a strong antifungal activity. The main ingredients of garlic oil were identified as sulfides, mainly including disulfides (36 %), trisulfides (32 %) and monosulfides (29 %) by gas chromatograph-mass spectrometer (GC/MS), which were estimated as the dominant antifungal factors. The observation results by transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that garlic oil could firstly penetrate into hyphae cells and even their organelles, and then destroy the cellular structure, finally leading to the leakage of both cytoplasm and macromolecules. Further proteomic analysis displayed garlic oil was able to induce a stimulated or weakened expression of some key proteins for physiological metabolism. Therefore, our study proved that garlic oil can work multiple sites of the hyphae of P. funiculosum to cause their death. The high antifungal effects of garlic oil makes it a broad application prospect in antifungal industries.

  17. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients

    PubMed Central

    Chan, Jasper FW; Lau, Susanna KP; Yuen, Kwok-Yung; Woo, Patrick CY

    2016-01-01

    Talaromyces (Penicillium) marneffei is an important pathogenic thermally dimorphic fungus causing systemic mycosis in Southeast Asia. The clinical significance of T. marneffei became evident when the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome epidemic arrived in Southeast Asia in 1988. Subsequently, a decline in the incidence of T. marneffei infection among HIV-infected patients was seen in regions with access to highly active antiretroviral therapy and other control measures for HIV. Since the 1990s, an increasing number of T. marneffei infections have been reported among non-HIV-infected patients with impaired cell-mediated immunity. Their comorbidities included primary adult-onset immunodeficiency due to anti-interferon-gamma autoantibodies and secondary immunosuppressive conditions including other autoimmune diseases, solid organ and hematopoietic stem cell transplantations, T-lymphocyte-depleting immunsuppressive drugs and novel anti-cancer targeted therapies such as anti-CD20 monoclonal antibodies and kinase inhibitors. Moreover, improved immunological diagnostics identified more primary immunodeficiency syndromes associated with T. marneffei infection in children. The higher case-fatality rate of T. marneffei infection in non-HIV-infected than HIV-infected patients might be related to delayed diagnosis due to the lack of clinical suspicion. Correction of the underlying immune defects and early use of antifungals are important treatment strategies. Clinicians should be familiar with the changing epidemiology and clinical management of T. marneffei infection among non-HIV-infected patients. PMID:26956447

  18. Improvement of strain Penicillium sp. EZ-ZH190 for tannase production by induced mutation.

    PubMed

    Zakipour-Molkabadi, E; Hamidi-Esfahani, Z; Sahari, M A; Azizi, M H

    2013-11-01

    In the search for an efficient producer of tannase, Penicillium sp. EZ-ZH190 was subjected to mutagenesis using heat treatment and strain EZ-ZH290 was isolated. The maximum tannase in this mutant strain was 4.32 U/mL with an incubation period of 84 h as compared to wild strain EZ-ZH190 where the incubation period was 96 h with a maximum enzyme activity of 4.33 U/mL. Also, the Penicillium sp. EZ-ZH290 tannase had a maximum activity at 40 °C and pH 5.5. Then, the spores of strain EZ-ZH290 were subjected to γ irradiation mutagenesis and strain EZ-ZH390 was isolated. Strain EZ-ZH390 exhibited higher tannase activity (7.66 U/mL) than the parent strain EZ-ZH290. It was also found that Penicillium sp. EZ-ZH390 tannase had an optimum activity at 35 °C and a broad pH profile with an optimum at pH 5.5. The tannase pH stability of Penicillium sp. EZ-ZH390 and its maximum production of tannase followed the same trend for five generations confirming the occurrence of stable mutant. This paper is shown that γ irradiation can mutate the Penicillium sp. leading to increase the tannase production.

  19. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.

    PubMed

    Liu, Guodong; Zhang, Lei; Wei, Xiaomin; Zou, Gen; Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species. PMID:23383313

  20. Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco.

    PubMed

    Rharmitt, Sanae; Hafidi, Majida; Hajjaj, Hassan; Scordino, Fabio; Giosa, Domenico; Giuffrè, Letterio; Barreca, Davide; Criseo, Giuseppe; Romeo, Orazio

    2016-01-18

    The isolation of patulin-producing Penicillia in apples collected in different markets in four localities in Morocco is reported. Fungi were identified by β-tubulin sequencing and further characterized using a specific PCR-based method targeting the isoepoxydon dehydrogenase (IDH) gene to discriminate between patulin-producing and non-producing strains. Production of patulin was also evaluated using standard cultural and biochemical methods. Results showed that 79.5% of contaminant fungi belonged to the genus Penicillium and that Penicillium expansum was the most isolated species (83.9%) followed by Penicillium chrysogenum (~9.7%) and Penicillium crustosum (~6.4%). Molecular analysis revealed that 64.5% of the Penicillium species produced the expected IDH-amplicon denoting patulin production in these strains. However, patulin production was not chemically confirmed in all P. expansum strains. The isolation of IDH(-)/patulin(+) strains poses the hypothesis that gentisylaldehyde is not a direct patulin precursor, supporting previous observations that highlighted the importance of the gentisyl alcohol in the production of this mycotoxin. Total agreement between IDH-gene detection and cultural/chemical methods employed was observed in 58% of P. expansum strains and for 100% of the other species isolated. Overall the data reported here showed a substantial genetic variability within P. expansum population from Morocco. PMID:26513254

  1. Identification and Antifungal Susceptibility of Penicillium-Like Fungi from Clinical Samples in the United States.

    PubMed

    Guevara-Suarez, Marcela; Sutton, Deanna A; Cano-Lira, José F; García, Dania; Martin-Vicente, Adela; Wiederhold, Nathan; Guarro, Josep; Gené, Josepa

    2016-08-01

    Penicillium species are some of the most common fungi observed worldwide and have an important economic impact as well as being occasional agents of human and animal mycoses. A total of 118 isolates thought to belong to the genus Penicillium based on morphological features were obtained from the Fungus Testing Laboratory at the University of Texas Health Science Center in San Antonio (United States). The isolates were studied phenotypically using standard growth conditions. Molecular identification was made using two genetic markers, the internal transcribed spacer (ITS) and a fragment of the β-tubulin gene. In order to assess phylogenetic relationships, maximum likelihood and Bayesian inference assessments were used. Antifungal susceptibility testing was performed according to CLSI document M38-A2 for nine antifungal drugs. The isolates were identified within three genera, i.e., Penicillium, Talaromyces, and Rasamsonia The most frequent species in our study were Penicillium rubens, P. citrinum, and Talaromyces amestolkiae The potent in vitro activity of amphotericin B (AMB) and terbinafine (TRB) and of the echinocandins against Penicillium and Talaromyces species might offer a good therapeutic alternative for the treatment of infections caused by these fungi.

  2. Patulin and secondary metabolite production by marine-derived Penicillium strains.

    PubMed

    Vansteelandt, Marieke; Kerzaon, Isabelle; Blanchet, Elodie; Fossi Tankoua, Olivia; Robiou Du Pont, Thibaut; Joubert, Yolaine; Monteau, Fabrice; Le Bizec, Bruno; Frisvad, Jens C; Pouchus, Yves François; Grovel, Olivier

    2012-09-01

    Genus Penicillium represents an important fungal group regarding to its mycotoxin production. Secondary metabolomes of eight marine-derived strains belonging to subgenera Furcatum and Penicillium were investigated using dereplication by liquid chromatography (LC)-Diode Array Detector (DAD)-mass spectrometry (MS)/MS. Each strain was grown on six different culture media to enhance the number of observable metabolites. Thirty-two secondary metabolites were detected in crude extracts with twenty first observations for studied species. Patulin, a major mycotoxin, was classically detected in extracts of Penicillium expansum, and was also isolated from Penicillium antarcticum cultures, whose secondary metabolome is still to be done. These detections constituted the first descriptions of patulin in marine strains of Penicillium, highlighting the risk for shellfish and their consumers due to the presence of these fungi in shellfish farming areas. Patulin induced acute neurotoxicity on Diptera larvae, indicating the interest of this bioassay as an additional tool for detection of this major mycotoxin in crude extracts.

  3. Molecular characterization of patulin producing and non-producing Penicillium species in apples from Morocco.

    PubMed

    Rharmitt, Sanae; Hafidi, Majida; Hajjaj, Hassan; Scordino, Fabio; Giosa, Domenico; Giuffrè, Letterio; Barreca, Davide; Criseo, Giuseppe; Romeo, Orazio

    2016-01-18

    The isolation of patulin-producing Penicillia in apples collected in different markets in four localities in Morocco is reported. Fungi were identified by β-tubulin sequencing and further characterized using a specific PCR-based method targeting the isoepoxydon dehydrogenase (IDH) gene to discriminate between patulin-producing and non-producing strains. Production of patulin was also evaluated using standard cultural and biochemical methods. Results showed that 79.5% of contaminant fungi belonged to the genus Penicillium and that Penicillium expansum was the most isolated species (83.9%) followed by Penicillium chrysogenum (~9.7%) and Penicillium crustosum (~6.4%). Molecular analysis revealed that 64.5% of the Penicillium species produced the expected IDH-amplicon denoting patulin production in these strains. However, patulin production was not chemically confirmed in all P. expansum strains. The isolation of IDH(-)/patulin(+) strains poses the hypothesis that gentisylaldehyde is not a direct patulin precursor, supporting previous observations that highlighted the importance of the gentisyl alcohol in the production of this mycotoxin. Total agreement between IDH-gene detection and cultural/chemical methods employed was observed in 58% of P. expansum strains and for 100% of the other species isolated. Overall the data reported here showed a substantial genetic variability within P. expansum population from Morocco.

  4. Mycoflora of poultry feeds and ochratoxin-producing ability of isolated Aspergillus and Penicillium species.

    PubMed

    Rosa, C A R; Ribeiro, J M M; Fraga, M J; Gatti, M; Cavaglieri, L R; Magnoli, C E; Dalcero, A M; Lopes, C W G

    2006-03-10

    In Brazil, commercial feedstuffs are an important component in modern animal husbandry, but there is no information available about fungal contamination and ochratoxin A (OTA) production. The aims of this study were to determine the mycoflora incidence in poultry feeds and evaluate OTA production. In addition, the ability to produce OTA by several Aspergillus and Penicillium species was investigated. A total of 96 samples of poultry feeds were collected from four factories in Rio de Janeiro. Samples were examined for total moulds, for Aspergillus and Penicillium spp. occurrence and for their relative densities on dichloran rose bengal chloramphenicol and dichloran 18% glycerol media. The capacity to produce ochratoxin A by selected Aspergillus and Penicillium species was determined by HPLC. Total mould counts were generally higher than 1 x 10(5 )CFU ml(-1). Aspergillus and Penicillium species were isolated in the highest numbers. Aspergillus flovus and Penicillium citrinum were the most prevalent species. There was a high percentage of potential OTA producers (46%). The amount of OTA produced on this substrate was enough to cause adverse effects in animals. Several strains isolated from poultry feeds were able to produce high levels of OTA on chloramphenicol yeast medium. OTA in raw materials needs to be surveyed and storage practices must be investigated to determine occurrence and establish the livestock toxicological risk in poultry feed.

  5. Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens

    PubMed Central

    Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species. PMID:23383313

  6. Secondary Metabolites from Penicillium roqueforti, A Starter for the Production of Gorgonzola Cheese

    PubMed Central

    Giardini, Alberto; Soncini, Gabriella

    2014-01-01

    The presence of mold in food, although necessary for production, can involve the presence of secondary metabolites, which are sometimes toxic. Penicillium roqueforti is a common saprophytic fungus but it is also the essential fungus used in the production of Roquefort cheese and other varieties of blue cheese containing internal mold. The study was conducted on industrial batches of Penicillium roqueforti starters used in the production of the Gorgonzola cheese, with the aim to verify the production of secondary metabolites. Nine Penicillium roqueforti strains were tested. The presence of roquefortine C, PR toxin and mycophenolic acid was tested first in vitro, then on bread-like substrate and lastly in vivo in nine cheese samples produced with the same starters and ready to market. In vitro, only Penicillium out of nine produced roquefortine C, four starters showed mycophenolic acid production, while no significant amounts of PR toxin were detected. In the samples grown on bread-like substrate, Penicillium did not produce secondary metabolites, likewise with each cheese samples tested. To protect consumers’ health and safety, the presence of mycotoxins needs to be verified in food which is widely consumed, above all for products protected by the protected denomination of origin (DOP) label (i.e. a certificate guaranteeing the geographic origin of the product), such as Gorgonzola cheese. PMID:27800360

  7. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.

    PubMed

    Liu, Guodong; Zhang, Lei; Wei, Xiaomin; Zou, Gen; Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.

  8. UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest quality and storage life of fresh pear are often limited by fungal growth caused by Penicillium expansum. Ultraviolet-C light (UV-C 254 nm) is a promising alternative disinfestation method to reduce fruit spoilage by fungi. In this study, UV-C inactivation kinetic data of Penicillium exp...

  9. Direct electrochemistry of Penicillium chrysogenum catalase adsorbed on spectroscopic graphite.

    PubMed

    Dimcheva, Nina; Horozova, Elena

    2013-04-01

    The voltammetric studies of Penicillium chrysogenum catalase (PcCAT) adsorbed on spectroscopic graphite, showed direct electron transfer (DET) between its active site and the electrode surface. Analogous tests performed with the commercially available bovine catalase revealed that mammalian enzyme is much less efficient in the DET process. Both catalases were found capable to catalyse the electrooxidation of phenol, but differed in the specifics of catalytic action. At an applied potential of 0.45V the non-linear regression showed the kinetics of the bioelectrochemical oxidation catalysed by the PcCAT obeyed the Hill equation with a binding constant K=0.034±0.002 M(2) (Hill's coefficient n=2.097±0.083, R(2)=0.997), whilst the catalytic action of the bovine catalase was described by the Michaelis-Menten kinetic model with the following parameters: V(max,app)=7.780±0.509 μA, and K(M,app)=0.068±0.070 mol L(-1). The performance of the electrode reaction was affected by the electrode potential, the pH, and temperature. Based on the effect of pH and temperature on the electrode response in presence of phenol a tentative reaction pathway of its bioelectrocatalytic oxidation has been hypothesised. The possible application of these findings in biosensing phenol up to concentration 30 mM at pHs below 7 and in absence of oxidising agents (oxygen or H(2)O(2)) was considered.

  10. Modeling Penicillium expansum resistance to thermal and chlorine treatments.

    PubMed

    Salomão, Beatriz C M; Churey, John J; Aragão, Gláucia M F; Worobo, Randy W

    2009-12-01

    Apples and apple products are excellent substrates for Penicillium expansum to produce patulin. In an attempt to avoid excessive levels of patulin, limiting or reducing P. expansum contamination levels on apples designated for storage in packinghouses and/or during apple juice processing is critical. The aim of this work was (i) to determine the thermal resistance of P. expansum spores in apple juice, comparing the abilities of the Bigelow and Weibull models to describe the survival curves and (ii) to determine the inactivation of P. expansum spores in aqueous chlorine solutions at varying concentrations of chlorine solutions, comparing the abilities of the biphasic and Weibull models to fit the survival curves. The results showed that the Bigelow and Weibull models were similar for describing the heat inactivation data, because the survival curves were almost linear. In this case, the concept of D- and z-values could be used, and the D-values obtained were 10.68, 6.64, 3.32, 1.14, and 0.61 min at 50, 52, 54, 56, and 60 degrees C, respectively, while the z-value was determined to be 7.57 degrees C. For the chlorine treatments, although the biphasic model gave a slightly superior performance, the Weibull model was selected, considering the parsimony principle, because it has fewer parameters than the biphasic model has. In conclusion, the typical pasteurization regimen used for refrigerated apple juice (71 degrees C for 6 s) is capable of achieving a 6-log reduction of P. expansum spores.

  11. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    PubMed

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase.

  12. Proteome Analysis of the Penicillin Producer Penicillium chrysogenum

    PubMed Central

    Jami, Mohammad-Saeid; Barreiro, Carlos; García-Estrada, Carlos; Martín, Juan-Francisco

    2010-01-01

    Proteomics is a powerful tool to understand the molecular mechanisms causing the production of high penicillin titers by industrial strains of the filamentous fungus Penicillium chrysogenum as the result of strain improvement programs. Penicillin biosynthesis is an excellent model system for many other bioactive microbial metabolites. The recent publication of the P. chrysogenum genome has established the basis to understand the molecular processes underlying penicillin overproduction. We report here the proteome reference map of P. chrysogenum Wisconsin 54-1255 (the genome project reference strain) together with an in-depth study of the changes produced in three different strains of this filamentous fungus during industrial strain improvement. Two-dimensional gel electrophoresis, peptide mass fingerprinting, and tandem mass spectrometry were used for protein identification. Around 1000 spots were visualized by “blue silver” colloidal Coomassie staining in a non-linear pI range from 3 to 10 with high resolution, which allowed the identification of 950 proteins (549 different proteins and isoforms). Comparison among the cytosolic proteomes of the wild-type NRRL 1951, Wisconsin 54-1255 (an improved, moderate penicillin producer), and AS-P-78 (a penicillin high producer) strains indicated that global metabolic reorganizations occurred during the strain improvement program. The main changes observed in the high producer strains were increases of cysteine biosynthesis (a penicillin precursor), enzymes of the pentose phosphate pathway, and stress response proteins together with a reduction in virulence and in the biosynthesis of other secondary metabolites different from penicillin (pigments and isoflavonoids). In the wild-type strain, we identified enzymes to utilize cellulose, sorbitol, and other carbon sources that have been lost in the high penicillin producer strains. Changes in the levels of a few specific proteins correlated well with the improved penicillin

  13. [Progress in Proteomic Study of the Penicillin Producer---Penicillium Chrysogenum].

    PubMed

    Wang, Shun; Wang, Peihong; Zhang, Nan; Gao, Ruichang

    2015-12-01

    Penicillin is a kind of β-lactam drug which has been applied in the clinical treatment firstly in the world, and it has still been widely used at present. The synthesis and regulation mechanism of Penicillium chrysogenum, which is used to produce penicillin, has been studied quite maturely, but its proteomics research started relatively late and fewer reports were published. This paper reviews the synthesis and application of penicillin, transformation of Penicillium chrysogenum, and the research progress of its proteomics. On this basis, the study highlights the advantages of proteomics in the research of protein expression.

  14. [Progress in Proteomic Study of the Penicillin Producer---Penicillium Chrysogenum].

    PubMed

    Wang, Shun; Wang, Peihong; Zhang, Nan; Gao, Ruichang

    2015-12-01

    Penicillin is a kind of β-lactam drug which has been applied in the clinical treatment firstly in the world, and it has still been widely used at present. The synthesis and regulation mechanism of Penicillium chrysogenum, which is used to produce penicillin, has been studied quite maturely, but its proteomics research started relatively late and fewer reports were published. This paper reviews the synthesis and application of penicillin, transformation of Penicillium chrysogenum, and the research progress of its proteomics. On this basis, the study highlights the advantages of proteomics in the research of protein expression. PMID:27079113

  15. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress.

    PubMed

    Leitão, Ana Lúcia; Enguita, Francisco J

    2016-02-01

    The genus Penicillium is one of the most versatile "mycofactories", comprising some species able to produce gibberellins, bioactive compounds that can modulate plant growth and development. Although plants have the ability to synthesize gibberellins, their levels are lower when plants are under salinity stress. It has been recognized that detrimental abiotic conditions, such as saline stress, have negative effects on plants, being the availability of bioactive gibberellins a critical factor for their growth under this conditions. This review summarizes the interplay existing between endophytic Penicillium strains and plant host interactions, with focus on bioactive gibberellins production as a fungal response that allows plants to overcome salinity stress. PMID:26805614

  16. Time course production of indole alkaloids by an endophytic strain of Penicillium brasilianum cultivated in rice.

    PubMed

    Fill, Taicia Pacheco; Asenha, Heloísa Briganti Rodrigues; Marques, Anna Silvia; Ferreira, Antônio Gilberto; Rodrigues-Fo, Edson

    2013-01-01

    During our studies concerning endophytic fungi, two indole alkaloids were co-produced with verruculogen by Penicillium brasilianum isolated from Melia azedarach (Meliaceae). The compounds were isolated by the use of combined chromatographic procedures and identified by physical methods, mainly 1D- and 2D-NMR experiments. This article also describes the production of verruculogen TR-2, first described for this species of Penicillium, and a verruculogen TR-2C-11 epimer, that is a novel fungal natural product. The kinetic production of verruculogen and verruculogen TR-2 produced by P. brasilianum were evaluated in order to understand the involvement of verruculogen TR-2 in verruculogen biosynthesis. PMID:22757643

  17. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress.

    PubMed

    Leitão, Ana Lúcia; Enguita, Francisco J

    2016-02-01

    The genus Penicillium is one of the most versatile "mycofactories", comprising some species able to produce gibberellins, bioactive compounds that can modulate plant growth and development. Although plants have the ability to synthesize gibberellins, their levels are lower when plants are under salinity stress. It has been recognized that detrimental abiotic conditions, such as saline stress, have negative effects on plants, being the availability of bioactive gibberellins a critical factor for their growth under this conditions. This review summarizes the interplay existing between endophytic Penicillium strains and plant host interactions, with focus on bioactive gibberellins production as a fungal response that allows plants to overcome salinity stress.

  18. Enhancement of Penicillium echinulatum glycoside hydrolase enzyme complex.

    PubMed

    dos Santos Costa, Patrícia; Büchli, Fernanda; Robl, Diogo; Delabona, Priscila da Silva; Rabelo, Sarita Candida; Pradella, José Geraldo da Cruz

    2016-05-01

    The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the

  19. Functional studies of ATP sulfurylase from Penicillium chrysogenum

    SciTech Connect

    Seubert, P.A.

    1985-01-01

    ATP sulfurylase from Penicillium chrysogenum has a specific activity (V/sub max/) of 6-7 units x mg protein/sup -1/ determined with the physiological substrates of MgATP and SO/sub 4//sup 2 -/ and assayed by (A) initial velocity measurements with APS kinase and inorganic pyrophosphatase present and (B) analysis of nonlinear reaction progress curves. The fact both assays give the same results show the intrinsic activity of ATP sulfurylase is much higher than previously reported. In initial velocity dead-end inhibition studies, the sulfate analog S/sub 2/O/sub 3//sup 2 -/ is a competitive inhibitor of SO/sub 42/..sqrt.. and a noncompetitive inhibitor of MgATP. Monovalent oxyanions such as NO/sub 3//sup -/, ClO/sub 3//sup -/, ClO/sub 4//sup -/, and FSO/sub 3//sup -/ behave as uncompetitive inhibitors of MgATP and thus seem not to be true sulfate analogs. The reverse reaction was assayed by the pyrophosphate dependent release of /sup 35/SO/sub 4//sup 2 -/ from AP/sup 35/S. Product inhibition by MgATP or SO/sub 4//sup 2 -/ is competitive with APS and mixed-type with PP/sub i/. Imidodiphosphate can serve as an alternative substrate for PP/sub i/. ATP sulfurylase binds (but does not hydrolyze) APS. A Scatchard plot of the APS binding is nonlinear, suggesting at least two types of sites. The cumulative results are qualitatively consistent with the random addition of MgATP and SO/sub 4//sup 2 -/ and the ordered release of first MgPP/sub i/ then APS, with APS release being partially rate limiting. Certain quantitative discrepancies suggest either an unknown variable (e.g. enzyme concentration) complicates the analysis or, in light of binding studies that the actual mechanism is more complicated (e.g. alternating sites) than any of the conventional models examined.

  20. Enhancement of Penicillium echinulatum glycoside hydrolase enzyme complex.

    PubMed

    dos Santos Costa, Patrícia; Büchli, Fernanda; Robl, Diogo; Delabona, Priscila da Silva; Rabelo, Sarita Candida; Pradella, José Geraldo da Cruz

    2016-05-01

    The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the

  1. Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine-derived Penicillium terrestre.

    PubMed

    Liu, Weizhong; Gu, Qianqun; Zhu, Weiming; Cui, Chengbin; Fan, Guotao

    2005-10-01

    Two new bisorbicillinoids possessing an open-ended cage structure, dihydrotrichodimerol (1) and tetrahydrotrichodimerol (2), were isolated from a marine-derived Penicillium terrestre. Their structures were established by spectroscopic methods. Their cytotoxic activities against P388 and A-549 cell lines were preliminarily evaluated by the MTT method. PMID:16392677

  2. Microbial transformations of natural antitumor agents: oxidation of lapachol by Penicillium notatum.

    PubMed Central

    Otten, S; Rosazza, J P

    1978-01-01

    The naphthoquinone lapachol (1) is readily metabolized by several fungi and streptomycetes. Preparative-scale fermentations with Penicillium notatum (UI 1602) provided a major polar metabolite (4), which was isolated and identified as an intermediate of the Hooker oxidation. The metabolite was synthesized by reacting lapachol with hydrogen peroxide under alkaline conditions. PMID:637549

  3. Occurrence of fludioxonil resistance in penicillium digitatum from citrus in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penicillium digitatum is the causal agent of green mold, the most important postharvest disease of citrus (Citrus spp.). Fludioxonil is marketed as either a solo product or in combination with azoxystrobin for control of green mold and other postharvest diseases. Baseline sensitivity to fludioxonil ...

  4. Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum

    NASA Astrophysics Data System (ADS)

    Chandrappa, C. P.; Govindappa, M.; Chandrasekar, N.; Sarkar, Sonia; Ooha, Sepuri; Channabasava, R.

    2016-06-01

    In the present study, Penicillium species extract isolated from Calophyllum apetalum was used for the synthesis of silver nanoparticles and it was confirmed by changing the color of the silver nitrate UV-Vis spectrum. The synthesized nanoparticles have been characterized by biophysical techniques such as scanning electron microscopy and x-ray diffraction.

  5. Haenamindole and fumiquinazoline analogs from a fungicolous isolate of Penicillium lanosum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new amino acid-derived compounds, lanosindole (1) and 2'-epi-fumiquinazoline C (2), were isolated from cultures of a fungicolous isolate of Penicillium lanosum (MYC 1813 = NRRL 66231), together with 2'-epi-fumiquinazoline D (3), previously reported only as a product of an in vitro enzymatic step...

  6. ASSESSMENT OF IMMUNE RESPONSES TO PENICILLIUM CHRYSOGENUM AND CHARACTERIZATION OF ITS ALLERGENS

    EPA Science Inventory

    Assessment of immune responses to Penicillium chrysogenum and characterization of its allergens

    Yongjoo Chung1, Michael E Viana2, Lisa B Copeland3, and MaryJane K Selgrade3, Marsha D W Ward3. 1 UNC, SPH, Chapel Hill, NC, 2NCSU, CVM, Raleigh, NC, 3US EPA, ORD, NHEERL, RTP,...

  7. A Rapid Assay to Detect Toxigenic Penicillium spp. Contamination in Wine and Musts.

    PubMed

    Sanzani, Simona Marianna; Miazzi, Monica Marilena; di Rienzo, Valentina; Fanelli, Valentina; Gambacorta, Giuseppe; Taurino, Maria Rosaria; Montemurro, Cinzia

    2016-01-01

    Wine and fermenting musts are grape products widely consumed worldwide. Since the presence of mycotoxin-producing fungi may greatly compromise their quality characteristics and safety, there is an increasing need for relatively rapid "user friendly" quantitative assays to detect fungal contamination both in grapes delivered to wineries and in final products. Although other fungi are most frequently involved in grape deterioration, secondary infections by Penicillium spp. are quite common, especially in cool areas with high humidity and in wines obtained by partially dried grapes. In this work, a single-tube nested real-time PCR approach-successfully applied to hazelnut and peanut allergen detection-was tested for the first time to trace Penicillium spp. in musts and wines. The method consisted of two sets of primers specifically designed to target the β-tubulin gene, to be simultaneously applied with the aim of lowering the detection limit of conventional real-time PCR. The assay was able to detect up to 1 fg of Penicillium DNA. As confirmation, patulin content of representative samples was determined. Most of analyzed wines/musts returned contaminated results at >50 ppb and a 76% accordance with molecular assay was observed. Although further large-scale trials are needed, these results encourage the use of the newly developed method in the pre-screening of fresh and processed grapes for the presence of Penicillium DNA before the evaluation of related toxins. PMID:27509524

  8. First report of Penicillium carneum causing blue mold on stored apples in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blue mold decay occurs during long term storage of apples and is predominantly caused by Penicillium expansum Link. Apples harvested in 2010 were stored in controlled atmosphere at a commercial Pennsylvania apple packing and storage facility, and were examined for occurrence of decay in May 2011. ...

  9. First report of Penicillium crustosum causing blue mold on stored apple fruit in Serbia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penicillium crustosum Thom causes blue mold on pome fruits and is also regularly found on cheese, nuts and soil. The fungus produces an array of mycotoxins that impact human health, including penitrem A, roquefortine C, terrestric acid, and cyclopenol. In January and February 2013, decayed apples, ‘...

  10. First report of Penicillium expansum isolates resistant to pyrimethanil from stored apple fruit in Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apples in the United States are stored in low temperature controlled atmosphere for 9–12 months and are susceptible to decay by blue mold. Penicillium spp. cause significant economic losses worldwide and produce mycotoxins that contaminate processed apple products. Blue mold is managed by a combinat...

  11. AN EXTRACT OF PENICILLIUM CHRYSOGENUM INDUCES DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES IN MICE

    EPA Science Inventory

    Rationale: Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of P. chrysogenum (PCE) can dose-dependently induce responses typ...

  12. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BAL/C MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  13. DOSE-DEPENDENT ALLERGIC RESPONSES TO AN EXTRACT OF PENICILLIUM CHRYSOGENUM IN BALB/MICE

    EPA Science Inventory

    Indoor mold has been associated with the development of allergic asthma. Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of ...

  14. Genome sequence of Penicillium solitum RS1, which causes postharvest apple decay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penicillium species cause postharvest decay, commonly known as blue mold, in pome fruits such as apples and pears. Among the species that cause blue mold, P. expansum is the most virulent and prevalent, while P. solitum is signficantly less virulent. For devising novel strategies to prevent and to r...

  15. A Rapid Assay to Detect Toxigenic Penicillium spp. Contamination in Wine and Musts

    PubMed Central

    Sanzani, Simona Marianna; Miazzi, Monica Marilena; di Rienzo, Valentina; Fanelli, Valentina; Gambacorta, Giuseppe; Taurino, Maria Rosaria; Montemurro, Cinzia

    2016-01-01

    Wine and fermenting musts are grape products widely consumed worldwide. Since the presence of mycotoxin-producing fungi may greatly compromise their quality characteristics and safety, there is an increasing need for relatively rapid “user friendly” quantitative assays to detect fungal contamination both in grapes delivered to wineries and in final products. Although other fungi are most frequently involved in grape deterioration, secondary infections by Penicillium spp. are quite common, especially in cool areas with high humidity and in wines obtained by partially dried grapes. In this work, a single-tube nested real-time PCR approach—successfully applied to hazelnut and peanut allergen detection—was tested for the first time to trace Penicillium spp. in musts and wines. The method consisted of two sets of primers specifically designed to target the β-tubulin gene, to be simultaneously applied with the aim of lowering the detection limit of conventional real-time PCR. The assay was able to detect up to 1 fg of Penicillium DNA. As confirmation, patulin content of representative samples was determined. Most of analyzed wines/musts returned contaminated results at >50 ppb and a 76% accordance with molecular assay was observed. Although further large-scale trials are needed, these results encourage the use of the newly developed method in the pre-screening of fresh and processed grapes for the presence of Penicillium DNA before the evaluation of related toxins. PMID:27509524

  16. Performance of fogged disinfectants to inactivate conida of Penicillium digitatum within citrus degreening rooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fogging with formaldehyde of citrus packinghouses when the fruit are absent is a practice to control conidia of Penicillium digitatum (Pers.) Sacc., cause of citrus green mold. Replacements for formaldehyde in these facilities are needed because of worker and environmental health issues. To evaluate...

  17. Draft Genome Sequence of Penicillium expansum Strain R19, Which Causes Postharvest Decay of Apple Fruit.

    PubMed

    Yu, Jiujiang; Jurick, Wayne M; Cao, Huansheng; Yin, Yanbin; Gaskins, Verneta L; Losada, Liliana; Zafar, Nikhat; Kim, Maria; Bennett, Joan W; Nierman, William C

    2014-01-01

    Among the species that cause blue mold, isolates of Penicillium expansum are the most prevalent and virulent species, causing more than 50 percent of postharvest decay. We report the draft genome sequence of P. expansum R19 in order to identify fungal virulence factors and to understand the mechanism of infection.

  18. [Clavine alkaloid biosynthesis by the fungus Penicillium palitans westling 1911 isolated from ancient permafrost deposits].

    PubMed

    Kozlovskiĭ, A G; Zhelifonova, V P; Antipova, T V

    2009-01-01

    The relic strain of Penicillium palitans isolated from the ancient permafrost deposits produces clavine alkaloids such as festuclavine, fumigaclavine A, and fumigaclavine B. Alkaloid biosynthesis is concurrent with the growth. Tryptophan and zinc ion additives to the culture medium stimulate the synthesis of alkaloids. PMID:19382708

  19. Production of the Tremorgenic Mycotoxins Verruculogen and Fumitremorgin B by Penicillium piscarium Westling.

    PubMed

    Gallagher, R T; Latch, G C

    1977-03-01

    The tremorgenic mycotoxins verruculogen and fumitremorgin B were isolated from Penicillium piscarium Westling. The coexistence of these tremorgens in culture has previously been reported for one other unrelated fungal species, Aspergillus caespitosus Raper and Thom, and lends further support to the suggestion that the tremorgens have a common biosynthetic origin. PMID:16345234

  20. Production of the Tremorgenic Mycotoxins Verruculogen and Fumitremorgin B by Penicillium piscarium Westling

    PubMed Central

    Gallagher, R. T.; Latch, G. C. M.

    1977-01-01

    The tremorgenic mycotoxins verruculogen and fumitremorgin B were isolated from Penicillium piscarium Westling. The coexistence of these tremorgens in culture has previously been reported for one other unrelated fungal species, Aspergillus caespitosus Raper and Thom, and lends further support to the suggestion that the tremorgens have a common biosynthetic origin. PMID:16345234

  1. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families

    PubMed Central

    Houbraken, J.; Samson, R.A.

    2011-01-01

    Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. Thermoascus and Paecilomyces, both members of Thermoascaceae, also form ascospores lacking a furrow or slit, but are differentiated from Trichocomaceae by the production of asci from croziers and their thermotolerant or thermophilic nature. Phylogenetic analysis shows that Penicillium is polyphyletic. The genus is re-defined and a monophyletic genus for both anamorphs and teleomorphs is created (Penicillium sensu stricto). The genera Thysanophora, Eupenicillium, Chromocleista, Hemicarpenteles and Torulomyces belong in Penicillium s. str. and new combinations for the species belonging to these genera

  2. DESTRUCTION OF ASPERGILLUS VERSICOLOR, PENICILLIUM CRYSOGENUM, STACHYBOTRYS CHARTARUM, AND CLADOSPORIUM CLADOSPORIDES SPORES USING CHEMICAL OXIDATION TREATMENT PROCESS

    EPA Science Inventory

    The survival of aqueous suspensions of Penicillium chrysogenum, Stachybotrys chartarum, Aspergillus versicolor, and Cladosporium cladosporioides spores was evaluated using various combinations of hydrogen peroxide and iron (II) as catalyst. Spores were suspended in water and trea...

  3. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia.

    PubMed

    Wakelin, S A; Gupta, V V S R; Harvey, P R; Ryder, M H

    2007-01-01

    The phosphate solubilizing fungi Penicillium radicum, Penicillium bilaiae (strain RS7B-SD1), and an unidentified Penicillium sp. designated strain KC6-W2 were tested for their ability to increase the growth and phosphorus (P) nutrition of wheat, medic, and lentil in three soils of neutral to alkaline pH reaction. The strongest plant growth promoting (PGP) strain was Penicillium sp. KC6-W2, which stimulated significant increases in shoot growth and dry mass in seven of the nine experiments conducted. Levels of PGP by Penicillium sp. KC6-W2 ranged from 6.6% to 19% and were associated with increased uptake of P to the shoot. The PGP properties of Penicillium sp. KC6-W2 were evident on each of the three different plant species and soil types, a level of reliability not observed in other strains tested. Inoculation of seed with P. radicum increased lentil growth by 5.5% (P < 0.05) in soil from Tarlee but did not affect plant growth in the eight other experiments. Inoculation of plant seed with P. bilaiae RS7B-SD1 resulted in significant PGP in two of the nine experiments conducted. However, when significant, stimulation of PGP by P. bilaiae RS7B-SD1 was strong and resulted in increases in medic dry matter (19%) and lentil shoot dry matter (15%). A soil microcosm experiment investigated the effect of Penicillium fungi on cycling of soil P. Penicillium bilaiae RS7B-SD1 was the only fungus to significantly increase HCO3-extractable P (23% increase; P < 0.05). Production of phosphatase enzymes was not associated with increased HCO3-extractable P. Addition of carbon in the form of ryegrass seed significantly increased microbial respiration and movement of P to the microbial biomass (P < 0.05), but these parameters were irrespective of Penicillium treatment. This work has established the potential for use of Penicillium inoculants to increase plant growth on alkaline soils in Australia. The role of Penicillium fungi in plant P uptake and soil P cycling requires further

  4. Survival of Penicillium spp. conidia during deep-frying and baking steps of frozen chicken nuggets processing.

    PubMed

    Wigmann, Évelin Francine; Moreira, Rafael Chelala; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Copetti, Marina Venturini

    2016-05-01

    This study aimed at determining whether Penicillium spp. strains could survive through the heat treatment applied during the processing of frozen chicken nuggets. Firstly, it was found that the conidia of Penicillium were not able to survive the heat shock in phosphate buffer at pH 7.2 in thermal death tubes (TDT) at 80 °C/30 min. Subsequently, each Penicillium strain was inoculated in frozen chicken nuggets, which were subjected to the following treatments: i) only deep frying (frying oil at 195-200 °C), ii) only baking (120-130 °C until the internal temperature reached 70 °C) and iii) deep frying followed by baking (frying oil temperature of 195-200 °C and baking temperature of 120-130 °C, until the internal temperature reached 70 °C). The results indicated that Penicillium polonicum NGT 23/12, Penicillium commune NGT 16/12, Penicillium solitum NGT 30/12 and Penicillium crustosum NGT 51/12 were able to survive after the combined treatment (deep frying followed by baking) when inoculated in chicken nuggets. P. polonicum NGT 23/12 was the most resistant strain to the combined treatment (deep frying and baking), as its population was reduced by 3 log cycles CFU/g, when the internal temperature reached 78 °C after 10 min and 30 s of baking. The present data show that if Penicillium spp. is present in high numbers in raw materials, such as breading flours, it will survive the thermal processing applied during chicken nuggets production.

  5. An evaluation of the proteolytic and lipolytic potential of Penicillium spp. isolated from traditional Greek sausages in submerged fermentation.

    PubMed

    Papagianni, Maria

    2014-01-01

    A number of novel Penicillium strains belonging to Penicillium nalgiovense, Penicillium solitum, Penicillium commune, Penicillium olsonii, and Penicillium oxalicum species, isolated from the surface of traditional Greek sausages, were evaluated for their proteolytic and lipolytic potential in a solid substrate first and next in submerged fermentations, using complex media. Extracellular proteolytic activity was assessed at acid, neutral, and alkaline pH, while the lipolytic activity was assessed using olive oil, the short-chain triacylglycerol tributyrin, and the long-chain triolein, as substrates. The study revealed that although closely related, the tested strains produce enzymes of distinct specificities. P. nalgiovense PNA9 produced the highest alkaline proteolytic activity (13.2 unit (U)/ml) and the highest lipolytic activity with tributyrin (92 U/ml). Comparisons with known sources show that proteases and/or lipases can be secreted effectively by some Penicillia (P. nalgiovense PNA4, PNA7, and PNA9 and P. solitum PSO1), and further investigations on their properties and characteristics would be promising.

  6. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world.

    PubMed

    Visagie, C M; Hirooka, Y; Tanney, J B; Whitfield, E; Mwange, K; Meijer, M; Amend, A S; Seifert, K A; Samson, R A

    2014-06-01

    As part of a worldwide survey of the indoor mycobiota, dust was collected from nine countries. Analyses of dust samples included the culture-dependent dilution-to-extinction method and the culture-independent 454-pyrosequencing. Of the 7 904 isolates, 2 717 isolates were identified as belonging to Aspergillus, Penicillium and Talaromyces. The aim of this study was to identify isolates to species level and describe the new species found. Secondly, we wanted to create a reliable reference sequence database to be used for next-generation sequencing projects. Isolates represented 59 Aspergillus species, including eight undescribed species, 49 Penicillium species of which seven were undescribed and 18 Talaromyces species including three described here as new. In total, 568 ITS barcodes were generated, and 391 β-tubulin and 507 calmodulin sequences, which serve as alternative identification markers. PMID:25492981

  7. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world

    PubMed Central

    Visagie, C.M.; Hirooka, Y.; Tanney, J.B.; Whitfield, E.; Mwange, K.; Meijer, M.; Amend, A.S.; Seifert, K.A.; Samson, R.A.

    2014-01-01

    As part of a worldwide survey of the indoor mycobiota, dust was collected from nine countries. Analyses of dust samples included the culture-dependent dilution-to-extinction method and the culture-independent 454-pyrosequencing. Of the 7 904 isolates, 2 717 isolates were identified as belonging to Aspergillus, Penicillium and Talaromyces. The aim of this study was to identify isolates to species level and describe the new species found. Secondly, we wanted to create a reliable reference sequence database to be used for next-generation sequencing projects. Isolates represented 59 Aspergillus species, including eight undescribed species, 49 Penicillium species of which seven were undescribed and 18 Talaromyces species including three described here as new. In total, 568 ITS barcodes were generated, and 391 β-tubulin and 507 calmodulin sequences, which serve as alternative identification markers. PMID:25492981

  8. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world.

    PubMed

    Visagie, C M; Hirooka, Y; Tanney, J B; Whitfield, E; Mwange, K; Meijer, M; Amend, A S; Seifert, K A; Samson, R A

    2014-06-01

    As part of a worldwide survey of the indoor mycobiota, dust was collected from nine countries. Analyses of dust samples included the culture-dependent dilution-to-extinction method and the culture-independent 454-pyrosequencing. Of the 7 904 isolates, 2 717 isolates were identified as belonging to Aspergillus, Penicillium and Talaromyces. The aim of this study was to identify isolates to species level and describe the new species found. Secondly, we wanted to create a reliable reference sequence database to be used for next-generation sequencing projects. Isolates represented 59 Aspergillus species, including eight undescribed species, 49 Penicillium species of which seven were undescribed and 18 Talaromyces species including three described here as new. In total, 568 ITS barcodes were generated, and 391 β-tubulin and 507 calmodulin sequences, which serve as alternative identification markers.

  9. Production of tremorgenic toxins by Penicillium janthinellum Biourge: a possible aetiological factor in ryegrass staggers.

