Science.gov

Sample records for pentoxide induces pulmonary

  1. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5)

    PubMed Central

    Walters, Dianne M.; White, Kevin M.; Patel, Ushma; Davis, Martin J.; Veluci-Marlow, Roberta M.; Bhupanapadu Sunkesula, Solomon Raju; Bonner, James C.; Martin, Jessica R.; Gladwell, Wes; Kleeberger, Steven R.

    2014-01-01

    Interstitial lung diseases (ILDs) are characterized by injury, inflammation, and scarring of alveoli, leading to impaired function. The etiology of idiopathic forms of ILD is not understood, making them particularly difficult to study due to the lack of appropriate animal models. Consequently, few effective therapies have emerged. We developed an inbred mouse model of ILD using vanadium pentoxide (V2O5), the most common form of a transition metal found in cigarette smoke, fuel ash, mineral ores, and steel alloys. Pulmonary responses to V2O5, including dose-dependent increases in lung permeability, inflammation, collagen content, and dysfunction, were significantly greater in DBA/2J mice compared to C57BL/6J mice. Inflammatory and fibrotic responses persisted for 4 mo in DBA/2J mice, while limited responses in C57BL/6J mice resolved. We investigated the genetic basis for differential responses through genetic mapping of V2O5-induced lung collagen content in BXD recombinant inbred (RI) strains and identified significant linkage on chromosome 4 with candidate genes that associate with V2O5-induced collagen content across the RI strains. Results suggest that V2O5 may induce pulmonary fibrosis through mechanisms distinct from those in other models of pulmonary fibrosis. These findings should further advance our understanding of mechanisms involved in ILD and thereby aid in identification of new therapeutic targets.—Walters, D. M., White, K. M., Patel, U., Davis, M. J., Veluci-Marlow, R. M., Bhupanapadu Sunkesula, S. R., Bonner, J. C., Martin, J. R., Gladwell, W., Kleeberger, S. R. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). PMID:24285090

  2. Vanadium pentoxide (V2O5) induced mucin production by airway epithelium

    PubMed Central

    Yu, Dongfang; Walters, Dianne M.; Zhu, Lingxiang; Lee, Pak-Kei

    2011-01-01

    Exposure to environmental pollutants has been linked to various airway diseases and disease exacerbations. Almost all chronic airway diseases such as chronic obstructive pulmonary disease and asthma are caused by complicated interactions between gene and environment. One of the major hallmarks of those diseases is airway mucus overproduction (MO). Excessive mucus causes airway obstruction and significantly increases morbidity and mortality. Metals are major components of environmental particulate matters (PM). Among them, vanadium has been suggested to play an important role in PM-induced mucin production. Vanadium pentoxide (V2O5) is the most common commercial source of vanadium, and it has been associated with occupational chronic bronchitis and asthma, both of which are MO diseases. However, the underlying mechanism is not entirely clear. In this study, we used both in vitro and in vivo models to demonstrate the robust inductions of mucin production by V2O5. Furthermore, the follow-up mechanistic study revealed a novel v-raf-1 murine leukemia viral oncogene homolog 1-IKK-NF-κB pathway that mediated V2O5-induced mucin production. Most interestingly, the reactive oxygen species and the classical mucin-inducing epidermal growth factor receptor (EGFR)-MAPK pathway appeared not to be involved in this process. Thus the V2O5-induced mucin production may represent a novel EGFR-MAPK-independent and environmental toxicant-associated MO model. Complete elucidation of the signaling pathway in this model will not only facilitate the development of the treatment for V2O5-associated occupational diseases but also advance our understanding on the EGFR-independent mucin production in other chronic airway diseases. PMID:21531775

  3. Vanadium pentoxide

    Integrated Risk Information System (IRIS)

    Vanadium pentoxide ; CASRN 1314 - 62 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  4. Drug-induced pulmonary disease

    MedlinePlus

    ... mediastinitis ) Abnormal buildup of fluid in the lungs ( pulmonary edema ) Buildup of fluid between the layers of tissue ... reactions Cardiovascular Chemotherapy Interstitial lung disease Pleural effusion Pulmonary edema Respiratory Systemic lupus erythematosus Patient Instructions Interstitial lung ...

  5. Nanoparticle-induced pulmonary toxicity.

    PubMed

    Li, Jasmine Jia'en; Muralikrishnan, Sindu; Ng, Cheng-Teng; Yung, Lin-Yue Lanry; Bay, Boon-Huat

    2010-09-01

    In recent decades, advances in nanotechnology engineering have given rise to the rapid development of many novel applications in the biomedical field. However, studies into the health and safety of these nanomaterials are still lacking. The main concerns are the adverse effects to health caused by acute or chronic exposure to nanoparticles (NPs), especially in the workplace environment. The lung is one of the main routes of entry for NPs into the body and, hence, a likely site for accumulation of NPs. Once NPs enter the interstitial air spaces and are quickly taken up by alveolar cells, they are likely to induce toxic effects. In this review, we highlight the different aspects of lung toxicity resulting from NP exposure, such as generation of oxidative stress, DNA damage and inflammation leading to fibrosis and pneumoconiosis, and the underlying mechanisms causing pulmonary toxicity.

  6. Pulmonary Artery Denervation Reduces Pulmonary Artery Pressure and Induces Histological Changes in an Acute Porcine Model of Pulmonary Hypertension

    PubMed Central

    Arnold, Nadine D.; Chang, William; Watson, Oliver; Swift, Andrew J.; Condliffe, Robin; Elliot, Charlie A.; Kiely, David G.; Suvarna, S. Kim; Gunn, Julian; Lawrie, Allan

    2015-01-01

    Background— Pulmonary arterial hypertension is a devastating disease with high morbidity and mortality and limited treatment options. Recent studies have shown that pulmonary artery denervation improves pulmonary hemodynamics in an experimental model and in an early clinical trial. We aimed to evaluate the nerve distribution around the pulmonary artery, to determine the effect of radiofrequency pulmonary artery denervation on acute pulmonary hypertension induced by vasoconstriction, and to demonstrate denervation of the pulmonary artery at a histological level. Methods and Results— Histological evaluation identified a circumferential distribution of nerves around the proximal pulmonary arteries. Nerves were smaller in diameter, greater in number, and located in closer proximity to the luminal aspect of the pulmonary arterial wall beyond the pulmonary artery bifurcation. To determine the effect of pulmonary arterial denervation acute pulmonary hypertension was induced in 8 pigs by intravenous infusion of thromboxane A2 analogue. Animals were assigned to either pulmonary artery denervation, using a prototype radiofrequency catheter and generator, or a sham procedure. Pulmonary artery denervation resulted in reduced mean pulmonary artery pressure and pulmonary vascular resistance and increased cardiac output. Ablation lesions on the luminal surface of the pulmonary artery were accompanied by histological and biochemical alteration in adventitial nerves and correlated with improved hemodynamic parameters. Conclusions— Pulmonary artery denervation offers the possibility of a new treatment option for patients with pulmonary arterial hypertension. Further work is required to determine the long-term efficacy and safety. PMID:26553697

  7. Cocaine-induced pulmonary changes: HRCT findings *

    PubMed Central

    de Almeida, Renata Rocha; Zanetti, Gláucia; Souza, Arthur Soares; de Souza, Luciana Soares; Silva, Jorge Luiz Pereira e; Escuissato, Dante Luiz; Irion, Klaus Loureiro; Mançano, Alexandre Dias; Nobre, Luiz Felipe; Hochhegger, Bruno; Marchiori, Edson

    2015-01-01

    Abstract Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with "crack lung", those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. PMID:26398752

  8. Pulmonary edema induced by intravenous ethchlorvynol.

    PubMed

    Conces, D J; Kreipke, D L; Tarver, R D

    1986-11-01

    The intravenous injection of ethchlorvynol is an uncommon cause of noncardiac pulmonary edema. Two cases of intravenous ethchlorvynol-induced pulmonary edema are presented. The patients fell asleep after injecting the liquid contents of Placydil capsules (ethchlorvynol) and awoke several hours later with severe dyspnea. Arterial blood gases demonstrated marked hypoxia. Chest radiographs revealed bilateral diffuse alveolar densities. The patients' symptoms and radiographic findings resolved after several days of supportive care. Changes in the lung caused by ethchlorvynol may be the result of direct effect of the drug on the lung.

  9. Vasopressors induce passive pulmonary hypertension by blood redistribution from systemic to pulmonary circulation.

    PubMed

    Jiang, Chunling; Qian, Hong; Luo, Shuhua; Lin, Jing; Yu, Jerry; Li, Yajiao; An, Qi; Luo, Nanfu; Du, Lei

    2017-05-01

    Vasopressors are widely used in resuscitation, ventricular failure, and sepsis, and often induce pulmonary hypertension with undefined mechanisms. We hypothesize that vasopressor-induced pulmonary hypertension is caused by increased pulmonary blood volume and tested this hypothesis in dogs under general anesthesia. In normal hearts (model 1), phenylephrine (2.5 μg/kg/min) transiently increased right but decreased left cardiac output, associated with increased pulmonary blood volume (63% ± 11.8, P = 0.007) and pressures in the left atrium, pulmonary capillary, and pulmonary artery. However, the trans-pulmonary gradient and pulmonary vascular resistance remained stable. These changes were absent after decreasing blood volume or during right cardiac dysfunction to reduce pulmonary blood volume (model 2). During double-ventricle bypass (model 3), phenylephrine (1, 2.5 and 10 μg/kg/min) only slightly induced pulmonary vasoconstriction. Vasopressin (1U and 2U) dose-dependently increased pulmonary artery pressure (52 ± 8.4 and 71 ± 10.3%), but did not cause pulmonary vasoconstriction in normally beating hearts (model 1). Pulmonary artery and left atrial pressures increased during left ventricle dysfunction (model 4), and further increased after phenylephrine injection by 31 ± 5.6 and 43 ± 7.5%, respectively. In conclusion, vasopressors increased blood volume in the lung with minimal pulmonary vasoconstriction. Thus, this pulmonary hypertension is similar to the hemodynamic pattern observed in left heart diseases and is passive, due to redistribution of blood from systemic to pulmonary circulation. Understanding the underlying mechanisms may improve clinical management of patients who are taking vasopressors, especially those with coexisting heart disease.

  10. Drug-induced pulmonary edema and acute respiratory distress syndrome.

    PubMed

    Lee-Chiong, Teofilo; Matthay, Richard A

    2004-03-01

    Noncardiogenic pulmonary edema, and, to a lesser extent, acute respiratory distress syndrome (ARDS), are common clinical manifestations of drug-induced lung diseases. Clinical features and radiographic appearances are generally indistinguishable from other causes of pulmonary edema and ARDS. Typical manifestations include dyspnea, chest discomfort, tachypnea, and hypoxemia. Chest radiographs commonly reveal interstitial and alveolar filling infiltrates. Unlike pulmonary edema that is due to congestive heart failure, cardiomegaly and pulmonary vascular redistribution are generally absent in cases that are drug-related. Rare cases of drug-induced myocarditis with heart failure and pulmonary edema have been described. Results from laboratory evaluation and respiratory function tests are nonspecific.

  11. IRIS Toxicological Review of Vanadium Pentoxide (External ...

    EPA Pesticide Factsheets

    This vanadium pentoxide reassessment consists of an oral reference dose (RfD), an inhalation reference concentration (RfC), an inhalation unit risk (IUR) and a cancer weight of evidence descriptor. This is the first assessment developing an RfC or IUR for this compound. This assessment is intended to provide human health data to support agency regulatory decisions. EPA is reassessing its IRIS toxicological review of vanadium pentoxide (CASRN 1314-62-1). This vanadium pentoxide reassessment consists of an oral reference dose (RfD), an inhalation reference concentration (RfC), an inhalation unit risk (IUR) and a cancer weight of evidence descriptor. This is the first assessment developing an RfC or IUR for this compound. This assessment is intended to provide human health data to support agency regulatory decisions.

  12. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension.

    PubMed

    Perros, F; Dorfmüller, P; Souza, R; Durand-Gasselin, I; Godot, V; Capel, F; Adnot, S; Eddahibi, S; Mazmanian, M; Fadel, E; Hervé, P; Simonneau, G; Emilie, D; Humbert, M

    2007-05-01

    Pulmonary hypertension is characterised by a progressive increase in pulmonary arterial resistance due to endothelial and smooth muscle cell proliferation resulting in chronic obstruction of small pulmonary arteries. There is evidence that inflammatory mechanisms may contribute to the pathogenesis of human and experimental pulmonary hypertension. The aim of the study was to address the role of fractalkine (CX3CL1) in the inflammatory responses and pulmonary vascular remodelling of a monocrotaline-induced pulmonary hypertension model. The expression of CX3CL1 and its receptor CX3CR1 was studied in monocrotaline-induced pulmonary hypertension by means of immunohistochemistry and quantitative reverse-transcription PCR on laser-captured microdissected pulmonary arteries. It was demonstrated that CX3CL1 was expressed by inflammatory cells surrounding pulmonary arterial lesions and that smooth muscle cells from these vessels had increased CX3CR1 expression. It was then shown that cultured rat pulmonary artery smooth muscle cells expressed CX3CR1 and that CX3CL1 induced proliferation but not migration of these cells. In conclusion, the current authors proposed that fractalkine may act as a growth factor for pulmonary artery smooth muscle cells. Chemokines may thus play a role in pulmonary artery remodelling.

  13. IRIS Toxicological Review of Vanadium Pentoxide ...

    EPA Pesticide Factsheets

    On September 30, 2011, the draft Toxicological Review of Vanadium Pentoxide and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process (May 2009), introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency science consultation draft of the IRIS Toxicological Review of Vanadium Pentoxide and the charge to external peer reviewers are posted on this site. EPA is reassessing its IRIS toxicological review of vanadium pentoxide (CASRN 1314-62-1). This vanadium pentoxide reassessment consists of an oral reference dose (RfD), an inhalation reference concentration (RfC), an inhalation unit risk (IUR) and a cancer weight of evidence descriptor. This is the first assessment developing an RfC or IUR for this compound. This assessment is intended to provide human health data to support agency regulatory decisions.

  14. Non-cardiogenic pulmonary oedema induced by salazosulfapyridine.

    PubMed

    Saito, Takashi; Mori, Yoshihiro; Yoshida, Mitsuo; Maeta, Tsuyoshi; Koui, Fumikazu; Harada, Mine

    2005-09-01

    A 25-year-old woman received oral salazosulfapyridine, 4 g/day, for treatment of ulcerative colitis. At 10 days later, she presented with fever and respiratory symptoms. Based on physical, laboratory and radiological findings, bacterial pneumonia and non-cardiogenic pulmonary oedema was suspected. Salazosulfapyridine was immediately halted and antibiotic therapy started. Two days later, her symptoms and abnormal findings had improved rapidly. Bacteriological studies were negative. Salazosulfapyridine-induced non-cardiogenic pulmonary oedema was diagnosed. Non-cardiogenic pulmonary oedema should be considered as one of several salazosulfapyridine- induced pulmonary diseases in patients who are receiving salazosulfapyridine and who develop respiratory symptoms and an abnormal CXR.

  15. Diffuse interstitial pulmonary fibrosis: pulmonary fibrosis in mice induced by treatment with butylated hydroxytoluene and oxygen

    SciTech Connect

    Haschek, W.M.; Brody, A.R.; Klein-Szanto, A.J.P.; Witschi, H.

    1981-12-01

    It is proposed that the pulmonary fibrosis induced in mice by treatment with BHT and oxygen is a good experimental model for human pulmonary fibrosis. The mechanism of synergistic and additive effects of various agents on pulmonary injury and the epithelial mesenchymal interactions occurring during the early and late phases of lung repair could be studied. This model could be used for study of the effects of various concentrations of oxygen on diffusely damaged lung and assessment of the efficacy of drugs in preventing or resolving excessive collagen accumulation in lung. In addition, the relationship between pulmonary fibrosis and emphysema could be studied.

  16. Pulmonary mass and multiple lung nodules mimicking a lung neoplasm as amiodarone-induced pulmonary toxicity.

    PubMed

    Rodríguez-García, J L.; García-Nieto, J C.; Ballesta, F; Prieto, E; Villanueva, M A.; Gallardo, J

    2001-07-01

    Amiodarone is an effective anti-arrhythmic agent. However, during long-term therapy, patients can develop severe adverse pulmonary reactions that are potentially life-threatening. A case of amiodarone-induced pulmonary toxicity is presented in a 78-year-old woman. She developed dyspnea and a pulmonary mass with associated multiple lung nodules mimicking a lung cancer following 5 years of treatment with amiodarone for atrial fibrillation. After drug withdrawal, and without any additional treatment, clinical and radiological improvement was observed, and radiological findings resolved completely within 6 months.

  17. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    PubMed

    Zimnicka, Adriana M; Tang, Haiyang; Guo, Qiang; Kuhr, Frank K; Oh, Myung-Jin; Wan, Jun; Chen, Jiwang; Smith, Kimberly A; Fraidenburg, Dustin R; Choudhury, Moumita S R; Levitan, Irena; Machado, Roberto F; Kaplan, Jack H; Yuan, Jason X-J

    2014-01-01

    Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  18. Exercise-Induced Pulmonary Edema in a Triathlon

    PubMed Central

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise. PMID:26229538

  19. Development of a tantalum pentoxide Luneberg lens

    NASA Technical Reports Server (NTRS)

    Bryan, D. A.; Chubb, C. R.; Powers, J. K.; Reed, W. R.; Dalke, E. A.; Tomaschke, H. E.

    1982-01-01

    A process has been developed for the fabrication of a tantalum pentoxide waveguide Luneburg lens as the input collimator for an optical signal processing circuit on a silicon substrate, such as an integrated wavelength demultiplexer. The development of such a lens involved improvement of the deposition mask profile, reduction of surface scattering by underlaying the lens, reduction of edge scattering by using shims under the mask, and prediction and measurement of the TE-TM polarization aberration. It is shown that polarization aberration significantly affects the design of a demultiplexer system.

  20. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension

    PubMed Central

    Phan, Carole; Seferian, Andrei; Huertas, Alice; Thuillet, Raphaël; Sattler, Caroline; Le Hiress, Morane; Tamura, Yuichi; Jutant, Etienne-Marie; Chaumais, Marie-Camille; Bouchet, Stéphane; Manéglier, Benjamin; Molimard, Mathieu; Rousselot, Philippe; Sitbon, Olivier; Simonneau, Gérald; Montani, David; Humbert, Marc

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease that can be induced by dasatinib, a dual Src and BCR-ABL tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). Today, key questions remain regarding the mechanisms involved in the long-term development of dasatinib-induced PAH. Here, we demonstrated that chronic dasatinib therapy causes pulmonary endothelial damage in humans and rodents. We found that dasatinib treatment attenuated hypoxic pulmonary vasoconstriction responses and increased susceptibility to experimental pulmonary hypertension (PH) in rats, but these effects were absent in rats treated with imatinib, another BCR-ABL tyrosine kinase inhibitor. Furthermore, dasatinib treatment induced pulmonary endothelial cell apoptosis in a dose-dependent manner, while imatinib did not. Dasatinib treatment mediated endothelial cell dysfunction via increased production of ROS that was independent of Src family kinases. Consistent with these findings, we observed elevations in markers of endothelial dysfunction and vascular damage in the serum of CML patients who were treated with dasatinib, compared with CML patients treated with imatinib. Taken together, our findings indicate that dasatinib causes pulmonary vascular damage, induction of ER stress, and mitochondrial ROS production, which leads to increased susceptibility to PH development. PMID:27482885

  1. Pulmonary and generalized lysosomal storage induced by amphiphilic drugs.

    PubMed Central

    Hruban, Z

    1984-01-01

    Administration of amphiphilic drugs to experimental animals causes formation of myelinoid bodies in many cell types, accumulation of foamy macrophages in pulmonary alveoli and pulmonary alveolar proteinosis. These changes are the result of an interaction between the drugs and phospholipids which leads to an alteration in physicochemical properties of the phospholipids. Impairment of the digestion of altered pulmonary secretions in phagosomes of macrophages results in accumulation of foam cells in pulmonary alveoli. Impairment of the metabolism of altered phospholipids removed by autophagy induces an accumulation of myelinoid bodies. The administration of amphiphilic compounds thus causes pulmonary intra-alveolar histiocytosis which is a part of a drug-induced lysosomal storage or generalized lipidosis. The accumulation of drug-lipid complexes in myelinoid bodies and in pulmonary foam cells may lead to alteration of cellular functioning and to clinical disease. Currently over 50 amphiphilic drugs are known. Unique pharmacological properties necessitate clinical use of some of these drugs. The occurrence and severity of potential clinical side effects depend on the nature of each drug, dosage and duration of treatment, simultaneous administration of other drugs and foods, individual metabolic pattern of the patient and other factors. Further studies on factors preventing and potentiating adverse effects of amphiphilic drugs are indicated. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID:6376111

  2. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents.

  3. The significance of nanoparticles in particle-induced pulmonary fibrosis

    PubMed Central

    Byrne, James D; Baugh, John A

    2008-01-01

    Exposure to airborne nanoparticles contributes to many chronic pulmonary diseases. Nanoparticles, classified as anthropogenic and natural particles, and fibers of diameters less than 100 nm, have unrestricted access to most areas of the lung due to their size. Size relates to the deposition efficiency of the particle, with particles in the nano-range having the highest efficiencies. The deposition of nanoparticles in the lung can lead to chronic inflammation, epithelial injury, and further to pulmonary fibrosis. Cases of particle-induced pulmonary fibrosis, namely pneumoconiosis, are mostly occupationally influenced, and continue to be documented around the world. The tremendous growth of nanotechnology, however, has spurred fears of increased rates of pulmonary diseases, especially fibrosis. The severity of toxicological consequences warrants further examination of the effects of nanoparticles in humans, possible treatments and increased regulatory measures. PMID:18523535

  4. Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

    PubMed Central

    Kim, Hae Jin

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high K+ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-NG-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling. PMID:27847441

  5. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Guan, Ruijuan; Zhao, Xiaomei; Wang, Xia; Song, Nana; Guo, Yuhong; Yan, Xianxia; Jiang, Liping; Cheng, Wenjing; Shen, Linlin

    2016-11-16

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with few treatment options and poor prognosis. Emodin, extracted from Chinese rhubarb, was found to be able to alleviate bleomycin (BLM)-induced pulmonary fibrosis, yet the underlying mechanism remains largely unknown. This study aimed to further investigate the effects of emodin on the inflammation and fibrosis of BLM-induced pulmonary fibrosis and the mechanism involved in rats. Our results showed that emodin improved pulmonary function, reduced weight loss and prevented death in BLM-treated rats. Emodin significantly relieved lung edema and fibrotic changes, decreased collagen deposition, and suppressed the infiltration of myofibroblasts [characterized by expression of α-smooth muscle actin (α-SMA)] and inflammatory cells (mainly macrophages and lymphocytes). Moreover, emodin reduced levels of TNF-α, IL-6, TGF-β1 and heat shock protein (HSP)-47 in the lungs of BLM-treated rats. In vitro, emodin profoundly inhibited TGF-β1-induced α-SMA, collagen IV and fibronectin expression in human embryo lung fibroblasts (HELFs). Emodin also inhibited TGF-β1-induced Smad2/3 and STAT3 activation, indicating that Smad2/3 and STAT3 inactivation mediates emodin-induced effects on TGF-β1-induced myofibroblast differentiation. These results suggest that emodin can exert its anti-fibrotic effect via suppression of TGF-β1 signaling and subsequently inhibition of inflammation, HSP-47 expression, myofibroblast differentiation and extracellular matrix (ECM) deposition.

  6. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  7. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia.

    PubMed

    Chu, YanBiao; XiangLi, XiaoYing; Niu, Hu; Wang, HongChao; Jia, PingDong; Gong, WenBin; Wu, DaWei; Qin, WeiDong; Xing, ChunYan

    2016-01-01

    Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.

  8. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension

    PubMed Central

    Hao, Mingwen; Li, Miaomiao; Li, Wenjun

    2016-01-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin, which is important in inflammation, fibrosis and heart failure. The present study aimed to investigate the role and mechanism of Gal-3 in hypoxia-induced pulmonary arterial hypertension (PAH). Male C57BL/6J and Gal-3−/− mice were exposed to hypoxia, then the right ventricular systolic pressure (RVSP) and Fulton's index were measured, and Gal-3 mRNA and protein expression in the pulmonary arteries was analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting. Compared with the control, hypoxia increased the mRNA and protein expression levels of Gal-3 in wild type murine pulmonary arteries. Gal-3 deletion reduced the hypoxia-induced upregulation of RVSP and Fulton's index. Furthermore, human pulmonary arterial endothelial cells (HPAECs) and human pulmonary arterial smooth muscle cells (HPASMCs) were stimulated by hypoxia in vitro, and Gal-3 expression was inhibited by small interfering RNA. The inflammatory response of HPAECs, and the proliferation and cell cycle distribution of HPASMCs was also analyzed. Gal-3 inhibition alleviated the hypoxia-induced inflammatory response in HPAECs, including tumor necrosis factor-α and interleukin-1 secretion, expression of intercellular adhesion molecule-1 and adhesion of THP-1 monocytes. Gal-3 inhibition also reduced hypoxia-induced proliferation of HPASMCs, partially by reducing cyclin D1 expression and increasing p27 expression. Furthermore, Gal-3 inhibition suppressed HPASMC switching from a ‘contractile’ to a ‘synthetic’ phenotype. In conclusion, Gal-3 serves a fundamental role in hypoxia-induced PAH, and inhibition of Gal-3 may represent a novel therapeutic target for the treatment of hypoxia-induced PAH. PMID:27959409

  9. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    EPA Science Inventory

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  10. Pulmonary edema induced by calcium-channel blockade for tocolysis.

    PubMed

    Bal, Laurence; Thierry, Stéphane; Brocas, Elsa; Adam, Marie; Van de Louw, Andry; Tenaillon, Alain

    2004-09-01

    Nicardipine is used in the treatment of premature labor. There are no previous reports in the anesthesia literature of serious side effects associated with this drug. We report a case of pulmonary edema induced by nicardipine therapy for tocolysis in a pregnant 27-yr-old patient admitted to our hospital for preterm labor with intact membranes at 27 wk of gestation.

  11. Noncardiac Pulmonary Edema induced by Sitagliptin Treatment

    PubMed Central

    Belice, Tahir; Yuce, Suleyman; Kizilkaya, Bayram; Kurt, Aysel; Cure, Erkan

    2014-01-01

    A 74-year-old male patient with type 2 diabetes mellitus admitted to the emergency department with the complaints of progressive breathlessness, dry cough, and swollen lower extremities. Our patient had type 2 diabetes mellitus and hypertension for 3 years. His HbA1c was not within the target range so sitagliptin was added to on-going therapy. After 1 week of starting sitagliptin therapy, even though the patient had not heart failure he applied to the emergency department with a complaint of dyspnea. The cardiovascular safety and efficacy of many anti-hyperglycemic agents such as sitagliptin, saxagliptin are unclear. Our case has shown that dipeptidyl peptidase 4 inhibitors may cause pulmonary edema. Hence, it should be used with cautious, especially in patients with heart failure. PMID:25657966

  12. Vitamin C prevents cigarette smoke-induced pulmonary emphysema in mice and provides pulmonary restoration.

    PubMed

    Koike, Kengo; Ishigami, Akihito; Sato, Yasunori; Hirai, Toyohiro; Yuan, Yiming; Kobayashi, Etsuko; Tobino, Kazunori; Sato, Tadashi; Sekiya, Mitsuaki; Takahashi, Kazuhisa; Fukuchi, Yoshinosuke; Maruyama, Naoki; Seyama, Kuniaki

    2014-02-01

    Vitamin C (VC) is a potent antioxidant and is essential for collagen synthesis. We investigated whether VC treatment prevents and cures smoke-induced emphysema in senescence marker protein-30 knockout (SMP30-KO) mice, which cannot synthesize VC. Two smoke-exposure experiments using SMP30-KO mice were conducted. In the first one (a preventive study), 4-month-old mice received minimal VC (0.0375 g/l) [VC(L)] or physiologically sufficient VC (1.5 g/l) [VC(S)] and exposed to cigarette smoke or smoke-free air for 2 months. Pulmonary evaluations followed when the mice were 6 months of age. The second study began after the establishment of smoke-induced emphysema (a treatment study). These mice no longer underwent smoke exposure but received VC(S) or VC(L) treatment for 2 months. Morphometric analysis was performed, and measurements of oxidative stress, collagen synthesis, and vascular endothelial growth factor in the lungs were evaluated. Chronic smoke exposure caused emphysema (29.6% increases of mean linear intercepts [MLI] and 106.5% increases of destructive index compared with the air-only group) in 6-month-old SMP30-KO mice, and this emphysema closely resembled human chronic obstructive pulmonary disease. Smoke-induced emphysema persisted in the VC(L) group after smoking cessation, whereas VC treatment provided pulmonary restoration (18.5% decrease of MLI and 41.3% decrease of destructive index compared with VC(L) group). VC treatment diminished oxidative stress, increased collagen synthesis, and improved vascular endothelial growth factor levels in the lungs. Our results suggest that VC not only prevents smoke-induced emphysema in SMP30-KO mice but also restores emphysematous lungs. Therefore, VC may provide a new therapeutic strategy for treating chronic obstructive pulmonary disease in humans.

  13. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  14. Contribution of calcium-activated chloride channel to elevated pulmonary artery pressure in pulmonary arterial hypertension induced by high pulmonary blood flow.

    PubMed

    Wang, Kai; Chen, Chuansi; Ma, Jianfa; Lao, Jinquan; Pang, Yusheng

    2015-01-01

    The correlation between calcium-activated chloride channel (CaCC) and pulmonary arterial hypertension (PAH) induced by high pulmonary blood flow remains uncertain. In this study, we investigated the possible role and effects of CaCC in this disease. Sixty rats were randomly assigned to normal, sham, and shunt groups. Rats in the shunt group underwent abdominal aorta and inferior vena cava shunt surgery. The pulmonary artery pressure was measured by catheterization. Pathological changes, right ventricle hypertrophy index (RVHI), arterial wall area/vessel area (W/V), and arterial wall thickness/vessel external diameter (T/D) were analyzed by optical microscopy. Electrophysiological characteristics of pulmonary arterial smooth muscle cells (PASMCs) were investigated using patch clamp technology. After 11 weeks of shunting, PAH and pulmonary vascular structural remodeling (PVSR) developed, accompanied by increased pulmonary pressure and pathological interstitial pulmonary changes. Compared with normal and sham groups, pulmonary artery pressure, RVHI, W/V, and T/D of the shunt group rats increased significantly. Electrophysiological results showed primary CaCC characteristics. Compared with normal and sham groups, membrane capacitance and current density of PASMCs in the shunt group increased significantly, which were subsequently attenuated following chloride channel blocker niflumic acid (NFA) treatment. To conclude, CaCC contributed to PAH induced by high pulmonary blood flow and may represent a potential target for treatment of PAH.

  15. Contribution of calcium-activated chloride channel to elevated pulmonary artery pressure in pulmonary arterial hypertension induced by high pulmonary blood flow

    PubMed Central

    Wang, Kai; Chen, Chuansi; Ma, Jianfa; Lao, Jinquan; Pang, Yusheng

    2015-01-01

    The correlation between calcium-activated chloride channel (CaCC) and pulmonary arterial hypertension (PAH) induced by high pulmonary blood flow remains uncertain. In this study, we investigated the possible role and effects of CaCC in this disease. Sixty rats were randomly assigned to normal, sham, and shunt groups. Rats in the shunt group underwent abdominal aorta and inferior vena cava shunt surgery. The pulmonary artery pressure was measured by catheterization. Pathological changes, right ventricle hypertrophy index (RVHI), arterial wall area/vessel area (W/V), and arterial wall thickness/vessel external diameter (T/D) were analyzed by optical microscopy. Electrophysiological characteristics of pulmonary arterial smooth muscle cells (PASMCs) were investigated using patch clamp technology. After 11 weeks of shunting, PAH and pulmonary vascular structural remodeling (PVSR) developed, accompanied by increased pulmonary pressure and pathological interstitial pulmonary changes. Compared with normal and sham groups, pulmonary artery pressure, RVHI, W/V, and T/D of the shunt group rats increased significantly. Electrophysiological results showed primary CaCC characteristics. Compared with normal and sham groups, membrane capacitance and current density of PASMCs in the shunt group increased significantly, which were subsequently attenuated following chloride channel blocker niflumic acid (NFA) treatment. To conclude, CaCC contributed to PAH induced by high pulmonary blood flow and may represent a potential target for treatment of PAH. PMID:25755701

  16. Hierarchically structured vanadium pentoxide-polymer hybrid materials.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Zaslansky, Paul; Fratzl, Peter; Schlaad, Helmut; Cölfen, Helmut

    2014-05-27

    Biomimetic composite materials consisting of vanadium pentoxide (V2O5) and a liquid crystal (LC) "gluing" polymer were manufactured exhibiting six structural levels of hierarchy, formed through LC phases. The organic matrix was a polyoxazoline with pendant cholesteryl and carboxyl units, forming a lyotropic phase with the same structural orientation extending up to hundreds of micrometers upon shearing, and binding to V2O5 via hydrogen bridges. Composites consisting of V2O5-LC polymer hybrid fibers with a pronounced layered structuring were obtained. The V2O5-LC polymer hybrid fibers consist of aligned V2O5 ribbons, composed of self-assembled V2O5 sheets, encasing a chiral nematic polymer matrix. The structures of the V2O5-LC polymer composites strongly depend on the preparation method, i.e., the phase-transfer method from aqueous to organic medium, in which the polymer forms LC phases. Notably, highly defined micro- and nanostructures were obtained when initiating the synthesis using V2O5 tactoids with preoriented nanoparticle building units, even when using isotropic V2O5 dispersions. Shear-induced hierarchical structuring of the composites was observed, as characterized from the millimeter and micrometer down to the nanometer length scales using complementary optical and electron microscopy, SAXS, μCT, and mechanical nanoindentation.

  17. Extreme sports: extreme physiology. Exercise-induced pulmonary oedema.

    PubMed

    Ma, Joyce Lok Gee; Dutch, Martin John

    2013-08-01

    We report five patients who presented to an on-site medical team with concurrent haemoptysis and shortness of breath at a recent triathlon event. After initial management in the field, three of the five patients were transported to hospital via ambulance for further management, resulting in patients with haemoptysis and dyspnoea being 17 times more likely to require hospital transport. It is important to consider the differential diagnoses for this presentation, particularly exercise-induced pulmonary oedema.

  18. Inhibition of phosphodiesterase-1 attenuates cold-induced pulmonary hypertension.

    PubMed

    Crosswhite, Patrick; Sun, Zhongjie

    2013-03-01

    Chronic exposure to cold caused pulmonary arterial hypertension (cold-induced pulmonary hypertension [CIPH]) and increased phosphodiesterase-1C (PDE-1C) expression in pulmonary arteries (PAs) in rats. The purpose of this study is to investigate a hypothesis that inhibition of PDE-1 would decrease inflammatory infiltrates and superoxide production leading to attenuation of CIPH. Three groups of male rats were exposed to moderate cold (5±1°C) continuously, whereas 3 groups were maintained at room temperature (23.5±1°C, warm; 6 rats/group). After 8-week exposure to cold, 3 groups in each temperature condition received continuous intravenous infusion of 8-isobutyl-methylxanthine (8-IBMX) (PDE-1 inhibitor), apocynin (NADPH oxidase inhibitor) or vehicle, respectively, for 1 week. Cold exposure significantly increased right-ventricular systolic pressure compared with warm groups (33.8±3.2 versus 18.6±0.3 mm Hg), indicating that animals developed CIPH. Notably, treatment with 8-IBMX significantly attenuated the cold-induced increase in right ventricular pressure (23.5±1.8 mm Hg). Cold exposure also caused right-ventricular hypertrophy, whereas 8-IBMX reversed cold-induced right ventricular hypertrophy. Cold exposure increased PDE-1C protein expression, macrophage infiltration, NADPH oxidase activity, and superoxide production in PAs and resulted in PA remodeling. 8-IBMX abolished cold-induced upregulation of PDE-1C in PAs. Interestingly, inhibition of PDE-1 eliminated cold-induced macrophage infiltration, NADPH oxidase activation, and superoxide production in PAs and reversed PA remodeling. Inhibition of NADPH oxidase by apocynin abolished cold-induced superoxide production and attenuated CIPH and PA remodeling. In conclusion, inhibition of PDE-1 attenuated CIPH and reversed cold-induced PA remodeling by suppressing macrophage infiltration and superoxide production, suggesting that upregulation of PDE-1C expression may be involved in the pathogenesis of CIPH.

  19. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    PubMed

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.

  20. Propranolol-induced elevation of pulmonary collagen

    SciTech Connect

    Lindenschmidt, R.C.; Witschi, H.P.

    1985-01-01

    Current concepts of collagen metabolism suggest that fibroblasts tightly control collagen production. One of the possible mechanisms of control is via the cyclic nucleotides, cyclic AMP (cAMP) and cyclic GMP (cGMP). Beta adrenergic agonists, by elevating intracellular cAMP levels, have been shown in vitro to suppress fibroblast collagen production; whereas beta adrenergic antagonists were effective in removing this suppression by blocking the rise in cAMP. In the present study with mice, the authors showed that administration of the beta adrenergic antagonists, propranolol, at a dose demonstrated to decrease the ratio of cAMP to cGMP, resulted in an elevation in total lung collagen in vivo. The increase in collagen was evident only when propranolol was administered before and during acute lung damage induced by either butylated hydroxytoluene, bleomycin or high concentrations of oxygen. There was no increase in lung collagen when propranolol administration was delayed after injury or when given to an undamaged lung. The authors propose that via beta adrenergic blockage by propranolol, fibroblasts involved in the normal reparative process may have lost a mechanism for regulatory control, resulting in excessive deposition of collagen. 38 references, 3 figures, 2 tables.

  1. H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension.

    PubMed

    Feng, Shasha; Chen, Siyao; Yu, Wen; Zhang, Da; Zhang, Chunyu; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2017-03-01

    This study aimed to determine whether hydrogen sulfide (H2S) inhibits pulmonary arterial endothelial inflammation in rats with monocrotaline (MCT)-induced pulmonary hypertension and its possible mechanisms. Twenty-four male Wistar rats were divided randomly into control, MCT, and MCT+H2S treatment groups. Human pulmonary arterial endothelial cells (HPAEC) were cultured and divided into four groups: control, MCT, MCT+H2S, and H2S. Pulmonary artery pressure was determined using a right cardiac catheterization procedure 3 weeks after MCT administration. Pulmonary vascular morphological changes and inflammatory infiltration were measured. Endogenous H2S levels, cystathionine-γ-lyase (CSE) expression, and inflammatory cytokines were determined both in vivo and in vitro. In addition, phosphorylation of NF-κB p65 and IκBα was detected by western blotting, and NF-κB p65 nuclear translocation, as well as its DNA-binding activity, was determined. Pulmonary hypertension and vascular remolding developed 3 wks after MCT administration, with elevated lung tissue inflammatory infiltration and cytokine level associated with activation of the NF-κB pathway, both in vivo and in vitro. However, the endogenous H2S/CSE pathway was downregulated in MCT rats. By contrast, an H2S donor markedly reduced pulmonary artery pressure, pulmonary vascular structural remolding, and increased lung inflammatory infiltration and cytokine levels of MCT-treated rats. Meanwhile, H2S reversed the activation of the NF-κB pathway successfully. The downregulated pulmonary arterial endothelial H2S/CSE pathway is involved in the pulmonary inflammatory response in MCT-treated pulmonary hypertensive rats. H2S attenuated endothelial inflammation by inhibiting the NF-κB pathway.

  2. Rifampicin-induced disseminated intravascular coagulation in pulmonary tuberculosis treatment

    PubMed Central

    Chen, Guo; He, Jian-Qing

    2017-01-01

    Abstract Rationale: Disseminated intravascular coagulation (DIC) induced by daily rifampicin therapy is rare, especially the patient is absent of malignancy, severe infection, and prior exposure to rifampicin. Patient concerns: We report a case of DIC induced by daily rifampicin treatment for pulmonary tuberculosis. A 22-year-old, previously healthy man received an anti-tuberculosis therapy consisting of isoniazid, rifampicin, ethambutol, and pyrazinamide on the daily dose recommended by the World Health Organization tuberculosis guidelines after a diagnosis of pulmonary tuberculosis. Two weeks later, he was transferred to the West China Hospital with nasal hemorrhage for 1 week, hematochezia, hematuria, and petechiae for 5 days. Diagnoses: Laboratory data and symptoms on admission indicated DIC. Interventions: The anti-tuberculosis drugs were discontinued after admission and he was initiated with targeted treatment for DIC, omeprazole and polyene hosphatidylcholine infusion, as well as nutrition supportive treatment. Five days after admission, ethambutol, moxifloxacin, and amikacin were added to the patient without further active hemorrhage. Eight days after admission, the platelet count had risen gradually. Isoniazid was administered on 24 days after admission, while his liver function tests and platelet counts returned to normal. No recurrence of DIC occurred. The diagnosis of rifampicin-induced DIC was confirmed. Outcomes: The patient recovered and left hospital with isoniazid, ethambutol, levofloxacin, and streptomycin after 4 weeks of hospitalization. There was no recurrence of DIC or hemorrhage during the 8 months of follow-up. The literature review revealed that there were 10 other cases of rifampicin-induced DIC. Only 4 cases received rifampicin on a daily basis for pulmonary tuberculosis treatment and the others were on intermittent dosing schedule for pulmonary tuberculosis or leprosy treatment. Lessons: As a rare adverse effect, DIC induced by

  3. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells

    PubMed Central

    Zaher, Tahereh E.; Miller, Edmund J.; Morrow, Dympna M. P.; Javdan, Mohammad; Mantell, Lin L.

    2007-01-01

    Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses upon exposure to hyperoxia. We discuss in detail some of the most interesting players, such as, NF-κB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses. PMID:17349918

  4. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  5. Niflumic Acid Attenuated Pulmonary Artery Tone and Vascular Structural Remodeling of Pulmonary Arterial Hypertension Induced by High Pulmonary Blood Flow In Vivo.

    PubMed

    Wang, Kai; Ma, Jianfa; Pang, Yusheng; Lao, Jinquan; Pan, Xuanren; Tang, Qiaoyun; Zhang, Feng; Su, Danyan; Qin, Suyuan; Shrestha, Arnav Prasad

    2015-10-01

    Calcium-activated chloride channels (CaCCs) play a vital role in regulating pulmonary artery tone during pulmonary arterial hypertension (PAH) induced by high blood flow. The role of CaCCs inhibitor niflumic acid (NFA) in vivo during this process requires further investigation. We established the PAH model by abdominal shunt surgery and treated with NFA in vivo. Fifty rats were randomly divided into normal, sham, shunt, NFA group 1 (0.2 mg/kg), and NFA group 2 (0.4 mg/kg). Pathological changes, right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter were analyzed. Then contraction reactions of pulmonary arteries were measured. Finally, the electrophysiological characteristics of pulmonary arterial smooth muscle cells were investigated using patch-clamp technology. After 11 weeks of shunting, PAH developed, accompanied with increased right ventricle hypertrophy index, arterial wall area/vessel area, and arterial wall thickness/vessel external diameter. In the NFA treatment groups, the pressure and pathological changes were alleviated. The pulmonary artery tone in the shunt group increased, whereas it decreased after NFA treatment. The current density of CaCC was higher in the shunt group, and it was decreased in the NFA treatment groups. In conclusion, NFA attenuated pulmonary artery tone and structural remodeling in PAH induced by high pulmonary blood flow in vivo. CaCCs were involved and the augmented current density was alleviated by NFA treatment.

  6. [Talc-induced pulmonary granulomas in drug addicts].

    PubMed

    Latartseva, L N; Kryvenko, O N

    2013-01-01

    Among the diseases accompanied by granuloma formation in the lung, there is so-called granulomatosis developing in injection drug users who have been long injecting suspensions of oral medications containing talc and other water insoluble fillers. 102 deaths of chronic intravenous drug users were examined; 12 of whom showed pulmonary talc-induced granulomatosis. Their morphology was studied using polarized light microscopy. The main mechanisms of thanatogenesis in lethal cases within the first hours after intravenous injection of talc-containing oral medication suspensions are explained.

  7. IRIS Toxicological Review of Vanadium Pentoxide (External Review Draft)

    EPA Science Inventory

    This vanadium pentoxide reassessment consists of an oral reference dose (RfD), an inhalation reference concentration (RfC), an inhalation unit risk (IUR) and a cancer weight of evidence descriptor. This is the first assessment developing an RfC or IUR for this compound. This as...

  8. IRIS Toxicological Review of Vanadium Pentoxide (Interagency Science Consultation Draft)

    EPA Science Inventory

    On September 30, 2011, the draft Toxicological Review of Vanadium Pentoxide and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and W...

  9. Cromolyn sodium does not prevent hypoxia-induced pulmonary hypertension in newborn and young lambs.

    PubMed

    Frantz, E G; Schreiber, M D; Soifer, S J

    1988-12-01

    Hypoxia-induced pulmonary hypertension may be mediated by leukotrienes. Pulmonary mast cells produce leukotrienes, histamine and prostaglandin D2, and degranulate in response to hypoxia. Cromolyn sodium, a mast cell membrane stabilizing agent, may prevent hypoxia-induced mast cell degranulation. To investigate the role of mast cell products in hypoxia-induced pulmonary hypertension, we studied the haemodynamic responses to alveolar hypoxia before and during an intravenous infusion of 3-5 mg/min per kg of cromolyn sodium in 6 chronically instrumented, spontaneously breathing lambs. Since there are age-dependent differences in the response of the pulmonary circulation to some mast cell products, we studied the effects of cromolyn sodium on hypoxia-induced pulmonary hypertension in newborn (4-7 days) and young lambs (15-18 days). During alveolar hypoxia, mean pulmonary arterial pressure increased by 68% (P less than 0.05) and 59% (P less than 0.05) in the newborn and young lambs, respectively. With alveolar hypoxia during cromolyn sodium infusion, mean pulmonary arterial pressure increased by 71% (P less than 0.05) and 42% (P less than 0.05) in the newborn and young lambs, respectively. Cromolyn sodium did blunt the hypoxia-induced release of histamine into the circulation. Because hypoxia-induced pulmonary hypertension was not inhibited by cromolyn sodium in either age group, mast cell products are not important mediators of hypoxia-induced pulmonary hypertension.

  10. Pathophysiology of infantile pulmonary arterial hypertension induced by monocrotaline.

    PubMed

    Dias-Neto, Marina; Luísa-Neves, Ana; Pinho, Sónia; Gonçalves, Nádia; Mendes, Maria; Eloy, Catarina; Lopes, José M; Gonçalves, Daniel; Ferreira-Pinto, Manuel; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-06-01

    Pediatric pulmonary arterial hypertension (PAH) presents certain specific features. In this specific age group, experimental models to study the pathophysiology of PAH are lacking. To characterize hemodynamic, morphometric, and histological progression as well as the expression of neurohumoral factors and regulators of cardiac transcription in an infantile model of PAH induced by monocrotaline (MCT), eight-day-old Wistar rats were randomly injected with MCT (30 mg/kg, sc, n = 95) or equal volume of saline solution (n = 92). Animals were instrumented for biventricular hemodynamic recording 7, 14, and 21 days after MCT, whereas samples were collected at 1, 3, 7, 14, and 21 days after MCT. Different time point postinjections were defined for further analysis. Hearts and lungs were collected for morphometric characterization, assessment of right- and left-ventricle (RV and LV) cardiomyocyte diameter and collagen type-I and type-III ratio, RV collagen volume fraction, and pulmonary vessels wall thickness. mRNA quantification was undertaken for brain natriuretic peptide (BNP), endothelin-1 (ET-1), and for cardiac transcription regulators (HOP and Islet1). Animals treated with MCT at the 8th day of life presented RV hypertrophy since day 14 after MCT injection. There were no differences on the RV collagen volume fraction or collagen type-I and type-III ratio. Pulmonary vascular remodelling and PAH were present on day 21, which were accompanied by an increased expression of BNP, ET-1, HOP, and Islet1. The infantile model of MCT-induced PAH can be useful for the study of its pathophysiology and to test new therapeutic targets in pediatric age group.

  11. Upregulation of Transient Receptor Potential Canonical Channels Contributes to Endotoxin-Induced Pulmonary Arterial Stenosis

    PubMed Central

    Chen, Gui-Lan; Jiang, Hongni; Zou, Fangdong

    2016-01-01

    Background Septic shock is a pathologic condition caused by endotoxin-producing bacteria, and often associated with severe pulmonary hypertension. Inflammation is a major systemic response to endotoxin; however, it is unknown whether endotoxin has a direct impact on pulmonary arteries that contributes to pathogenesis of pulmonary hypertension. Material/Methods Rat pulmonary arteries and primary pulmonary arterial smooth muscle cells (PASMCs) were cultured in vitro and treated with lipopolysaccharide (LPS) and blockers of transient receptor potential canonical (TRPC) channels. Neointimal growth and arterial stenosis were observed on cryosections of cultured pulmonary arteries. Proliferation of PASMCs was examined by a WST-1 (water-soluble tetrazolium salt) assay. Expression of TRPC genes in pulmonary arteries and PASMCs were detected and quantified by real-time polymerase chain reaction and Western blotting. Results LPS significantly induced neointimal growth and stenosis of pulmonary arteries and promoted proliferation of PASMCs. TRPC channel blockers 2-aminoethoxydiphenyl borate and SKF-96365 inhibited LPS-induced remodeling of pulmonary arteries and PASMC proliferation. Expression of TRPC1/3/4/6 was detected in pulmonary arteries and PASMCs. LPS treatment dramatically increased the expression of TRPC3 and TRPC4 at both messenger RNA and protein levels. Conclusions LPS stimulates stenosis of pulmonary arteries through enhancement of TRPC-mediated Ca2+ entry into PASMCs, which is caused by upregulation of TRPC3 and TRPC4 channels. PMID:27471122

  12. Eugenol attenuates pulmonary damage induced by diesel exhaust particles.

    PubMed

    Zin, Walter A; Silva, Ana G L S; Magalhães, Clarissa B; Carvalho, Giovanna M C; Riva, Douglas R; Lima, Crystianne C; Leal-Cardoso, Jose H; Takiya, Christina M; Valença, Samuel S; Saldiva, Paulo H N; Faffe, Débora S

    2012-03-01

    Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 μl in; CTRL group) or 15 μg of diesel particles DEP (15 μg in; DIE and DEUG groups). After 1 h, mice received saline (10 μl; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (ΔP1), viscoelastic (ΔP2) and total (ΔPtot) pressures, static elastance (Est), and viscoelastic component of elastance (ΔE) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, ΔP2, ΔPtot, and ΔE were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde.

  13. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension.

    PubMed

    Pankey, Edward A; Edward, Justin A; Swan, Kevin W; Bourgeois, Camille R T; Bartow, Matthew J; Yoo, Daniel; Peak, Taylor A; Song, Bryant M; Chan, Ryan A; Murthy, Subramanyam N; Prieto, Minolfa C; Giles, Thomas D; Kadowitz, Philip J

    2016-07-01

    Pulmonary hypertension is a rare disorder that, without treatment, is progressive and fatal within 3-4 years. Current treatment involves a diverse group of drugs that target the pulmonary vascular bed. In addition, strategies that increase nitric oxide (NO) formation have a beneficial effect in rodents and patients. Nebivolol, a selective β1 adrenergic receptor-blocking agent reported to increase NO production and stimulate β3 receptors, has vasodilator properties suggesting that it may be beneficial in the treatment of pulmonary hypertension. The present study was undertaken to determine whether nebivolol has a beneficial effect in monocrotaline-induced (60 mg/kg) pulmonary hypertension in the rat. These results show that nebivolol treatment (10 mg/kg, once or twice daily) attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension. This study demonstrates the presence of β3 adrenergic receptor immunoreactivity in pulmonary arteries and airways and that nebivolol has pulmonary vasodilator activity. Studies with β3 receptor agonists (mirabegron, BRL 37344) and antagonists suggest that β3 receptor-mediated decreases in systemic arterial pressure occur independent of NO release. Our results suggest that nebivolol, a selective vasodilating β1 receptor antagonist that stimulates β3 adrenergic receptors and induces vasodilation by increasing NO production, may be beneficial in treating pulmonary hypertensive disorders.

  14. Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Chen, Jianhui; Shi, Yingying; He, Lian; Hao, Hairong; Wang, Baolan; Zheng, Yulong; Hu, Chengping

    2016-11-01

    The purpose of this paper was to investigate the protective effects of polysaccharides from (PGL) Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats. Our study demonstrated that treatment with PGL of 100-300mg/kg for 28 days led to significant reduction in the pulmonary index, inflammatory cell infiltration and collagen deposition in rats with bleomycin-induced pulmonary fibrosis, which was associated with increased levels of glutathione, glutathione peroxidase, catalase and superoxide dismutase and decreased contents of malondialdehyde and hydroxyproline in the lung. These results indicated that PGL played a positive protective role in the pulmonary fibrosis and its possible mechanism was to improve lung antioxidant ability.

  15. Role of oxidative stress in thuringiensin-induced pulmonary toxicity

    SciTech Connect

    Tsai, S.-F. . E-mail: sftsai@tactri.gov.tw; Yang Chi; Liu, B.-L.; Hwang, J.-S.; Ho, S.-P. . E-mail: spho@dragon.nchu.edu.tw

    2006-10-15

    To understand the effect of thuringiensin on the lungs tissues, male Sprague-Dawley rats were administrated with thuringiensin by intratracheal instillation at doses 0.8, 1.6 and 3.2 mg/kg of body weight, respectively. The rats were sacrificed 4 h after treatment, and lungs were isolated and examined. Subsequently, an effective dose of 1.6 mg/kg was selected for the time course study (4, 8, 12, and 24 h). Intratracheal instillation of thuringiensin resulted in lung damage, as evidenced by increase in lung weight and decrease in alkaline phosphatase (10-54%), an enzyme localized primarily in pulmonary alveolar type II epithelial cells. Furthermore, the administration of thuringiensin caused increases in lipid peroxidation (21-105%), the indices of lung injury. In addition, the superoxide dismutase (SOD) and glutathione (GSH) activities of lung tissue extracts were measured to evaluate the effect of thuringiensin on antioxidant defense system. The SOD activity and GSH content in lung showed significant decreases in a dose-related manner with 11-21% and 15-37%, respectively. Those were further supported by the release of proinflammatory cytokines, as indicated by increases in IL-1{beta} (229-1017%) and TNF-{alpha} (234%) levels. Therefore, the results demonstrated that changes in the pulmonary oxidative-antioxidative status might play an important role in the thuringiensin-induced lung injury.

  16. Expression and mechanism of BRP-39 in bleomycin-induced pulmonary fibrosis in rat.

    PubMed

    Du, Chunxian; Yang, Yibing; Lin, Yuhui; Yang, Jiong

    2014-09-01

    The purpose of the study was to explore the effects of breast regression protein 39 (BRP-39) in bleomycin-induced pulmonary fibrosis and its mechanism in pulmonary fibrosis by studying change in BRP-39 to provide a novel direction for the treatment of idiopathic pulmonary fibrosis. SPF grade male C57BL/6 rats were randomly divided into three groups, including bleomycin group, bleomycin+ BRP-39 recombinant protein group and control group. HE and Masson staining were applied to test the change in lung tissue after being treated by BRP-39, ELISA was applied to test the expression of TGF-β1 in different groups, and Western blot was used to test the expression of BRP-39 in rat lung tissue. Expression of BRP-39 increased, the fibrosis was obvious, and lung tissue collagen increased in bleomycin-induced pulmonary fibrosis in rat lung tissue. Increasing BRP-39 protein level and intratracheal bleomycin medication to establish pulmonary fibrosis model can aggravate pulmonary fibrosis. Along with the increase in BRP-39 protein level, TGF-β1 expression level also increased in lung tissue. Western blot results showed the expression of BRP-39, and TGF-β1 had the same trend in different groups. BRP-39 has effects in bleomycin-induced rat pulmonary fibrosis. Change in BRP-39 can affect the process of bleomycin-induced pulmonary fibrosis. The mechanism of BRP-3 in pulmonary fibrosis may work by regulating TGF-β1.

  17. Metformin Reduces Bleomycin-induced Pulmonary Fibrosis in Mice.

    PubMed

    Choi, Sun Mi; Jang, An Hee; Kim, Hyojin; Lee, Kyu Hwa; Kim, Young Whan

    2016-09-01

    Metformin has anti-inflammatory and anti-fibrotic effects. We investigated whether metformin has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis in a murine model. A total of 62 mice were divided into 5 groups: control, metformin (100 mg/kg), BLM, and BLM with metformin (50 mg/kg or 100 mg/kg). Metformin was administered to the mice orally once a day from day 1. We sacrificed half of the mice on day 10 and collected the bronchoalveolar lavage fluid (BALF) from their left lungs. The remaining mice were sacrificed and analyzed on day 21. The right lungs were harvested for histological analyses. The messenger RNA (mRNA) levels of epithelial-mesenchymal transition markers were determined via analysis of the harvested lungs on day 21. The mice treated with BLM and metformin (50 mg/kg or 100 mg/kg) showed significantly lower levels of inflammatory cells in the BALF compared with the BLM-only mice on days 10 and 21. The histological examination revealed that the metformin treatment led to a greater reduction in inflammation than the treatment with BLM alone. The mRNA levels of collagen, collagen-1, procollagen, fibronectin, and transforming growth factor-β in the metformin-treated mice were lower than those in the BLM-only mice on day 21, although statistical significance was observed only in the case of procollagen due to the small number of live mice in the BLM-only group. Additionally, treatment with metformin reduced fibrosis to a greater extent than treatment with BLM alone. Metformin suppresses the inflammatory and fibrotic processes of BLM-induced pulmonary fibrosis in a murine model.

  18. TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension

    PubMed Central

    Xia, Yang; Fu, Zhenzhen; Hu, Jinxing; Huang, Chun; Paudel, Omkar; Cai, Shaoxi; Liedtke, Wolfgang

    2013-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive channel in pulmonary arterial smooth muscle cells (PASMCs). Its upregulation by chronic hypoxia is associated with enhanced myogenic tone, and genetic deletion of trpv4 suppresses the development of chronic hypoxic pulmonary hypertension (CHPH). Here we further examine the roles of TRPV4 in agonist-induced pulmonary vasoconstriction and in the enhanced vasoreactivity in CHPH. Initial evaluation of TRPV4-selective antagonists HC-067047 and RN-1734 in KCl-contracted pulmonary arteries (PAs) of trpv4−/− mice found that submicromolar HC-067047 was devoid of off-target effect on pulmonary vasoconstriction. Inhibition of TRPV4 with 0.5 μM HC-067047 significantly reduced the sensitivity of serotonin (5-HT)-induced contraction in wild-type (WT) PAs but had no effect on endothelin-1 or phenylephrine-activated response. Similar shift in the concentration-response curve of 5-HT was observed in trpv4−/− PAs, confirming specific TRPV4 contribution to 5-HT-induced vasoconstriction. 5-HT-induced Ca2+ response was attenuated by HC-067047 in WT PASMCs but not in trpv4−/− PASMCs, suggesting TRPV4 is a major Ca2+ pathway for 5-HT-induced Ca2+ mobilization. Nifedipine also attenuated 5-HT-induced Ca2+ response in WT PASMCs but did not cause further reduction in the presence of HC-067047, suggesting interdependence of TRPV4 and voltage-gated Ca2+ channels in the 5-HT response. Chronic exposure (3–4 wk) of WT mice to 10% O2 caused significant increase in 5-HT-induced maximal contraction, which was partially reversed by HC-067047. In concordance, the enhancement of 5-HT-induced contraction was significantly reduced in PAs of CH trpv4−/− mice and HC-067047 had no further effect on the 5-HT induced response. These results suggest unequivocally that TRPV4 contributes to 5-HT-dependent pharmaco-mechanical coupling and plays a major role in the enhanced pulmonary vasoreactivity to 5-HT in CHPH. PMID

  19. Implication of PDGF signaling in cigarette smoke-induced pulmonary arterial hypertension in rat.

    PubMed

    Xing, Ai-ping; Hu, Xiao-yun; Shi, Yi-wei; Du, Yong-cheng

    2012-07-01

    Pulmonary artery hypertension (PAH) is a severe disease characterized with progressive increase of pulmonary vascular resistance that finally causes right ventricular failure and premature death. Cigarette smoke (CS) is a major factor of Chronic Obstructive Pulmonary Disease (COPD) that can lead to PAH. However, the mechanism of CS-induced PAH is poorly understood. Mounting evidence supports that pulmonary vascular remodeling play an important role in the development of PAH. PDGF signaling has been demonstrated to be a major mediator of vascular remodeling implicated in PAH. However, the association of PDGF signaling with CS-induced PAH has not been documented. In this study, we investigated CS-induced PAH in rats and the expression of platelet derived growth factor (PDGF) and PDGF receptor (PDGFR) in pulmonary artery. Forty male rats were randomly divided into control group and three experimental groups that were exposed to CS for 1, 2, and 3 months, respectively. CS significantly increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI). Histology staining demonstrated that CS significantly increased the thickness of pulmonary artery wall and collagen deposition. The expression of PDGF isoform B (PDGF-B) and PDGF receptor beta (PDGFRβ) were significantly increased at both protein and mRNA levels in pulmonary artery of rats with CS exposure. Furthermore, Cigarette smoke extract (CSE) significantly increased rat pulmonary artery smooth muscle cell (PASMC) proliferation, which was inhibited by PDGFR inhibitor Imatinib. Thus, our data suggest PDGF signaling is implicated in CS-induced PAH.

  20. Sodium hydrosulfide prevents hypoxia-induced pulmonary arterial hypertension in broilers.

    PubMed

    Yang, Y; Zhang, B K; Liu, D; Nie, W; Yuan, J M; Wang, Z; Guo, Y M

    2012-01-01

    1. The aim of the study was to determine if H(2)S is involved in the development of hypoxia-induced pulmonary hypertension in broilers, a condition frequently observed in a variety of cardiac and pulmonary diseases. 2. Two-week-old broilers were reared under normoxic conditions or exposed to normobaric hypoxia (6 h/day) with tissue levels of H(2)S adjusted by administering sodium hydrosulfide (NaHS, 10 µmol/kg body weight/day). Mean pulmonary arterial pressure, right ventricular mass, plasma and tissue H(2)S levels, the expression of cystathionine-β-synthase (CSE) and vascular remodeling were determined at 35 d of age. 3. Exposure to hypoxia-induced pulmonary arterial hypertension was characterized by elevated pulmonary pressure, right ventricular hypertrophy and vascular remodeling. This was accompanied by decreased expression of CSE and decreased concentrations of plasma and tissue H(2)S. 4. Hypoxia-induced pulmonary hypertension was significantly reduced by administration of NaHS but this protective effect was largely abolished by D, L-propargylglycerine, an inhibitor of CSE. 5. The results indicate that H(2)S is involved in the development of hypoxia-induced pulmonary hypertension. Supplementing NaHS or H(2)S could be a strategy for reducing hypoxia-induced hypertension in broilers.

  1. The Chinese Herbal Medicine Formula mKG Suppresses Pulmonary Fibrosis of Mice Induced by Bleomycin.

    PubMed

    Gao, Ying; Yao, Li-Fu; Zhao, Yang; Wei, Li-Man; Guo, Peng; Yu, Meng; Cao, Bo; Li, Tan; Chen, Hong; Zou, Zhong-Mei

    2016-02-15

    Pulmonary fibrosis (PF) is a serious progressive lung disease and it originates from inflammation-induced parenchymal injury with excessive extracellular matrix deposition to result in the destruction of the normal lung architecture. Modified Kushen Gancao Formula (mKG), derived from traditional Chinese herbal medicine, has a prominent anti-inflammatory effect. The present study is to explore the inhibitory effects of mKG on bleomycin (BLM)-induced pulmonary fibrosis in mice. mKG significantly decreased pulmonary alveolitis, fibrosis scores, and interleukin-6 (IL-6), interleukin-17 (IL-17), transforming growth factor-β (TGF-β) and hydroxyproline (HYP) levels in lung tissue of mice compared with BLM treatment. It markedly alleviated the increase of HYP content in the lung tissues and pathologic changes of pulmonary fibrosis caused by BLM instillation. In conclusion, mKG has an anti-fibrotic effect and might be employed as a therapeutic candidate agent for attenuating pulmonary fibrosis.

  2. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  3. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  4. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    EPA Science Inventory

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  5. Sildenafil and an early stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets.

    PubMed

    Binns-Loveman, Karen M; Kaplowitz, Mark R; Fike, Candice D

    2005-07-01

    Devising therapies that might prevent the onset or progression of pulmonary hypertension in newborns has received little attention. Our major objective was to determine whether sildenafil, a selective phosphodiesterase inhibitor, prevents the development of an early stage of chronic hypoxia-induced pulmonary hypertension in newborn pigs. Another objective was to determine whether sildenafil causes pulmonary vasodilation without systemic vasodilation in piglets with chronic pulmonary hypertension. Piglets were raised in room air (control, n = 5) or 10-11% O(2) (hypoxic, n = 17) for 3 days. Some piglets (n = 4) received oral sildenafil, 12 mg/kg/day, throughout exposure to hypoxia. All piglets were anesthetized and catheterized, and pulmonary arterial pressure (Ppa), pulmonary wedge pressure (Pw), aortic pressure (Ao), and cardiac output (CO) were measured. Then for some piglets raised in hypoxia for 3 days, a single oral sildenafil dose (3 mg/kg, n = 6) or placebo (n = 5) was given, and hemodynamic measurements were repeated. For piglets raised in hypoxia for 3 days, mean Ppa and calculated PVR were elevated above respective values in control piglets. Mean Ppa and PVR did not differ between piglets that received sildenafil throughout exposure to hypoxia and those that did not. For piglets with chronic hypoxia-induced pulmonary hypertension that received a single oral dose of sildenafil, mean Ppa and PVR decreased, while mean Pw, CO, mean Ao, and systemic vascular resistance remained the same. All hemodynamic measurements were unchanged after placebo. Oral sildenafil did not influence the early stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets. However, a single oral dose of sildenafil caused pulmonary vasodilation, without systemic vasodilation, in piglets with chronic hypoxia-induced pulmonary hypertension, which may have therapeutic implications.

  6. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    SciTech Connect

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-03-15

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1{alpha} protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1{alpha} hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1{alpha} degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1{alpha} protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation.

  7. Pulmonary reactions caused by welding-induced decomposed trichloroethylene

    SciTech Connect

    Sjoegren, B.P.; Plato, N.; Alexandersson, R.; Eklund, A.; Falkenberg, C. )

    1991-01-01

    This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene.

  8. Dermatophagoides-farinae-induced pulmonary eosinophilic inflammation in mice.

    PubMed

    Yu, C K; Yang, B C; Lee, S C; Wang, J Y; Hsiue, T R; Lei, H Y

    1997-01-01

    Dermatophagoides farinae (Der f) is one of the most common species of dust mites that induce asthma and allergic rhinitis. We have reported that Der f challenge on sensitized mice elicited a distinct type of hypersensitivity, called early-type hypersensitivity (ETH), in subcutaneous tissues and in airways. The airway ETH was accompanied by a series of inflammatory and immunological events including cytokine production, adhesion molecule expression, inflammatory cell infiltration, eosinophilia, and airway hyperreactivity. In the present study, we further defined the course of the Der-f-induced eosinophilia and examined the local cytokine gene expression and the roles of cytokines, mast-cell-derived vasoactive amines, and corticosteroids in the development of pulmonary eosinophilia. BALB/c mice were sensitized with crude extract of Der f in complete Freund's adjuvant and were intranasally challenged with Der f on day 14 after sensitization. The number of blood eosinophils, total and differential leukocyte counts in bronchoalveolar lavage (BAL) fluids, and the expression of cytokine genes in BAL cells were assessed at various time points after challenge for up to 12 days. The total number of leukocytes in the BAL fluids was increased 6 h after challenge (AC) and peaked at 72 h. The early cellular response in the BAL fluids was dominated by neutrophils which were subsequently replaced by a marked infiltration of eosinophils. The number of eosinophils in BAL fluids increased at 24 h and peaked at 72 h, making up 43% of all cells recovered by BAL. BAL eosinophils declined gradually to normal background levels around day 12. Concurrently, there was a significant reduction in the number of eosinophils in blood 24 h AC. The number of blood eosinophils increased thereafter, reached a peak at 72 h, and remained above baseline level for up to 10 days. Saline challenge did not induce eosinophilia in BAL fluids and blood of sensitized mice. Histopathological examination revealed

  9. [The role of oxygen radicals in bleomycin-induced pulmonary fibrosis].

    PubMed

    Wang, X Z

    1992-06-01

    A model of pulmonary fibrosis in rat has been developed using intratracheal administration of bleomycin (BLM) A5 (5mg/kg). Histopathologic features and total lung collagen were studied. We found that type I pneumocytes detached, basement membrane denuded and endothelia edema were the earliest changes in BLM induced pulmonary fibrosis. Serum MDA (an index of lipid peroxidation) level in rats receiving intratracheal bleomycin were increased at earlier time after bleomycin administration. Meanwhile, MDA level in the lung homogenate was elevated too. Our results indicated that the injured type I pneumocytes and endothelia caused by oxygen radicles are the fundamental damages in bleomycin-induced pulmonary fibrosis.

  10. Nitric Oxide Mediates Bleomycin-Induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

    PubMed Central

    Iyer, Anand Krishnan V.; Ramesh, Vani; Castro, Carlos A.; Kaushik, Vivek; Kulkarni, Yogesh M.; Wright, Clayton A.; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-01-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis. PMID:25919965

  11. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF.

    PubMed

    Iyer, Anand Krishnan V; Ramesh, Vani; Castro, Carlos A; Kaushik, Vivek; Kulkarni, Yogesh M; Wright, Clayton A; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-11-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.

  12. Sol-gel derived PZT films doped with vanadium pentoxide

    SciTech Connect

    Shen Hongfang; Guo Qing; Zhao Zhiman; Cao Guozhong

    2009-11-15

    The present research investigated the sol-gel preparation, dielectric and ferroelectric properties of PZT films doped with 5 mol% vanadium oxide. Stable PZTV sols can be readily formed, and homogeneous, micrometer thick and pinhole-free PZTV films were obtained by using spin coating followed with rapid annealing. The X-ray diffraction patterns revealed that no parasitic or secondary phases were formed in the sol-gel PZT films with the addition of vanadium oxide. The material doped with vanadium pentoxide showed enhanced dielectric constant and remanent polarization with reduced loss tangent and coercive field.

  13. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  14. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Takemasa, Akihiro; Ishii, Yoshiki; Fukuda, Takeshi

    2012-12-01

    Neutrophil elastase plays pivotal roles in the pathogenesis of pulmonary fibrosis. The neutrophil elastase inhibitor, sivelestat, could alleviate pulmonary fibrosis; however, the antifibrotic mechanisms have not yet been clarified. We examined the antifibrotic mechanisms, mainly focusing on a key fibrotic cytokine, transforming growth factor (TGF)-β1, in this study. To elucidate the antifibrotic mechanisms of sivelestat, we examined a murine model of bleomycin-induced early-stage pulmonary fibrosis. After intratracheal instillation of bleomycin, sivelestat was administered intraperitoneally once a day for 7 or 14 days. Bronchoalveolar lavage fluid and lung samples were examined on day 7 or day 14 after bleomycin instillation. In the bleomycin-induced early-stage pulmonary fibrosis model, the neutrophil elastase level was increased in the lungs. Sivelestat significantly inhibited the increase in lung collagen content, fibrotic changes, the numbers of total cells (including macrophages, neutrophils and lymphocytes), the levels of the active form of TGF-β1 and phospho-Smad2 in bleomycin-induced early-stage pulmonary fibrosis. The total TGF-β1 levels and relative changes of TGF-β1 mRNA expression, however, were not decreased significantly by sivelestat. These results suggest that sivelestat alleviated bleomycin-induced pulmonary fibrosis via inhibition of both TGF-β activation and inflammatory cell recruitment in the lung.

  15. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice

    PubMed Central

    Zhang, Wei; Wang, Wang; Liu, Jie; Li, Jinna; Wang, Juan; Zhang, Yunxia; Zhang, Zhifei; Liu, Yafei; Jin, Yankun; Li, Jifeng; Cao, Jie; Wang, Chen; Ning, Wen; Wang, Jun

    2017-01-01

    Pulmonary hypertension (PH) remains a life-limiting disease characterized by pulmonary vascular remodelling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), thus leading to raised pulmonary arterial pressure and right ventricular hypertrophy. Secreted glycoprotein follistatin-like 1 (FSTL1) has been reported to ameliorate tissue remodelling in cardiovascular injuries. However, the role of FSTL1 in deranged pulmonary arteries remains elusive. We found that there were higher serum levels of FSTL1 in patients with PH related to chronic obstructive pulmonary diseases (COPD) and in mice model of hypoxia-induced PH (HPH). Haploinsufficiency of Fstl1 in mice contributed to an exacerbated HPH, as demonstrated by increased right ventricular systolic pressure, pulmonary arterial muscularization and right ventricular hypertrophy index. Conversely, FSTL1 administration attenuated HPH. In cultured human PASMCs, hypoxia-promoted cellular viability, DNA synthesis and migration were suppressed by exogenous FSTL1 but enhanced by small interfering RNA targeting FSTL1. Additionally, FSTL1 inhibited the proliferation and migration of PASMCs via extracellular regulated kinase (ERK) signal pathway. All these findings indicate that FSTL1 imposed a protective modulation on pulmonary vascular remodelling, thereby suggesting its role in the regulation of HPH. PMID:28361925

  16. Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Zhang, Qianlong; Fan, Kai; Wang, Peng; Yu, Juan; Liu, Ruxia; Qi, Hanping; Sun, Hongli; Cao, Yonggang

    2016-01-05

    The abnormal apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important pathophysiological process in pulmonary vascular remodeling and pulmonary arterial hypertension (PAH). Carvacrol, an essential oil compound from oregano and thyme, has displayed antimicrobial, antitumor, and antioxidant properties. Although carvacrol has pro-apoptosis properties in tumor cells, the underlying mechanisms of carvacrol in PASMC apoptosis remain unclear. Thus, in this study, we aim to investigate the role of carvacrol in pulmonary vascular remodeling and PASMC apoptosis in hypoxia. Right Ventricular Hypertrophy Measurements and pulmonary pathomorphology data show that the ratio of the heart weight/tibia length (HW/TL), the right ventricle/left ventricle plus septum (RV/LV+S) and the medial width of the pulmonary artery increased in chronic hypoxia and were reversed by carvacrol treatment under hypoxia. Additionally, carvacrol inhibited PASMC viability, attenuated oxidative stress, induced mitochondria membrane depolarization, increased the percentage of apoptotic cells, suppressed Bcl-2 expression, decreased procaspase-3 expression, promoted caspase-3 activation, and inhibited the ERK1/2 and PI3K/Akt pathway. Taken together, these findings suggest that carvacrol attenuates the pulmonary vascular remodeling and promotes PASMC apoptosis by acting on, at least in part, the intrinsic apoptotic pathway. This process might provide us new insight into the development of hypoxic pulmonary hypertension.

  17. Nanometer sized tantalum pentoxide fibers prepared by electrospinning

    SciTech Connect

    Dharmaraj, N.; Kim, H.Y.

    2006-03-09

    Novel, porous tantalum pentoxide (Ta{sub 2}O{sub 5}) nanofibers with 150-250 nm diameter were obtained by high temperature calcination of the as-electrospun tantalum pentoxide/poly(vinyl acetate) (PVAc) composite fibers prepared by sol-gel processing and electrospinning technique. Surface analysis, structure and elemental composition of these as-electrospun and as-calcinated Ta{sub 2}O{sub 5} nanofibers have been studied by scanning electron microscope (SEM) equipped with an energy dispersive X-ray analysis (EDX), high resolution field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction patterns (XRD) and FT-IR. High-resolution FE-SEM images showed the porous nature of Ta{sub 2}O{sub 5} nanofibers. EDX analysis revealed the perfect stoichiometry of the nanofibers as Ta{sub 2}O{sub 5}. A linear correlation was noted between the calcination temperature and orthorhombic crystalline phase evolution of Ta{sub 2}O{sub 5}.

  18. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang

    2012-08-01

    Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen (1O2) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

  19. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation.

    PubMed

    Natalio, Filipe; André, Rute; Hartog, Aloysius F; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang

    2012-08-01

    Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen ((1)O(2)) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

  20. Calcitonin gene-related peptide down-regulates bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Li, Xiao-Hui; Du, Jie; Li, Dai; Li, Yuan-Jian; Hu, Chang-Ping

    2016-12-01

    We have found that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway. Whether ERK1/2 - eIF3a signal pathway is involved in calcitonin gene-related peptide (CGRP)-mediated pathogenesis of bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. Sensory CGRP depletion by capsaicin exacerbated bleomycin-induced pulmonary fibrosis in rats, as shown by a significant disturbed alveolar structure, marked thickening of the interalveolar septa and dense interstitial infiltration by inflammatory cells and fibroblasts, accompanied with increased expression of TGF-β1, eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. Exogenous application of CGRP significantly inhibited TGF-β1-induced proliferation and differentiation of pulmonary fibroblasts concomitantly with decreased expression of eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. These effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that endogenous CGRP is related to the development of pulmonary fibrosis induced by bleomycin, and the inhibitory effect of CGRP on proliferation of lung fibroblasts involves the ERK1/2 - eIF3a signaling pathway.

  1. Deficiency of developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Kang, Yoon-Young; Kim, Dong-Young; Lee, Seung-Hwan; Choi, Eun Young

    2014-03-07

    Pulmonary fibrosis is a lung disease wherein lung parenchyma is gradually and irreversibly replaced with collagen. The molecular pathogenesis of pulmonary fibrosis is not fully understood and the only effective treatment available is lung transplantation. To test if Del-1, an endogenous anti-inflammatory molecule, may be implicated in the development of pulmonary fibrosis, we induced pulmonary fibrosis in wild type (WT) and Del-1(-/-) mice by intratracheal administration of bleomycin. Del-1 expression in the lung was decreased in the WT mice treated with bleomycin compared to control mice. In addition, bleomycin-induced pulmonary fibrosis increased collagen deposition and TGF-β production in the lung of Del-1(-/-) mice. Finally, Del-1(-/-) mice treated with bleomycin displayed higher weight loss and greater mortality than did WT mice identically treated. These findings suggest that Del-1 may negatively regulate development of pulmonary fibrosis. Further delineation of a role for Del-1 in the development of pulmonary fibrosis will broaden our understanding of the molecular pathogenesis of this disease and hopefully help develop potential therapeutics.

  2. Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis.

    PubMed

    Nagao, Saori; Taguchi, Kazuaki; Sakai, Hiromi; Tanaka, Ryota; Horinouchi, Hirohisa; Watanabe, Hiroshi; Kobayashi, Koichi; Otagiri, Masaki; Maruyama, Toru

    2014-08-01

    Carbon monoxide (CO) has potent anti-inflammatory and anti-oxidant effects. We report herein on the preparation of a nanotechnology-based CO donor, CO-bound hemoglobin-vesicles (CO-HbV). We hypothesized that CO-HbV could have a therapeutic effect on idiopathic pulmonary fibrosis (IPF), an incurable lung fibrosis, that is thought to involve inflammation and the production of reactive oxygen species (ROS). Pulmonary fibril formation and respiratory function were quantitatively evaluated by measuring hydroxyproline levels and forced vital capacity, respectively, using a bleomycin-induced pulmonary fibrosis mice model. CO-HbV suppressed the progression of pulmonary fibril formation and improved respiratory function compared to saline and HbV. The suppressive effect of CO-HbV on pulmonary fibrosis can be attributed to a decrease in ROS generation by inflammatory cells, NADPH oxidase 4 and the production of inflammatory cells, cytokines and transforming growth factor-β in the lung. This is the first demonstration of the inhibitory effect of CO-HbV on the progression of pulmonary fibrosis via the anti-oxidative and anti-inflammatory effects of CO in the bleomycin-induced pulmonary fibrosis mice model. CO-HbV has the potential for use in the treatment of, not only IPF, but also a variety of other ROS and inflammation-related disorders.

  3. Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

    PubMed Central

    2011-01-01

    Background Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats. Methods Monocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed. Results The novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling. Conclusion The results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension. PMID:21699729

  4. Pulmonary arterial strain- and remodeling-induced stiffening are differentiated in a chronic model of pulmonary hypertension.

    PubMed

    Golob, Mark J; Tabima, Diana M; Wolf, Gregory D; Johnston, James L; Forouzan, Omid; Mulchrone, Ashley M; Kellihan, Heidi B; Bates, Melissa L; Chesler, Naomi C

    2017-04-11

    Pulmonary hypertension (PH) is a debilitating vascular disease that leads to pulmonary artery (PA) stiffening, which is a predictor of patient mortality. During PH development, PA stiffening adversely affects right ventricular function. PA stiffening has been investigated through the arterial nonlinear elastic response during mechanical testing using a canine PH model. However, only circumferential properties were reported and in the absence of chronic PH-induced PA remodeling. Remodeling can alter arterial nonlinear elastic properties via chronic changes in extracellular matrix (ECM) content and geometry. Here, we used an established constitutive model to demonstrate and differentiate between strain-stiffening, which is due to nonlinear elasticity, and remodeling-induced stiffening, which is due to ECM and geometric changes, in a canine model of chronic thromboembolic PH (CTEPH). To do this, circumferential and axial tissue strips of large extralobar PAs from control and CTEPH tissues were tested in uniaxial tension, and data were fit to a phenomenological constitutive model. Strain-induced stiffening was evident from mechanical testing as nonlinear elasticity in both directions and computationally by a high correlation coefficient between the mechanical data and model (R(2)=0.89). Remodeling-induced stiffening was evident from a significant increase in the constitutive model stress parameter, which correlated with increased PA collagen content and decreased PA elastin content as measured histologically. The ability to differentiate between strain- and remodeling-induced stiffening in vivo may lead to tailored clinical treatments for PA stiffening in PH patients.

  5. Pathogenesis and management of virus infection-induced exacerbation of senile bronchial asthma and chronic pulmonary emphysema.

    PubMed

    Yamaya, Metstuo

    2002-06-01

    The number of senile patients with therapy resistant bronchial asthma, chronic pulmonary emphysema increases due to the habit of smoking and increased number of older people, and these inflammatory pulmonary diseases are the leading causes of death worldwide. Rhinoviruses cause the majority of common colds, and provoke exacerbations of bronchial asthma and chronic pulmonary emphysema. Here, I review the pathogenesis and management of rhinovirus infection-induced exacerbation of senile bronchial asthma and chronic pulmonary emphysema.

  6. Elastase modifies bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Trajano, Larissa Alexsandra Silva Neto; Trajano, Eduardo Tavares Lima; Lanzetti, Manuella; Mendonça, Morena Scopel Amorim; Guilherme, Rafael Freitas; Figueiredo, Rodrigo Tinoco; Benjamim, Cláudia Farias; Valenca, Samuel Santos; Costa, Andréa Monte Alto; Porto, Luís Cristóvão

    2016-04-01

    Pulmonary fibrosis (PF) is characterized by excessive accumulation of collagen in the lungs. Emphysema is characterized by loss of the extracellular matrix (ECM) and alveolar enlargement. We studied the co-participation of elastase-induced mild emphysema in bleomycin-induced PF in mice by analyzing oxidative stress, inflammation and lung histology. C57BL/6 mice were divided into four groups: control; bleomycin (0.1U/mouse); elastase (using porcine pancreatic elastase (PPE)+bleomycin (3U/mouse 14 days before 0.1U/mouse of bleomycin; PPE+B); elastase (3U/mouse). Mice were humanely sacrificed 7, 14 and 21 days after treatment with bleomycin or vehicle. PF was observed 14 days and 21 days after bleomycin treatment but was observed after 14 days only in the PPE+B group. In the PPE+B group at 21 days, we observed many alveoli and alveolar septa with few PF areas. We also observed marked and progressive increases of collagens 7, 14 and 21 days after bleomycin treatment whereas, in the PPE+B group, collagen deposition was observed only at 14 days. There was a reduction in activities of the antioxidant enzymes superoxide dismutase (p<0.05), catalase (p<0.01) and glutathione peroxidase (p<0.01) parallel with an increase in nitrite (p<0.01) 21 days after bleomycin treatment compared with the control group. These endpoints were also reduced (p<0.05, p<0.05 and p<0.01, respectively) and increased (p<0.01) in the PPE+B group at 21 days compared with the control group. Interleukin (IL)-1β expression was upregulated (p<0.01) whereas IL-6 was downregulated (p<0.05) in the PPE+B group at 21 days compared with the control group. PF and emphysema did not coexist in our model of lung disease and despite increased levels of oxidative stress and inflammatory markers after combined stimulus (elastase and bleomycin) overall histology was improved to that of the nearest control group.

  7. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

    PubMed Central

    Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  8. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.

    PubMed

    Li, Qian; Mao, Min; Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.

  9. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Wu, Yue-Han; Li, Xiao-Hui; Li, Dai; Du, Jie; Hu, Chang-Ping; Li, Yuan-Jian

    2015-02-15

    Eukaryotic translation initiation factor 3a (eIF3a) is a multifunctional protein and plays an important role in regulation of cellular function including proliferation and differentiation. In the present study, we tested the function of eIF3a in pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Primary pulmonary fibroblasts were cultured for proliferation investigation by BrdU incorporation method and flow cytometry. The expression/level of eIF3a, TGF-β1, ERK1/2 and α-SMA were analyzed by ELISA, real-time PCR or western blot. Results showed that the expression of eIF3a was obviously increased in lungs of pulmonary fibrosis rats accompanied by up-regulation of α-SMA and collagens. In cultured pulmonary fibroblasts, application of exogenous TGF-β1 induced cell proliferation and differentiation concomitantly with up-regulation of eIF3a expression and ERK1/2 phosphorylation. The effects of TGF-β1-induced proliferation of fibroblasts and up-regulation of α-SMA were abolished by eIF3a siRNA. TGF-β1-induced eIF3a expression was reversed in the presence of PD98059, an inhibitor of ERK1/2. These findings suggest that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis by regulating pulmonary fibroblasts׳ function, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway.

  10. ECMO for pulmonary rescue in an adult with amiodarone-induced toxicity.

    PubMed

    Benassi, Filippo; Molardi, Alberto; Righi, Elena; Santangelo, Rosaria; Meli, Marco

    2015-05-01

    Amiodarone is a highly effective antiarrhythmic agent. Unfortunately amiodarone-induced pulmonary toxicity is described for medium-long term therapy. We describe a case of a 65-year-old man admitted to our department for breathlessness and with a history of recurrent episodes of atrial fibrillation for which he had been receiving amiodarone (200 mg/day) since 2008. Despite diuretic therapy, along with aspirin, statins and antibiotics the patient continued to complain of severe dyspnea and had a moderate fever. Thus, diagnostic hypotheses different from acute cardiac failure were considered, in particular non-cardiogenic causes of pulmonary infiltrates. Following suspicion of amiodarone-induced pulmonary toxicity, the drug was discontinued and corticosteroid therapy was initiated. Due to the deterioration of the clinical picture, we proceeded to intubation. After few hours from intubation we were forced to institute a veno-venous extracorporeal membrane oxygenation due to the worsening of pulmonary function. The patient's clinical condition improved which allowed us to remove the ECMO after 15 days of treatment. Indications for use of ECMO have expanded considerably. To our knowledge this is the first successful, reported article of a veno-venous ECMO used to treat amiodarone-induced toxicity in an adult. In patients with severe but potentially reversible pulmonary toxicity caused by amiodarone, extracorporeal life support can maintain pulmonary function and vital organ perfusion at the expense of low morbidity, while allowing time for drug clearance.

  11. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome

    PubMed Central

    Zhang, Yiwei; Tian, Kun; Wang, Yan; Zhang, Rong; Shang, Jiawei; Jiang, Wei; Wang, Aizhong

    2016-01-01

    This study was designed to investigate the role of aquaporin1 (AQP1) in the pathologic process of pulmonary edema induced by fat embolism syndrome (FES) and the effects of a free fatty acid (FFA) mixture on AQP1 expression in pulmonary microvascular endothelial cells (PMVECs). In vivo, edema was more serious in FES mice compared with the control group. The expression of AQP1 and the wet-to-dry lung weight ratio (W/D) in the FES group were significantly increased compared with the control group. At the same time, inhibition of AQP1 decreased the pathological damage resulting from pulmonary edema. Then we performed a study in vitro to investigate whether AQP1 was induced by FFA release in FES. The mRNA and protein level of AQP1 were increased by FFAs in a dose- and time-dependent manner in PMVECs. In addition, the up-regulation of AQP1 was blocked by the inhibitor of p38 kinase, implicating the p38 MAPK pathway as involved in the FFA-induced AQP1 up-regulation in PMVECs. Our results demonstrate that AQP1 may play important roles in pulmonary edema induced by FES and can be regarded as a new therapy target for treatment of pulmonary edema induced by FES. PMID:27455237

  12. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome.

    PubMed

    Zhang, Yiwei; Tian, Kun; Wang, Yan; Zhang, Rong; Shang, Jiawei; Jiang, Wei; Wang, Aizhong

    2016-07-21

    This study was designed to investigate the role of aquaporin1 (AQP1) in the pathologic process of pulmonary edema induced by fat embolism syndrome (FES) and the effects of a free fatty acid (FFA) mixture on AQP1 expression in pulmonary microvascular endothelial cells (PMVECs). In vivo, edema was more serious in FES mice compared with the control group. The expression of AQP1 and the wet-to-dry lung weight ratio (W/D) in the FES group were significantly increased compared with the control group. At the same time, inhibition of AQP1 decreased the pathological damage resulting from pulmonary edema. Then we performed a study in vitro to investigate whether AQP1 was induced by FFA release in FES. The mRNA and protein level of AQP1 were increased by FFAs in a dose- and time-dependent manner in PMVECs. In addition, the up-regulation of AQP1 was blocked by the inhibitor of p38 kinase, implicating the p38 MAPK pathway as involved in the FFA-induced AQP1 up-regulation in PMVECs. Our results demonstrate that AQP1 may play important roles in pulmonary edema induced by FES and can be regarded as a new therapy target for treatment of pulmonary edema induced by FES.

  13. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  14. Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice.

    PubMed

    Plantier, Laurent; Marchand-Adam, Sylvain; Antico Arciuch, Valeria G; Antico, Valeria G; Boyer, Laurent; De Coster, Cécile; Marchal, Joëlle; Bachoual, Rafik; Mailleux, Arnaud; Boczkowski, Jorge; Crestani, Bruno

    2007-11-01

    Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice.

  15. Swimming-induced immersion pulmonary edema while snorkeling can be rapidly life-threatening: case reports.

    PubMed

    Cochard, G; Henckes, A; Deslandes, S; Noël-Savina, E; Bedossa, M; Gladu, G; Ozier, Y

    2013-01-01

    It is well known that immersion pulmonary edema can be life-threatening for divers using a self-contained underwater breathing apparatus (scuba). Swimming-induced pulmonary edema in otherwise healthy individuals is not an object of dispute but its real severity is not well known and is probably underestimated. We report two cases of life-threatening acute respiratory distress while swimming and snorkeling, one of which is well documented for swimming-induced pulmonary edema. The interest of these case reports lies in the suddenness of these life-threatening events. Such accidents can mimic a loss of consciousness due to cardiac dysrhythmia and lead to drowning. In the case of swimming-induced pulmonary edema, the prognosis is far better than for a cardiac disorder, but it is also dependent on the efficiency of the supervision. Swimmers, divers, race organizers and supervising physicians should be given knowledge of this pathology and its potentially acute occurrence. Adequate organizational dispositions are mandatory to prevent swimming-induced pulmonary edema-related deaths.

  16. New Developments in the Pathogenesis of Smoke Inhalation-Induced Pulmonary Edema

    PubMed Central

    Witten, Mark L.; Quan, Stuart F.; Sobonya, Richard E.; Lemen, Richard J.

    1988-01-01

    Smoke inhalation causes most of the deaths in fire-related injuries, with pulmonary edema as a major determinant in the outcome of smoke-inhalation injury. The pathophysiology of pulmonary edema is thought to be related to the products of incomplete combustion. Damage to the integrity of the alveolar epithelium is one of the determinants of the development of smoke-induced pulmonary edema. In recent studies using lung clearance of aerosolized pentetic acid (DTPA [diethylenetriaminepentaacetic acid]) labeled with technetium Tc 99m to assess the permeability of the alveolar epithelium, several factors were identified that may increase a person's susceptibility to smoke-induced acute lung injury. These are increased initial alveolar permeability and alterations in the number and activity of alveolar macrophages. Clinical measurement of 99mTcDTPA clearance may provide a sensitive and convenient method for the early detection and serial assessment of smoke-induced alveolar epithelial permeability changes. Images PMID:3277334

  17. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis

    PubMed Central

    Zhang, Zongmei; Yu, Xiaoting; Fang, Xia; Liang, Aibin; Yu, Zhang; Gu, Pan; Zeng, Yu; He, Jian; Zhu, Hailong; Li, Shuai; Fan, Desheng; Han, Fei; Zhang, Lanjing; Yi, Xianghua

    2015-01-01

    Patients with pulmonary fibrosis often have low vitamin D levels, the effects of which are largely unknown. We here report that early vitamin D supplementation significantly reduced the severity of pulmonary fibrosis and inflammatory cell accumulationin in the bleomycin-induced pulmonary fibrosis mouse model on supplementary days 14, 21 and 28 (P < 0.001). Vitamin D supplementation also prevented some ultrastructural changes in response to bleomycin administration, including basement membrane thickening, interstitial fibrin deposition and microvilli flattening or disappearance on days 14, 21 and 28, and lamellar body swelling or vacuolation on days 21 and 28. The bleomycin group had rising hydroxyproline level on days 14, 21 and 28, whereas the vitamin D treatment group showed consistently lower hydroxyproline level but still higher than that of the control group (P < 0.001). Our immunohistochemistry and densitometry analyses showed less staining for α-smooth muscle actin, a myofibroblast marker, in the vitamin D group compared to the bleomycin group (P < 0.001). Thus, vitamin D treatment could prevent bleomycin-induced pulmonary fibrosis by delaying or suppressing ultrastructural changes, as well as attenuating hydroxyproline accumulation and inhibiting myofibroblastic proliferation. These data further our understanding of the roles of vitamin D in pulmonary fibrogenesis and in the treatment of pulmonary fibrosis. PMID:26627341

  18. Kallistatin protects against bleomycin-induced idiopathic pulmonary fibrosis by inhibiting angiogenesis and inflammation

    PubMed Central

    Huang, Xiaoping; Wang, Xiao; Xie, Xiaolan; Zeng, Shulan; Li, Zhaofa; Xu, Xianxiang; Yang, Huiyong; Qiu, Fei; Lin, Junsheng; Diao, Yong

    2017-01-01

    Aberrant angiogenesis and vascular remodeling are the main features of idiopathic pulmonary fibrosis. Kallistatin is an anti-angiogenic peptide with known effects on endothelial cells. This study aimed to demonstrate that kallistatin has beneficial effects on bleomycin (BLM)-induced pulmonary fibrosis in a rat model by inhibiting angiogenesis. Twenty-five rats were randomly divided into five experimental groups: (A) Saline only (SA)-as the negative control, (B) BLM only (BLM)-as the model group, (C) BLM and 0.1 mg/kg kallistatin (L-Kal), (D) BLM and 0.5 mg/kg kallistatin (M-Kal), and (E) BLM and 2.5 mg/kg kallistatin (H-Kal). Fibrillar collagen was quantified by Masson’s trichrome and hematoxylin-eosin staining. Transforming growth factor-β1 (TGF-β1), α-smooth-muscle-actin (α-SMA) and microvascular density (MVD) were measured by immunohistochemistry. Vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), and tumor necrosis factor-α (TNF-α) were assayed by Western immunoblotting or ELISA. Daily administration of kallistatin attenuated fibrosis in BLM-induced pulmonary fibrosis, as shown by histology. During inflammation from BLM-induced pulmonary fibrosis, kallistatin reduced the number of inflammatory cells infiltrating the bronchoalveolar lavage fluid. Kallistatin also inhibited VEGF expression and phosphorylation of VEGFR2 (Flk-1). In vitro, kallistatin blocked tube formation by inhibiting Flk-1 and GSK-3β phosphorylation. The results demonstrated that continuous administration of kallistatin attenuated BLM-induced pulmonary fibrosis and improved survival of BLM rats. Reducing pulmonary fibrosis was achieved by partial inhibition of pulmonary inflammation and angiogenesis. PMID:28386328

  19. Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats

    PubMed Central

    Pacagnelli, Francis Lopes; Sabela, Ana Karênina Dias de Almeida; Mariano, Thaoan Bruno; Ozaki, Guilherme Akio Tamura; Castoldi, Robson Chacon; do Carmo, Edna Maria; Carvalho, Robson Francisco; Tomasi, Loreta Casquel; Okoshi, Katashi; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Background Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction. PMID:27223643

  20. Swimming-induced pulmonary oedema--a hazard in intensive military training?

    PubMed

    Knutson, T

    2010-12-01

    Swimming-Induced Pulmonary Oedema (SIPE) has been described in military combat swimmers in both the US and Israeli Navies. The pathophysiology is explained by the immersion in cold water, and its effects on central vascular volume. SIPE has been hypothesized to be caused by pulmonary capillary stress failure (PCSF) due to elevations in pulmonary capillary transmural pressure. This leads to mechanical impairment and leakage of blood cells and proteins from capillaries. Patients with SIPE can present with pronounced dyspnoea, cough, hypoxemia and profuse frothy haemoptysis. Physical examination and chest X-rays usually show evidence of pulmonary oedema. The treatment of choice is to recognize the symptoms, get the patient out of the water and follow with close observation for emergent problems. Soldiers prone to acquire SIPE should be identified as this medical condition has a high degree of recurrence. The awareness of the symptoms of SIPE will increase appropriate diagnosis and therefore inform treatment.

  1. Early Detection of Schistosoma Egg–Induced Pulmonary Granulomas in a Returning Traveler

    PubMed Central

    Coron, Noémie; Le Govic, Yohann; Kettani, Sami; Pihet, Marc; Hemery, Sandrine; de Gentile, Ludovic; Chabasse, Dominique

    2016-01-01

    We report the case of a French traveler who developed acute pulmonary schistosomiasis 2 months after visiting Benin. He presented with a 1-month history of fever, cough, and thoracic pain. Initial investigations revealed hypereosinophilia and multiple nodular lesions on chest computed tomography scan. Lung biopsies were performed 2 months later because of migrating chest infiltrates and increasing eosinophilia. Histological examination showed schistosomal egg–induced pulmonary granulomas with ova exhibiting a prominent terminal spine, resembling Schistosoma haematobium. However, egg shells were Ziehl–Neelsen positive, raising the possibility of a Schistosoma intercalatum or a Schistosoma guineensis infection. Moreover, involvement of highly infectious hybrid species cannot be excluded considering the atypical early pulmonary oviposition. This case is remarkable because of the rarity of pulmonary schistosomiasis, its peculiar clinical presentation and difficulties in making species identification. It also emphasizes the need to consider schistosomiasis diagnosis in all potentially exposed travelers with compatible symptoms. PMID:26787142

  2. Amiodarone-induced loculated pleural effusion without pulmonary parenchymal involvement: A case report and literature review

    PubMed Central

    Hawatmeh, Amer; Thawabi, Mohammad; Jmeian, Ashraf; Shaaban, Hamid; Shamoon, Fayez

    2017-01-01

    Amiodarone is an extremely effective antiarrhythmic drug that is known to cause many adverse effects such as pulmonary, thyroid, and liver toxicities. Of these, pulmonary toxicity is most serious. Pulmonary toxicity can present as interstitial pneumonitis, organizing pneumonia, pulmonary nodules and masses, and very rarely pleural effusions. We present a case of a 73-year-old male who presented with progressive exertional dyspnea, nonproductive cough, generalized fatigue, and weakness. He was found to have multiorgan toxicity secondary to long-term treatment with high doses of amiodarone. This case illustrates that amiodarone may cause toxicity involving multiple organs simultaneously in patients receiving long-term therapy and represents the first reported case of amiodarone-induced loculated pleural effusion without associated lung parenchymal involvement. PMID:28250689

  3. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect

    Usha, N.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  4. Ovine pulmonary surfactant induces killing of Pasteurella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal serum.

    PubMed Central

    Brogden, K A

    1992-01-01

    Pulmonary surfactant has been shown to play an increasingly important role in bacterial clearance at the alveolar surface in the lung. This study describes a bactericidal mechanism in which ovine pulmonary surfactant induces killing of Pasteurella haemolytica by normal serum. To demonstrate killing, six bacterial species were incubated first with pulmonary surfactant for 60 min at 37 degrees C and then with serum for an additional 60 min at 37 degrees C. P. haemolytica type A1 strains 82-25 and L101, a P. haemolytica type 2 strain, Escherichia coli, and Klebsiella pneumoniae were susceptible and Pasteurella multocida, Serratia marcescens, and Pseudomonas aeruginosa were not susceptible to killing by ovine pulmonary surfactant and normal serum. No bacteria incubated with bovine pulmonary surfactant were killed by normal serum. Although the species origin of pulmonary surfactant was selective, the species origin of serum was not. P. haemolytica incubated with ovine pulmonary surfactant was killed by fetal calf serum, gnotobiotic calf serum, pooled normal sheep serum, pooled normal rabbit serum, and pooled guinea pig serum. Ultrastructurally, killed P. haemolytica suspensions contained dead cells and cells distorted with vacuoles between the cytoplasmic membrane and the cytoplasm. The mechanism of killing did not correlate with concentrations of complement or lysozyme or titers of residual antibody in either the pulmonary surfactant or the serum, and killing was reduced by preincubation of surfactant with P. haemolytica lipopolysaccharide. Preliminary characterization of both surfactant and serum implicate a low-molecular-weight proteinaceous component in the surfactant and serum albumin in the serum. This mechanism may help clear certain gram-negative bacteria from the lungs of sheep as a part of the pulmonary innate defense system. Images PMID:1452351

  5. Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension.