    PubMed

    Lanigan, G W; Payne, A L; Cockrum, P A

    1979-02-01

    Topsoil, herbage and faeces collected during an outbreak of ryegrass staggers in sheep were examined for tremorgenic penicillia. No such fungi were recovered from the plant material, but they were found among the predominant fungi in the soil and faecal samples. The commonest species of Penicillium, and almost the only tremorgenic species encountered, was Penicillium janthinellum Biourge. When fed to sheep, the mycelium of this fungus evoked a number of the clinical signs seen in field cases of ryegrass staggers. Two tremorgenic toxins were isolated from the mycelial felts and available evidence indicates that they are verruculogen and fumitremorgin A. P. janthinellum also produced these tremorgens when cultured in moist, autoclaved soil, but not in unheated soil. The results obtained from this study are in accord with the hypothesis that ryegrass staggers is caused by tremorgenic mycotoxins. PMID:475667

  10. Tremorgenic mycotoxins produced by strains of Penicillium spp. isolated from toxic Poa huecu parodi.

    PubMed

    Scuteri, M; Sala de Miguel, M A; Blanco Viera, J; Planes de Banchero, E

    1992-12-01

    Seventeen strains of Penicillium spp. have been isolated from Poa huecu Parodi from the Zapala zone, exhibiting toxicity to sheet. The following strains have been identified: P. crustosum, cyclopium, notatum, palitans, puberulum, verrucosum, viridicatum and Penicillium spp. The toxigenic capacity of the strains was studied after growing them under suitable conditions. Toxins produced were analysed by thin layer chromatography (TLC). Penitrem A (PA) and Penitrem B (PB) neurotoxins were identified and quantitated in twelve strains; verruculogen (VERR) and fumitremorgen B (FTB) being present in one of them. The effect of these mycotoxins was studied in mice. Neurological symptoms characteristic of the intoxication by tremorgenic toxins and similar to those observed in sheep suffering from 'huecu's disease' were observed. The possible role of these toxins as causative agents of 'huecu's disease' is discussed. PMID:1494361

  11. Optimization of cellulase production by Penicillium oxalicum using banana agrowaste as a substrate.

    PubMed

    Shah, Shilpa P; Kalia, Kiran S; Patel, Jagdish S

    2015-01-01

    The purpose of this study was to produce a higher amount of cellulase by using an alternative carbon source, such as banana agrowaste, and to optimize the fermentation parameters for a high yield. In the present study, cellulase-producing Penicillium was isolated from a decaying wood sample. Different nutritional and environmental factors were investigated to assess their effect on cellulase production. The highest crude enzyme production was observed at a pH 6.0 and a temperature of 28°C in a medium that was supplemented with banana agrowaste as the carbon source. Pretreatment with 2N NaOH, at 7% substrate (banana agrowaste) concentration yielded the highest cellulase activity. Further to this, the effect of other parameters such as inoculum age, inoculum size, static and agitated conditions were also studied. It is concluded that Penicillium oxalicum is a powerful cellulase-producer strain under our tested experimental conditions using banana agrowaste as the carbon source.

  12. Penicillium marneffei Infection with β-D-glucan Elevation: A Case Report and Literature Review.

    PubMed

    Yoshimura, Yukihiro; Sakamoto, Yohei; Lee, Kwangyeol; Amano, Yuichiro; Tachikawa, Natsuo

    2016-01-01

    We herein report a case of Penicillium marneffei infection (PMI) in a Japanese man who was infected with human immunodeficiency virus-1 (HIV-1), who was diagnosed on the basis of a bone marrow culture and who was effectively treated with itraconazole. Our review of the PMI cases reported in Japan suggests that increased serum (1→3)-β-D-glucan levels are a useful diagnostic tool in cases of suspected PMI. PMID:27580558

  13. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants.

    PubMed

    Alapont, C; López-Mendoza, M C; Gil, J V; Martínez-Culebras, P V

    2014-01-01

    The present study reports the natural mycobiota occurring in dry-cured hams, and in particular on the incidence of mycotoxin-producing fungi. A total of 338 fungal colonies were isolated from three stages of production, these being the post-salting, ripening and aging stages in two manufacturing plants. The results show that fungi were more frequently isolated from the aging stage and that the predominant filamentous fungal genus isolated was Penicillium. Seventy-four of the 338 fungal strains were selected for identification at the species level by using morphological criteria and internal transcribed spacers sequencing. Of the 74 fungal strains, 59 were Penicillium strains. Sixteen Penicillium species were identified, with P. commune (24 strains) and P. chrysogenum (13 strains) being the most abundant. The potential ability to produce cyclopiazonic acid (CPA) and ochratoxin A (OTA) was studied by isolating the culture followed by HPLC analysis of these mycotoxins in the culture extracts. The results indicated that 25 (33.7%) of the 74 fungal strains produced CPA. Worth noting is the high percentage of CPA-producing strains of P. commune (66.6%) of which some strains were highly toxigenic. P. polonicum strains were also highly toxigenic. With respect to OTA-producing fungi, a low percentage of fungal strains (9.5%) were able to produce OTA at moderate levels. OTA-producing fungi belonged to different Penicillium species including P. chrysogenum, P. commune, P. polonicum and P. verrucosum. These results indicate that there is a possible risk factor posed by CPA and OTA contamination of dry-cured hams.

  14. Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory.

    PubMed

    Amade, P; Mallea, M; Bouaïcha, N

    1994-02-01

    From the culture broth of a fungus, two metabolites have been isolated: bis(2-ethylhexyl)phthalate (DEHP) precedently isolated from Streptomyces sp. and 2-(4-hydroxyphenyl)-2-oxoacetaldehyde oxime (PHBA) here reported as a natural compound in the (E)-s-cis configuration. The producing organism was identified as a strain of Penicillium olsonii. Culture growth and chemical identification are discussed in the present work.

  15. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    SciTech Connect

    Ho, C.S.; Smith, M.D.

    1986-01-01

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  16. Abundance of airborne Penicillium CFU in relation to urbanization in Mexico City.

    PubMed Central

    Rosas, I; Calderón, C; Ulloa, M; Lacey, J

    1993-01-01

    Air was sampled simultaneously at three localities in Mexico City differing in urbanization index and air pollution level on 22 days during a period covering both dry and rainy seasons. An Andersen two-stage microbial sampler was used for 15 min at 28 liters min-1 to isolate culturable fungi on malt extract agar. After exposure, plates were incubated at 25 degrees C for 48 to 72 h before colonies were counted and identified to give concentrations of total fungal spores and of Penicillium spp., expressed as CFU per cubic meter of air. Total fungi numbered 91 to 602 CFU m-3 in Tlalpan Borough (southern area), 40 to 264 CFU m-3 in Cuauhtémoc Borough (downtown), and 26 to 495 CFU m-3 in Gustavo A. Madero Borough (northern area). Although Penicillium spp. were the second most frequently isolated fungal genus, concentrations were small, with a maximum of only 133 CFU m-3. Twice as many colonies were isolated in the southern area, with an urbanization index of 0.25 (arithmetic mean, 41 CFU m-3), as at other sampling stations with greater urbanization indices (arithmetic means, 19 and 20 CFU m-3). In the downtown area, with an urbanization index of 1.0, Penicillium spp. were more numerous than any other genus and formed 25% of the total fungal count compared with 14 and 17% in the other areas. Concentrations of airborne Penicillium spp. did not differ significantly between rainy and dry seasons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368852

  17. Tanzawaic acids I-L: Four new polyketides from Penicillium sp. IBWF104-06.

    PubMed

    Sandjo, Louis P; Thines, Eckhard; Opatz, Till; Schüffler, Anja

    2014-01-01

    Four new polyketides have been identified in culture filtrates of the fungal strain Penicillium sp. IBWF104-06 isolated from a soil sample. They are structurally based on the same trans-decalinpentanoic acid skeleton as tanzawaic acids A-H. One of the new compounds was found to inhibit the conidial germination in the rice blast fungus Magnaporthe oryzae at concentrations of 25 μg/mL.

  18. Tanzawaic acids I–L: Four new polyketides from Penicillium sp. IBWF104-06

    PubMed Central

    Sandjo, Louis P; Thines, Eckhard

    2014-01-01

    Summary Four new polyketides have been identified in culture filtrates of the fungal strain Penicillium sp. IBWF104-06 isolated from a soil sample. They are structurally based on the same trans-decalinpentanoic acid skeleton as tanzawaic acids A–H. One of the new compounds was found to inhibit the conidial germination in the rice blast fungus Magnaporthe oryzae at concentrations of 25 μg/mL. PMID:24605144

  19. [Biosynthesis of biologically active low-molecular weight compounds by fungi of the genus Penicillium (review)].

    PubMed

    Kozlovskii, A G; Antipova, T V; Zhelifonova, V P

    2015-01-01

    The recent data on exometabolite biosynthesis in fungi of the genus Penicillium is summarized. The study of creative species, as well as those isolated from extreme ecotopes, resulted in the identification of a number of novel, biologically active compounds. Alkaloid biosynthesis has been shown to begin on.the first day of fungus cultivation and to proceed throughout the cultivation period. Idiophase kinetics was observed for the biosynthesis of polyketide metabolites. The mechanisms of regulation of biosynthesis of promising bioactive compounds are discussed.

  20. New 6,6-Spiroketal from the Alga-Derived Fungus Penicillium lividum.

    PubMed

    Zhuravleva, Olesya I; Sobolevskaya, Maria P; Denisenko, Vladimir A; Kirichuk, Natalya N; Zhidkov, Maxim E; Ermakova, Svetlana P; Kim, Natalya Yu; Antonov, Alekxandr S; Leshchenko, Elena V; Afiyatullov, Shamil Sh

    2016-02-01

    The new 6,6-spiroketal,sargassopenilline H (1), and known peneciraistin C (2) have been isolated from an EtOAc extract of the marine-derived fungus Penicillium lividumKMM 4663. The structure of the new metabolite was determined by HR ESIMS and 1D and 2D NMR spectroscopy. Sargassopenilline H (1) in non-cytotoxic concentration inhibited colony formation of RPMI-7951 and MDA-MB-231 cell lines.

  1. Indigenous case of disseminated histoplasmosis from the Penicillium marneffei endemic area of China.

    PubMed

    Cao, Cunwei; Bulmer, Glenn; Li, Jushang; Liang, Ling; Lin, Youkun; Xu, Yongjia; Luo, Qinghua

    2010-07-01

    This is the first indigenous case of disseminated histoplasmosis reported from the Penicillium marneffei endemic area in southern China. It was diagnosed by histopathology of tissue, gross and microscopic morphology of the culture and PCR assay of the isolated fungus. Successful antifungal treatment was with itraconazole 400 mg/day for 5 months. This case suggests that histoplasmosis should be an important differential diagnosis in immunocompromised patients in southern China and South East Asia (the only endemic area for P. marneffei). PMID:20224862

  2. Three new polyketides from marine-derived fungus Penicillium citrinum SCSGAF 0167.

    PubMed

    Sun, Yu-Lin; Zhang, Xiao-Yong; Zheng, Zhi-Hui; Xu, Xin-Ya; Qi, Shu-Hua

    2014-01-01

    Three new polyketides penicitrinol G (1), penicitrinol H (2) and 2,11-dihydroxy-1-methoxycarbonyl-9-carboxylxanthone (3) together with one known cathepsin B inhibitor chrysophanol (4) were isolated from a culture broth of marine-derived fungus Penicillium citrinum SCSGAF 0167. Their structures were determined by spectroscopic methods. Compound 4 exhibited inhibitory activity against cathepsin B with IC50 value of 1.7 μM.

  3. Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity.

    PubMed

    Ballester, Ana-Rosa; Marcet-Houben, Marina; Levin, Elena; Sela, Noa; Selma-Lázaro, Cristina; Carmona, Lourdes; Wisniewski, Michael; Droby, Samir; González-Candelas, Luis; Gabaldón, Toni

    2015-03-01

    The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in their recently accepted paper.

  4. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.

    PubMed

    Li, Boqiang; Zong, Yuanyuan; Du, Zhenglin; Chen, Yong; Zhang, Zhanquan; Qin, Guozheng; Zhao, Wenming; Tian, Shiping

    2015-06-01

    Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species.

  5. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers.

    PubMed

    Geiger, M; Guitton, Y; Vansteelandt, M; Kerzaon, I; Blanchet, E; Robiou du Pont, T; Frisvad, J C; Hess, P; Pouchus, Y F; Grovel, O

    2013-11-01

    In order to assess the putative toxigenic risk associated with the presence of fungal strains in shellfish-farming areas, Penicillium strains were isolated from bivalve molluscs and from the surrounding environment, and the influence of the sample origin on the cytotoxicity of the extracts was evaluated. Extracts obtained from shellfish-derived Penicillia exhibited higher cytotoxicity than the others. Ten of these strains were grown on various media including a medium based on mussel extract (Mytilus edulis), mussel flesh-based medium (MES), to study the influence of the mussel flesh on the production of cytotoxic compounds. The MES host-derived medium was created substituting the yeast extract of YES medium by an aqueous extract of mussel tissues, with other constituent identical to YES medium. When shellfish-derived strains of fungi were grown on MES medium, extracts were found to be more cytotoxic than on the YES medium for some of the strains. HPLC-UV/DAD-MS/MS dereplication of extracts from Penicillium marinum and P. restrictum strains grown on MES medium showed the enhancement of the production of some cytotoxic compounds. The mycotoxin patulin was detected in some P. antarcticum extracts, and its presence seemed to be related to their cytotoxicity. Thus, the enhancement of the toxicity of extracts obtained from shellfish-derived Penicillium strains grown on a host-derived medium, and the production of metabolites such as patulin suggests that a survey of mycotoxins in edible shellfish should be considered.

  6. A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand.

    PubMed

    Maketon, Monchan; Amnuaykanjanasin, Alongkorn; Kaysorngup, Achirayar

    2014-02-01

    Twenty local isolates of entomopathogenic fungi were determined for control of the larvae and adults of Culex quinquefasciatus. In a laboratory experiment, a Penicillium sp. CM-010 caused 100% mortality of third-instar larvae within 2 h using a conidial suspension of 1 × 10⁶ conidia ml⁻¹. Its LC₅₀ was 3 × 10⁵ conidia ml⁻¹, and the lethal time (LT₅₀) was 1.06 h. Cloning and sequencing of its internal transcribed spacer region indicated that this Penicillium species is Penicillium citrinum (100% identity in 434 bp). Mortality of the adult was highest with Aspergillus flavus CM-011 followed with Metarhizium anisopliae CKM-048 from 1 × 10⁹ conidia ml⁻¹. P. citrinum CM-010 at 1 × 10⁶ conidia ml⁻¹ killed 100% larvae within 2 h while Bacillus thuringiensis var. israelensis at 5 ITU ml⁻¹ required 24 h. This P. citrinum CM-010 also greatly reduced survival of C. quinquefasciatus larvae in an unreplicated field test. Light and transmission electron micrographs showed that the fungal conidia were ingested by the larvae and deposited in the gut. The metabolite patulin was produced by P. citrinum CM-010 instead of citrinin.

  7. Isolation, expression and characterization of a minor allergen from Penicillium crustosum.

    PubMed

    Sevinc, M Serdal; Kumar, Veena; Abebe, Makonnen; Lemieux, Michèle; Vijay, Hari M

    2014-01-01

    A ribosomal P1 protein, Pen b 26 from Penicillium brevicompactum, was previously identified as a major allergen. A homolog protein was isolated and characterized from Penicillium crustosum which is not known to be allergenic mold. A cDNA library of P. crustosum was constructed and screened using a probe based on the DNA sequence of Pen b 26. A positive clone was isolated, expressed in Escherichia coli, purified and characterized by comparing its immunological and physical properties to Pen b 26. It was designated as Pen cr 26 and had a 321 nt ORF corresponding to 107 amino acids with a MW of 11 kDa. Pen cr 26 had strong sequence homology to Pen b 26 (92% for nucleotides and 86% for amino acids) and its physical and predicted structural properties were similar to the latter. The level of expression of Pen cr 26 was much lower than that of Pen b 26 in the same expression vector. Both proteins were recognized equally well by the IgG class specific antibodies, but Pen cr 26 was poorly recognized by Penicillium-sensitive atopic sera (IgE), suggesting striking antigenic difference in IgE epitopes, i.e., 87% were positive for Pen b 26 while only 23% were positive for Pen cr 26. The allergenicity of Pen cr 26 seems to be minor in nature and it could be a hypoallergenic variant of Pen b 26.

  8. Proteomics Shows New Faces for the Old Penicillin Producer Penicillium chrysogenum

    PubMed Central

    Barreiro, Carlos; Martín, Juan F.; García-Estrada, Carlos

    2012-01-01

    Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus. PMID:22318718

  9. Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers.

    PubMed

    Rai, Rohit; Kaur, Baljit; Singh, Surender; Di Falco, Macros; Tsang, Adrian; Chadha, B S

    2016-09-01

    Penicillium sp. (Dal 5) isolated from rhizosphere of conifers from Dalhousie (Himachal Pradesh, India) was found to be an efficient cellulolytic strain. The culture under shake flask on CWR (cellulose, wheat bran and rice straw) medium produced appreciably higher levels of endoglucanase (35.69U/ml), β-glucosidase (4.20U/ml), cellobiohydrolase (2.86U/ml), FPase (1.2U/ml) and xylanase (115U/ml) compared to other Penicillium strains reported in literature. The mass spectroscopy analysis of Penicillium sp. Dal 5 secretome identified 108 proteins constituting an array of CAZymes including glycosyl hydrolases (GH) belonging to 24 different families, polysaccharide lyases (PL), carbohydrate esterases (CE), lytic polysaccharide mono-oxygenases (LPMO) in addition to swollenin and a variety of carbohydrate binding modules (CBM) indicating an elaborate genetic potential of this strain for hydrolysis of lignocellulosics. Further, the culture extract was evaluated for hydrolysis of alkali treated rice straw, wheat straw, bagasse and corn cob at 10% substrate loading rate. PMID:27341464

  10. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2016-09-01

    Strains belonging to Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans species were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic molds Penicillium digitatum and Penicillium italicum. Moreover, studies aimed at screening the antifungal activity of selected yeast strains in vivo conditions against P. digitatum and P. italicum, and investigated the efficacy of a polysaccharidic matrix, locust bean gum (LBG), enriched with the tested BCAs, in controlling postharvest decays in artificially inoculated mandarins. The population dynamics of BCAs on wounds and the magnitude of peroxidase (POD) and superoxide dismutase (SOD) in fruit tissues were also investigated after treatments of mandarins with antagonistic yeasts. W. anomalus BS91, M. pulcherrima MPR3 and A. pullulans PI1 provided excellent control of postharvest decays caused by P. digitatum and P. italicum on mandarins, both when the yeasts were used alone and in combination with LBG, which enhanced the yeast cell viability over time. Finally, the increased activity of POD and lower decrease in SOD activity in response to BCAs application in mandarin fruits confirmed their involvement in the biocontrol mechanism.

  11. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples.

    PubMed

    Buron-Moles, G; López-Pérez, M; González-Candelas, L; Viñas, I; Teixidó, N; Usall, J; Torres, R

    2012-11-15

    Penicillium digitatum and Penicillium expansum are responsible for green and blue molds in citrus and pome fruits, respectively, which result in major monetary losses worldwide. In order to study their infection process in fruits, we successfully introduced a green fluorescent protein (GFP) encoding gene into wild type P. digitatum and P. expansum isolates, using Agrobacterium tumefaciens-mediated transformation (ATMT), with hygromycin B resistance as the selectable marker. To our knowledge, this is the first report describing the transformation of these two important postharvest pathogens with GFP and the use of transformed strains to study compatible and non-host pathogen interactions. Transformation did not affect the pathogenicity or the ecophysiology of either species compared to their respective wild type strains. The GFP-tagged strains were used for in situ analysis of compatible and non-host pathogen interactions on oranges and apples. Knowledge of the infection process of apples and oranges by these pathogens will facilitate the design of novel strategies to control these postharvest diseases and the use of the GFP-tagged strains will help to determine the response of P. digitatum and P. expansum on/in plant surface and tissues to different postharvest treatments.

  12. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit.

    PubMed

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2016-09-01

    Strains belonging to Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans species were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic molds Penicillium digitatum and Penicillium italicum. Moreover, studies aimed at screening the antifungal activity of selected yeast strains in vivo conditions against P. digitatum and P. italicum, and investigated the efficacy of a polysaccharidic matrix, locust bean gum (LBG), enriched with the tested BCAs, in controlling postharvest decays in artificially inoculated mandarins. The population dynamics of BCAs on wounds and the magnitude of peroxidase (POD) and superoxide dismutase (SOD) in fruit tissues were also investigated after treatments of mandarins with antagonistic yeasts. W. anomalus BS91, M. pulcherrima MPR3 and A. pullulans PI1 provided excellent control of postharvest decays caused by P. digitatum and P. italicum on mandarins, both when the yeasts were used alone and in combination with LBG, which enhanced the yeast cell viability over time. Finally, the increased activity of POD and lower decrease in SOD activity in response to BCAs application in mandarin fruits confirmed their involvement in the biocontrol mechanism. PMID:27217363

  13. [Effect of alcoholic extracts of wild plants on the inhibition of growth of Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme and Fusarium poae moulds].

    PubMed

    Tequida-Meneses, Martín; Cortez-Rocha, Mario; Rosas-Burgos, Ema Carina; López-Sandoval, Susana; Corrales-Maldonado, Consuelo

    2002-06-01

    Fungicidal activity of wild plants Larrea tridentata, Karwinskia humboldtiana, Ricinus communis, Eucalyptus globulus, Ambrosia ambrosioides, Nicotiana glauca, Ambrosia confertiflora, Datura discolor, Baccharis glutinosa, Proboscidea parviflora, Solanum rostratum, Jatropha cinerea, Salpianthus macrodonthus y Sarcostemma cynanchoides was evaluated against the moulds species Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium poae y Fusarium moniliforme moulds species. Alcoholic extracts 6% (w/v) were prepared using six grams of dried plant powders (leaves and stems) and alcohol (70% ethanol or 70% methanol). A spore suspension (1x10(6); ufc/ml) of each mould was prepared by adding saline solution (0.85%) and 0.1% tween 80. The extracts were mixed with Czapeck yeast agar (CYA) at 45-50 degrees C in 1:10 relation on Petri dishes. Triplicate Petri dishes of each treatment and for each mould were centrally inoculated and three Petri dishes were used without treatment as controls. The inoculated dishes and controls were incubated at 25 +/- 2 degrees C for eight days. The incubated dishes were examined each 48 h and after the colony diameter (radial growth) was measured. Two mould species were controlled by L. tridentata, B. glutinosa and P. parviflora. Extracts of L. tridentata in methanol or ethanol at 41.5-100% inhibited all six species of moulds.

  14. Influence of CaCl(2) on Penicillium digitatum, Grapefruit Peel Tissue, and Biocontrol Activity of Pichia guilliermondii.

    PubMed

    Droby, S; Wisniewski, M E; Cohen, L; Weiss, B; Touitou, D; Eilam, Y; Chalutz, E

    1997-03-01

    ABSTRACT Interactions between CaCl(2), grapefruit peel tissue, Penicillium digitatum, and the yeast antagonist Pichia guilliermondii strain US-7 were investigated. Application of 68 or 136 mM CaCl(2) to grapefruit surface wounds reduced the incidence of green mold caused by Penicillium digitatum by 43 to 52%. In laboratory tests, a cell suspension (10(7) cells/ml) of Pichia guilliermondii containing either 68 or 136 mM CaCl(2) reduced the incidence of green mold from 27 to 3%. In large scale tests, dip application of 136 mM CaCl(2) with US-7 (10(7) cells/ml) significantly decreased the number of wounds infected by Penicillium digitatum. CaCl(2), with or without yeast cells, stimulated ethylene production in grapefruit tissue. Increasing concentrations of CaCl(2) resulted in decreased spore germination and germ tube elongation of Penicillium digitatum. Pectinolytic activity of crude enzyme preparations of Penicillium digitatum was also inhibited by the presence of increasing concentrations of CaCl(2). US-7 exhibited a strong ability to maintain cytosolic Ca(2+) homeostasis at levels that did not exceed 1.4 muM when exposed to 150 mM CaCl(2). On the other hand, strain 114 of Debaryomyces hansenii, which failed to give any protection against infection by Penicillium digitatum, showed reduced capacity to maintain Ca(2+) homeostasis. The effect of calcium in reducing infection of grapefruit wounds by Penicillium digitatum could be due to direct effects on host tissue (making cell walls more resistant to enzymatic degradation) or the pathogen (interfering with spore germination, growth, and inhibition of fungal pectinolytic enzymes). Alternatively, the ability of US-7 to maintain calcium homeostasis may allow it to grow or assist in its competitive ability in a microenvironment that, because of high levels of calcium ions, is inhibitory to growth of the green mold pathogen.

  15. Chemical response of Picea glehnii seed-epiphytic Penicillium species to Pythium vexans under in vitro competitive conditions for mycelial growth.

    PubMed

    Yamaji, Keiko; Hashidoko, Yasuyuki; Fukushi, Yukiharu; Tahara, Satoshi

    2005-04-01

    The potential protection of Picea glehnii seedlings from damping-off by seed-epiphytic Penicillium species was investigated. We studied the chemical response of seed-epiphytic Penicillium species (Pen. cyaneum, Pen. damascenum, and Pen. implicatum) to Pythium vexans, a damping-off fungus, in vitro. Penicillium species were cultured singly or cocultured with Pyt. vexans for 14 or 18 d, and mycelial growth, pH of culture filtrate, antifungal activity of the culture filtrate against Pyt. vexans, and the amount of antifungal compound produced by each Penicillium species, were examined. The filtrate of both the single culture of Penicillium and the coculture of Penicillium and Pyt. vexans showed antifungal activity against Pyt. vexans. In a coculture with Pyt. vexans, Pen. cyaneum produced an antifungal compound (patulin) as in the single culture. Pen. damascenum cocultured with Pyt. vexans produced an antifungal compound (citrinin), as it did in the single culture and in larger amounts on day 10. Pen. implicatum produced two antifungal compounds, frequentin and palitantin, and the ratio of frequentin (with higher antifungal activity than palitantin) to palitantin was higher in the coculture with Pyt. vexans than in the single culture. Our results indicate that these Penicillium species have the ability to produce antifungal compounds and to keep anti-fungal activity under competitive condition with Pyt. vexans. The chemical response of these Penicillium species to Pyt. vexans may contribute to protect P. glehnii seedlings from damage by Pyt. vexans. PMID:16124252

  16. Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways.

    PubMed

    Hidalgo, Pedro I; Ullán, Ricardo V; Albillos, Silvia M; Montero, Olimpio; Fernández-Bodega, María Ángeles; García-Estrada, Carlos; Fernández-Aguado, Marta; Martín, Juan-Francisco

    2014-01-01

    The PR-toxin is a potent mycotoxin produced by Penicillium roqueforti in moulded grains and grass silages and may contaminate blue-veined cheese. The PR-toxin derives from the 15 carbon atoms sesquiterpene aristolochene formed by the aristolochene synthase (encoded by ari1). We have cloned and sequenced a four gene cluster that includes the ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four silenced mutants overproduce large amounts of mycophenolic acid, an antitumor compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and mycophenolic acid production. An eleven gene cluster that includes the above mentioned four prx genes and a 14-TMS drug/H(+) antiporter was found in the genome of Penicillium chrysogenum. This eleven gene cluster has been reported to be very poorly expressed in a transcriptomic study of P. chrysogenum genes under conditions of penicillin production (strongly aerated cultures). We found that this apparently silent gene cluster is able to produce PR-toxin in P. chrysogenum under static culture conditions on hydrated rice medium. Noteworthily, the production of PR-toxin was 2.6-fold higher in P. chrysogenum npe10, a strain deleted in the 56.8kb amplifiable region containing the pen gene cluster, than in the parental strain Wisconsin 54-1255 providing another example of cross-talk between secondary metabolite pathways in this fungus. A detailed PR-toxin biosynthesis pathway is proposed based on all available evidence.

  17. Examination of the taxonomic position of Penicillium strains used in blue cheese production based on the partial sequence of β-tubulin.

    PubMed

    Ogawa, Yoshio; Hirose, Dai; Akiyama, Ayano; Ichinoe, Masakatsu

    2014-01-01

    Penicillium roqueforti is a well known starter used for blue cheese production. Two closely related species, P. carneum and P. paneum, were previously classified as varieties of P. roqueforti. Penicillium roqueforti does not produce patulin, a mycotoxin harmful for human health, whereas both P. carneum and P. paneum actively produce this toxin. From the viewpoint of food safety, it is thus important to confirm that P. carneum and P. paneum are not used for cheese production. In the present study, the taxonomic position of Penicillium strains used for blue cheese production was examined on the basis of the partial sequence of β-tubulin. Twenty-eight Penicillium strains isolated from blue cheeses were investigated. All the examined strains belonged to P. roqueforti. Therefore, the Penicillium strains used for production of the blue cheese samples examined here do not negatively impact on human health.

  18. Genotypic identification of Penicillium expansum and the role of processing on patulin presence in juice.

    PubMed

    Elhariry, Hesham; Bahobial, Abdul Aziz; Gherbawy, Youssuf

    2011-04-01

    This work aimed at isolation and identification of patulin producing fungi and to follow the presence of patulin during apple juice processing. Among 34 Penicillium isolates, eight isolates (five from healthy appeared apples and 12 from rot spotted apples) were considered as patulin producers using thin-layer chromatography. These isolates were classically identified as a Penicillium expansum. PCR utilizing primers based on the polygalacturonase gene of P. expansum was applied for detecting this mold. The PCR amplified a 404-bp DNA product from all tested P. expansum isolates, but not in other common food spoilage Penicillium species. RAPD technique using P1 or M13 primers was applied to determine the similarity of the P. expansum isolates. RAPD results revealed that the tested strains showed high percentage of similarity and no correlation was observed between cluster analysis and the sources of isolation. Patulin could not be detected in healthy appeared apples and their extracted juice during different stages of juice process. In apple juice made from the healthy parts of apples decayed by P. expansum contained patulin which may present health hazard. The obtained results assured that patulin is known to be stable in apple juice even after pasteurization. In conclusion, the removal of the rotten part from the fruit is not sufficient to eliminate the mycotoxin patulin from apple juice. Although, the enzyme treatment (pectinase and amylase) and pasteurization (95 °C for 7 min) significantly (p < 0.05) reduced patulin level, its level is still higher than the level of <50 μg/kg considered by Codex alimentarius when the apple juice processed from the healthy parts of rot spotted fruits.

  19. Citrinolactones A, B and C, and Sclerotinin C, plant growth regulators from Penicillium citrinum.

    PubMed

    Kuramata, Masato; Fujioka, Shozo; Shimada, Atsumi; Kawano, Tsuyoshi; Kimura, Yasuo

    2007-02-01

    New plant growth regulators, named citrinolactones A (1), B (2) and C (3) and sclerotinin C (4), were isolated from Penicillium citrinum and their structures established by spectroscopic methods including 2D NMR. Compounds 1 and 4 increased root growth in proportion to their concentration from 3 to 300 mg/l. In contrast, 2 completely inhibited root growth at a concentration of 300 mg/l and 3 did not show any effect on root growth in a concentration range of 3-300 mg/l.

  20. Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains.

    PubMed

    Dahlmann, Tim A; Böhm, Julia; Becker, Kordula; Kück, Ulrich

    2015-11-01

    The recent discovery and functional characterization of opposite mating-type loci in the industrial penicillin producer Penicillium chrysogenum demonstrated their regulatory role in sexual as well as asexual development. Subsequent experiments further showed that a sexual life cycle can be induced in P. chrysogenum that was for long believed to reproduce exclusively by asexual propagation. Finally, crossing of wild type and production strains resulted in the generation of recombinant ascospore isolates. We predict from these recent findings that recombinant progeny for industrial applications can be obtained by sexual crossings and discuss experimental difficulties that occur when parental strains with karyotype heterogeneity are used for mating.

  1. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    SciTech Connect

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R.

    2011-07-15

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  2. Atpenins, new antifungal antibiotics produced by Penicillium sp. Production, isolation, physico-chemical and biological properties.

    PubMed

    Omura, S; Tomoda, H; Kimura, K; Zhen, D Z; Kumagai, H; Igarashi, K; Imamura, N; Takahashi, Y; Tanaka, Y; Iwai, Y

    1988-12-01

    Penicillium sp. FO-125, a soil isolate, was found to produce a new antifungal antibiotic complex named atpenin. Three components A4, A5 and B were isolated from the fermentation broth of the producing strain by solvent extraction, silica gel column chromatography and HPLC. The molecular formula of atpenins A4, A5 and B were determined to be C15H22NO5Cl, C15H21NO5Cl2 and C15H23NO5, respectively, on the basis of high resolution electron impact mass spectrometry and elemental analysis. They are active against filamentous fungi, especially, Trichophyton sp. PMID:3209470

  3. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    NASA Astrophysics Data System (ADS)

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R.

    2011-07-01

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  4. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  5. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'.

    PubMed

    Taniwaki, Marta Hiromi; Pitt, John I; Iamanaka, Beatriz T; Massi, Fernanda P; Fungaro, Maria Helena P; Frisvad, Jens C

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype. PMID:26717519

  6. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin’

    PubMed Central

    Taniwaki, Marta Hiromi; Pitt, John I.; Iamanaka, Beatriz T.; Massi, Fernanda P.; Fungaro, Maria Helena P.; Frisvad, Jens C.

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype. PMID:26717519

  7. Environmental and Nutritional Factors Affecting the Production of Rubratoxin B by Penicillium rubrum Stoll 1

    PubMed Central

    Hayes, A. Wallace; Wyatt, Elwanda P.; King, Patricia A.

    1970-01-01

    Rubratoxin B can be produced in a semisynthetic medium by Penicillium rubrum under varying environmental and nutritional conditions. Maximum production (552.0 mg/500 ml) was obtained with P. rubrum NRRL A-11785 grown in stationary cultures of Mosseray's simplified Raulin solution supplemented with 2.5% malt extract broth at ambient temperature. Zinc is required at levels of at least 0.4 mg per liter. In the absence of iron sulfate, there was a 50-fold reduction in rubratoxin B production but not in growth. No toxin was produced by this isolate in 5- or 7-liter fermentors. PMID:5485727

  8. [OPTIMIZATION OF CULTIVATION CONDITIONS OF PENICILLIUM TARDUM--THE α-L- RHAMNOSIDASE PRODUCER].

    PubMed

    Gudsenko, O V; Varbanets, L D

    2015-01-01

    The influence of some technological cultivation parameters of Penicillium tardum to synthesize of the extracellular α.-L-rhamnosidase were studied. It was shown that rhamnose (0.8%), yeasts autolysate (0.2%), temperature of the cultivation 25 degrees C, pH 5.0 are necessary for maximal α-L-rhamnosidase production. The enzyme reaches the maximal activity level in 96 hours with sulphitic number equal 0.44. At cultivation of P. tardum in the picked up conditions the α-L-rhamnosidase synthesis has raised in 4 times. PMID:26422921

  9. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'.

    PubMed

    Taniwaki, Marta Hiromi; Pitt, John I; Iamanaka, Beatriz T; Massi, Fernanda P; Fungaro, Maria Helena P; Frisvad, Jens C

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype.

  10. Ravynic acid, an antibiotic polyeneyne tetramic acid from Penicillium sp. elucidated through synthesis.

    PubMed

    Myrtle, J D; Beekman, A M; Barrow, R A

    2016-09-21

    A new antibiotic natural product, ravynic acid, has been isolated from a Penicillium sp. of fungus, collected from Ravensbourne National Park. The 3-acylpolyenyne tetramic acid structure was definitively elucidated via synthesis. Highlights of the synthetic method include the heat induced formation of the 3-acylphosphorane tetramic acid and a selective Wittig cross-coupling to efficiently prepare the natural compounds carbon skeleton. The natural compound was shown to inhibit the growth of Staphylococcus aureus down to concentrations of 2.5 µg mL(-1). PMID:27519121

  11. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  12. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  13. Phenylpyropenes E and F: new meroterpenes from the marine-derived fungus Penicillium concentricum ZLQ-69.

    PubMed

    Ding, Zhuang; Zhang, Lianqing; Fu, Juan; Che, Qian; Li, Dehai; Gu, Qianqun; Zhu, Tianjiao

    2015-12-01

    Two new meroterpenes, phenylpyropenes E (1) and F (2), together with seven known phenylpyropenes (3-5) and pyripyropenes (6-9) were isolated from the marine-derived fungus Penicillium concentricum ZLQ-69. Their structures including the absolute configurations were elucidated using a combination of spectroscopic methods and electronic circular dichroism calculation. Bioactivity evaluation showed that compounds 1 and 4 were cytotoxic to the MGC-803 cell line with IC50 values of 19.1 and 13.6 μM, respectively. PMID:26058567

  14. A new isobenzofuranone from the mangrove endophytic fungus Penicillium sp. (ZH58).

    PubMed

    Yang, Jianxiang; Huang, Riming; Qiu, Sheng Xiang; She, Zhigang; Lin, Yongcheng

    2013-10-01

    A new isobenzofuranone, 4-(methoxymethyl)-7-methoxy-6-methyl-1(3H)-isobenzofuranone (1), together with seven known compounds, dilation (2), lumichrome (3), curvulari (4), 5,5'-oxy-dimethylene-bis(2-furaldehyde) (5), chromone (6), harman(1-methyl-β-carboline) (7), N9-methyl-1methyl-β-carboline (8), was isolated from the mangrove endophytic fungus, Penicillium sp. ZH58 obtained from the South China Sea coast. Their structures were determined by analysis of spectroscopic data. Compound 1 exhibited cytotoxicity against KB and KBV200 cells with IC50 values of 6 and 10 μg/mL, respectively.

  15. A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16).

    PubMed

    Huang, Zhongjing; Yang, Jianxiang; Cai, Xiaoling; She, Zhigang; Lin, Yongcheng

    2012-01-01

    A new furanocoumarin, 5-methyl-8-(3-methylbut-2-enyl) furanocoumarin (1), together with seven known compounds, sterequinone C (2), cyclo(6,7-en-Pro-L-Phe) (3), bergapten, scopoletin, umbelliferone, 1,7-dihydroxyxanthone and 3,5-dimethoxybiphenyl, was isolated from the mangrove endophytic fungus, Penicillium sp. ZH16 obtained from the South China Sea. Their structures were determined by analysis of spectroscopic data. Compound 1 exhibited cytotoxicity against KB and KB(V)200 cells in vitro with IC(50) values 5 and 10 µg mL(-1), respectively.

  16. Penimethavone A, a flavone from a gorgonian-derived fungus Penicillium chrysogenum.

    PubMed

    Hou, Xue-Mei; Wang, Chang-Yun; Gu, Yu-Cheng; Shao, Chang-Lun

    2016-10-01

    A novel flavone, penimethavone A (1), possessing a rare unique methyl group at ring-B, was isolated from the fungus Penicillium chrysogenum cultured from a gorgonian Carijoa sp. collected from the South China Sea. The structure was elucidated by extensive spectroscopic analysis and by comparison with related known compound. Compound 1 showed selective and moderate cytotoxicity against cervical cancer (HeLa) and rhabdomyosarcoma cell lines with IC50 values of 8.41 and 8.18 μM, respectively.

  17. Pretrichodermamides D–F from a Marine Algicolous Fungus Penicillium sp. KMM 4672

    PubMed Central

    Yurchenko, Anton N.; Smetanina, Olga F.; Ivanets, Elena V.; Kalinovsky, Anatoly I.; Khudyakova, Yuliya V.; Kirichuk, Natalya N.; Popov, Roman S.; Bokemeyer, Carsten; von Amsberg, Gunhild; Chingizova, Ekaterina A.; Afiyatullov, Shamil Sh.; Dyshlovoy, Sergey A.

    2016-01-01

    Three new epidithiodiketopiperazines pretrichodermamides D–F (1–3), together with the known N-methylpretrichodermamide B (4) and pretrichodermamide С (5), were isolated from the lipophilic extract of the marine algae-derived fungus Penicillium sp. KMM 4672. The structures of compounds 1–5 were determined based on spectroscopic methods. The absolute configuration of pretrichodermamide D (1) was established by a combination of modified Mosher′s method, NOESY data, and biogenetic considerations. N-Methylpretrichodermamide B (5) showed strong cytotoxicity against 22Rv1 human prostate cancer cells resistant to androgen receptor targeted therapies. PMID:27355960

  18. Purification, sequencing and evaluation of a divergent phytase from Penicillium oxalicum KCTC6440.

    PubMed

    Kim, Bong-Hyun; Lee, Ji Yeon; Lee, Peter C W

    2015-01-01

    A fungal strain producing high levels of phytase was purified to homogeneity from Penicillium oxalicum KCTC6440 (PhyA). The molecular mass of the purified PhyA was 65 kDa and optimal activity occurred at 55°C. The enzyme was stable in a pH range of 4.5-6.5, with an optimum performance at pH 5.5. The Km value for the substrate sodium phytate was 0.48 mM with a Vmax of 672 U/mg. The enzyme was inhibited by Ca(2+), Cu(2+), and Zn(2+), and slightly enhanced by EDTA. The PhyA efficiently released phosphate from feedstuffs such as soybean, rich bran and corn meal. The PhyA gene was cloned in two steps of degenerate PCR and inverse PCR and found to comprise 1501 bp and encode 461 amino acid residues. The enzyme was found to have only 13 amino acids differing to the known PhyA from other Penicillium sp., but has distinct enzyme characteristics. Computational analysis showed that PhyA possessed more positively charged residues in the active sites compared to other PhyA molecules, which may explain the broader pH spectrum. PMID:26377131

  19. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815

    PubMed Central

    Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions. PMID:26863302

  20. Optimization of cellulase production by Penicillium oxalicum using banana agrowaste as a substrate.

    PubMed

    Shah, Shilpa P; Kalia, Kiran S; Patel, Jagdish S

    2015-01-01

    The purpose of this study was to produce a higher amount of cellulase by using an alternative carbon source, such as banana agrowaste, and to optimize the fermentation parameters for a high yield. In the present study, cellulase-producing Penicillium was isolated from a decaying wood sample. Different nutritional and environmental factors were investigated to assess their effect on cellulase production. The highest crude enzyme production was observed at a pH 6.0 and a temperature of 28°C in a medium that was supplemented with banana agrowaste as the carbon source. Pretreatment with 2N NaOH, at 7% substrate (banana agrowaste) concentration yielded the highest cellulase activity. Further to this, the effect of other parameters such as inoculum age, inoculum size, static and agitated conditions were also studied. It is concluded that Penicillium oxalicum is a powerful cellulase-producer strain under our tested experimental conditions using banana agrowaste as the carbon source. PMID:26018499

  1. New penicillin-producing Penicillium species and an overview of section Chrysogena.

    PubMed

    Houbraken, J; Frisvad, J C; Seifert, K A; Overy, D P; Tuthill, D M; Valdez, J G; Samson, R A

    2012-12-01

    Species classified in Penicillium sect. Chrysogena are primary soil-borne and the most well-known members are P. chrysogenum and P. nalgiovense. Penicillium chrysogenum has received much attention because of its role in the production on penicillin and as a contaminant of indoor environments and various food and feedstuffs. Another biotechnologically important species is P. nalgiovense, which is used as a fungal starter culture for the production of fermented meat products. Previous taxonomic studies often had conflicting species circumscriptions. Here, we present a multigene analysis, combined with phenotypic characters and extrolite data, demonstrating that sect. Chrysogena consists of 18 species. Six of these are newly described here (P. allii-sativi, P. desertorum, P. goetzii, P. halotolerans, P. tardochrysogenum, P. vanluykii) and P. lanoscoeruleum was found to be an older name for P. aethiopicum. Each species produces a unique extrolite profile. The species share phenotypic characters, such as good growth on CYA supplemented with 5 % NaCl, ter- or quarterverticillate branched conidiophores and short, ampulliform phialides (< 9 μm). Conidial colours, production of ascomata and ascospores, shape and ornamentation of conidia and growth rates on other agar media are valuable for species identification. Eight species (P. allii-sativi, P. chrysogenum, P. dipodomyis, P. flavigenum, P. nalgiovense, P. rubens, P. tardochrysogenum and P. vanluykii) produce penicillin in culture. PMID:23606767

  2. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    PubMed

    Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  3. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    PubMed Central

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica; Nielsen, Jens; Nielsen, Kristian Fog; Workman, Mhairi; Frisvad, Jens Christian

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species. PMID:27739446

  4. Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation.