    PubMed

    Behringer, Arnica; Trappiel, Manuela; Berghausen, Eva Maria; Ten Freyhaus, Henrik; Wellnhofer, Ernst; Odenthal, Margarete; Blaschke, Florian; Er, Fikret; Gassanov, Natig; Rosenkranz, Stephan; Baldus, Stephan; Kappert, Kai; Caglayan, Evren

    2016-04-01

    Pulmonary arterial hypertension (PAH) is a fatal disease with limited therapeutic options. Pathophysiological changes comprise obliterative vascular remodelling of small pulmonary arteries, elevated mean pulmonary arterial systolic pressure (PASP) due to elevated resistance of pulmonary vasculature, adverse right ventricular remodelling, and heart failure. Recent findings also indicate a role of increased inflammation and insulin resistance underlying the development of PAH. We hypothesized that treatment of this condition with the peroxisome proliferator-activated receptor-γ (PPARγ) activator pioglitazone, known to regulate the expression of different genes addressing insulin resistance, inflammatory changes, and vascular remodelling, could be a beneficial approach. PAH was induced in adult rats by a single subcutaneous injection of monocrotaline (MCT). Pioglitazone was administered for 2 weeks starting 3 weeks after MCT-injection. At day 35, hemodynamics, organ weights, and -indices were measured. We performed morphological and molecular characterization of the pulmonary vasculature, including analysis of the degree of muscularization, proliferation rates, and medial wall thickness of the small pulmonary arteries. Furthermore, markers of cardiac injury, collagen content, and cardiomyocyte size were analyzed. Survival rates were monitored throughout the experimental period. Pioglitazone treatment improved survival, reduced PASP, muscularization of small pulmonary arteries, and medial wall thickness. Further, MCT-induced right ventricular hypertrophy and fibrosis were attenuated. This was accompanied with reduced cardiac expression of brain natriuretic peptide, as well as decreased cardiomyocyte size. Finally, pulmonary macrophage content and osteopontin gene expression were attenuated. Based on the beneficial impact of pioglitazone, activation of PPARγ might be a promising treatment option in PAH.

  6. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure.

    PubMed

    Zychowski, Katherine E; Lucas, Selita N; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J

    2016-08-15

    Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.

  7. Hypertonic saline attenuates TNF-alpha-induced NF-kappaB activation in pulmonary epithelial cells.

    PubMed

    Nydam, Trevor L; Moore, Ernest E; McIntyre, Robert C; Wright, Franklin L; Gamboni-Robertson, Fabia; Eckels, Phillip C; Banerjee, Anirban

    2009-05-01

    Resuscitation with hypertonic saline (HTS) attenuates acute lung injury (ALI) and modulates postinjury hyperinflammation. TNF-alpha-stimulated pulmonary epithelium is a major contributor to hemorrhage-induced ALI. We hypothesized that HTS would inhibit TNF-alpha-induced nuclear factor (NF)-kappaB proinflammatory signaling in pulmonary epithelial cells. Therefore, we pretreated human pulmonary epithelial cells (A549) with hypertonic medium (180 mM NaCl) for 30 min, followed by TNF-alpha stimulation (10 ng/mL). Key regulatory steps and protein concentrations in this pathway were assessed for significant alterations. Hypertonic saline significantly reduced TNF-alpha-induced intercellular adhesion molecule 1 levels and NF-kappaB nuclear localization. The mechanism is attenuated phosphorylation and delayed degradation of IkappaB alpha. Hypertonic saline did not alter TNF-alpha-induced p38 mitogen-activated protein kinase phosphorylation or constitutive vascular endothelial growth factor expression, suggesting that the observed inhibition is not a generalized suppression of protein phosphorylation or cellular function. These results show that HTS inhibits TNF-alpha-induced NF-kappaB activation in the pulmonary epithelium and, further, our understanding of its beneficial effects in hemorrhage-induced ALI.

  8. Amiodarone-Induced Pulmonary Toxicity – A Frequently Missed Complication

    PubMed Central

    Sweidan, Alexander J.; Singh, Navneet K.; Dang, Natasha; Lam, Vinh; Datta, Jyoti

    2016-01-01

    INTRODUCTION Amiodarone is often used in the suppression of tachyarrhythmias. One of the more serious adverse effects includes amiodarone pulmonary toxicity (APT). Several pulmonary diseases can manifest including interstitial pneumonitis, organizing pneumonia, acute respiratory distress syndrome, diffuse alveolar hemorrhage, pulmonary nodules or masses, and pleural effusion. Incidence of APT varies from 5–15% and is correlated to dosage, age of the patient, and preexisting lung disease. DESCRIPTION A 56-year-old male with a past medical history of coronary artery disease and chronic obstructive pulmonary disease was admitted for a coronary artery bypass graft. Post-operatively, the patient was admitted to the ICU for ventilator management and continued to receive his home dose of amiodarone 400 mg orally twice daily, which he had been taking for the past 3 months. The patient was found to be hypoxemic with a PaO2 52 mmHg and bilateral infiltrates on chest x-ray. Patient also complained of new onset dyspnea. Physical exam found bilateral rhonchi with bibasilar crackles and subcutaneous emphysema along the left anterior chest wall. Daily chest x-rays showed worsening of bilateral interstitial infiltrates and pleural effusions. A chest high-resolution computed tomography on post-operative day 3 showed extensive and severe bilateral ground glass opacities. APT was suspected and amiodarone was discontinued. A course of oral prednisone without antibiotics was initiated, and after one week of treatment the chest film cleared, the PaO2 value normalized and dyspnea resolved. DISCUSSION APT occurs via cytotoxic T cells and indirectly by immunological reaction. Typically the lungs manifest a diffuse interstitial pneumonitis with varying degrees of fibrosis. Infiltrates with a ‘ground-glass’ appearance appreciated on HRCT are more definitive than chest x-ray. Pulmonary nodules can be seen, frequently in the upper lobes. These are postulated to be accumulations of

  9. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling

    PubMed Central

    Zhu, Pengcheng; Huang, Lei; Ge, Xiaona; Yan, Fei; Wu, Renliang; Ao, Qilin

    2006-01-01

    Myocardin gene has been identified as a master regulator of smooth muscle cell differentiation. Smooth muscle cells play a critical role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodelling (PVR). The purpose of this study was to investigate the change of myocardin gene expression in the pulmonary vessels of hypoxia-induced PH affected by Sildenafil treatment and the involvement of endothelial cells transdifferentiation into smooth muscle cells in the process of hypoxia-induced PH and PVR. Myocardin and relative markers were investigated in animal models and cultured endothelial cells. Mean pulmonary artery pressure (mPAP) was measured. Immunohistochemistry and immunofluorescence were used to show the expression of smooth muscle α-actin (SMA), in situ hybridization (ISH) and reverse transcription polymerase chain reaction (RT-PCR) were performed respectively to detect the myocardin and SMA expression at mRNA levels. Small interfering RNA (siRNA) induced suppression of myocardin in cultured cells. We confirmed that hypoxia induced the PH and PVR in rats. Sildenafil could attenuate the hypoxia-induced PH. We found that myocardin mRNA expression is upregulated significantly in the hypoxic pulmonary vessels and cultured cells but downregulated in PH with Sildenafil treatment. The porcine pulmonary artery endothelial cells (PAECs) transdifferentiate into smooth muscle-like cells in hypoxic culture while the transdifferentiation did not occur when SiRNA of myocardin was applied. Our results suggest that myocardin gene, as a marker of smooth muscle cell differentiation, was expressed in the pulmonary vessels in hypoxia-induced PH rats, which could be downregulated by Sildenafil treatment, as well as in hypoxic cultured endothelial cells. Hypoxia induced the transdifferentiation of endothelial cells of vessels into smooth muscle-like cells which was regulated by myocardin. PMID:17222214

  10. Epithelial sodium channel is involved in H2S-induced acute pulmonary edema.

    PubMed

    Jiang, Lei; Wang, Yixin; Su, Chenglei; Sun, Hao; Zhang, Huazhong; Zhu, Baoli; Zhang, Hengdong; Xiao, Hang; Wang, Jun; Zhang, Jinsong

    2015-01-01

    Acute pulmonary edema is one of the major outcomes of exposure to high levels of hydrogen sulfide (H2S). However, the mechanisms involved in H2S-induced acute pulmonary edema are still poorly understood. Therefore, the present study is designed to evaluate the role of epithelial sodium channel (ENaC) in H2S-induced acute pulmonary edema. The Sprague-Dawley rats were exposed to sublethal concentrations of inhaled H2S, then the pulmonary histological and lung epithelial cell injury were evaluated by hematoxylin-eosin staining and electron microscopy, respectively. In addition to morphological investigation, our results also revealed that H2S exposure significantly decreased the alveolar fluid clearance and increased the lung tissue wet-dry ratio. These changes were demonstrated to be associated with decreased ENaC expression. Furthermore, the extracellular-regulated protein kinases 1/2 pathway was demonstrated to be implicated in H2S-mediated ENaC expression, because PD98059, an ERK1/2 antagonist, significantly mitigated H2S-mediated ENaC down-regulation. Therefore, our results show that ENaC might represent a novel pharmacological target for the treatment of acute pulmonary edema induced by H2S and other hazardous gases.

  11. Aloe vera affects changes induced in pulmonary tissue of mice caused by cigarette smoke inhalation.

    PubMed

    Koul, Ashwani; Bala, Shashi; Yasmeen; Arora, Neha

    2015-09-01

    This study was undertaken to determine the influence of Aloe vera (AV) on changes induced in pulmonary tissue of cigarette smoke (CS) inhaling mice. CS inhalation for 4 weeks caused pulmonary damage as evident by histoarchitectural alterations and enhanced serum and tissue lactate dehydrogenase (LDH) activities. CS inhalation also led to increased mucin production as revealed by mucicarmine and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining. Studies on bronchoalveolar lavage fluid (balf) of CS exposed animals revealed structural changes in phospholipids and increase in surface tension when compared with control counterparts. These changes were accompanied by enhanced nitric oxide (NO) levels, citrulline levels, peroxidative damage, and differential modulation of antioxidant defense system. AV administration (seven weeks, 500 mg/kg b.w. daily) to CS inhaling mice led to modulation of CS induced pulmonary changes as revealed by lesser degree of histoarchitectural alterations, lesser mucin production, decreased NO levels, citrulline levels, peroxidative damage, and serum LDH activity. AV treatment to CS inhaling mice was associated with varying response to antioxidant defense system, however balf of CS + AV treated animals did not exhibit appreciable changes when compared with that of CS exposed animals. These observations suggest that AV has the potential to modulate CS induced changes in the pulmonary tissue which could have implications in management of CS associated pulmonary diseases, however, further investigations are required to explore its complete mechanism of action.

  12. Aripiprazole induced non-cardiogenic pulmonary edema: a case report.

    PubMed

    Cetin, Mustafa; Celik, Mustafa; Cakıcı, Musa; Polat, Mustafa; Suner, Arif

    2014-01-01

    Aripiprazole is a second-generation antipsychotic drug with partial dopamine agonistic activity. Although the adverse cardiovascular effects of both typical and atypical antipsychotics are well known, similar data on aripiprazole, which was recently introduced, are scarce. Herein we report a 35-year-old female that presented to our emergency department with non-cardiogenic pulmonary edema. Chest X-ray and thoracic CT showed pulmonary edema and bilateral pleural effusion. Anamnesis showed that she had been taking sertraline 200 mg d-1 for obsessive-compulsive disorder for a long time and that aripiprazole10 mg d-1 was added for augmentation 2 months prior to presentation. We think that the CYP 2D6 inhibitor sertraline might have played a role in increasing the plasma concentration and toxicity of aripiprazole in the presented patient.

  13. Inhalation of Respirable Crystalline Rifapentine Particles Induces Pulmonary Inflammation.

    PubMed

    Parumasivam, Thaigarajan; Ashhurst, Anneliese S; Nagalingam, Gayathri; Britton, Warwick J; Chan, Hak-Kim

    2017-01-03

    Rifapentine is an anti-tuberculosis (anti-TB) drug with a prolonged half-life, but oral delivery results in low concentrations in the lungs because of its high binding (98%) to plasma proteins. We have shown that inhalation of crystalline rifapentine overcomes the limitations of oral delivery by significantly enhancing and prolonging the drug concentration in the lungs. The delivery of crystalline particles to the lungs may promote inflammation. This in vivo study characterizes the inflammatory response caused by pulmonary deposition of the rifapentine particles. The rifapentine powder was delivered to BALB/c mice by intratracheal insufflation at a dose of 20 mg/kg. The inflammatory response in the lungs and bronchoalveolar lavage (BAL) was examined at 12 h, 24 h, and 7 days post-treatment by flow cytometry and histopathology. At 12 and 24 h post-treatment, there was a significant influx of neutrophils into the lungs, and this returned to normal by day 7. A significant recruitment of macrophages occurred in the BAL at 24 h. Consistent with these findings, histopathological analysis demonstrated pulmonary vascular congestion and significant macrophage recruitment at 12 and 24 h post-treatment. In conclusion, the pulmonary delivery of crystalline rifapentine caused a transient neutrophil-associated inflammatory response in the lungs that resolved over 7 days. This observation may limit pulmonary delivery of rifapentine to once a week at a dose of 20 mg/kg or less. The effectiveness of weekly dosing with inhalable rifapentine will be assessed in murine Mycobacterium tuberculosis infection.

  14. Erdosteine prevents bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Sogut, Sadik; Ozyurt, Huseyin; Armutcu, Ferah; Kart, Levent; Iraz, Mustafa; Akyol, Omer; Ozen, Suleyman; Kaplan, Suleyman; Temel, Ismail; Yildirim, Zeki

    2004-06-28

    Oxidative stress plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. Therefore, erdosteine, an antioxidant, is expected to have an inhibitor potential against the disease. Rats were given one dose of bleomycin in pulmonary fibrosis groups and saline in controls. The first dose of oral erdosteine (10 mg/kg/day) was given 2 days before the bleomycin injection to achieve the plateau level in blood and continued until killing. At day 14, fibrotic changes were evaluated, using Aschoft's criteria and lung hydroxyproline content. Bleomycin produced a fivefold increase in fibrosis score that was decreased by 87% by erdosteine (P>0.001) and almost twofold increases in hydroxyproline content which were completely prevented by erdosteine. Myeloperoxidase activities and MDA levels, which were significantly higher in the bleomycin group, were then significantly attenuated by erdosteine. These results revealed that oral erdosteine may prevent the development of acute pulmonary inflammation caused by bleomycin injection via the repression of neutrophil accumulation and lipid peroxidation, resulting in the inhibition of subsequent lung fibrosis.

  15. Disrupted pulmonary artery cyclic guanosine monophosphate signaling in mice with hyperoxia-induced pulmonary hypertension.

    PubMed

    Lee, Keng Jin; Berkelhamer, Sara K; Kim, Gina A; Taylor, Joann M; O'Shea, Kelly M; Steinhorn, Robin H; Farrow, Kathryn N

    2014-02-01

    Pulmonary hypertension (PH) occurs in 25 to 35% of premature infants with significant bronchopulmonary dysplasia (BPD). Neonatal mice exposed to 14 days of hyperoxia develop BPD-like lung injury and PH. To determinne the impact of hyperoxia on pulmonary artery (PA) cyclic guanosine monophosphate (cGMP) signaling in a murine model of lung injury and PH, neonatal C57BL/6 mice were placed in room air, 75% O2 for 14 days (chronic hyperoxia [CH]) or 75% O2 for 24 hours, followed by 13 days of room air (acute hyperoxia with recovery [AHR]) with or without sildenafil. At 14 days, mean alveolar area, PA medial wall thickness (MWT), right ventricular hypertrophy (RVH), and vessel density were assessed. PA protein was analyzed for cGMP, soluble guanylate cyclase, and PDE5 activity. CH and AHR mice had RVH, but only CH mice had increased alveolar area and MWT and decreased vessel density. In CH and AHR PAs, soluble guanylate cyclase activity was decreased, and PDE5 activity was increased. In CH mice, sildenafil attenuated MWT and RVH but did not improve mean alveolar area or vessel density. In CH and AHR PAs, sildenafil decreased PDE5 activity and increased cGMP. Our results indicate that prolonged hyperoxia leads to lung injury, PH, RVH, and disrupted PA cGMP signaling. Furthermore, 24 hours of hyperoxia causes RVH and disrupted PA cGMP signaling that persists for 13 days. Sildenafil reduced RVH and restored vascular cGMP signaling but did not attenuate lung injury. Thus, hyperoxia can rapidly disrupt PA cGMP signaling in vivo with sustained effects, and concurrent sildenafil therapy can be protective.

  16. The Beneficial Effect of Suramin on Monocrotaline-Induced Pulmonary Hypertension in Rats

    PubMed Central

    Izikki, Mohamed; Mercier, Olaf; Lecerf, Florence; Lubert Guin, Lauriane; Hoang, Eric; Dorfmüller, Peter; Perros, Frédéric; Humbert, Marc; Simonneau, Gerald; Dartevelle, Philippe; Fadel, Elie; Eddahibi, Saadia

    2013-01-01

    Background Pulmonary hypertension (PH) is a progressive disorder characterized by an increase in pulmonary artery pressure and structural changes in the pulmonary vasculature. Several observations indicate that growth factors play a key role in PH by modulating pulmonary artery smooth muscle cell (PA-SMC) function. In rats, established monocrotaline-induced PH (MCT-PH) can be reversed by blocking platelet-derived growth factor receptors (PDGF-R), epidermal growth factor receptors (EGF-R), or fibroblast growth factor receptors (FGF-R). All these receptors belong to the receptor tyrosine kinase (RTK) family. Methods and Results We evaluated whether RTK blockade by the nonspecific growth factor inhibitor, suramin, reversed advanced MCT-PH in rats via its effects on growth-factor signaling pathways. We found that suramin inhibited RTK and ERK1/2 phosphorylation in cultured human PA-SMCs. Suramin inhibited PA-SMC proliferation induced by serum, PDGF, FGF2, or EGF in vitro and ex vivo. Treatment with suramin from day 1 to day 21 after monocrotaline injection attenuated PH development, as shown by lower values for pulmonary artery pressure, right ventricular hypertrophy, and distal vessel muscularization on day 21 compared to control rats. Treatment with suramin from day 21 to day 42 after monocrotaline injection reversed established PH, thereby normalizing the pulmonary artery pressure values and vessel structure. Suramin treatment suppressed PA-SMC proliferation and attenuated both the inflammatory response and the deposition of collagen. Conclusions RTK blockade by suramin can prevent MCT-PH and reverse established MCT-PH in rats. This study suggests that an anti-RTK strategy that targets multiple RTKs could be useful in the treatment of pulmonary hypertension. PMID:24143201

  17. Chronic Normobaric Hypoxia Induces Pulmonary Hypertension in Rats: Role of NF-κB.

    PubMed

    Fan, Junming; Fan, Xiaofang; Li, Yang; Ding, Lu; Zheng, Qingqing; Guo, Jinbin; Xia, Dongmei; Xue, Feng; Wang, Yongyu; Liu, Shufang; Gong, Yongsheng

    2016-03-01

    To investigate whether nuclear factor-kappa B (NF-κB) activation is involved in chronic normobaric hypoxia-induced pulmonary hypertension (PH), rats were treated with saline or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, 150 mg/kg, sc, twice daily), and exposed to normoxia or chronic normobaric hypoxia with a fraction of inspired oxygen of ∼0.1 for 14 days. Lung tissue levels of NF-κB activity, and interleukin (IL)-1β, IL-6, and cyclooxygenase-2 mRNAs, were determined, and mean pulmonary arterial pressure, right ventricular hypertrophy, and right heart function were evaluated. Compared to the normoxia exposure group, rats exposed to chronic normobaric hypoxia showed an increased NF-κB activity, measured by increased nuclear translocation of p50 and p65 proteins, an increased inflammatory gene expression in the lungs, elevated mean pulmonary arterial blood pressure and mean right ventricular pressure, right ventricular hypertrophy, as assessed by right ventricle-to-left ventricle plus septum weight ratio, and right heart dysfunction. Treatment of hypoxia-exposed rats with PDTC inhibited NF-κB activity, decreased pulmonary arterial blood pressure and right ventricular pressure, and ameliorated right ventricular hypertrophy and right heart dysfunction. Hypoxia exposure increased protein kinase C activity and promoted pulmonary artery smooth muscle cell proliferation in vitro. Our data suggest that NF-κB activation may contribute to chronic normobaric hypoxia-induced PH.

  18. Pulmonary vasoconstriction in oleic acid induced lung injury. A morphometric study.

    PubMed Central

    Grotjohan, H. P.; van der Heijde, R. M.; Wagenvoort, C. A.; Wagenvoort, N.; Versprille, A.

    1993-01-01

    Distribution and severity of active vasoconstriction of muscular pulmonary arteries were morphometrically assessed in anaesthetized, paralysed and mechanically ventilated pigs with respiratory distress, induced by oleic acid. Vasoconstriction was deduced from the medial thickness which was measured and expressed as a percentage of external diameter. Six pigs received oleic acid (0.12 +/- 0.07 ml/kg), dissolved 1:1 in 96% alcohol, in multiple injections of 0.1 ml. Six pigs were used as controls. After the oleic acid injections a stable hypoxaemia (PaO2 = 57 +/- 8 mmHg, at an inspiratory oxygen fraction of 0.6) and pulmonary hypertension (mean Ppa = 36 +/- 2 mmHg) were obtained for several hours. Electron microscopy revealed swelling of endothelial cells with signs of degeneration. Medial thickness was far greater in the oleic acid group than in the control group; overall mean values were 8.1 +/- 3.2 and 3.8 +/- 1.7% respectively (P < 0.001). Arteries with prominent vasoconstriction were lying in clusters. This pattern was the same in dependent and non-dependent regions. We concluded that in oleic acid induced respiratory distress active vasoconstriction of muscular pulmonary arteries is an important factor in the development of pulmonary hypertension. Besides vasoconstriction, endothelial swelling and intravascular clotting may contribute to the development of pulmonary hypertension. Images Figure 1 Figure 2 Figure 3 PMID:8398807

  19. Single-Walled Carbon Nanotubes Induce Pulmonary and Vascular Response Following Intratracheal Instillation

    EPA Science Inventory

    Carbon-based nanotubes have been shown to induce varying degrees of pulmonary response in rodents influenced by the dose, the extent of agglomeration, the chemistry of the suspension solution, and the functional properties. We hypothesized that low concentrations of non-modified ...

  20. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  1. METAL-INDUCED LATE PULMONARY INJURY IS REDUCED BY OZONE (O3) COEXPOSURE

    EPA Science Inventory

    METAL-INDUCED LATE PULMONARY INJURY IS REDUCED BY OZONE (O3) COEXPOSURE. UP Kodavanti, MCJ Schladweiler, WP Watkinson, JP Nolan, PA Evansky, ER Lappi, G Ross, JH Richards, and DL Costa. NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC USA.
    Ambient ...

  2. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    EPA Science Inventory

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  3. ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON?

    EPA Science Inventory

    ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON? UP Kodavanti1, MCJ Schladweiler1, S Becker2, DL Costa1, P Mayer3, A Ziesenis3, WG Kreyling3, 1ETD, 2HSDivision, NHEERL, USEPA, Research Triangle Park, NC, USA, and 3GSF, Inhalation Biology...

  4. DIESEL AND CARBON PARTICLES ENHANCE HOUSE DUST MITE-INDUCED PULMONARY HYPERSENSITIVITY IN BROWN NORWAY RATS

    EPA Science Inventory

    Diesel and Carbon Particles Enhance House Dust Mite-Induced Pulmonary Hypersensitivity in Brown Norway Rats. P. Singh1, M.J. Daniels2, D. Winsett2, J. Richards2, K. Crissman2, M. Madden2 and M.I. Gilmour2. 1NCSU, Raleigh, NC and 2 USEPA, Research Triangle Park, NC.

    Ep...

  5. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats.

    PubMed

    Wang, Changming; Xuan, Xiuping; Yao, Wenmin; Huang, Guojin; Jin, Junfei

    2015-07-01

    The present study aimed to determine whether artesunate has beneficial effects on bleomycin-induced pulmonary fibrosis in rats and to examine the possible mechanisms underlying these effects. All experiments were performed with male Sprague Dawley rats weighing 180-250 g. Animals were randomly divided into four experimental groups that were administered either saline alone, artesunate alone, bleomycin alone or bleomycin + artesunate. Lung histopathology was investigated by hematoxylin and eosin staining and Masson staining. Lung profibrotic molecules were analyzed by reverse transcription polymerase chain reaction, immunoblotting and immunohistochemistry. In rats treated with artesunate, pulmonary fibrosis induced by bleomycin was significantly reduced. Administration of artesunate significantly improved bleomycin-induced morphological alterations. Profibrotic molecules, including transforming growth factor-β1, Smad3, heat shock protein 47, α-smooth muscle actin and collagen type I were also reduced by artesunate. These findings suggest that artesunate improves bleomycin-induced pulmonary fibrosis pathology in rats possibly by inhibiting profibrotic molecules associated with pulmonary fibrosis.

  6. A 45-Year-Old Man With Recurrent Dyspnea and Hemoptysis during Exercise: Exercise-Induced Pulmonary Hemorrhage/Edema

    PubMed Central

    Kim, Dae Sung; Lee, Minhyeok; Kwon, Oh Jung; Jeong, Inbeom; Son, Ji Woong; Na, Moon Jun

    2015-01-01

    A 45-year-old man presented with dyspnea and hemoptysis during exercise. A chest computed tomography (CT) revealed multifocal diffuse patchy ground glass opacity and interlobular septal thickening in both the lungs. Permeability pulmonary edema or pulmonary hemorrhage was suspected. Serologic studies for autoimmune disorders and vasculitis were negative. There was no laboratory evidence of coagulopathy, other hematopoietic disease or infectious disease. Considering correlation with exercise, we diagnosed exercise-induced pulmonary hemorrhage (EIPH) or exercise-induced pulmonary edema (EIPE). The patient was managed with antifibrinolytics, antibiotics, and antitussive agent. After a week, follow-up chest CT revealed completely resolved pulmonary hemorrhage. About 2 months after the first event, he visited again with dyspnea and hemoptysis during running. In the present study, we report a case of recurrent pulmonary hemorrhage after exercise. PMID:26508928

  7. Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam.

    PubMed

    Wang, Weiping; Luo, Yongquan; Zhang, Dayong; Luo, Fei

    2006-05-10

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films are irradiated by a near-infrared continuous-wave laser beam and the dynamic optical limiting performance is measured. The temperature varying with time of the films induced by a laser beam is also recorded by an IR thermal sensor. Under the irradiation of a laser beam with an intensity of 255 W/cm2 and a spot diameter of 2 mm, the laser beam transmittance of the VO2 film decreases from 47% before phase transition to 28% after phase transition, and the response time is approximately 200 ms; the laser beam transmittance of the V2O5 film decreases from 51% before phase transition to 24% after phase transition, and the response time is approximately 40 ms. The optical limiting is realized by this laser heating-induced phase transition.

  8. Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam

    SciTech Connect

    Wang Weiping; Luo Yongquan; Zhang Dayong; Luo Fei

    2006-05-10

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films are irradiated by a near-infrared continuous-wave laser beam and the dynamic optical limiting performance is measured. The temperature varying with time of the films induced by a laser beam is also recorded by an IR thermal sensor. Under the irradiation of a laser beam with an intensity of 255 W/cm2 and a spot diameter of 2 mm, the laser beam transmittance of the VO2 film decreases from 47% before phase transition to 28% after phase transition, and the response time is {approx}200 ms; the laser beam transmittance of the V2O5 film decreases from 51% before phase transition to 24% after phase transition, and the response time is {approx}40 ms. The optical limiting is realized by this laser heating-induced phase transition.

  9. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    PubMed

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined.

  10. Therapeutic Targeting of CC Ligand 21 or CC Chemokine Receptor 7 Abrogates Pulmonary Fibrosis Induced by the Adoptive Transfer of Human Pulmonary Fibroblasts to Immunodeficient Mice

    PubMed Central

    Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.

    2007-01-01

    Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156

  11. Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Y; Zhu, W P; Cai, X J; Chen, M

    2016-04-07

    We sought to determine the efficacy of atomized paclitaxel liposome inhalation treatment of pulmonary fibrosis in a bleomycin-induced rat model. Forty male Sprague-Dawley rats were randomly divided into four groups: healthy control, pulmonary fibrosis without treatment, paclitaxel liposome inhalation-treated, and intravenous paclitaxel liposome-treated. Fibrosis was induced by bleomycin injection. A total of 20 mg/kg paclitaxel liposome was administered by inhalation every other day for a total of 10 doses. The intravenous group received 5 mg/kg paclitaxel liposome on days 1, 7, 14, and 21. We observed the general condition, weight change, survival index, and pathological changes in the lung tissue of the rats. Quantitative analysis of collagen types I and III and transforming growth factor (TGF)-β1 expression in the lungs was also performed. The paclitaxel liposome inhalation and intravenous delivery methods improved survival index and pulmonary fibrosis Ashcroft score, and decreased the thickness of the alveolar interval. No obvious difference was found between the two groups. Compared with the untreated group, paclitaxel liposome inhalation and intravenous injection significantly reduced the levels of collagen types I and III and TGF-β1 expression equally. In conclusion, atomized paclitaxel liposome inhalation protects against severe pulmonary fibrosis in a bleomycin-induced rat model. This delivery method has less systemic side effects and increased safety over intravenous injection.

  12. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.

    PubMed

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury.

  13. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  14. Tetomilast attenuates elastase-induced pulmonary emphysema through inhibition of oxidative stress in rabbits.

    PubMed

    Baila, Bulin; Ohno, Yasushi; Nagamoto, Hisashi; Kotosai, Kounori; Yabuuchi, Youichi; Funaguchi, Norihiko; Ito, Fumitaka; Endo, Junki; Mori, Hidenori; Takemura, Genzou; Fujiwara, Takako; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2012-01-01

    Tetomilast was originally identified as a potent inhibitor of superoxide production in human neutrophils, and is of interest because it may relieve oxidative stress related to chronic obstructive pulmonary disease (COPD). Our objective was to determine whether tetomilast effectively protects against the development of porcine pancreatic elastase (PPE)-induced emphysema in rabbits. Rabbits were divided into three groups (sham n=19, PPE n=19, PPE/Tetomilast n=18). The rabbits were once daily orally administered vehicle solution or tetomilast 5 d/week for 4 weeks before the PPE instillation. We compared pulmonary function, inflammatory cell infiltration, oxidative stress, and the incidences of apoptosis among the three groups. Tetomilast suppressed PPE-induced increases in the incidence of apoptosis and the production of 8-hydroxy-deoxyguanosine (8-OHdG) in lung tissues. PPE-instilled rabbits treated with tetomilast showed significantly less mean linear intercept and significantly better pulmonary function than rabbits administered PPE alone. Tetomilast may inhibit the development of emphysema by attenuating pulmonary inflammation and apoptosis caused by PPE-induced oxidative stress.

  15. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8.

    PubMed

    Li, Bo; Dong, Chunling; Wang, Guifang; Zheng, Huiru; Wang, Xiangdong; Bai, Chunxue

    2011-09-01

    Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.

  16. Proliferation of pulmonary artery smooth muscle cells in the development of ascites syndrome in broilers induced by low ambient temperature.

    PubMed

    Wang, J; Qiao, J; Zhao, L H; Li, K; Wang, H; Xu, T; Tian, Y; Gao, M; Wang, X

    2007-12-01

    Pulmonary vascular remodelling, mainly characterized by arterial medial thickening, is an important pathological feature of broiler ascites syndrome (AS). Since vascular smooth muscle cells (VSMC) form the major cellular component of arterial medial layer, we speculate that VSMC proliferation is one of the causes of pulmonary arterial medial thickening in ascitic broilers. Hence, the present study was designed to investigate the role of VSMC proliferation in pulmonary vascular remodelling in development of AS induced by low ambient temperature. Broilers in control group (22 +/- 1.5 degrees C) and low temperature group (11 +/- 2 degrees C) were sampled every week at 15-50 days of age. Proliferative indexes of VSMC in pulmonary arteries were assessed with proliferating cell nuclear antigen, and the relative medial thickness (RMT) and relative wall area (RWA), as indexes of pulmonary vascular remodelling, were examined by computer-image analysing system. The results showed that the high incidence (18.75%) of AS was induced by low temperature, and a significantly increased VSMC proliferation was observed in pulmonary arteries in the low temperature group at 22-50 days of age (P < 0.05). In addition, RMT and RWA in pulmonary arteries were significantly elevated in the low temperature group from 36 days of age (P < 0.05), indicating that pulmonary vascular remodelling occurred following VSMC proliferation in AS. Our data suggest that proliferation of VSMC may facilitate pulmonary vascular remodelling and have a pivotal role in AS induced by low ambient temperature.

  17. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    PubMed Central

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing. Images PMID:3771800

  18. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    PubMed Central

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  19. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    SciTech Connect

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  20. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  1. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice

    PubMed Central

    Jin, Yuling; Wang, Wang; Chai, Sanbao; Liu, Jie

    2015-01-01

    Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment. PMID:25956683

  2. Enhanced Lithium-ion intercalation properties of coherent hydrous vanadium pentoxide-carbon cryogels nanocomposites

    SciTech Connect

    Pan, Anqiang; Liu, Dawei; Zhou, Xiaoyuan; Garcia, Betzaita Betalla; Liang, Shu-quan; Liu, Jun; Cao, Guozhong

    2010-06-01

    Coherent hydrous vanadium pentoxide (V2O5•nH2O) - carbon cryogels (CCs) nanocomposites were synthesized by electrodeposition of vanadium pentoxide onto the porous carbon scaffold which was derived from resorcinol (R) and formaldehyde (F) organic hydrogels. As-fabricated nanocomposites were characterized by scanning electron microscopy (SEM), along with EDAX and nitrogen sorption isotherms which suggested vanadium pentoxide incorporated in the pores of carbon cryogels. The nanocomposites showed much improved discharge capacity and better cyclic stability as compared to hydrous vanadium pentoxide films deposited on platinum foil. The discharge capacity of the nanocomposites reached 280 mAh/g based on the mass of the vandium pentoxide at a current density of 100mA/g and it possessed good cycle stability at different discharge rate. The results demonstrated that electrochemical performances, such as specific discharge capacitance and reversibility of the composite electrode, could be greatly enhanced by the introduction of carbon cryogels (CCs) scaffold with three-dimensionally interconnected porous structure in which V2O5•nH2O homogeneously dispersed.

  3. Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Suzuki, Masaru; Betsuyaku, Tomoko; Ito, Yoko; Nagai, Katsura; Odajima, Nao; Moriyama, Chinatsu; Nasuhara, Yasuyuki; Nishimura, Masaharu

    2009-04-01

    Curcumin, a yellow pigment obtained from turmeric (Curcumina longa), is a dietary polyphenol that has been reported to possess anti-inflammatory and antioxidant properties. The effect of curcumin against the development of pulmonary emphysema in animal models is unknown. The aim of this study was to determine whether curcumin is able to attenuate the development of pulmonary emphysema in mice. Nine-week-old male C57BL/6J mice were treated with intratracheal porcine pancreatic elastase (PPE) or exposed to mainstream cigarette smoke (CS) (60 min/day for 10 consecutive days or 5 days/wk for 12 wk) to induce pulmonary inflammation and emphysema. Curcumin (100 mg/kg) or vehicle was administrated daily by oral gavage 1 h and 24 h before intratracheal PPE treatment and daily thereafter throughout a 21-day period in PPE-exposed mice and 1 h before each CS exposure in CS-exposed mice. As a result, curcumin treatment significantly inhibited PPE-induced increase of neutrophils in bronchoalveolar lavage fluid at 6 h and on day 1 after PPE administration, with an increase in antioxidant gene expression at 6 h and significantly attenuated PPE-induced air space enlargement on day 21. It was also found that curcumin treatment significantly inhibited CS-induced increase of neutrophils and macrophages in bronchoalveolar lavage fluid after 10 consecutive days of CS exposure and significantly attenuated CS-induced air space enlargement after 12 wk of CS exposure. In conclusion, oral curcumin administration attenuated PPE- and CS-induced pulmonary inflammation and emphysema in mice.

  4. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2014-12-01

    96, 2013. Hsu, C.C., R.L. Lin, L.-Y. Lee and Y.S. Lin. Hydrogen sulfide induces hypersensitivity of rat lung vagal neurons: role of TRPA1 receptors...or in part by this TATRC project are included in this Annual Progress Report below: 1. Hsu CC, Lin RL, Lee LY, Lin YS. Hydrogen sulfide induces

  5. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2012-10-01

    blind design was used to compare between the effects of pretreatments with ipratropium bromide and placebo aerosols on the airway responses to HA... ipratropium completely prevented the WA- induced bronchoconstriction in asthmatics. In conclusion, bronchoconstriction induced by increasing airway...patients was completely prevented by pretreatment with ipratropium aerosol, indicating an involvement of cholinergic reflex. Accompanying the

  6. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis

    PubMed Central

    Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis. PMID:27992456

  7. Carbocisteine reduces virus-induced pulmonary inflammation in mice exposed to cigarette smoke.

    PubMed

    Yageta, Yuichi; Ishii, Yukio; Morishima, Yuko; Ano, Satoshi; Ohtsuka, Shigeo; Matsuyama, Masashi; Takeuchi, Kaoru; Itoh, Ken; Yamamoto, Masayuki; Hizawa, Nobuyuki

    2014-05-01

    Carbocisteine (S-CMC) inhibits viral infection and prevents acute exacerbation of chronic obstructive pulmonary disease. We recently demonstrated the protective effects of NF-E2-related factor (Nrf) 2 against influenza virus (FluV)-induced pulmonary inflammation in mice exposed to cigarette smoke (CS). In our current study, we investigated the effects of S-CMC on Nrf2 activation in cultured macrophages, and in mice infected with influenza after exposure to CS. Nuclear translocation of Nrf2 and the expression of Nrf2-targeted antioxidant genes, such as heavy and light subunits of γ glutamyl cysteine synthetase and heme oxigenase-1, were enhanced in a dose-dependent manner after treatment with S-CMC in peritoneal and alveolar macrophages of wild-type mice, but not in those of Nrf2-deficient mice. Nuclear translocation of Nrf2 in macrophages was inhibited by the phosphatidylinositol 3-kinase inhibitor, LY294002. Phosphorylated Akt, Nrf2, and heme oxigenase-1 were induced in the alveolar macrophages of the lungs in wild-type mice after S-CMC administration. The extent of oxidative stress, inflammatory cell infiltration, pulmonary edema, and goblet cell hyperplasia was suppressed by S-CMC administration in the lungs of wild-type mice after exposure to both CS and FluV. Our findings suggest that S-CMC reduces pulmonary inflammation and mucus overproduction in mice exposed to CS after infection with FluV via the activation of Nrf2.

  8. The role of all-trans retinoic acid in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Dong, Zhaoxing; Tai, Wenlin; Yang, Yanni; Zhang, Tao; Li, Yongxia; Chai, Yanling; Zhong, Hong; Zou, Hua; Wang, Dianhua

    2012-03-01

    Much evidence suggests that immune imbalance in the lung plays a crucial role in the development of pulmonary fibrosis. Recently, all-trans retinoic acid (ATRA) shifting the regulatory T/T-helper 17 (Treg/Th17) profile had been proven in some diseases. However, to date, the effect of ARTA of pulmonary fibrosis has not been examined from this aspect. The objective of this study was to study the effect of ATRA on bleomycin-induced pulmonary fibrosis in mice and its possible mechanism. Pulmonary fibrosis was induced in C57BL/6 male mice by intratracheal instillation of bleomycin (5 mg.kg(-1)), which were randomly divided into control, bleomycin, and ATRA groups. Five mice in each group were sacrificed on day 28 after intratracheal instillation. Hemotoxylin and eosin (H&E) and Masson staining were used for pathological examination, and hydroxyproline in lung tissue was measured. Interleukin (IL)-17A protein expression was observed in lung with immunohistochemistry. The expression of IL-17A, IL-10, IL-6, and transforming growth factor (TGF)-β mRNAs were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Th17 and Treg expression in spleen lymphocytes were measured by flow cytometry. H&E and masson staining and expression of hydroxyproline showed that ATRA significantly alleviated lung fibrosis than in the bleomycin group. The expression of IL-17A, IL-10, IL-6, and TGF-β mRNAs were higher in the bleomycin group than in the normal group. ATRA can decrease these cytokines except for IL-10. CD4+CD25+ Treg cell ratio in the bleomycin group was significantly lower than normal, but CD4+IL-17+ T cells was higher; ARTA reversed this kind of expression. ATRA may ease the bleomycin-induced pulmonary fibrosis by inhibiting the expression of IL-6 and TGF-β, shifting the Treg/Th17 ratio and reducing the secretion of IL-17A.

  9. Pulmonary granulomatous vasculitis induced by insoluble particulates: a case report.

    PubMed

    Hammar, Samuel P; Williams, M Glenn; Dodson, Ronald F

    2003-01-01

    The authors report a case of a 39-year-old woman who sustained an injury to her left knee requiring arthroscopic surgical medial menisectomy and ganglionic block for reflex sympathetic dystrophy syndrome. Approximately 1 year after injury, the patient presented with an elevated white blood cell count and fever and was diagnosed to have a psoas muscle abscess, which was treated with antibiotics. She was also taking 4 different oral medications that contained microcrystalline cellulose as a filter. Approximately 1 month after being diagnosed with the psoas muscle abscess, the patient developed shortness of breath, marked weakness, diaphoresis, and intermittent emesis. She became hypotensive and tachyneic and expired. Postmortem examination showed granulomatous vasculitis with extensive occlusions of pulmonary arteries by birefringent crystalline material identified to be cellulose histochemically and by analytical electron microscopy evaluation. This case report describes the ultrastructural and chemical features of various medicinal tablet fillers and compares them to pure samples. This report also demonstrates the usefulness of analytical electron microscopy in accurately identifying birefringent material in lung tissue.

  10. Ibuprofen prevents synthetic smoke-induced pulmonary edema

    SciTech Connect

    Shinozawa, Y.; Hales, C.; Jung, W.; Burke, J.

    1986-12-01

    Multiple potentially injurious agents are present in smoke but the importance of each of these agents in producing lung injury as well as the mechanisms by which the lung injury is produced are unknown. In order to study smoke inhalation injury, we developed a synthetic smoke composed of a carrier of hot carbon particles of known size to which a single known common toxic agent in smoke, in this case HCI, could be added. We then exposed rats to the smoke, assayed their blood for the metabolites of thromboxane and prostacyclin, and intervened shortly after smoke with the cyclooxygenase inhibitors indomethacin or ibuprofen to see if the resulting lung injury could be prevented. Smoke exposure produced mild pulmonary edema after 6 h with a wet-to-dry weight ratio of 5.6 +/- 0.2 SEM (n = 11) compared with the non-smoke-exposed control animals with a wet-to-dry weight ratio of 4.3 +/- 0.2 (n = 12), p less than 0.001. Thromboxane B, and 6-keto-prostaglandin F1 alpha rose to 1660 +/- 250 pg/ml (p less than 0.01) and to 600 +/- 100 pg/ml (p greater than 0.1), respectively, in the smoke-injured animals compared with 770 +/- 150 pg/ml and 400 +/- 100 pg/ml in the non-smoke-exposed control animals. Indomethacin (n = 11) blocked the increase in both thromboxane and prostacyclin metabolites but failed to prevent lung edema.

  11. Morphine blocks the Mesobuthus tamulus venom-induced augmentation of phenyldiguanide reflex and pulmonary edema in anesthetized rats

    PubMed Central

    Akella, Aparna; Tiwari, Anil K.; Rai, Om P.; Deshpande, Shripad B.

    2016-01-01

    Objective: Pulmonary edema, a manifestation of scorpion envenomation syndrome, is attributed to cardiogenic or noncardiogenic factors. Morphine is a drug used for cardiogenic pulmonary edema and its effect on Mesobuthus tamulus (MBT) venom-induced changes is not known. Therefore, we hypothesized that morphine blocks the MBT venom-induced augmentation of phenyldiguanide (PDG) reflex and pulmonary edema. Materials and Methods: Experiments were performed on anesthetized adult female rats. Trachea and jugular vein were cannulated, and the electrocardiographic potentials were recorded by connecting needle electrodes in limb lead II configuration. PDG (10 ΅g/kg, IV, bolus injection) responses were elicited by bolus injection initially, after saline/morphine (1 mg/kg) and after injecting MBT venom (100 μg/kg). The time-response area of the PDG-induced bradycardiac response after treatment was calculated as % of the initial PDG response area. At the end of experiments, lungs were excised for determination of pulmonary water content. Results: PDG produced bradycardiac response that lasted for >60 s. MBT venom augmented the PDG reflex response by 2.5 times. In morphine pretreated group, augmentation of bradycardiac response induced by MBT venom was absent. MBT venom increased the pulmonary water content, and the increase was absent in morphine pretreated animals. Conclusion: The results reveal that morphine prevents the MBT venom-induced augmentation of PDG reflex response and pulmonary edema. Thus, morphine can be useful in scorpion envenomation syndrome associated with pulmonary edema. PMID:26997727

  12. Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens.

    PubMed

    Hassanpour, H; Khosravi Alekoohi, Z; Madreseh, S; Bahadoran, S; Nasiri, L

    2016-10-01

    Quantitative real-time PCR was carried out to evaluate gene expression of heat shock proteins (HSP) (HSP27, HSP56, HSP60, HSP70, HSP90 and ubiquitin) in the brain (hindbrain, midbrain, forebrain) of chickens with cold-induced pulmonary hypertension. The ratio of the right ventricle to the total ventricle (index of pulmonary hypertension in chickens) was increased in the cold-induced pulmonary hypertensive chickens at 42 d of age compared with control. The HSP genes were expressed in the three parts of the brain in the two experimental groups. In the hindbrain of cold-induced pulmonary hypertensive chickens, the relative gene expression of HSP27, HSP60, HSP70 and HSP90 was decreased while gene expression of HSP56 and ubiquitin was increased compared with controls. In the midbrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased compared with controls while HSP27 and HSP90 were decreased. In the forebrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased while the expression of the HSP27 gene was decreased compared with controls. It is concluded that overexpression of HSPs in the forebrain and midbrain probably delays the pathological process of cold stress whereas diminished expression of HSP genes in the hindbrain may affect the normal function of brain centres in this area to exacerbate pulmonary hypertension.

  13. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  14. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.

    PubMed

    Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin

    2017-03-01

    STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target.

  15. Antagonism of Stem Cell Factor/c-kit Signaling Attenuates Neonatal Chronic Hypoxia-Induced Pulmonary Vascular Remodeling

    PubMed Central

    Young, Karen C; Torres, Eneida; Hehre, Dorothy; Wu, Shu; Suguihara, Cleide; Hare, Joshua M.

    2015-01-01

    Background Accumulating evidence suggests that c-kit positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/ c-kit regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the hypothesis that attenuated c-kit signaling would decrease chronic hypoxia-induced pulmonary vascular remodeling by decreasing pulmonary vascular cell mitogenesis. Methods Neonatal FVB/NJ mice treated with non-immune IgG (PL), or c-kit neutralizing antibody (ACK2) as well as c-kit mutant mice (WBB6F1- Kit W− v/ +) and their congenic controls, were exposed to normoxia (FiO2=0.21) or hypoxia (FiO2=0.12) for two weeks. Following this exposure, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), pulmonary vascular cell proliferation and remodeling were evaluated. Results As compared to chronically hypoxic controls, c-kit mutant mice had decreased RVSP, RVH, pulmonary vascular remodeling and proliferation. Consistent with these findings, administration of ACK2 to neonatal mice with chronic hypoxia-induced PH decreased RVSP, RVH, pulmonary vascular cell proliferation and remodeling. This attenuation in PH was accompanied by decreased extracellular signal-regulated protein kinase (ERK) 1/2 activation. Conclusion SCF/c-kit signaling may potentiate chronic hypoxia-induced vascular remodeling by modulating ERK activation. Inhibition of c-kit activity may be a potential strategy to alleviate PH. PMID:26705118

  16. Pioglitazone-induced Pulmonary Injury in a Very Elderly Patient.

    PubMed

    Katayama, Kohta; Kumagai, Ryo; Isono, Momoko; Fujihara, Kazuya; Yagyu, Hiroaki; Ohara, Gen; Kagohashi, Katsunori; Satoh, Hiroaki

    2016-01-01

    An 85-year-old woman with diabetes mellitus was admitted to our hospital due to progressive dyspnea. Two months previously, pioglitazone had been newly prescribed for diabetes management. Bilateral ground-glass opacities and progressive respiratory deterioration suggested respiratory failure due to a drug-induced lung injury. With discontinuation of pioglitazone and the administration of a corticosteroid, an improvement in her respiratory condition was achieved, although sequelae remained in some areas of the lungs. Results of drug-induced lymphocyte stimulation tests were positive for pioglitazone. Resumption of other drugs did not reinduce the lung injury. Therefore, a diagnosis of pioglitazone-induced lung injury was made. Although pioglitazone-induced lung injury is very rare, clinicians should keep it in mind when pioglitazone is used.

  17. Nitric oxide exerts protective effects against bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    2014-01-01

    Background Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms. Methods Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced pulmonary fibrosis. Results The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs. Conclusions These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis. PMID:25092105

  18. Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation.

    PubMed

    Johnston, Richard A; Theman, Todd A; Lu, Frank L; Terry, Raya D; Williams, Erin S; Shore, Stephanie A

    2008-06-01

    We previously reported that genetically obese mice exhibit innate airway hyperresponsiveness (AHR) and enhanced ozone (O(3))-induced pulmonary inflammation. Such genetic deficiencies in mice are rare in humans, and they may not be representative of human obesity. Thus the purpose of this study was to determine the pulmonary phenotype of mice with diet-induced obesity (DIO), which more closely mimics the cause of human obesity. Therefore, wild-type C57BL/6 mice were reared from the time of weaning until at least 30 wk of age on diets in which either 10 or 60% of the calories are derived from fat in the form of lard. Body mass was approximately 40% greater in mice fed 60 vs. 10% fat diets. Baseline airway responsiveness to intravenous methacholine, measured by forced oscillation, was greater in mice fed 60 vs. 10% fat diets. We also examined lung permeability and inflammation after exposure to room air or O(3) (2 parts/million for 3 h), an asthma trigger. Four hours after the exposure ended, O(3)-induced increases in bronchoalveolar lavage fluid protein, interleukin-6, KC, macrophage inflammatory protein-2, interferon-gamma-inducible protein-10, and eotaxin were greater in mice fed 60 vs. 10% fat diets. Innate AHR and augmented responses to O(3) were not observed in mice raised from weaning until 20-22 wk of age on a 60% fat diet. These results indicate that mice with DIO exhibit innate AHR and enhanced O(3)-induced pulmonary inflammation, similar to genetically obese mice. However, mice with DIO must remain obese for an extended period of time before this pulmonary phenotype is observed.