    PubMed

    Gong, Weili; Zhang, Huaiqiang; Liu, Shijia; Zhang, Lili; Gao, Peiji; Chen, Guanjun; Wang, Lushan

    2015-11-01

    Filamentous fungi such as Aspergillus spp., Trichoderma spp., and Penicillium spp. are frequently used to produce high concentrations of lignocellulosic enzymes. This study examined the discrepancies in the compositions and dynamic changes in the extracellular enzyme systems secreted by Aspergillus niger ATCC1015, Trichoderma reesei QM9414, and Penicillium oxalicum 114-2 cultured on corn stover and wheat bran. The results revealed different types and an abundance of monosaccharides and oligosaccharides were released during incubation, which induced the secretion of diverse glycoside hydrolases. Both the enzyme activities and isozyme numbers of the three fungal strains increased with time. A total of 279, 161, and 183 secretory proteins were detected in A. niger, T. reesei, and P. oxalicum secretomes, respectively. In the A. niger secretomes, more enzymes involved in the degradation of (galacto)mannan, xyloglucan, and the backbone of pectin distributed mostly in dicots were detected. In comparison, although P. oxalicum 114-2 hardly secreted any xyloglucanases, the diversities of enzymes involved in the degradation of xylan and β-(1,3;1,4)-D-glucan commonly found in monocots were higher. The cellulase system of P. oxalicum 114-2 was more balanced. The degradation preference provided a new perspective regarding the recomposition of lignocellulosic enzymes based on substrate types.

  5. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization.

    PubMed

    Dutta, Tanmay; Sahoo, Rupam; Sengupta, Rajib; Ray, Sougata Sinha; Bhattacharjee, Arindam; Ghosh, Sanjay

    2008-04-01

    The enzymatic hydrolysis of cellulose has potential economical and environment-friendly applications. Therefore, discovery of new extremophilic cellulases is essential to meet the requirements of industry. Penicillium citrinum (MTCC 6489) that was previously isolated from soil in our laboratory, produced alkali tolerant and thermostable cellulases. Endoglucanase and filter paper activity hydrolase (FPAse) production of P. citrinum were studied using wheat bran substrate in solid state and submerged culture. Zymogram analysis of endoglucanase revealed the presence of two isoforms differing in molecular weight. One of them was 90 kDa and other one was 38 kDa. Partially purified endoglucanase showed two different peaks at pH 5.5 and 8.0, respectively, in its pH optima curve. But FPase showed only one peak (at pH 6.5) in its pH optima curve. Cellulase of P. citrinum is thermostable in nature. The present work reports for the first time, the alkali stable cellulase from alkali tolerant fungus Penicillium citrinum. Thermostable endoglucanase from P. citrinum may have potential effectiveness as additives to laundry detergents.

  6. Purification and characterization of an extracellular protease from Penicillium chrysogenum Pg222 active against meat proteins.

    PubMed

    Benito, María J; Rodríguez, Mar; Núñez, Félix; Asensio, Miguel A; Bermúdez, María E; Córdoba, Juan J

    2002-07-01

    An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60 degrees C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45 degrees C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products. PMID:12089038

  7. Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects.

    PubMed

    Romero-Aguilar, Mariana; Tovar-Sánchez, Efrain; Sánchez-Salinas, Enrique; Mussali-Galante, Patricia; Sánchez-Meza, Juan Carlos; Castrejón-Godínez, María Luisa; Dantán-González, Edgar; Trujillo-Vera, Miguel Ángel; Ortiz-Hernández, Ma Laura

    2014-01-01

    Endosulfan is an organochloride and persistent pesticide that has caused concern because of its impact in the environment and its toxicity to and bioaccumulation in living organisms. In this study, we isolated an endosulfan-degrading fungus from the activated sludge from an industrial wastewater treatment plant. Through repetitive enrichment and successive subculture in media containing endosulfan as the sole carbon source, a fungus designated CHE 23 was isolated. Based on a phylogenetic analysis, strain CHE 23 was assigned to the genus Penicillium sp. In a mineral salt medium with 50 mg/l endosulfan as the sole source carbon, CHE 23 removed the added endosulfan in a period of six days. To verify the decrease in endosulfan toxicity due to the activity of the fungus, we performed genotoxicity tests trough the single cell gel electrophoresis assay or comet assay, with Eisenia fetida as the bioindicator species. This organism was exposed to the supernatants of the culture of the fungus and endosulfan. Our results indicated that the genotoxicity of endosulfan was completely reduced due the activity of this fungus. These results suggest that the Penicillium sp. CHE 23 strain can be used to degrade endosulfan residues and/or for water and soil bioremediation processes without causing toxicity problems, which are probably due to the generation of no-toxic metabolites during biodegradation.

  8. [Purification and characterization of a novel alpha-galactosidase from penicillium sp. F63 CGMCC1669].

    PubMed

    Mi, Shi-jun; Bai, Ying-guo; Meng, Kun; Wang, Ya-ru; Yao, Bin; Shi, Xiu-yun; Huang, Huo-qing; Zhang, Yu-hong; Shi, Peng-jun

    2007-02-01

    An a-galactosidase-producing fungus was screened out of 26 filamentous fungi isolated from soil by us. Phylogenetic analysis based on the alignment of 18S rDNA sequences, combined with the morphological identification, indicated that the strain F63 was a member of the genus Penicillium. The a-galactosidase from Penicillium sp. F63 was purified to apparent homogeneity by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography. The molecular size of the purified enzyme is approximately 82kDa estimated by SDS-PAGE. The a-galactosidase has an optimum pH of 5.0 and an optimum temperature of 45 degrees C. The enzyme is stable between pH5.0 and 6.0 below 40 degrees C. The a-galactosidase activity is slightly inhibited by Ag+ , which is dissimilar to other a-galactosidases. Kinetic studies of the a-galactosidase showed that the Km and the Vmax for pNPG are 1.4mmol/L and 1.556mmol/L. min(-1) x mg- 1, respectively. The enzyme is able to degrade natural substrates such as melibiose, raffinose and stachyose but not galactose-containing polysaccharides. The alpha-galactosidase was identified by MALDI-TOF-MS and its inner peptides were sequenced by ESI-MS/MS. The results show that the a-galactosidase is a novel one.

  9. Penicillium commune metabolic profile as a promising source of antipathogenic natural products.

    PubMed

    Diblasi, Lorena; Arrighi, Federico; Silva, Julio; Bardón, Alicia; Cartagena, Elena

    2015-01-01

    Penicillium is an important genus of ascomycetous fungi in the environment and in food and drug production. This paper aims to investigate statins and antipathogenic natural products from a Penicillium commune environmental isolate. Fractions (F1, F2, F3 and F4) were obtained from an ethyl acetate extract. Direct insertion probe/electron ionisation/ion trap detection mass spectrometry (MS and MS/MS) identified lovastatin (1) in F1, while GC-MS showed that 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (2) was the main constituent of F2 (49.34%). F4 presented 3 (16.38%) as an analogue of 2 and their known structures were similar to that of an autoinducer-signal. F1 produced a significant decrease in the Pseudomonas aeruginosa biofilms, which is the main cause of bacterial pathogenicity. F2 and F4 were effective against Staphylococcus aureus biofilms, but when F2 was associated with oxacillin, it showed an important activity against both bacteria. These novel results suggest that P. commune INTA1 is a new source of promising antipathogenic products.

  10. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum.

    PubMed

    Ogunmolu, Funso Emmanuel; Kaur, Inderjeet; Gupta, Mayank; Bashir, Zeenat; Pasari, Nandita; Yazdani, Syed Shams

    2015-10-01

    The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass. PMID:26288988

  11. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum.

    PubMed

    Ogunmolu, Funso Emmanuel; Kaur, Inderjeet; Gupta, Mayank; Bashir, Zeenat; Pasari, Nandita; Yazdani, Syed Shams

    2015-10-01

    The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass.

  12. Cloning and heterologous expression of a thermostable pectate lyase from Penicillium occitanis in Escherichia coli.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Koubaa, Aida; Trigui, Sameh; Ayadi, Malika; Trigui-Lahiani, Hèla; Kallel, Emna; Turki, Nadia; Djemal, Lamia; Belghith, Hafeth; Taieb, Noomen Hadj; Gargouri, Ali

    2013-11-01

    The entire pectate lyase cDNA (Pel1) of Penicillium occitanis was cloned from a cDNA bank and sequenced. The ORF exhibited a great homology to Penicillium marneffei and conservation of all features of fungal pectate lyases such as the barrel structure with "eight right-handed parallel β-helix" architecture. The structure modeling also showed the interesting resemblance with thermostable pectate lyases since several specific residues were also shared by Pel1 and these thermostable enzymes. Having shown that the enzyme retains its activity after endoH-mediated deglycosylation, we investigated its expression in Escherichia coli BL21 using the pET28-a vector. This expression was shown to be optimum when cells were induced at room temperature in 2YT medium rather than at 37 °C and LB medium. In such conditions, the recombinant protein was apparently produced more in soluble form than as inclusion bodies. The effect of NaCl concentration was investigated during the binding and elution steps of recombinant His-tagged enzyme on MagneHis Ni-particles. The purified enzyme was shown to retain its thermo-activity as well as a great tolerance to high concentration of NaCl and imidazole.

  13. Penicillium salamii strain ITEM 15302: A new promising fungal starter for salami production.

    PubMed

    Magistà, D; Ferrara, M; Del Nobile, M A; Gammariello, D; Conte, A; Perrone, G

    2016-08-16

    Traditional sausages are often considered of superior quality to sausages inoculated with commercial starter cultures and this is partially due to the action of the typical house microflora. Penicillium nalgiovense is the species commonly used as starter culture for dry-cured meat production. Recently a new species, Penicillium salamii, was described as typical colonizer during salami seasoning. In order to understand its contribution to the seasoning process, two different experiments on curing of fresh pork sausages were conducted using P. salamii ITEM 15302 in comparison with P. nalgiovense ITEM 15292 at small and industrial scale, and the dry-cured sausages were subjected to sensory analyses. Additionally, proteolytic and lipolytic in vitro assays were performed on both strains. P. salamii ITEM 15302 proved to be a fast growing mould on dry-cured sausage casings, well adapted to the seasoning process, with high lipolytic and proteolytic enzymatic activity that confers typical sensory characteristics to meat products. Therefore, P. salamii ITEM 15302 was shown to be a good candidate as new starter for meat industry. PMID:27183229

  14. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023.

    PubMed

    Bao, Jie; Sun, Yu-Lin; Zhang, Xiao-Yong; Han, Zhuang; Gao, Hai-Chun; He, Fei; Qian, Pei-Yuan; Qi, Shu-Hua

    2013-04-01

    Two new polyketides, 6,8,5'6'-tetrahydroxy-3'-methylflavone (1) and paecilin C (2), together with six known analogs secalonic acid D (3), secalonic acid B (4) penicillixanthone A (5), emodin (6), citreorosein (7) and isorhodoptilometrin (8) were obtained from a broth of gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. Compounds 1 and 6-8 had significant antifouling activity against Balanus amphitrite larvae settlement with EC50 values of 6.7, 6.1, 17.9 and 13.7 μg ml(-1), respectively, and 3-5 showed medium antibacterial activity against four tested bacterial strains. This was the first report of antibacterial activity of 3-5 against marine bacteria and antifouling activity of 6-8 against marine biofouling organism's larvae. The results indicated that gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023 strain could produce antifouling and antibacterial compounds that might aid the host gorgonian coral in protection against marine pathogen bacteria, biofouling organisms and other intruders.

  15. Comparative stability and catalytic and chemical properties of the sulfate-activating enzymes from Penicillium chrysogenum (mesophile) and Penicillium duponti (thermophile).

    PubMed

    Renosto, F; Schultz, T; Re, E; Mazer, J; Chandler, C J; Barron, A; Segel, I H

    1985-11-01

    ATP sulfurylases from Penicillium chrysogenum (a mesophile) and from Penicillium duponti (a thermophile) had a native molecular weight of about 440,000 and a subunit molecular weight of about 69,000. (The P. duponti subunit appeared to be a little smaller than the P. chrysogenum subunit.) The P. duponti enzyme was about 100 times more heat stable than the P. chrysogenum enzyme; k inact (the first-order rate constant for inactivation) at 65 degrees C = 3.3 X 10(-4) s-1 for P. duponti and 3.0 X 10(-2) s-1 for P. chrysogenum. The P. duponti enzyme was also more stable to low pH and urea at 30 degrees C. Rabbit serum antibodies to each enzyme showed heterologous cross-reaction. Amino acid analyses disclosed no major compositional differences between the two enzymes. The analogous Km and Ki values of the forward and reverse reactions were also essentially identical at 30 degrees C. At 30 degrees C, the physiologically important adenosine 5'-phosphosulfate (APS) synthesis activity of the P. duponti enzyme was 4 U mg of protein-1, which is about half that of the P. chrysogenum enzyme. The molybdolysis and ATP synthesis activities of the P. duponti enzyme at 30 degrees C were similar to those of the P. chrysogenum enzyme. At 50 degrees C, the APS synthesis activity of the P. duponti enzyme was 12 to 19 U mg of protein-1, which was higher than that of the P. chrysogenum enzyme at 30 degrees C (8 +/- 1 U mg of protein-1). Treatment of the P. chrysogenum enzyme with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) at 30 degrees C under nondenaturing conditions modified one free sulfhydryl group per subunit. Vmax was not significantly altered, but the catalytic activity at low magnesium-ATP or SO4(2-) (or MoO4(2-)) was markedly reduced. Chemical modification with tetranitromethane had the same results on the kinetics. The native P. duponti enzyme was relatively unreactive toward DTNB or tetranitromethane at 30 degrees C and pH 8.0 or pH 9.0, but at 50 degrees C and pH 8.0, DTNB rapidly

  16. GenBank submission of draft whole genome sequence of the apple decay pathogen Penicillium solitum (RS1 isolate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penicillium species cause postharvest blue mold decay of apples and pears in the United States and in many countries worldwide. This genus is responsible for severe economic losses and produces an array of mycotoxins that contaminate processed apple products. Among the species that cause blue mold,...

  17. Molecular characterization and a multiplex allele-specific PCR method for detection of thiabendazole resistance in Penicillium expansum from apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thiabendazole (TBZ) is commonly used as a postharvest treatment for control of blue mold in apples caused by Penicillium expansum. Different point mutations in the ß-tubulin gene conferring benzimidazole resistance have been reported in plant pathogens, but molecular mechanisms of TBZ resistance in ...

  18. Polymerase Chain Reaction (PCR)-based methods for detection and identification of mycotoxigenic Penicillium species using conserved genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...

  19. Draft genome sequence of Talaromyces islandicus ("Penicillium islandicum") WF-38-12, a neglected mold with significant biotechnological potential.

    PubMed

    Schafhauser, Thomas; Wibberg, Daniel; Rückert, Christian; Winkler, Anika; Flor, Liane; van Pée, Karl-Heinz; Fewer, David P; Sivonen, Kaarina; Jahn, Linda; Ludwig-Müller, Jutta; Caradec, Thibault; Jacques, Philippe; Huijbers, Mieke M E; van Berkel, Willem J H; Weber, Tilmann; Wohlleben, Wolfgang; Kalinowski, Jörn

    2015-10-10

    Talaromyces (Penicillium) islandicus is a common mold found in stored rice or cereals. It has a highly versatile metabolism characterized by the secretion of numerous biopolymer degrading enzymes, mycotoxins, and anthraquinones that altogether offer a broad range of potential industrial applications. Here, we report the draft genome sequence of Talaromyces islandicus, which provides the basis of a biotechnological usage of this species. PMID:26197417

  20. First report of Penicillium expansum isolates with reduced sensitivity to fludioxonil from a commercial packinghouse in Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blue mold is caused by Penicillium expansum and is among the most economically significant disease of stored apples worldwide. The fungus gains ingress through cracks, natural openings, and wounds in the fruit and produces mycotoxins that contaminate processed apple products. All commercial apples a...

  1. Preliminary evaluation of apple germplasm from Kazakhstan for resistance to blue mold decay caused by Penicillium expansum after harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blue mold of apples, incited by Penicillium expansum, causes extensive loss on stored apples worldwide. Despite the severity of this problem, apple breeders do not evaluate their crosses for resistance to this disease, because there has been little resistance to blue mold in the gene pool of the ge...

  2. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  3. Exopisiod B and farylhydrazone C, two new alkaloids from the Antarctic-derived fungus Penicillium sp. HDN14-431.

    PubMed

    Zhang, Ting; Zhu, Mei-Lin; Sun, Guang-Yu; Li, Na; Gu, Qian-Qun; Li, De-Hai; Che, Qian; Zhu, Tian-Jiao

    2016-10-01

    Two new compounds, exopisiod B (1) and farylhydrazone C (2), together with two known compounds (3-4), were isolated from the Antarctic-derived fungus Penicillium sp. HDN14-431. Their structures including absolute configurations were elucidated by spectroscopic methods and TDDFT ECD calculations. The cytotoxicity and antimicrobial activities of all compounds were tested.

  4. Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming’s lucky fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighty years ago, Alexander Fleming described the antibiotic effects of a fungus that had contaminated his bacterial culture, kick starting the antimicrobial revolution. The fungus was later ascribed to a globally distributed asexual species, Penicillium chrysogenum. Recently, the species has been...

  5. The development of genetic and molecular markers to register and commercialize Penicillium rubens (formerly Penicillium oxalicum) strain 212 as a biocontrol agent.

    PubMed

    Villarino, Maria; De Cal, Antonieta; Melgarejo, Paloma; Larena, Inmaculada; Espeso, Eduardo A

    2016-01-01

    Penicillium oxalicum strain 212 (PO212) is an effective biocontrol agent (BCA) against a large number of economically important fungal plant pathogens. For successful registration as a BCA in Europe, PO212 must be accurately identified. In this report, we describe the use of classical genetic and molecular markers to characterize and identify PO212 in order to understand its ecological role in the environment or host. We successfully generated pyrimidine (pyr-) auxotrophic mutants. In addition we also designed specific oligonucleotides for the pyrF gene at their untranslated regions for rapid and reliable identification and classification of strains of P. oxalicum and P. rubens, formerly P. chrysogenum. Using these DNA-based technologies, we found that PO212 is a strain of P. rubens, and is not a strain of P. oxalicum. This work presents PO212 as the unique P. rubens strain to be described as a BCA and the information contained here serves for its registration and commercialization in Europe.

  6. Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum

    PubMed Central

    Kotzybik, Kathrin; Gräf, Volker; Kugler, Lena; Stoll, Dominic A.; Greiner, Ralf; Geisen, Rolf; Schmidt-Heydt, Markus

    2016-01-01

    Nanoparticles are ubiquitous in the environment. They originate from anthropogenic or natural sources or they are intentionally produced for different purposes. There exist manifold applications of nanoparticles in modern life leading unavoidably to a confrontation and interaction between nanomaterial and living organisms. Based on their wide distribution tending to increase steadily, the influence of particles based on silica and silver, exhibiting nominal sizes between 0.65 nm and 200 nm, on the physiology of the mycotoxigenic filamentous fungus Penicillium verrucosum was analyzed. The applied concentration and time-point, the size and the chemical composition of the particles was shown to have a strong influence on growth and mycotoxin biosynthesis. On microscopic scale it could be shown that silver nanoparticles attach to the mycelial surface. Moreover, silver nanoparticles with 0.65 nm and 5 nm in size were shown to internalize within the cell, form agglomerates in the cytoplasm and associate to cell organelles. PMID:26974550

  7. Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum.

    PubMed

    Kotzybik, Kathrin; Gräf, Volker; Kugler, Lena; Stoll, Dominic A; Greiner, Ralf; Geisen, Rolf; Schmidt-Heydt, Markus

    2016-01-01

    Nanoparticles are ubiquitous in the environment. They originate from anthropogenic or natural sources or they are intentionally produced for different purposes. There exist manifold applications of nanoparticles in modern life leading unavoidably to a confrontation and interaction between nanomaterial and living organisms. Based on their wide distribution tending to increase steadily, the influence of particles based on silica and silver, exhibiting nominal sizes between 0.65 nm and 200 nm, on the physiology of the mycotoxigenic filamentous fungus Penicillium verrucosum was analyzed. The applied concentration and time-point, the size and the chemical composition of the particles was shown to have a strong influence on growth and mycotoxin biosynthesis. On microscopic scale it could be shown that silver nanoparticles attach to the mycelial surface. Moreover, silver nanoparticles with 0.65 nm and 5 nm in size were shown to internalize within the cell, form agglomerates in the cytoplasm and associate to cell organelles. PMID:26974550

  8. Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba.

    PubMed

    Yuan, Yuan; Tian, Jun-Mian; Xiao, Jian; Shao, Qi; Gao, Jin-Ming

    2014-01-01

    Six known metabolites, adenosine (1), methyl β-D-ribofuranoside (2), adenine (3), 2'-deoxyadenosine (4), 3-methylpiperazine-2,5-dione (5) and 2'-deoxyuridine (6), were isolated from the extracts of the endophytic fungus Penicillium sp. YY-20 isolated from the root of Ginkgo biloba, and their structures were elucidated by spectroscopic methods. The antioxidant and growth-promoting activities of these compounds were first evaluated. The results indicated that compounds 1, 3 and 4 exhibited potential DPPH-scavenging activities compared with positive control. In addition, all the compounds (except 5) stimulated seed germination of Raphanus sativus, Brassica napus and Brassica chinensis but had weak stimulating effect on their root and hypocotyl growth. PMID:24144081

  9. Gentisyl alcohol derivatives from the marine-derived fungus Penicillium terrestre.

    PubMed

    Chen, Li; Fang, Yuchun; Zhu, Tianjiao; Gu, Qianqun; Zhu, Weiming

    2008-01-01

    Nine new gentisyl alcohol derivatives, namely, the trimeric terrestrol A (8), dimeric terrestrols B-H (1-7), and a monomeric derivative (12), together with four known analogues (9-11, 13) were isolated from the marine-derived fungus Penicillium terrestre. The structures of the new compounds were elucidated by spectroscopic methods including one- and two-dimensional NMR as well as low- and high-resolution mass spectrometric analysis. These new compounds (1-8, 12) showed cytotoxic effects on HL-60, MOLT-4, BEL-7402, and A-549 cell lines with IC50 values in the range 5-65 microM. Compound 6 also showed moderate inhibitory activity against protein tyrosine kinases (Src and KDR). Furthermore, all new compounds exhibited moderate radical scavenging activity against DPPH with IC50 values in the range 2.6-8.5 microM. PMID:18163588

  10. Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in Penicillium brasilianum.

    PubMed

    Matsuda, Yudai; Iwabuchi, Taiki; Fujimoto, Takayuki; Awakawa, Takayoshi; Nakashima, Yu; Mori, Takahiro; Zhang, Huiping; Hayashi, Fumiaki; Abe, Ikuro

    2016-09-28

    Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves as the key intermediate for the biosynthesis of 1 as well as many other meroterpenoids. Interestingly, the nonheme iron and α-ketoglutarate-dependent dioxygenase PrhA constructs the cycloheptadiene moiety to afford 2 from preaustinoid A1 (6), probably via the homoallyl-homoallyl radical rearrangement. Additionally, another fungal strain, P. brasilianum MG11, which produces acetoxydehydroaustin instead of 1, was found to have a gene cluster nearly identical to the prh cluster. The dioxygenase encoded by the cluster shares 92% sequence identity with PrhA, and also accepts 6 but produces preaustinoid A3 (17) with a spiro-lactone system, generating a diverging point for the two different meroterpenoid pathways in the same species.

  11. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.

    PubMed Central

    Cunningham, J E; Kuiack, C

    1992-01-01

    An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied. Using agar media with calcium phosphate and the pH indicator alizarin red S, the influence of the medium composition on phosphate solubility and medium acidification was recorded. The major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid. Citric acid production was promoted under nitrogen-limited conditions, while oxalic acid production was promoted under carbon-limited conditions. Citric acid was produced in both growth and stationary phases, but oxalic acid production occurred only in stationary phase. When submerged cultures which normally produce acid were induced to sporulate, the culture medium shifted toward alkaline rather than acid reaction with growth. PMID:1622211

  12. A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum.

    PubMed

    Durruty, Ignacio; Fasce, Diana; González, Jorge Froilán; Wolski, Erika Alejandra

    2015-06-01

    The potential of Penicillium chrysogenum to decolorize azo dyes and a real industrial textile wastewater was studied. P. chrysogenum was able to decolorize and degrade three azo dyes (200 mg L(-1)), either independently or in a mixture of them, using glucose as a carbon source. A kinetic model for degradation was developed and it allowed predicting the degradation kinetics of the mixture of the three azo dyes. In addition, P. chrysogenum was able to decolorize real industrial wastewater. The kinetic model proposed was also able to predict the decolorization of the real wastewater. The calibration of the proposed model makes it a useful tool for future wastewater facilities' design and for practical applications.

  13. Eremophilane Sesquiterpenes and Diphenyl Thioethers from the Soil Fungus Penicillium copticola PSU-RSPG138.

    PubMed

    Daengrot, Charuwan; Rukachaisirikul, Vatcharin; Tansakul, Chittreeya; Thongpanchang, Tienthong; Phongpaichit, Souwalak; Bowornwiriyapan, Kawitsara; Sakayaroj, Jariya

    2015-04-24

    Four new compounds including two eremophilane sesquiterpenes, penicilleremophilanes A (1) and B (2), as well as two sulfur-containing biphenols, penicillithiophenols A (3) and B (4), were isolated from the soil fungus Penicillium copticola PSU-RSPG138 together with 16 known compounds. Their structures were elucidated by spectroscopic methods. Known sporogen AO-1 exhibited significant antimalarial activity against Plasmodium falciparum with an IC50 value of 1.53 μM and cytotoxic activity to noncancerous (Vero) cell lines with an IC50 value of 4.23 μM. Although compound 1 was approximately half as active against P. falciparum with the IC50 value of 3.45 μM, it showed much weaker cytotoxic activity. PMID:25734623

  14. Secondary metabolites from Penicillium pinophilum SD-272, a marine sediment-derived fungus.

    PubMed

    Wang, Ming-Hui; Li, Xiao-Ming; Li, Chun-Shun; Ji, Nai-Yun; Wang, Bin-Gui

    2013-06-01

    Two new secondary metabolites, namely, pinodiketopiperazine A (1) and 6,7-dihydroxy-3-methoxy-3-methylphthalide (2), along with alternariol 2,4-dimethyl ether (3) and L-5-oxoproline methyl ester (4), which were isolated from a natural source for the first time but have been previously synthesized, were characterized from the marine sediment-derived fungus Penicillium pinophilum SD-272. In addition, six known metabolites (5-10) were also identified. Their structures were elucidated by analysis of the NMR and mass spectroscopic data. The absolute configuration of compound 1 was determined by experimental and calculated ECD spectra. Compound 2 displayed potent brine shrimp (Artemia salina) lethality with LD₅₀ 11.2 μM. PMID:23792827

  15. Quantitative clarification of inactivation mechanism of Penicillium digitatum spores treated with neutral oxygen radicals

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2015-01-01

    We have quantitatively investigated the oxidative inactivation process of Penicillium digitatum spores including intracellular nanostructural changes through neutral oxygen species with a flux-defined atmospheric-pressure oxygen radical source, using fluorescent confocal-laser microscopy and transmission electron microscopy (TEM). The results suggest that neutral oxygen species, particularly ground-state atomic oxygen [O(3Pj)], which is an effective species for inactivating P. digitatum spores, inhibit the function of the cell membrane of spores without causing major superficial morphological changes at a low O(3Pj) dose of ˜2.1 × 1019 cm-2 under an O(3Pj) flux of 2.3 × 1017 cm-2 s-1, following the oxidation of intracellular organelles up to an O(3Pj) dose of ˜1.0 × 1020 cm-2. Finally, intracellular nanostructures are degraded by excess oxygen radicals over an O(3Pj) dose of ˜1.0 × 1020 cm-2.

  16. Penicillium roqueforti: a multifunctional cell factory of high value-added molecules.

    PubMed

    Mioso, R; Toledo Marante, F J; Herrera Bravo de Laguna, I

    2015-04-01

    This is a comprehensive review, with 114 references, of the chemical diversity found in the fungus Penicillium roqueforti. Secondary metabolites of an alkaloidal nature are described, for example, ergot alkaloids such as festuclavine, isofumigaclavines A and B, and diketopiperazine alkaloids such as roquefortines A-D, which are derived from imidazole. Other metabolites are marcfortines A-C, PR-toxin, eremofortines A-E, mycophenolic and penicillic acids, and some γ-lactones. Also, recent developments related to the structural characteristics of botryodiplodin and andrastin are studied-the latter has anticancer properties. Finally, we discuss the enzymes of P. roqueforti, which can participate in the biotechnological production of high value-added molecules, as well as the use of secondary metabolite profiles for taxonomic purposes.

  17. Study of the Interactions Between Penicillium Oxalicum Currie & Thom And Alternaria Alternata (Fr.) Keissler

    PubMed Central

    Sempere, F.; Santamarina, M.P

    2010-01-01

    The aim of this research was the analysis of the possible antagonistic effect of Penicillium oxalicum over the pathogen rice fungus A. alternata under different conditions of temperature, water activity and culture media. The macroscopic study of the dual growth revealed that according to the Index of Dominance P. oxalicum was more competitive that A. alternata at 25°C whereas at 15°C was this species. Microscopic analysis showed that P. oxalicum was a mycoparasite of A. alternata at all conditions tested. The antagonist penetrated into A. alternata and disintegrated its conidiophores and conidia. The results suggests that P. oxalicum may be a possible biological control agent of the rice pathogens in a future. PMID:24031546

  18. Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba.

    PubMed

    Yuan, Yuan; Tian, Jun-Mian; Xiao, Jian; Shao, Qi; Gao, Jin-Ming

    2014-01-01

    Six known metabolites, adenosine (1), methyl β-D-ribofuranoside (2), adenine (3), 2'-deoxyadenosine (4), 3-methylpiperazine-2,5-dione (5) and 2'-deoxyuridine (6), were isolated from the extracts of the endophytic fungus Penicillium sp. YY-20 isolated from the root of Ginkgo biloba, and their structures were elucidated by spectroscopic methods. The antioxidant and growth-promoting activities of these compounds were first evaluated. The results indicated that compounds 1, 3 and 4 exhibited potential DPPH-scavenging activities compared with positive control. In addition, all the compounds (except 5) stimulated seed germination of Raphanus sativus, Brassica napus and Brassica chinensis but had weak stimulating effect on their root and hypocotyl growth.

  19. Alkaloids with Cardiovascular Effects from the Marine-Derived Fungus Penicillium expansum Y32.

    PubMed

    Fan, Ya-Qin; Li, Pei-Hai; Chao, Ya-Xi; Chen, Hao; Du, Ning; He, Qiu-Xia; Liu, Ke-Chun

    2015-10-22

    Three new alkaloids (1, 4 and 8), together with nine known analogues (2, 3, 5-7, and 9-12), were isolated from the marine-derived fungus Penicillium expansum Y32. Their structures including the absolute configurations were elucidated by spectroscopic and Mosher's and Marfey's methods, along with quantum electronic circular dichroism (ECD) calculations. Each of the compounds was evaluated for cardiovascular effects in a live zebrafish model. All of the compounds showed a significant mitigative effect on bradycardia caused by astemizole (ASM) in the heart rate experiments. Compounds 4-6 and 8-12 exhibited potent vasculogenetic activity in vasculogenesis experiments. This is the first study to report that these types of compounds show cardiovascular effects in zebrafish. The results suggest that these compounds could be promising candidates for cardiovascular disease lead compounds.

  20. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum.

    PubMed

    Hu, Yibo; Xue, Haizhao; Liu, Guodong; Song, Xin; Qu, Yinbo

    2015-06-01

    Native lignocellulolytic enzyme systems secreted by filamentous fungi can be further optimized by protein engineering or supplementation of exogenous enzyme components. We developed a protein production and evaluation system in cellulase-producing fungus Penicillium oxalicum. First, by deleting the major amylase gene amy15A, a strain Δ15A producing few extracellular proteins on starch was constructed. Then, three lignocellulolytic enzymes (BGL4, Xyn10B, and Cel12A) with originally low expression levels were successfully expressed with selected constitutive promoters in strain Δ15A. BGL4 and Cel12A overexpression resulted in increased specific filter paper activity (FPA), while the overexpression of Xyn10B improved volumetric FPA but not specific FPA. By switching the culture medium, this platform is convenient to produce originally low-expressed lignocellulolytic enzymes in relatively high purities on starch and to evaluate the effect of their supplementation on the performance of a complex cellulase system on cellulose.

  1. Role of intracellular free calcium in killing Penicillium marneffei within human macrophages.

    PubMed

    Chen, Renqiong; Ji, Guangquan; Ma, Tuan; Huang, Xiaowen; Ren, Hong; Xi, Liyan

    2015-01-01

    Increases in cytosolic Ca(2+) concentration ([Ca(2+)]c) promote phagocyte antimicrobial responses. Here, we investigated macrophages stimulated by Penicillium marneffei (P. marneffei). [Ca(2+)]c was determined in macrophages loaded with the fluorescent calcium probe Fura 2/AM as they were stimulated by P. marneffei. We found that P. marneffei induced an increase in [Ca(2+)]c in human macrophages. Further, increased [Ca(2+)]c with the ionophore A23187 promoted phagosomal acidification and maturation and reduced intracellular replication of P. marneffei in P. marneffei-infected human macrophages, whereas decreased [Ca(2+)]c with the chelation MAPTAM decreased TNF-α production, inhibited phagosomal acidification and maturation and increased intracellular replication of P. marneffei. These data indicate that Ca(2+) signaling may play an important role in controlling the replication of P. marneffei within macrophages.

  2. A new aurone glycoside with antifungal activity from marine-derived fungus Penicillium sp. FJ-1.

    PubMed

    Song, Yan-xia; Ma, Qiang; Li, Jie

    2015-03-01

    Endophytic fungi which reside in the tissue of mangrove plants seem to play an important role in the discovery of new biologically active substances. During the course of screening for the antimicrobial metabolites from the endophytic fugus Penicillium sp. FJ-1 of mangrove plant Avicennia marina, a new aurone glycoside (1) was isolated by repeated column chromatography on silica gel and recrystallization methods. The structure of 1 was elucidated as (Z)-7,4'-dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside, on the basis of spectroscopic analysis. Compound 1 exhibited antifungal activity against Candida sp., with the potency comparable to amphotericin B and much better than fluconazole. Compound 1 can also inhibit extracellular phospholipase secretion in a concentration-dependent manner.

  3. Expression and characterization of Pen b 26 allergen of Penicillium brevicompactum in Escherichia coli.

    PubMed

    Sevinc, M Serdal; Kumar, Veena; Abebe, Makonnen; Mohottalage, Susantha; Kumarathasan, Premkumari; Vincent, Renaud; Vijay, Hari M

    2009-05-01

    Pen b 26 is one of the allergens produced by Penicillium brevicompactum which is one of the most prevalent in door airborne fungi and a major source of respiratory problems, including asthma. Pen b 26 wa scloned and expressed as an N-terminal as well as a C-terminal His6 tagged fusion protein in Escherichia coli. This allergen was purified by immobilized Ni2+-affinity chromatography. The purified Pen b 26 was characterized by immunological, biochemical and biophysical methods. C-His6 tagged Pen b 26 produced several fold greater yield than N-His6 tagged Pen b 26. The affinity of C-His6 tagged Pen b 26 for the specific antibody was also 2.75 times higher than N-His6 tagged Pen b 26

  4. Antimicrobial effects of ionizing radiation on artificially and naturally contaminated cacao beans. [Aspergillus flavus; Penicillium citrinum

    SciTech Connect

    Restaino, L.; Myron, J.J.J.; Lenovich, L.M.; Bills, S.; Tscherneff, K.

    1984-04-01

    With an initial microbial level of ca. 10/sup 7/ microorganisms per g of Ivory Coast cacao beans, 5 kGy of gamma radiation from a Co/sup 60/ source under an atmosphere of air reduced the microflora per g by 2.49 and 3.03 logs at temperatures of 35 and 50/sup 0/C, respectively. Bahia cacao beans were artificially contaminated with dried spores of Aspergillus flavus and Penicillium citrinum, giving initial fungal levels of 1.9 x 10/sup 4/ and 1.4 x 10/sup 3/ spores per g of whole Bahia cacao beans, respectively. The average D/sub 10/ values for A. flavus and P. citrinum spores on Bahia cacao beans were 0.66 and 0.88 kGy, respectively. 12 references.

  5. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    PubMed

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  6. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin

    PubMed Central

    Nicoletti, Rosario; Trincone, Antonio

    2016-01-01

    In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs. PMID:26901206

  7. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    PubMed

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.

  8. Renal histopathological responses to nephrotoxic Penicillium aurantiogriseum in the rat during pregnancy, lactation and after weaning.

    PubMed

    Mantle, P G

    1994-01-01

    The typical renal histopathological changes in proximal tubules of rats consuming food containing shredded wheat moulded by Penicillium aurantiogriseum did not occur in neonates of rats ingesting the nephrotoxic diet during pregnancy nor in pups fed only by lactation from a treated dam. In contrast, weanlings consuming the moulded diet consistently showed within a few days densely staining mitosis-like structures in the proximal tubules which was the first step leading to development of the prominent tubular cytomegaly and karyomegaly seen when 16 weeks old. Karyomegaly and cytomegaly became evident also when mouldy shredded wheat constituted only 1% of a diet consumed on 45 days during the first 8 weeks after weaning, demonstrating the potency of the active component. Relevance to the putative involvement of nephrotoxic mycotoxins in human renal disease is discussed, as is the apparent absence of a renal histopathological response in adult rats during pregnancy and lactation.

  9. An extension of the Coconut Cream Agar method to screen Penicillium citrinum isolates for citrinin production.

    PubMed

    Mohamed, S; Flint, S; Palmer, J; Fletcher, G C; Pitt, J I

    2013-09-01

    A simple and rapid screening method was developed for the detection of citrinin in fungal cultures using Coconut Cream Agar (CCA) described previously for detecting aflatoxin and ochratoxin A. Fifteen isolates of Penicillium citrinum were inoculated onto CCA and incubated at 25 and 30°C for 10 days. All isolates produced a distinct yellow green fluorescence on CCA when the reverse side of the agar plates were viewed under long wavelength UV light. Detection was optimal at 25°C after four to 5 days of incubation. Isolates positive by the CCA method also tested positive for citrinin production by the TLC agar plug method after growth on CCA, Czapek yeast extract agar and yeast extract sucrose agar. Control cultures were negative by both methods, indicating that the CCA Petri dish method was suitable for screening cultures for citrinin production.

  10. Expression and characterization of Pen b 26 allergen of Penicillium brevicompactum in Escherichia coli.

    PubMed

    Sevinc, M Serdal; Kumar, Veena; Abebe, Makonnen; Mohottalage, Susantha; Kumarathasan, Premkumari; Vincent, Renaud; Vijay, Hari M

    2009-05-01

    Pen b 26 is one of the allergens produced by Penicillium brevicompactum which is one of the most prevalent in door airborne fungi and a major source of respiratory problems, including asthma. Pen b 26 wa scloned and expressed as an N-terminal as well as a C-terminal His6 tagged fusion protein in Escherichia coli. This allergen was purified by immobilized Ni2+-affinity chromatography. The purified Pen b 26 was characterized by immunological, biochemical and biophysical methods. C-His6 tagged Pen b 26 produced several fold greater yield than N-His6 tagged Pen b 26. The affinity of C-His6 tagged Pen b 26 for the specific antibody was also 2.75 times higher than N-His6 tagged Pen b 26 PMID:19248220

  11. [Exometabolites of the Fungal Isolates (Genus Penicillium, Section Chrysogena) from Low-Temperature Ecotopes].

    PubMed

    Kozlovskii, A G; Antipova, T V; Zhelifonova, V P; Baskunov, B P; Kochkina, G A; Ozerskaya, S M

    2016-01-01

    Exometabolites of 22 strains of the genus Penicillium, section Chrysogena isolated from low-temperature ecotopes of various geographical regions were analyzed. The ecotopes included permafrost deposits, frozen volcanic ash, a fossil horse, cryopeg, and water from an Antarctic lake. The studied strains were found to contain exometabolites belonging to the groups of penicillins (penicillin G), chrysogins (chrysogin, 3-acetylquinazolone-4, 2-pyruvoyl aminobenzamide, 2-hydroxypropionyl amunobenzamide, and questiomycin A), roquefortines (3,12-dihydroroquefortine, roquefortine, glandicolines A and B, and meleagrine), xanthocillins (xanthocillin X), and simple tryptophan derivatives (N-acetyltriptamine and indoleacetic acid). In five P. chrysogenum strains and three P. nalgiovense strains a correlation was found between exometabolite spectra and morphological characteristics of the cultures isolated from modern ecotopes. For other strains species identification was based on morphological features, due to the absence of biosynthesis of penicillin G, on of the major chemotaxonomic markers for these species. PMID:27476202

  12. The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck.

    PubMed

    Elias, Barbara Casellato; Said, Suraia; de Albuquerque, Sérgio; Pupo, Mônica Tallarico

    2006-01-01

    A Brazilian strain of Penicillium verrucosum was cultivated under different conditions in a two-step process, in order to verify the influence of nutrients, and of time periods of pre-fermentative and fermentative steps on the biosynthesis of metabolites. Extracellular and intracellular extracts were obtained from each culture in the four different production media used. Chemical profiles of the extracts were obtained by HPLC. Extract trypanocidal activities against trypomastigote forms of Trypanosoma cruzi were evaluated. The time period of incubation in the pre-fermentative and fermentative media, as well as the different nutrients tested, qualitatively and quantitatively modified the production of secondary metabolites by P. verrucosum, and the extract trypanocidal activities.