  19. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats

    EPA Science Inventory

    Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive ana...

  20. Vagotomy attenuates bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    Song, Nana; Liu, Jun; Shaheen, Saad; Du, Lei; Proctor, Mary; Roman, Jesse; Yu, Jerry

    2015-01-01

    The progression of pulmonary fibrosis (PF) entails a complex network of interactions between multiple classes of molecules and cells, which are closely related to the vagus nerve. Stimulation of the vagus nerve increases fibrogenic cytokines in humans, therefore, activation of the nerve may promote PF. The hypothesis was tested by comparing the extent and severity of fibrosis in lungs with and without vagal innervation in unilaterally vagotomized mice. The results show that in vagotomized lungs, there were less collagen staining, less severe fibrotic foci (subpleural, peri-vascular and peri-bronchiolar lesions) and destruction of alveolar architecture; decreased collagen deposition (denervated vs intact: COL1α1, 19.1 ± 2.2 vs 22.0 ± 2.6 ng/mg protein; COL1α2, 4.5 ± 0.3 vs 5.7 ± 0.5 ng/mg protein; p < 0.01, n = 21) and protein levels of transforming growth factor beta and interleukin 4; and fewer myofibroblast infiltration (denervated vs intact: 1.2 ± 0.2 vs 3.2 ± 0.6 cells/visual field; p < 0.05, n = 6) and M2 macrophages [though the infiltration of macrophages was increased (denervated vs intact: 112 ± 8 vs 76 ± 9 cells/visual field; p < 0.01, n = 6), the percentage of M2 macrophages was decreased (denervated vs intact: 31 ± 4 vs 57 ± 9%; p < 0.05, n = 5)]. It indicated that the vagus nerve may influence PF by enhancing fibrogenic factors and fibrogenic cells. PMID:26289670

  1. Pulmonary Capillary Hemorrhage Induced by Fixed-Beam Pulsed Ultrasound.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan

    2015-08-01

    The induction of pulmonary capillary hemorrhage (PCH) by pulsed ultrasound was discovered 25 y ago, but early research used fixed-beam systems rather than actual diagnostic ultrasound machines. In this study, results of exposure of rats to fixed-beam focused ultrasound for 5 min at 1.5 and 7.5 MHz were compared with recent research on diagnostic ultrasound. One exposure condition at each frequency used 10-μs pulses delivered at 25-ms intervals. Three conditions involved Gaussian modulation of the pulse amplitudes at 25-ms intervals to simulate diagnostic scanning: 7.5 MHz with 0.3- and 1.5-μs pulses at 100- and 500-μs pulse repetition periods, respectively, and 1.5 MHz with 1.7-μs pulses at 500-μs repetition periods. Four groups were tested for each condition to assess PCH areas at different exposure levels and to determine occurrence thresholds. The conditions with identical pulse timing resulted in smaller PCH areas for the smaller 7.5-MHz beam, but both had thresholds of 0.69-0.75 MPa in situ peak rarefactional pressure amplitude. The Gaussian modulation conditions for both 7.5 MHz with 0.3-μs pulses and 1.5 MHz with 1.7-μs pulses had thresholds of 1.12-1.20 MPa peak rarefactional pressure amplitude, although the relatively long 1.5-μs pulses at 7.5 MHz yielded a threshold of 0.75 MPa. The fixed-beam pulsed ultrasound exposures produced lower thresholds than diagnostic ultrasound. There was no clear tendency for thresholds to increase with increasing ultrasonic frequency when pulse timing conditions were similar.

  2. Combination of Sildenafil and Simvastatin Ameliorates Monocrotaline-induced Pulmonary Hypertension in Rats

    PubMed Central

    Kuang, Tuguang; Wang, Jun; Pang, Baosen; Huang, Xiuxia; Burg, Elyssa D.; Yuan, Jason X.-J.; Wang, Chen

    2010-01-01

    Sildenafil, a phosphodiesterase-5 inhibitor, and simvastatin, a cholesterol lowering drug, both have therapeutic effects on PAH; however, the combination of these drugs has not been tested in the treatment of PAH. The purpose of this study was to determine whether the combination of sildenafil and simvastatin is superior to each drug alone in the prevention of MCT-induced PAH. Phosphorylated Smad levels were decreased in lung tissue in MCT-injected rats, whereas ERK protein levels were increased. This indicates a possible role for an increase in mitogenic ERK activity in addition to decreased proapoptotic Smad signaling in the MCT model of PAH. Combination sildenafil and simvastatin treatment prevented the MCT-induced increases in right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH), exerted an antiproliferative effect on pulmonary artery smooth muscle cells (PASMC). Our results indicate that combination therapy with sildenafil and simvastatin attenuated the development of pulmonary hypertension more than either treatment alone. PMID:20188205

  3. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    SciTech Connect

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  4. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.

  5. Acute Ozone-Induced Pulmonary and Systemic Metabolic ...

    EPA Pesticide Factsheets

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (p=0.15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not obser

  6. Acute Ozone-Induced Pulmonary and Systemic Metabolic ...

    EPA Pesticide Factsheets

    Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wistar-Kyoto rats (12 week-old) underwent total bilateral adrenalectomy (ADREX), adrenal demedullation (DEMED) or sham surgery (SHEM). After 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids and branched-chain amino acids tended to increase after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decrease in circulating WBC in SHAM was not

  7. Elastase-induced pulmonary emphysema: insights from experimental models.

    PubMed

    Antunes, Mariana A; Rocco, Patricia R M

    2011-12-01

    Several distinct stimuli can be used to reproduce histological and functional features of human emphysema, a leading cause of disability and death. Since cigarette smoke is the main cause of emphysema in humans, experimental researches have attempted to reproduce this situation. However, this is an expensive and cumbersome method of emphysema induction, and simpler, more efficacious alternatives have been sought. Among these approaches, elastolytic enzymes have been widely used to reproduce some characteristics of human cigarette smoke-induced disease, such as: augmentation of airspaces, inflammatory cell influx into the lungs, and systemic inflammation. Nevertheless, the use of elastase-induced emphysema models is still controversial, since the disease pathways involved in elastase induction may differ from those occurring in smoke-induced emphysema. This indicates that the choice of an emphysema model may impact the results of new therapies or drugs being tested. The aim of this review is to compare the mechanisms of disease induction in smoke and elastase emphysema models, to describe the differences among various elastase models, and to establish the advantages and disadvantages of elastase-induced emphysema models. More studies are required to shed light on the mechanisms of elastase-induced emphysema.

  8. Gender differences in ozone-induced pulmonary and metabolic health effects

    EPA Science Inventory

    SOT 2015 abstractGender differences in ozone-induced pulmonary and metabolic health effectsU.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema3, P. Phillips3, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triangle ...

  9. The ultrastructure of N-dibutylnitrosamine induced pulmonary tumours (adenocarcinomata) in European hamsters.

    PubMed Central

    Reznik-Schüller, H.; Mohr, U.

    1975-01-01

    N-dibutyl-nitrosamine induced pulmonary adenocarcinoma in European hamsters were studied electron microscopically. The tumours were composed of light and dark cells, which, due to their lamellar bodies, resembled alveolar epithelial cells Type II. As cells containing lamellar bodies also occasionally occurred with the epithelial lining of tumour associated peripheral bronchi, a possible bronchiolar origin of the neoplasms is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1212352

  10. Swimming-Induced Pulmonary Edema: Pathophysiology and Risk Reduction With Sildenafil

    PubMed Central

    Moon, Richard E.; Martina, Stefanie D.; Peacher, Dionne F.; Potter, Jennifer F.; Wester, Tracy E.; Cherry, Anne D.; Natoli, Michael J.; Otteni, Claire E.; Kernagis, Dawn N.; White, William D.; Freiberger, John J.

    2016-01-01

    Background Swimming-induced pulmonary edema (SIPE) occurs during swimming or scuba diving, often in young individuals with no predisposing conditions, and its pathophysiology is poorly understood. This study tested the hypothesis that pulmonary artery and pulmonary artery wedge pressures are higher in SIPE-susceptible individuals during submerged exercise compared to the general population and are reduced by sildenafil. Methods and Results Ten study subjects with a history of SIPE (mean age 41.6 years) and 20 control subjects (mean age 36.2 years) were instrumented with radial artery and pulmonary artery catheters and performed moderate cycle ergometer exercise for 6–7 minutes while submersed in 20°C water. SIPE-susceptible subjects repeated the exercise 150 minutes after oral administration of 50 mg sildenafil. Work rate and mean arterial pressure during exercise were similar in controls and SIPE-susceptibles. Average VO2 and cardiac output (CO) in SIPE-susceptibles and controls were: VO2 2.42 L.min−1 vs. 1.95 L.min−1, P=0.2; CO 17.9 L.min−1 vs. 13.8 L.min−1, P=0.01). Accounting for differences in CO between groups, mean pulmonary artery pressure (MPAP) at CO=13.8 L.min−1 was 22.5 mmHg in controls vs. 34.0 mmHg in SIPE-susceptibles (P=0.004) and the corresponding pulmonary artery wedge pressure (PAWP) 11.0 mmHg vs. 18.8 mmHg (P=0.028). After sildenafil, there were no statistically significant differences in MPAP or PAWP between SIPE-susceptibles and controls. Conclusions These observations confirm that SIPE is a form of hemodynamic pulmonary edema. The reduction in pulmonary vascular pressures after sildenafil with no adverse effect on exercise hemodynamics suggests that it may be useful in SIPE prevention. Clinical Trial Registration Information ClinicalTrials.gov. Identifier: NCT00815646. PMID:26882910

  11. Bufei Huoxue Capsule Attenuates PM2.5-Induced Pulmonary Inflammation in Mice

    PubMed Central

    Jing, Yue; Cai, Zhe; Zhao, Yukun; Wu, Ye; Zheng, Xuan; Liu, Ying; Qin, Yuying; Gu, Mingjie; Jin, Jin

    2017-01-01

    Atmospheric fine particulate matter 2.5 (PM 2.5) may carry many toxic substances on its surface and this may pose a public health threat. Epidemiological research indicates that cumulative ambient PM2.5 is correlated to morbidity and mortality due to pulmonary and cardiovascular diseases and cancer. Mitigating the toxic effects of PM2.5 is therefore highly desired. Bufei Huoxue (BFHX) capsules have been used in China to treat pulmonary heart disease (cor pulmonale). Thus, we assessed the effects of BFHX capsules on PM2.5-induced pulmonary inflammation and the underlying mechanisms of action. Using Polysearch and Cytoscape 3.2.1 software, pharmacological targets of BFHX capsules in atmospheric PM2.5-related respiratory disorders were predicted and found to be related to biological pathways of inflammation and immune function. In a mouse model of PM2.5-induced inflammation established with intranasal instillation of PM2.5 suspension, BFHX significantly reduced pathological response and inflammatory mediators including IL-4, IL-6, IL-10, IL-8, TNF-α, and IL-1β. BFHX also reduced keratinocyte growth factor (KGF), secretory immunoglobulin A (sIgA), and collagen fibers deposition in lung and improved lung function. Thus, BFHX reduced pathological responses induced by PM2.5, possibly via regulation of inflammatory mediators in mouse lungs. PMID:28337225

  12. Effect of Agaricus blazei Murill on the Pulmonary Tissue of Animals with Streptozotocin-Induced Diabetes

    PubMed Central

    Di Naso, Fábio Cangeri; de Mello, Rodrigo Noronha; Bona, Sílvia; Dias, Alexandre Simões; Porawski, Marilene; Ferraz, Alexandre de Barros Falcão; Richter, Marc François; Marroni, Norma Possa

    2010-01-01

    The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Agaricus blazei Muril (A. Blazei) in rats with streptozotocin-induced diabetes. We used 25 Wistar rats, and DM was induced by injecting streptozotocin (70 mg/Kg i.p.). Agaricus blazei Muril was administered daily starting 40 days after disease onset. A. Blazei was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipoperoxidation (LPO), and superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were measured in the pulmonary tissue, as well as the presence of inducible nitric oxide synthase (iNOS), through immunohistochemistry. An anatomopathologic study was also performed. Phytochemical screening of A. Blazei detected the presence of alkaloids and saponins. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hipoxanthine/xanthine oxidase assays. Pulmonary LPO increased in diabetic animals (0.43 ± 0.09; P < .001) as compared to the control group (0.18 ± 0.02), followed by a reduction in the A. Blazei-treated group (0.33 ± 0.04; P < .05). iNOS was found increased in the lung in diabetic rats and reduced in the A. Blazei-treated group. The pulmonary tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. The A. Blazei treatment effectively reduced the oxidative stress and contributed to tissue recovery. PMID:20585363

  13. Effect of Agaricus blazei Murill on the pulmonary tissue of animals with streptozotocin-induced diabetes.

    PubMed

    Di Naso, Fábio Cangeri; de Mello, Rodrigo Noronha; Bona, Sílvia; Dias, Alexandre Simões; Porawski, Marilene; Ferraz, Alexandre de Barros Falcão; Richter, Marc François; Marroni, Norma Possa

    2010-01-01

    The present study was designed to evaluate the oxidative stress as well as the therapeutic effect of Agaricus blazei Muril (A. Blazei) in rats with streptozotocin-induced diabetes. We used 25 Wistar rats, and DM was induced by injecting streptozotocin (70 mg/Kg i.p.). Agaricus blazei Muril was administered daily starting 40 days after disease onset. A. Blazei was tested as an aqueous extract for its phytochemical composition, and its antioxidant activity in vitro was also evaluated. Lipoperoxidation (LPO), and superoxide dismutase (SOD), catalase, and glutathione peroxidase activities were measured in the pulmonary tissue, as well as the presence of inducible nitric oxide synthase (iNOS), through immunohistochemistry. An anatomopathologic study was also performed. Phytochemical screening of A. Blazei detected the presence of alkaloids and saponins. The extract exhibited a significant antioxidant activity in the DPPH-scavenging and the hipoxanthine/xanthine oxidase assays. Pulmonary LPO increased in diabetic animals (0.43 +/- 0.09; P < .001) as compared to the control group (0.18 +/- 0.02), followed by a reduction in the A. Blazei-treated group (0.33 +/- 0.04; P < .05). iNOS was found increased in the lung in diabetic rats and reduced in the A. Blazei-treated group. The pulmonary tissue in diabetic rats showed oxidative alterations related to the streptozotocin treatment. The A. Blazei treatment effectively reduced the oxidative stress and contributed to tissue recovery.

  14. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery

    PubMed Central

    Baufreton, Christophe; Bruneval, Patrick; Rousselet, Marie-Christine; Ennezat, Pierre-Vladimir; Fouquet, Olivier; Giraud, Raphael; Banfi, Carlo

    2017-01-01

    Abstract Rationale: Drug-induced valvular heart disease (DI-VHD) remains an under-recognized entity. Patient concerns: This report describes a heart valve replacement which was complicated by intractable systemic pulmonary arterial hypertension in a 61-year-old female with severe restrictive mitral and aortic disease. The diagnosis of valvular disease was preceded by a history of unexplained respiratory distress. The patient had been exposed to benfluorex for 6.5 years. Diagnoses: The diagnostic procedure documented specific drug-induced valvular fibrosis. Interventions: Surgical mitral and aortic valve replacement was performed. Outcomes: Heart valve replacement was postoperatively complicated by unanticipated disproportionate pulmonary hypertension. This issue was fatal despite intensive care including prolonged extracorporeal life support. Lessons: Benfluorex is a fenfluramine derivative which has been marketed between 1976 and 2009. Although norfenfluramine is the common active and toxic metabolite of all fenfluramine derivatives, the valvular and pulmonary arterial toxicity of benfluorex was much less known than that of fenfluramine and dexfenfluramine. The vast majority of benfluorex-induced valvular heart disease remains misdiagnosed as hypothetical rheumatic fever due to similarities between both etiologies. Better recognition of DI-VHD is likely to improve patient outcome. PMID:28079786

  15. Comprehensive analysis of elastase-induced pulmonary emphysema in mice: effects of ambient existing particulate matters.

    PubMed

    Inoue, Ken-ichiro; Koike, Eiko; Takano, Hirohisa

    2010-11-01

    Pulmonary exposure of rodents to porcine pancreatic elastase (PPE) induces lesions that morphologically resemble human panacinar emphysema. However, there has been little work on the comprehensive analysis of this model. The present study was designed to extensively examine the biological effects of PPE on inflammation, cell damage, emphysematous change, and cholinergic reactivity in the lungs of mice. Furthermore, we evaluated the effects of pulmonary exposure to diesel exhaust particles (DEP) on the disease model. Intratracheal administration of PPE induced (1) proinflammatory response in the lungs that was characterized by significant infiltration of leukocytes such as macrophages, eosinophils, and lymphocytes and an increased level of interleukin-1β in lung homogenates, (2) lung cell damage, indicated by higher levels of total protein, lactate dehydrogenase, and alkaline phosphatase in lung homogenates, (3) emphysema-related morphological changes including airspace enlargement and progressive destruction of alveolar wall structures, and (4) airway responsiveness to methacholine in the context of the compliance value of the respiratory system in a dose-dependent manner showing an overall trend. A single intratracheal administration of DEP did not significantly facilitate the hallmark of the disease. This is the first study to extensively analyze PPE-induced lung emphysema in mice with evaluation of the effects of DEP. Furthermore, this bioassay may be applied to future investigations that evaluate new therapeutic agents or risk factors for pulmonary emphysema.

  16. Hypobaric-hypoxia-induced pulmonary damage in rats ameliorated by antioxidant erdosteine.

    PubMed

    Uzun, Ozge; Balbay, Oner; Comunoğlu, Nil Ustündağ; Yavuz, Ozlem; Nihat Annakkaya, Ali; Güler, Selver; Silan, Coşkun; Erbaş, Mete; Arbak, Peri

    2006-01-01

    Free radical-mediated injury to lung and pulmonary vasculature is an important mechanism in hypoxia-induced lung damage. In this study, we aimed to investigate the potential protective effects of erdosteine as an antioxidant agent on hypobaric hypoxia-induced pulmonary hypertension. Adult male rats were assigned randomly to three groups. The first group of rats was exposed to hypobaric-hypoxia and the second group was treated with erdosteine (20mg/kg, daily) for 2 weeks, during which time they were in a hypoxic chamber. These groups were compared with normoxic controls. All rats were sacrificed after 2 weeks. The hypoxia-induced increase in right ventricle to left ventricle plus septum weight ratio (from 0.20+/-0.01 to 0.26+/-0.01) was reduced significantly in the erdosteine-treated group (0.23+/-0.01). Malondialdehyde levels were elevated (from 0.33+/-0.11 to 0.59+/-0.02) and total antioxidant status was not changed significantly (from 1.77+/-0.42 to 2.61+/-0.23) by hypoxia. In contrast to the hypoxia-exposed group, malondialdehyde levels were significantly decreased in the erdosteine-treated group (0.37+/-0.02). Total antioxidant status (4.03+/-0.22) was significantly higher in erdosteine-treated rats when compared to non-treated rats. Histopathological examination demonstrated that erdosteine prevented inflammation and protected lung parenchyma and pulmonary endothelium of hypoxia-exposed rats.

  17. [Role of endogenous hydrogen sulfide in pulmonary hypertension induced by lipopolysaccharide].

    PubMed

    Huang, Xin-Li; Zhou, Xiao-Hong; Wei, Peng; Zhang, Xiao-Jing; Meng, Xiang-Yan; Xian, Xiao-Hui

    2008-04-25

    The purpose of the present study was to explore the role of endogenous hydrogen sulfide (H2S) in pulmonary arterial hypertension induced by endotoxin. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group (0.5 mL/kg body weight of normal saline, i.v.), lipopolysaccharide (LPS)-treated group (5 mg/kg body weight of LPS, i.v.), LPS + NaHS (5 mg/kg body weight of LPS, i.v., and 28 μmol/kg body weight of NaHS, i.p.) and LPS + PPG group (5 mg/kg body weight of LPS, i.v., and 30 μmol/kg body weight of PPG, i.p.). Rats were anesthetized with 20% urethane (1 g/kg body weight, i.p.). A polyethylene catheter was inserted into the pulmonary artery through the right external jugular vein to measure the mean pulmonary arterial pressure (mPAP) for 7 h, and then the pulmonary artery was isolated rapidly by the method described previously. Pulmonary arterial activity was detected. H2S concentration and cystathionine γ-lyase (CSE) activity in pulmonary artery tissues were determined by biochemical method. CSE mRNA expression was detected by competitive reverse transcriptase-polymerase chain reaction (RT-PCR). Compared with control, LPS significantly increased mPAP [(1.82±0.29) kPa vs (1.43±0.26) kPa, P<0.01], decreased H2S production [(26.33±7.84) vs (42.92±8.73) pmol/g wet tissue per minute, P<0.01), and reduced endothelium-dependent relaxation response [(75.72±7.22)% vs (86.40±4.40) %, P<0.01) induced by ACh (1×10(-6) mol/L). These effects were partly reversed by co-administration of NaHS and enhanced by co-administration of PPG. Both CSE activity and CSE mRNA expression were consistent with H2S production. It is suggested that the inhibitory effect of LPS on endothelium-dependent relaxation results in pulmonary hypertension, which might be mediated through H(2)S.

  18. Regulation of macroautophagy in amiodarone-induced pulmonary fibrosis.

    PubMed

    Mahavadi, Poornima; Knudsen, Lars; Venkatesan, Shalini; Henneke, Ingrid; Hegermann, Jan; Wrede, Christoph; Ochs, Matthias; Ahuja, Saket; Chillappagari, Shashi; Ruppert, Clemens; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2015-10-01

    Amiodarone (AD) is an iodinated benzofuran derivative, especially known for its antiarrhythmic properties. It exerts serious side-effects even in patients receiving low doses. AD is well-known to induce apoptosis of type II alveolar epithelial cells (AECII), a mechanism that has been suggested to play an important role in AD-induced lung fibrosis. The precise molecular mechanisms underlying this disease are, however, still unclear. Because of its amphiphilic nature, AD becomes enriched in the lysosomal compartments, affecting the general functions of these organelles. Hence, in this study, we aimed to assess the role of autophagy, a lysosome-dependent homeostasis mechanism, in driving AECII apoptosis in response to AD. In vitro, AD-treated MLE12 and primary AECII cells showed increased proSP-C and LC3B positive vacuolar structures and underwent LC3B-dependent apoptosis. In addition, AD-induced autophagosome-lysosome fusion and increased autophagy flux were observed. In vivo, in C57BL/6 mice, LC3B was localised at the limiting membrane of lamellar bodies, which were closely connected to the autophagosomal structures in AECIIs. Our data suggest that AD causes activation of macroautophagy in AECIIs and extensive autophagy-dependent apoptosis of alveolar epithelial cells. Targeting the autophagy pathway may therefore represent an attractive treatment modality in AD-induced lung fibrosis.

  19. Regulation of macroautophagy in amiodarone‐induced pulmonary fibrosis

    PubMed Central

    Mahavadi, Poornima; Knudsen, Lars; Venkatesan, Shalini; Henneke, Ingrid; Hegermann, Jan; Wrede, Christoph; Ochs, Matthias; Ahuja, Saket; Chillappagari, Shashi; Ruppert, Clemens; Seeger, Werner; Korfei, Martina

    2015-01-01

    Abstract Amiodarone (AD) is an iodinated benzofuran derivative, especially known for its antiarrhythmic properties. It exerts serious side‐effects even in patients receiving low doses. AD is well‐known to induce apoptosis of type II alveolar epithelial cells (AECII), a mechanism that has been suggested to play an important role in AD‐induced lung fibrosis. The precise molecular mechanisms underlying this disease are, however, still unclear. Because of its amphiphilic nature, AD becomes enriched in the lysosomal compartments, affecting the general functions of these organelles. Hence, in this study, we aimed to assess the role of autophagy, a lysosome‐dependent homeostasis mechanism, in driving AECII apoptosis in response to AD. In vitro, AD‐treated MLE12 and primary AECII cells showed increased proSP‐C and LC3B positive vacuolar structures and underwent LC3B‐dependent apoptosis. In addition, AD‐induced autophagosome‐lysosome fusion and increased autophagy flux were observed. In vivo, in C57BL/6 mice, LC3B was localised at the limiting membrane of lamellar bodies, which were closely connected to the autophagosomal structures in AECIIs. Our data suggest that AD causes activation of macroautophagy in AECIIs and extensive autophagy‐dependent apoptosis of alveolar epithelial cells. Targeting the autophagy pathway may therefore represent an attractive treatment modality in AD‐induced lung fibrosis. PMID:27499909

  20. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis.

    PubMed

    Dadrich, Monika; Nicolay, Nils H; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E

    2016-05-01

    Background : Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods : C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results : Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion : Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement : RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of

  1. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis

    PubMed Central

    Dadrich, Monika; Nicolay, Nils H.; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E.

    2016-01-01

    ABSTRACT Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined

  2. Regulatory effect of AMP-activated protein kinase on pulmonary hypertension induced by chronic hypoxia in rats: in vivo and in vitro studies.

    PubMed

    Huang, Xiaoying; Fan, Rong; Lu, Yuanyuan; Yu, Chang; Xu, Xiaomei; Zhang, Xie; Liu, Panpan; Yan, Shuangquan; Chen, Chun; Wang, Liangxing

    2014-06-01

    Activation of AMP-activated protein kinase (AMPK) plays an important role in cardiovascular protection. It can inhibit arterial smooth muscle cell proliferation and cardiac fibroblast collagen synthesis induced by anoxia. However, the role of AMPK-dependent signalling cascades in the pulmonary vascular system is currently unknown. This study aims to determine the effects of AMPK on pulmonary hypertension and pulmonary vessel remodelling induced by hypoxia in rats using in vivo and in vitro studies. In vivo study: pulmonary hypertension, right ventricular hypertrophy and pulmonary vascular remodelling were found in hypoxic rats. Meanwhile, AMPKα1 and phosphorylated AMPKα1 were increased markedly in pulmonary arterioles and lung tissues. Mean pulmonary arterial pressure, index of right ventricular hypertrophy and parameters of pulmonary vascular remodelling, including vessel wall area/total area, density of nuclei in medial smooth muscle cells, and thickness of the medial smooth muscle cell layer were markedly suppressed by AICAR, an AMPK agonist. In vitro study: the expression of AMPKα1 and phosphorylated AMPKα1 was increased in pulmonary artery smooth muscle cells (PASMCs) under hypoxic conditions. The effects of PASMC proliferation stimulated by hypoxia were reinforced by treatment with Compound C, an AMPK inhibitor. AICAR inhibited the proliferation of PASMCs stimulated by hypoxia. These findings suggest that AMPK is involved in the formation of hypoxia-induced pulmonary hypertension and pulmonary vessel remodelling. Up-regulating AMPK can contribute to decreasing pulmonary vessel remodelling and pulmonary hypertension induced by hypoxia.

  3. Long-term treatment with fasudil improves bleomycin-induced pulmonary fibrosis and pulmonary hypertension via inhibition of Smad2/3 phosphorylation.

    PubMed

    Bei, Yihua; Hua-Huy, Thông; Duong-Quy, Sy; Nguyen, Viet-Ha; Chen, Weihua; Nicco, Carole; Batteux, Frédéric; Dinh-Xuan, Anh Tuan

    2013-12-01

    Pulmonary hypertension (PH) associated with pulmonary fibrosis (PF) considerably worsens prognosis of interstitial lung diseases (ILD). RhoA/Rho-kinases (ROCK) pathway is implicated in high pulmonary vascular tone and pulmonary fibrosis but the effect of ROCK inhibitors on PH associated with PF is not known. We therefore aimed to determine whether long-term treatment with fasudil, a selective ROCK inhibitor, could attenuate PF and PH induced by bleomycin in mice. Male C57BL/6 mice received a single dose of intratracheal bleomycin (3.3 U/kg) to induce PF. Treatment with fasudil (30 mg kg(-1) day(-1)) was given intraperitoneally for 7, 14 or 21 days until mice underwent hemodynamic measurements. Right ventricular systolic pressure (RVSP) and RV/(LV + S) ratio were assessed. Lung inflammatory cells profiles, including macrophages, neutrophils, lymphocytes B and lymphocytes T were assessed by immunohistochemistry. Lung fibrosis was evaluated by histological and biochemical methods. Pulmonary arteriole muscularization and medial wall thickness (MWT) were evaluated by immunohistochemical staining for α-SMA. Bleomycin induced severe PF and PH in mice, associated with an increased RhoA/ROCK activity in the lung. Fasudil reduced lung inflammation and lung collagen content, and attenuated the increased RVSP, RV hypertrophy, and pulmonary vascular remodeling in bleomycin-intoxicated mice. Fasudil inhibited the increased activity of RhoA/ROCK pathway, and partly altered bleomycin-associated activation of TGF-β1/Smad pathway, via inhibition of Smad2/3 phosphorylation. The efficacy of long-term treatment with fasudil suggests that the blockade of RhoA/ROCK pathway may be a promising therapy for patients with ILD-associated PH.

  4. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  5. Inhibitory effects of Cnidium monnieri fruit extract on pulmonary inflammation in mice induced by cigarette smoke condensate and lipopolysaccharide.

    PubMed

    Kwak, Ho-Geun; Lim, Heung-Bin

    2014-09-01

    The aim of this study was to investigate the inhibitory effect of Cnidium monnieri fruit (CM) extracts on pulmonary inflammation induced in mice by cigarette smoke condensate (CSC) and lipopolysaccharide (LPS). Pulmonary inflammation was induced by intratracheal instillation of LPS and CSC five times within 12 days. CM extract was administered orally at a dose of 50 or 200 mg·kg(-1). The number of inflammatory cells in the bronchoalveolar lavage fluid was counted using a fluorescence activated cell sorter. Inflammatory mediator levels were determined by enzyme-linked immunosorbent assay. The administration of LPS and CSC exacerbated airway hyper-responsiveness (AHR) and induced an accumulation of inflammatory cells and mediators, and led to histological changes. However, these responses are modulated by treatment with CM, and the treatment with CM extract produces similar or more extensive results than the treatment with cyclosporin A (CSA). CM extract may have an inhibitory effect on pulmonary inflammation related with chronic obstructive pulmonary disease.

  6. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway.

    PubMed

    Li, Li; Huang, Wenting; Li, Kunlin; Zhang, Kejun; Lin, Caiyu; Han, Rui; Lu, Conghua; Wang, Yubo; Chen, Hengyi; Sun, Fenfen; He, Yong

    2015-12-22

    Interstitial lung disease (ILD) is a serious side-effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment. Therefore, it is necessary to study underlying mechanisms for the development of pulmonary fibrosis induced by EGFR-TKI and potential approaches to attenuate it. Metformin is a well-established and widely prescribed oral hypoglycemic drug, and has gained attention for its potential anticancer effects. Recent reports have also demonstrated its role in inhibiting epithelial-mesenchymal transition and fibrosis. However, it is unknown whether metformin attenuates EGFR-TKI-induced pulmonary fibrosis. The effect of metformin on EGFR-TKI-induced exacerbation of pulmonary fibrosis was examined in vitro and in vivo using MTT, Ki67 incorporation assay, flow cytometry, immunostaining, Western blot analysis, and a bleomycin-induced pulmonary fibrosis rat model. We found that in lung HFL-1 fibroblast cells, TGF-β or conditioned medium from TKI-treated lung cancer PC-9 cells or conditioned medium from TKI-resistant PC-9GR cells, induced significant fibrosis, as shown by increased expression of Collegen1a1 and α-actin, while metformin inhibited expression of fibrosis markers. Moreover, metformin decreased activation of TGF-β signaling as shown by decreased expression of pSMAD2 and pSMAD3. In vivo, oral administration of gefitinib exacerbated bleomycin-induced pulmonary fibrosis in rats, as demonstrated by HE staining and Masson staining. Significantly, oral co-administration of metformin suppressed exacerbation of bleomycin-induced pulmonary fibrosis by gefitinib. We have shown that metformin attenuates gefitinib-induced exacerbation of TGF-β or bleomycin-induced pulmonary fibrosis. These observations indicate metformin may be combined with EGFR-TKI to treat NSCLC patients.

  7. Pulmonary hypertension

    MedlinePlus

    Pulmonary arterial hypertension; Sporadic primary pulmonary hypertension; Familial primary pulmonary hypertension; Idiopathic pulmonary arterial hypertension; Primary pulmonary hypertension; PPH; Secondary pulmonary ...

  8. NFATc3 Mediates Chronic Hypoxia-induced Pulmonary Arterial Remodeling with α-Actin Up-regulation

    PubMed Central

    de Frutos, S.; Spangler, R.; Alò, D.; González Bosc, L. V.

    2009-01-01

    Physiological responses to chronic hypoxia include polycythemia, pulmonary arterial remodeling and vasoconstriction. Chronic hypoxia causes pulmonary arterial hypertension leading to right ventricular hypertrophy and heart failure. During pulmonary hypertension, pulmonary arteries exhibit increased expression of smooth muscle-α-actin and -myosin heavy chain. NFATc3 (nuclear factor of activated T cells isoform c3), which is a Ca2+-dependent transcription factor, has been recently linked to smooth muscle phenotypic maintenance through the regulation of the expression of α-actin. The aim of this study was to determine if: a) NFATc3 is expressed in murine pulmonary arteries, b) hypoxia induces NFAT activation, c) NFATc3 mediates the up-regulation of α-actin during chronic hypoxia, and d) NFATc3 is involved in chronic hypoxia-induced pulmonary vascular remodeling. NFATc3 transcript and protein were found in pulmonary arteries. NFAT-luciferase reporter mice were exposed to normoxia (630 torr) or hypoxia (380 torr) for 2, 7 or 21 days. Exposure to hypoxia elicited a significant increase in luciferase activity and pulmonary arterial smooth muscle nuclear NFATc3 localization, demonstrating NFAT activation. Hypoxia induced up-regulation of α-actin and was prevented by the calcineurin/NFAT inhibitor, cyclosporin A (25 mg/Kg/day s.c.). In addition, NFATc3 knockout mice did not showed increased α-actin levels and arterial wall thickness after hypoxia. These results strongly suggest that NFATc3 plays a role in the chronic hypoxia-induced vascular changes that underlie pulmonary hypertension. PMID:17403661

  9. Exercise-induced interstitial pulmonary edema at sea-level in young and old healthy humans

    PubMed Central

    Taylor, Bryan J.; Carlson, Alex R.; Miller, Andrew D.; Johnson, Bruce D.

    2014-01-01

    We asked whether aged adults are more susceptible to exercise-induced pulmonary edema relative to younger individuals. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (Dm) and pulmonary-capillary blood volume (Vc) were measured before and after exhaustive discontinuous incremental exercise in 10 young (YNG; 27±3 yr) and 10 old (OLD; 69±5 yr) males. In YNG subjects, Dm increased (11±7%, P=0.031), Vc decreased (−10±9%, P=0.01) and DLCO was unchanged (30.5±4.1 vs. 29.7±2.9 ml/min/mmHg, P=0.44) pre- to post-exercise. In OLD subjects, DLCO and Dm increased (11±14%, P=0.042; 16±14%, P=0.025) but Vc was unchanged (58±23 vs. 56±23 ml, P=0.570) pre- to post-exercise. Group-mean Dm/Vc was greater after vs. before exercise in the YNG and OLD subjects. However, Dm/Vc was lower post-exercise in 2 of the 10 YNG (−7±4%) and 2 of the 10 OLD subjects (−10±5%). These data suggest that exercise decreases interstitial lung fluid in most YNG and OLD subjects, with a small number exhibiting evidence for exercise-induced pulmonary edema. PMID:24200644

  10. The Effects of Portulaca oleracea on Hypoxia-Induced Pulmonary Edema in Mice

    PubMed Central

    Yue, Tan; Xiaosa, Wen; Ruirui, Qi; Wencai, Shi; Hailiang, Xin

    2015-01-01

    Abstract Tan Yue, Wen Xiaosa, Qi Ruirui, Shi Wencai, Xin Hailiang, and Li Min. The effects of Portulaca oleracea on hypoxia-induced pulmonary edema in mice. High Alt Med Biol 16:43–51, 2015—Portulaca oleracea L. (PO) is known as “a vegetable for long life” due to its antioxidant, anti-inflammatory, and other pharmacological activities. However, the protective activity of the ethanol extract of PO (EEPO) against hypoxia-induced pulmonary edema has not been fully investigated. In this study, we exposed mice to a simulated altitude of 7000 meters for 0, 3, 6, 9, and 12 h to observe changes in the water content and transvascular leakage of the mouse lung. It was found that transvascular leakage increased to the maximum in the mouse lung after 6 h exposure to hypobaric hypoxia. Prophylactic administration of EEPO before hypoxic exposure markedly reduced the transvascular leakage and oxidative stress, and inhibited the upregulation of NF-kB in the mouse lung, as compared with the control group. In addition, EEPO significantly reduced the levels of proinflammatory cytokines and cell adhesion molecules in the lungs of mice, as compared with the hypoxia group. Our results show that EEPO can reduce initial transvascular leakage and pulmonary edema under hypobaric hypoxia conditions. PMID:25761168

  11. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease.

    PubMed

    Wright, Joanne L; Churg, Andrew

    2010-12-01

    Chronic exposure of laboratory animals to cigarette smoke reproduces many of the anatomic/physiologic lesions (emphysema, small-airway remodeling and pulmonary hypertension) of human chronic obstructive pulmonary disease, although smoke-exposed laboratory animals are not good models of chronic bronchitis or acute exacerbations, as these are conditions based upon symptoms that are not recapitulated in animals. Many types of antiproteolytic and anti-inflammatory interventions, such as use of drugs or genetic modifications, are highly effective in preventing emphysema in these models, and some also prevent small-airway remodeling and pulmonary hypertension. However, the few attempts to translate these therapies into humans have been unsuccessful, probably because the animal models typically start therapy from day 1 of smoke exposure, whereas most humans are treated late in the course of their disease. Recent data from our laboratory suggest that the parenchyma can repair smoke-induced damage for some period, but then switches to a mode where it fails to repair; these observations suggest that the timing of an intervention in humans may be crucial to its success. The various different anatomic lesions induced by smoke appear to be largely independent effects and may require different therapeutic approaches.

  12. Inhibitory effect of CXC chemokine receptor 4 antagonist AMD3100 on bleomycin induced murine pulmonary fibrosis.

    PubMed

    Song, Jeong Sup; Kang, Chun Mi; Kang, Hyeon Hui; Yoon, Hyung Kyu; Kim, Young Kyoon; Kim, Kwan Hyung; Moon, Hwa Sik; Park, Sung Hak

    2010-06-30

    CXC chemokine receptor 4 (CXCR4), which binds the stromal cell-derived factor-1 (SDF-1), has been shown to play a critical role in mobilizing the bone marrow (BM)-derived stem cells and inflammatory cells. We studied the effects of AMD3100, CXCR4 antagonist, on a murine bleomycin-induced pulmonary fibrosis model. Treatment of mice with AMD3100 in bleomycin-treated mice resulted in the decrease of SDF-1 in bronchoalveolar lavage (BAL) fluids at an early stage and was followed by the decrease of fibrocytes in the lung. AMD3100 treatment decreased the SDF-1 mRNA expression, fibrocyte numbers in the lung at an early stage (day 3) and CXCR4 expression at the later stage (day 7 and 21) after bleomycin injury. The collagen content and pulmonary fibrosis were significantly attenuated by AMD3100 treatment in later stage of bleomycin injury. AMD3100 treatment also decreased the murine mesenchymal and hematopoietic stem cell chemotaxis when either in the stimulation with bleomycin treated lung lysates or SDF-1 in vitro. In BM stem cell experiments, the phosphorylation of p38 MAPK which was induced by SDF-1 was significantly blocked by addition of AMD3100. Our data suggest that AMD3100 might be effective in preventing the pulmonary fibrosis by inhibiting the fibrocyte mobilization to the injured lung via blocking the SDF-1/CXCR4 axis.

  13. Inhibitory effects of amines from Citrus reticulata on bleomycin-induced pulmonary fibrosis in rats

    PubMed Central

    ZHOU, XIAN-MEI; CAO, ZHEN-DONG; XIAO, NA; SHEN, QI; LI, JIAN-XIN

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease for which, thus far, there are no effective treatments. The pericarp of Citrus reticulata, as a traditional herbal drug, has been used for the clinical treatment of lung-related diseases in China for many years. In the present study, the amines from the pericarp of Citrus reticulata were isolated, and their hydrochlorides were prepared. The results of screening using cultured human embryonic lung fibroblasts (hELFs) revealed that, of the amines, 4-methoxyphenethylamine hydrochloride (designated as amine hydrochloride 1) possessed the most potent inhibitory effect. Further in vivo experiments using a rat model of bleomycin-induced pulmonary fibrosis demonstrated that the oral administration of amine hydrochloride 1 significantly lowered the hydroxyproline content in both serum and lung tissue, and alleviated pulmonary alveolitis and fibrosis. Immunohistochemical analysis revealed that amine hydrochloride 1 exerted its inhibitory effect against IPF through the downregulation of lung transforming growth factor (TGF)-β1 protein expression. Our results demonstrated that amine hydrochloride 1 prevented the development of bleomycin-induced lung fibrosis in rats. Thus, our data suggest that the amines from the pericarp of Citrus reticulata have therapeutic potential for use in the treatment of IPF. PMID:26675886

  14. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus.

    PubMed

    Sznitman, Josué; Heimsch, Fabian; Heimsch, Thomas; Rusch, Daniel; Rösgen, Thomas

    2007-10-01

    Low Reynolds number flows (Re<1) in the human pulmonary acinus are often difficult to assess due to the submillimeter dimensions and accessibility of the region. In the present computational study, we simulated three-dimensional alveolar flows in an alveolated duct at each generation of the pulmonary acinar tree using recent morphometric data. Rhythmic lung expansion and contraction motion was modeled using moving wall boundary conditions to simulate realistic sedentary tidal breathing. The resulting alveolar flow patterns are largely time independent and governed by the ratio of the alveolar to ductal flow rates, Qa/Qd. This ratio depends uniquely on geometrical configuration such that alveolar flow patterns may be entirely determined by the location of the alveoli along the acinar tree. Although flows within alveoli travel very slowly relative to those in acinar ducts, 0.021%induced by ductal shear flow over the alveolar opening and radial flows induced by wall displacement. Furthermore, alveolar flow patterns under rhythmic wall motion contrast sharply with results obtained in a rigid alveolus, further confirming the importance of including inherent wall motion to understand realistic acinar flow phenomena. The present findings may give further insight into the role of convective alveolar flows in determining aerosol kinematics and deposition in the pulmonary acinus.

  15. Inhibitory effects of amines from Citrus reticulata on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Xian-Mei; Cao, Zhen-Dong; Xiao, Na; Shen, Qi; Li, Jian-Xin

    2016-02-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease for which, thus far, there are no effective treatments. The pericarp of Citrus reticulata, as a traditional herbal drug, has been used for the clinical treatment of lung-related diseases in China for many years. In the present study, the amines from the pericarp of Citrus reticulata were isolated, and their hydrochlorides were prepared. The results of screening using cultured human embryonic lung fibroblasts (hELFs) revealed that, of the amines, 4-methoxyphenethylamine hydrochloride (designated as amine hydrochloride 1) possessed the most potent inhibitory effect. Further in vivo experiments using a rat model of bleomycin-induced pulmonary fibrosis demonstrated that the oral administration of amine hydrochloride 1 significantly lowered the hydroxyproline content in both serum and lung tissue, and alleviated pulmonary alveolitis and fibrosis. Immunohistochemical analysis revealed that amine hydrochloride 1 exerted its inhibitory effect against IPF through the downregulation of lung transforming growth factor (TGF)-β1 protein expression. Our results demonstrated that amine hydrochloride 1 prevented the development of bleomycin‑induced lung fibrosis in rats. Thus, our data suggest that the amines from the pericarp of Citrus reticulata have therapeutic potential for use in the treatment of IPF.

  16. Enhancement of antioxidant defense system by epigallocatechin-3-gallate during bleomycin induced experimental pulmonary fibrosis.

    PubMed

    Sriram, Narayanan; Kalayarasan, Srinivasan; Sudhandiran, Ganapasam

    2008-07-01

    Oxidative stress resulting from an imbalance between radical-generating and radical scavenging systems plays an important role in the pathogenesis of pulmonary fibrosis. Epigallocatechin-3-gallate (EGCG), a polyphenol and a major component of green tea, possess a potent antioxidant property. This study was designed to evaluate the potential antioxidative activity of EGCG in the plasma and lungs during bleomycin induced experimental pulmonary fibrosis. Intratracheal administration of bleomycin (6.5 U/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) and non-enzymic antioxidants (reduced glutathione, vitamin C, vitamin E and vitamin A). Elevations in lung W/D (wet weight/dry weight) ratio, hydroxyproline content was observed with a synchronized increase in lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides). Intraperitoneal administration of EGCG at a dose of 20 mg/kg body weight significantly improved the body weight, enzymic and non enzymic antioxidants and considerably decreased the W/D ratio, hydroxyproline and lipid peroxidation marker levels. Histological observations also correlated with the biochemical parameters. Thus, this study confirms the beneficial use of EGCG in alleviating the oxidative stress induced during pulmonary fibrosis.

  17. Periostin mediates cigarette smoke extract-induced proliferation and migration in pulmonary arterial smooth muscle cells.

    PubMed

    Wang, Xiao-Dong; Li, Fang; Ma, Dong-Bo; Deng, Xiang; Zhang, Hui; Gao, Jia; Hao, Li; Liu, Dan-Dan; Wang, Jing

    2016-10-01

    Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH). Pulmonary arterial smooth muscle cells (PASMCs) play a critical role in the pathogenesis of PAH-associated arterial remodeling. This study was done to explore the expression and biological roles of periostin in PASMCs following exposure to cigarette smoke extract (CSE). PASMCs were exposed to different concentrations of CSE and tested for gene expression and reactive oxygen species (ROS) production. PASMCs were incubated with recombinant periostin protein or transfected with small interfering RNA targeting periostin before CSE exposure and then examined for cell proliferation and migration. Compared to control cells, exposure to CSE led to a significant upregulation of periostin. Pretreatment with 5mM N-acetyl-l-cysteine (an inhibitor of ROS formation) or 10μM U0126 (an inhibitor of ERK1/2) significantly prevented the induction of periostin in CSE-treated PASMCs. The addition of recombinant periostin protein significantly enhanced the proliferation and migration of PASMCs. In contrast, knockdown of endogenous periostin counteracted the proliferation and migration of PASMCs induced by CSE treatment. In conclusion, CSE induces the expression of periostin in PASMCs via promotion of ROS and activation of ERK1/2. Periostin mediates the effects of CSE on PASMC proliferation and migration. These findings warrant further exploration of the roles of periostin in cigarette smoking-associated pulmonary arterial remodeling.

  18. Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice.

    PubMed

    Amirshahrokhi, Keyvan

    2013-10-01

    Thalidomide has been used in inflammatory and autoimmune disorders due to its anti-inflammatory activity. Paraquat (PQ) poisoning causes severe lung injury. PQ-induced pulmonary inflammation and fibrosis are due to its ability to induce oxidative stress, inflammatory and fibrotic reactions. This study was designed to evaluate the anti-inflammatory and anti-fibrotic effect of thalidomide on PQ-induced lung damage in a mouse model. Mice were injected with a single dose of PQ (20mg/kg, i.p.), and treated with thalidomide (25 and 50mg/kg/day, i.p.) for six days. Lung tissues were dissected six days after PQ injection. The results showed that thalidomide ameliorated the biochemical and histological lung alterations induced by PQ. Thalidomide decreased production of inflammatory and fibrogenic cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition thalidomide reduced myeloperoxidase (MPO), nitric oxide (NO), and hydroxyproline content in lung tissue. Taken together, the results of this study suggest that thalidomide might be a valuable therapeutic drug in preventing the progression of PQ-induced pulmonary injury.

  19. [Kv3.4 channel is involved in rat pulmonary vasoconstriction induced by 15-hydroxyeicosatetraenoic acid].

    PubMed

    Li, Qian; Bi, Hai-Rong; Zhang, Rong; Zhu, Da-Ling

    2006-02-25

    We have reported that hypoxia increases the activation of 15-lipoxygenase (15-LO), which converts arachidonic acid (AA) into 15-hydroxyeicosatetraenoic acid (15-HETE) in small pulmonary arteries (PAs). Through inhibition of Kv channels, 15-HETE causes more robust concentration-dependent contraction of PA rings from the hypoxic compared to the normoxic controls. However, the subtypes of Kv channels inhibited by 15-HETE are incompletely understood. The aim of the present study was to identify the contribution of Kv3.4 channel in the process of pulmonary vasoconstriction induced by 15-HETE using the tension studies of PA rings from rat with Kv3.4 channel blocker in tissue bath; to explore the role of vascular endothelium in15-HETE-induced pulmonary vasoconstriction through denuded endothelia of PA rings; and to define the downregulation of 15-HETE on the expression of Kv3.4 channel in cultured pulmonary artery smooth muscle cells (PASMCs) with RT-PCR and Western blot. In the present study, healthy Wistar rats were divided randomly into two groups: Group A with normal oxygen supply and group B with hypoxia. Six days later, the rats were killed. Pulmonary artery rings were prepared for organ bath experiments. Firstly, different concentrations of 15-HETE (10~1 000 nmol/L) were added to the Krebs solution. The isometric tension was recorded using a four-channel force-displacement transducer. Then Kv3.4 channel blocker, 100 nmol/L BDS-I, was added, followed by adding 1 mumol/L 15-HETE, and the isometric tension was recorded. Furthermore, RT-PCR and Western blot were employed to identify the influence of 15-HETE on the expression of Kv3.4 channel in cultured rat PASMCs.The results showed the PA tension was significantly increased both in groups A and B by 15-HETE in a concentration-dependent manner (P<0.05), especially in group B (P<0.05 compared to control); denuded endothelia enhanced 15-HETE concentration-related constrictions in rat PA rings; Kv3.4 channel blocker, BDS

  20. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction

    PubMed Central

    Jearath, Vaneet; Vashisht, Rajan; Rustagi, Vipul; Raina, Sujeet; Sharma, Rajesh

    2016-01-01

    Pioglitazone-induced heart failure is known in patients with underlying heart disease, but is not well documented in patients with normal left ventricular function. Pioglitazone has been very popular as it is an insulin sensitizer and insulin resistance is prevalent among Indians. Fluid retention exacerbates pre-existing heart failure or precipitates heart failure in a patient with underlying left ventricular dysfunction. However, pathogenesis of heart failure in a patient with normal left ventricular function is not known. Probably it is due to dose-related effect on pulmonary endothelial permeability, rather than alterations in left ventricular mass or ejection fraction. We report a patient who developed congestive heart failure and pulmonary edema with normal left ventricular function within 1 year of starting pioglitazone therapy. We have to be careful in monitoring all possible side effects during followup when patients are on pioglitazone therapy. PMID:27127397

  1. A case of recurrent swimming-induced pulmonary edema in a triathlete: the need for awareness.

    PubMed

    Smith, R; Brooke, D; Kipps, C; Skaria, B; Subramaniam, V

    2016-08-03

    This report discusses a rare case of a 55-year-old female triathlete who developed recurrent episodes of swimming-induced pulmonary edema (SIPE). She had two hospital admissions with pulmonary edema after developing breathlessness while swimming, including a near-drowning experience in an open water swim. With increasing popularity of triathlon and open water sports, this case highlights the importance of a greater awareness of SIPE among health professionals, event organizers, and athletes. This report explores the previous reported cases in triathletes and those who have suffered recurrent episodes. It is paramount that an accurate diagnosis is made as these individuals may be at an increased risk of future life-threatening episodes.