  13. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

    PubMed

    Qu, Yang; Lian, Bin

    2013-05-01

    The aim of this work is to investigate biological leaching of rare earth elements (REEs) and radioactive elements from red mud, and to evaluate the radioactivity of the bioleached red mud used for construction materials. A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, is isolated from red mud. In our bioleaching experiments by using RM-10, a total concentration of 2% (w/v) red mud under one-step bioleaching process was generally found to give the maximum leaching ratios of the REEs and radioactive elements. However, the highest extraction yields are achieved under two-step bioleaching process at 10% (w/v) pulp density. At pulp densities of 2% and 5% (w/v), red mud processed under both one- and two-step bioleaching can meet the radioactivity regulations in China.

  14. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.

    PubMed

    Geng, Jun; Yuan, Jingqi

    2010-08-01

    A macrokinetic model employing cybernetic methodology is proposed to describe mycelium growth and penicillin production. Based on the primordial and complete metabolic network of Penicillium chrysogenum found in the literature, the modeling procedure is guided by metabolic flux analysis and cybernetic modeling framework. The abstracted cybernetic model describes the transients of the consumption rates of the substrates, the assimilation rates of intermediates, the biomass growth rate, as well as the penicillin formation rate. Combined with the bioreactor model, these reaction rates are linked with the most important state variables, i.e., mycelium, substrate and product concentrations. Simplex method is used to estimate the sensitive parameters of the model. Finally, validation of the model is carried out with 20 batches of industrial-scale penicillin cultivation.

  15. Identification of intermediates in the biosynthesis of PR toxin by Penicillium roqueforti.

    PubMed

    Riclea, Ramona; Dickschat, Jeroen S

    2015-10-01

    The sesquiterpenoid 7-epi-neopetasone was synthesized via the Wieland-Miescher ketone. The compound was identical to a previously tentatively identified headspace constituent of Penicillium roqueforti. Feeding experiments with (13) C-labeled mevalonolactone isotopomers demonstrated that oxidation at C12 and an isomerization of the C11C12 to a C7C11 double bond must occur independently and not via a C7-C11-C12 allyl radical in one step. Feeding with (11,12,13-(13) C3 )-7-epi-neopetasone resulted in labelling of the PR toxin, thus establishing this compound as a newly identified pathway intermediate. PMID:26274339

  16. Travel-related disseminated Penicillium marneffei infection in a renal transplant patient.

    PubMed

    Hart, J; Dyer, J R; Clark, B M; McLellan, D G; Perera, S; Ferrari, P

    2012-08-01

    Penicillium marneffei is a thermally dimorphic fungus that causes severe human immunodeficiency virus-related opportunistic infection in endemic areas of Southeast Asia and has rarely been reported in solid organ transplant (SOT) recipients. We report here the case of an Australian renal transplant patient who presented with disseminated P. marneffei infection shortly after a 10-day holiday to Vietnam, and review all previously published cases of penicilliosis associated with renal transplantation. This is the first reported case, to our knowledge, of P. marneffei infection in an SOT recipient acquired during travel to an endemic country, and highlights the importance of an accurate travel history when opportunistic infection is suspected, as well as giving appropriate health advice to transplant patients who travel.

  17. Alkaloids with Cardiovascular Effects from the Marine-Derived Fungus Penicillium expansum Y32

    PubMed Central

    Fan, Ya-Qin; Li, Pei-Hai; Chao, Ya-Xi; Chen, Hao; Du, Ning; He, Qiu-Xia; Liu, Ke-Chun

    2015-01-01

    Three new alkaloids (1, 4 and 8), together with nine known analogues (2, 3, 5–7, and 9–12), were isolated from the marine-derived fungus Penicillium expansum Y32. Their structures including the absolute configurations were elucidated by spectroscopic and Mosher’s and Marfey’s methods, along with quantum electronic circular dichroism (ECD) calculations. Each of the compounds was evaluated for cardiovascular effects in a live zebrafish model. All of the compounds showed a significant mitigative effect on bradycardia caused by astemizole (ASM) in the heart rate experiments. Compounds 4–6 and 8–12 exhibited potent vasculogenetic activity in vasculogenesis experiments. This is the first study to report that these types of compounds show cardiovascular effects in zebrafish. The results suggest that these compounds could be promising candidates for cardiovascular disease lead compounds. PMID:26506361

  18. Alkaloids with Cardiovascular Effects from the Marine-Derived Fungus Penicillium expansum Y32.

    PubMed

    Fan, Ya-Qin; Li, Pei-Hai; Chao, Ya-Xi; Chen, Hao; Du, Ning; He, Qiu-Xia; Liu, Ke-Chun

    2015-10-01

    Three new alkaloids (1, 4 and 8), together with nine known analogues (2, 3, 5-7, and 9-12), were isolated from the marine-derived fungus Penicillium expansum Y32. Their structures including the absolute configurations were elucidated by spectroscopic and Mosher's and Marfey's methods, along with quantum electronic circular dichroism (ECD) calculations. Each of the compounds was evaluated for cardiovascular effects in a live zebrafish model. All of the compounds showed a significant mitigative effect on bradycardia caused by astemizole (ASM) in the heart rate experiments. Compounds 4-6 and 8-12 exhibited potent vasculogenetic activity in vasculogenesis experiments. This is the first study to report that these types of compounds show cardiovascular effects in zebrafish. The results suggest that these compounds could be promising candidates for cardiovascular disease lead compounds. PMID:26506361

  19. Involvement of Gluconic Acid and Glucose Oxidase in the Pathogenicity of Penicillium expansum in Apples.

    PubMed

    Hadas, Yoav; Goldberg, Israel; Pines, Ophry; Prusky, Dov

    2007-03-01

    ABSTRACT The contribution of gluconic acid secretion to the colonization of apple tissue by Penicillium expansum was analyzed by modulation (increase or decrease) of gluconic acid accumulation at the infection court. P. expansum isolates that express the most gox2 transcripts and concomitant glucose oxidase (GOX) activity and that secrete the most gluconic acid cause disease of apple at the fastest rate. Cultures grown under reduced oxygen concentration generated fewer gox2 transcripts, produced less gluconic acid, and led to a 15% reduction in disease. Furthermore, the detection of significantly high levels of transcripts of gox2 and GOX activity at the edge of the decaying tissue emphasize the involvement of GOX in tissue acidification of the decaying tissue. Taken together, these results emphasize the importance of GOX in the production of the gluconic acid that leads, in turn, to host tissue acidification. This acidification enhanced the expression of pectolytic enzymes and the establishment of conditions for necrotrophic development of P. expansum.

  20. Penicillium marneffei presenting as an immune reconstitution inflammatory syndrome (IRIS) in a patient with advanced HIV

    PubMed Central

    Hall, Charlotte; Hajjawi, Rachel; Barlow, Gavin; Thaker, Hiten; Adams, Kate; Moss, Peter

    2013-01-01

    A 62-year-old British man with advanced HIV was established on antiretroviral therapy and treatment for disseminated Mycobacterium avium complex and Cytomegalovirus infections. One month later he re-presented with epigastric pain, an epigastric mass and skin lesions. Abdominal imaging revealed large volume lymphadenopathy, which was not present on previous imaging. Blood cultures yielded Penicillium marneffei, a dimorphic fungus endemic to South-east Asia. The patient had spent several years travelling in Thailand prior to the diagnosis of HIV. Penicilliosis is a common AIDS-defining illness in endemic areas, but remains rare in Europe. In this case, it presented in the context of a rapidly decreasing viral load as an immune reconstitution inflammatory syndrome. The challenges of management in the context of multiple comorbidities and polypharmacy are discussed. PMID:23362074

  1. Covalent immobilization of alpha-galactosidase from Penicillium griseoroseum and its application in oligosaccharides hydrolysis.

    PubMed

    Falkoski, Daniel Luciano; Guimarães, Valéria Monteze; de Queiroz, Marisa Vieira; de Araújo, Elza Fernandes; de Almeida, Maíra Nicolau; de Barros, Everaldo Gonçalves; de Rezende, Sebastião Tavares

    2009-09-01

    Partially purified alpha-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized alpha-galactosidase showed optimal activity at 45 degrees C and pH values of 5 and 4, respectively. Immobilized alpha-galactosidase was more stable at higher temperatures and pH values. Immobilized alpha-galactosidase from P. griseoroseum maintained 100% activity after 24 h of incubation at 40 degrees C, while free enzyme showed only 32% activity under the same incubation conditions. Defatted soybean flour was treated with free and immobilized alpha-galactosidase in batch reactors. After 8 h of incubation, stachyose was completely hydrolyzed in both treatments. After 8 h of incubation, 39% and 70% of raffinose was hydrolyzed with free and immobilized alpha-galactosidase respectively. Immobilized alpha-galactosidase was reutilized eight times without any decrease in its activity.

  2. Isolation and characterization of extracellular alpha-galactosidases from Penicillium canescens.

    PubMed

    Sinitsyna, O A; Fedorova, E A; Vakar, I M; Kondratieva, E G; Rozhkova, A M; Sokolova, L M; Bubnova, T M; Okunev, O N; Chulkin, A M; Vinetsky, Y P; Sinitsyn, A P

    2008-01-01

    Two alpha-galactosidases were purified to homogeneity from the enzymatic complex of the mycelial fungus Penicillium canescens using chromatography on different sorbents. Substrate specificity, pH- and temperature optima of activity, stability under different pH and temperature conditions, and the influence of effectors on the catalytic properties of both enzymes were investigated. Genes aglA and aglC encoding alpha-galactosidases from P. canescens were isolated, and amino acid sequences of the proteins were predicted. In vitro feed testing (with soybean meal and soybean byproducts enriched with galactooligosaccharides as substrates) demonstrated that both alpha-galactosidases from P. canescens could be successfully used as feed additives. alpha-Galactosidase A belonging to the 27th glycosyl hydrolase family hydrolyzed galactopolysaccharides (galactomannans) and alpha-galactosidase C belonging to the 36th glycosyl hydrolase family hydrolyzed galactooligosaccharides (stachyose, raffinose, etc.) of soybean with good efficiency, thus improving the digestibility of fodder.

  3. Mixed Pulmonary Infection with Penicillium notatum and Pneumocystis jiroveci in a Patient with Acute Myeloid Leukemia

    PubMed Central

    Tehrani, Shabnam; Hemmatian, Marjan

    2016-01-01

    Penicillium notatum is a fungus that widely exists in the environment and is often non-pathogenic to humans. However, in immunocompromised hosts it may be recognized as a cause of systemic mycosis. A 44-year-old man with acute myeloid leukemia (AML) was admitted to our hospital with fever and neutropenia. Due to no improvement after initial treatment, he underwent bronchoscopy. The patient was found to have P. notatum and Pneumocystis jiroveci infection, and therefore was given voriconazole, primaquine and clindamycin. The patient was successfully treated and suffered no complications. Conclusion: This case highlights P. notatum as a cause of infection in immunocompromised patients. To the best of our knowledge, mixed lung infection with P. notatum and P. jiroveci in a patient with AML has not been previously reported. PMID:27403180

  4. Travel-related disseminated Penicillium marneffei infection in a renal transplant patient.

    PubMed

    Hart, J; Dyer, J R; Clark, B M; McLellan, D G; Perera, S; Ferrari, P

    2012-08-01

    Penicillium marneffei is a thermally dimorphic fungus that causes severe human immunodeficiency virus-related opportunistic infection in endemic areas of Southeast Asia and has rarely been reported in solid organ transplant (SOT) recipients. We report here the case of an Australian renal transplant patient who presented with disseminated P. marneffei infection shortly after a 10-day holiday to Vietnam, and review all previously published cases of penicilliosis associated with renal transplantation. This is the first reported case, to our knowledge, of P. marneffei infection in an SOT recipient acquired during travel to an endemic country, and highlights the importance of an accurate travel history when opportunistic infection is suspected, as well as giving appropriate health advice to transplant patients who travel. PMID:22188555

  5. Investigation of the gibberellic acid optimization with a statistical tool from Penicillium variable in batch reactor.

    PubMed

    Isa, Nur Kamilah Md; Mat Don, Mashitah

    2014-01-01

    The culture conditions for gibberellic acid (GA3) production by the fungus Penicillium variable (P. variable) was optimized using a statistical tool, response surface methodology (RSM). Interactions of culture conditions and optimization of the system were studied using Box-Behnken design (BBD) with three levels of three variables in a batch flask reactor. Experimentation showed that the model developed based on RSM and BBD had predicted GA3 production with R(2) = 0.987. The predicted GA3 production was optimum (31.57 mg GA3/kg substrate) when the culture conditions were at 7 days of incubation period, 21% v/w of inoculum size, and 2% v/w of olive oil concentration as a natural precursor. The results indicated that RSM and BBD methods were effective for optimizing the culture conditions of GA3 production by P. variable mycelia. PMID:24499362

  6. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes.

    PubMed

    Oliveira, Luciana A; Porto, Ana L F; Tambourgi, Elias B

    2006-04-01

    Five agricultural wastes were evaluated in submerged fermentation for xylanolytic enzymes production by Penicillium janthinellum. The wastes were hydrolyzed in acid medium and the liquid fraction was used for cultivation. Corn cob (55.3 U/mL) and oat husk (54.8 U/mL) were the best inducers of xylanase. Sugar cane bagasse (23.0 U/mL) and corn husk (23.8 U/mL) were moderately good, while cassava peel was negligible. Protease production was very low in all agro-industrial residues. The maximum biomass yields were 1.30 and 1.17 g/L for cassava peel and corn husk after 180 h, respectively. Xylanolytic activity showed a cell growth associated profile.

  7. Effect of culture conditions on tremorgen production by some Penicillium species.

    PubMed Central

    di Menna, M E; Lauren, D R; Wyatt, P A

    1986-01-01

    Four strains each of seven tremorgenic Penicillium species were grown under various conditions and tested for tremorgen production by intraperitoneal injection of mice and by chemical analysis. Half of the strains had previously been found to be tremorgenic on bioassay after growth on Czapek Dox yeast extract broth or potato-milk-sucrose broth for 3 weeks at 26 degrees C. In the tests reported here nearly all previously nontremorgenic strains were either tremorgenic to mice or produced tremorgens detectable by chemical analysis but did so after longer incubation periods than used in the original screening. Bioassay was not suitable for the estimation of absolute levels but was preferable to chemical analysis when the identity of the tremorgens was not known. Species and strains within species gave different responses to changes in culture medium, incubation temperature, light irradiation, and shaking. Overall, tremorgen production was maximal at 20 or 26 degrees C, increased with time, and was reduced in shaken culture. PMID:3707124

  8. Effect of culture conditions on tremorgen production by some Penicillium species.

    PubMed

    di Menna, M E; Lauren, D R; Wyatt, P A

    1986-04-01

    Four strains each of seven tremorgenic Penicillium species were grown under various conditions and tested for tremorgen production by intraperitoneal injection of mice and by chemical analysis. Half of the strains had previously been found to be tremorgenic on bioassay after growth on Czapek Dox yeast extract broth or potato-milk-sucrose broth for 3 weeks at 26 degrees C. In the tests reported here nearly all previously nontremorgenic strains were either tremorgenic to mice or produced tremorgens detectable by chemical analysis but did so after longer incubation periods than used in the original screening. Bioassay was not suitable for the estimation of absolute levels but was preferable to chemical analysis when the identity of the tremorgens was not known. Species and strains within species gave different responses to changes in culture medium, incubation temperature, light irradiation, and shaking. Overall, tremorgen production was maximal at 20 or 26 degrees C, increased with time, and was reduced in shaken culture. PMID:3707124

  9. Conidiation in Penicillium cyclopium Is Induced by Conidiogenone, an Endogenous Diterpene

    PubMed Central

    Roncal, Tomás; Cordobés, Shandra; Sterner, Olov; Ugalde, Unai

    2002-01-01

    The filamentous fungus Penicillium cyclopium conidiates in the presence of calcium ions in submerged culture without nutrient limitation according to a precisely timed program. Conidiation could be prematurely induced in a nutritionally sufficient medium which had previously supported growth, suggesting that a metabolite which influenced the process was produced. A diterpenoid with conidiation-inducing activity, conidiogenone, was purified from the culture medium, along with conidiogenol, a putative derivative with delayed activity. Contrary to previous thought, the presence of calcium was demonstrated to only decrease the threshold concentration of conidiogenone required for the induction to proceed. In light of these results, a mechanism of conidiation induction is presented according to which the mycelium produces a conidiation inducer (conidiogenone) that accumulates extracellularly. When a threshold concentration is reached, induction likely takes place by interaction with a specific cellular receptor. The results indicate that conidiogenone is both sufficient and necessary to induce conidiation. PMID:12455699

  10. Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources.

    PubMed

    Schneider, Willian Daniel Hahn; dos Reis, Laísa; Camassola, Marli; Dillon, Aldo José Pinheiro

    2014-01-01

    The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β -glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol.

  11. Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to Different Carbon Sources

    PubMed Central

    Schneider, Willian Daniel Hahn; dos Reis, Laísa; Dillon, Aldo José Pinheiro

    2014-01-01

    The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β-glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol. PMID:24877074

  12. Identification of the Viridicatumtoxin and Griseofulvin Gene Clusters from Penicillium aethiopicum

    PubMed Central

    Chooi, Yit-Heng; Cacho, Ralph; Tang, Yi

    2010-01-01

    SUMMARY Penicillium aethiopicum produces two structurally interesting and biologically active polyketides: the tetracycline-like viridicatumtoxin 1 and the classic antifungal agent griseofulvin 2. Here, we report the concurrent discovery of the two corresponding biosynthetic gene clusters (vrt and gsf) by 454 shotgun sequencing. Gene deletions confirmed two nonreducing PKSs (NRPKS), vrtA and gsfA, are required for the biosynthesis of 1 and 2, respectively. Both PKSs share similar domain architectures and lack a C-terminal thioesterase domain. We identified gsfI as the chlorinase involved in the biosynthesis of 2, as deletion of gsfI resulted in the accumulation of decholorogriseofulvin 3. Comparative analysis with the P. chrysogenum genome revealed that both clusters are embedded within conserved syntenic regions of P. aethiopicum chromosomes. Discovery of the vrt and gsf clusters provided the basis for genetic and biochemical studies of the pathways. PMID:20534346

  13. Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus.

    PubMed

    Qi, Jun; Shao, Chang-Lun; Li, Zhi-Yong; Gan, Li-She; Fu, Xiu-Mei; Bian, Wen-Tao; Zhao, Hong-Ying; Wang, Chang-Yun

    2013-04-26

    Ten new fungal metabolites, including three hydroisocoumarins, penicimarins A-C (1-3), three isocoumarins, penicimarins D-F (6-8), and four benzofurans, penicifurans A-D (11-14), together with four known isocoumarin derivatives (4, 5, 9, 10), were obtained from the sponge-derived fungus Penicillium sp. MWZ14-4, collected from the South China Sea. Their planar structures and relative configurations were elucidated by detailed analysis of spectroscopic data and by comparison with related known compounds. The absolute configurations of 1-4 were assigned by the modified Mosher's method and TDDFT ECD calculations together with comparison of their CD spectra. Compound 1 represents a rare naturally occurring isocoumarin derivative with 4-substitution, but no substituent at the 3-position. These compounds were evaluated for antibacterial activities and cytotoxic activities in vitro. Among them, penicifuran A (11) exhibited inhibitory activity against Staphylococcus albus with an MIC value of 3.13 μM.

  14. Six New Polyketide Decalin Compounds from Mangrove Endophytic Fungus Penicillium aurantiogriseum 328.

    PubMed

    Ma, Yanhong; Li, Jing; Huang, Meixiang; Liu, Lan; Wang, Jun; Lin, Yongcheng

    2015-10-01

    Six new compounds with polyketide decalin ring, peaurantiogriseols A-F (1-6), along with two known compounds, aspermytin A (7), 1-propanone,3-hydroxy-1- (1,2,4a,5,6,7,8,8a-octahydro-2,5-dihydroxy-1,2,6-trimethyl-1-naphthalenyl) (8), were isolated from the fermentation products of mangrove endophytic fungus Penicillium aurantiogriseum 328#. Their structures were elucidated based on their structure analysis. The absolute configurations of compounds 1 and 2 were determined by ¹H NMR analysis of their Mosher esters; the absolute configurations of 3-6 were determined by using theoretical calculations of electronic circular dichroism (ECD). Compounds 1-8 showed low inhibitory activity against human aldose reductase, no activity of inducing neurite outgrowth, nor antimicrobial activity.

  15. New compound with DNA Topo I inhibitory activity purified from Penicillium oxalicum HSY05.

    PubMed

    Liu, Bing; Wang, Hai-Feng; Zhang, Li-Hua; Liu, Fang; He, Feng-Jun; Bai, Jiao; Hua, Hui-Ming; Chen, Gang; Pei, Yue-Hu

    2015-01-01

    Strain HSY05 was isolated from sea sediment collected from the South China Sea and was later identified as Penicillium oxalicum by 16S rDNA sequence analysis. Various chromatographic processes led to the isolation and purification of two metabolites from the fermentation culture of HSY05, including one new compound, 2,2',4,4'-tetrahyoxy-8'-methyl-6-methoxy-acyl-ethyl-diphenylmethanone (1), and a known compound secalonic acid D (SAD, 2), as characterised by UV, IR, 1D, 2D-NMR and MS data. The inhibitory activities against topoisomerase I of these two compounds were evaluated. The result showed that in addition to the known topo I inhibitor SAD (2), compound 1 also exhibited a moderate inhibitory effect.

  16. Organophosphonate Utilization by the Wild-Type Strain of Penicillium notatum

    PubMed Central

    Bujacz, B.; Wieczorek, P.; Krzysko-Lupicka, T.; Golab, Z.; Lejczak, B.; Kavfarski, P.

    1995-01-01

    We studied the biodegradation of compounds containing phosphorus-to-carbon bonds by using a wild-type strain of Penicillium notatum. The substrate specificity of this strain was studied, and we found that it is able to utilize structurally diverse organophosphonates as sole sources of phosphorus. This ability seems to be inducible, as indicated by the presence of a lag phase during growth. A popular herbicide, glyphosate, inhibited fungal growth, but it was also degraded by the fungus if it was applied in sublethal doses. This indicates that P. notatum may play an important role in biodegradation of organophosphonates. The strain which we used did not metabolize any of the phosphonates which we tested when they were used as sole carbon or nitrogen sources. PMID:16535094

  17. Spore production of Penicillium roqueforti by solid state fermentation: Stoichiometry, growth and sporulation behavior.

    PubMed

    Desfarges, C; Larroche, C; Gros, J B

    1987-06-01

    The development of Penicillium roqueforti on buckwheat seeds proceeds roughly into four steps, involving a lag phase and three growth phases. First, it appears as a spore germination and external colonization of the grains by the mycelium. Then, mainly external sporulation and internal colonization of the seeds occur and finally internal sporulation takes place. The Stoichiometry of the growth and the sporulation is established. Kinetic experiments performed in a fixed bed reactor show that the growth of the microorganism (biomass production) may be estimated by the protein content of the medium. This growth occurs with a very low mu(max) value close to 0.030 h(-1). The chitin content of the medium is an indicator of the sporulation, just as the metabolic liquor (mainly water) produced during the course of a cultivation. The values of the observed respiratory quotient are close to those predicted by stoichiometry.

  18. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    PubMed

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  19. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments. PMID:22629643

  20. Susceptibility of food-contaminating Penicillium genus fungi to some preservatives and disinfectants.

    PubMed

    Levinskaite, Loreta

    2012-01-01

    Microscopic fungi are able to contaminate and deteriorate various food products and can subsequently cause health problems. Long usage of the same preservatives and disinfectants against spoilage fungi may lead to the development of fungal resistance to those chemicals. The objective of this study was to investigate the susceptibility of 3 Penicillium genus fungi, isolated from foodstuffs, to organic acid preservatives and some disinfectants, taking into consideration 2 aspects of their development: spore germination and mycelial growth. Susceptibility of Penicillium spinulosum, P. expansum and P. verruculosum to the preservatives, namely benzoic acid, sodium lactate, potassium sorbate, as well as disinfectants such as Topax DD, Suma Bac D10, Biowash and F210 Hygisept, was investigated. The biocides were used at concentrations of 0.1, 1.0 and 10%. Of the preservatives, benzoic acid and potassium sorbate showed the best inhibition, both on spore germination and mycelial growth. Benzoic acid at a concentration of a 0.1% reduced spore germination by 33-55%, and mycelial growth by 54-97%, whereas at 1% the inhibition was 74-85% and 97-100%, respectively. The effect of the disinfectants at a concentration of 0.1% on spore germination was 25-84% and on colonial growth 68-97%, while at 1.0% the reduction in spore germination reached 53-91% and the inhibition of growth 89-100%. In most cases, the same concentrations added to the media showed higher inhibitory effect on mycelial growth than on spore germination. It was noticed that the fungi responded rather unevenly towards the biocides, showing individual susceptibility. PMID:22462451

  1. Synergistic antifungal activity of sodium hypochlorite, hydrogen peroxide, and cupric sulfate against Penicillium digitatum.

    PubMed

    Cerioni, Luciana; Rapisarda, Viviana Andrea; Hilal, Mirna; Prado, Fernando Eduardo; Rodríguez-Montelongo, Luisa

    2009-08-01

    Oxidizing compounds such as sodium hypochlorite (NaCIO) and hydrogen peroxide (H2O2) are widely used in food sanitization because of their antimicrobial effects. We applied these compounds and metals to analyze their antifungal activity against Penicillium digitatum, the causal agent of citrus green mold. The MICs were 300 ppm for NaClO and 300 mM for H2O2 when these compounds were individually applied for 2 min to conidia suspensions. To minimize the concentration of these compounds, we developed and standardized a sequential treatment for conidia that resulted in loss of viability on growth plates and loss of infectivity on lemons. The in vitro treatment consists of preincubation with 10 ppm of NaClO followed by incubation with 100 mM H2O2 and 6 mM CuSO4 (cupric sulfate). The combination of NaClO and H2O2 in the presence of CuSO4 produces a synergistic effect (fractional inhibitory concentration index of 0.36). The sequential treatment applied in situ on lemon peel 24 h after the fruit was inoculated with conidia produced a significant delay in the fungal infection. The in vitro treatment was effective on both imazalil-sensitive and imazalil-resistant strains of P. digitatum and Geotrichum candidum, the causal agent of citrus sour rot. However, this treatment inhibited 90% of mycelial growth for Penicillium italicum (citrus blue mold). These results indicate that sequential treatment may be useful for postharvest control of citrus fruit diseases.

  2. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    SciTech Connect

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás; Miszti-Blasius, Kornél; Kollár, Sándor; Kovács, Ilona; Emri, Miklós; Márián, Teréz; Leiter, Éva; Pócsi, István; Csősz, Éva; Kalló, Gergő; Hegedűs, Csaba; Virág, László; Csernoch, László; Szentesi, Péter

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

  3. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus

    PubMed Central

    2012-01-01

    Background Penicillium digitatum is a fungal necrotroph causing a common citrus postharvest disease known as green mold. In order to gain insight into the genetic bases of its virulence mechanisms and its high degree of host-specificity, the genomes of two P. digitatum strains that differ in their antifungal resistance traits have been sequenced and compared with those of 28 other Pezizomycotina. Results The two sequenced genomes are highly similar, but important differences between them include the presence of a unique gene cluster in the resistant strain, and mutations previously shown to confer fungicide resistance. The two strains, which were isolated in Spain, and another isolated in China have identical mitochondrial genome sequences suggesting a recent worldwide expansion of the species. Comparison with the closely-related but non-phytopathogenic P. chrysogenum reveals a much smaller gene content in P. digitatum, consistent with a more specialized lifestyle. We show that large regions of the P. chrysogenum genome, including entire supercontigs, are absent from P. digitatum, and that this is the result of large gene family expansions rather than acquisition through horizontal gene transfer. Our analysis of the P. digitatum genome is indicative of heterothallic sexual reproduction and reveals the molecular basis for the inability of this species to assimilate nitrate or produce the metabolites patulin and penicillin. Finally, we identify the predicted secretome, which provides a first approximation to the protein repertoire used during invasive growth. Conclusions The complete genome of P. digitatum, the first of a phytopathogenic Penicillium species, is a valuable tool for understanding the virulence mechanisms and host-specificity of this economically important pest. PMID:23171342

  4. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  5. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  6. Susceptibility of food-contaminating Penicillium genus fungi to some preservatives and disinfectants.

    PubMed

    Levinskaite, Loreta

    2012-01-01

    Microscopic fungi are able to contaminate and deteriorate various food products and can subsequently cause health problems. Long usage of the same preservatives and disinfectants against spoilage fungi may lead to the development of fungal resistance to those chemicals. The objective of this study was to investigate the susceptibility of 3 Penicillium genus fungi, isolated from foodstuffs, to organic acid preservatives and some disinfectants, taking into consideration 2 aspects of their development: spore germination and mycelial growth. Susceptibility of Penicillium spinulosum, P. expansum and P. verruculosum to the preservatives, namely benzoic acid, sodium lactate, potassium sorbate, as well as disinfectants such as Topax DD, Suma Bac D10, Biowash and F210 Hygisept, was investigated. The biocides were used at concentrations of 0.1, 1.0 and 10%. Of the preservatives, benzoic acid and potassium sorbate showed the best inhibition, both on spore germination and mycelial growth. Benzoic acid at a concentration of a 0.1% reduced spore germination by 33-55%, and mycelial growth by 54-97%, whereas at 1% the inhibition was 74-85% and 97-100%, respectively. The effect of the disinfectants at a concentration of 0.1% on spore germination was 25-84% and on colonial growth 68-97%, while at 1.0% the reduction in spore germination reached 53-91% and the inhibition of growth 89-100%. In most cases, the same concentrations added to the media showed higher inhibitory effect on mycelial growth than on spore germination. It was noticed that the fungi responded rather unevenly towards the biocides, showing individual susceptibility.

  7. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques.

  8. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques. PMID:27087069

  9. The effect of acetylated xylan and sugar beet pulp on the expression and secretion of enzymes by Penicillium purpurogenum.

    PubMed

    Navarrete, Mario; Callegari, Eduardo; Eyzaguirre, Jaime

    2012-01-01

    Sugar beet pulp is a natural carbon source composed mainly of pectin and cellulose, which is utilized and degraded by the ascomycete Penicillium purpurogenum. The fungus also grows on and degrades acetylated xylan which lacks cellulose and pectin. Both carbon sources have been used in our laboratory to grow the fungus and to purify different enzymes secreted to the medium. The enzymes involved in the complex process of degradation of these carbon sources by the fungus have been explored previously under non-denaturing conditions; multienzyme complexes were separated and some subunits identified by Western blots and mass spectrometry. In this work, proteomic profiles show that the secretome is composed of numerous proteins varying in pI and molecular weight. Some enzymes are common to both growth conditions, while others are specific for each carbon source. The results show that the carbon sources utilized exert strong regulatory control over the proteins secreted. This is the first secretome study from a lignocellulolytic Penicillium.

  10. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products.

    PubMed

    Fu, Yu; Yin, Zhenhao; Wu, Lunpeng; Yin, Chengri

    2014-03-01

    A total of 58 isolates of β-glucosidase-producing microorganisms were isolated from soil around the wild ginseng roots under forest using Esculin-R2A agar. Among these isolates, strain GS33 showed a strong ability to convert ginsenosides Rb1, Rb2, Rc, and Rd into F2, Rg3, C-K, and convert ginsenoside Rg1 into Rh1, and F1. Fermented ginseng products can inhibit ES-2 cells growth and the IC₅₀ value was 0.73 mg ml⁻¹. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain GS33 belongs to the genus Penicillium and is most closely related to Penicillium simplicissimum (99 %).

  11. Isolation and structural elucidation of two secondary metabolites from the filamentous fungus Penicillium ochrochloron with antimicrobial activity.

    PubMed

    Rančić, Ana; Soković, Marina; Karioti, Anastasia; Vukojević, Jelena; Skaltsa, Helen

    2006-07-01

    In this investigation, the extracts of filamentous fungi exhibited inhibitory effect on the growth of Gram positive and Gram negative bacteria, as well as against the yeast Candida albicans. Penicillium ochrochloron has been proven as the most active fungus against all tested microorganisms. Further bio-guided chemical analysis of P. ochrochloron afforded two components with antimicrobial activity identified as (-) 2, 3, 4-trihydroxybutanamide and (-) erythritol.

  12. Four New Chloro-Eremophilane Sesquiterpenes from an Antarctic Deep-Sea Derived Fungus, Penicillium sp. PR19N-1

    PubMed Central

    Wu, Guangwei; Lin, Aiqun; Gu, Qianqun; Zhu, Tianjiao; Li, Dehai

    2013-01-01

    A new chloro-trinoreremophilane sesquiterpene 1, three new chlorinated eremophilane sesquiterpenes 2–4, together with a known compound, eremofortine C (5), were isolated from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Structures were established using IR, HRMS, 1D and 2D NMR techniques. In addition, the plausible metabolic network of these isolated products is proposed. Compound 1 showed moderate cytotoxic activity against HL-60 and A549 cancer cell lines. PMID:23612371

  13. Genome Sequencing and Comparative Genomics Analysis Revealed Pathogenic Potential in Penicillium capsulatum as a Novel Fungal Pathogen Belonging to Eurotiales

    PubMed Central

    Yang, Ying; Chen, Min; Li, Zongwei; Al-Hatmi, Abdullah M. S.; de Hoog, Sybren; Pan, Weihua; Ye, Qiang; Bo, Xiaochen; Li, Zhen; Wang, Shengqi; Wang, Junzhi; Chen, Huipeng; Liao, Wanqing

    2016-01-01

    Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptomes of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNPs in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen. PMID:27761131

  14. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains.

    PubMed

    Kosalková, K; Domínguez-Santos, R; Coton, M; Coton, E; García-Estrada, C; Liras, P; Martín, J F

    2015-09-01

    The production of mycotoxins and other secondary metabolites in Penicillium roqueforti is of great interest because of its long history of use in blue-veined cheese manufacture. In this article, we report the cloning and characterization of the roquefortine gene cluster in three different P. roqueforti strains isolated from blue cheese in the USA (the type strain), France, and the UK (Cheshire cheese). All three strains showed an identical roquefortine gene cluster organization and almost identical (98-99%) gene nucleotide sequences in the entire 16.6-kb cluster region. When compared with the Penicillium chrysogenum roquefortine/meleagrin seven-gene cluster, the P. roqueforti roquefortine cluster contains only four genes (rds, rdh, rpt, and gmt) encoding the roquefortine dipeptide synthetase, roquefortine D dehydrogenase, roquefortine prenyltransferase, and a methyltransferase, respectively. Silencing of the rds or rpt genes by the RNAi strategy reduced roquefortine C production by 50% confirming the involvement of these two key genes in roquefortine biosynthesis. An additional putative gene, orthologous of the MFS transporter roqT, is rearranged in all three strains as a pseudogene. The same four genes and a complete (not rearranged) roqT, encoding a MFS transporter containing 12 TMS domains, occur in the seven-gene cluster in P. chrysogenum although organized differently. Interestingly, the two "late" genes of the P. chrysogenum roquefortine/meleagrin gene cluster that convert roquefortine C to glandicoline B and meleagrin are absent in the P. roqueforti four-gene cluster. No meleagrin production was detected in P. roqueforti cultures grown in YES medium, while P. chrysogenum produces meleagrin in these conditions. No orthologous genes of the two missing meleagrin synthesizing genes were found elsewhere in the recently released P. roqueforti genome. Our data suggest that during evolution, the seven-gene cluster present in P. chrysogenum, and probably also in

  15. Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis

    PubMed Central

    2014-01-01

    Background Microbial gene expression is strongly influenced by environmental growth conditions. Comparison of gene expression under different conditions is frequently used for functional analysis and to unravel regulatory networks, however, gene expression responses to co-cultivation with other microorganisms, a common occurrence in nature, is rarely studied under laboratory conditions. To explore cellular responses of the antibiotic-producing fungus Penicillium chrysogenum to prokaryotes, the present study investigates its transcriptional responses during co-cultivation with Bacillus subtilis. Results Steady-state glucose-limited chemostats of P. chrysogenum grown under penillicin-non-producing conditions were inoculated with B. subtilis. Physiological and transcriptional responses of P. chrysogenum in the resulting mixed culture were monitored over 72 h. Under these conditions, B. subtilis outcompeted P. chrysogenum, as reflected by a three-fold increase of the B. subtilis population size and a two-fold reduction of the P. chrysogenum biomass concentration. Genes involved in the penicillin pathway and in synthesis of the penicillin precursors and side-chain were unresponsive to the presence of B. subtilis. Moreover, Penicillium polyketide synthase and nonribosomal peptide synthase genes were either not expressed or down-regulated. Among the highly responsive genes, two putative α-1,3 endoglucanase (mutanase) genes viz Pc12g07500 and Pc12g13330 were upregulated by more than 15-fold and 8-fold, respectively. Measurement of enzyme activity in the supernatant of mixed culture confirmed that the co-cultivation with B. subtilis induced mutanase production. Mutanase activity was neither observed in pure cultures of P. chrysogenum or B. subtilis, nor during exposure of P. chrysogenum to B. subtilis culture supernatants or heat-inactivated B. subtilis cells. However, mutanase production was observed in cultures of P. chrysogenum exposed to filter-sterilized supernatants

  16. Neurotoxicity of mycotoxins produced in vitro by Penicillium roqueforti isolated from maize and grass silage.

    PubMed

    Malekinejad, H; Aghazadeh-Attari, J; Rezabakhsh, A; Sattari, M; Ghasemsoltani-Momtaz, B

    2015-10-01

    Fungal growth in human foods and animal feeds causes profound damage indicating a general spoilage, nutritional losses, and the formation of mycotoxins. Thirty apparently contaminated maize and grass silage samples were analyzed for the presence of total fungi. Penicillium roqueforti were isolated from all (100%) moldy silage samples on general and selective culture media. Furthermore, P. roqueforti-positive samples culture media subjected to the toxin extraction and toxins of patulin, penicillic acid, mycophenolic acid, and roquefortin-C (ROQ-C) were identified by means of high-performance liquid chromatography method. Cytotoxicity of identified toxins was investigated on neuro-2a cells. Alamar blue reduction, neutral red uptake, and intracellular adenosine triphosphate (ATP) content assays indicated that patulin and ROQ-C exert the strongest and weakest toxicity, respectively. Reactive oxygen species (ROS) generation by the toxins-exposed cells was measured, and the results supported the mitochondrial and lysosomal dysfunction and ATP depletion in exposed cells. Our data suggest that P. roqueforti is the widely present mold in analyzed maize and grass silage samples, which is able to produce toxins that cause neurotoxicity. This finding may explain in part some neuronal disorders in animals, which are fed contaminated feedstuffs with mentioned fungus. Moreover, mitochondrial and lysosomal dysfunction, intracellular ATP depletion, and the excessive ROS generation were found as the mechanisms of cytotoxicity for P. roqueforti-produced toxins. PMID:25743727

  17. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2.

    PubMed

    Liao, Hanpeng; Xu, Chunmiao; Tan, Shiyong; Wei, Zhong; Ling, Ning; Yu, Guanghui; Raza, Waseem; Zhang, Ruifu; Shen, Qirong; Xu, Yangchun

    2012-11-01

    Multiple acidophilic xylanolytic enzymes were produced by Penicillium oxalicum GZ-2 during growth on wheat straw, rice straw, corn stover, and wheat bran. The expression of xylanase isoforms was dependent on substrate type and nitrogen source. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that wheat straw was the best inducer, resulting in the highest xylanase (115.2U/mL) and β-xylosidase (89mU/mL) activities during submerged fermentation. The optimum temperature and pH for xylanase activity were 50°C and 4.0, respectively; however, the crude xylanase enzymes exhibited remarkable stability over a broad pH range and showed more than 90% activity at 50°C for 30min at pH 4.0-8.0. The results revealed that P. oxalicum GZ-2 is a promising acidophilic xylanase-producing microorganism that has great potential to be used in biofuels, animal feed, and food industry applications.

  18. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    PubMed

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications.

  19. Novel small molecule 11β-HSD1 inhibitor from the endophytic fungus Penicillium commune

    PubMed Central

    Sun, Weiguang; Chen, Xintao; Tong, Qingyi; Zhu, Hucheng; He, Yan; Lei, Liang; Xue, Yongbo; Yao, Guangmin; Luo, Zengwei; Wang, Jianping; Li, Hua; Zhang, Yonghui

    2016-01-01

    Two new phenone derivatives penicophenones A (1) and B (2), a new cyclic tetrapeptide penicopeptide A (3), and five known compounds were isolated from the culture broth of Penicillium commune, an endophytic fungus derived from Vitis vinifera. Compounds 1–3 were elucidated by extensive spectroscopic analyses including 1D and 2D NMR and HRESIMS. The absolute configurations of 1 and 3 were determined by comparing its ECD with related molecules and modified Marfey’s analysis, respectively. Penicophenone A (1) possesses a rare benzannulated 6,6-spiroketal moiety, which is a new member of the unusual structural class with peniphenone A as the representative. Compound 3 exhibited significant inhibition activities against 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in vitro and showed strong binding affinity to 11β-HSD1. Moreover, compound 3 treatments decreased the lipid droplet accumulation associate with the inhibition of 11β-HSD1 expression in differentiate-induced 3T3-L1 preadipocytes. Furthermore, the molecular docking demonstrated that compound 3 coordinated in the active site of 11β-HSD1 is essential for the ability of diminishing the enzyme activity. PMID:27194583

  20. Fertility depression among cheese-making Penicillium roqueforti strains suggests degeneration during domestication.

    PubMed

    Ropars, Jeanne; Lo, Ying-Chu; Dumas, Emilie; Snirc, Alodie; Begerow, Dominik; Rollnik, Tanja; Lacoste, Sandrine; Dupont, Joëlle; Giraud, Tatiana; López-Villavicencio, Manuela

    2016-09-01

    Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation. PMID:27470007

  1. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium

    PubMed Central

    Xu, Xingjian; Xia, Lu; Zhu, Wei; Zhang, Zheyi; Huang, Qiaoyun; Chen, Wenli

    2015-01-01

    Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different cadmium (Cd) concentrations (0–10 mM) by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) peaked at 1 mM Cd, whereas that of catalase peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg-1) successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in situ bioremediation of Cd-polluted soil. PMID:26733967

  2. Alkaloids from the Fungus Penicillium spathulatum as α-Glucosidase Inhibitors.

    PubMed

    Del Valle, Paulina; Martínez, Ana-Laura; Figueroa, Mario; Raja, Huzefa A; Mata, Rachel

    2016-09-01

    Benzomalvin A (1), quinolactacins A1 (2), A2 (3) and B (4), quinolonimide (5), asperphenamate (6), and a new halogenated polyhydroxyanthraquinone, namely 2-chloro-6-[2'(S)-hydroxypropyl]-1,3,8-trihydroxy-anthraquinone (7), were isolated from an organic extract obtained from the solid culture of Penicillium spathulatum B35. Compounds 2 and 3 were isolated as an epimeric mixture, and compound 4 as a racemate. The structure of 7 was elucidated using 1D and 2D NMR, combined with computational methods (density functional theory). Compound 1, the mixture of 2 and 3, racemate 4, and compound 6 inhibited the yeast α-glucosidase in a concentration-dependent fashion with IC50 values of 383.2, 273.3, 57.3, and 8.3 µM, respectively. The α-glucosidase inhibitory properties of 1 were confirmed in vivo with an oral sucrose tolerance test in normal and hyperglycemic mice (p < 0.05). Furthermore, docking studies predicted that the most stable conformers of 1 bind to yeast and mammalian α-glucosidases with a higher affinity than acarbose. Finally, 1 also showed antihyperalgesic activity when tested in the formalin assay in hyperglycemic mice (p < 0.05). PMID:27399232

  3. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment.