  2. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    PubMed

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  3. Radiation-induced pulmonary arterial perfusion defects: modification by D-penicillamine. [Rats; /sup 60/Co

    SciTech Connect

    Ward, W.F.

    1981-04-01

    D-penicillamine, previously shown to have a beneficial effect on radiation-induced pulmonary histopathology, was tested to determine its effect on function in the irradiated lung. Male rats were irradiated with /sup 60/Co gamma rays; half then received 10 mg D-penicillamine per day, and half received no further treatment. One to nine months after irradiation, animals were subjected to lung perfusion scans. Untreated irradiated rats exhibited hyperemia, hypoperfusion, and perfusion defects of the irradiated lung. In penicillamine-treated rats, the appearance of perfusion defects was delayed, the peak incidence and severity of the defects was reduced, and recovery from pulmonary hypoperfusion was accelerated. Thus, using functional criteria, penicillamine appears to improve arterial perfusion and to ameliorate radiation injury in the rat lung.

  4. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction.

    PubMed

    Jearath, Vaneet; Vashisht, Rajan; Rustagi, Vipul; Raina, Sujeet; Sharma, Rajesh

    2016-01-01

    Pioglitazone-induced heart failure is known in patients with underlying heart disease, but is not well documented in patients with normal left ventricular function. Pioglitazone has been very popular as it is an insulin sensitizer and insulin resistance is prevalent among Indians. Fluid retention exacerbates pre-existing heart failure or precipitates heart failure in a patient with underlying left ventricular dysfunction. However, pathogenesis of heart failure in a patient with normal left ventricular function is not known. Probably it is due to dose-related effect on pulmonary endothelial permeability, rather than alterations in left ventricular mass or ejection fraction. We report a patient who developed congestive heart failure and pulmonary edema with normal left ventricular function within 1 year of starting pioglitazone therapy. We have to be careful in monitoring all possible side effects during followup when patients are on pioglitazone therapy.

  5. Electrons and phonons in layered and monolayer vanadium pentoxide

    NASA Astrophysics Data System (ADS)

    Lambrecht, Walter R. L.

    Vanadium pentoxide (V2O5) is a layered material with the potential for interesting new properties when made in 2D mono- or few-layer form. Its band structure is characterized by a split-off conduction band. The lowest conduction band is separated from the rest of the conduction bands by about 1 eV and consists of V-dxy orbitals, non-bonding to the oxygens by symmetry. This narrow band has dispersion essentially along the direction of chains occurring in the layer. When this band becomes half-filled by doping, spin-splitting occurs accompanied by an antiferromagnetic coupling between nearest neighbors along the chain direction. This situation is well known to occur in the so-called ladder compound NaV2O5 , which was extensively studied in the late 90s as a potential spin-Peierls or charge ordering compound. However, the monolayer form of V2O5 may allow for other ways to control the doping by gating, removing vanadyl oxygens, adsorption of alkali metals, nanoribbon formation, etc. Our calculations predict a switch from antiferromagnetic to ferromagnetic coupling for doping slightly less than half filling of the split-off band. In this talk we will discuss our recent work on the electronic band structure of both bulk and monolayer V2O5 as well as the phonons. We find that the quasi-particle self-consistent GW method strongly overestimates the band gap. Lattice polarization corrections of the screening are required because of the large LO/TO phonon frequency ratios. Excitonic effects may also be expected to be fairly large. We find that some of the vibrational modes, notably the vanadyl-oxygen bond stretch perpendicular to the layer, unexpectedly shows a strong blue shift. This is explained in terms of reduced screening affecting the long-range dipole components of the force constants. Supported by AFOSR and DOE. Work done with Churna Bhandari, Mark van Schilfgaarde and Andre Schleiffe.

  6. 77 FR 5797 - Draft Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Integrated Risk Information System (IRIS) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... Vanadium Pentoxide: In Support of Summary Information on the Integrated Risk Information System (IRIS... Information on the Integrated Risk Information System (IRIS)'' is available primarily via the Internet on...

  7. 76 FR 60825 - Draft Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... Integrated Risk Information System (IRIS) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of..., ``Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the Integrated Risk Information System (IRIS)'' (EPA/635/R-11/004A). The draft assessment was prepared by the National Center...

  8. An improved lithium-vanadium pentoxide cell and comparison with a lithium-thionyl chloride cell

    NASA Astrophysics Data System (ADS)

    Voorn, G.

    1985-03-01

    This paper describes a programme of experiments conducted to assess the effects of: (a) diluting the electrolyte in lithium-vanadium pentoxide cells; (b) optimizing the volume of electrolyte per unit cathode mass. This programme led to the development of an improved cell, the performance of which is compared with that of a lithium-thionyl chloride cell of similar configuration.

  9. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II.

    PubMed

    Wu, Zhiyong; Wang, Zhiwei; Dai, Feifeng; Liu, Huagang; Ren, Wei; Chang, Jinxing; Li, Bowen

    2016-01-01

    Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement.

  10. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II

    PubMed Central

    Wang, Zhiwei; Dai, Feifeng; Liu, Huagang; Ren, Wei; Chang, Jinxing; Li, Bowen

    2016-01-01

    Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement. PMID:28119542

  11. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis

    PubMed Central

    2014-01-01

    Background Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. Methods To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2 -/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. Results BLM-treated rac2 -/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2 -/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2 -/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2 -/- and WT and mice that survived to day 21. Conclusion Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the

  12. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  13. First Steps Towards an Understanding of a Mode ofCarcinogenic Action for Vanadium Pentoxide

    PubMed Central

    Schuler, Detlef; Chevalier, Hans-Jörg; Merker, Mandy; Morgenthal, Katja; Ravanat, Jean-Luc; Sagelsdorff, Peter; Walter, Marc; Weber, Klaus; Mcgregor, Douglas

    2011-01-01

    Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m3), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m3, 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m3. At 1 and 4 mg/m3, exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide. PMID:22272055

  14. TLR and NKG2D Signaling Pathways Mediate CS-Induced Pulmonary Pathologies

    PubMed Central

    Wortham, Brian W.; Eppert, Bryan L.; Flury, Jennifer L.; Morgado Garcia, Sara; Borchers, Michael T.

    2013-01-01

    Long-term exposure to cigarette smoke (CS) can have deleterious effects on lung epithelial cells including cell death and the initiation of inflammatory responses. CS-induced cell injury can elaborate cell surface signals and cellular byproducts that stimulate immune system surveillance. Our previous work has shown that the expression of ligands for the cytotoxic lymphocyte activating receptor NKG2D is enhanced in patients with COPD and that the induction of these ligands in a mouse model can replicate COPD pathologies. Here, we extend these findings to demonstrate a role for the NKG2D receptor in CS-induced pathophysiology and provide evidence linking nucleic acid-sensing endosomal toll-like receptor (TLR) signaling to COPD pathology through NKG2D activation. Specifically, we show that mice deficient in NKG2D exhibit attenuated pulmonary inflammation and airspace enlargement in a model of CS-induced emphysema. Additionally, we show that CS exposure induces the release of free nucleic acids in the bronchoalveolar lavage and that direct exposure of mouse lung epithelial cells to cigarette smoke extract similarly induces functional nucleic acids as assessed by TLR3, 7, and 9 reporter cell lines. We demonstrate that exposure of mouse lung epithelial cells to TLR ligands stimulates the surface expression of RAET1, a ligand for NKG2D, and that mice deficient in TLR3/7/9 receptor signaling do not exhibit CS-induced NK cell hyperresponsiveness and airspace enlargement. The findings indicate that CS-induced airway injury stimulates TLR signaling by endogenous nucleic acids leading to elevated NKG2D ligand expression. Activation of these pathways plays a major role in the altered NK cell function, pulmonary inflammation and remodeling related to long-term CS exposure. PMID:24130907

  15. Antifibrotic effects of CXCR4 antagonist in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Makino, Hideki; Aono, Yoshinori; Azuma, Momoyo; Kishi, Masami; Yokota, Yuki; Kinoshita, Katsuhiro; Takezaki, Akio; Kishi, Jun; Kawano, Hiroshi; Ogawa, Hirohisa; Uehara, Hisanori; Izumi, Keisuke; Sone, Saburo; Nishioka, Yasuhiko

    2013-01-01

    Circulating fibrocytes had been reported to migrate into the injured lungs, and contribute to fibrogenesis via chemokine-chemokine receptor systems including CXCL12-CXCR4 axis. Here we hypothesized that blockade of CXCR4 might inhibit the migration of fibrocytes to the injured lungs and the subsequent pulmonary fibrosis. To explore the antifibrotic effects of blockade of CXCR4, we used a specific antagonist for CXCR4, AMD3100, in bleomycin-induced pulmonary fibrosis model in mice. Administration of AMD3100 significantly improved the loss of body weight of mice treated with bleomycin, and inhibited the fibrotic lesion in subpleural areas of the lungs. The quantitative analysis demonstrated that treatment with AMD3100 reduced the collagen content and fibrotic score (Aschcroft score) in the lungs. Although AMD3100 did not affect cell classification in bronchoalveolar lavage fluid on day 7, the percentage of lymphocytes was reduced by AMD3100 on day 14. AMD3100 directly inhibited the migration of human fibrocytes in response to CXCL12 in vitro, and reduced the trafficking of fibrocytes into the lungs treated with bleocmycin in vivo. These results suggest that the blockade of CXCR4 might be useful strategy for therapy of patients with pulmonary fibrosis via inhibiting the migration of circulating fibrocytes.

  16. Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450

    SciTech Connect

    Verschoyle, R.D.; Dinsdale, D. )

    1990-04-01

    Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P{double bond}S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trimethylphosphorothionate and p-xylene were compared as protective agents against the effect of OOS-trimethylphosphorothiolate and two other lung toxins ipomeanol and 1-nitronaphthalene that are known to be activated by cytochrome P-450. The effects of these protective compounds, in vivo, on pulmonary cytochrome P-450 activity were also determined. Both compounds inhibited pentoxyresorufin O-deethylase activity, but not ethoxyresorufin O-deethylase. The phosphorothionate was most effective against lung injury caused by the phosphorothiolates and 1-nitronaphthalene, whereas p-xylene was much more effective against ipomeanol. {beta}-Naphthoflavone, which induces pulmonary ethoxyresorufin O-deethylase activity, did not protect against phosphorothiolate or 1-nitronaphthalene injury, and it was only marginally effective in decreasing the toxicity or ipomeanol.

  17. Basiliximab induced non-cardiogenic pulmonary edema in two pediatric renal transplant recipients.

    PubMed

    Dolan, Niamh; Waldron, Mary; O'Connell, Marie; Eustace, Nick; Carson, Kevin; Awan, Atif

    2009-11-01

    We report two cases of non-cardiogenic pulmonary edema as a complication of basiliximab induction therapy in young pediatric renal transplant patients identified following a retrospective review of all pediatric renal transplant cases performed in the National Paediatric Transplant Centre, Childrens University Hospital, Temple Street, Dublin, Ireland. Twenty-eight renal transplantations, of which five were living-related (LRD) and 23 were from deceased donors (DD), were performed in 28 children between 2003 and 2006. In six cases, transplantations were pre-emptive. Immunosuppression was induced pre-operatively using a combination of basiliximab, tacrolimus and methylprednisolone in all patients. Basiliximab induction was initiated 2 h prior to surgery in all cases and, in 26 patients, basiliximab was re-administered on post-operative day 4. Two patients, one LRD and one DD, aged 6 and 11 years, respectively, developed acute non-cardiogenic pulmonary edema within 36 h of surgery. Renal dysplasia was identified as the primary etiological factor for renal failure in both cases. Both children required assisted ventilation for between 4 and 6 days. While both grafts had primary function, the DD transplant patient subsequently developed acute tubular necrosis and was eventually lost within 3 weeks due to thrombotic microangiopathy and severe acute antibody-mediated rejection despite adequate immunosuppression. Non-cardiogenic pulmonary edema is a potentially devastating post-operative complication of basiliximab induction therapy in young pediatric patients following renal transplantation. Early recognition and appropriate supportive therapy is vital for patient and, where possible, graft survival.

  18. Pulmonary lesions induced by Pasteurella haemolytica in neutrophil sufficient and neutrophil deficient calves.

    PubMed Central

    Breider, M A; Walker, R D; Hopkins, F M; Schultz, T W; Bowersock, T L

    1988-01-01

    The role of neutrophils in the development of peracute lung lesions of bovine pneumonic pasteurellosis was investigated. Eight calves were divided into two groups of four calves each. Group I was treated with intravenous phosphate-buffered saline and served as the neutrophil sufficient calves. Group II was treated with intravenous hydroxyurea which produced a state of neutropenia. When peripheral blood neutrophil numbers dropped below 300 cells/microL in group II, all calves were challenged with an intrabronchial bolus of Pasteurella haemolytica in the log phase of growth. An acute inflammatory process occurred in both groups of calves indicated by a rise in body temperature. While pulmonary lesions occurred in both groups by six hours postinoculation, they varied in pathological characteristics. Pulmonary lesions in the neutrophil sufficient calves consisted of fibrinopurulent alveolitis-bronchiolitis with associated alveolar septal necrosis, interlobular edema, and intravascular thrombi. The neutrophil deficient calves had extensive intra-alveolar edema, interlobular edema, intraalveolar hemorrhage, atelectasis, and focal areas of alveolar septal necrosis. These results show that P. haemolytica can induce severe pulmonary tissue damage through both neutrophil dependent and neutrophil independent mechanisms. Images Fig. 1. Fig. 2. PMID:3370555

  19. Intratracheal Gene Transfer of Adrenomedullin Using Polyplex Nanomicelles Attenuates Monocrotaline-induced Pulmonary Hypertension in Rats

    PubMed Central

    Harada-Shiba, Mariko; Takamisawa, Itaru; Miyata, Kanjiro; Ishii, Takehiko; Nishiyama, Nobuhiro; Itaka, Keiji; Kangawa, Kenji; Yoshihara, Fumiki; Asada, Yujiro; Hatakeyama, Kinta; Nagaya, Noriya; Kataoka, Kazunori

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive PAH and right ventricular failure. Despite recent advances in therapeutic approaches using prostanoids, endothelin antagonists, and so on, PAH remains a challenging condition. To develop a novel therapeutic approach, we have established a nonviral gene delivery system of poly(ethylene glycol) (PEG)-based block catiomers, which form a polyplex nanomicelle with a nanoscaled core–shell structure in the presence of DNA. The polyplex nanomicelle from PEG-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-P[Asp(DET)]), having ethylenediamine units at the side chain, showed ~100-fold increase in luciferase transgene expression activity in mouse lung via intratracheal administration with a minimal toxicity compared with the polyplex from linear poly(ethylenimine) (LPEI). The transfection activity was highest on day 3 after administration and remained detectable until day 14. PEG-b-P[Asp(DET)] polyplex nanomicelles were formulated with a therapeutic plasmid bearing the human adrenomedullin (AM) gene and intratracheally administered to rats with monocrotaline-induced pulmonary hypertension. The right ventricular pressure significantly decreased 3 days after administration as confirmed by a notable increase of pulmonary human AM mRNA levels. Intratracheal administration of PEG-b-P[Asp-(DET)] polyplex nanomicelles showed remarkable therapeutic efficacy with PAH animal models without compromising biocompatibility. PMID:19337232

  20. Assessment of Pulmonary Toxicity Induced by Inhaled Toner with External Additives.

    PubMed

    Tomonaga, Taisuke; Izumi, Hiroto; Yoshiura, Yukiko; Myojo, Toshihiko; Oyabu, Takako; Lee, Byeong-Woo; Okada, Takami; Li, Yunshan; Kawai, Kazuaki; Higashi, Toshiaki; Morimoto, Yasuo

    2017-01-01

    We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 μm) at three mass concentrations of 1, 4, and 16 mg/m(3) for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung.

  1. Assessment of Pulmonary Toxicity Induced by Inhaled Toner with External Additives

    PubMed Central

    Yoshiura, Yukiko; Myojo, Toshihiko; Oyabu, Takako; Lee, Byeong-Woo; Okada, Takami; Li, Yunshan; Higashi, Toshiaki

    2017-01-01

    We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 μm) at three mass concentrations of 1, 4, and 16 mg/m3 for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung. PMID:28191462

  2. Successful retreatment with osimertinib after osimertinib-induced acute pulmonary embolism in a patient with lung adenocarcinoma: A case report.

    PubMed

    Shiroyama, Takayuki; Hayama, Manabu; Satoh, Shingo; Nasu, Shingo; Tanaka, Ayako; Morita, Satomu; Morishita, Naoko; Suzuki, Hidekazu; Okamoto, Norio; Hirashima, Tomonori

    2017-01-01

    Pulmonary embolism (PE) can be life-threatening, and it is challenging to diagnose because of its nonspecific signs and symptoms. PE is also an important potential risk of osimertinib treatment, however, clinical courses regarding retreatment after osimertinib-induced acute pulmonary embolism remain unclear. We described a 77-year-old woman with postoperative recurrent lung adenocarcinoma who developed osimertinib-induced acute PE. She received apixaban and was later successfully retreated with osimertinib. This case suggests that retreatment with osimertinib after osimertinib-induced acute PE may be a treatment option when alternative therapeutic options are limited.

  3. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    PubMed

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction.

  4. Inhibitory effect of emodin on bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Chen, Xiao-Hong; Sun, Ren-Shan; Hu, Jian-Ming; Mo, Zi-Yao; Yang, Zi-Feng; Jin, Guang-Yao; Guan, Wen-Da; Zhong, Nan-Shan

    2009-02-01

    1. Currently, there is no satisfactory treatment for pulmonary fibrosis. Emodin, a component in Chinese herbs, has been shown to have an antifibrotic effect on pancreatic fibrosis and liver fibrosis. In the present study, we tested the hypothesis that emodin may attenuate the development of pulmonary fibrosis. 2. Mice were randomly divided into five groups (n = 16 in each). One group was a control group; the remaining four groups were treated with intratracheal instillation of 3 mg/kg bleomycin (BLM). The following day, emodin (5, 10 or 20 mg/kg per day, p.o.) treatment was started for three of the BLM-treated groups and was continued for 21 days. The fourth BLM-treated group (and the control group) received daily 0.5% sodium carboxymethyl cellulose (placebo) by gavage over the same period. 3. Bleomycin challenge provoked severe pulmonary fibrosis, with marked increases in fibrosis fraction, hydroxyproline content and myeloperoxidase activity in lung tissue. Emodin treatment (10 and 20 mg/kg per day, p.o.) attenuated all these biochemical indices, as well as histopathological alterations induced by BLM. Furthermore, in mice injected with BLM, elevated levels of transforming growth factor-beta1, interleukin (IL)-4 and IL-13 were found in bronchoalveolar lavage fluid. These increases were significantly inhibited by 10 and 20 mg/kg per day emodin. 4. In cell culture, exposure of cells to 6.25, 12.5, 25 or 50 micromol/L emodin for 24 h decreased fibroblast proliferation. Treatment of cells with the same concentrations of emodin for 72 h decreased collagen production by fibroblasts. In addition, emodin (6.25, 12.5, 25 or 50 micromol/L) inhibited the steady state expression of alpha1 (I) procollagen and alpha2 (I) procollagen mRNA in a dose-dependent manner. 5. The results of the present study suggest that emodin may be effective in the treatment of pulmonary fibrosis.

  5. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  6. Differential immune responses and pulmonary pathophysiology are induced by two different strains of respiratory syncytial virus.

    PubMed

    Lukacs, Nicholas W; Moore, Martin L; Rudd, Brian D; Berlin, Aaron A; Collins, Robert D; Olson, Sandra J; Ho, Samuel B; Peebles, R Stokes

    2006-09-01

    In this study we performed comparisons of pulmonary responses between two different respiratory syncytial virus (RSV) antigenic subgroup A strains, A2 and Line 19. Line 19 strain induced significant dose-responsive airway hyperreactivity (AHR) in BALB/c mice at days 6 and 9 after infection, whereas the A2 strain induced no AHR at any dose. Histological examination indicated that A2 induced no goblet cell hyper/metaplasia, whereas the Line 19 induced goblet cell expansion and significant increases in gob5 and MUC5AC mRNA and protein levels in vivo. When examining cytokine responses, A2 strain induced significant interleukin (IL)-10 expression, whereas Line 19 strain induced significant IL-13 expression. When IL-13-/- mice were infected with Line 19 RSV, the AHR responses were abrogated along with gob5 gene expression. There was little difference in viral titer throughout the infection between the line 19- and A2-infected mice. However, the A2 strain grew to significantly higher titers than the Line 19 strain in HEp-2 cells in vitro. Thus, RSV Line 19-induced airway dysfunction does not correlate with viral load in vivo. These data demonstrate that different RSV strains of the same antigenic subgroup can elicit differential immune responses that impact the phenotypic expression of RSV-induced illness.

  7. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    EPA Science Inventory

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  8. Protective Effects of Methylsulfonylmethane on Hemodynamics and Oxidative Stress in Monocrotaline-Induced Pulmonary Hypertensive Rats

    PubMed Central

    Mohammadi, Sadollah; Najafi, Moslem; Hamzeiy, Hossein; Maleki-Dizaji, Nasrin; Pezeshkian, Masoud; Sadeghi-Bazargani, Homayon; Darabi, Masoud; Mostafalou, Sara; Bohlooli, Shahab; Garjani, Alireza

    2012-01-01

    Methylsulfonylmethane (MSM) is naturally occurring organic sulfur that is known as a potent antioxidant/anti-inflammatory compound. The aim of this study was to investigate the effect of MSM on hemodynamics functions and oxidative stress in rats with monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH). Wistar rats were randomly assigned to 38-days treatment. MSM was administered to rats at 100, 200, and 400 mg/kg/day doses 10 days before a single dose of 60 mg/kg, IP, MCT. Hemodynamics of ventricles were determined by Powerlab AD instrument. Blood samples were obtained to evaluate changes in the antioxidative system including activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) and malondialdehyde (MDA). Improvements in cardiopulmonary hemodynamics were observed in the MSM-treated pulmonary arterial hypertensive rats, with a significant reduction in right ventricular systolic pressure (RSVP) and an increase in the mean arterial pressure (MAP). The values of CAT, SOD, GSH-px activities, and GSH were significantly lower in MCT-induced PAH (P < 0.01), but they were recovered to control levels of MSM-treated groups. Our present results suggest that long-term administration of the MSM attenuates MCT-induced PAH in rats through modulation of oxidative stress and antioxidant defense. PMID:23118745

  9. Standardized Herbal Formula PM014 Inhibits Radiation-Induced Pulmonary Inflammation in Mice

    PubMed Central

    Kim, Jee-Youn; Shin, Dasom; Lee, Gihyun; Kim, Jin-Mo; Kim, Dongwook; An, Yong-Min; Yoo, Byung Rok; Chang, Hanna; Kim, Miran; Cho, Jaeho; Bae, Hyunsu

    2017-01-01

    Radiation therapy is widely used for thoracic cancers. However, it occasionally causes radiation-induced lung injuries, including pneumonitis and fibrosis. Chung-Sang-Bo-Ha-Tang (CSBHT) has been traditionally used to treat chronic pulmonary disease in Korea. PM014, a modified herbal formula derived from CSBHT, contains medicinal herbs of seven species. In our previous studies, PM014 exhibited anti-inflammatory effects in a chronic obstructive pulmonary disease model. In this study, we have evaluated the effects of PM014 on radiation-induced lung inflammation. Mice in the treatment group were orally administered PM014 six times for 2 weeks. Effects of PM014 on radiation pneumonitis were evaluated based on histological findings and differential cell count in bronchoalveolar lavage fluid. PM014 treatment significantly inhibited immune cell recruitment and collagen deposition in lung tissue. Normal lung volume, evaluated by radiological analysis, in PM014-treated mice was higher compared to that in irradiated control mice. PM014-treated mice exhibited significant changes in inspiratory capacity, compliance and tissue damping and elastance. Additionally, PM014 treatment resulted in the downregulation of inflammatory cytokines, chemokines, and fibrosis-related genes and a reduction in the transforming growth factor-β1-positive cell population in lung tissue. Thus, PM014 is a potent therapeutic agent for radiation-induced lung fibrosis and inflammation. PMID:28322297

  10. Hydroxysafflor Yellow A Attenuates Bleomycin-induced Pulmonary Fibrosis in Mice.

    PubMed

    Jin, Ming; Wu, Yan; Wang, Lin; Zang, Baoxia; Tan, Li

    2016-04-01

    Hydroxysafflor yellow A (HSYA) is an active component of Carthamus tinctorius L., and we want to investigate whether HSYA attenuates pulmonary fibrosis induced by bleomycin (BLM) in mice. The mice received a BLM via oropharyngeal aspiration, and HSYA was intraperitoneally injected. Arterial blood gas analysis was performed. Morphological changes and hydroxyproline content were measured. mRNA expression of transforming growth factor-β1 (TGF-β1), connective tissue growth factor, α-smooth muscle actin (α-SMA), and collagen I was measured by real-time polymerase chain reaction. α-SMA-positive cells in lung tissues were detected by immunohistochemical staining. A549 cell was cultured, and morphological changes were observed after TGF-β1 and HSYA treatment. mRNA expression was detected by real-time polymerase chain reaction. Phosphorylation of Smad3 was evaluated by western blotting. HSYA decreased the lung consolidation area and collagen deposition in mice with pulmonary fibrosis. The blood gas changes due to BLM were attenuated by HSYA. HSYA also alleviated the BLM-induced increase of TGF-β1, connective tissue growth factor, α-SMA, and collagen I mRNA levels. HSYA treatment inhibited the increase of α-SMA expression, Smad3 phosphorylation, the morphological changes in lung tissue. HSYA inhibits Smad3 phosphorylation and elevated expression of collagen I mRNA in epithelial-mesenchymal transition induced by TGF-β1.

  11. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    SciTech Connect

    Kodavanti, Urmila P.; Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly; Nyska, Abraham; Richards, Judy E.; Andrews, Debora; Gilmour, M. Ian

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  12. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    PubMed

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition.

  13. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

    PubMed

    Liu, Haijun; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Wang, Xingang; Zhang, Wei; Liao, Hong; Yao, Honghong; Chao, Jie

    2016-01-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

  14. Secreted Phosphoprotein 1 and Sex-Specific Differences in Silica-Induced Pulmonary Fibrosis in Mice

    PubMed Central

    Latoche, Joseph D.; Ufelle, Alexander Chukwuma; Fazzi, Fabrizio; Ganguly, Koustav; Leikauf, George D.; Fattman, Cheryl L.

    2016-01-01

    Background: Fibrotic lung diseases occur predominantly in males, and reports describe better survival in affected females. Male mice are more sensitive to silica-induced lung fibrosis than silica-treated female mice. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) increases in pulmonary fibrosis, and Spp1 transcription may be regulated by estrogen or estrogen receptor–related receptors. Objective: We determined whether differences in silica-induced SPP1 levels contribute to sex differences in lung fibrosis. Methods: Male and female mice were treated with 0.2 g/kg intratracheal silica, and lung injury was assessed 1, 3, or 14 days post-exposure. Gene-targeted (Spp1–/–) mice, control Spp1+/+ (C57BL/6J) mice, ovariectomized (OVX) female mice, and estrogen-treated male mice were treated with silica, and lung injury was assessed. Results: Silica-induced SPP1 in lung tissue, bronchoalveolar lavage, and serum increased more in male than in female mice. Following silica treatment, bronchoalveolar lavage cell infiltrates decreased in female Spp1–/– mice compared with female Spp1+/+ mice, and lung hydroxyproline decreased in male Spp1–/– mice compared with male Spp1+/+ mice. OVX female mice had increased lung SPP1 expression in response to silica compared with silica-treated sham female mice. Silica-induced lung collagen and hydroxyproline (markers of fibrosis), and SPP1 levels decreased in estrogen-treated males compared with untreated males. Conclusion: These findings suggest that sex-specific differences in SPP1 levels contribute to the differential sensitivity of male and female mice to the development of silica-induced fibrosis. Citation: Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. 2016. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect 124:1199–1207; http://dx.doi.org/10.1289/ehp.1510335 PMID:26955063

  15. Green tea extract inhibits paraquat-induced pulmonary fibrosis by suppression of oxidative stress and endothelin-l expression.

    PubMed

    Kim, Hak-Ryul; Park, Byung-Kyu; Oh, Yeon-Mok; Lee, Yun-Song; Lee, Dong-Soon; Kim, Hyun-Kuk; Kim, Joo-Young; Shim, Tae-Sun; Lee, Sang-Do

    2006-01-01

    Paraquat-induced pulmonary fibrosis involves two factors, direct injury by oxygen free radicals and indirect injury by inflammatory cells and fibroblasts. Endothelin-1 (ET-1) has been shown to act as a mediator of pulmonary fibrosis, and its formation increases during oxidative stress. We investigated whether green tea extract (GTE), which has antioxidant properties, inhibits paraquat-induced pulmonary fibrosis and whether ET-1 is involved in this process. Paraquat (0.3 mg/kg) was instilled into the right lungs of rats, following which the rats were either not further treated (Group P, n = 7), or they were administered 1% GTE mixed with feed (Group PG; n = 7) or the ET(A) receptor antagonist ZD2574 (10 mg/kg through gavage; Group PZ; n = 7) for two weeks. As control, we used rats instilled with saline (Group N; n = 6). Two weeks after paraquat instillation, we assayed the degree of pulmonary fibrosis by light microscopic morphometry and hydroxyproline content; lipid peroxidation as a marker of oxidative stresses by measurement of malondialdehyde (MDA); ET-1 by immunohistochemistry; and prepro-ET-1 mRNA expression by reverse transcription-polymerase chain reaction. Compared with Group N, significant pulmonary fibrosis was observed in Group P, accompanied by increases in MDA, ET-1, and prepro-ET-1 mRNA expression. Compared with Group P, Group PG showed significant decreases in pulmonary fibrosis, along with decreases in MDA, ET-1, and prepro-ET-1 mRNA expression. We also observed significant decreases in pulmonary fibrosis in Group PZ compared with Group P. These findings suggest that GTE inhibits paraquat-induced pulmonary fibrosis by suppression of oxidative stress and ET-1 expression.

  16. Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice.

    PubMed

    Ciuclan, Loredana; Sheppard, Kellyann; Dong, Liqun; Sutton, Daniel; Duggan, Nicholas; Hussey, Martin; Simmons, Jenny; Morrell, Nicholas W; Jarai, Gabor; Edwards, Matthew; Dubois, Gerald; Thomas, Matthew; Van Heeke, Gino; England, Karen

    2013-11-01

    The expression of the bone morphogenetic protein antagonist, Gremlin 1, was recently shown to be increased in the lungs of pulmonary arterial hypertension patients, and in response to hypoxia. Gremlin 1 released from the vascular endothelium may inhibit endogenous bone morphogenetic protein signaling and contribute to the development of pulmonary arterial hypertension. Here, we investigate the impact of Gremlin 1 inhibition in disease after exposure to chronic hypoxia/SU5416 in mice. We investigated the effects of an anti-Gremlin 1 monoclonal antibody in the chronic hypoxia/SU5416 murine model of pulmonary arterial hypertension. Chronic hypoxic/SU5416 exposure of mice induced upregulation of Gremlin 1 mRNA in lung and right ventricle tissue compared with normoxic controls. Prophylactic treatment with an anti-Gremlin 1 neutralizing mAb reduced the hypoxic/SU5416-dependent increase in pulmonary vascular remodeling and right ventricular hypertrophy. Importantly, therapeutic treatment with an anti-Gremlin 1 antibody also reduced pulmonary vascular remodeling and right ventricular hypertrophy indicating a role for Gremlin 1 in the progression of the disease. We conclude that Gremlin 1 plays a role in the development and progression of pulmonary arterial hypertension in the murine hypoxia/SU5416 model, and that Gremlin 1 is a potential therapeutic target for pulmonary arterial hypertension.

  17. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    PubMed Central

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  18. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice.

    PubMed

    Chow, Leola N; Schreiner, Petra; Ng, Betina Y Y; Lo, Bernard; Hughes, Michael R; Scott, R Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M; Crawford, Jason; Webb, Murray; Underhill, T Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  19. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation.

    PubMed

    Beale, Janine; Jayaraman, Annabelle; Jackson, David J; Macintyre, Jonathan D R; Edwards, Michael R; Walton, Ross P; Zhu, Jie; Ching, Yee Man; Shamji, Betty; Edwards, Matt; Westwick, John; Cousins, David J; Hwang, You Yi; McKenzie, Andrew; Johnston, Sebastian L; Bartlett, Nathan W

    2014-10-01

    Rhinoviruses (RVs), which are the most common cause of virally induced asthma exacerbations, account for much of the burden of asthma in terms of morbidity, mortality, and associated cost. Interleukin-25 (IL-25) activates type 2-driven inflammation and is therefore potentially important in virally induced asthma exacerbations. To investigate this, we examined whether RV-induced IL-25 could contribute to asthma exacerbations. RV-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression, which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental RV infection. In addition, in mice, RV infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type 2 cytokine expression, mucus production, and recruitment of eosinophils, neutrophils, basophils, and T and non-T type 2 cells. Therefore, asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro-type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.

  20. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.

  1. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

    PubMed

    Barnes, Elizabeth A; Chen, Chih-Hsin; Sedan, Oshra; Cornfield, David N

    2017-02-01

    Pulmonary arterial hypertension (PAH) is an often fatal disease with limited treatment options. Whereas current data support the notion that, in pulmonary artery endothelial cells (PAECs), expression of transcription factor hypoxia inducible factor-1α (HIF-1α) is increased, the role of HIF-1α in pulmonary artery smooth muscle cells (PASMCs) remains controversial. This study investigates the hypothesis that, in PASMCs from patients with PAH, decreases in HIF-1α expression and activity underlie augmented pulmonary vascular contractility. PASMCs and tissues were isolated from nonhypertensive control patients and patients with PAH. Compared with controls, HIF-1α and Kv1.5 protein expression were decreased in PAH smooth muscle cells (primary culture). Myosin light chain (MLC) phosphorylation and MLC kinase (MLCK) activity-major determinants of vascular tone-were increased in patients with PAH. Cofactors involved in prolyl hydroxylase domain activity were increased in PAH smooth muscle cells. Functionally, PASMC contractility was inversely correlated with HIF-1α activity. In PASMCs derived from patients with PAH, HIF-1α expression is decreased, and MLCK activity, MLC phosphorylation, and cell contraction are increased. We conclude that compromised PASMC HIF-1α expression may contribute to the increased tone that characterizes pulmonary hypertension.-Barnes, E. A., Chen, C.-H., Sedan, O., Cornfield, D. N. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

  2. The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice

    PubMed Central

    Rajendran, Ganeshkumar; Astleford, Lindsay; Michael, Mark; Schonfeld, Michael P.; Fields, Timothy; Shay, Sheila; French, Jaketa L.; West, James; Haase, Volker H.

    2016-01-01

    Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension. PMID:26976644

  3. Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosisin Rat

    PubMed Central

    Zaeemzadeh, Narjes; Hemmati, Aliasghar; Arzi, Ardeshir; Jalali, Mohammadtaha; Rashidi, Iran

    2011-01-01

    Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable disease. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory , anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In the current study, the effects of CAPE on amiodarone-induced pulmonary fibrosis in rat were investigated. Male rats were divided in to 4 groups. The first group only received amiodarone (6.25 mg/Kg) on first and third day. The second group received only vehicle (distilled water) with the same volume and in the same time as the first group. The third and fourth groups received amiodarone and were treated with CAPE , 5 and 10 µmol /day respectively, from 2 days before the first dose of amiodarone and until 21 days after the second dose of amiodarone. At the end of treatment course, lung tissue was removed for histopathology and biochemical evaluations. Malondialdehyde (MDA) concentration, myeloperoxidase MPO) and super oxide dismutase (SOD) activities were determined in lung tissue. Histopathological evaluation was performed using light microscopy. MDA level and the activity of myeloperoxidase and superoxide dismutase enzymes significantly decreased in the group which was treated with CAPE (5 µmol/Kg). However, 10 µmol/Kg CAPE had not such an effect. Both doses of CAPE could histopathologically reduce the fibrogenic effects of amiodarone . CAPE was shown to be effective in reducing amiodarone-induced pulmonary fibrosis with the dose of 5 µmol/Kg. PMID:24250361

  4. Protective effect of dexpanthenol on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Ermis, Hilal; Parlakpinar, Hakan; Gulbas, Gazi; Vardi, Nigar; Polat, Alaadin; Cetin, Asli; Kilic, Talat; Aytemur, Zeynep Ayfer

    2013-12-01

    Despite extensive studies, there is no effective treatment currently available other than pirfenidone for idiopathic pulmonary fibrosis. A protective effect of pantothenic acid and its derivatives on cell damage produced by oxygen radicals has been reported, but it has not been tested in bleomycin (BLM)--induced pulmonary fibrosis in rats. Therefore, we aimed to investigate the preventive effect of dexpanthenol (Dxp) on pulmonary fibrosis. Thirty-two rats were assigned to four groups as follows: (1) control group, (2) dexpanthenol (Dxp) group; 500 mg/kg Dxp continued intraperitoneally for 14 days, (3) bleomycin (BLM) group; a single intratracheal injection of BLM (2.5 mg/kg body weight in 0.25-ml phosphate buffered saline), and (4) BLM + Dxp-treated group; 500 mg/kg Dxp was administered 1 h before the intratracheal BLM injection and continued for 14 days i.p. The histopathological grades of lung inflammation and collagen deposition, tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and myeloperoxidase (MPO) were measured. BLM provoked inflammation and collagen deposition (p < 0.0001), with a marked increase in myeloperoxidase (MPO) activity resembling increased inflammatory activity (p < 0.0001), which was prevented by Dxp (p < 0.0001, p = 0.02). BLM reduced tissue activities of SOD, GPx, and CAT compared to controls (p = 0.01, 0.03, 0.009). MDA was increased with BLM (p = 0.003). SOD (p = 0.001) and MDA (p = 0.016) levels were improved in group 4. The CAT levels in the BLM + Dxp group were close to those in the control group (p > 0.05). We showed that Dxp significantly prevents BLM-induced lung fibrosis in rats. Further studies are required to evaluate the role of Dxp in the treatment of lung fibrosis.

  5. Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema.

    PubMed

    Wang, Shih-Min; Lei, Huan-Yao; Huang, Mei-Chih; Wu, Jing-Min; Chen, Chun-Ta; Wang, Jieh-Neng; Wang, Jen-Ren; Liu, Ching-Chuan

    2005-03-01

    Hand, foot, and mouth disease and herpangina are the major clinical manifestations of enterovirus 71 (EV71) infections. Brain-stem encephalitis and pulmonary edema are severe complications that can lead to death. This study was designed to evaluate the potential therapeutic effect of milrinone, a phosphodiesterase (PDE) inhibitor, in the treatment of patients with EV71-induced pulmonary edema. We conducted a historically controlled trial of 24 children with severe EV71-induced pulmonary edema from April 1998-June 2003 in southern Taiwan. Patients were divided into groups treated before and after the introduction of milrinone therapy. Etiological diagnosis was established by viral cultures and confirmed by specific immunofluorescence and neutralization tests. All 24 patients were below 5 years of age. The mortality was lower in the milrinone-treated vs. nontreated group (36.4% vs. 92.3%, P=0.005). Sympathetic tachycardia was decreased in patients treated with milrinone compared to controls (144 +/- 17/min vs. 206 +/- 26/min, P=0.004). A marked decrease in IL-13 (77 +/- 9 pg/ml vs. 162 +/- 88 pg/ml, P=0.001) was observed in milrinone-treated patients compared to controls. There was a significant reduction in white blood cell (10,838 +/- 4,537/mm3 vs. 19,475 +/- 7,798/mm3, P=0.009) and platelet (257 +/- 45 x 10(3)/mm3 vs. 400 +/- 87 x 10(3)/mm3, P=0.001) counts in milrinone-treated patients compared to controls. These results were associated with improvement in sympathetic regulation and decrease in IL-13 production. Milrinone therapy may provide a useful therapeutic approach for this highly lethal disorder.

  6. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects.

    PubMed

    Snow, Samantha J; McGee, John; Miller, Desinia B; Bass, Virginia; Schladweiler, Mette C; Thomas, Ronald F; Krantz, Todd; King, Charly; Ledbetter, Allen D; Richards, Judy; Weinstein, Jason P; Conner, Teri; Willis, Robert; Linak, William P; Nash, David; Wood, Charles E; Elmore, Susan A; Morrison, James P; Johnson, Crystal L; Gilmour, Matthew Ian; Kodavanti, Urmila P

    2014-12-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe.

  7. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    PubMed

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  8. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    PubMed Central

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  9. Pulmonary oxygen toxicity in rats treated with cytochrome P-450 inducers

    SciTech Connect

    Ebel, R.E.; Barlow, R.L.; Gregory, E.M.

    1987-05-01

    Pulmonary oxygen toxicity is assumed to result from damage caused by superoxide (O/sub 2//sup -/) hydrogen peroxide (H/sub 2/O/sub 2/) and/or hydroxyl radical (OH) produced by the partial reduction of molecular oxygen (O/sub 2/). The microsomal cytochrome P-450 (P-450) monooxygenase system is known to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/. They have studied the influence of monooxygenase induction using phenobarbital (PB) and ..beta..-naphthoflavone (..beta..-NF) on O/sub 2/ toxicity in the rat. PB- or ..beta..-NF induce hepatic P-450 but only ..beta..-NF induces pulmonary P-450. Pulmonary microsomes produced O/sub 2//sup -/ and H/sub 2/O/sub 2/ at rates (expressed per mg microsomal protein) which did not vary as a function of pretreatment. Rats were exposed to 100% O/sub 2/ for up to 3 days. After 3 days of O/sub 2/, lung weights were about 50% above controls regardless of pretreatment. The microsomal monooxygenase enzymes (P-450, b/sub 5/ and NADPH P-450 reductase) were quantified in liver and lung. Lung microsomal P-450 was reduced after 3 days of O/sub 2/ exposure regardless of pretreatment. The protective enzymes (catalase, superoxide dismutase (SOD) and glutathione (GSH) peroxidase) and non-protein sulfhydryl groups (NPSH) were also quantified in lung and liver samples. Lung NPSH and GSH peroxidase were increased after 3 days of O/sub 2/ exposure regardless of pretreatment while SOD was increased in controls and PB- but not ..beta..-NF-treated rats. Three of 14 ..beta..-NF-treated rats died during O/sub 2/ exposure while no animals in the control or PB-treated groups died.

  10. Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosisin Rat.

    PubMed

    Zaeemzadeh, Narjes; Hemmati, Aliasghar; Arzi, Ardeshir; Jalali, Mohammadtaha; Rashidi, Iran

    2011-01-01

    Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable disease. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory , anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In the current study, the effects of CAPE on amiodarone-induced pulmonary fibrosis in rat were investigated. Male rats were divided in to 4 groups. The first group only received amiodarone (6.25 mg/Kg) on first and third day. The second group received only vehicle (distilled water) with the same volume and in the same time as the first group. The third and fourth groups received amiodarone and were treated with CAPE , 5 and 10 µmol /day respectively, from 2 days before the first dose of amiodarone and until 21 days after the second dose of amiodarone. At the end of treatment course, lung tissue was removed for histopathology and biochemical evaluations. Malondialdehyde (MDA) concentration, myeloperoxidase MPO) and super oxide dismutase (SOD) activities were determined in lung tissue. Histopathological evaluation was performed using light microscopy. MDA level and the activity of myeloperoxidase and superoxide dismutase enzymes significantly decreased in the group which was treated with CAPE (5 µmol/Kg). However, 10 µmol/Kg CAPE had not such an effect. Both doses of CAPE could histopathologically reduce the fibrogenic effects of amiodarone . CAPE was shown to be effective in reducing amiodarone-induced pulmonary fibrosis with the dose of 5 µmol/Kg.

  11. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis.

    PubMed

    Sun, Zhaorui; Wang, Cong; Shi, Chaowen; Sun, Fangfang; Xu, Xiaomeng; Qian, Weiping; Nie, Shinan; Han, Xiaodong

    2014-05-01

    Acute lung injury may lead to fibrogenesis. However, no treatment is currently available. This study was conducted to determine the effects of bone marrow-derived mesenchymal stem cells (MSCs) in a model of HCl-induced acute lung injury in Sprague-Dawley (SD) rats. Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor (CXCR)4 have been shown to participate in mobilizing MSCs. Adenovirus carrying the CXCR4 gene was used to transfect MSCs in order to increase the engraftment numbers of MSCs at injured sites. Histological examination data demonstrated that the engraftment of MSCs did not attenuate lung injury and pulmonary fibrosis. The results showed that engraftment of MSCs almost differentiated into myofibroblasts, but rarely differentiated into lung epithelial cells. Additionally, it was demonstrated that activated canonical Wnt/β-catenin signaling in injured lung tissue regulated the myofibroblast differentiation of MSCs in vivo. The in vitro study results demonstrated that activation of the Wnt/β-catenin signaling stimulated MSCs to express myofibroblast markers; however, this process was attenuated by Wnt antagonist DKK1. Therefore, the results demonstrated that the aberrant activation of Wnt signaling induces the myofibroblast differentiation of engrafted MSCs, thus contributing to pulmonary fibrosis following lung injury.

  12. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  13. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.

    PubMed

    Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2013-04-01

    Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p < 0.05) were observed among the groups treated with BMMC and evaluated after 7, 14 and 21 days. Analysis of the mean linear intercept (Lm) values for the different groups allowed to observe that the group treated with BMMC and evaluated after 21 days showed the most significant result. The group that received no treatment showed a statistically significant difference when compared to other groups, except the group treated and evaluated after 21 days, evidencing the efficacy of cell therapy with BMMC in pulmonary emphysema.

  14. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    PubMed

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway.

  15. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  16. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice

    PubMed Central

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. PMID:26272953

  17. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  18. The ethical Kampo formulation Sho-seiryu-to (TJ-19) prevents bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Yang, Chang-qing; Sun, Peng-yuan; Ding, Da-zhi; Moriuchi, Hiroshi; Ishitsuka, Yoichi; Irikura, Mitsuru; Irie, Tetsumi

    2010-01-01

    The effects of Sho-seiryu-to (TJ-19), an ethical Kampo formulation, on bleomycin (BLM)-induced pulmonary fibrosis in rats was examined. Pulmonary fibrosis was induced by intratracheal instillation of a single dose of BLM (5 mg/kg). The TJ-19 used consisted of at least 21 constituents, as determined by three-dimensional HPLC analysis, and was administered orally twice a day at a dose of 1.5 g/kg until the end of the study period. Changes in general appearance and body weight were monitored. Twenty-eight days after BLM instillation, the animals were sacrificed and the study parameters were measured. TJ-19 attenuated the loss in body weight, increase in lung/body weight ratio and concentration of hydroxyproline and malondialdehyde in the lung tissues induced by BLM administration. TJ-19 also prevented BLM-induced fibrotic changes in the lung histology. These protective effects of TJ-19 were observed when administration was started 1 week before and simultaneously with the instillation of BLM. These results suggest that TJ-19 has prophylactic potential against BLM-induced pulmonary fibrosis, and may therefore be a promising drug candidate and medicinal resource for preventing BLM-induced and idiopathic pulmonary fibrosis.

  19. [Pulmonary metabolism of beta-endorphin in asthmatic patients in asymptomatic periods and after bronchospasm induced by methacholine].

    PubMed

    Bottino, G; Antognozzi, G; Degrandi, R; Augeri, C; Bogliolo, G; Zoccali, P

    1995-01-01

    Blood concentration of endogenous beta-endorphines can change during the clinical evolution of chronic bronchopneumopathies. The authors assessed the beta-endorphine concentrations in the pulmonary arterial and systemic arterial blood in 8 asthmatic patients during a symptom-free period and after methacholine-induced bronchospasm. The beta-endorphine analysis was performed in duplicate dor each sample, by means of a RIA assay. There is not difference in the systemic arterial blood concentration of beta-endorphines between asthmatic patients and normal subjects. Furthermore, there is no change in the beta-endorphine blood concentration during the passage through the pulmonary tissue after methacoline-induced bronchospasm.

  20. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    PubMed

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  1. Prevention of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice by Paeonol

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Ko, Hsin-Kuo; Perng, Diahn-Warng; Lee, Tzong-Shyuan; Kou, Yu Ru

    2017-01-01

    COL1A1. Notably, all these TGF-β1-induced cellular events were suppressed by paeonol treatment. Our findings suggest that paeonol has antioxidant, anti-inflammatory, and anti-fibrotic functions against bleomycin-induced pulmonary fibrosis in mice. The beneficial effect of paeonol may be, at least in part, mediated through the inhibition of the MAPKs/Smad3 signaling.

  2. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis.

    PubMed

    Ma, Jane Y C; Young, Shih-Houng; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K; Castranova, Vincent

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague-Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP+CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP+CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns.

  3. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    PubMed

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  4. Phospholipase D signaling in serotonin-induced mitogenesis of pulmonary artery smooth muscle cells.

    PubMed

    Liu, Y; Fanburg, B L

    2008-09-01

    We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.

  5. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents

    PubMed Central

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W.; Battelli, Lori A.; Kashon, Michael L.

    2016-01-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genomewide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  6. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    PubMed Central

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns. PMID:24793434

  7. Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension.