    PubMed

    Bergsten-Torralba, L R; Nishikawa, M M; Baptista, D F; Magalhães, D P; da Silva, M

    2009-10-01

    The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198), Reactive Blue 214 (RB214), Reactive Blue 21 (RB21) and the mixture of the three dyes (MXD) by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50). P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments.

  4. Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum

    PubMed Central

    Santos-Ebinuma, Valéria Carvalho; Roberto, Inês Conceição; Teixeira, Maria Francisca Simas; Pessoa, Adalberto

    2014-01-01

    Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool. PMID:25242965

  5. Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum

    PubMed Central

    Zhu, Congyi; Wang, Mingshuang; Wang, Weili; Ruan, Ruoxin; Ma, Haijie; Mao, Cungui; Li, Hongye

    2015-01-01

    Glucosylceramides (GlcCers) are important lipid components of the membrane systems of eukaryotes. Recent studies have suggested the roles for GlcCers in regulating fungal growth and pathogenesis. In this study, we report the identification and functional characterization of PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of GlcCers, in Penicillium digitatum genome. We demonstrated that the deletion of PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer (d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of water soaking lesion and the formation of smaller size of lesion. These results suggest that PdGcs1 is a bona fide GCS that plays an important role in regulating cell growth, differentiation, and virulence of P. digitatum by controlling the biosynthesis of GlcCers. PMID:25449268

  6. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    PubMed

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.

  7. [Construction of Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum].

    PubMed

    Bushina, E V; Rubtsova, E A; Rozhkova, A M; Sinitsyna, O A; Koshelev, A V; Matys, V Yu; Nemashkalov, V A; Sinitsyn, A P

    2015-01-01

    Based on the fungus Penicillium verruculosum, we created strains with a complex of extracellular enzymes that contains both cellulolytic enzymes of the fungus and heterologous pectin lyase A from P. canescens and endo- 1,4-α-polygalacturonase from Aspergillus niger. The endopolygalacturonase and pectin lyase activities of enzyme preparations obtained from culture media of the producer strains reached 46-53 U/mg of protein and 1.3-2.3 U/mg of protein, respectively. The optimal temperature and pH values for recombinant pectin lyase and endopolygalacturonase corresponded to those described in the literature for these enzymes. The content of heterologous endopolygalacturonase and pectin lyase in the studied enzyme preparations was 4-5% and 23% of the total protein content, respectively. The yield of reducing sugars upon the hydrolysis of sugar beet and apple processing wastes with the most efficient preparation was 41 and 71 g/L, respectively, which corresponded to a polysaccharide conversion of 49% and 65%. Glucose was the main product of the hydrolysis of sugar beet and apple processing wastes.

  8. UP-HILIC-MS/MS to Determine the Action Pattern of Penicillium sp. Dextranase

    NASA Astrophysics Data System (ADS)

    Yi, Lin; Sun, Xue; Du, Kenze; Ouyang, Yilan; Wu, Chengling; Xu, Naiyu; Linhardt, Robert J.; Zhang, Zhenqing

    2015-07-01

    Investigation of the action pattern of enzymes acting on carbohydrates is challenging, as both the substrate and the digestion products are complex mixtures. Dextran and its enzyme-derived oligosaccharides are widely used for many industrial applications. In this work, a new method relying on ultra-performance hydrophilic interaction liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UP-HILIC- Q/TOF-MS/MS) was developed to analyze a complex mixture of dextran oligosaccharide products to determine the action pattern of dextranase. No derivatization of oligosaccharides was required and the impact of the α- and β-configurations of the native oligosaccharides on the chromatographic separation was eliminated. The 1→6, 1→3, 1→4 backbone linkages and the branch linkages of these oligosaccharides were all distinguished from diagnostic ions in their MS/MS spectra, including fragments corresponding to 0,2A, 0,3A, 0,4A, B-H2O, 2,5A, and 3,5A. The sequences of the oligosaccharide products were similarly established. Thus, the complex oligosaccharide mixtures in dextran digestion products were profiled and identified using this method. The more enzyme-resistant structures in dextran were established using much less sample, labor, time, and uncertainty than in previous studies. This method provides an efficient, sensitive, and straightforward way to monitor the entire process of digestion, establish the action pattern of the dextranase from Penicillium sp., and to support the proper industrial application of dextranase.

  9. Inactivation Process of Penicillium digitatum Spores Treated with Non-equilibrium Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Mori, Takumi; Iseki, Sachiko; Hori, Masaru; Ito, Masafumi

    2013-05-01

    To investigate the inactivation process of Penicillium digitatum spores treated with a non-equilibrium atmospheric pressure plasma, the spores were observed using a fluorescent microscope and compared with those treated with ultraviolet (UV) light or moist heat. The treated spores were stained with two fluorescent dyes, 1,1'-dioctadecyl-3,3,Y,3'-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as cell membranes in the spores treated with the plasma were stained with DiI without a major morphological change of the membranes, while the organelles were never stained in the spores treated with UV light or moist heat. Moreover, DPPP staining revealed that organelles were oxidized by plasma treatment unlike UV light or moist heat treatments. These results suggest that only plasma treatment induces a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles without a major deformation of the membranes through the penetration of reactive oxygen species generated by the plasma into the cell.

  10. Characterization of sakA gene from pathogenic dimorphic fungus Penicillium marneffei.

    PubMed

    Nimmanee, Panjaphorn; Woo, Patrick C Y; Kummasook, Aksarakorn; Vanittanakom, Nongnuch

    2015-01-01

    Eukaryotes utilize stress activated protein kinase (SAPK) pathways to adapt to environmental stress, including heat, osmotic, oxidative or nutrient stresses. Penicillium marneffei (Talaromyces marneffei), the dimorphic pathogenic fungus that can cause disseminated mycosis in HIV-infected patients, has to encounter various types of stresses both outside and inside host cells. However, the strategies used by this fungus in response to these stresses are still unclear. In this report, the stress-activated kinase (sakA) gene of P. marneffei was characterized and the roles of this gene on various stress conditions were studied. The sakA gene deletion mutant was constructed using the split marker method. The phenotypes and sensitivities to varieties of stresses, including osmotic, oxidative, heat and cell wall stresses of the deletion mutant were compared with the wild type and the sakA complemented strains. Results demonstrated that the P. marneffei sakA gene encoded a putative protein containing TXY phosphorylation lip found in the stress high osmolarity glycerol 1 (Hog1)/Spc1/p38 MAPK family, and that this gene was involved not only in tolerance against oxidative and heat stresses, but also played a role in asexual development, chitin deposition, yeast cell generation in vitro and survival inside mouse and human macrophages.

  11. Rare Chromones from a Fungal Mutant of the Marine-Derived Penicillium purpurogenum G59.

    PubMed

    Xia, Ming-Wen; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Peng, Ji-Xing; Li, De-Hai

    2015-08-18

    Three new and rare chromones, named epiremisporine B (2), epiremisporine B1 (3) and isoconiochaetone C (4), along with three known remisporine B (1), coniochaetone A (5) and methyl 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (6) were isolated from a mutant from the diethyl sulfate (DES) mutagenesis of a marine-derived Penicillium purpurogenum G59. The structures of 2-4 including the absolute configurations were determined by spectroscopic methods, especially by NMR analysis and electronic circular dichroism (ECD) experiments in conjunction with calculations. The absolute configuration of the known remisporine B (1) was determined for the first time. Compounds 2 and 3 have a rare feature that has only been reported in one example so far. The compounds 1-6 were evaluated for their cytotoxicity against several human cancer cell lines. The present work explored the great potential of our previous DES mutagenesis strategy for activating silent fungal pathways, which has accelerated the discovery of new bioactive compounds.

  12. Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island, Korea.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Houbraken, Jos; Sohn, Jae Hak; Hong, Seung-Beom; Lim, Young Woon

    2015-01-01

    Three strains of an unidentified Penicillium species were isolated during a fungal diversity survey of marine environments in Korea. These strains are described here as a new species following a multigene phylogenetic analyses of nuc rDNA internal transcribed spacer barcodes (ITS1-5.8S-ITS2), genes for β-tubulin, calmodulin and RNA polymerase II second largest subunit, and observation of macro-and micromorphological characters. Phylogenetic analyses revealed that the three strains formed a strongly supported monophyletic group distinct from previously reported species of section Aspergilloides. Morphologically this species can be distinguished from its sister species, P. crocicola, by the reverse color on Czapek yeast autolysate agar, abundant production of sclerotia on malt extract agar and colony characters on yeast extract sucrose agar. We name this new species P. jejuense, after the locality where it was discovered. At 25 C for 7 d, P. jejuense colonies grew to 55-60 mm on CYA, 45-48 mm on MEA, 48-52 mm on YES and 23-26 mm on CREA. Conidia (2.2-3.4 × 2.0-2.6 μm) and sclerotia (160-340 × 125-210 μm) were globose to ellipsoidal.

  13. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.

    PubMed

    García-Estrada, Carlos; Martín, Juan-Francisco

    2016-10-01

    Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes. PMID:27554495

  14. [Construction of Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum].

    PubMed

    Bushina, E V; Rubtsova, E A; Rozhkova, A M; Sinitsyna, O A; Koshelev, A V; Matys, V Yu; Nemashkalov, V A; Sinitsyn, A P

    2015-01-01

    Based on the fungus Penicillium verruculosum, we created strains with a complex of extracellular enzymes that contains both cellulolytic enzymes of the fungus and heterologous pectin lyase A from P. canescens and endo- 1,4-α-polygalacturonase from Aspergillus niger. The endopolygalacturonase and pectin lyase activities of enzyme preparations obtained from culture media of the producer strains reached 46-53 U/mg of protein and 1.3-2.3 U/mg of protein, respectively. The optimal temperature and pH values for recombinant pectin lyase and endopolygalacturonase corresponded to those described in the literature for these enzymes. The content of heterologous endopolygalacturonase and pectin lyase in the studied enzyme preparations was 4-5% and 23% of the total protein content, respectively. The yield of reducing sugars upon the hydrolysis of sugar beet and apple processing wastes with the most efficient preparation was 41 and 71 g/L, respectively, which corresponded to a polysaccharide conversion of 49% and 65%. Glucose was the main product of the hydrolysis of sugar beet and apple processing wastes. PMID:26353405

  15. Properties of enzyme preparations and homogeneous enzymes - endoglucanases EG2 Penicillium verruculosum and LAM Myceliophthora thermophila.

    PubMed

    Merzlov, D A; Zorov, I N; Dotsenko, G S; Denisenko, Yu A; Rozhkova, A M; Satrutdinov, A D; Rubtsova, E A; Kondratieva, E G; Sinitsyn, A P

    2015-04-01

    The genes of endoglucanases EG2 (36.2 kDa) Penicillium verruculosum and LAM (30.8 kDa) Myceliophthora thermophila were cloned in P. verruculosum recombinant strain. New enzyme preparations with highly stable activity against β-glucan and laminarin were obtained and investigated, homogeneous enzymes EG2 (EC 3.2.1.4) and LAM (EC 3.2.1.6) being purified and characterized. For β-glucan, the EG2 Km value was found to be 10 times higher than that for LAM; however, EG2 demonstrated greater processivity due to its higher kcat. The pH and temperature optima of EG2 and LAM activity against barley β-glucan overlapped and were 4.3-4.9 and 61-67°C, respectively, and EG2 appeared to be more stable than LAM. Oligosaccharides with degree of polymerization 2-10 were formed by hydrolysis of β-glucan and laminarin by the studied enzymes. The recombinant enzyme preparations were faster and more effective in decreasing the reduced viscosity of wholegrain barley extract than some commercial enzyme preparations. Thus, the new enzyme preparations seem to be rather perspective as feed additives for degradation of non-starch polysaccharides in grain animal feed.

  16. Biochemistry of lipolytic enzymes secreted by Penicillium solitum and Cladosporium cladosporioides.

    PubMed

    Chinaglia, Selene; Chiarelli, Laurent R; Maggi, Maristella; Rodolfi, Marinella; Valentini, Giovanna; Picco, Anna Maria

    2014-01-01

    Two distinct extracellular lipases were obtained from Penicillium solitum 194A, isolated from domestic compost, and Cladosporium cladosporioides 194B, isolated from dairy wastewater. These alkaline enzymes had molecular masses of 42 and 30 kDa, respectively. The P. solitum 194A lipase differed in mass from previously reported enzyme, indicating that it is a novel lipase, and indicating that penicillia can secrete lipase isoenzymes. The C. cladosporioides lipase was more active on esters of medium-chain acids, whereas the P. solitum lipase was more active on longer chained substrates. The C. cladosporioides enzyme displayed higher thermal stability than the P. solitum lipase, preserving full activity up to 48 °C and showing a T₅₀ (10 min) of 60 °C. Their different catalytic properties and good protein stability should make these enzymes suitable for biotechnological applications. Furthermore, the combined use of these two fungal strains may prove to be valuable in lipid-rich waste management. PMID:25036677

  17. Characterization of the ice nucleation activity of an airborne Penicillium species

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gary D.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Microorganisms are ubiquitous both on and above the Earth. Several bacterial and fungal spe-cies are the focus of atmospheric studies due to their ability to trigger ice formation at high subzero temperatures. Thus, they have potential to modify cloud albedo, lifetime and precipita-tion, and ultimately the hydrological cycle. Several fungal strains have already been identified as possessing ice nucleation (IN) activity, and recent studies have shown that IN active fungi are present in the cultivable community of air and soil samples [1, 2]. However, the abundance, diversity, and sources of fungal ice nuclei in the atmosphere are still poorly characterized. In this study, fungal colonies obtained from air samples were screened for IN activity in the droplet-freezing assay described in Fröhlich-Nowoisky et al., 2015 [2]. Out of 128 tested iso-lates, two were found to catalyze ice formation at temperatures up to -4°C. By DNA analysis, both isolates were classified as Penicillium spp. The freezing activity of both was further char-acterized after different filtration, heat, and enzymatic treatments in the temperature range from ‑4°C to ‑15°C. Preliminary results show that a proteinaceous compound is responsible for the IN activity. Furthermore, ongoing experiments indicate that the activity is associated only with the hyphae. [1] Huffman, et al. (2013): Atmos. Chem. Phys., 13, 6151-6164. [2] Fröhlich-Nowoisky et al. (2015): Biogeosciences, 12: 1057-1071.

  18. Paths and determinants for Penicillium janthinellum to resist low and high copper.

    PubMed

    Xu, Jian; Chen, Guo-Li; Sun, Xue-Zhe; Fan, Xian-Wei; You-Zhi, Li

    2015-08-12

    Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.

  19. pH-dependent effect of pectinase secretion in Penicillium griseoroseum recombinant strains.

    PubMed

    Teixeira, Janaina Aparecida; Corrêa, Thamy Lívia Ribeiro; de Queiroz, Marisa Vieira; de Araújo, Elza Fernandes

    2014-02-01

    A number of parameters, including culture medium pH, affect growth and enzyme production by microorganisms. In the present study, the production and secretion of pectin lyase (PL) and polygalacturonase (PG) by recombinant strains of Penicillium griseoroseum cultured in mineral-buffered media (MBM; initial pH 6.8) and mineral-unbuffered medium (MUM; initial pH 6.3) were evaluated. Under these culture conditions, no change in the transcriptional levels of plg1 and pgg2 was observed. However, the levels of secreted total protein ranged from 7.80 ± 1.1 to 3.25 ± 1.50 µg ml(-1) in MBM and MUM, respectively, and were evaluated by SDS-PAGE. PL and PG enzymatic activities decreased 6.4 and 3.6 times, respectively, when P. griseoroseum was cultivated under acidic pH conditions (MUM). Furthermore, differences were observed in the hypha and mycelium morphology. These findings suggest that acidic growing conditions affect PL and PG secretion, even though the transcription and translation processes are successful. The data obtained in this study will help to establish optimal culture conditions that increase production and secretion of recombinant proteins by filamentous fungi.

  20. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.

    PubMed

    García-Estrada, Carlos; Martín, Juan-Francisco

    2016-10-01

    Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes.

  1. Function of a p24 Heterodimer in Morphogenesis and Protein Transport in Penicillium oxalicum

    PubMed Central

    Wang, Fangzhong; Liu, Kuimei; Han, Lijuan; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2015-01-01

    The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi. In this study, four p24 proteins were identified in Penicillium oxalicum. Six p24 double-deletion strains were constructed, and further studies were carried out with the ΔerpΔpδ strain. The experimental results suggested that Erp and Pδ form a p24 heterodimer in vivo. This p24 heterodimer participates in important morphogenetic events, including sporulation, hyphal growth, and lateral branching. The results suggested that the p24 heterodimer mediates protein transport, particularly that of cellobiohydrolase. Analysis of the intracellular proteome revealed that the ΔerpΔpδ double mutant is under secretion stress due to attempts to remove proteins that are jammed in the endomembrane system. These results suggest that the p24 heterodimer participates in morphogenesis and protein transport. Compared with P. oxalicum Δerp, a greater number of cellular physiological pathways were impaired in ΔerpΔpδ. This finding may provide new insights into the secretory pathways of filamentous fungi. PMID:26149342

  2. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.

    PubMed

    Saini, Reetu; Saini, Jitendra Kumar; Adsul, Mukund; Patel, Anil Kumar; Mathur, Anshu; Tuli, Deepak; Singhania, Reeta Rani

    2015-01-01

    Present study was focused on cellulase production from an indigenously isolated filamentous fungal strain, identified as Penicillium oxalicum. Initially, cellulase production under submerged fermentation in shake flasks resulted in cellulase activity of 0.7 FPU/mL. Optimization of process parameters enhanced cellulase production by 1.7-fold and resulted in maximum cellulase activity of 1.2 FPU/mL in 8 days. Cellulase production was successfully scaled-up to 7 L fermenter under controlled conditions and incubation time was reduced from 8 days to 4 days for achieving similar cellulase titer. Optimum pH and temperature for activity of the crude enzyme were pH 5 and 50 °C, respectively. At 50 °C the produced cellulase retained approximately 50% and 26% of its activity at 48 h and 72 h, respectively. Hydrolytic efficiency of P. oxalicum was comparable to commercial cellulase preparations which indicate its great potential for application in the lignocellulose hydrolysis.

  3. The nonylphenol biodegradation study by estuary sediment-derived fungus Penicillium simplicissimum.

    PubMed

    Zhang, Yan; Liu, Ying; Dong, Han; Li, Xianguo; Zhang, Dahai

    2016-08-01

    Nonylphenols (NPs) are persistent organic pollutants (POPs) with estrogenic properties that can perform endocrine-disrupting activities. By using high-concentration NP as environmental selection pressure, one NP biodegradation strain named NPF-4 was isolated and purified from estuary sediment of the Moshui River. It was identified as Penicillium simplicissimum (PS1) by appearance and 18S rDNA analysis. In different culture situations, the strain mass growth and biodegradation ability were evaluated. Within 4-n-nonylphenol (4-n-NP) initial concentration of 20 mg L(-1), it could be degraded 53.76, 90.08, and 100.00 % at 3, 7, and 14 days, respectively. In feeding experiments, it showed that NPF-4 could use 4-n-NP as a sole carbon source. Based on seven products/intermediates detected with GC and LC-MS, a novel biopathway for 4-n-NP biodegradation was proposed, in which sequential hydroxylation, oxidation, and decarboxylation at terminal β-C atom may occur for 4-n-NP detoxification, even complete mineralization in the end. PMID:27094271

  4. Direct Biotransformation of Dioscin into Diosgenin in Rhizome of Dioscorea zingiberensis by Penicillium dioscin.

    PubMed

    Dong, Jingzhou; Lei, Can; Lu, Dayan; Wang, Ying

    2015-06-01

    Diosgenin is an important precursor for synthesis of more than 200 steroidal hormone medicines. Rhizome of Dioscorea zingiberensis C. H. Wright (RDZ) contained the highest content of diosgenin in Dioscorea plant species. Diosgenin is traditionally extracted by acid hydrolysis from RDZ. However, the acid hydrolysis process produces massive wastewater which caused serious environment pollution. In this study, diosgenin extraction by direct biotransformation with Penicillium dioscin was investigated. The spawn cultivation conditions were optimized as: Czapeks liquid culture medium without sugar and agar (1,000 ml) + 6.0 g dioscin/6.0 g DL, 30 °C, 36 h; solid fermentation of RDZ: mycelia/RDZ of 0.05 g/kg, 30 °C, 50 h; the yield of diosgenin was over 90 %. Spawn cultivation was crucial for the direct biotransformation. In the spawn cultivation, amount and ratio of dioscin/DL were the key factors to promote biotransformation activity of P. dioscin. This biotransformation method was environment-friendly, simple and energy saving, and might be a potential substitute for acid hydrolysis in diosgenin extraction industry. PMID:25805907

  5. Neurotoxicity of mycotoxins produced in vitro by Penicillium roqueforti isolated from maize and grass silage.

    PubMed

    Malekinejad, H; Aghazadeh-Attari, J; Rezabakhsh, A; Sattari, M; Ghasemsoltani-Momtaz, B

    2015-10-01

    Fungal growth in human foods and animal feeds causes profound damage indicating a general spoilage, nutritional losses, and the formation of mycotoxins. Thirty apparently contaminated maize and grass silage samples were analyzed for the presence of total fungi. Penicillium roqueforti were isolated from all (100%) moldy silage samples on general and selective culture media. Furthermore, P. roqueforti-positive samples culture media subjected to the toxin extraction and toxins of patulin, penicillic acid, mycophenolic acid, and roquefortin-C (ROQ-C) were identified by means of high-performance liquid chromatography method. Cytotoxicity of identified toxins was investigated on neuro-2a cells. Alamar blue reduction, neutral red uptake, and intracellular adenosine triphosphate (ATP) content assays indicated that patulin and ROQ-C exert the strongest and weakest toxicity, respectively. Reactive oxygen species (ROS) generation by the toxins-exposed cells was measured, and the results supported the mitochondrial and lysosomal dysfunction and ATP depletion in exposed cells. Our data suggest that P. roqueforti is the widely present mold in analyzed maize and grass silage samples, which is able to produce toxins that cause neurotoxicity. This finding may explain in part some neuronal disorders in animals, which are fed contaminated feedstuffs with mentioned fungus. Moreover, mitochondrial and lysosomal dysfunction, intracellular ATP depletion, and the excessive ROS generation were found as the mechanisms of cytotoxicity for P. roqueforti-produced toxins.

  6. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose

    PubMed Central

    2013-01-01

    Background Plant expansins and fungal swollenin that can disrupt crystalline cellulose have great potential for applications in conversion of biomass. Recent studies have been mainly focused on Trichoderma reesei swollenin that show relatively low activity in the promotion of cellulosic hydrolysis. Our aim was to isolate a novel swollenin with greater disruptive activity, to establish an efficient way of producing recombinant swollenin, and to optimize the procedure using swollenin in facilitation of cellulosic hydrolysis. Results A novel gene encoding a swollenin-like protein, POSWOI, was isolated from the filamentous fungus Penicillium oxalicum by Thermal Asymmetric Interlaced PCR (TAIL-PCR). It consisted of a family 1 carbohydrate-binding module (CBM1) followed by a linker connected to a family 45 endoglucanase-like domain. Using the cellobiohydrolase I promoter, recombinant POSWOI was efficiently produced in T. reesei with a yield of 105 mg/L, and showed significant disruptive activity on crystalline cellulose. Simultaneous reaction with both POSWOI and cellulases enhanced the hydrolysis of crystalline cellulose Avicel by approximately 50%. Using a POSWOI-pretreatment procedure, cellulases can produce nearly twice as many reducing sugars as without pretreatment. The mechanism by which POSWOI facilitates the saccharification of cellulose was also studied using a cellulase binding assay. Conclusion We present a novel fungal swollenin with considerable disruptive activity on crystalline cellulose, and develop a better procedure for using swollenin in facilitating cellulosic hydrolysis. We thus provide a new approach for the effective bioconversion of cellulosic biomass. PMID:23688024

  7. Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2

    PubMed Central

    Liao, Hanpeng; Zheng, Haiping; Li, Shuixian; Wei, Zhong; Mei, Xinlan; Ma, Hongyu; Shen, Qirong; Xu, Yangchun

    2015-01-01

    A multiple xylanase system with high levels of xylanase activity produced from Penicillium oxalicum GZ-2 using agricultural waste as a substrate has been previously reported. However, the eco-physiological properties and origin of the multiplicity of xylanases remain unclear. In the present study, eight active bands were detected using zymography, and all bands were identified as putative xylanases using MALDI-TOF-MS/MS. These putative xylanases are encoded by six different xylanase genes. To evaluate the functions and eco-physiological properties of xylanase genes, xyn10A, xyn11A, xyn10B and xyn11B were expressed in Pichia pastoris. The recombinant enzymes xyn10A and xyn10B belong to the glycoside hydrolase (GH) family 10 xylanases, while xyn11A and xyn11B belong to GH11 xylanases. Biochemical analysis of the recombinant proteins revealed that all enzymes exhibited xylanase activity against xylans but with different substrate specificities, properties and kinetic parameters. These results demonstrated that the production of multiple xylanases in P. oxalicum GZ-2 was attributed to the genetic redundancy of xylanases and the post-translational modifications, providing insight into a more diverse xylanase system for the efficient degradation of complex hemicelluloses. PMID:26224514

  8. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    PubMed Central

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  9. Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity.

    PubMed

    Visamsetti, Amarendra; Ramachandran, Santhosh Sarojini; Kandasamy, Dhevendaran

    2016-04-01

    A strain of Penicillium chrysogenum was isolated from Tedania anhelans (marine sponge) collected from Indian Ocean (8°22'30″N latitude and 76°59'16″ longitude) and deposited in culture collection centers. The strain subjected to different culture conditions for production of extrolites were extracted using ethyl acetate and chloroform. When both extracts were subjected for antibacterial activity, latter had high activity. Minimum inhibitory concentration of chloroform extract ranged from 31.25-1000 μg/mL in tested microbes such as, Mycobacterium tuberculosis H37Ra, Mycobacterium avium, Mycobacterium fortuitum, Mycobacterium smegmatis, Mycobacterium vaccae, Staphylococcus aureus, Aeromonas hydrophila, Pseudomonas aeruginosa and Vibrio cholerae. No cytotoxicity was observed in Vero cell line up to 399.10 μg/mL. Antibacterial activity previously reported by Parameswaran et al. in 1997 from ethyl acetate extract of T. anhelans might be due to the diketopiperazines, Cyclo-(L-Pro-L-Phe) and Cyclo-(L-Leu-L-Pro) produced by the associated fungi-P. chrysogenum DSOA. It is producing a metabolites having antimycobacterial activity, a first report. PMID:26717859

  10. A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide.

    PubMed

    Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi

    2016-01-01

    Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel. PMID:26410224

  11. Function of a p24 Heterodimer in Morphogenesis and Protein Transport in Penicillium oxalicum.

    PubMed

    Wang, Fangzhong; Liu, Kuimei; Han, Lijuan; Jiang, Baojie; Wang, Mingyu; Fang, Xu

    2015-01-01

    The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi. In this study, four p24 proteins were identified in Penicillium oxalicum. Six p24 double-deletion strains were constructed, and further studies were carried out with the ΔerpΔpδ strain. The experimental results suggested that Erp and Pδ form a p24 heterodimer in vivo. This p24 heterodimer participates in important morphogenetic events, including sporulation, hyphal growth, and lateral branching. The results suggested that the p24 heterodimer mediates protein transport, particularly that of cellobiohydrolase. Analysis of the intracellular proteome revealed that the ΔerpΔpδ double mutant is under secretion stress due to attempts to remove proteins that are jammed in the endomembrane system. These results suggest that the p24 heterodimer participates in morphogenesis and protein transport. Compared with P. oxalicum Δerp, a greater number of cellular physiological pathways were impaired in ΔerpΔpδ. This finding may provide new insights into the secretory pathways of filamentous fungi. PMID:26149342

  12. The Mutation Breeding and Mutagenic Effect of Air Plasma on Penicillium Chrysogenum

    NASA Astrophysics Data System (ADS)

    Gui, Fang; Wang, Hui; Wang, Peng; Liu, Hui; Cai, Xiaochun; Hu, Yihua; Yuan, Chengling; Zheng, Zhiming

    2012-04-01

    Low temperature air plasma was used as the mutation tool for penicillin-producing strain Penicillium chrysogenum. The discharge conditions were RF power of 360 W, temperature of 40°C in a sealed chamber, and pressure of 10 Pa to 30 Pa. The result showed that the kinetics of the survival rate followed a typical saddle-shaped curve. Based on a statistic analysis, at the treating duration of 10 min, the positive mutation rate was as high as 37.5% while the negative mutation rate was low. The colonial morphology changed obviously when the plasma treating duration reached or exceeded 45 min. After both primary and secondary screening, a mutant designated as aPc051310 with high productivity of penicillin was obtained, and a strong mutagenic effect on P. chrysogenum was observed in the process. It was proved that after five generations, the mutant aPc051310 still exhibits a high productivity. All the results prove that the plasma mutation method could be developed as a convenient and effective tool to breed high-yield strains in the fermentation industry, while expanding the plasm application at the same time.

  13. Paths and determinants for Penicillium janthinellum to resist low and high copper

    PubMed Central

    Xu, Jian; Chen, Guo-Li; Sun, Xue-Zhe; Fan, Xian-Wei; You-Zhi, Li

    2015-01-01

    Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H+-transporting ATPases-based ATP production, V-type H+-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model. PMID:26265593

  14. Characterization of the ice nucleation activity of an airborne Penicillium species

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gary D.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Microorganisms are ubiquitous both on and above the Earth. Several bacterial and fungal spe-cies are the focus of atmospheric studies due to their ability to trigger ice formation at high subzero temperatures. Thus, they have potential to modify cloud albedo, lifetime and precipita-tion, and ultimately the hydrological cycle. Several fungal strains have already been identified as possessing ice nucleation (IN) activity, and recent studies have shown that IN active fungi are present in the cultivable community of air and soil samples [1, 2]. However, the abundance, diversity, and sources of fungal ice nuclei in the atmosphere are still poorly characterized. In this study, fungal colonies obtained from air samples were screened for IN activity in the droplet-freezing assay described in Fröhlich-Nowoisky et al., 2015 [2]. Out of 128 tested iso-lates, two were found to catalyze ice formation at temperatures up to -4°C. By DNA analysis, both isolates were classified as Penicillium spp. The freezing activity of both was further char-acterized after different filtration, heat, and enzymatic treatments in the temperature range from -4°C to -15°C. Preliminary results show that a proteinaceous compound is responsible for the IN activity. Furthermore, ongoing experiments indicate that the activity is associated only with the hyphae. [1] Huffman, et al. (2013): Atmos. Chem. Phys., 13, 6151-6164. [2] Fröhlich-Nowoisky et al. (2015): Biogeosciences, 12: 1057-1071.

  15. Contrasting nephropathic responses to oral administration of extract of cultured Penicillium polonicum in rat and primate.

    PubMed

    Mantle, Peter G; McHugh, Katharine M; Fincham, John E

    2010-08-01

    Liquid- or solid substrate-cultured Penicillium polonicum administered in feed to rats over several days evokes a histopathological response in kidney involving apoptosis and abnormal mitosis in proximal tubules. The amphoteric toxin is yet only partly characterized, but can be isolated from cultured sporulating biomass in a fraction that is soluble in water and ethanol, and exchangeable on either anion- or cation-exchange resins. After several weeks of treatment renal proximal tubule distortion became striking on account of karyocytomegaly, but even treatment for nearly two years remained asymptomatic. Extract from a batch of solid substrate fermentation of P. polonicum on shredded wheat was incorporated into feed for rats during four consecutive days, and also given as an aqueous solution by oral gavage to a vervet monkey daily for 10 days. Treatment was asymptomatic for both types of animal. Rat response was evident as the typical renal apoptosis and karyomegaly. In contrast there was no such response in the primate; and neither creatinine clearance nor any haematological characteristic or serum component concentration deviated from a control or from historical data for this primate. The contrast is discussed concerning other negative findings for P. polonicum in pigs and hamsters. Renal karyomegaly, as a common rat response to persistent exposure to ochratoxin A, is not known in humans suspected as being exposed to more than the usual trace amounts of dietary ochratoxin A. Therefore the present findings question assumptions that human response to ochratoxin A conforms to that in the rat.

  16. Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections.

    PubMed

    Yu, Ting; Li, Hong Ye; Zheng, Xiao Dong

    2007-03-20

    This study was conducted to determine the efficacy of chitosan at different concentrations with various intrinsic viscosities alone, and in its combination with a yeast antagonist Cryptococcus laurentii in reducing the blue mold rot caused by Penicillium expansum in apple fruit. The results indicated that application of chitosan alone was effective in inhibiting the blue mold rot in apple fruit wounds, especially with the high concentrations and low viscosities. But its efficacy was declining with the incubation time so that chitosan alone could not provide enduring protection of apple fruit from P. expansum infections. When applied at the concentration range from 0.001 to 0.1% (wt/vol), chitosan did not influence the population growth of C. laurentii in vivo, whereas it markedly repressed the yeast growth as its concentrations were increased up to 0.25% (wt/vol) or higher. Moreover, combination of chitosan and C. laurentii resulted in a synergistic inhibition of the blue mold rot, being the most effective at the optimal concentration of 0.1% of chitosan with the lowest viscosity (12 cP). The possible mode of action of the combination of chitosan and C. laurentii was discussed.

  17. Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit.

    PubMed

    Yu, Ting; Wang, Lianping; Yin, Yun; Wang, Yixi; Zheng, Xiaodong

    2008-02-29

    This study was designed to evaluate the impact of chitin on the antagonistic activity of Cryptococcus laurentii against the postharvest blue mold rot caused by Penicillium expansum in pear fruit. The results showed that the antagonistic activity of C. laurentii obtained from the culture media of nutrient yeast dextrose broth (NYDB) amended with chitin at 0.5-1.0% was improved greatly compared with the case that without chitin. The addition of chitin to NYDB did not influence the growth of C. laurentii, however, its population was found to increase rapidly thereafter in pear fruit wounds compared to that harvested from NYDB without chitin. Moreover, the cell-free filtrate of the chitin-supplement culture media in which the yeast was incubated for 24 h emerged a direct antifungal activity against P. expansum in pear fruit wounds, with the associated high level of chitinase activity. These results suggested that the use of chitin may be an effective method to induce the antagonistic activity of C. laurentii. To our knowledge, this is the first report regarding the chitin could enhance the efficacy of postharvest biocontrol yeasts.

  18. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    PubMed

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  19. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti

    PubMed Central

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F.; García-Rico, Ramón O.; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes. PMID:26751579

  20. Effects of naled and dichlorvos on growth and production of Luteoskyrin byPenicillium islandicum.

    PubMed

    Tseng, H H; Tseng, T C

    1993-03-01

    Two organophosphorus insecticides, 1, 2-dibromo -2, 2-dichloroethyl dimethyl phosphate (naled) and dimethyl 2, 2 -dichlorovinyl phosphate (dichlorvos) were used for investigation of their effects on growth and production of luteoskyrin mycotoxin byPenicillium islandicum in various cultural media at 25°C for 30 days or 60 days. When the concentration of naled and dichlorvos in Czapek solution broth reached 5mg/50mL, growth and production of luteoskyrin by the fungus was completely inhibited. In unpolished rice medium, 15mg/50g of naled was required to retard fungal growth, while the concentration to inhibit the biosynthesis of luteoskyrin was 10mg/50g. On the other hand, if the medium contained dichlorvos at the level of 30mg/50g, the ability to produce luteoskyrin byP islandicum was significantly reduced. In the unhulled rice case, both naled and dichlorvos at the concentration of 15mg/50g were necessary to retard the fungal growth, and 1 mg/50g of each compound exhibits its ability to inhibit the toxin production. Furthermore, it was also found when the cultural medium contained only small amounts of naled and dichlorvos [0.5mg/50g (mL)] the capability to synthesize luteoskyrin by the fungus was drastically reduced. These data strongly suggest that both naled and dichlorvos have similar ability to inhibit luteoskyrin biosynthesis byP islandicum and are also able to retard the fungal growth. PMID:23606065

  1. Rare Chromones from a Fungal Mutant of the Marine-Derived Penicillium purpurogenum G59

    PubMed Central

    Xia, Ming-Wen; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Peng, Ji-Xing; Li, De-Hai

    2015-01-01

    Three new and rare chromones, named epiremisporine B (2), epiremisporine B1 (3) and isoconiochaetone C (4), along with three known remisporine B (1), coniochaetone A (5) and methyl 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (6) were isolated from a mutant from the diethyl sulfate (DES) mutagenesis of a marine-derived Penicillium purpurogenum G59. The structures of 2–4 including the absolute configurations were determined by spectroscopic methods, especially by NMR analysis and electronic circular dichroism (ECD) experiments in conjunction with calculations. The absolute configuration of the known remisporine B (1) was determined for the first time. Compounds 2 and 3 have a rare feature that has only been reported in one example so far. The compounds 1–6 were evaluated for their cytotoxicity against several human cancer cell lines. The present work explored the great potential of our previous DES mutagenesis strategy for activating silent fungal pathways, which has accelerated the discovery of new bioactive compounds. PMID:26295241

  2. Differentiation of Penicillium griseofulvum Dierckx isolates by enzyme assays and by patulin and griseofulvin analyses.

    PubMed Central

    Jimenez, M; Mateo, R; Querol, A; Mateo, J J; Hernandez, E

    1990-01-01

    The production of patulin and griseofulvin by 49 different isolates of Penicillium griseofulvum Dierckx was analyzed by high-performance liquid chromatography. Eleven isolates were obtained from pistachio nuts, 37 were obtained from wheat seeds, and 1 was obtained from the American Type Culture Collection. Activities of 19 enzymes were also assayed by the API ZYM system. From these results it may be deduced that there are two different groups among the strains tested which cannot be distinguished by morphological and cultural characteristics. One group of isolates did not produce detectable amounts of patulin and griseofulvin when grown in sucrose-yeast extract and Wickerham media, while enzymatic activities were quantitatively distinct from the other group, which produced patulin and griseofulvin in variable proportions. Leucine arylamidase, phosphoamidase, and beta-D-glucosidase are the main enzymes with differing activities between the two groups. Differences in physiological characteristics among isolates of a single species reveal shortcomings in the classification of the penicillia based only on morphological criteria. Thus, determination of the ability to yield mycotoxins and antibiotics as well as determination of enzymatic activities appear to be very valuable tools in the taxonomy of these fungi and for food toxicology. PMID:2128009

  3. A taxonomic review of Penicillium species producing conidiophores with solitary phialides, classified in section Torulomyces.

    PubMed

    Visagie, C M; Houbraken, J; Dijksterhuis, J; Seifert, K A; Jacobs, K; Samson, R A

    2016-06-01

    The genus Torulomyces was characterised by species that typically have conidiophores consisting of solitary phialides that produce long chains of conidia connected by disjunctors. Based on the phylogenetic position of P. lagena (generic ex-neotype), the genus and its seven species were transferred to Penicillium and classified in sect. Torulomyces along with P. cryptum and P. lassenii. The aim of this study was to review the species currently classified in sect. Torulomyces using morphology and phylogenies of the ITS, BenA, CaM and RPB2 regions. Based on our results, we accept 16 species in sect. Torulomyces, including 12 new species described as P. aeris, P. austricola, P. cantabricum, P. catalonicum, P. oregonense, P. marthae-christenseniae, P. riverlandense, P. tubakianum, P. variratense, P. williamettense, P. wisconsinense and P. wollemiicola. In addition, we reclassify P. laeve and P. ovatum in sect. Exilicaulis and correct the typification of P. lagena. We provide descriptions and notes on the identification of the species. PMID:27616790

  4. Comparative study of intracellular and extracellular pectinases produced by Penicillium frequentans.

    PubMed

    Kawano, C Y; Chellegatti, M A; Said, S; Fonseca, M J

    1999-04-01

    The filamentous fungus Penicillium frequentans synthesized eleven polygalacturonases (PGs) and two pectinesterases (PEs) when grown in liquid culture supplemented with pectin. Seven PGs and the two PEs were secreted in the medium, whereas four PGs were not secreted. Among the secreted PGs, the endo-PG (band 10) and exo-PGs (band 5) were the enzymes secreted at the highest levels. All secreted PGs bound to lectin and their secretion and/or enzymic activities were inhibited by tunicamycin (TM), except for the constitutive and inducible endo-PG (band 10). Studies on the affinity for concanavalin A (ConA) and the effect of TM suggested that the secreted endo-PG and exo-PG differed in level and process of glycosylation. The exo-PG was characterized as a N-glycoprotein, whereas the endo-PG is probably an O-glycoprotein. The PGs (bands 3 and 4) were neither bound to ConA nor secreted and their enzymic activities were inhibited by TM, suggesting that they are probably N-glycoproteins with complex oligosaccharides of type three and tetra-antennary structure. The other PGs (bands 6 and 8) that were not secreted and did not bind to ConA were not inhibited by TM. These enzymes presented chromatographic characteristics and effects with TM that were similar to endo-PG (band 10), because these PGs might be unglycosylated or/and aggregate forms of the endo-PG (band 10).

  5. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits.

    PubMed

    da Rocha Neto, Argus Cezar; Luiz, Caroline; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2016-03-16

    Apples are among the most commonly consumed fruits worldwide. Blue mold (Penicillium expansum) is one of the major diseases in apples postharvest, leading to wide use of fungicides and the search for alternative products to control the pathogen. In this context, this study aimed to evaluate the potential of salicylic acid (SA) as an alternative product to control blue mold and to preserve the physicochemical characteristics of apple fruit postharvest. The antimicrobial effect of SA was determined both in vitro and in situ, by directly exposing conidia to solutions of different concentrations SA or by inoculating the fruit with P. expansum and treating them curatively, eradicatively, or preventively with a 2.5mM SA solution. The physiological effects of SA on fruit were determined by quantifying the weight loss, total soluble solids content, and titratable acidity. In addition, the accumulation of SA in the fruit was determined by HPLC. SA (2.5mM) inhibited 100% of fungal germination in vitro and also controlled blue mold in situ when applied eradicatively. In addition, HPLC analysis demonstrated that SA did not persist in apple fruit. SA also maintained the physicochemical characteristics of fruit of different quality categories. Thus, SA may be an alternative to the commercial fungicides currently used against P. expansum. PMID:26808096

  6. Identification and characterization of an acidic and acid-stable endoxyloglucanase from Penicillium oxalicum.

    PubMed

    Xian, Liang; Wang, Fei; Yin, Xin; Feng, Jia-Xun

    2016-05-01

    Xyloglucan is a major structural macromolecule of the primary cell wall of spermatophytes. The hydrolysis of xyloglucan by xyloglucanases may facilitate the hydrolysis of cellulose by cellulases, which is beneficial for bioethanol production. Penicillium oxalicum has been employed for commercial cellulase production. In P. oxalicum, many genes and proteins related to the degradation of structural macromolecules of the plant cell wall have been found, but no gene encoding a xyloglucanase has been identified. In this study, a gene, PoxXEG12A, was cloned from P. oxalicum and expressed in Pichia pastoris, and the gene product was enzymatically characterized. PoxXEG12A shared 63% sequence identity with endoxyloglucanases from Aspergillus niger and Aspergillus aculeatus. PoxXEG12A specifically hydrolyzed tamarind xyloglucan in endo-acting mode and, thus, it is an endoxyloglucanase. PoxXEG12A was most active at pH 4.5-5.5 and at 55-60 °C, with a specific activity of 172 U/mg protein toward tamarind xyloglucan. The enzyme was stable at pH 3.5-7.0 and below 40 °C. The properties of the endoxyloglucanase PoxXEG12A suggest that the enzyme might have potential in industrial applications.