    PubMed

    Resta, Thomas C; Broughton, Brad R S; Jernigan, Nikki L

    2010-01-01

    Increases in myofilament Ca2+ sensitivity resulting from stimulation of RhoA and Rho kinase represent a primary mechanism of vasoconstriction and associated pulmonary hypertension resulting from chronic hypoxia (CH). This chapter summarizes recent advances in the understanding of RhoA/Rho kinase signaling mechanisms in pulmonary vascular smooth muscle (VSM) that increase the sensitivity of the contractile apparatus to Ca2+ and contribute to vasoconstriction in this setting. Such advances include the discovery of myogenic tone in small pulmonary arteries from CH rats that contributes to vasoconstriction through a mechanism inherent to the VSM, dependent on Rho kinase-induced Ca2+ sensitization but independent of L-type voltage-gated Ca2+ channels. Additional studies have revealed an important contribution of superoxide anion (O2-)-induced RhoA activation to both receptor-mediated and membrane depolarization-induced myofilament Ca2+ sensitization in hypertensive pulmonary arteries. Xanthine oxidase and NADPH oxidase isoforms are potential sources of O2- that mediate RhoA-dependent vasoconstriction and associated pulmonary hypertension.

  8. SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets.

    PubMed

    Kim, Yun Hak; Bae, Jin Ung; Kim, In Suk; Chang, Chulhun L; Oh, Sae Ock; Kim, Chi Dae

    2016-12-01

    SIRT1, a class III histone deacetylase, is critically involved in cellular response to stress and modulates cardiovascular risk factors. However, its role in thrombus formation is largely unknown. Thus, this study investigated the effect of SIRT1 on pulmonary thrombus formation, and then identified its role in the modulation of platelet aggregation. In isolated human platelets, cell aggregation was increased by various platelet activators, such as platelet activating factor (PAF), arachidonic acid (AA), ADP, and thrombin. AA- and PAF-mediated platelet aggregations were suppressed by WEB2086, a PAF receptor (PAFR) antagonist. Pulmonary thrombus formation induced by PAF or AA was also attenuated by WEB2086, suggesting that PAFR plays a key role in AA-induced platelet aggregation. In platelets isolated from SIRT1-TG mice as well as in platelets treated with resveratrol or reSIRT1, PAFR expression was decreased, whereas this expressional downregulation by SIRT1 activators was inhibited in platelets treated with MG132 (a proteasome inhibitor) or NH4Cl (a lysosome inhibitor). Furthermore, platelet aggregation induced by AA was markedly attenuated by resveratrol and reSIRT1. Likewise, the increased pulmonary thrombus formation in mice treated with AA was also attenuated by SIRT1 activators. In line with these results, pulmonary thrombus formation was markedly attenuated in SIRT1-TG mice. Taken together, this study showed that SIRT1 downregulates PAFR expression on platelets via proteasomal and lysosomal pathways, and that this downregulation inhibits platelet aggregation in vitro and pulmonary thrombus formation in vivo.

  9. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    SciTech Connect

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  10. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9

    PubMed Central

    Wang, Yiran; Chen, Ali; Chen, Mayun; Yao, Dan; Xu, Xiaomei; Wang, Liangxing

    2016-01-01

    Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK) in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP-) 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway. PMID:27688788

  11. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9.

    PubMed

    Yan, Shuangquan; Wang, Yiran; Liu, Panpan; Chen, Ali; Chen, Mayun; Yao, Dan; Xu, Xiaomei; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK) in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP-) 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway.

  12. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  13. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    PubMed Central

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  14. Effects of leflunomide on inflamation and fibrosis in bleomycine induced pulmonary fibrosis in wistar albino rats

    PubMed Central

    Guzel, Aygul; Duran, Latif; Tutuncu, Serife; Guzel, Ahmet; Gunaydın, Mithat; Salis, Osman; Okuyucu, Ali; Selcuk, Mustafa Yasin

    2013-01-01

    Purposes Pulmonary fibrosis is a rare and progressive lung disease with a high mortality rate. The treatment regimens still fail to recover the disease. Leflunomide (LEF) is an immunomodulatory agent with antiproliferative activity that is used for the treatment of rheumatoid arthritis. The purpose of the study is to investigate the potential therapeutic efficacy of LEF in bleomycin (BLM) induced pulmonary fibrosis. Methods A total of 21 male, adult wistar albino rats were used. The animals were divided into three groups as control, BLM and BLM plus LEF groups (n=7). In BLM group, mice were treated with intratracheal instillation of BLM (2.5 U/kg). Control group received the same volume of saline instead of BLM. In LEF group, in addition to BLM, LEF (10 mg/kg, daily) was administrated by oral gavage. The effect of LEF on pulmonary inflammation and fibrosis was studied by measurements of serum clara cell protein-16 (CC-16), thiobarbituric acid reactive substance levels (TBARS), superoxide dismutase (SOD) and advanced oxidation protein products (AOPP) levels and lung tissue contents of IL-6, TNF-α and NF-κB by immunhistochemical examinations. Results LEF significantly increased the level of CC-16 and decreased the level of AOPP (P=0.042 and P=0.003 respectively). Lung tissue contents of IL-6, TNF-α and NF-κB significantly decreased in LEF group compared to BLM group by immunhistochemical examinations (P<0.001). Conclusions LEF reduces oxidative stress factors, alveolar inflammation and attenuates lung injury and fibrosis. PMID:24255778

  15. Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation.

    PubMed

    Konrad, F M; Knausberg, U; Höne, R; Ngamsri, K-C; Reutershan, J

    2016-01-01

    Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.

  16. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    PubMed

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  17. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways

    PubMed Central

    Chen, Mayun; Cai, Hui; Yu, Chang; Wu, Peiliang; Fu, Yangyang; Xu, Xiaomei; Fan, Rong; Xu, Cunlai; Chen, Yanfan; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Salidroside, an active ingredient isolated from Rhodiola rosea, has shown to exert protective effects against chronic hypoxia-induced pulmonary arterial hypertension (PAH). However, the underlying mechanisms were not well known. Based on our recent reports, we predicted the involvement of adenosine monophosphate-activated protein kinase (AMPK) mediated effects in salidroside regulation of PAH. Firstly, to prove the hypothesis, rats were exposed to chronic hypoxia and treated with increasing concentrations of salidroside or a selective AMPK activator-5’-aminoimidazole-4-carboxamide ribonucleoside (AICAR) for 4 weeks. After salidroside or AICAR treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary artery remodeling were attenuated. Then the effects of salidroside or AICAR on hypoxia-induced excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs), which contributed to pulmonary arterial remodeling, were investigated. Our results suggested salidroside, as well as AICAR, reversed hypoxia-induced PASMCs proliferation and apoptosis resistance while AMPK inhibitor Compound C enhanced the effects of hypoxia. To reveal the potential cellular mechanisms, activation of AMPKα1 and expression of the genes related to proliferation and apoptosis were analyzed in PASMCs after salidroside treatment under hypoxia conditions. The results demonstrated salidroside as well as AICAR might inhibit chronic hypoxia-induced PASMCs proliferation via AMPKα1-P53-P27/P21 pathway and reverse apoptosis resistance via AMPKα1-P53-Bax/Bcl-2-caspase 9-caspase 3 pathway. PMID:27069536

  18. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways.

    PubMed

    Chen, Mayun; Cai, Hui; Yu, Chang; Wu, Peiliang; Fu, Yangyang; Xu, Xiaomei; Fan, Rong; Xu, Cunlai; Chen, Yanfan; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Salidroside, an active ingredient isolated from Rhodiola rosea, has shown to exert protective effects against chronic hypoxia-induced pulmonary arterial hypertension (PAH). However, the underlying mechanisms were not well known. Based on our recent reports, we predicted the involvement of adenosine monophosphate-activated protein kinase (AMPK) mediated effects in salidroside regulation of PAH. Firstly, to prove the hypothesis, rats were exposed to chronic hypoxia and treated with increasing concentrations of salidroside or a selective AMPK activator-5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) for 4 weeks. After salidroside or AICAR treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary artery remodeling were attenuated. Then the effects of salidroside or AICAR on hypoxia-induced excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs), which contributed to pulmonary arterial remodeling, were investigated. Our results suggested salidroside, as well as AICAR, reversed hypoxia-induced PASMCs proliferation and apoptosis resistance while AMPK inhibitor Compound C enhanced the effects of hypoxia. To reveal the potential cellular mechanisms, activation of AMPKα1 and expression of the genes related to proliferation and apoptosis were analyzed in PASMCs after salidroside treatment under hypoxia conditions. The results demonstrated salidroside as well as AICAR might inhibit chronic hypoxia-induced PASMCs proliferation via AMPKα1-P53-P27/P21 pathway and reverse apoptosis resistance via AMPKα1-P53-Bax/Bcl-2-caspase 9-caspase 3 pathway.

  19. [Respiratory failure and pulmonary fibrosis as a late side-effect after chemotherapy-induced by oxygen administration].

    PubMed

    Grahmann, P R; Brauer, M; Hüter, L; Sayer, H; Neumann, R; Braun, R K

    2005-11-01

    Pulmonary fibrosis (PF) may develop following successful chemotherapy for malignancy, even if such therapy is not combined with radiotherapy. Bleomycin, which is known to induce acute pneumonitis and lung fibrosis, is especially associated with chemotherapy-induced PF, and bleomycin-induced pulmonary fibrosis can occur more than five years after such therapy. Additionally, supplemental oxygen therapy can trigger the onset of pneumonitis and lethal PF in patients who have previously received bleomycin therapy. Careful assessment of lung function via spiroergometry and arterial blood gas analysis during exercise are required if the administration of supplemental oxygen is considered. Two case reports reveal the potential lethal risk of oxygen for patients who have been treated with bleomycin: (1) a patient with successfully resected and treated basal tongue carcinoma and (2) a patient in remission after being treated for non-Hodgkin lymphoma. Single and double lung transplantation is the only therapeutic option for patients with severe, oxygen-induced PF and should be included as an indication for lung transplantation. Early recognition of pulmonary diffusion abnormalities and establishing a risk profile, as well as consequent monitoring of pulmonary function, may help to avoid or at least reduce the risk of PF induced by oxygen therapy when administered to patients who have previously been given bleomycin.

  20. Picosecond laser structuring of thin film platinum layers covered with tantalum pentoxide isolation

    SciTech Connect

    Heise, Gerhard; Huber, Heinz; Trappendreher, Daniel; Ilchmann, Florian; Weiss, Robin S.; Wolf, Bernhard

    2012-07-01

    A thin film layer system consisting of platinum (Pt) as conductive layer on a glass substrate and tantalum pentoxide as isolating layer on top of the platinum is attractive for designing biocompatible conductor paths and contact pads for bio sensor chips. For the flexible and rapid patterning of the conductive and the isolating layers, both, the complete removal and the selective ablation of the individual thin films were investigated using ultra-short laser pulses with about 10 ps pulse duration and 1064 nm wavelength at low laser fluences. A platinum film covered with tantalum pentoxide shows a significantly lower ablation threshold than a single Pt film on glass alone when illuminated from the front side. Furthermore, we explored that the tantalum pentoxide film can be removed by glass side illumination from the Pt film, without affecting the Pt film and leaving the Pt film on the glass substrate intact. Those ablation phenomena occur at laser fluences of about 0.2 J/cm{sup 2}, far below the evaporation limit of platinum. We present a detailed ablation threshold value examination for the structuring of these layer systems by front side and glass side irradiation for different film thicknesses. Furthermore, we discuss the possible underlying physical mechanisms of these ablation phenomena.

  1. Radiation induced endothelial cell retraction in vitro: correlation with acute pulmonary edema.

    PubMed

    Onoda, J M; Kantak, S S; Diglio, C A

    1999-01-01

    We determined the effects of low dose radiation (<200 cGy) on the cell-cell integrity of confluent monolayers of pulmonary microvascular endothelial cells (PMEC). We observed dose- and time-dependent reversible radiation induced injuries to PMEC monolayers characterized by retraction (loss of cell-cell contact) mediated by cytoskeletal F-actin reorganization. Radiation induced reorganization of F-actin microfilament stress fibers was observed > or =30 minutes post irradiation and correlated positively with loss of cell-cell integrity. Cells of irradiated monolayers recovered to form contact inhibited monolayers > or =24 hours post irradiation; concomitantly, the depolymerized microfilaments organized to their pre-irradiated state as microfilament stress fibers arrayed parallel to the boundaries of adjacent contact-inhibited cells. Previous studies by other investigators have measured slight but significant increases in mouse lung wet weight >1 day post thoracic or whole body radiation (> or =500 cGy). Little or no data is available concerning time intervals <1 day post irradiation, possibly because of the presumption that edema is mediated, at least in part, by endothelial cell death or irreversible loss of barrier permeability functions which may only arise 1 day post irradiation. However, our in vitro data suggest that loss of endothelial barrier function may occur rapidly and at low dose levels (< or =200 cGy). Therefore, we determined radiation effects on lung wet weight and observed significant increases in wet weight (standardized per dry weight or per mouse weight) in < or =5 hours post thoracic exposure to 50 200 cGy x-radiation. We suggest that a single fraction of radiation even at low dose levels used in radiotherapy, may induce pulmonary edema by a reversible loss of endothelial cell-cell integrity and permeability barrier function.

  2. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  3. Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice.

    PubMed

    Heilman, Rachel P; Lagoski, Megan B; Lee, Keng Jin; Taylor, Joann M; Kim, Gina A; Berkelhamer, Sara K; Steinhorn, Robin H; Farrow, Kathryn N

    2015-06-15

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25-35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg(-1)·dose(-1) sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH.

  4. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  5. Chinese Skullcap in Move Free Arthritis Supplement Causes Drug Induced Liver Injury and Pulmonary Infiltrates

    PubMed Central

    Dhanasekaran, Renumathy

    2013-01-01

    Herbal medications are being increasingly used by the American population especially for common conditions like arthritis. They have been reported to cause adverse effects, including significant hepatotoxicity, but reporting remains sporadic. We report here a patient who developed drug induced liver injury following the intake of Move Free, which is an over-the-counter arthritis supplement. We propose that Chinese skullcap, which is one of the herbal ingredients of the medication, is responsible for the adverse event. There was a strong temporal association between the intake of supplement and onset of symptoms, and also there have been a few recent case reports implicating the same component. A unique observation in our case is the occurrence of pulmonary infiltrates simultaneously with the hepatotoxicity, and this side effect has not been well documented before. Both the hepatic and pulmonary complications completely resolved over few weeks after the patient stopped taking the medication. Since these supplements are readily available over the counter, we feel that it is important to document possible adverse outcomes to raise awareness in the medical community and also among patients. PMID:25431706

  6. The Protective Effect of Naringin against Bleomycin-Induced Pulmonary Fibrosis in Wistar Rats

    PubMed Central

    Turgut, Nergiz H.; Kara, Haki; Elagoz, Sahende; Deveci, Koksal; Gungor, Huseyin; Arslanbas, Emre

    2016-01-01

    The aim of the current study was to investigate the protective effect of naringin on bleomycin-induced pulmonary fibrosis in rats. Twenty-four Wistar rats randomly divided into four groups (control, bleomycin alone, bleomycin + naringin 40, and bleomycin + naringin 80) were used. Rats were administered a single dose of bleomycin (5 mg/kg; via the tracheal cannula) alone or followed by either naringin 40 mg/kg (orally) or naringin 80 mg/kg (orally) or water (1 mL, orally) for 14 days. Rats and lung tissue were weighed to determine the lung index. TNF-α and IL-1β levels, hydroxyproline content, and malondialdehyde (MDA) levels were assayed. Glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were determined. Tissue sections were stained with hematoxylin-eosin, Masson's trichrome, and 0.1% toluidine blue. TNF-α, IL-1β, and MDA levels and hydroxyproline content significantly increased (p < 0.01) and GPx and SOD activities significantly decreased in bleomycin group (p < 0.01). Naringin at a dose of 80 mg/kg body weight significantly decreased TNF-α and IL-1β activity, hydroxyproline content, and MDA level (p < 0.01) and increased GPx and SOD activities (p < 0.05). Histological evidence supported the results. These results show that naringin has the potential of reducing the toxic effects of bleomycin and may provide supportive therapy for conventional treatment methods for idiopathic pulmonary fibrosis. PMID:26977316

  7. Effects of furosemide on the racing times of horses with exercise-induced pulmonary hemorrhage.

    PubMed

    Soma, L R; Laster, L; Oppenlander, F; Barr-Alderfer, V

    1985-04-01

    In 3 groups of horses with exercise-induced pulmonary hemorrhage (EIPH), comparisons of racing times and finishing positions were made between the 5 races before the horses were given furosemide and 5 races after furosemide administration. The horses were grouped according to 3 methods used to diagnose EIPH: group 1, observation of hemorrhage at the nostrils within 1 hour after a workout or race; group 2, observation of pulmonary hemorrhage only by endoscopic examination after a race or workout; and group 3, observation of hemorrhage at the nostrils during a race or immediately after a race. Group 4 horses were randomly selected horses running during the study period and were not given furosemide. The statistical method was analysis of covariance and the dependent variable was horses' time per distance. The study compared the 4 groups of horses, using the estimated value of the horses (less than or equal to +10,000 or greater than +10,000), and the horses' interaction in races 1 through 5 before and races 6 through 10 after furosemide treatment. The horses' times were adjusted by the relevant covariates, distance, track variant, and winning time per distance. Significant changes in horses' time per distance were not noticed when comparing values from races 1 through 5 with those in races 6 through 10 in group 1 horses.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Contribution of elastin and collagen to the pathogenesis of monocrotaline induced pulmonary hypertension

    SciTech Connect

    Todorovich, L.; Johnson, D.; Ranger, P.; Keeley, F.; Rabinovitch, M.

    1986-03-01

    Male Sprague-Dawley rats were selected randomly for subcutaneous injections, 24 with monocrotaline (M) (60mg/kg) and 24 with an equivolume of saline, and studied 8, 16 or 28 days later. The right (RV) and left ventricle with septum (LV + S) were separated and weighed. The pulmonary artery (PA) was assessed by light and electron microscopy. Synthesis of elastin collagen and non-collagenous proteins was determined by measuring incorporations of /sup 3/H-valine, /sup 14/C-OH-proline and /sup 14/C-proline respectively. Total content of elastin was determined by weight of residue after CNBr digestion, and of collagen by total OH-proline content in SDS and CNBr extracts. At 16 days, the M injected rats developed a 6-fold increase in PA elastin synthesis and a 2-fold increase in medial wall thickness. Ultrastructural changes included increased microtubules and golgi apparatus in endothelium, decreased proportion of mature elastin in subendothelium and increased ground substance in media. By 28 days, M rats showed a progressive increase in PA elastin and collagen synthesis, greater than 20-fold, and in medial wall thickness, 3-fold. This was associated with a 2-fold increase in total elastin in proportion to the increase in PA weight and the development of RV hypertrophy (RV/LV + S increased more than 2-fold). Progressive irreversible pulmonary hypertension induced by M may be related to continuing stimulation of PA elastin and collagen synthesis.

  9. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection.

    PubMed

    Shepardson, Kelly M; Jhingran, Anupam; Caffrey, Alayna; Obar, Joshua J; Suratt, Benjamin T; Berwin, Brent L; Hohl, Tobias M; Cramer, Robert A

    2014-09-01

    Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient HIF1α mice, we observed that HIF1α is required for survival and fungal clearance early following pulmonary challenge with A. fumigatus. Unlike previously reported research with bacterial pathogens, HIF1α deficient neutrophils and macrophages were surprisingly not defective in fungal conidial killing. The increase in susceptibility of the myeloid deficient HIF1α mice to A. fumigatus was in part due to decreased early production of the chemokine CXCL1 (KC) and increased neutrophil apoptosis at the site of infection, resulting in decreased neutrophil numbers in the lung. Addition of recombinant CXCL1 restored neutrophil survival and numbers, murine survival, and fungal clearance. These results suggest that there are unique HIF1α mediated mechanisms employed by the host for protection and defense against fungal pathogen growth and invasion in the lung. Additionally, this work supports the strategy of exploring HIF1α as a therapeutic target in specific immunosuppressed populations with fungal infections.

  10. Molecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice

    PubMed Central

    Sang, Xuezi; Cui, Yaling; Wang, Xiaochun; Gui, Suxin; Tan, Danlin; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling; Hong, Fashui; Tang, Meng

    2013-01-01

    The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans. PMID:23409001

  11. Increased surface tension of the lung and surfactant in bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Horiuchi, T; Ikegami, M; Cherniack, R M; Mason, R J

    1996-10-01

    The increased elastic recoil of the lung in bleomycin-induced pulmonary fibrosis in the rat is due in part to increased surface forces. This study was designed to determine the role of surface tension in situ and in vitro 21 d after instillation of bleomycin. Using sequentially measured pressure-volume curves generated with air, saline, air after lavage with Tween 20, and saline, surface tension was significantly higher in bleomycin-treated lungs than in untreated lungs (4.7 +/- 1.1 versus 1.8 +/- 0.2 dyne/cm, p < 0.01). Surface tension was determined in vitro with a Wilhelmy balance using bronchoalveolar lavage fluid, surfactant, and organic solvent lipid extracts of surfactant. Bleomycin treatment resulted in elevated minimal surface tensions: BALF (20.7 +/- 0.6 versus 13.6 +/- 3.8 dyne/cm, p < 0.02), isolated surfactant (12.0 +/- 1.3 versus 3.0 +/- 0.5 dyne/cm, p < 0.02), and the organic solvent lipid extracted surfactant (11.0 versus 3.2 dyne/cm). These results indicate that the physical properties of surfactant in lungs of rats treated with bleomycin are abnormal and contribute to the increased elastic recoil in this model of pulmonary fibrosis.

  12. Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation.

    PubMed

    Gallardo-Vera, Francisco; Diaz, Daniel; Tapia-Rodriguez, Miguel; Fortoul van der Goes, Teresa; Masso, Felipe; Rendon-Huerta, Erika; Montaño, Luis F

    2016-01-01

    Vanadium is a major air pollutant with toxic and carcinogenic effects; it also exercises immunosuppressive effects on the adaptive immune response. Its effect on the innate immune response is poorly explored. The aim of this study was to identify if vanadium pentoxide (V2O5) impairs the function of immunoregulatory NK cells and to determine possible mechanisms associated with this effect. Interleukin-2-independent NK-92MI cells were exposed to different V2O5 concentrations for 6, 12, or 24 h periods. Cell proliferation was then evaluated using CFSE staining, apoptosis by Annexin V binding, and necrosis by 7-AAD staining. The release of IL-2, -4, -6, -10, -17A, IFNγ, and TNFα by the cells were assessed using a human CBA kit. Expression of CD45, SOCS1, JAK3, pJAK3, STAT5, pSTAT5, IL-2R, IL-15R, Fas, and FasL in/on the cells was determined by flow cytometry; JAK3 and pJAK3 expression were also evaluated via confocal microscopy. The results indicated that V2O5 could inhibit NK-92MI cell proliferation and induce cell apoptosis in a dose- and time-related manner. V2O5 also inhibited IL-2, IL-10, and IFNγ secretion but mostly only after 24 h of exposure and with primarily the higher doses tested. V2O5 had no effect on expression of JAK3 and STAT5, but did cause an increase in pJAK3 and appeared to lead (trend) to reductions in levels of phosphorylated STAT5. V2O5 increased the expression of IL-2R, IL-15R, Fas, and FasL at concentrations above the 50-100 µM range. V2O5 had no effect on expression of the CD45 membrane phosphatase, but it did cause an increase in the expression of SOCS1. These results indicate that a key toxic effect of V2O5 on NK cells is a dysregulation of signaling pathways mediated by IL-2. These effects could help to explain the previously-reported deleterious effects on innate immune responses of hosts exposed to inhaled V2O5.

  13. Prostaglandin F(2alpha) receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-beta.

    PubMed

    Oga, Toru; Matsuoka, Toshiyuki; Yao, Chengcan; Nonomura, Kimiko; Kitaoka, Shiho; Sakata, Daiji; Kita, Yoshihiro; Tanizawa, Kiminobu; Taguchi, Yoshio; Chin, Kazuo; Mishima, Michiaki; Shimizu, Takao; Narumiya, Shuh

    2009-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix (ECM) proteins, which lead to distorted lung architecture and function. Given that anti-inflammatory or immunosuppressive therapy currently used for IPF does not improve disease progression therapies targeted to blocking the mechanisms of fibrogenesis are needed. Although transforming growth factor-beta (TGF-beta) functions are crucial in fibrosis, antagonizing this pathway in bleomycin-induced pulmonary fibrosis, an animal model of IPF, does not prevent fibrosis completely, indicating an additional pathway also has a key role in fibrogenesis. Given that the loss of cytosolic phospholipase A(2) (cPLA(2)) suppresses bleomycin-induced pulmonary fibrosis, we examined the roles of prostaglandins using mice lacking each prostoaglandin receptor. Here we show that loss of prostaglandin F (PGF) receptor (FP) selectively attenuates pulmonary fibrosis while maintaining similar levels of alveolar inflammation and TGF-beta stimulation as compared to wild-type (WT) mice, and that FP deficiency and inhibition of TGF-beta signaling additively decrease fibrosis. Furthermore, PGF(2alpha) is abundant in bronchoalveolar lavage fluid (BALF) of subjects with IPF and stimulates proliferation and collagen production of lung fibroblasts via FP, independently of TGF-beta. These findings show that PGF(2alpha)-FP signaling facilitates pulmonary fibrosis independently of TGF-beta and suggests this signaling pathway as a therapeutic target for IPF.

  14. Protection by N-acetylcysteine against pulmonary endothelial cell damage induced by oxidant injury.

    PubMed

    Sala, R; Moriggi, E; Corvasce, G; Morelli, D

    1993-03-01

    The protective effect of N-acetylcysteine (NAC) against oxidant lung injury was investigated in a model of acute immunological alveolitis in the rat. Intrapulmonary immune complex deposition into rat lungs, induced by intratracheal infusion of immunoglobulin G (IgG) anti-bovine serum albumin (BSA) antibodies and intravenous injection of the antigen, caused lung damage associated with a marked decrease in [14C]5-hydroxytryptamine ([14C]5HT) uptake capacity, taken as a biochemical marker of endothelial cell function. The oral administration of a single dose of NAC (2 mmol.kg-1) 60 min before antigen/antibody (Ag/Ab) treatment was effective in preventing pulmonary endothelial cell [14C]5HT uptake loss induced by immune complex deposition. The mechanisms involved in this lung protective action of NAC were investigated by studying the antioxidant activity of NAC on hypoxanthine/xanthine oxidase-induced lung damage in vitro, and the effectiveness of the drug as lung glutathione (reduced form) (GSH) precursor in diethylmaleate-depleted rats. The results obtained provide further evidence on the ability of NAC to reduce the susceptibility of lung tissue to free radical-induced damage, by potentiating the antioxidant defence systems.

  15. Evaluating the inhibitory potential of sulindac against the bleomycin-induced pulmonary fibrosis in wistar rats.

    PubMed

    Verma, Ramesh; Brahmankar, Mahesh; Kushwah, Lokendra; Suresh, Balakrishnan

    2013-11-01

    The present study examined the protective effect of sulindac on bleomycin-induced lung fibrosis in rats. Animals were divided into saline group, bleomycin group (single intra-tracheal instillation of bleomycin) and bleomycin+sulindac (orally from day 1 to day 20). Bleomycin administration reduced the body weight, altered antioxidant status (such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione) while it increased the lung weight, hydroxyproline content, collagen deposition and lipid peroxidation. However, simultaneous administration of sulindac improved the body weight, antioxidant status and decreased the collagen deposition in lungs. Moreover, the levels of inflammatory cytokine tumour necrosis factor-α increased in bleomycin-induced group, whereas, on treatment with sulindac the levels of tumour necrosis factor-α were found reduced. Finally, histological evidence also supported the ability of sulindac to inhibit bleomycin-induced lung fibrosis. The results of the present study indicate that sulindac can be used as an agent against bleomycin-induced pulmonary fibrosis.

  16. Il-17A contributes to maintenance of pulmonary homeostasis in a murine model of cigarette smoke-induced emphysema.

    PubMed

    Voss, Meike; Wolf, Lisa; Kamyschnikow, Andreas; Wonnenberg, Bodo; Honecker, Anja; Herr, Christian; Lepper, Philipp M; Wegmann, Michael; Menger, Michael D; Bals, Robert; Beisswenger, Christoph

    2015-07-15

    Smoking is the main risk factor for the development of the chronic obstructive pulmonary disease (COPD) in Western countries. Recent studies suggest that IL-17A and Th17 cells play a role in the pathogenesis of COPD. We used a murine model of chronic cigarette smoke (CS) exposure to explore the contribution of IL-17A to CS-induced lung damage and loss of pulmonary function. Histology and morphometry showed that IL-17A deficiency spontaneously resulted in a loss of lung structure under basal conditions. Even though inflammatory markers [IL-1β and granulocyte colony-stimulating factor (G-CSF)] were decreased in IL-17A-deficient mice (IL-17A(-/-)) exposed to CS compared with wild-type (WT) mice, IL-17A(-/-) mice were per se not protected from CS-induced emphysematous disease. Assessment of pulmonary function showed that IL-17A(-/-) mice were partially protected from CS-induced changes in total lung capacity. However, the respiratory elastance decreased and respiratory compliance increased in IL-17A(-/-) mice after exposure to CS. Morphometry revealed destruction of lung tissue in CS-exposed IL-17A(-/-) mice similar to WT mice. The expression of elastin was decreased in air-exposed IL-17A(-/-) mice and in CS-exposed WT and IL-17A(-/-) mice. Thus, in the present model of sterile CS-exposure, IL-17A contributes to normal lung homeostasis and does not mediate CS-induced loss of lung structure and pulmonary function.

  17. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats

    PubMed Central

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH. PMID:27748831

  18. Pulmonary hypertension secondary to left-heart failure involves peroxynitrite-induced downregulation of PTEN in the lung.

    PubMed

    Ravi, Yazhini; Selvendiran, Karuppaiyah; Naidu, Shan K; Meduru, Sarath; Citro, Lucas A; Bognár, Balázs; Khan, Mahmood; Kálai, Tamás; Hideg, Kálmán; Kuppusamy, Periannan; Sai-Sudhakar, Chittoor B

    2013-03-01

    Pulmonary hypertension (PH) that occurs after left-heart failure (LHF), classified as Group 2 PH, involves progressive pulmonary vascular remodeling induced by smooth muscle cell (SMC) proliferation. However, mechanisms involved in the activation of SMCs remain unknown. The objective of this study was to determine the involvement of peroxynitrite and phosphatase-and-tensin homolog on chromosome 10 (PTEN) in vascular SMC proliferation and remodeling in the LHF-induced PH (LHF-PH). LHF was induced by permanent ligation of left anterior descending coronary artery in rats for 4 weeks. MRI, ultrasound, and hemodynamic measurements were performed to confirm LHF and PH. Histopathology, Western blot, and real-time polymerase chain reaction analyses were used to identify key molecular signatures. Therapeutic intervention was demonstrated using an antiproliferative compound, HO-3867. LHF-PH was confirmed by significant elevation of pulmonary artery pressure (mean pulmonary artery pressure/mm Hg: 35.9±1.8 versus 14.8±2.0, control; P<0.001) and vascular remodeling. HO-3867 treatment decreased mean pulmonary artery pressure to 22.6±0.8 mm Hg (P<0.001). Substantially higher levels of peroxynitrite and significant loss of PTEN expression were observed in the lungs of LHF rats when compared with control. In vitro studies using human pulmonary artery SMCs implicated peroxynitrite-mediated downregulation of PTEN expression as a key mechanism of SMC proliferation. The results further established that HO-3867 attenuated LHF-PH by decreasing oxidative stress and increasing PTEN expression in the lung. In conclusion, peroxynitrite and peroxynitrite-mediated PTEN inactivation seem to be key mediators of lung microvascular remodeling associated with PH secondary to LHF.

  19. Expression of 150-kDa oxygen-regulated protein (ORP150) stimulates bleomycin-induced pulmonary fibrosis and dysfunction in mice.

    PubMed

    Tanaka, Ken-Ichiro; Shirai, Ayano; Ito, Yosuke; Namba, Takushi; Tahara, Kayoko; Yamakawa, Naoki; Mizushima, Tohru

    2012-09-07

    Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.

  20. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  1. High-density lipoproteins potentiate α1-antitrypsin therapy in elastase-induced pulmonary emphysema.

    PubMed

    Moreno, Juan-Antonio; Ortega-Gomez, Almudena; Rubio-Navarro, Alfonso; Louedec, Liliane; Ho-Tin-Noé, Benoit; Caligiuri, Giuseppina; Nicoletti, Antonino; Levoye, Angelique; Plantier, Laurent; Meilhac, Olivier

    2014-10-01

    Several studies report that high-density lipoproteins (HDLs) can carry α1-antitrypsin (AAT; an elastase inhibitor). We aimed to determine whether injection of exogenous HDL, enriched or not in AAT, may have protective effects against pulmonary emphysema. After tracheal instillation of saline or elastase, mice were randomly treated intravenously with saline, human plasma HDL (75 mg apolipoprotein A1/kg), HDL-AAT (75 mg apolipoprotein A1-3.75 mg AAT/kg), or AAT alone (3.75 mg/kg) at 2, 24, 48, and 72 hours. We have shown that HDL-AAT reached the lung and prevented the development of pulmonary emphysema by 59.3% at 3 weeks (alveoli mean chord length, 22.9 ± 2.8 μm versus 30.7 ± 4.5 μm; P < 0.001), whereas injection of HDL or AAT alone only showed a moderate, nonsignificant protective effect (28.2 ± 4.2 μm versus 30.7 ± 5 μm [P = 0.23] and 27.3 ± 5.66 μm versus 30.71 ± 4.96 μm [P = 0.18], respectively). Indeed, protection by HDL-AAT was significantly higher than that observed with HDL or AAT (P = 0.006 and P = 0.048, respectively). This protective effect was associated (at 6, 24, and 72 h) with: (1) a reduction in neutrophil and macrophage number in the bronchoalveolar lavage fluid; (2) decreased concentrations of IL-6, monocyte chemoattractant protein-1, and TNF-α in both bronchoalveolar lavage fluid and plasma; (3) a reduction in matrix metalloproteinase-2 and matrix metalloproteinase-9 activities; and (4) a reduction in the degradation of fibronectin, a marker of tissue damage. In addition, HDL-AAT reduced acute cigarette smoke-induced inflammatory response. Intravenous HDL-AAT treatment afforded a better protection against elastase-induced pulmonary emphysema than AAT alone, and may represent a significant development for the management of emphysema associated with AAT deficiency.

  2. Role of LTB₄ in the pathogenesis of elastase-induced murine pulmonary emphysema.

    PubMed

    Shim, Y Michael; Paige, Mikell; Hanna, Halim; Kim, Su H; Burdick, Marie D; Strieter, Robert M

    2010-12-01

    Exaggerated levels of the leukotriene B₄ (LTB₄) frequently coexist at sites of inflammation and tissue remodeling. Therefore, we hypothesize that the LTB₄ pathway plays an important role in the pathogenesis of neutrophilic inflammation that contributes to pulmonary emphysema. In this study, significant levels of LTB₄ were detected in human lung tissues with emphysema compared with lungs without emphysema (9,497 ± 2,839 vs. 4,142 ± 1,173 pg/ml, n = 9 vs. 10, P = 0.04). To further determine the biological role of LTB₄ in the pathogenesis of emphysema, we compared the lungs of wild-type (WT) and LTA₄ hydrolase-/- mice (LTB₄ deficient, LTA₄H-/-) exposed to intranasal elastase or vehicle control. We found that intranasal elastase induced accumulation of LTB₄ in the lungs and caused progressively worsening emphysema between 14 and 28 days after elastase exposure in WT mice but not in LTA₄H-/- mice. Premortem physiology documented increased lung compliance in elastase-exposed WT mice compared with elastase-exposed LTA₄H-/- mice as measured by Flexivent (0.058 ± 0.005 vs. 0.041 ± 0.002 ml/cmH₂O pressure). Postmortem morphometry documented increased total lung volume and alveolar sizes in elastase-exposed WT mice compared with elastase-exposed LTA₄H-/- mice as measured by volume displacement and alveolar chord length assessment. Furthermore, elastase-exposed LTA₄H-/- mice were found to have significantly delayed influx of the CD45(high)CD11b(high)Ly6G(high) leukocytes compatible with neutrophils compared with elastase-exposed WT mice. Mechanistic insights to these phenotypes were provided by demonstrating protection from elastase-induced murine emphysema with neutrophil depletion in the elastase-exposed WT mice and by demonstrating time-dependent modulation of cysteinyl leukotriene biosynthesis in the elastase-exposed LTA₄H-/- mice compared with elastase-exposed WT mice. Together, these findings demonstrated that LTB₄ played an important

  3. Amplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis

    PubMed Central

    Tatler, Amanda L.; Goodwin, Amanda T.; Gbolahan, Olumide; Saini, Gauri; Porte, Joanne; John, Alison E.; Clifford, Rachel L.; Violette, Shelia M.; Weinreb, Paul H.; Parfrey, Helen; Wolters, Paul J.; Gauldie, Jack; Kolb, Martin; Jenkins, Gisli

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvβ6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFβ1 can upregulate αvβ6 integrin expression but the molecular mechanisms driving this effect have not previously been elucidated. We confirm that stimulation with exogenous TGFβ1 increases expression of the integrin β6 subunit gene (ITGB6) and αvβ6 integrin cell surface expression in a time- and concentration-dependent manner. TGFβ1-induced ITGB6 expression occurs via transcriptional activation of the ITGB6 gene, but does not result from effects on ITGB6 mRNA stability. Basal expression of ITGB6 in, and αvβ6 integrins on, lung epithelial cells occurs via homeostatic αvβ6-mediated TGFβ1 activation in the absence of exogenous stimulation, and can be amplified by TGFβ1 activation. Fundamentally, we show for the first time that TGFβ1-induced ITGB6 expression occurs via canonical Smad signalling since dominant negative constructs directed against Smad3 and 4 inhibit ITGB6 transcriptional activity. Furthermore, disruption of a Smad binding site at -798 in the ITGB6 promoter abolishes TGFβ1-induced ITGB6 transcriptional activity. Using chromatin immunoprecipitation we demonstrate that TGFβ1 stimulation of lung epithelial cells results in direct binding of Smad3, and Smad4, to the ITGB6 gene promoter within this region. Finally, using an adenoviral TGFβ1 over-expression model of pulmonary fibrosis we demonstrate that Smad3 is crucial for TGFβ1-induced αvβ6 integrin expression within the alveolar epithelium in vivo. Together, these data confirm that a homeostatic, autocrine loop of αvβ6 integrin activated TGFβ1-induced ITGB6 gene expression regulates epithelial basal αvβ6 integrin expression, and demonstrates that this occurs via Smad

  4. Stress-induced cardiomyopathy associated with ipratropium bromide therapy in a patient with chronic obstructive pulmonary disease.

    PubMed

    Melão, Filipa; Nunes, José P L; Vasconcelos, Mariana; Dias, Paula; Almeida, Pedro B; Rodrigues, Rui; Pinho, Teresa; Madureira, António; Maciel, Maria J

    2014-03-01

    Stress-induced cardiomyopathy, also known as 'broken heart syndrome' or Takotsubo cardiomyopathy, is characterized by transient systolic dysfunction of the apical and/or mid segments of the left ventricle, in the absence of significant coronary artery disease. We report the case of a 56-year-old male patient with chronic obstructive pulmonary disease (COPD), with stress-induced cardiomyopathy associated with the use of ipratropium bromide, administered in the context of an acute exacerbation of COPD.

  5. Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition

    PubMed Central

    Zhou, Yan; He, Zhong; Gao, Yuan; Zheng, Rui; Zhang, Xiaoye; Zhao, Li; Tan, Mingqi

    2016-01-01

    Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS) cells have been considered as an ideal resource for stem cell-based therapy. Although, an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF)-β1 signaling pathway, and epithelial to mesenchymal transition (EMT) during bleomycin (BLM)-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg) was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free) were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2) to its tissue inhibitor -2 (TIMP-2) and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3) and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM) profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse alveolar

  6. The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension

    PubMed Central

    Ooi, Chen Yen; Wang, Zhijie; Tabima, Diana M.; Eickhoff, Jens C.

    2010-01-01

    Hypoxic pulmonary hypertension (HPH) causes extralobar pulmonary artery (PA) stiffening, which potentially impairs right ventricular systolic function. Changes in the extracellular matrix proteins collagen and elastin have been suggested to contribute to this arterial stiffening. We hypothesized that vascular collagen accumulation is a major cause of extralobar PA stiffening in HPH and tested our hypothesis with transgenic mice that synthesize collagen type I resistant to collagenase degradation (Col1a1R/R). These mice and littermate controls that have normal collagen degradation (Col1a1+/+) were exposed to hypoxia for 10 days; some were allowed to recover for 32 days. In vivo PA pressure and isolated PA mechanical properties and collagen and elastin content were measured for all groups. Vasoactive studies were also performed with U-46619, Y-27632, or calcium- and magnesium-free medium. Pulmonary hypertension occurred in both mouse strains due to chronic hypoxia and resolved with recovery. HPH caused significant PA mechanical changes in both mouse strains: circumferential stretch decreased, and mid-to-high-strain circumferential elastic modulus increased (P < 0.05 for both). Impaired collagen type I degradation prevented a return to baseline mechanical properties with recovery and, in fact, led to an increase in the low and mid-to-high-strain moduli compared with hypoxia (P < 0.05 for both). Significant changes in collagen content were found, which tended to follow changes in mid-to-high-strain elastic modulus. No significant changes in elastin content or vasoactivity were observed. Our results demonstrate that collagen content is important to extralobar PA stiffening caused by chronic hypoxia. PMID:20852040

  7. Resveratrol prevents hypoxia-induced arginase II expression and proliferation of human pulmonary artery smooth muscle cells via Akt-dependent signaling.

    PubMed

    Chen, Bernadette; Xue, Jianjing; Meng, Xiaomei; Slutzky, Jessica L; Calvert, Andrea E; Chicoine, Louis G

    2014-08-15

    Pulmonary artery smooth muscle cell (PASMC) proliferation plays a fundamental role in the vascular remodeling seen in pulmonary hypertensive diseases associated with hypoxia. Arginase II, an enzyme regulating the first step in polyamine and proline synthesis, has been shown to play a critical role in hypoxia-induced proliferation of human PASMC (hPASMC). In addition, there is evidence that patients with pulmonary hypertension have elevated levels of arginase in the vascular wall. Resveratrol, a natural polyphenol found in red wine and grape skins, has diverse biochemical and physiological actions including antiproliferative properties. Furthermore, resveratrol has been shown to attenuate right ventricular and pulmonary artery remodeling, both pathological components of pulmonary hypertension. The present studies tested the hypothesis that resveratrol would prevent hypoxia-induced pulmonary artery smooth muscle cell proliferation by inhibiting hypoxia-induced arginase II expression. Our data indicate that hypoxia-induced hPASMC proliferation is abrogated following treatment with resveratrol. In addition, the hypoxic induction of arginase II was directly attenuated by resveratrol treatment. Furthermore, we found that the inhibitory effect of resveratrol on arginase II in hPASMC was mediated through the PI3K-Akt signaling pathway. Supporting these in vitro findings, resveratrol normalized right ventricular hypertrophy in an in vivo neonatal rat model of chronic hypoxia-induced pulmonary hypertension. These novel data support the notion that resveratrol may be a potential therapeutic agent in pulmonary hypertension by preventing PASMC arginase II induction and proliferation.

  8. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function.

    PubMed

    van der Vlugt, L E; Obieglo, K; Ozir-Fazalalikhan, A; Sparwasser, T; Haeberlein, S; Smits, H H

    2017-04-04

    Chronic schistosome infections protect against allergic airway inflammation (AAI) via the induction of IL-10-producing splenic regulatory B (Breg) cells. Previous experiments have demonstrated that schistosome-induced pulmonary B cells can also reduce AAI, but act independently of IL-10. We have now further characterized the phenotype and inhibitory activity of these protective pulmonary B cells. We excluded a role for regulatory T (Treg) cell induction as putative AAI-protective mechanisms. Schistosome-induced B cells showed increased CD86 expression and reduced cytokine expression in response to Toll-like receptor (TLR) ligands compared with control B cells. To investigate the consequences for T cell activation we cultured ovalbumin (OVA)-pulsed, schistosome-induced B cells with OVA-specific transgenic T cells and observed less Th2 cytokine expression and T cell proliferation compared with control conditions. This suppressive effect was preserved even under optimal T cell stimulation by anti-CD3/28. Blocking of the inhibitory cytokines IL-10 or TGF-β only marginally restored Th2 cytokine induction. These data suggest that schistosome-induced pulmonary B cells are impaired in their capacity to produce cytokines to TLR ligands and to induce Th2 cytokine responses independent of their antigen-presenting function. These findings underline the presence of distinct B cell subsets with different stimulatory or inhibitory properties even if induced by the same type of helminth.

  9. Depletion of Alveolar Macrophages Ameliorates Virus-Induced Disease following a Pulmonary Coronavirus Infection

    PubMed Central

    Hartwig, Stacey M.; Holman, Kaitlyn M.; Varga, Steven M.

    2014-01-01

    Coronaviruses cause respiratory disease in humans that can range from mild to severe. However, the pathogenesis of pulmonary coronavirus infections is poorly understood. Mouse hepatitis virus type 1 (MHV-1) is a group 2 coronavirus capable of causing severe morbidity and mortality in highly susceptible C3H/HeJ mice. We have previously shown that both CD4 and CD8 T cells play a critical role in mediating MHV-1-induced disease. Here we evaluated the role of alveolar macrophages (AM) in modulating the adaptive immune response and subsequent disease. Depletion of AM using clodronate liposomes administered prior to MHV-1 infection was associated with a significant amelioration of MHV-1-induced morbidity and mortality. AM depletion resulted in a decreased number of virus-specific CD4 T cells in the lung airways. In addition, a significant increase in the frequency and total number of Tregs in the lung tissue and lung airways was observed following MHV-1 infection in mice depleted of AM. Our results indicate that AM play a critical role in modulating MHV-1-induced morbidity and mortality. PMID:24608125

  10. A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema

    PubMed Central

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chua, Beng Hooi; Alonso, Sylvie; Chow, Vincent T. K.; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)—the main cause of EV-A71 infection-related mortality—is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications. PMID:27357918

  11. Cigarette Smoke-Induced Pulmonary Inflammation and Autophagy Are Attenuated in Ephx2-Deficient Mice.

    PubMed

    Li, Yunxiao; Yu, Ganggang; Yuan, Shaopeng; Tan, Chunting; Lian, Puqiao; Fu, Lixia; Hou, Qi; Xu, Bo; Wang, Haoyan

    2016-12-27

    Cigarette smoke (CS) increases the risk of chronic obstructive pulmonary disease (COPD) by causing inflammation, emphysema, and reduced lung function. Additionally, CS can induce autophagy which contributes to COPD. Arachidonic acid-derived epoxyeicosatrienoic acids (EETs) have promising anti-inflammatory properties that may protect the heart and liver by regulating autophagy. For this reason, the effect of decreased soluble epoxide hydrolase (sEH, Ephx2)-mediated EET hydrolysis on inflammation, emphysema, lung function, and autophagy was here studied in CS-induced COPD in vivo. Adult male wild-type (WT) C57BL/6J and Ephx2(-/-) mice were exposed to air or CS for 12 weeks, and lung inflammatory responses, air space enlargement (emphysema), lung function, and autophagy were assessed. Lungs of Ephx2(-/-) mice had a less pronounced inflammatory response and less autophagy with mild distal airspace enlargement accompanied by restored lung function and steady weight gain. These findings support the idea that Ephx2 may hold promise as a therapeutic target for COPD induced by CS, and it may be protective property by inhibiting autophagy.

  12. Pulmonary fibrosis in a mouse model of sarcoid granulomatosis induced by booster challenge with Propionibacterium acnes

    PubMed Central

    Jiang, Dingyuan; Huang, Xiaoxi; Geng, Jing; Dong, Run; Li, Shuhong; Liu, Zheng; Wang, Chen; Dai, Huaping

    2016-01-01

    Pulmonary fibrosis (PF) associated with chronic sarcoidosis remains poorly understood, and no experimental model is currently available for this condition. Previous studies have shown that Propionibacterium acnes (PA) was associated with sarcoidosis and induced granuloma formation in mice. Here, we investigated whether repeated challenge with PA induces persistent inflammation leading to sarcoidosis followed by PF in mice. Specifically, C57BL/6 mice were inoculated intraperitoneally and subjected to intratracheal challenge with PA, and then were booster-challenged with either PA or phosphate-buffered saline on day 28. Inflammation, granulomata, and features of fibrosis were evaluated every 7 days until day 70. Complete remission of lung granulomata was apparent on day 42 in the sarcoid-remission group. However, granulomata was present from days 21 to 70 in mice that received PA boosting. Inflammatory cell counts and Th1 cytokine levels in lung lavage fluids were elevated up to day 70. Furthermore, fibrotic changes in the lungs were observed around granulomatous and peribronchovascular regions after PA boosting. Taken together, these findings suggest that development of PF following sarcoidosis may result from continuous PA infection and inflammation. Repeated boosting with PA to induce PF might be a useful model for future studies of sarcoidosis-associated PF. PMID:27203210

  13. Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust.

    PubMed

    Määttä, Juha; Lehto, Maili; Leino, Marina; Tillander, Sari; Haapakoski, Rita; Majuri, Marja-Leena; Wolff, Henrik; Rautio, Sari; Welling, Irma; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai; Alenius, Harri

    2006-09-01

    Repeated airway exposure to wood dust has long been known to cause adverse respiratory effects such as asthma and chronic bronchitis and impairment of lung function. However, the mechanisms underlying the inflammatory responses of the airways after wood dust exposure are poorly known. We used a mouse model to elucidate the mechanisms of particle-induced inflammatory responses to fine wood dust particles. BALB/c mice were exposed to intranasally administered fine (more than 99% of the particles had a particle size of < or = 5 microm, with virtually identical size distribution) birch or oak dusts twice a week for 3 weeks. PBS, LPS, and titanium dioxide were used as controls. Intranasal instillation of birch or oak dusts elicited influx of inflammatory cells to the lungs in mice. Enhancement of lymphocytes and neutrophils was seen after oak dust exposure, whereas eosinophil infiltration was higher after birch dust exposure. Infiltration of inflammatory cells was associated with an increase in the mRNA levels of several cytokines, chemokines, and chemokine receptors in lung tissue. Oak dust appeared to be a more potent inducer of these inflammatory mediators than birch dust. The results from our in vivo mouse model show that repeated airway exposure to wood dust can elicit lung inflammation, which is accompanied by induction of several proinflammatory cytokines and chemokines. Oak and birch dusts exhibited quantitative and qualitative differences in the elicitation of pulmonary inflammation, suggesting that the inflammatory responses induced by the wood species may rise via different cellular mechanisms.