  7. Penicillium species-induced granuloma in a cat resulting in chronic lower urinary tract disease.

    PubMed

    Soonthornsit, Jeerawat; Banlunara, Wijit; Niyomthum, Waree; Pusoonthornthum, Rosama

    2013-12-01

    A 5-year-old, female neutered Persian cat was admitted to the Small Animal Hospital (Chulalongkorn University, Bangkok, Thailand) with clinical signs of dysuria, haematuria and partial urethral obstruction that had manifested over several months. The animal also had hyperkalaemia and severe azotaemia at the time of presentation. Urinalysis showed haematuria, pyuria and the presence of several transitional cells. In addition, ultrasonography demonstrated an extraluminal mass between the neck of urinary bladder and the colon. Fine-needle aspiration of the mass revealed a fungal form with branching and septate hyphae. Consequently, itraconazole treatment was prescribed and clinical signs of improvement were seen after 7 days. However, 1 month later, the cat died of acute anaemia. Necropsy revealed the presence of extraluminal multifocal fungal granuloma at the neck of the urinary bladder, and contracted kidneys. Histopathological analysis of the fungal granuloma was found to be composed of branching, septate hyphal fungi together with inflammatory cells. Subsequent fungal culture and identification revealed this to be a species of Penicillium.

  8. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes.

  9. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment

    PubMed Central

    Bergsten-Torralba, L.R.; Nishikawa, M.M.; Baptista, D.F.; Magalhães, D.P.; da Silva, M.

    2009-01-01

    The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198), Reactive Blue 214 (RB214), Reactive Blue 21 (RB21) and the mixture of the three dyes (MXD) by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50). P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments. PMID:24031428

  10. Alteration of Acrylonitrile-Methylacrylate-Butadiene Terpolymer by Nocardia rhodochrous and Penicillium notatum†

    PubMed Central

    Antoine, A. D.; Dean, A. V.; Gilbert, S. G.

    1980-01-01

    [14C]Barex-210, a terpolymer of acrylonitrile, methylacrylate, and butadiene, was tested for bioconversion. Powdered samples of polymer, each specifically 14C labeled at different carbon atoms of the polymer, were incubated with either Nocardia rhodochrous or Penicillium notatum in an enriched growth medium for various periods of time. After 6 months of incubation, the 14C-labeled polymer was transformed from a high-molecular-weight material completely soluble in dimethyl formamide (DMF) into both a lower-molecular-weight form still soluble in DMF and a second form that was no longer soluble in DMF. The amount of 14C-labeled carbon atoms converted into DMF-insoluble material was 8% of the backbone carbon-carbon atoms and 12% of the side-chain nitrile and acrylate atoms from the acrylonitrile-methylacrylate copolymer and 60% of the elastomer (acrylonitrile-butadiene copolymer) atoms. Metabolism of the polymer was not established from measurements of metabolic 14CO2. Evolution of 14CO2 amounted to only 0.3, 0.6, 1.8, and 3.3% of these four fractions, respectively. Although the transformation of high-molecular-weight polymer into DMF-insoluble material was rapid in the early stages of microbial growth, the accompanying CO2 evolution was much slower. Further evidence of polymer alteration was indicated by the infrared spectrum of the insoluble material, which showed a disappearance of the nitrile and methylacrylate peaks. PMID:16345541

  11. Calcium-induced conidiation in Penicillium cyclopium: calcium triggers cytosolic alkalinization at the hyphal tip.

    PubMed Central

    Roncal, T; Ugalde, U O; Irastorza, A

    1993-01-01

    Addition of Ca2+ (1 to 10 mM) to submerged cultures of Penicillium cyclopium induces conidiation. Ca2+ induced an increase in cytosolic pH from approximately 7.00 to > 7.60 in less than 10 min, as determined with the fluorescent pH probe fluorescein. Measurement of the H(+)-ATPase activity in total membrane fractions did not show any stable activation in vivo as a result of Ca2+ treatment. By fluorescence ratio imaging microscopy, it was observed that vegetative hyphae exhibit a tip-to-base pH gradient, with the tip being more acidic. Ca2+ caused this gradient to dissipate within 10 min. The effect of several agents that are supposed to cause internal acidification, by different means, on conidiation was tested. Concentrations of these agents that did not significantly affect growth but inhibited Ca(2+)-induced conidiation also prevented the intracellular alkalinization observed after exposure to the cation. Calcium channel blockers (lanthanum, cobalt, verapamil, and nifedipine) were not able to inhibit Ca(2+)-induced conidiation, although their effect on calcium uptake was not evaluated. However, the combined results point towards externally bound Ca2+ as the primary agent of conidiation induction, causing changes in plasma membrane function which disrupt the pH gradient observed during apical growth. Images PMID:8380805

  12. Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti

    PubMed Central

    Kaminski, E.; Stawicki, S.; Wasowicz, E.

    1974-01-01

    Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant. PMID:16349989

  13. Cloning and High-Level Expression of α-Galactosidase cDNA from Penicillium purpurogenum

    PubMed Central

    Shibuya, Hajime; Nagasaki, Hiroaki; Kaneko, Satoshi; Yoshida, Shigeki; Park, Gwi Gun; Kusakabe, Isao; Kobayashi, Hideyuki

    1998-01-01

    The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides. PMID:9797312

  14. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum

    PubMed Central

    Singh, Vineeta; Praveen, Vandana; Tripathi, Divya; Haque, Shafiul; Somvanshi, Pallavi; Katti, S. B.; Tripathi, C. K. M.

    2015-01-01

    During the search for a potent antifungal drug, a cell-permeable metabolite was isolated from a soil isolate taxonomically identified as Penicillium radicum. The strain was found to be a potent antifungal agent. Production conditions of the active compound were optimized and the active compound was isolated, purified, characterized and identified as a phosphoinositide 3-kinase (PI3K) inhibitor, commonly known as wortmannin (Wtmn). This is very first time we are reporting the production of Wtmn from P. radicum. In addition to its previously discovered anticancer properties, the broad spectrum antifungal property of Wtmn was re-confirmed using various fungal strains. Virtual screening was performed through molecular docking studies against potential antifungal targets, and it was found that Wtmn was predicted to impede the actions of these targets more efficiently than known antifungal compounds such as voriconazole and nikkomycin i.e. 1) mevalonate-5-diphosphate decarboxylase (1FI4), responsible for sterol/isoprenoid biosynthesis; 2) exocyst complex component SEC3 (3A58) where Rho- and phosphoinositide-dependent localization is present and 3) Kre2p/Mnt1p a Golgi alpha1,2-mannosyltransferase (1S4N) involved in the biosynthesis of yeast cell wall glycoproteins). We conclude that Wtmn produced from P. radicum is a promising lead compound which could be potentially used as an efficient antifungal drug in the near future after appropriate structural modifications to reduce toxicity and improve stability. PMID:26159770

  15. Toxicity of penicillic acid for rat alveolar macrophages in vitro. [Aspergillus; Penicillium

    SciTech Connect

    Sorenson, W.G.; Simpson, J.

    1985-12-01

    Penicillic acid (PA) is a polyketide mycotoxin produced by several species of Aspergillus and Penicillium. This mycotoxin is toxic in experimental animals and has also been reported to be carcinogenic. The cytotoxicity of penicillic acid was studied in rat albeolar macrophages (AM) in vitro. The effects of penicillic acid on membrane integrity were studied by measuring cell volume changes and /sup 51/Cr release. There was a significant decrease in adenosine triphosphate (ATP) in cell cultures exposed to 1.0 mM penicillic acid for 4 hr. Inhibition of the incorporation of (/sup 3/H)leucine into protein was both dose- and time-dependent and protein synthesis was inhibited significantly after 2 hr exposure to greater than or equal to0.1 mM penicillic acid. RNA synthesis was inhibited to a lesser extent than protein synthesis. There was significant inhibition of phagocytosis after 2 hr exposure at greater than or equal to0.3 mM penicillic acid and the ED/sub 50/ for phagocytosis was 0.09 mM. Thus phagocytosis was more sensitive to the toxic effects of penicillic acid than any other cellular process studied. The data suggest the possibility of a respiratory hazard to agricultural workers exposed to contaminated grain.

  16. Detergent-like stressor and nutrient in metabolism of Penicillium chrysogenum

    PubMed Central

    Jakovljević, Violeta; Milićević, Jasmina; Stojanović, Jelica

    2014-01-01

    The influence of detergents on the metabolism of Penicillium chrysogenum from two aspects, as a stress factor and potential nutrient, was studied. The fungus was isolated from the river bed Lepenica, Kragujevac, at a place where sewage domestic wastewater discharged into the river. The fungus was grown in a liquid nutrient medium according to Czapek with and without addition of commercial detergent (MERIX, Henkel, Serbia) at a concentration of 0.3% and 0.5%. The biochemical changes of pH, redox potential, free and total organic acids, total dry weight biomass, activity of alkaline and acid invertase and alkaline phosphatase were evaluated from day 3 to day 16 of the fungus growth. At the same time, detergent disappearance in terms of methylene blue active substances in the medium was measured. The detergent at a concentration of 0.5% showed a fungicide effect. In the medium with 0.3% of detergent, there was increased pH and concentration of organic acids, but decreased redox potential and total dry weight biomass. The detergent also showed an inhibitory effect on invertase and phosphatase activity. P. chrysogenum decomposed 50.2% of the total detergent concentration for an experimental period of 16 days. PMID:26019487

  17. Penicillium chrysogenum Takes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion

    PubMed Central

    Hillenga, D. J.; Versantvoort, H.; van der Molen, S.; Driessen, A.; Konings, W. N.

    1995-01-01

    Penicillium chrysogenum utilizes phenylacetic acid as a side chain precursor in penicillin G biosynthesis. During industrial production of penicillin G, phenylacetic acid is fed in small amounts to the medium to avoid toxic side effects. Phenylacetic acid is taken up from the medium and intracellularly coupled to 6-aminopenicillanic acid. To enter the fungal cell, phenylacetic acid has to pass the plasma membrane. The process via which phenylacetic acid crosses the plasma membrane was studied in mycelia and liposomes. Uptake of phenylacetic acid by mycelium was nonsaturable, and the initial velocity increased logarithmically with decreasing external pH. Studies with liposomes demonstrated a rapid passive flux of the protonated species through liposomal membranes. These results indicate that phenylacetic acid passes the plasma membrane via passive diffusion of the protonated species. The rate of phenylacetic acid uptake at an external concentration of 3 mM is at least 200-fold higher than the penicillin production rate in the Panlabs P2 strain. In this strain, uptake of phenylacetic acid is not the rate-limiting step in penicillin G biosynthesis. PMID:16535072

  18. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  19. Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum.

    PubMed

    Santos-Ebinuma, Valéria Carvalho; Roberto, Inês Conceição; Teixeira, Maria Francisca Simas; Pessoa, Adalberto

    2014-01-01

    Safety issues related to the employment of synthetic colorants in different industrial segments have increased the interest in the production of colorants from natural sources, such as microorganisms. Improved cultivation technologies have allowed the use of microorganisms as an alternative source of natural colorants. The objective of this work was to evaluate the influence of some factors on natural colorants production by a recently isolated from Amazon Forest, Penicillium purpurogenum DPUA 1275 employing statistical tools. To this purpose the following variables: orbital stirring speed, pH, temperature, sucrose and yeast extract concentrations and incubation time were studied through two fractional factorial, one full factorial and a central composite factorial designs. The regression analysis pointed out that sucrose and yeast extract concentrations were the variables that influenced more in colorants production. Under the best conditions (yeast extract concentration around 10 g/L and sucrose concentration of 50 g/L) an increase of 10, 33 and 23% respectively to yellow, orange and red colorants absorbance was achieved. These results show that P. purpurogenum is an alternative colorants producer and the production of these biocompounds can be improved employing statistical tool. PMID:25242965

  20. Biochemical Characterization of Ochratoxin A-Producing Strains of the Genus Penicillium

    PubMed Central

    Larsen, Thomas Ostenfeld; Svendsen, Anne; Smedsgaard, Jørn

    2001-01-01

    In order to explore the biochemical scope of ochratoxin A-producing penicillia, we screened 48 Penicillium verrucosum isolates for the production of secondary metabolites. Fungal metabolites were analyzed by high-pressure liquid or gas chromatography coupled to diode array detection or mass spectrometry. The following metabolites were identified: ochratoxins A and B, citrinin, verrucolones, verrucines, anacines, sclerotigenin, lumpidin, fumiquinazolines, alantrypinones, daldinin D, dipodazine, penigequinolines A and B, 2-pentanone, and 2-methyl-isoborneol. By use of average linking clustering based on binary (nonvolatile) metabolite data, the 48 isolates could be grouped into two large and clearly separated groups and a small outlying group of four non-ochratoxin-producing isolates. The largest group, containing 24 isolates, mainly originating from plant sources, included the type culture of P. verrucosum. These isolates produced ochratoxin A, verrucolones, citrinin, and verrucines and had a characteristic dark brown reverse color on yeast extract-sucrose agar medium. Almost all of a group of 20 isolates mainly originating from cheese and meat products had a pale cream reverse color on yeast extract-sucrose agar medium and produced ochratoxin A, verrucolones, anacines, and sclerotigenin. This group included the former type culture of P. nordicum. We also found that P. verrucosum isolates and three P. nordicum isolates incorporated phenylalanine into verrucine and lumpidin metabolites, a finding which could explain why those isolates produced relatively lower levels of ochratoxins than did most isolates of P. nordicum. PMID:11472940

  1. Penicillium menonorum: A Novel Fungus to Promote Growth and Nutrient Management in Cucumber Plants

    PubMed Central

    Babu, Anam Giridhar; Kim, Sang Woo; Yadav, Dil Raj; Hyum, Umyong; Adhikari, Mahesh

    2015-01-01

    The present study is the first report on the isolation of Penicillium menonorum from rhizosphere soil in Korea and its identification based on morphological characteristics and internal transcribed spacer gene sequence. The fungal isolate was named KNU-3 and was found to exhibit plant growth-promoting (PGP) activity through indole acetic acid (IAA) and siderophore production, as well as P solubilization. KNU-3 produced 9.7 mg/L IAA and solubilized 408 mg of Ca3PO4/L, and inoculation with the isolate significantly (p < 0.05) increased the dry biomass of cucumber roots (57%) and shoots (52%). Chlorophyll, starch, protein, and P contents were increased by 16%, 45%, 22%, and 14%, respectively, compared to plants grown in uninoculated soil. The fungus also increased soil dehydrogenase (30%) and acid phosphatase (19%) activities. These results demonstrate that the isolate KNU-3 has potential PGP attributes, and therefore it can be considered as a new fungus to enhance soil fertility and promote plant growth. Moreover, the discovery of PGP ability and traits of this fungus will open new aspects of research and investigations. In this study, plant growth promotion by P. menonorum KNU-3 is reported for the first time in Korea after its original description. PMID:25892915

  2. Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus.

    PubMed

    Henk, D A; Eagle, C E; Brown, K; Van Den Berg, M A; Dyer, P S; Peterson, S W; Fisher, M C

    2011-10-01

    Eighty years ago, Alexander Fleming described the antibiotic effects of a fungus that had contaminated his bacterial culture, kick starting the antimicrobial revolution. The fungus was later ascribed to a putatively globally distributed asexual species, Penicillium chrysogenum. Recently, the species has been shown to be genetically diverse, and possess mating-type genes. Here, phylogenetic and population genetic analyses show that this apparently ubiquitous fungus is actually composed of at least two genetically distinct species with only slight differences detected in physiology. We found each species in air and dust samples collected in and around St Mary's Hospital where Fleming worked. Genotyping of 30 markers across the genome showed that preserved fungal material from Fleming's laboratory was nearly identical to derived strains currently in culture collections and in the same distinct species as a wild progenitor strain of current penicillin producing industrial strains rather than the type species P. chrysogenum. Global samples of the two most common species were found to possess mating-type genes in a near 1:1 ratio, and show evidence of recombination with little geographic population subdivision evident. However, no hybridization was detected between the species despite an estimated time of divergence of less than 1MYA. Growth studies showed significant interspecific inhibition by P. chrysogenum of the other common species, suggesting that competition may facilitate species maintenance despite globally overlapping distributions. Results highlight under-recognized diversity even among the best-known fungal groups and the potential for speciation despite overlapping distribution.

  3. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum.

    PubMed

    Snini, Selma P; Tannous, Joanna; Heuillard, Pauline; Bailly, Sylviane; Lippi, Yannick; Zehraoui, Enric; Barreau, Christian; Oswald, Isabelle P; Puel, Olivier

    2016-08-01

    The blue mould decay of apples is caused by Penicillium expansum and is associated with contamination by patulin, a worldwide regulated mycotoxin. Recently, a cluster of 15 genes (patA-patO) involved in patulin biosynthesis was identified in P. expansum. blast analysis revealed that patL encodes a Cys6 zinc finger regulatory factor. The deletion of patL caused a drastic decrease in the expression of all pat genes, leading to an absence of patulin production. Pathogenicity studies performed on 13 apple varieties indicated that the PeΔpatL strain could still infect apples, but the intensity of symptoms was weaker compared with the wild-type strain. A lower growth rate was observed in the PeΔpatL strain when this strain was grown on nine of the 13 apple varieties tested. In the complemented PeΔpatL:patL strain, the ability to grow normally in apple and the production of patulin were restored. Our results clearly demonstrate that patulin is not indispensable in the initiation of the disease, but acts as a cultivar-dependent aggressiveness factor for P. expansum. This conclusion was strengthened by the fact that the addition of patulin to apple infected by the PeΔpatL mutant restored the normal fungal colonization in apple. PMID:26582186

  4. Does the mycotoxin citrinin function as a sun protectant in conidia from Penicillium verrucosum.

    PubMed

    Størmer, F C; Sandven, P; Huitfeldt, H S; Eduard, W; Skogstad, A

    1998-01-01

    Our results demonstrate high concentrations of the UV absorbing mycotoxin citrinin in the outer layer of spores from three citrinin-producing strains of Penicillium verrucosum, which is released in an aqueous environment. An important function of the toxin could be to act as a sun protectant in order to create favorable conditions during the initial germination process. When spores from these strains of P. verrucosum were examined by confocal microscopy, a clearly visible fluorescent layer associated with the cell wall was observed. The strains were grown on agar plates, and the mycelial mat was washed with saline. This suspension contained at least 95% of the spores and particulate material, which was removed by filtration after counting the conidia. An aliquot of this filtrate was extracted and citrinin was purified by high pressure liquid chromatography. The absorbance at 319 nm was used to calculate the amount of UV absorbing material released from the spores. Based on the spore numbers in the suspension of the saline extract, we estimated that this material released was 1.4-4.1 pg per spore or 8-24% of the spore weight. Citrinin (and minor amounts of ochratoxin A and some other unidentificable fluorescent compounds) were observed in the filtrate when subjected to thin layer chromatography.

  5. A Simple Route for Purifying Extracellular Poly(3-hydroxybutyrate)-depolymerase from Penicillium pinophilum

    PubMed Central

    Mitlianga, Paraskevi

    2014-01-01

    This work proposes the purification of an active and efficient enzyme, extracellular poly(3-hydroxybutyrate) (PHB)-depolymerase, suitable for industrial applications. This is achieved by the application of an easy, fast, and cheap route, skipping the chromatography step. Chromatography with one or two columns is a common step in the purification procedure, which however renders the isolation of the enzyme a time consuming and an expensive process. A strain of the fungus Penicillium pinophilum (ATCC 9644) is used for the isolation of extracellular PHB-depolymerase. The molecular weight of the purified enzyme is about 35 kDa and is estimated by gel electrophoresis (SDS-PAGE, 12% polyacrylamide). The enzymatic activity of the isolated enzyme is determined to be 3.56-fold similar to that found by other researchers that have used chromatography for the isolation. The as-isolated enzyme disintegrates the poly(3-hydroxybutyrate) (PHB) films successfully, as it is demonstrated by the biodegradation test results provided here. PMID:25328684

  6. Penicillium janthinellum: a source of efficient and high levels of β-glucosidase.

    PubMed

    Kaur, Amandeep; Chadha, B S

    2015-01-01

    Penicillium janthinellum strain isolated from leaf litters of oak trees from montane alpine forests of Shivalik hills (India) produced high levels of β-glucosidase both during solid-state fermentation (796 units/gds) and shake flask cultures (65.3 units/ml). The peptide mass fingerprinting of the secretome showed a variety of glycosyl hydrolases. β-Glucosidase was purified and characterized to be a GH3 family member that had a molecular weight (M r) of 101 kDa and pI of 4.5. β-Glucosidase was optimally active at 60 °C at pH 5.0 but showed appreciable activity and thermostability under alkaline conditions (pH 9.0) also. β-Glucosidase activity was positively modulated in the presence of Mn(2+) ions. The enzyme preferentially catalyzed the hydrolysis of p-nitrophenol-β-D-glucopyranoside (pNPG) but also recognized cellobiose as substrates. K m and V max for the hydrolysis of pNPG by β-glucosidase were calculated as 3.3 mM and 444 μmol min(-1) mg protein(-1). Purified β-glucosidase showed transglycosylation activity in the presence of methanol as an acceptor molecule.

  7. Integrated control of Penicillium digitatum by the predacious yeast Saccharomycopsis crataegensis and sodium bicarbonate on oranges

    PubMed Central

    Pimenta, R. S.; Silva, J. F. M.; Coelho, C. M.; Morais, P. B.; Rosa, C. A.; Corrêa Jr, A.

    2010-01-01

    Our investigation of integrated biological control (IBC) started with an assay testing activity of the predacious yeast Saccharomycopsis crataegensis UFMG-DC19.2 against Penicillium digitatum LCP 4354, a very aggressive fungus that causes postharvest decay in oranges. Under unfavourable environmental conditions, the yeast showed a high potential for control (39.9% disease severity reduction) of this fungus. This result was decisive for the next step, in which S. crataegensis was tested in association with sodium bicarbonate salt, a generally regarded as safe (GRAS) substance. The yeast was able to survive at different concentrations of the salt (1%, 2% and 5%), and continued to grow for a week at the wound site, remaining viable at high population for 14 days on the fruit surface. The yeast alone reduced the severity of decay by 41.7% and sodium bicarbonate alone reduced severity of decay by 19.8%, whereas the application of both led to a delay in the development of symptoms from 2 to 10 days. Ingredients of the formulations were not aggressive to fruits since no lesions were produced in control experiments. PMID:24031511

  8. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    PubMed Central

    Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.

    2013-01-01

    The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005

  9. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits.

    PubMed

    da Rocha Neto, Argus Cezar; Luiz, Caroline; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2016-03-16

    Apples are among the most commonly consumed fruits worldwide. Blue mold (Penicillium expansum) is one of the major diseases in apples postharvest, leading to wide use of fungicides and the search for alternative products to control the pathogen. In this context, this study aimed to evaluate the potential of salicylic acid (SA) as an alternative product to control blue mold and to preserve the physicochemical characteristics of apple fruit postharvest. The antimicrobial effect of SA was determined both in vitro and in situ, by directly exposing conidia to solutions of different concentrations SA or by inoculating the fruit with P. expansum and treating them curatively, eradicatively, or preventively with a 2.5mM SA solution. The physiological effects of SA on fruit were determined by quantifying the weight loss, total soluble solids content, and titratable acidity. In addition, the accumulation of SA in the fruit was determined by HPLC. SA (2.5mM) inhibited 100% of fungal germination in vitro and also controlled blue mold in situ when applied eradicatively. In addition, HPLC analysis demonstrated that SA did not persist in apple fruit. SA also maintained the physicochemical characteristics of fruit of different quality categories. Thus, SA may be an alternative to the commercial fungicides currently used against P. expansum.

  10. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action.

    PubMed

    da Rocha Neto, Argus Cezar; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2015-12-23

    Apple is a fruit widely produced and consumed around the world. Blue mold (Penicillium expansum) is one of the main postharvest diseases in apples, leading to a wide use of fungicides and the search for alternative products. The aim of this study was to assess the effect of salicylic acid (SA) against P. expansum, elucidating its mechanisms of action. The antimicrobial effect was determined by exposing conidia to a 2.5 mM SA solution for 0 to 120 min, followed by incubation. The effect of pH on the efficacy of SA against P. expansum was assessed both in vitro and in situ. The action mechanisms were investigated through fluorescence assays, measurement of protein leakage, lipid damage, and transmission electronic microscopy. SA was capable of inhibiting 90% of the fungal germination after 30 min, causing damage to the conidial plasma membrane and leading to protein leakage up to 3.2 μg of soluble protein per g of mycelium. The pH of the SA solution affected the antimicrobial activity of this secondary metabolite, which inhibited the germination of P. expansum and the blue mold incidence in apples in solutions with pH≤3 by 100%, gradually losing its activity at higher pH.

  11. Comparison of Free and Immobilized L-asparaginase Synthesized by Gamma-Irradiated Penicillium cyclopium.

    PubMed

    El-Refai, Heba A; Shafei, Mona S; Mostafa, Hanan; El-Refai, Abdel-Monem H; Araby, Eman M; El-Beih, Fawkia M; Easa, Saadia M; Gomaa, Sanaa K

    2016-01-01

    Gamma irradiation is used on Penicillium cyclopium in order to obtain mutant cells of high L-asparaginase productivity. Using gamma irradiation dose of 4 KGy, P. cyclopium cells yielded L-asparaginase with extracellular enzyme activity of 210.8 ± 3 U/ml, and specific activity of 752.5 ± 1.5 U/mg protein, which are 1.75 and 1.53 times, respectively, the activity of the wild strain. The enzyme was partially purified by 40-60% acetone precipitation. L-asparaginase was immobilized onto Amberlite IR-120 by ionic binding. Both free and immobilized enzymes exhibited maximum activity at pH 8 and 40 degrees C. The immobilization process improved the enzyme thermal stability significantly. The immobilized enzyme remained 100% active at temperatures up to 60 degrees C, while the free asparaginase was less tolerant to high temperatures. The immobilized enzyme was more stable at pH 9.0 for 50 min, retaining 70% of its relative activity. The maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) of the free form were significantly changed after immobilization. The K(m) value for immobilized L-asparaginase was about 1.3 times higher than that of free enzyme. The ions K+, Ba2+ and Na+ showed stimulatory effect on enzyme activity with percentages of 110%, 109% and 106% respectively.

  12. Biochemistry of lipolytic enzymes secreted by Penicillium solitum and Cladosporium cladosporioides.

    PubMed

    Chinaglia, Selene; Chiarelli, Laurent R; Maggi, Maristella; Rodolfi, Marinella; Valentini, Giovanna; Picco, Anna Maria

    2014-01-01

    Two distinct extracellular lipases were obtained from Penicillium solitum 194A, isolated from domestic compost, and Cladosporium cladosporioides 194B, isolated from dairy wastewater. These alkaline enzymes had molecular masses of 42 and 30 kDa, respectively. The P. solitum 194A lipase differed in mass from previously reported enzyme, indicating that it is a novel lipase, and indicating that penicillia can secrete lipase isoenzymes. The C. cladosporioides lipase was more active on esters of medium-chain acids, whereas the P. solitum lipase was more active on longer chained substrates. The C. cladosporioides enzyme displayed higher thermal stability than the P. solitum lipase, preserving full activity up to 48 °C and showing a T₅₀ (10 min) of 60 °C. Their different catalytic properties and good protein stability should make these enzymes suitable for biotechnological applications. Furthermore, the combined use of these two fungal strains may prove to be valuable in lipid-rich waste management.

  13. Evaluation of phenolics and sugars as inducers of quercetinase activity in Penicillium olsonii.

    PubMed

    Tranchimand, Sylvain; Tron, Thierry; Gaudin, Christian; Iacazio, Gilles

    2005-12-15

    Quercetinase is produced by various filamentous fungi when grown on rutin as sole carbon and energy source. We investigated on the effect of 10 phenolics and two sugars, structurally related to substrates and products of the rutin catabolic pathway, on the induction of a quercetinase activity in Penicillium olsonii. Neither the sugars (glucose and rhamnose, two constituents of rutin), nor phenolics such as protocatechuic acid, salicylic acid, 4-hydroxy-benzoic acid and phloroglucinol were inducers. Rutin (maximum activity 150 nmol/min/mL after 5 days), quercetin (70 nmol/min/mL, 3 days), phloroglucinol carboxylic acid (60 nmol/min/mL, 3 days), 2-protocatechuoylphloroglucinolcarboxylic acid (50 nmol/min/mL, 5 days), 2,6-dihydroxy-carboxylic acid (90 nmol/min/mL, 7 days) and 2,4-dihydroxy-carboxylic acid (30 nmol/min/mL, 7 days) were demonstrated to be quercetinase inducers. We propose that rutin, quercetin and 2-protocatechuoyl-phloroglucinol carboxylic acid, the product of the reaction catalysed by quercetinase, act as inducers after their catabolic transformation in phloroglucinol carboxylic acid.

  14. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum.

    PubMed

    Fu, Liu-Hui; Hu, Kang-Di; Hu, Lan-Ying; Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  15. Patulin distribution in Fuji and Golden apples contaminated with Penicillium expansum.

    PubMed

    Marín, S; Morales, H; Hasan, H A H; Ramos, A J; Sanchis, V

    2006-12-01

    This work assesses the extent of patulin contamination in Penicillium expansum-infected apples stored at room temperature for short periods of time and its relationship with apple variety (Golden or Fuji), degree of ripeness and size of lesions. Inoculated apples were incubated at 20 degrees C. Patulin was determined in both sound and decayed tissue from cylindrical samples taken around the lesions and cut into 0.5-cm thick sections. Higher accumulation of patulin occurred in Golden apples, with less ripened apples showing higher concentrations. Total accumulated patulin was similar or higher in 4-cm compared to 2-cm lesioned apples, although a decrease in patulin concentration was observed in older lesion sections. Patulin accumulation occurred over a short period of time at room temperature, thus the stand-by period before processing should be minimised. Of total patulin, 2-6% migrated to the surrounding sound tissue, thus trimming tissue around the rotten part may be a good preventive practice for apple derivative production. PMID:17118875

  16. Assessment of exposure to the Penicillium glabrum complex in cork industry using complementing methods.

    PubMed

    Viegas, Carla; Sabino, Raquel; Botelho, Daniel; dos Santos, Mateus; Gomes, Anita Quintal

    2015-09-01

    Cork oak is the second most dominant forest species in Portugal and makes this country the world leader in cork export. Occupational exposure to Chrysonilia sitophila and the Penicillium glabrum complex in cork industry is common, and the latter fungus is associated with suberosis. However, as conventional methods seem to underestimate its presence in occupational environments, the aim of our study was to see whether information obtained by polymerase chain reaction (PCR), a molecular-based method, can complement conventional findings and give a better insight into occupational exposure of cork industry workers. We assessed fungal contamination with the P. glabrum complex in three cork manufacturing plants in the outskirts of Lisbon using both conventional and molecular methods. Conventional culturing failed to detect the fungus at six sampling sites in which PCR did detect it. This confirms our assumption that the use of complementing methods can provide information for a more accurate assessment of occupational exposure to the P. glabrum complex in cork industry.

  17. Cytotoxic dihydrothiophene-condensed chromones from the marine-derived fungus Penicillium oxalicum.

    PubMed

    Sun, Yu-Lin; Bao, Jie; Liu, Kai-Sheng; Zhang, Xiao-Yong; He, Fei; Wang, Yi-Fei; Nong, Xu-Hua; Qi, Shu-Hua

    2013-10-01

    Two new dihydrothiophene-condensed chromones and a new natural chromone, namely oxalicumones A-C (1-3), respectively, were isolated from a culture broth of a marine-derived fungus, Penicillium oxalicum. The structures of 1-3 and acetylated derivatives of 1 (4-7) were elucidated on the basis of spectroscopic methods and chemical reactions. The absolute configuration of 1 and 2 were established by using the modified Mosher ester method and circular dichroism data of an in situ formed [Rh2(OCOCF3)4] and [Mo2(OAc)4] complex. (R)-MTPA ester of 1 showed cytotoxicity against A375, SW-620, and HeLa carcinoma cell lines with IC50 values of 8.9, 7.8, and 18.4 µM, respectively. Compound 1 displayed cytotoxicity against A375 and SW-620 cell lines with IC50 values of 11.7 and 22.6 µM, respectively. The structure-biological activity relationship of 1 was discussed.

  18. Cytotoxic dihydrothiophene-condensed chromones from marine-derived fungus Penicillium oxalicum.

    PubMed

    Sun, Yu-Lin; He, Fei; Liu, Kai-Sheng; Zhang, Xiao-Yong; Bao, Jie; Wang, Yi-Fei; Nong, Xu-Hua; Xu, Xin-Ya; Qi, Shu-Hua

    2012-12-01

    Two new dihydrothiophene-condensed chromones and a new natural chromone, namely oxalicumones A-C (1-3), respectively, were isolated from a culture broth of a marine-derived fungus Penicillium oxalicum SCSGAF 0023, Meripilaceae family. The structures of 1-3 and acetylated derivatives of 1 (4-7) were elucidated on the basis of spectroscopic methods and chemical reactions. The absolute configuration of 1 was established by using the modified Mosher ester method and circular dichroism data of in situ formed [Rh₂(OCOCF₃)₄] and [Mo₂(OAc)₄] complexes. (R)-MTPA ester of 1 showed cytotoxicity against A375, SW-620, and HeLa carcinoma cell lines with IC₅₀ values of 8.9, 7.8, and 18.4 µM, respectively. Compound 1 displayed cytotoxicity against A375 and SW-620 cell lines with IC₅₀ values of 11.7 and 22.6 µM, respectively. The structure-biological activity relationship of 1 is discussed.

  19. Fructose affecting morphology and inducing β-fructofuranosidases in Penicillium janczewskii.

    PubMed

    Pessoni, Rosemeire A B; Tersarotto, Carla C; Mateus, Cássia A P; Zerlin, Juliana K; Simões, Kelly; de Cássia L Figueiredo-Ribeiro, Rita; Braga, Márcia R

    2015-01-01

    Fructose, glucose, and an equimolar mixture of both sugars affected differently hyphae thickness, biomass production and secretion of β-fructofuranosidase in Penicillium janczewskii. Reduced growth, thinner hyphae and visible injuries were early observed during fungal cultivation in fructose-containing medium, reaching the maximum between 12 and 15 days of culture. Total sugar content from the cell wall was lower when fructose was supplied and polysaccharides lower than 10 kDa predominated, regardless the culture age. Maximal inulinase and invertase activities were detected in culture filtrates after 12 days, excepting in the glucose-containing medium. Structural changes in cell walls coincided with the increase of extracellular enzyme activity in the fructose-containing medium. The fragility of the hyphae might be related with both low carbohydrate content and predominance of low molecular weight glucans in the walls. Data presented here suggest changes in carbohydrate component of the cell walls are induced by the carbon source. PMID:26380163

  20. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity

    NASA Astrophysics Data System (ADS)

    Govindappa, M.; Farheen, H.; Chandrappa, C. P.; Channabasava; Rai, Ravishankar V.; Raghavendra, Vinay B.

    2016-09-01

    Silver nanoparticles were synthesized using endophytic fungal species, Penicillium species from Glycosmis mautitiana. Phytochemicals, namely tannins, saponins, terpenoids and flavonoids, were identified in Penicillium species extracts, and act as agents of reducing and capping in the conversion of silver nanoparticles into nanoparticles. Using SEM, UV-spectroscopy and XRD, the Penicillium species silver nanoparticles (PsAgNPs) were characterized. The PsAgNPs are shown to be strong antioxidants (DDPH and FRAP), have demonstrated anti-inflammatory properties by three different methods in vitro and strongly inhibited the activity of xanthine oxidase, lipoxygenase and tyrosine kinase. E. coli and P. aeruginosa bacterial species were strongly inhibited by PsAgNPs activity at maximum levels and SEM picture of P. aeruginosa confirms these effects and that they were shrunken due to the toxic effect of PsAgNPs.

  1. Penicillium griseofulvum F1959, high-production strain of pyripyropene a, specific inhibitor of acyl-CoA: cholesterol acyltransferase 2.

    PubMed

    Choi, Jung Ho; Rho, Mun-Chual; Lee, Seung Woong; Choi, Ji Na; Lee, Hee Jeong; Bae, Kyung Sook; Kim, Koanhoi; Kim, Young Kook

    2008-10-01

    Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes cholesterol esterification and plays an important role in the intestinal absorption of cholesterol, hepatic production of lipoproteins, and accumulation of cholesteryl ester within cells. During the course of screening to find ACAT inhibitors from microbial sources, the present authors isolated pyripyropene A from Penicillium griseofulvum F1959. Pyripyropene A, an ACAT2-specific inhibitor, has already been produced from Aspergillus fumigatus. Yet, Aspergillus fumigatus is a pathogen and only produces a limited amount of pyripyropene A, making the isolation of pyripyropene A troublesome. In contrast, Penicillium griseofulvum F1959 was found to produce approximately 28 times more pyripyropene A than Aspergillus fumigatus, plus this report also describes the ideal conditions for the production of pyripyropene A by Penicillium griseofulvum F1959 and its subsequent purification. PMID:18955816

  2. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India.

    PubMed

    Dhakar, Kusum; Sharma, Avinash; Pandey, Anita

    2014-04-01

    Twenty five fungal cultures (Penicillium spp.), isolated from soil samples from the high altitudes in the Indian Himalayan region, have been characterized following polyphasic approach. Colony morphology performed on five different media gave varying results; potato dextrose agar being the best for the vegetative growth and sporulation as well. Microscopic observations revealed 18 isolates to be biverticillate and 7 monoverticillate. Based on the phenotypic characters (colony morphology and microscopy), all the isolates were designated to the genus Penicillium. Exposure to low temperature resulted in enhanced sporulation in 23 isolates, while it ceased in case of two. The fungal isolates produced watery exudates in varying amount that in many cases increased at low temperature. All the isolates could grow between 4 and 37 °C, (optimum 24 °C), hence considered psychrotolerant. While all the isolates could tolerate pH from 2 to 14 (optimum 5-9), 7 isolates tolerated pH 1.5 as well. While all the fungal isolates tolerated salt concentration above 10 %; 10 isolates showed tolerance above 20 %. Based on ITS region (ITS1-5.8S-ITS2) analysis the fungal isolates belonged to 25 different species of Penicillium (showing similarity between 95 and 100 %). Characters like tolerance for low temperature, wide range of pH, and high salt concentration, and enhancement in sporulation and production of secondary metabolites such as watery exudates at low temperature can be attributed to the ecological resilience possessed by these fungi for survival under low temperature environment of mountain ecosystem.

  3. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests.

    PubMed

    Maneerat, Chamorn; Hayata, Yasuyoshi

    2006-03-15

    The antifungal activity of TiO2 photocatalytic reaction in the form of TiO2 powder and TiO2 coated on a plastic film against Penicillium expansum was investigated in vitro and in fruit tests. The mixture of P. expansum conidial suspension and TiO2 powder was added to potato dextrose agar (PDA) plates for vitro test. The TiO2 photocatalytic reaction reduced conidial germination of the fungal pathogen. It was found that the ability of the TiO2 photocatalytic reaction to suppress P. expansum growth correlated to the amount of TiO2 added. Lower numbers of viable colonies of P. expansum were observed with increasing amount of TiO2. Regardless of the kind of selected fruit inoculated with P. expansum, both TiO2 powder and TiO2-coated film exhibited antifungal activity to control fruit rot. Development of Penicillium rot in apple was significantly (P = 0.05) retarded by the TiO2 photocatalytic reaction. Similarly the TiO2 photocatalytic reaction was the only treatment where no tomato fruit rot was noticeable after 1 week of storage. TiO2-coated film also decreased brown lesions and Penicillium rot infection in lemons. The mean severity fruit rot scores (browning and softening flesh) were 3.2 and 1.9 for uncoated and TiO2-coated film, respectively. Our findings suggest that "TiO2 photocatalytic reaction" shows antifungal activity against P. expansum which may have potential for postharvest disease control.

  4. Molecular and immunological characterization and IgE epitope mapping of Pen n 18, a major allergen of Penicillium notatum.

    PubMed Central

    Yu, Chia-Jung; Chen, Yen-Ming; Su, Song-Nan; Forouhar, Farhad; Lee, Shu-Hua; Chow, Lu-Ping

    2002-01-01

    The mould genus, Penicillium, is a significant source of environmental aero-allergens. A major allergen from Penicillium notatum, Pen n 18, was identified by two-dimensional immunoblotting using monoclonal antibody G11A10, raised against the vacuolar serine protease of Penicillium citrinum, followed by matrix-assisted laser-desorption ionization-time-of-flight MS analysis of the peptide digest. Pen n 18 was then cloned and the amino acid sequence deduced from the cDNA sequence. The cDNA encoded a 494 amino acid protein, considerably larger than mature Pen n 18, the differences being due to the N- and C-terminal prosequences. The deduced amino acid sequence showed extensive similarity with those of vacuolar serine proteases from various fungi. The Pen n 18 coding sequence was expressed in Escherichia coli as a His-tagged fusion protein and purified by Ni(2+)-chelate affinity chromatography. On immunoblots, the purified recombinant protein specifically bound IgE from mould-allergic patients, and cross-inhibition assays demonstrated the presence of common IgE-binding epitopes on Pen n 18 and a major allergen of P. citrinum, Pen c 18. When mapping of the allergenic epitopes was performed, at least nine different linear IgE-binding epitopes, located throughout the Pen n 18 protein, were identified. Of these, peptide C12, located in the N-terminal region of the molecule, was recognized by serum from 75% of the patients tested and therefore appears to be an immunodominant IgE-binding epitope. PMID:11964171

  5. A Novel ATP-Binding Cassette Transporter Involved in Multidrug Resistance in the Phytopathogenic Fungus Penicillium digitatum

    PubMed Central

    Nakaune, Ryoji; Adachi, Kiichi; Nawata, Osamu; Tomiyama, Masamitsu; Akutsu, Katsumi; Hibi, Tadaaki

    1998-01-01

    Demethylation inhibitor (DMI)-resistant strains of the plant pathogenic fungus Penicillium digitatum were shown to be simultaneously resistant to cycloheximide, 4-nitroquinoline-N-oxide (4NQO), and acriflavine. A PMR1 (Penicillium multidrug resistance) gene encoding an ATP-binding cassette (ABC) transporter (P-glycoprotein) was cloned from a genomic DNA library of a DMI-resistant strain (LC2) of Penicillium digitatum by heterologous hybridization with a DNA fragment containing an ABC-encoding region from Botrytis cinerea. Sequence analysis revealed significant amino acid homology to the primary structures of PMR1 (protein encoded by the PMR1 gene) and ABC transporters of Saccharomyces cerevisiae (PDR5 and SNQ2), Schizosaccharomyces pombe (HBA2), Candida albicans (CDR1), and Aspergillus nidulans (AtrA and AtrB). Disruption of the PMR1 gene of P. digitatum DMI-resistant strain LC2 demonstrated that PMR1 was an important determinant of resistance to DMIs. The effective concentrations inhibiting radial growth by 50% (EC50s) and the MICs of fenarimol and bitertanol for the PMR1 disruptants (Δpmr1 mutants) were equivalent to those for DMI-sensitive strains. Northern blot analysis indicated that severalfold more PMR1 transcript accumulated in the DMI-resistant strains compared with those in DMI-sensitive strains in the absence of fungicide. In both DMI-resistant and -sensitive strains, transcription of PMR1 was strongly enhanced within 10 min after treatment with the DMI fungicide triflumizole. These results suggested that the toxicant efflux system comprised of PMR1 participates directly in the DMI resistance of the fungus. PMID:9758830

  6. Pyrene and benzo[a]pyrene metabolism by the filamentous fungus, Penicillium janthinellum

    SciTech Connect

    Launen, L.; Pinto, L.; Kiehlmann, E.; Moore, M.