  14. Long-term treatment with royal jelly improves bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zargar, Hamid Reza; Hemmati, Ali Asghar; Ghafourian, Mehri; Arzi, Ardeshir; Rezaie, Anahita; Javad-Moosavi, Seyed Ali

    2017-01-01

    This study investigated the anti-fibrotic potential of royal jelly (RJ) powder against bleomycin-induced pulmonary fibrosis in rats. The rats were given RJ orally (25, 50, and 100 mg/kg per day) for 7 consecutive days before the administration of single intratracheal instillation of bleomycin (BLM) at 7.5 IU/kg. RJ doses were continued for 21 days after BLM exposure. Fibrotic changes in the lungs were studied by cell count and analysis of cytokine levels in the bronchoalveolar lavage fluid (BALF), histopathological examination, and assaying oxidative stress biomarkers in lung tissue. The results showed that BLM administration significantly increased the fibrotic changes, collagen content, and levels of malondialdehyde and decreased total thiol and glutathione peroxidase antioxidant contents in the rats' lung tissue. An increase in the level of cell counts and pro-inflammatory and pro-fibrotic cytokines such as TNF-α and TGF-β in BALF was observed. Also, it significantly decreased IFN-γ, an anti-fibrotic cytokine, in BALF. However, RJ (50 and 100 mg/kg) reversed all of these biochemical indices as well as histopathological alterations induced by BLM. The present study demonstrates that RJ, by its antioxidant and anti-inflammatory properties, attenuates oxidative damage and fibrosis induced by BLM.

  15. A case study of bofutsushosan-induced pulmonary injury in a patient: Case report

    PubMed Central

    Miyazaki, Kunihiko; Satoh, Hiroaki; Watanabe, Hiroko; Shiozawa, Toshihiro; Tamura, Tomohiro; Kawaguchi, Mio; Hizawa, Nobuyuki

    2016-01-01

    Bofutsushosan, a herbal (traditional Kampo) medicine, is administered to obese patients in North-East Asia. Bofutsushosan has been reported to exert various anti-obesity effects by stimulating the adipose tissue. The present study describes the case of a patient who developed a severe pulmonary injury that was potentially associated with bofutsushosan therapy. A 52-year-old woman was admitted to Mito Medical Center, University of Tsukuba, Mito Kyodo General Hospital (Mito, Japan) due to progressive dyspnea. Two months previously, bofutsushosan had been newly prescribed for her obesity. Bilateral ground-glass opacities and progressive respiratory deterioration suggested respiratory failure due to a therapeutic agent-induced lung injury. With discontinuation of bofutsushosan and the administration of a corticosteroid, an improvement in her respiratory condition was achieved, although sequelae remained in certain areas of the lungs. Resumption of other therapeutic agents did not reinduce the lung injury. Therefore, a diagnosis of bofutsushosan-induced lung injury was made. Although bofutsushosan-induced lung injury is particularly rare, clinicians should consider it when bofutsushosan is used. PMID:28101346

  16. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice.

    PubMed

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-02-14

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.

  17. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.

    PubMed

    Huang, Xiaoying; Zou, Lizhen; Yu, Xiaoming; Chen, Mayun; Guo, Rui; Cai, Hui; Yao, Dan; Xu, Xiaomei; Chen, Yanfan; Ding, Cheng; Cai, Xueding; Wang, Liangxing

    2015-05-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway.

  18. Delivery of imatinib-incorporated nanoparticles into lungs suppresses the development of monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Akagi, Satoshi; Nakamura, Kazufumi; Miura, Daiji; Saito, Yukihiro; Matsubara, Hiromi; Ogawa, Aiko; Matoba, Tetsuya; Egashira, Kensuke; Ito, Hiroshi

    2015-05-13

    Platelet-derived growth factor (PDGF) is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). Imatinib, a PDGF-receptor tyrosine kinase inhibitor, improved hemodynamics, but serious side effects and drug discontinuation are common when treating PAH. A drug delivery system using nanoparticles (NPs) enables the reduction of side effects while maintaining the effects of the drug. We examined the efficacy of imatinib-incorporated NPs (Ima-NPs) in a rat model and in human PAH-pulmonary arterial smooth muscle cells (PASMCs). Rats received a single intratracheal administration of PBS, FITC-NPs, or Ima-NPs immediately after monocrotaline injection. Three weeks after monocrotaline injection, intratracheal administration of Ima-NPs suppressed the development of pulmonary hypertension, small pulmonary artery remodeling, and right ventricular hypertrophy in the rat model of monocrotaline-induced PAH. We also examined the effects of imatinib and Ima-NPs on PDGF-induced proliferation of human PAH-PASMCs by (3)H-thymidine incorporation. Imatinib and Ima-NPs significantly inhibited proliferation after 24 hours of treatment. Ima-NPs significantly inhibited proliferation compared with imatinib at 24 hours after removal of these drugs. Delivery of Ima-NPs into lungs suppressed the development of MCT-induced PAH by sustained antiproliferative effects on PAS-MCs.

  19. A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice

    PubMed Central

    Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo

    2017-01-01

    Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579

  20. Protective effect of Launaea procumbens (L.) on lungs against CCl4-induced pulmonary damages in rat

    PubMed Central

    2012-01-01

    Background Launaea procumbens (L.) is traditionally used in the treatment of various human ailments including pulmonary damages. The present study was arranged to evaluate the role of Launaea procumbens methanol extract (LME) against carbon tetrachloride (CCl4) induced oxidative pulmonary damages in rat. Methods 36 Sprague–Dawley male rats (170-180 g) were randomly divided into 06 groups. After a week of acclamization, group I was remained untreated while group II was given olive oil intraperitoneally (i.p.) and dimethyl sulfoxide (DMSO) orally, groups III, IV, V and VI were administered CCl4, 3 ml/kg body weight (30% in olive oil i.p.). Groups IV, V were treated with 100 mg/kg, 200 mg/kg of LME whereas group VI was administered with 50 mg/kg body weight of rutin (RT) after 48 h of CCl4 treatment for four weeks. Antioxidant profile in lungs were evaluated by estimating the activities of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), quinone reductase (QR) and reduced glutathione (GSH). CCl4-induced lipid peroxidation was determined by measuring the level of thiobarbituric acid reactive substances (TBARS) with conjugation of deoxyribonucleic acid (DNA) damages, argyrophilic nucleolar organizer regions (AgNORs) counts and histopathology. Results Administration of CCl4 for 6 weeks significantly (p < 0.01) reduced the activities of antioxidant enzymes and GSH concentration while increased TBARS contents and DNA damages in lung samples. Co-treatment of LME and rutin restored the activities of antioxidant enzymes and GSH contents. Changes in TBARS concentration and DNA fragmentation were significantly (p < 0.01) decreased with the treatment of LME and rutin in lung. Changes induced with CCl4 in histopathology of lungs were significantly reduced with co-treatment of LME and rutin. Conclusion Results of present study

  1. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10

    PubMed Central

    Nickols, Jordan; Obiako, Boniface; Ramila, K. C.; Putinta, Kevin; Schilling, Sarah

    2015-01-01

    Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. PMID:26475732

  2. Intratracheally administered titanium dioxide or carbon black nanoparticles do not aggravate elastase-induced pulmonary emphysema in rats

    PubMed Central

    2012-01-01

    Background Titanium dioxide (TiO2) and carbon black (CB) nanoparticles (NPs) have biological effects that could aggravate pulmonary emphysema. The aim of this study was to evaluate whether pulmonary administration of TiO2 or CB NPs in rats could induce and/or aggravate elastase-induced emphysema, and to investigate the underlying molecular mechanisms. Methods On day 1, Sprague-Dawley rats were intratracheally instilled with 25 U kg−1 pancreatic porcine elastase or saline. On day 7, they received an intratracheal instillation of TiO2 or CB (at 100 and 500 μg) dispersed in bovine serum albumin or bovine serum albumin alone. Animals were sacrificed at days 8 or 21, and bronchoalveolar lavage (BAL) cellularity, histological analysis of inflammation and emphysema, and lung mRNA expression of heme oxygenase-1 (HO-1), interleukin-1β (IL-1β), macrophage inflammatory protein-2, monocyte chemotactic protein-1, and matrix metalloprotease (MMP)-1, and -12 were measured. In addition, pulmonary MMP-12 expression was also analyzed at the protein level by immunohistochemistry. Results TiO2 NPs per se did not modify the parameters investigated, but CB NPs increased perivascular/peribronchial infiltration, and macrophage MMP-12 expression, without inducing emphysema. Elastase administration increased BAL cellularity, histological inflammation, HO-1, IL-1β and macrophage MMP-12 expression and induced emphysema. Exposure to TiO2 NPs did not modify pulmonary responses to elastase, but exposure to CB NPs aggravated elastase-induced histological inflammation without aggravating emphysema. Conclusions TiO2 and CB NPs did not aggravate elastase-induced emphysema. However, CB NPs induced histological inflammation and MMP-12 mRNA and protein expression in macrophages. PMID:22849372

  3. Epigenetic Regulation of Interleukin 6 by Histone Acetylation in Macrophages and Its Role in Paraquat-Induced Pulmonary Fibrosis

    PubMed Central

    Hu, Lingli; Yu, Yanfang; Huang, Huijie; Fan, Hanting; Hu, Li; Yin, Caiyong; Li, Kai; Fulton, David J. R.; Chen, Feng

    2017-01-01

    Overexpression of interleukin 6 (IL-6) has been proposed to contribute to pulmonary fibrosis and other fibrotic diseases. However, the regulatory mechanisms and the role of IL-6 in fibrosis remain poorly understood. Epigenetics refers to alterations of gene expression without changes in the DNA sequence. Alternation of chromatin accessibility by histone acetylation acts as a critical epigenetic mechanism to regulate various gene transcriptions. The goal of this study was to determine the impact of IL-6 in paraquat (PQ)-induced pulmonary fibrosis and to explore whether the epigenetic regulations may play a role in transcriptional regulation of IL-6. In PQ-treated lungs and macrophages, we found that the mRNA and protein expression of IL-6 was robustly increased in a time-dependent and a dose-dependent manner. Our data demonstrated that PQ-induced IL-6 expression in macrophages plays a central role in pulmonary fibrosis through enhanced epithelial-to-mesenchymal transition (EMT). IL-6 expression and its role to enhance PQ-induced pulmonary fibrosis were increased by histone deacetylase (HDAC) inhibition and prevented by histone acetyltransferase (HAT) inhibition. In addition, the ability of CRISPR-ON transcription activation system (CRISPR-ON) to promote transcription of IL-6 was enhanced by HDAC inhibitor and blocked by HAT inhibitor. Chromatin immunoprecipitation experiments revealed that HDAC inhibitor increased histones activation marks H3K4me3 and H3K9ac at IL-6 promoter regions. In conclusion, IL-6 functioning through EMT in PQ-induced pulmonary fibrosis was regulated dynamically by HDAC and HAT both in vitro and in vivo via epigenetically regulating chromatin accessibility. PMID:28194150

  4. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  5. Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis

    PubMed Central

    Ingram, Jennifer L; Antao-Menezes, Aurita; Turpin, Elizabeth A; Wallace, Duncan G; Mangum, James B; Pluta, Linda J; Thomas, Russell S; Bonner, James C

    2007-01-01

    Background Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis. Methods Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR. Results V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1). Conclusion Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5. PMID:17459161

  6. Activation of AMPK inhibits PDGF-induced pulmonary arterial smooth muscle cells proliferation and its potential mechanisms.

    PubMed

    Song, Yang; Wu, Yuanyuan; Su, Xiaofan; Zhu, Yanting; Liu, Lu; Pan, Yilin; Zhu, Bo; Yang, Lan; Gao, Li; Li, Manxiang

    2016-05-01

    The aims of the present study were to examine signaling mechanisms for PDGF-induced pulmonary arterial smooth muscle cells (PASMC) proliferation and to determine the effect of AMPK activation on PDGF-induced PASMC proliferation and its underlying mechanisms. PDGF activated PI3K/Akt/mTOR signaling pathway, and this in turn up-regulated Skp2 and consequently reduced p27 leading to PASMC proliferation. Prior incubation of PASMC with metformin induced a dramatic AMPK activation and significantly blocked PDGF-induced cell proliferation. PASMC lacking AMPKα2 were resistant to the inhibitory effect of metformin on PDGF-induced cell proliferation. Metformin did not affect Akt activation but blocked mTOR phosphorylation in response to PDGF; these were accompanied by the reversion of Skp2 up-regulation and p27 reduction. Our study suggests that the activation of AMPK negatively regulates mTOR activity to suppress PASMC proliferation and therefore has a potential value in the prevention and treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.

  7. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Vyalov, S. L.; Gabbiani, G.; Kapanci, Y.

    1993-01-01

    The majority of fibroblasts in alveolar septa are characterized by the presence of cytoplasmic bundles of microfilaments that contain cytoplasmic actin isoforms; these cells have been named contractile interstitial cells or V-type myofibroblasts. In the rat, they express desmin as intermediate filament protein. In this study, we explored the possibility that modulation and replication of such septal fibroblasts result in the appearance of alpha-smooth muscle (alpha-SM) actin-positive myofibroblasts, typical of lung fibrosis. Experimental pulmonary fibrosis was produced by a unique intratracheal instillation of bleomycin to 28 rats. Eight additional rats used as controls received the equivalent volume of saline. Paraffin and frozen sections of lungs were examined at days 1, 3, 5 and 7 after treatment. Microfilaments and intermediate filaments were stained using antibodies against total actin, alpha-SM actin, desmin, vimentin, keratin, and SM myosin. Electron microscopic labeling of desmin and alpha-SM actin using immunogold technique was done on Lowicryl K4M resin-embedded specimens. alpha-SM actin appeared in desmin-positive alveolar fibroblasts as early as 24 hours after intratracheal bleomycin instillation; the modulation of alpha-SM actin in these cells was preceded by a lymphomonocytic infiltration of alveolar septa. Twenty-four hours to 3 days after bleomycin administration, a proliferation of alveolar myofibroblasts occurred. Fibrosis with laying down of collagen fibers took place after the above mentioned cellular modifications. Our results support the view that septal fibroblastic cells can modulate into typical alpha-SM actin-containing myofibroblasts during experimental bleomycin-induced pulmonary fibrosis. In such a modulation a possible role of cytokines, particularly of transforming growth factor-beta, is considered. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14

  8. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    SciTech Connect

    Wang, Jingbo; Cao, Jianzhong; Yuan, Shuanghu; Arenberg, Douglas; Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K.; Kong, Feng-Ming

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  9. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    PubMed

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  10. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS) on pulmonary inflammation induced by bleomycin

    PubMed Central

    Santos, Laisa A.; Silva, Carlos A.; Polacow, Maria L. O.

    2013-01-01

    Background Bleomycin (B) is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. Objective The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS). Method Wistar rats were divided into 4 groups (n=5): a control group (C); a stimulated group (TEDS); a group treated with a single dose of B (intratracheally, 2.5 mg/kg) (B); and a group treated with B and electric stimulation (B + TEDS). After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE) and 8-isoprostane-PGF2α (8-iso-PGF2α). The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p≤0.05). Results The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. Conclusion B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage. PMID:24346295

  11. Involvement of water channel Aquaporin 5 in H2S-induced pulmonary edema.

    PubMed

    Xu, Chunyang; Jiang, Lei; Zou, Yuxia; Xing, Jingjing; Sun, Hao; Zhu, Baoli; Zhang, Hengdong; Wang, Jun; Zhang, Jinsong

    2017-01-01

    Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases.

  12. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis

    PubMed Central

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-01-01

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses. PMID:25906080

  13. Organic dust induced pulmonary disease - the role of mould derived beta-glucan.

    PubMed

    Rylander, Ragnar

    2010-01-01

    The objective of the study was to evaluate the role of the mould cell wall agent beta-glucan in environmentally related pulmonary disease. All published articles where beta-glucan was administered by the airways, either as intratracheal injection or as inhalation were utilised as data sources. Data reporting consisted of analysis of data reports concerning the effects of beta-glucan on the immune system on the cellular level, particularly on the aggregation of inflammatory cells or production of inflammatory cytokines. High doses of soluble and particulate beta-glucan cause an inflammatory response characterized by cytokine activation and neutrophil invasion in the lung tissue. At lower doses, closer to environmental exposure levels, the predominant effect is an influence on the response to antigens, the reactivity of eosinophils and other Th2 driven immune responses. It is concluded that, beta-glucan can induce Th1 as well asTh2 driven immune responses. The pathology of atopy/allergy, hypersensitivity pneumonitis, and toxic penumonitis might be induced by exposure to beta-glucan. Measurements of beta-glucan in different environments are useful for risk control and prevention.

  14. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis.

    PubMed

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-04-03

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses.

  15. Assessment of pulmonary mechanics and breathing patterns during posturally induced glossoptosis in infants.

    PubMed Central

    Cozzi, F; Bonanni, M; Cozzi, D A; Orfei, P; Piacenti, S

    1996-01-01

    Respiratory mechanics were studied in nine infants with glossoptosis-apnoea syndrome to determine whether glossoptosis may account for signs of both inspiratory and expiratory airway obstruction. Airflow, oesophageal pressure, inspiratory and expiratory time (Ti and Te), and inspiratory and expiratory resistance (Ri and Re) were measured before and during ventilatory phases characterised by glossoptotic pharyngeal obstruction, induced by turning the infants onto their backs. In addition, an attempt was made to correlate the abnormalities in pulmonary mechanics with the clinical features. During partial glossoptotic pharyngeal obstruction, a significant increase was observed in Te and Re and variable changes in Ti and Ri. During severe obstruction, the infants displayed obstructed inspiratory efforts often associated with stridor, as well as obstructed expiratory efforts often associated with audible grunting and retarded expiratory flow pattern. The expiratory grunt was loudest over the neck and mimicked bronchospasm over the chest. These findings indicate that glossoptotic pharyngeal obstruction induces functional airway obstruction which may affect both inspiration and expiration. Expiratory airway obstruction seems, at least in part, to be due to active braking of expiratory flow. PMID:8758127

  16. Bone marrow mesenchymal stem cells attenuate silica-induced pulmonary fibrosis via paracrine mechanisms.

    PubMed

    Li, Xiaoli; Wang, Yan; An, Guoliang; Liang, Di; Zhu, Zhonghui; Lian, Ximeng; Niu, Piye; Guo, Caixia; Tian, Lin

    2017-03-15

    The purpose of this study was to investigate the anti-fibrotic effect and possible mechanism of bone marrow mesenchymal stem cells (BMSCs) in silica-induced lung injury and fibrosis in vivo and in vitro. In vivo, rats were exposed to 50mg/ml silica intratracheally. The rats were sacrificed on day 15 or day 30 after intravenous injection of BMSCs. Histopathological examination demonstrated that BMSCs decreased the blue areas of collagen fibers and the number of nodules. Alveolar epithelium was damaged by silica, but it was restored by BMSCs. In vitro, BMSCs co-cultured with RLE-6TN cells in 6-Transwell plates were evaluated to determine the possible mechanism. The results demonstrated that BMSCs downregulated the expression of collagen I and III. BMSCs reversed morphological abnormalities and reduced the proliferation of RLE-6TN cells. These data showed that BMSCs did not give rise to alveolar epithelial cells directly, while the levels of hepatocyte growth factor, keratinocyte growth factor and bone morphogenetic protein -7 increased and expression of tumor necrosis factor-α and transforming growth factor-β1 decreased in the 6TN+Silica+BMSCs group compared with the 6TN+Silica group. Our results revealed that BMSCs exerted anti-fibrotic effects on silica-induced pulmonary fibrosis, which might be associated with paracrine mechanisms rather than differentiation.

  17. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo

    PubMed Central

    Huang, Tsung-Teng; Lai, Hsin-Chih; Ko, Yun-Fei; Ojcius, David M.; Lan, Ying-Wei; Martel, Jan; Young, John D.; Chong, Kowit-Yu

    2015-01-01

    Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese medicine that has been shown to possess various pharmacological properties. We previously reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical and non-canonical inflammasomes in human macrophages. However, whether HSM may be used to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary inflammation and fibrosis. PMID:26497260

  18. Andrographolide plays an important role in bleomycin-induced pulmonary fibrosis treatment

    PubMed Central

    Yin, Jia-Ning; Li, Ya-Nan; Gao, Yang; Li, Shi-Bo; Li, Jian-Dong

    2015-01-01

    Pulmonary fibrosis (PF) leads to chronic inflammation and accumulation of macrophages, neutrophils, and lymphocytes in the alveoli. The factors involved in the development of PF include reactive oxygen species and tissue remodelling regulators. The present study demonstrates the effect of andrographolide on bleomycin (BLM)-induced PF in Sprague-Dawley rats. We investigated the total bronchoalveolar lavage fluid protein (BALF) and hydroxyproline (HYP) content along with the level of oxidative stress markers like malondialdehyde (MDA) and GSH/GSSG ratio. In addition, the levels of MMP-1 and TIMP-1 were also analysed. The results revealed an increase in BALF protein, HYP, and MDA contents and decrease in GSH/GSSG ratio of the lungs in animals treated with BLM. However, andrographolide treatment caused a reversal of the BLM induced changes after 20 or 40 days. Treatment with andrographolide suppressed oxidative stress with the decrease of MDA and the increase of the GSH/GSSG ratio. Andrographolide also improved the BLM mediated changes in the MMP-1/TIMP-1 ratio. Therefore, andrographolide has a potential therapeutic effect in the prevention of PF. PMID:26550147

  19. Azelastine hydrochloride (Azeptin) inhibits peplomycin (PLM)-induced pulmonary fibrosis by contradicting the up-regulation of signal transduction.

    PubMed

    Yoneda, K; Yamamoto, T; Ueta, E; Osaki, T

    1997-10-01

    Inhibition of peplomycin (PLM)-induced pulmonary fibrosis by azelastine hydrochloride (Azeptin) was examined using ICR mice, and the effects of both drugs on signal transduction were investigated. Microscopically, Azeptin (a total of 56 mg/kg for 28 days) suppressed pulmonary fibrosis in mice which received an i.p. injection of a total of 60 or 75 mg/kg PLM. In parallel with the microscopic findings, smaller amounts of collagen were synthesized in the lungs of Azeptin-injected mice. PLM enhanced the expression of interleukin-1 beta- and transforming growth factor-beta-mRNA in lungs. In contrast, Azeptin suppressed the expression. Compatible with these in vivo results, Azeptin and PLM contradictively regulated protein tyrosine phosphorylation and c-myc mRNA expression in human gingival and mouse pulmonary fibroblasts. In addition, NF-kappa B was activated by fibroblast treatment with 5 micrograms/ml PLM for 1 h, but intranuclear NF-kappa B was decreased by cell treatment with 10(-5) M Azeptin. From these results, it is concluded that Azeptin inhibits PLM-induced pulmonary fibrosis by antagonizing the up-regulation of signal transduction.

  20. Chronic unilateral occlusion of an extrapulmonary primary bronchus induces pulmonary hypertension syndrome (ascites) in male and female broilers.

    PubMed

    Wideman, R F; Kirby, Y K; Owen, R L; French, H

    1997-02-01

    Previously, it was demonstrated that acute (4 min) and chronic (12 d) occlusion of an extrapulmonary primary bronchus triggers pulmonary hypertension but not pulmonary hypertension syndrome (PHS, ascites) in broilers. The present study was conducted to determine whether a more prolonged period of bronchus occlusion causes PHS similar to that induced by clamping one pulmonary artery. Male and female broiler chicks, 14 to 18 d old, were anesthetized, the thoracic inlet was opened, and a silver clip was positioned to fully obstruct the left extrapulmonary primary bronchus (BRONCHUS CLAMP group) or the left pulmonary artery (PA-CLAMP group). Sham-operated chicks were anesthetized and the thoracic inlet was opened; however, neither the pulmonary artery nor the bronchus was clamped (SHAM group). An electrocardiogram (ECG) was obtained whenever clinical ascites became apparent in individual broilers, or prior to the final necropsy for broilers surviving to the end (Day 36) of the experiment. The right:total ventricular weight ratio (RV:TV) was evaluated as an index of pulmonary arterial pressure. Early post-surgical mortality (up to 21 d of age) was higher in the PA-CLAMP group (27% for males and females combined) than in the BRONCHUS CLAMP (10%) and SHAM (2%) groups. Cumulative ascites mortality (Days 22 to 36) also was higher in the PA-CLAMP group (86% for males, 77% for females) than in the BRONCHUS CLAMP (69% for males, 41% for females) and SHAM (23% for males, 0% for females) groups. Ascitic birds in all treatment groups had higher RV:TV ratios and more negative ECG Lead II S-wave amplitudes than nonascitic birds, reflecting the right ventricular hypertrophy and generalized ventricular dilation typically associated with PHS. These results demonstrate that unilateral bronchus occlusion is an effective experimental model for triggering ascites at a lower incidence than that obtained by occluding one pulmonary artery. Following the onset of pulmonary hypertension, the

  1. Dramatic response of a patient with pregnancy induced idiopathic pulmonary arterial hypertension to sildenafil treatment.

    PubMed

    Taçoy, Gülten; Ekim, Numan Nadir; Cengel, Atiye

    2010-04-01

    Idiopathic pulmonary arterial hypertension (IPAH) is characterized by a progressive increase in pulmonary vascular resistance, which may lead to right ventricular failure and death. Major cardiovascular and pulmonary alterations occur during pregnancy and therefore worsen or increase the complications of pulmonary arterial hypertension (PAH). A patient diagnosed with IPAH after a successful full-term pregnancy and cesarean section with epidural anesthesia is presented. The postoperative course was complicated by progressive dyspnea, and lower limb edema. The outcome of treatment with sildenafil during puerperium was favorable in this patient. The clinical course was complicated by an unexpected spontaneous pregnancy after primary infertility.

  2. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    PubMed Central

    Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731

  3. PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation.

    PubMed

    Sysol, Justin R; Natarajan, Viswanathan; Machado, Roberto F

    2016-06-01

    Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease for which there is currently no curative treatment available. Pathologic changes in this disease involve remodeling of the pulmonary vasculature, including marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Recently, the bioactive lipid sphingosine-1-phosphate (S1P) and its activating kinase, sphingosine kinase 1 (SphK1), have been shown to be upregulated in PAH and promote PASMC proliferation. The mechanisms regulating the transcriptional upregulation of SphK1 in PASMCs are unknown. In this study, we investigated the role of platelet-derived growth factor (PDGF), a PAH-relevant stimuli associated with enhanced PASMC proliferation, on SphK1 expression regulation. In human PASMCs (hPASMCs), PDGF significantly increased SphK1 mRNA and protein expression and induced cell proliferation. Selective inhibition of SphK1 attenuated PDGF-induced hPASMC proliferation. In silico promoter analysis for SphK1 identified several binding sites for early growth response protein 1 (Egr-1), a PDGF-associated transcription factor. Luciferase assays demonstrated that PDGF activates the SphK1 promoter in hPASMCs, and truncation of the 5'-promoter reduced PDGF-induced SphK1 expression. Stimulation of hPASMCs with PDGF induced Egr-1 protein expression, and direct binding of Egr-1 to the SphK1 promoter was confirmed by chromatin immunoprecipitation analysis. Inhibition of ERK signaling prevented induction of Egr-1 by PDGF. Silencing of Egr-1 attenuated PDGF-induced SphK1 expression and hPASMC proliferation. These studies demonstrate that SphK1 is regulated by PDGF in hPASMCs via the transcription factor Egr-1, promoting cell proliferation. This novel mechanism of SphK1 regulation may be a therapeutic target in pulmonary vascular remodeling in PAH.

  4. Aspirin attenuates monocrotaline-induced pulmonary arterial hypertension in rats by suppressing the ERK/MAPK pathway.

    PubMed

    Gao, Hua; Cheng, Yuqing; Zong, Liguo; Huang, Linian; Qiao, Chenchen; Li, Wei; Gong, Beilei; Hu, Junfeng; Liu, Haitao; Wang, Xiaojing; Zhao, Chengling

    2017-01-01

    This study aimed to investigate the therapeutic effects of aspirin (ASA) and its potential mechanisms of action in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. PAH was induced in a rat model by a single intraperitoneal (IP) injection of MCT. Saline was injected in a control group. Two weeks following MCT injection, right ventricular systolic pressure (RVSP) and systolic blood pressure (SBP) were measured in six rats from each group to confirm establishment of a PAH model. The remaining MCT-treated rats were randomly allocated to receive IP injection of saline, ASA, or ERK1/2 inhibitor PD98059. Four weeks following treatment, RVSP was measured and all rats were sacrificed for histological study. There was no significant difference in SBP in any group two weeks following MCT administration. Nonetheless RVSP was significantly increased in the MCT group compared with the control group. At 6 weeks, ASA treatment remarkably attenuated MCT-induced increased RVSP, RV hypertrophy, and pulmonary artery remodeling compared with the MCT group. The density of pulmonary capillaries in ASA-treated rats was also dramatically increased. Treatment with ASA significantly inhibited the increased p-ERK1/2 and restored the impaired endothelial nitric oxide synthase (eNOS) in MCT-treated rats. This study demonstrated that ASA distinctively attenuates MCT-induced PAH by inhibition of the ERK1/2 signaling pathway.

  5. The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice.

    PubMed

    Tanaka, Yuta; Ishitsuka, Yoichi; Hayasaka, Marina; Yamada, Yusei; Miyata, Keishi; Endo, Motoyoshi; Kondo, Yuki; Moriuchi, Hiroshi; Irikura, Mitsuru; Tanaka, Ken-ichiro; Mizushima, Tohru; Oike, Yuichi; Irie, Tetsumi

    2015-09-01

    The purpose of this study was to evaluate the role of CCAAT/enhancer-binding protein homologous protein (CHOP), an important transcription factor that regulates the inflammatory reaction during the endoplasmic reticulum (ER) stress response, in the development of pulmonary fibrosis induced by bleomycin (BLM) in mice. An intratracheal injection of BLM transiently increased the expression of CHOP mRNA and protein in an early phase (days 1 and 3) in mice lungs. BLM-induced pulmonary fibrosis was significantly attenuated in Chop gene deficient (Chop KO) mice, compared with wild-type (WT) mice. Furthermore, the inflammatory reactions evaluated by protein concentration, the total number of leucocytes and neutrophils in the bronchoalveolar lavage fluid (BALF), the mRNA expression of interleukin 1b and caspase 11, and the apoptotic cell death were suppressed in Chop KO mice compared with those in WT mice. In addition, administration of tauroursodeoxycholic acid (TUDCA), a pharmacological agent that can inhibit CHOP expression, inhibited the BLM-induced pulmonary fibrosis and inflammation, and the increase in Chop mRNA expression in WT mice in a dose-dependent manner. These results suggest that the ER stress-induced transcription factor, CHOP, at least in part, plays an important role in the development of BLM-induced pulmonary fibrosis in mice, and that the inhibition of CHOP expression by a pharmacological agent, such as TUDCA, may be a promising strategy for the prevention of pulmonary fibrosis.

  6. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model.

    PubMed

    Liu, Hao; Xue, Jian-Xing; Li, Xing; Ao, Rui; Lu, You

    2013-08-01

    In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage.

  7. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model

    PubMed Central

    LIU, HAO; XUE, JIAN-XING; LI, XING; AO, RUI; LU, YOU

    2013-01-01

    In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage. PMID:24137346

  8. Novel Peptide for Attenuation of Hyperoxia-induced Disruption of Lung Endothelial Barrier and Pulmonary Edema via Modulating Peroxynitrite Formation*

    PubMed Central

    Kondrikov, Dmitry; Gross, Christine; Black, Stephen M.; Su, Yunchao

    2014-01-01

    Pulmonary damages of oxygen toxicity include vascular leakage and pulmonary edema. We have previously reported that hyperoxia increases the formation of NO and peroxynitrite in lung endothelial cells via increased interaction of endothelial nitric oxide (eNOS) with β-actin. A peptide (P326TAT) with amino acid sequence corresponding to the actin binding region of eNOS residues 326–333 has been shown to reduce the hyperoxia-induced formation of NO and peroxynitrite in lung endothelial cells. In the present study, we found that exposure of pulmonary artery endothelial cells to hyperoxia (95% oxygen and 5% CO2) for 48 h resulted in disruption of monolayer barrier integrity in two phases, and apoptosis occurred in the second phase. NOS inhibitor NG-nitro-l-arginine methyl ester attenuated the endothelial barrier disruption in both phases. Peroxynitrite scavenger uric acid did not affect the first phase but ameliorated the second phase of endothelial barrier disruption and apoptosis. P326TAT inhibited hyperoxia-induced disruption of monolayer barrier integrity in two phases and apoptosis in the second phase. More importantly, injection of P326TAT attenuated vascular leakage, pulmonary edema, and endothelial apoptosis in the lungs of mice exposed to hyperoxia. P326TAT also significantly reduced the increase in eNOS-β-actin association and protein tyrosine nitration. Together, these results indicate that peptide P326TAT ameliorates barrier dysfunction of hyperoxic lung endothelial monolayer and attenuates eNOS-β-actin association, peroxynitrite formation, endothelial apoptosis, and pulmonary edema in lungs of hyperoxic mice. P326TAT can be a novel therapeutic agent to treat or prevent acute lung injury in oxygen toxicity. PMID:25315770

  9. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Min; Krishnaveni, Manda Sai; Li, Changgong; Zhou, Beiyun; Xing, Yiming; Banfalvi, Agnes; Li, Aimin; Lombardi, Vincent; Akbari, Omid; Borok, Zea; Minoo, Parviz

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.

  10. Therapeutic advantage of inhaled tacrolimus-bound albumin nanoparticles in a bleomycin-induced pulmonary fibrosis mouse model.

    PubMed

    Seo, Jisoo; Lee, Changkyu; Hwang, Ha Shin; Kim, Bomi; Thao, Le Quang; Lee, Eun Seong; Oh, Kyung Taek; Lim, Jong-Lae; Choi, Han-Gon; Youn, Yu Seok

    2016-02-01

    Tacrolimus (Tac) is an immunosuppressant that inhibits translocation of nuclear factor of activated T cells and has therapeutic potential for pulmonary fibrosis. Here, we investigated the therapeutic efficacy of a sustained-release type inhaled Tac formulation for treating bleomycin-induced pulmonary fibrosis. Inhalation has many meaningful advantages over injections, such as improved patient compliance, safety, and therapeutic effect. To this end, we fabricated inhalable albumin nanoparticles with bound Tac (Tac Alb-NPs) at a daily therapeutic dose (60 μg/mouse) using a high-pressure homogenizer via nanoparticle albumin-bound technology. The Tac Alb-NPs were spherical, ∼ 182.1 ± 28.5 nm in size, with a zeta potential of -34.5 ± 0.3 mV, and the Tac incorporation efficiency was as high as ∼ 85.3%. The bound tacrolimus was released gradually from Tac Alb-NPs for ∼ 24 h, which was sufficient time for pulmonary delivery. Most of all, the inhaled Tac Alb-NPs displayed remarkable anti-fibrotic efficacy in mice with bleomycin-induced pulmonary fibrosis, which was much better than the efficacy resulting from intraperitoneal administration of Tac (60 μg/mouse) based on histopathological results (hematoxylin and eosin and Masson's trichrome staining). Furthermore, the inhaled Cy5.5-labelled Tac Alb-NPs were visualized throughout the lungs of mice for ∼ 48 h, indicating direct exposure to fibrotic tissues in lung lesions. In conclusion, Tac Alb-NPs offer great potential as an inhalation delivery formulation for treating pulmonary fibrosis. Additionally, these NPs would be particularly useful as an effective and safe prototype for delivering practically insoluble therapeutic agents into the lungs.

  11. Impact of diet on ozone-induced pulmonary and systemic effects in female Brown Norway (BN) rats

    EPA Science Inventory

    Impact of diet on ozone-induced pulmonary and systemic effects in female Brown Norway (BN) ratsV.L. Bass1, M.C. Schladweiler2, S. Snow5, C.J. Gordon4, K.A. Jarema4, P. Phillips4, A.D. Ledbetter2, D.B. Miller3, J.E. Richards2, U.P. Kodavanti2. 1. SPH, UNC, Chapel Hill2. EPHD, NHE...

  12. Usefulness of latent left ventricular dysfunction assessed by Bowditch Treppe to predict stress-induced pulmonary hypertension in minimally symptomatic severe mitral regurgitation secondary to mitral valve prolapse.

    PubMed

    Agricola, Eustachio; Bombardini, Tonino; Oppizzi, Michele; Margonato, Alberto; Pisani, Matteo; Melisurgo, Giulio; Picano, Eugenio

    2005-02-01

    We assessed whether the presence of latent myocardial dysfunction, evaluated by echocardiographic derived force-frequency relationship (FFR) during exercise, predicts the appearance of stress-induced pulmonary hypertension in minimally symptomatic patients with severe mitral regurgitation (MR). Two groups of patients were identified: group I with normal (40 mm Hg) peak stress systemic pulmonary artery pressure. Group I had normal and upsloping FFR and group II had abnormal flat or biphasic FFR. Therefore, in patients with severe MR and apparently normal left ventricular function, the stress-induced pulmonary hypertension seems to be related to the presence of latent left ventricular dysfunction.

  13. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    PubMed Central

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3 days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  14. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.

    PubMed

    Ma, Jane; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M; Demokritou, Philip; Castranova, Vincent

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis.

  15. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model

    PubMed Central

    Yang, F; Hu, M; Lei, Q; Xia, Y; Zhu, Y; Song, X; Li, Y; Jie, H; Liu, C; Xiong, Y; Zuo, Z; Zeng, A; Li, Y; Yu, L; Shen, G; Wang, D; Xie, Y; Ye, T; Wei, Y

    2015-01-01

    Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3Tyr705, matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer. PMID:25811798

  16. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model.

    PubMed

    Yang, F; Hu, M; Lei, Q; Xia, Y; Zhu, Y; Song, X; Li, Y; Jie, H; Liu, C; Xiong, Y; Zuo, Z; Zeng, A; Li, Y; Yu, L; Shen, G; Wang, D; Xie, Y; Ye, T; Wei, Y

    2015-03-26

    Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3(Tyr705), matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer.

  17. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development.

    PubMed

    Pan, Jie; Copland, Ian; Post, Martin; Yeger, Herman; Cutz, Ernest

    2006-01-01

    Pulmonary neuroendocrine cells (PNEC) produce amine (serotonin, 5-HT) and peptides (e.g., bombesin, calcitonin) with growth factor-like properties and are thought to play an important role in lung development. Because physical forces are essential for lung growth and development, we investigated the effects of mechanical strain on 5-HT release in PNEC freshly isolated from rabbit fetal lung and in the PNEC-related tumor H727 cell line. Cultures exposed to sinusoidal cyclic stretch showed a significant 5-HT release inhibitable with gadolinium chloride (10 nM), a blocker of mechanosensitive channels. In contrast to hypoxia (Po2 approximately 20 mmHg), stretch-induced 5-HT release was not affected by Ca2+-free medium or nifedipine (50 microM), excluding the exocytic pathway. In H727 cells, stretch failed to release calcitonin, a peptide stored within dense core vesicles (DCV), whereas hypoxia caused massive calcitonin release. 5-HT released by mechanical stretch is derived predominantly from the cytoplasmic pool, because it is rapid ( approximately 5 min) and is releasable from early (20 days of gestation) fetal PNEC containing few DCV. Both mechanical stretch and hypoxia upregulated expression of tryptophan hydroxylase, the rate-limiting enzyme of 5-HT synthesis. We conclude that mechanical strain is an important physiological stimulus for the release of 5-HT from PNEC via mechanosensitive channels with potential effects on lung development and resorption of lung fluid at the time of birth.

  18. Exercise-induced pulmonary hemorrhage in Thoroughbreds after racing and breezing.

    PubMed

    Raphel, C F; Soma, L R

    1982-07-01

    Thoroughbred horses (n = 191) were examined with a flexible fiberoptic endoscope within 2 hours of racing on a dirt track; 147 (75.4%) had evidence of exercise-induced pulmonary hemorrhage (EIPH), and 13 (9.0%) had blood at the nostrils. Of 107 Thoroughbreds examined within the same period after breezing, 41 (38.3%) had evidence of EIPH. One horse (2.4%) of this group had blood at the nostrils. Statistical analysis of frequency data showed that a relationship existed between EIPH and the horse's age or distance raced or breezed. Relationship did not exist between EIPH and sex or finishing position. Thoroughbreds were also examined endoscopically after steeplechase, flat turf, and timber races; 67.7% (21/31), 14.3% (2/14), and 66.6% (2/3) of the horses in such races were EIPH-positive, respectively; and 14.3% (3/21), 0% (0/2), and 100% (2/2) of these EIPH-positive horses had blood at the nostrils. Of 32 breezing Thoroughbreds in a 3rd survey, 21 (65.5%) were EIPH-positive. None bled from the nostrils. Endoscopic findings of EIPH are repeatable in the horses, indicating that bleeding is not a random event.

  19. Duration of Pulmonary Tuberculosis Infectiousness under Adequate Therapy, as Assessed Using Induced Sputum Samples

    PubMed Central

    Ko, Yousang; Shin, Jeong Hwan; Lee, Hyun-Kyung; Lee, Young Seok; Lee, Suh-Young; Park, So Young; Mo, Eun-Kyung; Kim, Changhwan

    2017-01-01

    Background A sputum culture is the most reliable indicator of the infectiousness of pulmonary tuberculosis (PTB); however, a spontaneous sputum specimen may not be suitable. The aim of this study was to evaluate the infectious period in patients with non–drug-resistant (DR) PTB receiving adequate standard chemotherapy, using induced sputum (IS) specimens. Methods We evaluated the duration of infectiousness of PTB using a retrospective cohort design. Results Among the 35 patients with PTB, 22 were smear-positive. The rates of IS culture positivity from baseline to the sixth week of anti-tuberculosis medication in the smear-positive PTB group were 100%, 100%, 91%, 73%, 36%, and 18%, respectively. For smear-positive PTB cases, the median time of conversion to culture negativity was 35.0 days (range, 28.0–42.0 days). In the smear-negative PTB group (n=13), the weekly rates of positive IS culture were 100%, 77%, 39%, 8%, 0%, and 0%, respectively, and the median time to conversion to culture-negative was 21.0 days (range, 17.5–28.0 days). Conclusion The infectiousness of PTB, under adequate therapy, may persist longer than previously reported, even in patients with non-DR PTB. PMID:28119744

  20. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis

    PubMed Central

    1996-01-01

    The high-output pathway of nitric oxide production helps protect mice from infection by several pathogens, including Mycobacterium tuberculosis. However, based on studies of cells cultured from blood, it is controversial whether human mononuclear phagocytes can express the corresponding inducible nitric oxide synthase (iNOS;NOS2). The present study examined alveolar macrophages fixed directly after bronchopulmonary lavage. An average of 65% of the macrophages from 11 of 11 patients with untreated, culture-positive pulmonary tuberculosis reacted with an antibody documented herein to be monospecific for human NOS2. In contrast, a mean of 10% of bronchoalveolar lavage cells were positive from each of five clinically normal subjects. Tuberculosis patients' macrophages displayed diaphorase activity in the same proportion that they stained for NOS2, under assay conditions wherein the diaphorase reaction was strictly dependent on NOS2 expression. Bronchoalveolar lavage specimens also contained NOS2 mRNA. Thus, macrophages in the lungs of people with clinically active Mycobacterium tuberculosis infection often express catalytically competent NOS2. PMID:8642338

  1. Experimental pulmonary fibrosis induced by paraquat plus oxygen in rats: a morphologic and biochemical sequential study.

    PubMed

    Selman, M; Montaño, M; Ramos, C; Barrios, R; Pérez-Tamayo, R

    1989-04-01

    Changes in lung structure and collagen metabolism were studied at 1, 2, 3, 4, 6, and 8 weeks in a model of pulmonary fibrosis induced in rats with paraquat plus hyperoxia. Morphologic examination of the lungs revealed that the earliest lesions consisted of severe and irreversible endothelial and alveolar epithelial cell damage. Afterward, an inflammatory process took place, initially dominated by polymorphonuclear leukocytes and then by mononuclear cells, but with the constant presence of granulocytes. From the fourth week on there were fibroblast proliferation and a moderate increase of mast cells. In the early stages alveolitis was focal, but from the second week the lungs were diffusely affected with severe distortion of the architecture. Collagen content was moderately increased in the first 2 weeks and then showed a progressive increment until the end of the experiment. Collagen synthesis was significantly elevated from the fourth week, coinciding with interstitial fibroblast proliferation, although there were some animals that showed increased collagen production from the first week. Collagenolytic activity occurred in 3 stages: at 2 weeks there was increased collagen degradation, at 3, 4, and 6 weeks the values showed a trimodal behavior, and at 8 weeks almost all experimental rats presented an important decrease of collagenolysis. Thus, the development of lung fibrosis was associated first with increased rates of collagen synthesis and later with a decrease of collagen degradation.

  2. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    PubMed

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages.

  3. IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease.

    PubMed

    Mukherjee, Sumanta; Lindell, Dennis M; Berlin, Aaron A; Morris, Susan B; Shanley, Thomas P; Hershenson, Marc B; Lukacs, Nicholas W

    2011-07-01

    Severe respiratory syncytial virus (RSV) infections are characterized by airway epithelial cell damage, mucus hypersecretion, and Th2 cytokine production. Less is known about the role of IL-17. We observed increased IL-6 and IL-17 levels in tracheal aspirate samples from severely ill infants with RSV infection. In a mouse model of RSV infection, time-dependent increases in pulmonary IL-6, IL-23, and IL-17 expression were observed. Neutralization of IL-17 during infection and observations from IL-17(-/-) knockout mice resulted in significant inhibition of mucus production during RSV infection. RSV-infected animals treated with anti-IL-17 had reduced inflammation and decreased viral load, compared with control antibody-treated mice. Blocking IL-17 during infection resulted in significantly increased RSV-specific CD8 T cells. Factors associated with CD8 cytotoxic T lymphocytes, T-bet, IFN-γ, eomesodermin, and granzyme B were significantly up-regulated after IL-17 blockade. Additionally, in vitro analyses suggest that IL-17 directly inhibits T-bet, eomesodermin, and IFN-γ in CD8 T cells. The role of IL-17 was also investigated in RSV-induced exacerbation of allergic airway responses, in which neutralization of IL-17 led to a significant decrease in the exacerbated disease, including reduced mucus production and Th2 cytokines, with decreased viral proteins. Taken together, our data demonstrate that IL-17 plays a pathogenic role during RSV infections.

  4. Synthesis and thermal evolution of structure in alkoxide-derived niobium pentoxide gels

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1993-01-01

    Niobium pentoxide gels in the form of transparent monoliths and powder have been synthesized from the controlled hydrolysis and polycondensation of niobium pentaethoxide under different experimental conditions using various mole ratios of Nb(OC2H5)5:H2O:C2H5OH:HCl. Alcohol acted as the mutual solvent and HCl as the deflocculating agent. In the absence of HCl, precipitation of colloidal particles was encountered on the addition of any water to the alkoxide. The gels were subjected to various thermal treatments and characterized by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. After drying at 400 C, the gels were amorphous to x-rays. The amorphous powder crystallized into the low-temperature orthorhombic form of Nb2O5 at approximately 500 C, which transformed irreversibly into the high-temperature monoclinic alpha-Nb2O5 between 900 to 1000 C. The kinetics of crystallization of the amorphous niobium pentoxide have been investigated by non-isothermal differential scanning calorimetry. The crystallization activation energy was determined to be 399 kJ/mol.

  5. Electronic properties of tantalum pentoxide polymorphs from first-principles calculations

    SciTech Connect

    Lee, J.; Lu, W.; Kioupakis, E.

    2014-11-17

    Tantalum pentoxide (Ta{sub 2}O{sub 5}) is extensively studied for its attractive properties in dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide have been reported, its structural, electronic, and optical properties still remain a subject of research. We investigate the electronic and optical properties of crystalline and amorphous Ta{sub 2}O{sub 5} structures using first-principles calculations based on density functional theory and the GW method. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements, but the amorphous structure exhibits a strong exciton binding energy and an optical band gap (∼4 eV) in agreement with experiment. We determine the atomic orbitals that constitute the conduction band for each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta{sub 2}O{sub 5}.

  6. Uptake of Nitric Acid, Dinitrogen Pentoxide, Ozone and The Nitrate Radical On A Single Liquid Drop

    NASA Astrophysics Data System (ADS)

    Schütze, M.; Herrmann, H.

    A novel technique for the investigation of uptake processes on gas-liquid interfaces will be presented. It allows the generation and analysis of single liquid drops inside a flow tube reactor. The in situ analysis of the drop is performed by broad band UV-VIS absorption spectroscopy. Using this set-up the uptake of nitric acid and dinitrogen pentoxide on pure water was measured by monitoring the occurrence of the nitrate band centered at a wavelength of 300 nm. The uptake of ozone on NaI solutions of various concentrations was followed by the formation of the triiodide ion which is a product of the oxidation of iodide by ozone. Using aqueous solutions of the dye Alizarin Red S, the uptake of the nitrate radical could be quantified. In order to extract information on fundamental parameters, e.g. the mass accommo- dation coefficients (= a) of the species, a computer model is applied. It solves the diffusion equation for the transport of gas phase species to the interface numerically. The result is a separation of the influence of this process on the rate of the overall uptake process. The mass accommodation coefficients a > 0.03, a = 0.011 and a > 0.02 were obtained for nitric acid, dinitrogen pentoxide and ozone, respectively.

  7. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark; Bernus, Olivier

    2011-01-01

    Mechanisms associated with right ventricular (RV) hypertension and arrhythmias are less understood than those in the left ventricle (LV). The aim of our study was to investigate whether and by what mechanisms a proarrhythmic substrate exists in a rat model of RV hypertension and hypertrophy. Rats were injected with monocrotaline (MCT; 60 mg/kg) to induce pulmonary artery hypertension or with saline (CON). Myocardial levels of mRNA for genes expressing ion channels were measured by real-time RT-PCR. Monophasic action potential duration (MAPD) was recorded in isolated Langendorff-perfused hearts. MAPD restitution was measured, and arrhythmias were induced by burst stimulation. Twenty-two to twenty-six days after treatment, MCT animals had RV hypertension, hypertrophy, and decreased ejection fractions compared with CON. A greater proportion of MCT hearts developed sustained ventricular tachycardias/fibrillation (0.83 MCT vs. 0.14 CON). MAPD was prolonged in RV and less so in the LV of MCT hearts. There were decreased levels of mRNA for K+ channels. Restitution curves of MCT RV were steeper than CON RV or either LV. Dispersion of MAPD was greater in MCT hearts and was dependent on stimulation frequency. Computer simulations based on ion channel gene expression closely predicted experimental changes in MAPD and restitution. We have identified a proarrhythmic substrate in the hearts of MCT-treated rats. We conclude that steeper RV electrical restitution and rate-dependant RV-LV action potential duration dispersion may be contributing mechanisms and be implicated in the generation of arrhythmias associated with in RV hypertension and hypertrophy. PMID:21398591

  8. Combined Tlr2 and Tlr4 Deficiency Increases Radiation-Induced Pulmonary Fibrosis in Mice

    SciTech Connect

    Paun, Alexandra; Fox, Jessica; Balloy, Viviane; Chignard, Michel; Qureshi, Salman T.; Haston, Christina K.