    1995-12-31

    The incomplete combustion of fossil fuels generates polycyclic aromatic hydrocarbons (PAH). These include 4-5 ring PAH, of which many are potent carcinogens and mutagens that persist in soil for years. Fungi can oxidize these compounds via two mechanisms: (1) by extracellular peroxidases (Basidiomycete fungi), or (2) by a putative cytochrome P450 enzyme system. The authors have previously isolated Penicillium janthinellum from petroleum-contaminated soil and shown that it possesses high activity to oxidize pyrene, benzo(a)pyrene and chrysene in liquid culture. The purpose of this study was to evaluate the effect of changing growth condition glucose, nitrate and agitation levels, on pyrene metabolism by P. janthinellum using a 3 x 2 x 2 factorial design. Spores were inoculated into minimal salts media amended with varying carbon or nitrogen concentrations and containing {sup 14}C-pyrene. The level of glucose and nitrate significantly affected the bioconversion: low glucose and nitrate levels increased the loss of parent PAH from the medium. However this effect was independent of biomass. Biometer flask experiments using {sup 14}C-pyrene showed that most pyrene became cell-associated within 7 days of incubation. Cell associated {sup 14}C-pyrene was inextractable by ethyl acetate but was recovered in methylene chloride. This result was confirmed by the mass balance result from a 10 day time course experiment using {sup 14}C-pyrene or {sup 14}C-BaP. Greater than 70% of the radiolabel in cultures containing live cells was strongly associated with the cell matter within 7 days, relative to < 1 % association with dead cells. The authors conclude that: (1) pyrene and BaP oxidation was affected by C and N levels in the growth medium independent of cell mass and (2) {sup 14}C-PAH became strongly associated with live but not dead cells within 7 days in liquid culture.

  7. A novel inhibition ELISA for the detection and monitoring of Penicillium marneffei antigen in human serum.

    PubMed

    Prakit, K; Nosanchuk, J D; Pruksaphon, K; Vanittanakom, N; Youngchim, S

    2016-04-01

    The thermally dimorphic fungus Penicillium marneffei is a causative agent of penicilliosis marneffei, a disease considered to be an acquired immune deficiency syndrome (AIDS)-defining illness in Southeast Asia and southern China. We have developed an inhibition enzyme-linked immunosorbent assay (inh-ELISA) incorporating the yeast phase specific mannoprotein-binding monoclonal antibody 4D1 for the detection of P. marneffei infection. In our sample set, the test detected antigenemia in all 45 (100 %) patients with P. marneffei, with a mean antigen concentration of 4.32 μg/ml. No cross-reactivity in this assay was found using serum from 44 additional patients with other fungal infections, such as Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans, as well as 44 patients with bacterial infections, such as Mycobacterium tuberculosis and Streptococcus suis. Additionally, no reactivity occurred using serum from 31 human immunodeficiency virus (HIV)-infected patients without a history of fungal infections and 113 healthy controls residing in endemic areas. To investigate the potential of the inh-ELISA for disease monitoring, we followed the reduction in antigenemia in six patients who clinically responded to itraconazole and P. marneffei was no longer isolated from their blood or tissues. In contrast, we correlated increased concentrations of antigenemia in patients with relapsed P. marneffei infection with the progression of their clinical symptoms and the isolation of P. marneffei from their clinical specimens. In summary, the P. marneffei inh-ELISA is a promising new assay for the rapid diagnosis of P. marneffei, as well as a tool for evaluating clinical response and clearance of the fungus during treatment. PMID:26838686

  8. Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin.

    PubMed

    Schmidt-Heydt, Markus; Stoll, Dominic; Schütz, Peter; Geisen, Rolf

    2015-01-01

    Penicillium verrucosum is a fungus that can produce ochratoxin A and citrinin, two structurally related nephrotoxic mycotoxins. P. verrucosum usually occurs on wheat but can occasionally also be found in NaCl rich habitats such as salted cheeses or olives, indicating that this fungus can adapt to different environments. The ratio of ochratoxin A to citrinin produced by P. verrucosum is shifted to one of either mycotoxin at the expense of the other dependent on the environmental conditions. High NaCl concentrations shift secondary metabolite biosynthesis towards ochratoxin A production. P. verrucosum copes with NaCl stress by increased ochratoxin A biosynthesis, ensuring chloride homeostasis. Ochratoxin A carries chlorine in its molecule and can excrete chlorine from the cell. It was further shown that the regulation of ochratoxin A by high NaCl conditions is mediated by the HOG MAP kinase signal transduction pathway. Here it is shown that high oxidative stress conditions, evoked for example by increasing concentrations of Cu(2+) cations in the growth medium, shift secondary metabolite biosynthesis of P. verrucosum from ochratoxin A to citrinin. The production of citrinin normalizes the oxidative status of the fungal cell under oxidative stress conditions leading to an adaptation to these environmental conditions and protects against increased oxidative stress caused by increased Cu(2+) concentrations. Moreover citrinin also protects against light of short wavelength, which may also increase the oxidative status of the environment. The biosynthesis of citrinin is apparently regulated by a cAMP/PKA signaling pathway, because increasing amounts of external cAMP reduce citrinin biosynthesis in a concentration dependent manner. These conditions lead to the cross-regulation of the ochratoxin A/citrinin secondary metabolite pair and support the adaptation of P. verrucosum to different environments. PMID:25279858

  9. The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis.

    PubMed Central

    Cohen, G; Argaman, A; Schreiber, R; Mislovati, M; Aharonowitz, Y

    1994-01-01

    Penicillium chrysogenum is an important producer of penicillin antibiotics. A key step in their biosynthesis is the oxidative cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N by the enzyme isopenicillin N synthase (IPNS). bis-ACV, the oxidized disulfide form of ACV is, however, not a substrate for IPNS. We report here the characterization of a broad-range disulfide reductase from P. chrysogenum that efficiently reduces bis-ACV to the thiol monomer. When coupled in vitro with IPNS, it converts bis-ACV to isopenicillin N and may therefore play a role in penicillin biosynthesis. The disulfide reductase consists of two protein components, a 72-kDa NADPH-dependent reductase, containing two identical subunits, and a 12-kDa general disulfide reductant. The latter reduces disulfide bonds in low-molecular-weight compounds and in proteins. The genes coding for the reductase system were cloned and sequenced. Both possess introns. A comparative analysis of their predicted amino acid sequences showed that the 12-kDa protein shares 26 to 60% sequence identity with thioredoxins and that the 36-kDa protein subunit shares 44 to 49% sequence identity with the two known bacterial thioredoxin reductases. In addition, the P. chrysogenum NADPH-dependent reductase is able to accept thioredoxin as a substrate. These results establish that the P. chrysogenum broad-range disulfide reductase is a member of the thioredoxin family of oxidoreductases. This is the first example of the cloning of a eucaryotic thioredoxin reductase gene. Images PMID:8106340

  10. Patulin biosynthesis: Epoxidation of toluquinol and gentisyl alcohol by particulate preparations from Penicillium patulum

    SciTech Connect

    Priest, J.W.; Light, R.J. )

    1989-11-14

    A crude extract that catalyzes the epoxidation of toluquinol and gentisyl alcohol was isolated from cultures of Penicillium patulum. About 60% of the activity sedimented from crude extract upon centrifugation at 105000g for 2 h, and at 30000g for 30 min after precipitation with 30% ammonium sulfate and resuspension in buffer. The quinone epoxide phyllostine, a product of gentisyl alcohol epoxidation, has previously been shown to be an intermediate in the biosynthesis of patulin and was shown to be further converted to neopatulin by the extract. The epoxide product of toluquinol, desoxyphyllostine (2-methyl-5,6-epoxy-1,4-benzoquinone), has not been reported previously from fungal cultures. Its structure was confirmed by GC-mass spectrometry and proton and {sup 13}C NMR. Its CD spectrum showed the same shape and signs as that of phyllostine, indicating that it too is an enzymatic product with a similar absolute configuration. Whereas chemical epoxidation of toluquinone and gentisly quinone occurs with hydrogen peroxide, the enzymatic epoxidation utilized oxygen and the hydroquinone. The epoxidation was inhibited by 1,10-phenanthroline, EDTA, and {rho}-(chloromercuri)benzenesulfonic acid and by degassing with nitrogen, but no inhibition was observed with KCN, catalase, or CO. The apparent K{sub m}'s were similar for the two substrates with both substrates showing inhibition at 1.0 mM. The rate of desoxyphyllostine formation was more than 10 times that of phyllostine formation at equivalent substrate concentrations. Gentisaldehyde was not a substrate for the enzyme. The epoxidase was induced in late fermentor cultures of P. patulum with the same kinetics as m-hydroxybenzyl alcohol dehydrogenase, another enzyme associated with the induction of patulin biosynthesis.

  11. Effects of aliphatic aldehydes on the growth and patulin production of Penicillium expansum in apple juice.

    PubMed

    Taguchi, Tomoyasu; Kozutsumi, Daisuke; Nakamura, Ruka; Sato, Yoshio; Ishihara, Atsushi; Nakajima, Hiromitsu

    2013-01-01

    The effects of 16 aliphatic aldehydes with 3-10 carbons on the growth and patulin production of Penicillium expansum were examined. When P. expansum spores were inoculated into apple juice broth, some alkenals, including 2-propenal, (E)-2-butenal, (E)-2-pentenal, and (E)-2-hexenal, inhibited fungal growth and patulin production. Their minimal inhibitory concentrations were 5, 50, 80, and 80 µg/mL respectively. Vital staining indicated that these alkenals killed mycelia within 4 h. Treatment of the spores with these aldehydes also resulted in rapid loss of germination ability, within 0.5-2 d. On the other hand, aliphatic aldehydes with 8-10 carbons significantly enhanced patulin production without affecting fungal growth: 300 µg/mL of octanal and 100 µg/mL of (E)-2-octenal increased the patulin concentrations in the culture broth by as much as 8.6- and 7.8-fold as compared to that of the control culture respectively. The expression of the genes involved in patulin biosynthesis in P. expansum was investigated in mycelia cultured in apple juice broth containing 300 µg/mL of octanal for 3.5, 5, and 7 d. Transcription of the msas gene, encoding 6-methylsalicylic acid synthase, which catalyzed the first step in the patulin biosynthetic pathway was remarkably high in the 3.5-d and 5-d-old cultures as compared with the control. However, octanal did not any increase the transcription of the msas in the 7-d-old culture or that of the other two genes, IDH and the peab1, in culture. Thus the enhanced patulin accumulation with supplementation with these aldehydes is attributable to the increased amount of the msas transcript.

  12. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum.

    PubMed

    Jeršek, Barbara; Poklar Ulrih, Nataša; Skrt, Mihaela; Gavarić, Neda; Božin, Biljana; Smole Možina, Sonja

    2014-06-01

    Essential oils from oregano (Origanum vulgare L.), mint (Mentha piperita L.), fennel (Foeniculum vulgare Mill.), and pine (Abies alba Mill.) needles and cones, and their active substances thymol, carvacrol, menthol, and anisaldehyde were tested for antifungal activity against Penicillium verrucosum. The lowest minimal inhibitory concentrations (MICs) were achieved for essential oil of oregano, followed by carvacrol, thymol, and menthol. These antifungal components were further investigated, as the main aim of our study was to elucidate the effect of natural antifungals on ochratoxin A production. During 21 days of exposure, the growth of P. verrucosum, and subsequently the production of ochratoxin A, was fully inhibited by thymol at ½ MIC (0.0625 mg mL-1), but menthol at ¼ and ½ MIC (0.1875 and 3750 mg mL-1) showed no growth inhibition. After 21 days of incubation, the greatest inhibitory effect on ochratoxin production (inhibition was 96.9 %) was also achieved with thymol at ¼ MIC (0.0313 mg mL-1). Essential oil of oregano (¼ MIC, 0.2930 μL mL-1) and carvacrol (½ MIC, 0.1953 μL mL-1) stimulate production of ochratoxin A at 13.9 % to 28.8 %, respectively. The observed antifungal effects depended on the agent, the concentration used, and the time of interaction between the agent and P. verrucosum. Our results indicate the possibility of using oregano essential oil as a substitute for artificial preservatives in certain foods, but further research is needed. PMID:24945417

  13. Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei

    PubMed Central

    Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-01-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137

  14. Isoepoxydon, a new metabolite of the patulin pathway in Penicillium urticae

    PubMed Central

    Sekiguchi, Junichi; Gaucher, G. Maurice

    1979-01-01

    A patulin-negative mutant (J1) of Penicillium urticae (N.R.R.L. 2159A) was known to accumulate about 100mg per litre quantities of the 5,6-epoxygentisyl quinone, (−)-phyllostine and another metabolite (UIII). Both were derived from acetate and hence were polyketides. Purified UIII (m.p. 53°C, [α]32D+206°, λmethanolmax. 240nm; ε 3806 litre·mol−1·cm−1) was characterized as a partially reduced derivative of (−)-phyllostine and was found to be a diastereoisomer of the known phytotoxin, (+)-epoxydon. Hence its designation as (+)-iso- or epi-epoxydon. From 1H n.m.r. and c.d. data the stereochemistry of the epoxide ring in (+)-isoepoxydon was determined to be identical with that in (+)-epoxydon (i.e. R,R) but the configuration of the secondary alcohol at C-4 was S rather than R as in (+)-epoxydon. Isoepoxydon (compound UIII) is therefore (4S,5R,6R)-5,6-epoxy-4-hydroxy-2-hydroxymethylcyclohex-2-en-1-one. The boat conformation in which the C-4 hydroxy group is axial is preferred. In the range of 1mm to 5mm, the antibiotic activity of (+)-isoepoxydon against Bacillus subtilis sp. was 56% of that obtained with patulin. Over a period of 1 to 3h, [14C]isoepoxydon was efficiently converted into patulin by a shake culture of the parent strain of P. urticae. The precursor relationship of isoepoxydon to patulin was confirmed by feeding unlabelled isoepoxydon (1mm) to a washed-cell suspension of a mutant (J2) in which, over a period of 3 to 5h, a better than 60% conversion into patulin was attained. The enzymic relationship between isoepoxydon and phyllostine and their positions in the late portion of the patulin biosynthetic pathway are discussed. PMID:508294

  15. Study on the role of patulin on pathogenicity and virulence of Penicillium expansum.

    PubMed

    Sanzani, S M; Reverberi, M; Punelli, M; Ippolito, A; Fanelli, C

    2012-02-15

    Although the antibacterial activity and toxicity to humans and animals of the mycotoxin patulin are well known, its role in the postharvest decay of apples by Penicillium expansum has never been investigated. In the present study the gene disruption technique was used to alter the sequence of 6-methyl-salicylic acid synthase, an enzyme involved in the first committed step of patulin biosynthesis. Thirty-nine mutants were obtained, however only two of them (M5 and M21) passed the sub-cultural and molecular confirmation tests. They proved to produce 33-41% less patulin than their wild-type (WT) strain, although no difference in the growth and morphology of the colony was observed. Moreover, the mutants showed a significantly reduced pathogenicity and virulence on artificially inoculated apples. In particular, a 33-34% and 47-54% reduction of disease incidence and severity were recorded for M5 and M21, respectively. As confirmation, when the biomass of the mutants was quantified in vivo by Real-time PCR, a significant difference was recorded as compared to the WT and even between mutants. Moreover, when patulin production potential of mutants was restored by exogenous application of the mycotoxin, their ability to cause the disease was not significantly different from that of WT. Finally, mutants showed an increased susceptibility to the application of the antioxidant quercetin, their pathogenicity and virulence being significantly reduced at only 1/100 of the concentration needed for the WT. Based on these findings, patulin seems to have a role in the development of blue mold decay on apples.

  16. Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation.

    PubMed

    Antoine, Assamoi Allah; Jacqueline, Destain; Thonart, Philippe

    2010-01-01

    There is an increasing interest for the organic residues from various sectors of agriculture and industries over the past few decades. Their application in the field of fermentation technology has resulted in the production of bulk chemicals and value-added products such as amino acid, enzymes, mushroom, organic acids, single-cell protein, biologically active secondary metabolites, etc. (Ramachandran et al., Bioresource Technology 98:2000-2009, 2007). In this work, the production of extracellular xylanase by the fungus Penicillium canescens was investigated in solid-state fermentation using five agro-industrial substrates (soya oil cake, soya meal, wheat bran, whole wheat bran, and pulp beet). The best substrate was the soya oil cake. In order to optimize the production, the most effective cultivation conditions were investigated in Erlenmeyer flasks and in plastic bags with 5 and 100 g of soya oil cake, respectively. The initial moisture content, initial pH, and temperature of the culture affected the xylanase synthesis. The optimal fermentation medium was composed by soya oil cake crushed to 5 mm supplemented with 3% and 4% (w/w) of casein peptone and Na(2)HPO(4) x 2H(2)O. After 7 days of incubation at 30 degrees C and under 80% of initial moisture, a xylanase production level of 18,895 +/- 778 U/g (Erlenmeyer flasks) and 9,300 +/- 589 U/g (plastic bags) was reached. The partially purified enzyme recovered by ammonium sulfate fractionation was completely stable at freezing and refrigeration temperatures up to 6 months and reasonably stable at room temperature for more than 3 months.

  17. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei.

    PubMed

    Sun, Jiufeng; Li, Xiqing; Feng, Peiying; Zhang, Junmin; Xie, Zhi; Song, Erwei; Xi, Liyan

    2014-02-01

    A number of pathogens, most of them intracellular, employ the glyoxylate cycle in order to ingest fatty acids as carbon sources as a way of coping with nutrient deprivation during the infection process. Isocitrate lyase, which is encoded by the pathogen's acuD gene, plays a pivotal role in the glyoxylate cycle, which has been implicated in fungal pathogenesis. In this study, the acuD gene of Penicillium marneffei was knocked down using siRNA expressed by a filamentous fungi expression system. The acuD siRNA reduced the acuD gene's mRNA and protein expression by 21.5 fold and 3.5 fold, respectively. When macrophages were infected with different transformants of P. marneffei, the knockdown of acuD expression with RNA interference was lethal to the pathogens. In addition, the secretion of tumor necrosis factor-alpha and interferon-gamma from the infected macrophages was reduced. Moreover, the RNAi-mediated silencing of acuD expression reduced the fungal burden in the nude mice infected with P. marneffei; inhibited the inflammatory response in the lungs, livers, and spleens during the chronic phase instead of the acute phase of infection; and thus prolonged survival of the infected animals. Collectively, our data indicate that the RNAi-mediated silencing of acuD expression could attenuate virulence of P. marneffei. The endogenous expression of the delivered siRNA vector could be used to evaluate the role of functional genes by continuous and stable expression of siRNA.

  18. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.

    PubMed

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-09-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.

  19. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    PubMed

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry.

  20. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol

    PubMed Central

    Todero Ritter, Carla Eliana; Camassola, Marli; Zampieri, Denise; Silveira, Mauricio Moura; Dillon, Aldo José Pinheiro

    2013-01-01

    The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL−1) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL−1) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems. PMID:24058733

  1. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.

    PubMed

    Yang, Ence; Chow, Wang-Ngai; Wang, Gang; Woo, Patrick C Y; Lau, Susanna K P; Yuen, Kwok-Yung; Lin, Xiaorong; Cai, James J

    2014-10-01

    Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition in P. marneffei

  2. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    SciTech Connect

    Franz, A.; Burgstaller, W.; Schinner, F. )

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide in combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.

  3. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol.

    PubMed

    Todero Ritter, Carla Eliana; Camassola, Marli; Zampieri, Denise; Silveira, Mauricio Moura; Dillon, Aldo José Pinheiro

    2013-01-01

    The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL(-1)) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL(-1)) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  4. Flavor production from edible oils and their constituents by Penicillium corylophilum.

    PubMed

    Fujikawa, Hiroshi; Ibe, Akihiro; Wauke, Tomoaki; Morozumi, Satoshi; Mori, Haruhiko

    2002-06-01

    Production of volatile substances from edible oils and their constituents by Penicillium corylophilum was studied to clarify the mechanism of flavor production from a non-stick oil by the organism in a rice cake system. First, edible oils from plant and animal origins were tested for flavor production. Among the oils tested, coconut oil was the only one from which the flavor was produced. Second, triacylglycerols consisting of fatty acids with various lengths of carbon chain (C6 to C13) were studied for flavor production. Among the triacylglycerols tested, flavors were produced from those consisting of fatty acids with carbon chains of C6 to C11. The flavors consisted of methylketones and secondary alcohols, whose carbon chains were one carbon shorter than the precursor fatty acid molecules of the triacylglycerols. Flavors similar to that from the non-stick oil were produced from tricaprylin (C8), trinonanoin (C9), and tridecanoin (C10) among the triacylglycerols tested. Formation of mould spores was more strongly suppressed by triacylglycerols with shorter chain fatty acids. Third, fatty acids with various lengths of carbon chain (C7 to C15) were studied for flavor production. Among the fatty acids tested, flavors were produced from decanoic (C10) and undecanoic (C11) acids only. The flavors also consisted of methylketones and secondary alcohols one carbon shorter than the precursor fatty acids. Fatty acids with short carbon chains (C7 to C9) completely inhibited the mould growth. Our study showed that the range of carbon chain length of fatty acids capable of the flavor production (C10 to C11) was narrower than that of triacylglycerols (C6 to C11). It was also found that the non-stick oil and coconut oil contain tricaprylin and tridecanoin as triacylglycerols and decanoic acid as fatty acid.

  5. Inhibition by antimicrobial food additives of ochratoxin A production by Aspergillus sulphureus and Penicillium viridicatum.

    PubMed Central

    Tong, C H; Draughon, F A

    1985-01-01

    The effects of antimicrobial food additives on growth and ochratoxin A production by Aspergillus sulphureus NRRL 4077 and Penicillium viridicatum NRRL 3711 were investigated. At pH 4.5, growth and toxin production by both A. sulphureus and P. viridicatum were completely inhibited by 0.02% potassium sorbate, 0.067% methyl paraben, 0.0667% methyl paraben, and 0.2% sodium propionate. At pH 5.5, 0.134% potassium sorbate and 0.067% methyl paraben completely inhibited growth and ochratoxin A production by both fungi. Sodium bisulfite at 0.1%, the maximum level tested, was found to inhibit growth of A. sulphureus and P. viridicatum by 45 and 89%, respectively. Toxin production was inhibited by 97 and 99%, respectively. Sodium propionate (0.64%) at pH 5.5 inhibited growth of A. sulphureus and P. viridicatum by 76 and 90%, respectively. Toxin production was inhibited by greater than 99% for each fungus. Antimicrobial agents were ranked as to effectiveness by comparing the level required for complete inhibition of ochratoxin A production to the highest antimicrobial agent level normally used in food. At pH 4.5, the most effective inhibitor of growth and toxin production was potassium sorbate, followed by sodium propionate, methyl paraben, and sodium bisulfite, respectively, for both fungi. However, at pH 5.5, the most effective antimicrobial agents for inhibiting ochratoxin production were methyl paraben and potassium sorbate, followed by sodium propionate. Sodium bisulfite was not highly inhibitory to these toxigenic fungi at the higher pH value tested. PMID:4015085

  6. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    PubMed

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-01

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products.

  7. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches.

    PubMed

    de Boer, Paulo; Bronkhof, Jurian; Dukiќ, Karolina; Kerkman, Richard; Touw, Hesselien; van den Berg, Marco; Offringa, Remko

    2013-12-01

    The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.

  8. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Vanittanakom, Nongnuch

    2010-12-01

    We have developed an improved Agrobacterium-mediated transformation (AMT) system for the functional genetic analysis of Penicillium marneffei, a thermally dimorphic, human pathogenic fungus. Our AMT protocol included the use of conidia or pre-germinated conidia of P. marneffei as the host recipient for T-DNA from Agrobacterium tumefaciens and co-cultivation at 28°C for 36 hours. Bleomycin-resistant transformants were selected as yeast-like colonies following incubation at 37°C. The efficiency of transformation was approximately 123 ± 3.27 and 239 ± 13.12 transformants per plate when using 5 × 10(4) conidia and pre-germinated conidia as starting materials, respectively. Southern blot analysis demonstrated that 95% of transformants contained single copies of T-DNA. Inverse PCR was employed for identifying flanking sequences at the T-DNA insertion sites. Analysis of these sequences indicated that integration occurred as random recombination events. Among the mutants isolated were previously described stuA and gasC defective strains. These AMT-derived mutants possessed single T-DNA integrations within their particular coding sequences. In addition, other morphological and pigmentation mutants possessing a variety of gene-specific defects were isolated, including two mutants having T-DNA integrations within putative promoter regions. One of the latter integration events was accompanied by the deletion of the entire corresponding gene. Collectively, these results indicated that AMT could be used for large-scale, functional genetic analyses in P. marneffei. Such analyses can potentially facilitate the identification of those genetic elements related to morphogenesis, as well as pathogenesis in this medically important fungus.

  9. Determination of Penicillium mycotoxins in foods and feeds using liquid chromatography-mass spectrometry.

    PubMed

    Rundberget, Thomas; Wilkins, Alistair L

    2002-07-26

    New LC-MS (full scan) and LC-MS-MS (selected ion reaction monitoring) methods for the simultaneous determination of mycophenolic acid, griseofulvin, roquefortine C, chaetoglobosin B, verruculogen and penitrem A, and other Penicillium derived mycotoxins in food and feed samples are described. The methodologies involve sample extraction with acetonitrile-water, defatting with hexane and quantification using LC-MS with atmospheric pressure chemical ionisation or LC-MS-MS. Detector responses, for each of the methods and mycotoxins, were found to be linear over the range 10-1000 ng of mycotoxin/g of extracted food mixture material. The mean recoveries (n = 3 to 6) of the mycotoxins from spiked food mixture samples determined using MS and MS-MS detection were 87-116 and 91-112%, respectively, for mycophenolic acid, 104-109 and 91-112%, respectively, for griseofulvin, 70-85 and 75-110%, respectively, for roquefortine C, 94-109 and 81-116%, respectively, for chaetoglobosin B, 110-115 and 90-106%, respectively, for verruculogen and 78-97 and 99-108%, respectively, for penitrem A. RSDs varied from 5.6% at the 1000 ng/g level to 23.1% at the 10 ng/g level. The limits of detection for the mycotoxins using MS and MS-MS were 70 and 10 ng/g, respectively, for mycophenolic acid, 10 and 5 ng/g, respectivley, for griseofulvin, 50 and 20 ng/g, respectively, for roquefortine C, 25 and 20 ng/g, respectively, for chaetoglobosin B, 25 and 20 ng/g, respectively, for verruculogen and 10 and 5 ng/g, respectively, for penitrem A. PMID:12198847

  10. Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum.

    PubMed

    Rodríguez-Martín, Andrea; Acosta, Raquel; Liddell, Susan; Núñez, Félix; Benito, M José; Asensio, Miguel A

    2010-04-01

    The strain RP42C from Penicillium chrysogenum produces a small protein PgAFP that inhibits the growth of some toxigenic molds. The molecular mass of the protein determined by electrospray ionization mass spectrometry (ESI-MS) was 6 494Da. PgAFP showed a cationic character with an estimated pI value of 9.22. Upon chemical and enzymatic treatments of PgAFP, no evidence for N- or O-glycosylations was obtained. Five partial sequences of PgAFP were obtained by Edman degradation and by ESI-MS/MS after trypsin and chymotrypsin digestions. Using degenerate primers from these peptide sequences, a segment of 70bp was amplified by PCR from pgafp gene. 5'- and 3'-ends of pgafp were obtained by RACE-PCR with gene-specific primers designed from the 70bp segment. The complete pgafp sequence of 404bp was obtained using primers designed from 5'- and 3'-ends. Comparison of genomic and cDNA sequences revealed a 279bp coding region interrupted by two introns of 63 and 62bp. The precursor of the antifungal protein consists of 92 amino acids and appears to be processed to the mature 58 amino acids PgAFP. The deduced amino acid sequence of the mature protein shares 79% identity to the antifungal protein Anafp from Aspergillus niger. PgAFP is a new protein that belongs to the group of small, cysteine-rich, and basic proteins with antifungal activity produced by ascomycetes. Given that P. chrysogenum is regarded as safe mold commonly found in foods, PgAFP may be useful to prevent growth of toxigenic molds in food and agricultural products.

  11. Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei.

    PubMed

    Suwunnakorn, Sumanun; Cooper, Chester R; Kummasook, Aksarakorn; Vanittanakom, Nongnuch

    2014-09-01

    Penicillium marneffei is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, P. marneffei grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, P. marneffei grows as a yeast that divides by binary fission. Previously, an Agrobacterium-mediated transformation system was used to randomly mutagenize P. marneffei, resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as yakA. In the current study, we demonstrate that the yakA mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the yakA gene resulted in early conidial germination and perturbation of cell wall integrity. The yakA mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the yakA mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, chsB and chsG. Moreover, the expression of yakA was induced during post-exponential-phase growth as well as by heat shock. Thus, yakA is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate chs expression and heat stress response in P. marneffei. PMID:25009235

  12. Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti

    PubMed Central

    Ropars, Jeanne; Dupont, Joëlle; Fontanillas, Eric; Rodríguez de la Vega, Ricardo C.; Malagnac, Fabienne; Coton, Monika; Giraud, Tatiana; López-Villavicencio, Manuela

    2012-01-01

    Although most eukaryotes reproduce sexually at some moment of their life cycle, as much as a fifth of fungal species were thought to reproduce exclusively asexually. Nevertheless, recent studies have revealed the occurrence of sex in some of these supposedly asexual species. For industrially relevant fungi, for which inoculums are produced by clonal-subcultures since decades, the potentiality for sex is of great interest for strain improvement strategies. Here, we investigated the sexual capability of the fungus Penicillium roqueforti, used as starter for blue cheese production. We present indirect evidence suggesting that recombination could be occurring in this species. The screening of a large sample of strains isolated from diverse substrates throughout the world revealed the existence of individuals of both mating types, even in the very same cheese. The MAT genes, involved in fungal sexual compatibility, appeared to evolve under purifying selection, suggesting that they are still functional. The examination of the recently sequenced genome of the FM 164 cheese strain enabled the identification of the most important genes known to be involved in meiosis, which were found to be highly conserved. Linkage disequilibria were not significant among three of the six marker pairs and 11 out of the 16 possible allelic combinations were found in the dataset. Finally, the detection of signatures of repeat induced point mutations (RIP) in repeated sequences and transposable elements reinforces the conclusion that P. roqueforti underwent more or less recent sex events. In this species of high industrial importance, the induction of a sexual cycle would open the possibility of generating new genotypes that would be extremely useful to diversify cheese products. PMID:23185400

  13. Novel Bifunctional α-l-Arabinofuranosidase/Xylobiohydrolase (ABF3) from Penicillium purpurogenum▿ †

    PubMed Central

    Ravanal, María Cristina; Callegari, Eduardo; Eyzaguirre, Jaime

    2010-01-01

    The soft rot fungus Penicillium purpurogenum grows on a variety of natural substrates and secretes various isoforms of xylanolytic enzymes, including three arabinofuranosidases. This work describes the biochemical properties as well as the nucleotide and amino acid sequences of arabinofuranosidase 3 (ABF3). This enzyme has been purified to homogeneity. It is a glycosylated monomer with a molecular weight of 50,700 and can bind cellulose. The enzyme is active with p-nitrophenyl α-l-arabinofuranoside and p-nitrophenyl β-d-xylopyranoside with a Km of 0.65 mM and 12 mM, respectively. The enzyme is active on xylooligosaccharides, yielding products of shorter length, including xylose. However, it does not hydrolyze arabinooligosaccharides. When assayed with polymeric substrates, little arabinose is liberated from arabinan and debranched arabinan; however, it hydrolyzes arabinose and releases xylooligosaccharides from arabinoxylan. Sequencing both ABF3 cDNA and genomic DNA reveals that this gene does not contain introns and that the open reading frame is 1,380 nucleotides in length. The deduced mature protein is composed of 433 amino acids residues and has a calculated molecular weight of 47,305. The deduced amino acid sequence has been validated by mass spectrometry analysis of peptides from purified ABF3. A total of 482 bp of the promoter were sequenced; putative binding sites for transcription factors such as CreA (four), XlnR (one), and AreA (three) and two CCAAT boxes were found. The enzyme has two domains, one similar to proteins of glycosyl hydrolase family 43 at the amino-terminal end and a family 6 carbohydrate binding module at the carboxyl end. ABF3 is the first described modular family 43 enzyme from a fungal source, having both α-l-arabinofuranosidase and xylobiohydrolase functionalities. PMID:20562284

  14. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum

    PubMed Central

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-01-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a “seesaw model” in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors. PMID:26360497

  15. Two new benzoquinone derivatives and two new bisorbicillinoids were isolated from a marine-derived fungus Penicillium terrestre.

    PubMed

    Liu, Weizhong; Gu, Qianqun; Zhu, Weiming; Cui, Chengbin; Fan, Guotao

    2005-07-01

    Four new compounds were isolated from a marine-derived fungus Penicillium terrestre, namely 2-(2', 3'-dihydrosorbyl)-3,6-dimethyl-5-hydroxy-1,4-benzoquinone (1), 3-acetonyl-2,6-dimethyl-5-hydroxy-1,4-benzoquinone (2), dihydrobisvertinolone (3), tetrahydrobisvertinolone (4). Their structures were established on the basis of spectroscopic methods. The absolute configurations of 3 and 4 were determined by their CD spectra. Their cytotoxic effects on P388 and A-549 cell lines were preliminarily examined by the MTT method. PMID:16161481

  16. Prenylated indolediketopiperazine peroxides and related homologues from the marine sediment-derived fungus Penicillium brefeldianum SD-273.

    PubMed

    An, Chun-Yan; Li, Xiao-Ming; Li, Chun-Shun; Xu, Gang-Ming; Wang, Bin-Gui

    2014-02-01

    Three new indolediketopiperazine peroxides, namely, 24-hydroxyverruculogen (1), 26-hydroxyverruculogen (2), and 13-O-prenyl-26-hydroxyverruculogen (3), along with four known homologues (4-7), were isolated and identified from the culture extract of the marine sediment-derived fungus Penicillium brefeldianum SD-273. Their structures were determined based on the extensive spectroscopic analysis and compound 1 was confirmed by X-ray crystallographic analysis. The absolute configuration of compounds 1-3 was determined using chiral HPLC analysis of their acidic hydrolysates. Each of the isolated compounds was evaluated for antibacterial and cytotoxic activity as well as brine shrimp (Artemia salina) lethality. PMID:24473173

  17. Real-time in situ electron spin resonance measurements on fungal spores of Penicillium digitatum during exposure of oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Mizuno, Hiroko; Tanaka, Hiromasa; Tamiya, Kazuhiro; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Iseki, Sachiko; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2012-07-01

    We report the kinetic analysis of free radicals on fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge using real time in situ electron spin resonance (ESR) measurements. We have obtained information that the ESR signal from the spores was observed and preliminarily assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal is possibly linked to the inactivation of the fungal spore. The real-time in situ ESR has proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  18. Penicitols A-C and penixanacid A from the mangrove-derived Penicillium chrysogenum HDN11-24.

    PubMed

    Guo, Wenqiang; Li, Dan; Peng, Jixing; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai

    2015-02-27

    Three new citrinin analogues, penicitols A-C (1-3), and one new xanthone derivative, penixanacid A (4), together with four known biogenetically related compounds (5-8), were discovered from the extract of a mangrove-derived fungus, Penicillium chrysogenum HND11-24. The structures of penicitols A-C and penixanacid A were established through analysis of extensive spectroscopic data. Their cytotoxic activity against HeLa, BEL-7402, HEK-293, HCT-116, and A549 cell lines was evaluated. PMID:25611519

  19. A new benzopyrans derivatives from a mangrove-derived fungus Penicillium citrinum from the South China Sea.

    PubMed

    Zheng, Cai-Juan; Huang, Guo-Lei; Xu, Yan; Song, Xin-Ming; Yao, Jun; Liu, Hui; Wang, Ruo-Ping; Sun, Xue-Ping

    2016-01-01

    One new benzopyran derivative (2R(*),4R(*))-3,4-dihydro-5-methoxy-2-methyl-2H-1-benzopyran-4-ol (1), together with five known compounds (2-6), were obtained from the EtOAc extract of the endophytic fungus Penicillium citrinum HL-5126 isolated from the mangrove Brguiera sexangula var. rhynchopetala collected in the South China Sea. Their structures were elucidated by the detailed analysis of comprehensive spectroscopic data. All compounds were evaluated for their antibacterial activities. Compound 6 exhibited potent inhibitory activity against Bacillus subtilis, Bacillus cereus and Micrococcus tetragenus with the same MIC values of 6.94 μM.

  20. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10

    PubMed Central

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-01-01

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192

  1. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens.

    PubMed

    Barna, Balázs; Leiter, Eva; Hegedus, Nikoletta; Bíró, Tamás; Pócsi, István

    2008-12-01

    The small molecular mass antifungal protein of Penicillium chrysogenum (PAF) inhibited the growths of two obligate biotrophic fungal pathogens, Blumeria graminis f. sp. hordei and Puccinia recondita f.sp. tritici and, hence, mitigated the symptoms of barley powdery mildew and wheat leaf rust infections, respectively. PAF also affected adversely the germination of B. graminis conidia and P. recondita uredospores causing degenerative branching of germ tubes. Since powdery mildews and rusts cause serious economic losses the potential applicability of PAF to control these plant diseases is promising.

  2. Prenylated Indolediketopiperazine Peroxides and Related Homologues from the Marine Sediment-Derived Fungus Penicillium brefeldianum SD-273

    PubMed Central

    An, Chun-Yan; Li, Xiao-Ming; Li, Chun-Shun; Xu, Gang-Ming; Wang, Bin-Gui

    2014-01-01

    Three new indolediketopiperazine peroxides, namely, 24-hydroxyverruculogen (1), 26-hydroxyverruculogen (2), and 13-O-prenyl-26-hydroxyverruculogen (3), along with four known homologues (4–7), were isolated and identified from the culture extract of the marine sediment-derived fungus Penicillium brefeldianum SD-273. Their structures were determined based on the extensive spectroscopic analysis and compound 1 was confirmed by X-ray crystallographic analysis. The absolute configuration of compounds 1–3 was determined using chiral HPLC analysis of their acidic hydrolysates. Each of the isolated compounds was evaluated for antibacterial and cytotoxic activity as well as brine shrimp (Artemia salina) lethality. PMID:24473173

  3. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10.

    PubMed

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-01-01

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192

  4. A Non-Canonical NRPS Is Involved in the Synthesis of Fungisporin and Related Hydrophobic Cyclic Tetrapeptides in Penicillium chrysogenum

    PubMed Central

    Lankhorst, Peter P.; van der Hoeven, Rob A. M.; Schouten, Olaf L.; Noga, Marek; Hankemeier, Thomas; van Peij, Noël N. M. E.; Bovenberg, Roel A. L.; Vreeken, Rob J.; Driessen, Arnold J. M.

    2014-01-01

    The filamentous fungus Penicillium chrysogenum harbors an astonishing variety of nonribosomal peptide synthetase genes, which encode proteins known to produce complex bioactive metabolites from simple building blocks. Here we report a novel non-canonical tetra-modular nonribosomal peptide synthetase (NRPS) with microheterogenicity of all involved adenylation domains towards their respective substrates. By deleting the putative gene in combination with comparative metabolite profiling various unique cyclic and derived linear tetrapeptides were identified which were associated with this NRPS, including fungisporin. In combination with substrate predictions for each module, we propose a mechanism for a ‘trans-acting’ adenylation domain. PMID:24887561

  5. Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis).

    PubMed

    Platania, Claudia; Restuccia, Cristina; Muccilli, Serena; Cirvilleri, Gabriella

    2012-05-01

    Killer Saccharomyces cerevisiae and Wickerhamomyces anomalus yeast strains were tested as biocontrol agents against Penicillium digitatum, one the most important causes of postharvest decay in orange fruits. W. anomalus, grown on acidified medium, demonstrated micocinogenic activity against P. digitatum, as indicated by large inhibition halos and hyphal damage resulting from β-glucanase activity. Oranges that had been deliberately inoculated with pathogens were protected from decay by W. anomalus. Inoculation of oranges with W. anomalus strains BS 91 and BS 92 reduced disease severity to 1 and 4%, respectively, for up to 10 days in storage.

  6. Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP.

    PubMed

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-01-01

    Antifungal proteins from molds have been proposed as a valuable tool against unwanted molds, but the resistance of some fungi limits their use. Resistance to antimicrobial peptides has been suggested to be due to lack of interaction with the mold or to a successful response. The antifungal protein PgAFP produced by Penicillium chrysogenum inhibits the growth of various ascomycetes, but not Penicillium polonicum. To study the basis for resistance to this antifungal protein, localization of PgAFP and metabolic, structural, and morphological changes were investigated in P. polonicum. PgAFP bound the outer layer of P. polonicum but not regenerated chitin, suggesting an interaction with specific molecules. Comparative two-dimensional gel electrophoresis (2D-PAGE) and comparative quantitative proteomics revealed changes in the relative abundance of several proteins from ribosome, spliceosome, metabolic, and biosynthesis of secondary metabolite pathways. The proteome changes and an altered permeability reveal an active reaction of P. polonicum to PgAFP. The successful response of the resistant mold seems to be based on the higher abundance of protein Rho GTPase Rho1 that would lead to the increased chitin deposition via cell wall integrity (CWI) signaling pathway. Thus, combined treatment with chitinases could provide a complementary means to combat resistance to antifungal proteins.

  7. Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense.

    PubMed

    Alvarenga, Natália; Birolli, Willian G; Seleghim, Mirna H R; Porto, André L M

    2014-12-01

    Seven marine fungi strains (Aspergillus sydowii CBMAI 934, A. sydowii CBMAI 935, A. sydowii CBMAI 1241, Penicillium decaturense CBMAI 1234, Penicillium raistrickii CBMAI 931, P. raistrickii CBMAI 1235, and Trichoderma sp. CBMAI 932) were screened by their growth in the presence of methyl parathion (MP) in a solid culture medium. The strains with best growth were A. sydowii CBMAI 935 and P. decaturense CBMAI 1234. Biodegradation reactions were performed in 10, 20 and 30d in a malt extract liquid medium containing commercial MP and whole cells of A. sydowii CBMAI 935 and P. decaturense CBMAI 1234. In 20d, A. sydowii CBMAI 935 was able to degrade all pesticide, whereas P. decaturense CBMAI 1234 promoted a complete degradation in 30d. A. sydowii CBMAI 935 and P. decaturense CBMAI 1234 could degrade the product of the MP enzymatic hydrolysis, p-nitrophenol, on average of 51 and 40% respectively. Both strains used MP as a sole source of carbon and provided satisfactory results. Metabolites detected in the medium showed that the presumable reaction pathway occurred through the activation of MP to its more toxic form, methyl paraoxon, which was further degraded to p-nitrophenol.

  8. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea.

    PubMed

    Hou, Yun-Hua; Wang, Tian-Hong; Long, Hao; Zhu, Hui-Yuan

    2006-02-01

    A novel cold-adaptive xylanolytic Penicillium strain FS010 was isolated from Yellow sea sediments. The marine fungus grew well from 4 to 20 degrees; a lower (0 degrees) or higher (37 degrees) temperature limits its growth. The strain was identified as Penicillium chrysogenum. Compared with mesophilic P. chrysogenum, the cold-adaptive fungus secreted the cold-active xylanase (XYL) showing high hydrolytic activities at low temperature (2-15 degrees) and high sensitivity to high temperature (>50 degrees). The XYL gene was isolated from the cold-adaptive P. chrysogenum FS010 and designated as xyl. The deduced amino acid sequence of the protein encoded by xyl showed high homology with the sequence of glycoside hydrolase family 10. The gene was subcloned into an expression vector pGEX-4T-1 and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase in Escherichia coli BL21. The expression product was purified and subjected to enzymatic characterization. The optimal temperature and pH for recombinant XYL was 25 degrees and 5.5, respectively. Recombinant XYL showed nearly 80% of its maximal activity at 4 degrees and was active in the pH range 3.0-9.5.

  9. High performance SiO2-nanoparticles-immobilized-Penicillium funiculosum for bioaccumulation and solid phase extraction of lead.

    PubMed

    Mahmoud, Mohamed E; Yakout, Amr A; Abdel-Aal, Hany; Osman, Maher M

    2012-02-01

    Novel biosorbent systems were designed, investigated and implemented for bioaccumulation of Pb(II) from aqueous solutions. These are based on the combination of SiO(2)-nanoparticles (N-Si) with Penicillium funiculosum fungus (Pen) for the formation of (N-Si-Pen) as well as heat inactivated Penicillium funiculosum (Pen). The SiO(2)-nanoparticles were also investigated as a solid sorbent phase. Surface characterization and immobilization were examined and confirmed by using FT-IR and SEM analysis. A batch equilibrium technique was used to follow-up the adsorption processes of lead under the effect of pH, contact time, sorbent dosage and initial metal concentration. The maximum capacity values were 1200.0 and 1266.7μmolg(-1) for (Pen) and (N-Si-Pen), respectively at pH 5. Sorption equilibria were established in ∼20min and their data were well described by Langmuir, Freundlich and Dubinin-Radushkevich models. The potential applications of these biosorbents for extraction of Pb(II) from real samples contaminated with lead, were successfully accomplished. PMID:22197335

  10. Growth inhibition and stability of PgAFP from Penicillium chrysogenum against fungi common on dry-ripened meat products.

    PubMed

    Delgado, Josué; Acosta, Raquel; Rodríguez-Martín, Andrea; Bermúdez, Elena; Núñez, Félix; Asensio, Miguel A

    2015-07-16

    Dry-ripened foods favor the development of a superficial fungal population that may include toxigenic molds. To combat unwanted molds, an antifungal protein from Penicillium chrysogenum (PgAFP) can be useful. The aim of the present work was to study the antimicrobial activity of PgAFP against microorganisms common in dry-ripened foods, and to evaluate its sensitivity to proteolytic enzymes and heat treatments that may be applied to foods, as well as to different pH values. The inhibitory effect of the purified protein on 38 microbial strains grown in culture medium was determined. PgAFP sensitivity to various proteases, heat treatments, and preincubation at different pH values was tested by means of the residual activity on selected reference strains. Inhibitory activity of PgAFP against unwanted molds was tested in a dry-fermented sausage. This protein exhibited potent inhibitory activity against unwanted molds, including the main mycotoxin-producing species of Aspergillus and Penicillium of concern for dry-ripened foods. PgAFP withstood most proteases, intense heat and a wide range of pH values. PgAFP efficiently reduced counts of A. flavus and P. restrictum inoculated on a dry-fermented sausage. This protein can be of interest to control hazardous molds in dry-ripened foods.

  11. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.

    PubMed

    Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S

    2013-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.

  12. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate.

    PubMed

    Shaala, Lamiaa A; Youssef, Diaa T A

    2015-04-01

    In the course of our continuous interest in identifying bioactive compounds from marine microbes, we have investigated a tunicate-derived fungus, Penicillium sp. CYE-87. A new compound with the 1,4-diazepane skeleton, terretrione D (2), together with the known compounds, methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (1), tryptamine (3), indole-3-carbaldehyde (4), 3,6-diisobutylpyrazin-2(1H)-one (5) and terretrione C (6), were isolated from Penicillium sp. CYE-87. The structures of the isolated compounds were established by spectral analysis, including 1D (1H, 13C) and 2D (COSY, multiplicity edited-HSQC and HMBC) NMR and HRESIMS, as well as comparison of their NMR data with those in the literature. The compounds were evaluated for their antimigratory activity against the human breast cancer cell line (MDA-MB-231) and their antiproliferation activity against HeLa cells. Compounds 2 and 6 showed significant antimigratory activity against MDA-MB-231, as well as antifungal activity against C. albicans. PMID:25815893

  13. Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles.

    PubMed

    Boysen, M; Skouboe, P; Frisvad, J; Rossen, L

    1996-03-01

    Penicillium roqueforti is currently divided into two varieties, one used for cheese starter cultures, P. roqueforti var. roqueforti, and one ubiquitous patulin-producing variety, P. roqueforti var. carneum. The ribosomal regions comprising the 5.8S gene and the internal transcribed spacers, ITS I and ITS II, have been analysed from 10 isolates belonging to each variety. The 10 P. roqueforti var. carneum isolates were separated into two groups of five on the basis of 12 base-pair differences in the ITS regions. One of the groups of P. roqueforti var. carneum, in the following designated P. carneum, differed from P. roqueforti var. roqueforti, here designated P. roqueforti, in just two positions, while the other group, here called P. paneum, differed from P. roqueforti in 12 positions. Random Amplified Polymorphic DNA (RAPD) analysis substantiated these findings, and a comparison of secondary metabolites produced by the three groups showed that the P. roqueforti isolates all produce Penicillium Roqueforti (PR) toxin, marcfortines and fumigaclavine A, while the P. carneum isolates produce patulin, penitrem A and mycophenolic acid, as well as unidentified metabolites. P. paneum produces secondary metabolites in five chromophore families including the known mycotoxins patulin and botryodiploidin. On the basis of these findings it is proposed that P. roqueforti is reclassified into three species named P. roqueforti, P. carneum and P. paneum. PMID:8868429

  14. Alternative methods to control postharvest decay caused by Penicillium expansum in plums (Prunus domestica L.).

    PubMed

    Molinu, M G; Pani, G; Venditti, T; Dore, A; Ladu, G; D'Hallewin, G

    2012-01-01

    In the latest years, investigation on postharvest treatments has been increasingly addressed to preserve human health and environment safeguard. Several preservative compounds, physical treatments and biological control agents to restrain postharvest pathogens on horticultural products have been widely studied. Among them potassium sorbate (KS) has been generally recognized as safe for use in foods and personal care products. It acts as microbial growth inhibitor and fungistatic agent in foods, including vegetable and fruit products. The efficacy of KS, used alone or combined with heat treatments or biocontrol agents, has been demonstrated in Citrus and stone fruits. Here we report the results of 3 experiments aimed at controlling Penicillium expansum Link decay with the use of KS on a yellow ('Shiro') and a red ('Sanguigna di Bosa II', from the Sardinian germplasm) plum cultivar. An integrated approach, combining ultrasounds (US) as a physical mean and KS solutions at different concentrations, has been employed. In the first experiment, 360 fruits were wounded twice and divided into 6 sets (6 x 60), three of which were inoculated with an isolate of P. expansum (20 microl of a 10(5) cfu x mL(-1)). Then, 180 fruit (half inoculated) were treated by pipetting into each wound 20 microl of a KS solution containing 0, 1.5 or 3% (w/v), respectively. In exp. 2, all fruit (number) was wounded and inoculated, and after 24 h treated by immersion (1 min) into solutions containing 0, 1.5 or 3% (w/v) of SK, with or without the use of US. In exp. 3, wounded fruits were treated by immersion or sonication like in exp. 2, while inoculation took place after 24 h. Then, plums were kept at 25 degrees C and 75-80% RH and the infection degree was monitored after 3 and 6 days. In both cultivars, the 1.5% KS solution significantly reduced the natural infection, while the 3% KS solution resulted effective only on the red one. Moreover, the 1.5% solution was effective in controlling decay of

  15. Spermidine is required for morphogenesis in the human pathogenic fungus, Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Sakamoto, Akihiko; Terui, Yusuke; Kashiwagi, Keiko; Vanittanakom, Nongnuch

    2013-01-01

    Penicillium marneffei is a thermally dimorphic fungus that is a highly significant pathogen of immune compromised persons living or having traveled in Southeast Asia. When cultured at 25°C, the wild-type strain of P. marneffei exhibits a mycelial morphology that is marked by the development of specialized structures bearing conidia. Incubation of the wild type at 37°C, however, promotes the development of a yeast form that divides by fission. Development of the yeast morphology in vivo appears to be requisite for pathogenesis. In a prior study using Agrobacterium-mediated transformation for random mutagenesis via T-DNA integration, we generated a morphological mutant (strain I6) defective in conidiation. The T-DNA insertion site in strain I6 was determined to be within the gene encoding S-adenosylmethionine decarboxylase (sadA), an enzyme critical to spermidine biosynthesis. In the present study, we demonstrated that strain I6 was able to grow on rich media in either the mold or yeast forms at 25°C and 37°C, respectively. However, reduced growth of strain I6 was observed on minimal medium at either temperature. In addition, strain I6 produced mycelia with impaired conidiation on minimal medium at 25°C. Supplementation of minimal medium with spermidine restored the ability of strain I6 to produce conidia at 25°C and promoted yeast development at 37°C. Moreover, conidia of strain I6 exhibited poor germination frequencies in the absence of this polyamine. All three of these processes (conidiogenesis, germination, and growth) were reinstated in strain I6 by complementation of the partially deleted of sadA gene by ectopic insertion of an intact wild-type copy. These results augment prior observations that spermidine biosynthesis is essential to normal growth, conidiogenesis, spore germination, and dimorphism in a variety of fungi. Given the presumption that P. marneffei infections are initiated following inhalation of conidia, and that pathogenesis is dependent

  16. Microbial Biotransformation of Gentiopicroside by the Endophytic Fungus Penicillium crustosum 2T01Y01

    PubMed Central

    Zeng, Wen-Liang; Li, Wan-Kui; Han, Han; Tao, Yan-Yan; Yang, Li; Chen, Kai-Xian

    2014-01-01

    Endophytic fungi are symbiotic with plants and possess multienzyme systems showing promising metabolite potency with region selectivity and stereoselectivity. The aim of this study was to use these special microorganisms as an in vitro model to mimic the potential mammalian metabolites of a natural iridoid gentiopicroside (GPS, compound 1). The fungi isolated from a medicinal plant, Dendrobium candidum Wall. ex Lindl., were screened for their biotransformation abilities with GPS as the substrate, and one strain with high converting potency was identified as Penicillium crustosum 2T01Y01 on the basis of the sequence of the internal transcribed spacer of the ribosomal DNA region. Upon the optimized incubation of P. crustosum 2T01Y01 with the substrate, seven deglycosylated metabolites were detected by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Preparative-scale biotransformation with whole cells of the endophytic fungus resulted in the production of five metabolites, including three novel ones, 5α-(hydroxymethyl)-6β-methyl-3,4,5,6-tetrahydropyrano[3,4-c]pyran-1(8H)-one (compound 2), (Z)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 3), and (E)-4-(1-hydroxybut-3-en-2-yl)-5,6-dihydropyran-2-one (compound 4), along with two known ones, 5α-(hydroxymethyl)-6β-methyl-1H,3H-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 5) and 5α-(hydroxymethyl)-6α-methyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one (compound 6), aided by nuclear magnetic resonance and high-resolution mass spectral analyses. The other two metabolites were tentatively identified by online UPLC/Q-TOF MS as 5-hydroxymethyl-5,6-dihydroisochromen-1-one (compound 7) and 5-hydroxymethyl-3,4,5,6-tetrahydroisochromen-1-one (compound 8), and compound 8 is a new metabolite. To test the metabolic mechanism, the β-glucosidase activity of the fungus P. crustosum 2T01Y01 was assayed with ρ-nitrophenyl-β-d-glucopyranoside as a probe substrate

  17. Alternative methods to control postharvest decay caused by Penicillium expansum in plums (Prunus domestica L.).

    PubMed

    Molinu, M G; Pani, G; Venditti, T; Dore, A; Ladu, G; D'Hallewin, G

    2012-01-01

    In the latest years, investigation on postharvest treatments has been increasingly addressed to preserve human health and environment safeguard. Several preservative compounds, physical treatments and biological control agents to restrain postharvest pathogens on horticultural products have been widely studied. Among them potassium sorbate (KS) has been generally recognized as safe for use in foods and personal care products. It acts as microbial growth inhibitor and fungistatic agent in foods, including vegetable and fruit products. The efficacy of KS, used alone or combined with heat treatments or biocontrol agents, has been demonstrated in Citrus and stone fruits. Here we report the results of 3 experiments aimed at controlling Penicillium expansum Link decay with the use of KS on a yellow ('Shiro') and a red ('Sanguigna di Bosa II', from the Sardinian germplasm) plum cultivar. An integrated approach, combining ultrasounds (US) as a physical mean and KS solutions at different concentrations, has been employed. In the first experiment, 360 fruits were wounded twice and divided into 6 sets (6 x 60), three of which were inoculated with an isolate of P. expansum (20 microl of a 10(5) cfu x mL(-1)). Then, 180 fruit (half inoculated) were treated by pipetting into each wound 20 microl of a KS solution containing 0, 1.5 or 3% (w/v), respectively. In exp. 2, all fruit (number) was wounded and inoculated, and after 24 h treated by immersion (1 min) into solutions containing 0, 1.5 or 3% (w/v) of SK, with or without the use of US. In exp. 3, wounded fruits were treated by immersion or sonication like in exp. 2, while inoculation took place after 24 h. Then, plums were kept at 25 degrees C and 75-80% RH and the infection degree was monitored after 3 and 6 days. In both cultivars, the 1.5% KS solution significantly reduced the natural infection, while the 3% KS solution resulted effective only on the red one. Moreover, the 1.5% solution was effective in controlling decay of

  18. Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates.

    PubMed

    Wawrzyniak, J; Waśkiewicz, A

    2014-01-01

    Cereals are among the most vulnerable substrates to mycotoxin contamination. One of the major fungal species colonising the ecosystem of stored grain is Penicillium verrucosum because of its ability to produce ochratoxin A (OTA). Knowledge of favourable environmental conditions promoting fungal growth and mycotoxin biosynthesis seems to be a crucial step towards preventing mycotoxin formation in stored grain. The aim of the study was to examine the effect of temperature and different cereal substrates (wheat, triticale, rye, barley, maize, rice) on fungal growth and OTA and citrinin (CIT) production by a mycotoxin-producing P. verrucosum strain at one moisture content. The correlation between fungal growth and mycotoxin biosynthesis was also investigated. For this purpose, cereal substrates moistened, autoclaved and inoculated with P. verrucosum spores were stored at 10°C, 20°C and 30°C for 40 days. After the storage period, the ergosterol (ERG) content as a fungal growth biomarker and OTA and CIT levels were determined using HPLC. Fungal growth was observed on all cereals at each temperature. Maximum ERG levels were found at 30°C and the values ranged from 401 to 3280 mg kg(-1) of grain. Among tested cereals, the highest ergosterol content was found on rice at all applied temperatures. Accumulation of OTA and CIT was detected in samples stored at 20°C and 30°C, while optimal conditions for the production of both mycotoxins were observed at 20°C. The maximum concentration of OTA (31.9 ± 4.3 (SD) μg kg(-1)) and CIT (74.8 ± 5.7 μg kg(-1)) were found on rice. The ability to biosynthesise OTA and CIT at 10°C was not detected. Analysis of variance showed that single factors, temperature and cereal matrices and their interactions had significant effects on ERG, OTA and CIT levels. Optimal conditions for fungus growth did not coincide with the ones for mycotoxin formation.

  19. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress

    PubMed Central

    2013-01-01

    Background Heavy metal pollution in crop fields is one of the major issues in sustainable agriculture production. To improve crop growth and reduce the toxic effects of metals is an ideal strategy. Understanding the resilience of gibberellins producing endophytic fungi associated with crop plants in metal contaminated agriculture fields could be an important step towards reducing agrochemical pollutions. In present study, it was aimed to screen and identify metal resistant endophyte and elucidate its role in rescuing crop plant growth and metabolism during metal stress. Results Fungal endophyte, Penicillium funiculosum LHL06, was identified to possess higher growth rate in copper (Cu) and cadmium contaminated mediums as compared to other endophytes (Metarhizium anisopliae, Promicromonospora sp. and Exophiala sp.). P. funiculosum had high biosorption potential toward copper as compared to cadmium. An endophyte-metal-plant interaction was assessed by inoculating the host Glycine max L. plants with P. funiculosum during Cu (100 μM) stress. The Cu application adversely affected the biomass, chlorophyll and total protein content of non-inoculated control plants. The control plants unable to synthesis high carbon, hydrogen and nitrogen because the roots had lower access to phosphorous, potassium, sulphur and calcium during Cu treatment. Conversely, P. funiculosum-association significantly increased the plant biomass, root physiology and nutrients uptake to support higher carbon, hydrogen and nitrogen assimilation in shoot. The metal-removal potential of endophyte-inoculated plants was significantly higher than control as the endophyte-association mediated the Cu uptake via roots into shoots. The symbiosis rescued the host-plant growth by minimizing Cu-induced electrolytic leakage and lipid peroxidation while increasing reduces glutathione activities to avoid oxidative stress. P. funiculosum-association synthesized higher quantities of proline and glutamate as compared

  20. A Retrospective Analysis of 7 Human Immunodeficiency Virus-Negative Infants Infected by Penicillium marneffei.

    PubMed

    Zeng, Wen; Qiu, Ye; Lu, DeCheng; Zhang, Jianquan; Zhong, Xiaoning; Liu, Guangnan

    2015-08-01

    Infection with Penicillium marneffei has rarely been reported in human immunodeficiency virus (HIV)-negative infants. We aimed to determine the epidemiological, clinical, pathological, and immunological characteristics of 7 HIV-negative infants infected by P. marneffei, and to provide insights into its diagnosis and treatment.We retrospectively reviewed the cases of 7 HIV-negative infants infected by P. marneffei who presented to the First Affiliated Hospital of Guangxi Medical University between January 1, 2003 and December 1, 2014. The infants' median age was 23.43 months (SD = 8.34), and all lived in Guangxi Province in China, where P. marneffei is endemic. The median time from disease onset to diagnosis was 2.29 months (SD = 2.12). Of the cases studied, 5 (71.43%) had medical histories that included frequent pneumonia or bronchopneumonia, thrush, congenital megacolon, glucose-6-phosphate dehydrogenase deficiency, and hemophagocytic syndrome. The most common symptoms were fever, cough, and anemia, followed by lymphadenopathy, hepatosplenomegaly, and being underweight. Four patients had slightly elevated white blood cell counts. The lymphocyte and CD4 T-cell counts were normal. The CD8 T-cell counts, serum immunoglobulin (Ig) G titer, and serum IgA titer were low in 5 patients, and the serum IgM titers were high in 3 infants. Caseous necrosis was observed in 3 patients whose lymph nodes were affected. One case who received intravenous amphotericin B and 3 cases who received intravenous voriconazole improved, and these patients were cured after continual treatment with oral voriconazole for 6 or 12 months. The remaining patients died before they received antifungal treatment.P. marneffei causes severe disease and disseminated infections, and it has high mortality rates in HIV-negative infants in endemic areas. P. marneffei susceptibility may be associated with immunodeficiencies or immune disorders. In endemic areas, clinicians should aware of disseminated

  1. A Retrospective Analysis of 7 Human Immunodeficiency Virus-Negative Infants Infected by Penicillium marneffei

    PubMed Central

    Zeng, Wen; Qiu, Ye; Lu, DeCheng; Zhang, Jianquan; Zhong, Xiaoning; Liu, Guangnan

    2015-01-01

    Abstract Infection with Penicillium marneffei has rarely been reported in human immunodeficiency virus (HIV)-negative infants. We aimed to determine the epidemiological, clinical, pathological, and immunological characteristics of 7 HIV-negative infants infected by P. marneffei, and to provide insights into its diagnosis and treatment. We retrospectively reviewed the cases of 7 HIV-negative infants infected by P. marneffei who presented to the First Affiliated Hospital of Guangxi Medical University between January 1, 2003 and December 1, 2014. The infants’ median age was 23.43 months (SD = 8.34), and all lived in Guangxi Province in China, where P. marneffei is endemic. The median time from disease onset to diagnosis was 2.29 months (SD = 2.12). Of the cases studied, 5 (71.43%) had medical histories that included frequent pneumonia or bronchopneumonia, thrush, congenital megacolon, glucose-6-phosphate dehydrogenase deficiency, and hemophagocytic syndrome. The most common symptoms were fever, cough, and anemia, followed by lymphadenopathy, hepatosplenomegaly, and being underweight. Four patients had slightly elevated white blood cell counts. The lymphocyte and CD4+ T-cell counts were normal. The CD8+ T-cell counts, serum immunoglobulin (Ig) G titer, and serum IgA titer were low in 5 patients, and the serum IgM titers were high in 3 infants. Caseous necrosis was observed in 3 patients whose lymph nodes were affected. One case who received intravenous amphotericin B and 3 cases who received intravenous voriconazole improved, and these patients were cured after continual treatment with oral voriconazole for 6 or 12 months. The remaining patients died before they received antifungal treatment. P. marneffei causes severe disease and disseminated infections, and it has high mortality rates in HIV-negative infants in endemic areas. P. marneffei susceptibility may be associated with immunodeficiencies or immune disorders. In endemic areas, clinicians should aware

  2. Essential oils from clove affect growth of Penicillium species obtained from lemons.

    PubMed

    Martínez, J A; González, R

    2013-01-01

    Continuous use of fungicides to control citrus postharvest diseases has led to increasing resistant strains of pathogens. Since the appearance of fungicide resistance has become an important factor in limiting the efficacy fungicide treatments, new studies have been needed in order to improve control methods. There is a growing consumer's concern about the possible harmful effects of synthetic fungicides on the human health and the environment. Alternatives to synthetic fungicides for citrus decay control include essential oils. These compounds are known for their natural components and they are searched for potential bioactive plant extracts against fungi. In this study, two isolates of P. digitatum and P. italicum each were collected from lemon fruits affected by green and blue mould, respectively. Isolates were purified in potato dextrose agar (PDA) in order to separate the two species which we are demonstrated that they commonly grow together in nature. In vitro assays, in which isolates were grown at 26 degrees C on Petri dishes containing PDA for up to 17 days, were carried out by pouring several doses of essential oils from clove (Syzygium aromaticum L.) on PDA to obtain the following concentrations (v/v): 1.6; 8, 40, 200 and 500 microL L(-1) + tween 80 (0.1 mL L(-1)). Mycelial growth curves and growth, conidiation, mass of aerial mycelium and conidial size were measured. Penicillium isolates showed a slight degree of variability in their growth kinetics, depending on the isolate. 500 microL L(-1) inhibited the growth of all the isolates, whereas concentrations lower than 40 microL L(-1) slightly increased the growth. 200 microL L(-1) reduced both growth and conidiation in all isolates. Aerial mycelium of P. digitatum was not affected by clove, whereas reduced the mass of mycelium of P. italicum at concentrations higher than 8 microL L(-1). In vivo experiment was carried out inoculating a drop of an extract of conidia with a hypodermal syringe though a

  3. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea.

    PubMed

    Achbani, E H; Mounir, R; Jaafari, S; Douira, A; Benbouazza; Jijakli, M H

    2005-01-01

    The objectives of this study were to constitute a collection of pathogenic agents of economic importance which cause losses of apple fruits after harvest namely Botrytis cinerea and Penicillium expansum and to select in vivo efficient antagonistic strains able to protect fruits against both pathogens at 5 degrees C (P. expansum) and 25 degrees C (P. expansum & B. cinerea). Twenty strains of P. expansum and ten strains of B. cinerea have been isolated from infected apple fruits. Potential antagonistic micro-organisms (thirty three isolates) belonging to yeast, bacteria and fungi have been isolated from apple surface. Six of them (strains Ach1-1, Ach2-1, Ach2-2 belonging to Aureobasidium pullulans (De Bary) Arnaud, and strains 1112-3, 1113-10 and 1113-5 belonging to Aureobasidium pullulans (de Bary) Am. v. pullulans) showed a high level of protection (more than 80%) at 25 degrees C. once inoculated with P. expansum or B. cinerea for 5 days. The highest level of protection against P. expansum (96%) was observed with the application of Ach 2-1. Six days after inoculation of B. cinerea, strains Ach 2-2 and Ach 2-1 insured 100% and 96% of protection, respectively. At lower temperature (5 degrees C), first symptoms of P. expansum appeared 13 days after its inoculation. Percentages of protection observed after apple treatment with one of the six antagonistic strains were ranged from 78% to 94% 20 days after P. expansum inoculation. Strains labelled Ach showed a protective level higher than 90% against this pathogen, followed by strain 1113-10 (90%), strain 1113-5 (89%) and strain 1112-3 (82%). At 26 days post-inoculation, levels of protection decreased but remained higher than 60% (more than 80% with strain Ach2-2 and strain 1113-5, 75% with strain Ach2-1 and 1113-10, 72% with ach1-1, 61% for the other strains). Strain Ach2-2 and 1113-10 were retained as the best antagonists for the subsequent studies.

  4. Evidence for two distinct intracellular pools of inorganic sulfate in Penicillium notatum

    SciTech Connect

    Hunter, D.R.; Segel, I.H.

    1985-06-01

    A strain of Penicillium notatum unable to metabolize inorganic sulfate can accumulate sulfate internally to an apparent equilibrium concentration 10/sup 5/ times greater than that remaining in the medium. The apparent K/sub eq/ is near constant at all initial external sulfate concentrations below that which would eventually exceed the internal capacity of the cells. Under equilibrium conditions of zero net flux, external /sup 35/SO/sub 4//sup 2 -/ exchanges with internal, unlabeled SO/sub 4//sup 2 -/ at a rate consistent with the kinetic constants with the sulfate transport system. Efflux experiments demonstrated that sulfate occupies two distinct intracellular pools. Pool 1 is characterized by the rapid release of /sup 35/SO/sub 4//sup 2 -/ when the suspension of preloaded cells is adjusted to 10 mM azide at pH 8.4 (t/sub 1/2/, 0.38 min). /sup 35/SO/sub 4//sup 2 -/ in pool 1 also rapidly exchanges with unlabeled medium sulfate. Pool 2 is characterized by the slow release of /sup 35/SO/sub 4//sup 2 -/ induced by azide at pH 8.4 or unlabeled sulfate (t/sub 1/2/, 32 to 49 min). Early in the /sup 35/SO/sub 4//sup 2 -/ accumulation process, up to 78% of the total transported substrate is found in pool 1. At equilibrium, pool 1 accounts for only about 2% of the total accumulated /sup 35/SO/sub 4//sup 2 -/. Monensin (33 ..mu..m) accelerates the transfer of /sup 35/SO/sub 4//sup 2 -/ from pool 1 to pool 2. Valinomycin (0.2 ..mu..M) and tetraphynylboron/sup -/ (1 mM) retard the transfer of /sup 35/SO/sub 4//sup 2 -/ from pool 1 to pool 2. Pool 2 may reside in a vacuole or other intracellular organelle. A model for the transfer of sulfate from pool 1 to pool 2 is presented.

  5. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.).

    PubMed

    Radhakrishnan, Ramalingam; Shim, Kang-Bo; Lee, Byeong-Won; Hwang, Chung-Dong; Pae, Suk-Bok; Park, Chang-Hwan; Kim, Sung-Up; Lee, Choon-Ki; Baek, In-Youl

    2013-06-28

    Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growthpromoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

  6. Benzopyrone coumarin leads to an inhibition of ochratoxin biosynthesis in representatives of Aspergillus and Penicillium spp. via a type of feedback response mechanism.

    PubMed

    Mayer, L S L; Stoll, D A; Geisen, R; Schmidt-Heydt, M

    2014-04-01

    Growth and mycotoxin biosynthesis of the ochratoxin-producing fungal strains Aspergillus carbonarius, Aspergillus steynii, Penicillium verrucosum, and Penicillium nordium were analyzed on standard laboratory growth medium supplemented with different amounts of coumarin, an organic compound of the benzopyrone class. Neither the growth nor the phenotypic morphology of the filamentous fungi analyzed was affected by using coumarin concentrations equivalent to 2.5 to 25 μg/ml of medium. In contrast, the ochratoxin biosynthesis was strongly inhibited in both strains of the Aspergillus species and nearly completely inhibited in both Penicillium strains at coumarin concentrations above 8.75 μg/ml. Analyzing the transcriptional activity of the otapksPN polyketide synthase gene in P. nordicum using real-time PCR revealed a strong concentration-dependent decrease in gene expression. Taken together, the data show that ochratoxin biosynthesis in representative strains of the genera Aspergillus and Penicillium could be effectively inhibited by coumarin in a concentration-dependent manner. It could be suggested that the molecular background behind this inhibition is some kind of feedback response mechanism, based on the structural similarity of coumarin to the benzopyrone moiety of the ochratoxin molecule.

  7. Experimental Microbiology of Saturated Salt Solutions and Other Harsh Environments. III. Growth of Salt-Tolerant Penicillium notatum in Boron-Rich Media 1

    PubMed Central

    Roberts, Karen; Siegel, S. M.

    1967-01-01

    A stress-tolerant strain of Penicillium notatum, isolated by passage through a nutrient solution saturated with calcium acetate, was found to have a tolerance to boron in several states of oxidation. Growth in the presence of elementary boron, saturating amounts of boric acid, and with various concentrations of sodium borohydride was observed and mycelial mats were spectrographically analyzed for boron accumulation. PMID:6076112

  8. [Use of Endoglucanase IV from Trichoderma reesei to Enhance the Hydrolytic Activity of a Cellulase Complex from the Fungus Penicillium verruculosum].

    PubMed

    Proskurina, O V; Korotkova, O G; Rozhkova, A M; Kondrat'eva, E G; Matys, V Yu; Zorov, I N; Koshelev, A V; Okunev, O N; Nemashkalov, V A; Bubnova, T V; Sinitsyn, A P

    2015-01-01

    The effect of polysaccharide monooxygenase (endoglucanase IV) from the fungus Trichoderma reesei on the hydrolysis of polysaccharide substrates by cellulases secreted by the fungus Penicillium verruculosum has been investigated. Supplementation of the enzyme complex from P. verruculosum by endoglucanase IV from T. reesei has been shown to elevate the efficiency of cellulose hydrolysis by 45%.

  9. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  10. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp.

    PubMed Central

    Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William

    2013-01-01

    Objective To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. Methods The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Results Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Conclusions Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites. PMID:23620853

  11. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple.

    PubMed

    Li, H X; Xiao, C L

    2008-04-01

    Penicillium expansum is the primary cause of blue mold, a major postharvest disease of apple. Fludioxonil and pyrimethanil are two newly registered postharvest fungicides for pome fruit in the United States. To evaluate the potential risk of resistance development in P. expansum to the new postharvest fungicides, one isolate of each of thiabendazole-resistant (TBZ-R) and -sensitive (TBZ-S) P. expansum was exposed to UV radiation to generate fungicide-resistant mutants. Four fludioxonil highly-resistant mutants (EC(50) > 1,000 microg/ml) and four pyrimethanil-resistant mutants (EC(50) > 10 microg/ml) were tested for sensitivities to thiabendazole, fludioxonil, and pyrimethanil, and fitness parameters including mycelial growth, sporulation on potato dextrose agar (PDA), sensitivity to osmotic stress, and pathogenicity and sporulation on apple fruit. The stability of resistance of the mutants was tested on PDA and apple fruit. Efficacy of the three fungicides to control blue mold incited by the mutants was evaluated on apple fruit. Six fungicide-resistant phenotypes were identified among the parental wild-type isolates and their mutants based upon their resistance levels. All four fludioxonil highly-resistant mutants were sensitive to pyrimethanil and retained the same phenotypes of resistance to TBZ as the parental isolates. All four pyrimethanil-resistant mutants had a low level of resistance to fludioxonil with a resistance factor >15. The two pyrimethanil-resistant mutants derived from a TBZ-S isolate became resistant to TBZ at 5 microg/ml. After 20 successive generations on PDA and four generations on apple fruit, the mutants retained the same phenotypes as the original generations. All mutants were pathogenic on apple fruit at both 0 and 20 degrees C, but fludioxonil highly-resistant mutants were less virulent and produced fewer conidia on apple fruit than pyrimethanil-resistant mutants and their parental wild-type isolates. Compared with the parental isolates

  12. The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium decumbens

    NASA Astrophysics Data System (ADS)

    Sun, Xianyun; Liu, Ziyong; Qu, Yinbo; Li, Xuezhi

    The effects of the starch, protein, and soluble oligosaccharides contents in wheat bran on the extracellular biomass-hydrolyzing enzymes activities released by Penicillium decumbens mycelia grown in batch fermentations have been examined. The results showed increased starch content correlated directly with an increase in released amylase activity but inversely with the levels of secreted cellulase and xylanase. High amounts of protein in wheat bran also reduced the activities of cellulase, xylanase and protease in the culture medium. The effects of the soluble and insoluble components of wheat bran and cello-oligosaccharides supplements on production of extracellular cellulase and xylanase were compared. The soluble cello-oligosaccharides compositions in wheat bran were proved to be one of the most significant factors for cellulase production. According to the results of this research, determining and regulating the composition of wheat bran used as a fermentation supplement may allow for improved induction of cellulase and xylanase production.

  13. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum.

    PubMed

    Yamazaki, Hiroyuki; Nakayama, Wataru; Takahashi, Ohgi; Kirikoshi, Ryota; Izumikawa, Yuta; Iwasaki, Kohei; Toraiwa, Kengo; Ukai, Kazuyo; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Mangindaan, Remy E P; Namikoshi, Michio

    2015-08-15

    Two new merosesquiterpenes, verruculides A (1) and B (2), were isolated from a culture broth of the Indonesian ascidian-derived Penicillium verruculosum TPU1311, together with three known congeners, chrodrimanins A (3), B (4), and H (5). The structures of 1 and 2 were assigned on the basis of their spectroscopic data (1D and 2D NMR, HRMS, UV, CD, and IR). Compound 2 had a linear sesquiterpene moiety and was considered to be the derivative of the biosynthetic precursor for 1 and 3-5. Compounds 1, 3, and 5 inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 8.4, 8.5, and 14.9 μM, respectively. Compound 2 showed 40% inhibition at 23.1 μM, while 4 was not active at 20.7 μM. PMID:26115570

  14. OxaD: A Versatile Indolic Nitrone Synthase from the Marine-Derived Fungus Penicillium oxalicum F30.

    PubMed

    Newmister, Sean A; Gober, Claire M; Romminger, Stelamar; Yu, Fengan; Tripathi, Ashootosh; Parra, Lizbeth Lorena L; Williams, Robert M; Berlinck, Roberto G S; Joullié, Madeleine M; Sherman, David H

    2016-09-01

    Indole alkaloids are a diverse class of natural products known for their wide range of biological activities and complex chemical structures. Rarely observed in this class are indolic nitrones, such as avrainvillamide and waikialoid, which possess potent bioactivities. Herein the oxa gene cluster from the marine-derived fungus Penicillium oxalicum F30 is described along with the characterization of OxaD, a flavin-dependent oxidase that generates roquefortine L, a nitrone-bearing intermediate in the biosynthesis of oxaline. Nitrone functionality in roquefortine L was confirmed by spectroscopic methods and 1,3-dipolar cycloaddition with methyl acrylate. OxaD is a versatile biocatalyst that converts an array of semisynthetic roquefortine C derivatives bearing indoline systems to their respective nitrones. This work describes the first implementation of a nitrone synthase as a biocatalyst and establishes a novel platform for late-stage diversification of a range of complex natural products. PMID:27505044

  15. Chitinase but N-acetyl-β-D-glucosaminidase production correlates to the biomass decline in Penicillium and Aspergillus species.

    PubMed

    Pusztahelyi, Tünde; Pócsi, István

    2014-06-01

    Hydrolytic enzyme production is typical of the autolysis in filamentous fungi; however, less attention has been given to the physiological role of the enzymes. Here, the aim was to investigate the possible relation of the chitinolytic enzymes to the changes in the biomass in some filamentous fungi of high importance for pharmaceutical or food industry. In Penicillium and Aspergillus filamentous fungi, which showed different characteristics in submerged cultures, the growth and biomass decline rates were calculated and correlated to the chitinase and N-acetyl-β-D-glucosaminidase enzyme productions. Correlation was found between the biomass decrease rate and the chitinase level at the stationary growth phase; while chitinase production covariates negatively with N-acetyl-β-D-glucosaminidase activities. The chitinase production and the intensive autolysis hindered the production of N-acetyl-β-D-glucosaminidase and, therefore, could hinder the cell death in the cultures.

  16. Suppression of Nigrospora oryzae (Berk. & Broome) Petch by an aggressive mycoparasite and competitor, Penicillium oxalicum Currie & Thom.

    PubMed

    Sempere, F; Santamarina, M P

    2008-02-29

    The objective of this research was to study by means of different techniques, the interaction between Penicillium oxalicum and Nigrospora oryzae under different temperatures (15 and 25 degrees C), water activities (0.95, 0.98, and 0.995) and culture media (rice and rice extract agar). In dual culture, P. oxalicum was dominant over N. oryzae in spite of presenting in the majority of cases, lower growth rates. The microscopic study revealed that P. oxalicum is a powerful mycoparasite, which attacks the conidiophores and the spores of N. oryzae, not only surrounding them, but also penetrating, deforming, destroying and developing reproductive structures inside them. The antagonist did not change its way of performance in the different tested conditions. Water activity and temperature showed a significant effect on fungus growth. PMID:18177964

  17. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea.

    PubMed

    Park, Myung Soo; Eom, Ji Eun; Fong, Jonathan J; Lim, Young Woon

    2015-04-01

    Several strains of Penicillium section Citrina were isolated during a survey of fungi from marine environments along the southern coast of Korea. Based on multigene phylogenetic analyses (β-tubulin and calmodulin) and morphological characteristics, the 11 strains were identified as P. citrinum, P. hetheringtonii, P. paxilli, P. sumatrense, P. terrigenum, and P. westlingii. To understand the ecological role of these species, we tested all strains for extracellular enzyme activity; six strains representing four species showed β-glucosidase activity. Four of the identified species - P. hetheringtonii, P. paxilli, P. terrigenum, and P. westlingii - are new records for Korea. For these new species records, we describe morphological characteristics of the strains and compare results to published data of type strains.

  18. The in vitro fungicidal activity of human macrophages against Penicillium marneffei is suppressed by dexamethasone.

    PubMed

    Ma, Tuan; Chen, Renqiong; Li, Xiqing; Lu, Changming; Xi, Liyan

    2015-09-01

    Penicillium marneffei (P. marneffei) is a pathogenic fungus that can persist in macrophages and cause a life-threatening systemic mycosis in immunocompromised hosts. To elucidate the mechanisms underlying this opportunistic fungal infection, we established the co-culture system of P. marneffei conidia and human monocyte-derived macrophages (MDM) for investigating the interactions between them. And, we impaired the immune state of MDM by the addition of dexamethasone (DEX). Compared with immunocompetent MDM without DEX treatment in response to P. marneffei, DEX could damage MDM function in initiating the innate immune response through decreasing TNF-α production and the proportion of P. marneffei conidia in mature phagolysosomes, while the red pigment secretion by P. marneffei conidia was promoted by DEX following MDM lysis. Our data provide the evidence that DEX-treated MDM have a low fungicidal activity against P. marneffei that causes penicilliosis in immunocompromised hosts.

  19. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum.

    PubMed

    Yamazaki, Hiroyuki; Nakayama, Wataru; Takahashi, Ohgi; Kirikoshi, Ryota; Izumikawa, Yuta; Iwasaki, Kohei; Toraiwa, Kengo; Ukai, Kazuyo; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Mangindaan, Remy E P; Namikoshi, Michio

    2015-08-15

    Two new merosesquiterpenes, verruculides A (1) and B (2), were isolated from a culture broth of the Indonesian ascidian-derived Penicillium verruculosum TPU1311, together with three known congeners, chrodrimanins A (3), B (4), and H (5). The structures of 1 and 2 were assigned on the basis of their spectroscopic data (1D and 2D NMR, HRMS, UV, CD, and IR). Compound 2 had a linear sesquiterpene moiety and was considered to be the derivative of the biosynthetic precursor for 1 and 3-5. Compounds 1, 3, and 5 inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 8.4, 8.5, and 14.9 μM, respectively. Compound 2 showed 40% inhibition at 23.1 μM, while 4 was not active at 20.7 μM.

  20. Effect of Jun N-terminal kinase 1 and 2 on the replication of Penicillium marneffei in human macrophages.

    PubMed

    Chen, Renqiong; Xi, Liyan; Huang, Xiaowen; Ma, Tuan; Ren, Hong; Ji, Guangquan

    2015-05-01

    Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To clarify the mechanisms involved, we evaluated the effect of c-Jun N-terminal kinase 1 and 2 (JNK1/2) on cytokine expression, phagosomal maturation and multiplication of P. marneffei in P. marneffei-stimulated human macrophages. P. marneffei induced the rapid phosphorylation of JNK1/2. Using the specific inhibitor of JNK1/2 (SP600125), we found that the inhibition of JNK1/2 suppressed P. marneffei-induced tumor necrosis factor-α and IL-10 production. In addition, the presence of SP600125 increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that JNK1/2 may play an important role in promoting the replication of P. marneffei. Our findings further indicate that the pathogen through the JNK1/2 pathway may attenuate the immune response and macrophage antifungal function.