    2010-07-15

    Purpose: To determine whether Toll-like receptor 2 or 4 genotype alters the lung response to irradiation in C57BL/6 mice using a model developing a phenotype that resembles radiotherapy-induced fibrosis in both histological characteristics and onset post-treatment. Methods and Materials: The pulmonary phenotype of C57BL/6 mice deficient in each or both of these genes was assessed after an 18-Gy single dose to the thoracic cavity by survival time postirradiation, bronchoalveolar lavage cell differential, histological evidence of alveolitis and fibrosis, and gene expression levels, and compared with that of wild-type mice. Results: The lung phenotype of Tlr4-deficient and Tlr2-deficient mice did not differ from that of wild-type mice in terms of survival time postirradiation, or by histological evidence of alveolitis or fibrosis. In contrast, mice deficient in both receptors developed respiratory distress at an earlier time than did wild-type mice and presented an enhanced fibrotic response (13.5% vs. 5.8% of the lung by image analysis of histological sections, p < 0.001). No differences in bronchoalveolar cell differential counts, nor in numbers of apoptotic cells in the lung as detected through active caspase-3 staining, were evident among the irradiated mice grouped by Tlr genotype. Gene expression analysis of lung tissue revealed that Tlr2,4-deficient mice have increased levels of hyaluronidase 2 compared with both wild-type mice and mice lacking either Tlr2 or Tlr4. Conclusion: We conclude that a combined deficiency in both Tlr2 and Tlr4, but not Tlr2 or Tlr4 alone, leads to enhanced radiation-induced fibrosis in the C57BL/6 mouse model.

  9. Soluble epoxide hydrolase inhibitor 1-trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl) urea attenuates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Zhou, Yong; Yang, Jun; Sun, Guo-Ying; Liu, Tian; Duan, Jia-Xi; Zhou, Hui-Fang; Lee, Kin Sing; Hammock, Bruce D; Fang, Xiang; Jiang, Jian-Xin; Guan, Cha-Xiang

    2016-02-01

    Epoxyeicosatrienoic acids (EETs), the metabolites of arachidonic acid derived from the cytochrome P450 (CYP450) epoxygenases, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties and inhibition of sEH might provide protective effects against inflammatory fibrosis. We test the effects of a selected sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), on bleomycin-induced pulmonary fibrosis (PF) in mice. A mouse model of PF was established by intratracheal injection of bleomycin and TPPU was administered for 21 days after bleomycin injection. We found TPPU treatment improved the body weight loss and survival rate of bleomycin-stimulated mice. Histological examination showed that TPPU treatment alleviated bleomycin-induced inflammation and maintained the alveolar structure of the pulmonary tissues. TPPU also decreased the bleomycin-induced deposition of collagen and the expression of procollagen I mRNA in lung tissues of mice. TPPU decreased the transforming growth factor-β1 (TGF-β1), interleukin-1β (IL-1β) and IL-6 levels in the serum of bleomycin-stimulated mice. Furthermore, TPPU inhibited the proliferation and collagen synthesis of mouse fibroblasts and partially reversed TGF-β1-induced α-smooth muscle actin expression. Our results indicate that the inhibition of sEH attenuates bleomycin-induced inflammation and collagen deposition and therefore prevents bleomycin-induced PF in a mouse model.

  10. Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice

    PubMed Central

    Lee, James C.; Kinniry, Paul A.; Arguiri, Evguenia; Serota, Matthew; Kanterakis, Stathis; Chatterjee, Shampa; Solomides, Charalambos C.; Javvadi, Prashanthi; Koumenis, Constantinos; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2010-01-01

    The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1%or 5%(w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-α production in lungs, only 5%dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation. PMID:20426658

  11. High proliferative potential endothelial colony-forming cells contribute to hypoxia-induced pulmonary artery vasa vasorum neovascularization.

    PubMed

    Nijmeh, Hala; Balasubramaniam, Vivek; Burns, Nana; Ahmad, Aftab; Stenmark, Kurt R; Gerasimovskaya, Evgenia V

    2014-04-01

    Angiogenic expansion of the vasa vasorum (VV) is an important contributor to pulmonary vascular remodeling in the pathogenesis of pulmonary hypertension (PH). High proliferative potential endothelial progenitor-like cells have been described in vascular remodeling and angiogenesis in both systemic and pulmonary circulations. However, their role in hypoxia-induced pulmonary artery (PA) VV expansion in PH is not known. We hypothesized that profound PA VV neovascularization observed in a neonatal calf model of hypoxia-induced PH is due to increased numbers of subsets of high proliferative cells within the PA adventitial VV endothelial cells (VVEC). Using a single cell clonogenic assay, we found that high proliferative potential colony-forming cells (HPP-CFC) comprise a markedly higher percentage in VVEC populations isolated from the PA of hypoxic (VVEC-Hx) compared with control (VVEC-Co) calves. VVEC-Hx populations that comprised higher numbers of HPP-CFC also demonstrated markedly higher expression levels of CD31, CD105, and c-kit than VVEC-Co. In addition, significantly higher expression of CD31, CD105, and c-kit was observed in HPP-CFC vs. the VVEC of the control but not of hypoxic animals. HPP-CFC exhibited migratory and tube formation capabilities, two important attributes of angiogenic phenotype. Furthermore, HPP-CFC-Co and some HPP-CFC-Hx exhibited elevated telomerase activity, consistent with their high replicative potential, whereas a number of HPP-CFC-Hx exhibited impaired telomerase activity, suggestive of their senescence state. In conclusion, our data suggest that hypoxia-induced VV expansion involves an emergence of HPP-CFC populations of a distinct phenotype with increased angiogenic capabilities. These cells may serve as a potential target for regulating VVEC neovascularization.

  12. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  13. Development and Characterization of an Inducible Rat Model of Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Arias-Loza, Paula-Anahi; Jung, Pius; Abeßer, Marco; Umbenhauer, Sandra; Williams, Tatjana; Frantz, Stefan; Schuh, Kai; Pelzer, Theo

    2016-05-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is an entity of PH that not only limits patients quality of life but also causes significant morbidity and mortality. The treatment of choice is pulmonary endarterectomy. However numerous patients do not qualify for pulmonary endarterectomy or present with residual vasculopathy post pulmonary endarterectomy and require specific vasodilator treatment. Currently, there is no available specific small animal model of CTEPH that could serve as tool to identify targetable molecular pathways and to test new treatment options. Thus, we generated and standardized a rat model that not only resembles functional and histological features of CTEPH but also emulates thrombi fibrosis. The pulmonary embolism protocol consisted of 3 sequential tail vein injections of fibrinogen/collagen-covered polystyrene microspheres combined with thrombin and administered to 10-week-old male Wistar rats. After the third embolism, rats developed characteristic features of CTEPH including elevated right ventricular systolic pressure, right ventricular cardiomyocyte hypertrophy, pulmonary artery remodeling, increased serum brain natriuretic peptide levels, thrombi fibrosis, and formation of pulmonary cellular-fibrotic lesions. The current animal model seems suitable for detailed study of CTEPH pathophysiology and permits preclinical testing of new pharmacological therapies against CTEPH.

  14. Preventive Effects of Rhodiola rosea L. on Bleomycin-Induced Pulmonary Fibrosis in Rats

    PubMed Central

    Zhang, Ke; Si, Xiao-Ping; Huang, Jian; Han, Jian; Liang, Xu; Xu, Xiao-Bo; Wang, Yi-Ting; Li, Guo-Yu; Wang, Hang-Yu; Wang, Jin-Hui

    2016-01-01

    Rhodiola rosea L. (RRL) possesses a wide range of pharmacological properties, including lung-protective activity, and has been utilized in folk medicine for several 100 years. However, the lung-protective mechanism remains unclear. This study investigated the possible lung-protective activity mechanism of RRL in a pulmonary fibrosis (PF) rat model. Lung fibrotic injury was induced in Sprague–Dawley rats by single intratracheal instillation of saline containing bleomycin (BLM; 5 mg/kg). The rats were administered 125, 250, or 500 mg/kg of a 95% ethanol extract of RRL for 28 days. The animals were killed to detect changes in body weight, serum levels of glutathione (GSH) and total superoxide dismutase (T-SOD), as well as lung tissue hydroxyproline (HYP) content. Tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin 6 (IL-6) levels were measured in bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assay. Hematoxylin and eosin, Masson’s trichrome, and immunohistochemical staining were performed to observe the histopathological changes in lung tissues. Additionally, target-related proteins were measured by Western blotting. RRL alleviated the loss of body weight induced by instilling BLM in PF rats, particularly at the 500 mg/kg per day dose. RRL reduced HYP (p < 0.01) and increased GSH and T-SOD contents. BALF levels of TNF-α, TGF-β1, and IL-6 decreased significantly in the RRL-treated groups. Expression levels of matrix metalloproteinase-9 (MMP-9) and α-smooth muscle actin decreased significantly in a dose-dependent manner in response to RRL. Moreover, the levels of TGF-β1 and tissue inhibitor of metalloproteinase-1 in lung tissues also decreased in the RRL-treated groups. RRL alleviated BLM-induced PF in rats. Our results reveal that the protective effects of RRL against fibrotic lung injury in rats are correlated with its anti-inflammatory, antioxidative, and anti-fibrotic properties. MMP-9 may play

  15. 1H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats

    PubMed Central

    Lin, Taijie; Gu, Jinping; Huang, Caihua; Zheng, Suli; Lin, Xu; Xie, Liangdi; Lin, Donghai

    2016-01-01

    Aims. To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods. Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. Results. The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. Conclusions. Metabolic dysfunction is involved in the development and progression of PAH. PMID:27057080

  16. Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Swiderski, R. E.; Dencoff, J. E.; Floerchinger, C. S.; Shapiro, S. D.; Hunninghake, G. W.

    1998-01-01

    Exposure to the chemotherapeutic drug bleomycin leads to pulmonary fibrosis in humans and has been widely used in animal models of the disease. Using C57BL/6 bleomycin-sensitive mice, pulmonary fibrosis was induced by multiple intraperitoneal injections of the drug. An increase in the relative amounts of steady-state alpha1(I) procollagen, alpha1(III) procollagen, and fibronectin mRNA as well as histopathological evidence of fibrosis was observed. The effect of bleomycin on the expression of the enzymes responsible for extracellular matrix degradation, the matrix metalloproteinases (MMPs), and their inhibitors (TIMPs), was selective and showed temporal differences during the development of fibrosis. Of the MMPs tested, bleomycin treatment resulted in the up-regulation of gelatinase A and macrophage metalloelastase gene expression in whole-lung homogenates, whereas gelatinase B, stromelysin-1, and interstitial collagenase gene expression was not significantly changed. Timp2 and Timp3, the murine homologues of the respective TIMP genes, were constitutively expressed, whereas Timp1 was markedly up-regulated during fibrosis. The strong correlation between enhanced extracellular matrix gene expression, differential MMP and TIMP gene expression, and histopathological evidence of fibrosis suggest that dysregulated matrix remodeling is likely to contribute to the pathology of bleomycin-induced pulmonary fibrosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9502424

  17. Role of intercellular adhesion molecule-1 in glucan-induced pulmonary granulomatosis in the rat.

    PubMed

    Barton, P A; Imlay, M M; Flory, C M; Warren, J S

    1996-08-01

    Glucan-induced pulmonary granulomatous vasculitis in the rat mimics several human lung diseases (e.g., Wegener's granulomatosis, intravenous talcosis). We sought to clarify the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of glucan-induced granulomatous vasculitis. Immunohistochemical analysis of lung sections from rats with florid vasculitis (48 hours) revealed marked alveolar septal and lesional expression of ICAM-1. An ex vivo binding analysis with isotope-labeled antibodies and lung sections taken at various times up to 48 hours after glucan infusion revealed a progressive increase in whole-lung ICAM-1 expression. In vivo measurements of vascular wall-associated ICAM-1 expression revealed an earlier rise that began less than 6 hours after glucan infusion, peaked at 24 to 48 hours, and then declined to near baseline during the ensuing 24 to 96 hours. To assess whether ICAM-1 expression both within blood vessel walls and within lesions per se is important in granuloma development, we carried out in vivo neutralization experiments with several different routes of administration of antibody to ICAM-1. Monoclonal antibody to rat ICAM-1 was either infused intravenously at time 0 (when glucan was infused), infused intravenously at time 0 and after 24 hours, instilled only intratracheally 24 hours after glucan infusion, or given both intravenously (time = 0 and 24 hours) and intratracheally (time = 24 hours). Infusions of monoclonal antibody to rat ICAM-1 resulted in dose-dependent reductions in mean granuloma number and cross-sectional area. Intrapulmonary instillation of antibody to rat ICAM-1 (via tracheostomy 24 hours after glucan infusion) resulted in a modest reduction in mean granuloma number and cross-sectional area. When antibody to ICAM-1 was both infused and instilled via the trachea, we found an additive reduction in mean granuloma size and number. There was a 12-fold increase in adhesion of ED-1-positive peripheral blood

  18. Pneumomediastinum, subcutaneous emphysema, and pneumothorax after a pulmonary function testing in a patient with bleomycin-induced interstitial pneumonitis*

    PubMed Central

    Araujo, Mariana Sponholz; Fernandes, Frederico Leon Arrabal; Kay, Fernando Uliana; Carvalho, Carlos Roberto Ribeiro

    2013-01-01

    Spontaneous pneumomediastinum is an uncommon event, the clinical picture of which includes retrosternal chest pain, subcutaneous emphysema, dyspnea, and dysphonia. The pathophysiological mechanism involved is the emergence of a pressure gradient between the alveoli and surrounding structures, causing alveolar rupture with subsequent dissection of the peribronchovascular sheath and infiltration of the mediastinum and subcutaneous tissue with air. Known triggers include acute exacerbations of asthma and situations that require the Valsalva maneuver. We described and documented with HRCT scans the occurrence of pneumomediastinum after a patient with bleomycin-induced interstitial lung disease underwent pulmonary function testing. Although uncommon, the association between pulmonary function testing and air leak syndromes has been increasingly reported in the literature, and lung diseases, such as interstitial lung diseases, include structural changes that facilitate the occurrence of this complication. PMID:24310635

  19. Pneumomediastinum, subcutaneous emphysema, and pneumothorax after a pulmonary function testing in a patient with bleomycin-induced interstitial pneumonitis.

    PubMed

    Araujo, Mariana Sponholz; Fernandes, Frederico Leon Arrabal; Kay, Fernando Uliana; Carvalho, Carlos Roberto Ribeiro

    2013-01-01

    Spontaneous pneumomediastinum is an uncommon event, the clinical picture of which includes retrosternal chest pain, subcutaneous emphysema, dyspnea, and dysphonia. The pathophysiological mechanism involved is the emergence of a pressure gradient between the alveoli and surrounding structures, causing alveolar rupture with subsequent dissection of the peribronchovascular sheath and infiltration of the mediastinum and subcutaneous tissue with air. Known triggers include acute exacerbations of asthma and situations that require the Valsalva maneuver. We described and documented with HRCT scans the occurrence of pneumomediastinum after a patient with bleomycin-induced interstitial lung disease underwent pulmonary function testing. Although uncommon, the association between pulmonary function testing and air leak syndromes has been increasingly reported in the literature, and lung diseases, such as interstitial lung diseases, include structural changes that facilitate the occurrence of this complication.

  20. Exercise-induced pulmonary artery hypertension in a patient with compensated cardiac disease: hemodynamic and functional response to sildenafil therapy.

    PubMed

    Nikolaidis, Lazaros; Memon, Nabeel; O'Murchu, Brian

    2015-02-01

    We describe the case of a 54-year-old man who presented with exertional dyspnea and fatigue that had worsened over the preceding 2 years, despite a normally functioning bioprosthetic aortic valve and stable, mild left ventricular dysfunction (left ventricular ejection fraction, 0.45). His symptoms could not be explained by physical examination, an extensive biochemical profile, or multiple cardiac and pulmonary investigations. However, abnormal cardiopulmonary exercise test results and a right heart catheterization-combined with the use of a symptom-limited, bedside bicycle ergometer-revealed that the patient's exercise-induced pulmonary artery hypertension was out of proportion to his compensated left heart disease. A trial of sildenafil therapy resulted in objective improvements in hemodynamic values and functional class.

  1. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats.

    PubMed

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-05

    Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats.

  2. Pulmonary edema

    MedlinePlus

    ... congestion; Lung water; Pulmonary congestion; Heart failure - pulmonary edema ... Pulmonary edema is often caused by congestive heart failure . When the heart is not able to pump efficiently, blood ...

  3. Erythromycin prevents the pulmonary inflammation induced by exposure to cigarette smoke.

    PubMed

    Mikura, Shinichiro; Wada, Hiroo; Higaki, Manabu; Yasutake, Tetsuo; Ishii, Haruyuki; Kamiya, Shigeru; Goto, Hajime

    2011-07-01

    The effect of erythromycin on the inflammation caused by exposure to cigarette smoke was investigated in this study. Mice were exposed either to cigarette smoke or to environmental air (control), and some mice exposed to cigarette smoke were treated with oral erythromycin (100 mg/kg/day for 8 days). Pulmonary inflammation was assessed by determining the cellular content of bronchoalveolar lavage (BAL) fluid. The messenger RNA (mRNA) levels of various mediators, including keratinocyte-derived chemokine (KC), macrophage inflammatory protein (MIP)-2, surfactant protein (SP)-D, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, interleukin (IL)-6 in lung tissue were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. The exposure to cigarette smoke increased significantly the numbers of neutrophils (P = 0.029), macrophages (P = 0.029), and lymphocytes (P = 0.029) recovered in BAL fluid. Moreover, mRNA levels of KC (P = 0.029), MIP-2 (P = 0.029), SP-D (P = 0.029), and GM-CSF (P = 0.057) in the lung tissue were higher in mice exposed to cigarette smoke than in mice exposed to environmental air. In the erythromycin-treated mice that were exposed also to cigarette smoke, both neutrophil and lymphocyte counts were significantly lower in the BAL fluid than those in the vehicle-treated mice (P = 0.029). Erythromycin-treated mice exposed to cigarette smoke showed a trend of lower mRNA levels of KC and TNF-α in the lung tissue than those in the vehicle-treated mice, although the statistical significance was not achieved (P = 0.057). Our data demonstrated that erythromycin prevented lung inflammation induced by cigarette smoke, in parallel to the reduced mRNA levels of KC and TNF-α.

  4. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition.

    PubMed

    Lu, Guo-Xun; Bian, Di-Fei; Ji, Yu; Guo, Jiao-Mei; Wei, Zhi-Feng; Jiang, Si-De; Xia, Yu-Feng; Dai, Yue

    2014-08-01

    This study aimed to explore the protective effects of madecassoside (Mad), a triterpenoid saponin isolated from Centella asiatica herbs, on experimental pulmonary fibrosis (PF) and underlying mechanisms. PF model was established in mice by endotracheal instillation with bleomycin (5 mg/kg). Mice were orally administered with Mad (10, 20, 40 mg/kg) and prednisone (5 mg/kg) for 7 or 21 days. Mad (20, 40 mg/kg) significantly improved lung pathological changes and reduced collagen deposition. In the aspect of collagen synthesis, Mad (20, 40 mg/kg) reduced the expressions of α-smooth muscle actin and transforming growth factor-β1 (TGF-β1), and inhibited the phosphorylations of Smad2 and Smad3 in the lung tissues. However, in vitro, Mad showed little effect on TGF-β1-induced phosphorylation of either Smad2 or Smad3 in primary mouse lung fibroblasts. Moreover, Mad (20, 40 mg/kg) attenuated oxidative damage and inflammation presented at the early stage of PF, evidenced by reduced total leukocytes in the bronchoalveolar lavage fluid, decreased myeloperoxidase activity and malondialdehyde level, and increased super-oxide dismutase activity and glutathione level in lung tissues. On the other hand, Mad (40 mg/kg) elevated the matrix metalloproteinase 1/tissue inhibitor of metalloproteinase 1 ratio in lung tissues of PF mice mainly by downregulating tissue inhibitor of metalloproteinase 1 expression. The present study demonstrated that Mad can ameliorate PF by preventing the deposition of extracellular matrix, which might be achieved mainly through attenuating inflammation and oxidative stress and consequent TGF-β1 overexpression.

  5. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice

    NASA Astrophysics Data System (ADS)

    Trivedi, Ruchit; Redente, Elizabeth F.; Thakur, Ashish; Riches, David W. H.; Kompella, Uday B.

    2012-12-01

    Our purpose was to assess sustained delivery and enhanced efficacy of pirfenidone-loaded nanoparticles after intratracheal instillation. Poly(lactide-co-glycolide) nanoparticles containing pirfenidone (NPs) were prepared and characterized. Biodistribution of NPs and solution was assessed using LC-MS after intratracheal administration in C57Bl/6 mice at 3 and 24 h and 1 week post-administration. Efficacy was tested in C57Bl/6 mice in a bleomycin-induced pulmonary fibrosis model. Mice received 10 μg pirfenidone intratracheally in solution or NPs, once a week, for 3 weeks after bleomycin administration. Drug effects were monitored on day 28. Lung hydroxyproline content, total number of cells, and numbers of macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage (BAL) were assessed. Numbers of macrophages, lymphocytes, and neutrophils were assessed in the lung as well. NPs sustained significantly higher levels of pirfenidone in the lungs and BAL at 24 h and 1 week, compared to the solution group. Pirfenidone solution and NPs significantly reduced hydroxyproline levels by 57 and 81%, respectively, compared to bleomycin alone. At the end of 4 weeks, BAL cellularity was reduced by 25.4% and 56% with solution and NP treatment, respectively. The numbers of lymphocytes and neutrophils in the BAL were also reduced by 58.9 and 82.4% for solution and 74.5% and 89.7% for NPs, respectively. The number of inflammatory macrophages in the lung was reduced by 62.8% and the number of neutrophils was reduced by 59.1% in the NP group and by 37.7% and 44.5%, respectively, in the solution group, compared to bleomycin alone. In conclusion, nanoparticles sustain lung pirfenidone delivery and enhance its anti-fibrotic efficacy.

  6. Pentaerythritol Tetranitrate In Vivo Treatment Improves Oxidative Stress and Vascular Dysfunction by Suppression of Endothelin-1 Signaling in Monocrotaline-Induced Pulmonary Hypertension

    PubMed Central

    Steven, Sebastian; Oelze, Matthias; Brandt, Moritz; Ullmann, Elisabeth; Kröller-Schön, Swenja; Heeren, Tjebo; Tran, Lan P.; Daub, Steffen; Dib, Mobin; Stalleicken, Dirk; Wenzel, Philip; Münzel, Thomas

    2017-01-01

    Objective. Oxidative stress and endothelial dysfunction contribute to pulmonary arterial hypertension (PAH). The role of the nitrovasodilator pentaerythritol tetranitrate (PETN) on endothelial function and oxidative stress in PAH has not yet been defined. Methods and Results. PAH was induced by monocrotaline (MCT, i.v.) in Wistar rats. Low (30 mg/kg; MCT30), middle (40 mg/kg; MCT40), or high (60 mg/kg; MCT60) dose of MCT for 14, 28, and 42 d was used. MCT induced endothelial dysfunction, pulmonary vascular wall thickening, and fibrosis, as well as protein tyrosine nitration. Pulmonary arterial pressure and heart/body and lung/body weight ratio were increased in MCT40 rats (28 d) and reduced by oral PETN (10 mg/kg, 24 d) therapy. Oxidative stress in the vascular wall, in the heart, and in whole blood as well as vascular endothelin-1 signaling was increased in MCT40-treated rats and normalized by PETN therapy, likely by upregulation of heme oxygenase-1 (HO-1). PETN therapy improved endothelium-dependent relaxation in pulmonary arteries and inhibited endothelin-1-induced oxidative burst in whole blood and the expression of adhesion molecule (ICAM-1) in endothelial cells. Conclusion. MCT-induced PAH impairs endothelial function (aorta and pulmonary arteries) and increases oxidative stress whereas PETN markedly attenuates these adverse effects. Thus, PETN therapy improves pulmonary hypertension beyond its known cardiac preload reducing ability. PMID:28337251

  7. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    PubMed Central

    Gu, Yu-Han; Liu, Ming; Bai, Yang; Liang, Li-Ye; Wang, Huai-Liang

    2017-01-01

    Methamphetamine (MA) leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS). The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ) alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA), and MA plus TBHQ-treated group (MA + TBHQ). Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity. PMID:28303170

  8. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity.

    PubMed

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Liang, Li-Ye; Wang, Huai-Liang

    2017-01-01

    Methamphetamine (MA) leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS). The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ) alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA), and MA plus TBHQ-treated group (MA + TBHQ). Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  9. Inhibition of Nitro-Oxidative Stress Attenuates Pulmonary and Systemic Injury Induced by High-Tidal Volume Mechanical Ventilation.

    PubMed

    Martínez-Caro, Leticia; Nin, Nicolás; Sánchez-Rodríguez, Carolina; Ferruelo, Antonio; El Assar, Mariam; de Paula, Marta; Fernández-Segoviano, Pilar; Esteban, Andrés; Lorente, José A

    2015-07-01

    Mechanisms contributing to pulmonary and systemic injury induced by high tidal volume (VT) mechanical ventilation are not well known. We tested the hypothesis that increased peroxynitrite formation is involved in organ injury and dysfunction induced by mechanical ventilation. Male Sprague-Dawley rats were subject to low- (VT, 9 mL/kg; positive end-expiratory pressure, 5 cmH2O) or high- (VT, 25 mL/kg; positive end-expiratory pressure, 0 cmH2O) VT mechanical ventilation for 120 min, and received 1 of 3 treatments: 3-aminobenzamide (3-AB, 10 mg/kg, intravenous, a poly adenosine diphosphate ribose polymerase [PARP] inhibitor), or the metalloporphyrin manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 5 mg/kg intravenous, a peroxynitrite scavenger), or no treatment (control group), 30 min before starting the mechanical ventilation protocol (n = 8 per group, 6 treatment groups). We measured mean arterial pressure, peak inspiratory airway pressure, blood chemistry, and gas exchange. Oxidation (fluorescence for oxidized dihydroethidium), protein nitration (immunofluorescence and Western blot for 3-nitrotyrosine), PARP protein (Western blot) and gene expression of the nitric oxide (NO) synthase (NOS) isoforms (quantitative real-time reverse transcription polymerase chain reaction) were measured in lung and vascular tissue. Lung injury was quantified by light microscopy. High-VT mechanical ventilation was associated with hypotension, increased peak inspiratory airway pressure, worsened oxygenation; oxidation and protein nitration in lung and aortic tissue; increased PARP protein in lung; up-regulation of NOS isoforms in lung tissue; signs of diffuse alveolar damage at histological examination. Treatment with 3AB or MnTMPyP attenuated the high-VT mechanical ventilation-induced changes in pulmonary and cardiovascular function; down-regulated the expression of NOS1, NOS2, and NOS3; decreased oxidation and nitration in lung and aortic tissue; and attenuated

  10. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats.

    PubMed

    Ward, William O; Ledbetter, Allen D; Schladweiler, Mette C; Kodavanti, Urmila P

    2015-01-01

    Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive analysis of these changes will allow us to better understand the mechanism of pulmonary injury and inflammation. Male Wistar Kyoto rats (10-12 week) were exposed to air, or ozone (0.25, 0.5 or 1.0 ppm) for 4 h and pulmonary injury and inflammation were assessed at 0-h or 20-h (n = 8/group). Lung gene expression profiling was assessed at 0-h (air and 1.0 ppm ozone, n = 3-4/group). At 20-h bronchoalveolar lavage, fluid protein and neutrophils increased at 1 ppm ozone. Numerous genes involved in acute inflammatory response were up-regulated along with changes in genes involved in cell adhesion and migration, steroid metabolism, apoptosis, cell cycle control and cell growth. A number of NRF2 target genes were also induced after ozone exposure. Based on expression changes, Rela, SP1 and TP3-mediated signaling were identified to be mediating downstream changes. Remarkable changes in the processes of endocytosis provide the insight that ozone-induced lung injury and inflammation are likely initiated by changes in cell membrane components and receptors likely from oxidatively modified lung lining lipids and proteins. In conclusion, ozone-induced injury and inflammation are preceded by changes in gene targets for cell adhesion/migration, apoptosis, cell cycle control and growth regulated by Rela, SP1 and TP53, likely mediated by the process of endocytosis and altered steroid receptor signaling.

  11. Role of B Cells in Mucosal Vaccine-Induced Protective CD8+ T Cell Immunity against Pulmonary Tuberculosis.

    PubMed

    Khera, Amandeep K; Afkhami, Sam; Lai, Rocky; Jeyanathan, Mangalakumari; Zganiacz, Anna; Mandur, Talveer; Hammill, Joni; Damjanovic, Daniela; Xing, Zhou

    2015-09-15

    Emerging evidence suggests a role of B cells in host defense against primary pulmonary tuberculosis (TB). However, the role of B cells in TB vaccine-induced protective T cell immunity still remains unknown. Using a viral-vectored model TB vaccine and a number of experimental approaches, we have investigated the role of B cells in respiratory mucosal vaccine-induced T cell responses and protection against pulmonary TB. We found that respiratory mucosal vaccination activated Ag-specific B cell responses. Whereas respiratory mucosal vaccination elicited Ag-specific T cell responses in the airway and lung interstitium of genetic B cell-deficient (Jh(-/-) knockout [KO]) mice, the levels of airway T cell responses were lower than in wild-type hosts, which were associated with suboptimal protection against pulmonary Mycobacterium tuberculosis challenge. However, mucosal vaccination induced T cell responses in the airway and lung interstitium and protection in B cell-depleted wild-type mice to a similar extent as in B cell-competent hosts. Furthermore, by using an adoptive cell transfer approach, reconstitution of B cells in vaccinated Jh(-/-) KO mice did not enhance anti-TB protection. Moreover, respiratory mucosal vaccine-activated T cells alone were able to enhance anti-TB protection in SCID mice, and the transfer of vaccine-primed B cells alongside T cells did not further enhance such protection. Alternatively, adoptively transferring vaccine-primed T cells from Jh(-/-) KO mice into SCID mice only provided suboptimal protection. These data together suggest that B cells play a minimal role, and highlight a central role by T cells, in respiratory mucosal vaccine-induced protective immunity against M. tuberculosis.

  12. Preventive effects of quercetin against benzo[a]pyrene-induced DNA damages and pulmonary precancerous pathologic changes in mice.

    PubMed

    Jin, Nian-zu; Zhu, Yan-ping; Zhou, Jian-wei; Mao, Li; Zhao, Ren-cheng; Fang, Tai-hui; Wang, Xin-ru

    2006-06-01

    The aim of this study was to investigate the preventive effects of quercetin against benzo[a]pyrene-induced blood lymphocyte DNA damages and pulmonary precancerous pathologic changes in mice, and to reveal the potential mechanism behind these effects. In this study, mice in quercetin-treated groups were given quercetin for 90 days. After one week of treatment, mice in the quercetin-treated groups and the positive control group received a single intraperitoneal dose of benzo[a]pyrene (100 mg/kg body weight). The results of single cell gel electrophoresis assay showed that the average lengths of the comet cell tail and DNA damage in the peripheral blood lymphocytes of mice induced by benzo[a]pyrene decreased significantly as a result of quercetin treatment dose-dependently. Light microscopic examination showed that the degrees of pulmonary precancerous pathologic changes in the quercetin-treated groups decreased significantly compared with those in the positive control group. Meanwhile, the cytochrome P4501A1-linked 7-ethoxyresorufin O-dealkylase activities in lung microsomes of mice decreased as the dose of quercetin increased. The results of this in vivo study revealed that quercetin had a significant preventive effect on benzo[a]pyrene-induced DNA damage, and had a potential chemopreventive effect on the carcinogenesis of lung cancer induced by benzo[a]pyrene. The mechanism of these effects of quercetin could be related to the inhibition of cytochrome P4501A1 activity.

  13. Ganglionated plexi stimulation induces pulmonary vein triggers and promotes atrial arrhythmogenecity: In silico modeling study

    PubMed Central

    Hwang, Minki; Lim, Byounghyun; Song, Jun-Seop; Yu, Hee Tae; Ryu, Ah-Jin; Lee, Young-Seon; Joung, Boyoung; Shim, Eun Bo; Pak, Hui-Nam

    2017-01-01

    Background The role of the autonomic nervous system (ANS) on atrial fibrillation (AF) is difficult to demonstrate in the intact human left atrium (LA) due to technical limitations of the current electrophysiological mapping technique. We examined the effects of the ANS on the initiation and maintenance of AF by employing a realistic in silico human left atrium (LA) model integrated with a model of ganglionated plexi (GPs). Methods We incorporated the morphology of the GP and parasympathetic nerves in a three-dimensional (3D) realistic LA model. For the model of ionic currents, we used a human atrial model. GPs were stimulated by increasing the IK[ACh], and sympathetic nerve stimulation was conducted through a homogeneous increase in the ICa-L. ANS-induced wave-dynamics changes were evaluated in a model that integrated a patient’s LA geometry, and we repeated simulation studies using LA geometries from 10 different patients. Results The two-dimensional model of pulmonary vein (PV) cells exhibited late phase 3 early afterdepolarization-like activity under 0.05μM acetylcholine (ACh) stimulation. In the 3D simulation model, PV tachycardia was induced, which degenerated to AF via GP (0.05μM ACh) and sympathetic (7.0×ICa-L) stimulations. Under sustained AF, local reentries were observed at the LA-PV junction. We also observed that GP stimulation reduced the complex fractionated atrial electrogram (CFAE)-cycle length (CL, p<0.01) and the life span of phase singularities (p<0.01). GP stimulation also increased the overlap area of the GP and CFAE areas (CFAE-CL≤120ms, p<0.01). When 3 patterns of virtual ablations were applied to the 3D AF models, circumferential PV isolation including the GP was the most effective in terminating AF. Conclusion Cardiac ANS stimulations demonstrated triggered activity, automaticity, and local reentries at the LA-PV junction, as well as co-localized GP and CFAE areas in the 3D in silico GP model of the LA. PMID:28245283

  14. Pulmonary administration of 1,25-dihydroxyvitamin D3 to the lungs induces alveolar regeneration in a mouse model of chronic obstructive pulmonary disease.

    PubMed

    Horiguchi, Michiko; Hirokawa, Mai; Abe, Kaori; Kumagai, Harumi; Yamashita, Chikamasa

    2016-07-10

    Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease with several causes, including smoking, and no curative therapeutic agent is available, particularly for destructive alveolar lesions. In this study, we investigated the differentiation-inducing effect on undifferentiated lung cells (Calu-6) and the alveolar regenerative effect of the active vitamin 1,25-dihydroxy vitamin D3 (VD3) with the ultimate goal of developing a novel curative drug for COPD. First, the differentiation-inducing effect of VD3 on Calu-6 cells was evaluated. Treatment with VD3 increased the proportions of type I alveolar epithelial (AT-I) and type II alveolar epithelial (AT-II) cells constituting alveoli in a concentration- and treatment time-dependent manner, demonstrating the potent differentiation-inducing activity of VD3 on Calu-6 cells. We thus administered VD3 topically to the mice lung using a previously developed intrapulmonary administration via self-inhalation method. To evaluate the alveolus-repairing effect of VD3, we administered VD3 intrapulmonarily to elastase-induced COPD model mice and computed the mean distance between the alveolar walls as an index of the extent of alveolar injury. Results showed significant decreases in the alveolar wall distance in groups of mice that received 0.01, 0.1, and 1μg/kg of intrapulmonary VD3, revealing excellent alveolus-regenerating effect of VD3. Furthermore, we evaluated the effect of VD3 on improving respiratory function using a respiratory function analyzer. Lung elasticity and respiratory competence [forced expiratory volume (FEV) 1 s %] are reduced in COPD, reflecting advanced emphysematous changes. In elastase-induced COPD model mice, although lung elasticity and respiratory competence were reduced, VD3 administered intrapulmonarily twice weekly for 2weeks recovered tissue elastance and forced expiratory volume in 0.05s to the forced vital capacity, which are indicators of lung elasticity and respiratory

  15. Ginsenoside Rg1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of p38

    PubMed Central

    Zheng, Mengxiao; Zhao, Meiping; Tang, Lanlan; Zhang, Congcong; Song, Longsheng

    2016-01-01

    Background Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased pulmonary arteriolar resistance. Pulmonary vasoconstriction has been proved to play a significant role in PAH. We previously reported that Panax notoginseng saponins (PNS) might attenuate hypoxia and hypercapnia-induced pulmonary vasoconstriction (HHPV). Methods In the present study, our specific objective was to investigate the role of ginsenoside Rg1, a major component of PNS, in this process and the possible underlying mechanism. The second order pulmonary rings isolated from the Sprague-Dawley rats were treated with different dosage of ginsenoside Rg1 at 8, 40, or 100 mg/L respectively, both before and during the conditions of hypoxia and hypercapnia. Contractile force changes of the rings were detected. Furthermore, SB203580, the selective inhibitor for p38 activation was applied to the rings. Pulmonary arterial smooth muscle cells (PASMCs) were cultured under hypoxic and hypercapnic conditions, and ginsenoside Rg1 was administered to detect the changes induced by p38. Results Under the hypoxic and hypercapnic conditions, we observed a biphasic pulmonary artery contractile response to the second pulmonary artery rings. It is hypothesized that the observed attenuation of vasoconstriction and the production of vasodilation could have been induced by ginsenoside Rg1. This effect was significantly reinforced by SB203580 (P<0.05 or P<0.01). The expression of p38 in the PASMCs under hypoxic and hypercapnic conditions was significantly activated (P<0.05 or P<0.01) and the observed activation was attenuated by ginsenoside Rg1 (P<0.05 or P<0.01). Conclusions Our findings strongly support the significant role of ginsenoside Rg1 in the inhibition of hypoxia and hypercapnia-induced vasoconstriction by the p38 pathway. PMID:27499938

  16. Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures.

    PubMed

    Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-ju; Jang, Won Ick; Yu, Han Young

    2012-03-07

    Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm(-3) and 40-80 m(2) g(-1), respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.

  17. Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G.; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-Ju; Jang, Won Ick; Yu, Han Young

    2012-02-01

    Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm-3 and 40-80 m2 g-1, respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.

  18. Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanfang (John); Maloney, Ryan; Lukatskaya, Maria R.; Beidaghi, Majid; Dyatkin, Boris; Perre, Emilie; Long, Donghui; Qiao, Wenming; Dunn, Bruce; Gogotsi, Yury

    2015-01-01

    Herein we report on the hydrothermal synthesis of niobium pentoxide on carbide-derived carbon (Nb2O5/CDC) with a layered structure. The presence of phenylphosphonic acid guides the deposition during preparation, leading to the formation of amorphous Nb2O5 particles which are 4-10 nm in diameter and homogeneously distributed on the CDC framework. Electrochemical testing of the Nb2O5/CDC electrode indicated that the highest capacitance and Coulombic efficiency occurred using an electrolyte comprised of 1 M lithium perchlorate in ethylene carbonate/dimethyl carbonate. Subsequent heat treatment of Nb2O5/CDC in CO2 environment led to crystallization of the Nb2O5, allowing reversible Li+ intercalation/de-intercalation. For sweep rates corresponding to charging and discharging in under 3 min, a volumetric charge of 180 C cm-3 and Coulombic efficiency of 99.2% were attained.

  19. Contactless Monitoring of Conductivity Changes in Vanadium Pentoxide Xerogel Layers Using Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Rimeika, Romualdas; Sereika, Raimundas; Čiplys, Daumantas; Bondarenka, Vladimiras; Sereika, Albertas; Shur, Michael

    The hydrated form of the vanadium pentoxide (V2O5 ·nH2O) deposited by the sol-gel method on the piezoelectric YZ-LiNbO3 substrate has been studied using surface acoustic waves (SAWs). Brush-deposited and spin-coated layers, differing in thickness by an order of magnitude (∼1 μm and ∼0.1 μm, respectively) were studied. The variations with time in the transmitted SAW amplitude and phase during the gel-to-xerogel transition of V2O5 ·nH2O were observed and attributed to the acoustoelectric interaction. The possibilities of using the SAWs for contactless monitoring of the layer sheet conductivity have been demonstrated.

  20. Effect of Annealing on the Properties of Vanadium Pentoxide Films Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Liu, Yaqiang; Du, Xuelian; Liu, Xueqin

    2014-03-01

    The vanadium pentoxide (V2O5) films were obtained by using sol-gel procedure and then were annealed at different temperature in air. The effect of different annealing temperatures on the composition, the microstructure, the surface morphology and the optical properties of the films were characterized by methods such as by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and spectral transmittance. The results revealed that the film annealed at 150°C has amorphous structure and dense with a smooth surface and the films annealed at 300°C and 450°C have a polycrystalline V2O5 structure with preferred growth orientation along (001) planes, the c-axis and perpendicular to the silicon substrate surface. From the spectral transmittance we determined the absorption edge using the Tauc plot. The results indicated that optical bandgap of V2O5 thin films decreased with annealing temperature.

  1. Continuous tubular nanofibers of vanadium pentoxide by electrospinning for energy storage devices

    NASA Astrophysics Data System (ADS)

    Lala, Neeta L.; Jose, Rajan; Yusoff, Mashitah M.; Ramakrishna, Seeram

    2012-11-01

    Tubular nanofibers (TNFs) of vanadium pentoxide (V2O5) were synthesized by electrospinning technique using a single spinneret for the first time by controlling the properties of the precursor solution. A partially miscible polymeric solution of vanadium oxytrihydroxide [VO(OH)3] was produced by hydrolysis of vanadyl acetylacetonate in Poly(vinylpyrrolidone) (PVP). The phase-separated polymer solution formed the core of the electrospun fibers whereas the VO(OH)3 formed the shell; the core PVP has been removed by controlled heat treatment. The TNFs had an inner diameter 60 nm and wall thickness ±100 nm. The capacitive behavior of the V2O5 TNFs was studied using cyclic voltammetry and galvanostatic cycling techniques. The studies showed ideal stable supercapacitive characteristics in the electrospun V2O5 TNFs.

  2. Dissociative electron attachment to dinitrogen pentoxide, N{sub 2}O{sub 5}

    SciTech Connect

    Cicman, P.; Buchanan, G.A.; Marston, G.; Gulejova, B.; Skalny, J.D.; Mason, N.J.; Scheier, P.; Maerk, T.D.

    2004-11-22

    Electron attachment was studied in gaseous dinitrogen pentoxide, N{sub 2}O{sub 5}, for incident electron energies between a few meV and 10 eV. No stable parent anion N{sub 2}O{sub 5}{sup -} was observed but several anionic fragments (NO{sub 3}{sup -}, NO{sub 2}{sup -}, NO{sup -}, O{sup -}, and O{sub 2}{sup -}) were detected using quadrupole mass spectrometry. Many of these dissociative pathways were found to be coupled and provide detailed information on the dynamics of N{sub 2}O{sub 5} fragmentation. Estimates of the cross sections for production of each of the anionic fragments were made and suggest that electron attachment to N{sub 2}O{sub 5} is amongst the most efficient attachment reactions recorded for nonhalogenated polyatomic systems.

  3. Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    Alencar, Allan K N; Pereira, Sharlene L; Montagnoli, Tadeu L; Maia, Rodolfo C; Kümmerle, Arthur E; Landgraf, Sharon S; Caruso-Neves, Celso; Ferraz, Emanuelle B; Tesch, Roberta; Nascimento, José H M; de Sant'Anna, Carlos M R; Fraga, Carlos A M; Barreiro, Eliezer J; Sudo, Roberto T; Zapata-Sudo, Gisele

    2013-01-01

    Background and Purpose Pulmonary arterial hypertension (PAH) is characterized by enhanced pulmonary vascular resistance, right ventricular hypertrophy and increased right ventricular systolic pressure. Here, we investigated the effects of a N-acylhydrazone derivative, 3,4-dimethoxyphenyl-N-methyl-benzoylhydrazide (LASSBio-1359), on monocrotaline (MCT)-induced pulmonary hypertension in rats. Experimental Approach PAH was induced in male Wistar rats by a single i.p. injection of MCT (60 mg·kg−1) and 2 weeks later, oral LASSBio-1359 (50 mg·kg−1) or vehicle was given once daily for 14 days. Echocardiography was used to measure cardiac function and pulmonary artery dimensions, with histological assay of vascular collagen. Studies of binding to human recombinant adenosine receptors (A1, A2A, A3) and of docking with A2A receptors were also performed. Key Results MCT administration induced changes in vascular and ventricular structure and function, characteristic of PAH. These changes were reversed by treatment with LASSBio-1359. MCT also induced endothelial dysfunction in pulmonary artery, as measured by diminished relaxation of pre-contracted arterial rings, and this dysfunction was reversed by LASSBio-1359. In pulmonary artery rings from normal Wistar rats, LASSBio-1359 induced relaxation, which was decreased by the adenosine A2A receptor antagonist, ZM 241385. In adenosine receptor binding studies, LASSBio-1359 showed most affinity for the A2A receptor and in the docking analyses, binding modes of LASSBio-1359 and the A2A receptor agonist, CGS21680, were very similar. Conclusion and Implications In rats with MCT-induced PAH, structural and functional changes in heart and pulmonary artery were reversed by treatment with oral LASSBio-1359, most probably through the activation of adenosine A2A receptors. PMID:23530610

  4. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    2014-01-01

    Background The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function. Methods Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis. Results The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001). Conclusions Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH. PMID:24929652

  5. Pulmonary embolus

    MedlinePlus

    ... clot - lung; Embolus; Tumor embolus; Embolism - pulmonary; DVT-pulmonary embolism; Thrombosis - pulmonary embolism ... Main symptoms of a pulmonary embolism include chest pain that may be any of the following: Under the breastbone or on one side Sharp or stabbing ...

  6. Chemical Composition Study of Vanadium Pentoxide Xerogels Doped by Bovine Albumin

    NASA Astrophysics Data System (ADS)

    Sereika, R.; Kaciulis, S.; Mezzi, A.; Brucale, M.

    2016-06-01

    Metal-bioorganic compounds of vanadium pentoxide and bovine serum albumin (BSA) (Fraction V) were obtained by using sol-gel method. Series of the samples (BSA)xV2O5ṡnH2O, where x=0, 0.01 and 0.001, were originally produced by the synthesis of vanadium pentoxide xerogels and subsequent blending with water-dissolved BSA in appropriate molar ratios. It was evident that the gelation process does not occur for x>0.01. For the X-ray photoelectron spectroscopy (XPS) studies, the thin layers of these materials were prepared by drying the gel onto the glass and mica substrates. The surface morphology of the samples was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. It follows from the analysis of experimental XPS spectra of (BSA)xV2O5ṡnH2O that the nitrogen ions in pure albumin and in (BSA)0.01V2O5ṡnH2O are present in imine, amine and protonated amine groups. The additional protonated amine arises when the concentration of albumin in (BSA)xV2O5ṡnH2O is low (x=0.001). Increasing the amount of albumin results in decrease of the number of oxygen ions bonded to vanadium. At the same time (with increase of albumin), the component of oxygen bounded to carbon and nitrogen is increasing. In the samples with greater amount of albumin, the reduction of vanadium ions occurs. This means that the trivalent and tetravalent vanadium ions are present together with pentavalent ones.

  7. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling

    PubMed Central

    Ni, Shirong; Wang, Dexuan; Qiu, Xiaoxiao; Pang, Lingxia; Song, Zhangjuan; Guo, Kunyuan

    2015-01-01

    Pulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant may play an important role in many of the processes of inflammation and fibrosis. Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress. Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. In the present study, we investigated bone marrow mesenchymal stem cells (BMSCs) for the treatment of bleomycin-induced pulmonary fibrosis. Our results showed that BMSCs administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. The gene expression levels of NAD(P)H: quinine oxidoreductase 1 (NQO1), gama-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), attenuated by bleomycin, were increased up to basal levels after BMSCs transplantation. BMSCs significantly increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) production in the injured lung. The present study provides evidence that BMSCs may be a potential therapeutic reagent for the treatment of lung fibrosis. PMID:26339340

  8. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.

    PubMed

    Yi, E S; Lee, H; Suh, Y K; Tang, W; Qi, M; Yin, S; Remick, D G; Ulich, T R

    1996-10-01

    Extrinsic allergic alveolitis and pulmonary sarcoidosis are granulomatous diseases of the lung for which clinical presentation and anatomic site of granuloma formation differ. Extrinsic allergic alveolitis is caused by inhaled antigens, whereas the nature and source of the inciting antigen in sarcoidosis is unknown. To test the hypothesis that the route via which antigen is introduced to the lung contributes to the clinicopathological presentation of pulmonary granulomatous disease, rats immunized with intravenous (i.v.) Corynebacterium parvum were challenged after 2 weeks with either intratracheal (i.t.) or i.v. C. parvum. The granulomatous inflammation elicited by i.t. challenge predominantly involved alveolar spaces and histologically simulated extrinsic allergic alveolitis. In contrast, the inflammation induced by i.v. challenge was characterized by granulomatous angiitis and interstitial inflammation simulating sarcoidosis. Elevations of leukocyte counts and TNF levels in bronchoalveolar fluid, which reflect inflammation in the intra-alveolar compartment, were much more pronounced after i.t. than after i.v. challenge. Tumor necrosis factor, interleukin-6, CC chemokine, CXC chemokine, and adhesion molecule mRNA and protein expression occurred in each model. In conclusion, i.t. or i.v. challenge with C. parvum in sensitized rats caused pulmonary granulomatous inflammation that was histologically similar to human extrinsic allergic alveolitis and sarcoidosis, respectively. Although the soluble and cellular mediators of granulomatous inflammation were qualitatively similar in both disease models, the differing anatomic source of the same antigenic challenge was responsible for differing clinicopathological presentations.

  9. Human Adipose-derived Mesenchymal Stem Cells Attenuate Early Stage of Bleomycin Induced Pulmonary Fibrosis: Comparison with Pirfenidone

    PubMed Central

    Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish

    2016-01-01

    Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152

  10. Cetrimide-chlorhexidine-induced multiorgan failure in surgery of pulmonary hydatid cyst

    PubMed Central

    Tripathy, Swagata; Sasmal, Prakash; Rao, P. Bhaskar; Mishra, Tushar S.; Nayak, Sukdev

    2016-01-01

    Savlon (0.5% cetrimide/0.05% chlorhexidine) is used as a scolicidal during surgery of hydatid cysts. It is considered a safe and effective agent. However, there are no recommendations for the appropriate concentration or dosage of these agents. Previously reported to cause severe metabolic acidosis, its effects on the pulmonary system have not been explored. We present a case of acute lung injury and respiratory distress along with acute cardiopulmonary distress, severe metabolic acidosis, and renal failure following its use during surgical removal of pulmonary hydatid cyst. The agent may act as a chemical sclerosant causing pulmonary parenchymal damage through bronchial openings present in the pericyst. Till safe dose limits are known, use of this agent should be limited, especially in large or multiple cyst surgery. PMID:27397471

  11. Cardiomyopathy Induced by Pulmonary Sequestration in a 50-Year-Old Man

    PubMed Central

    Chatelain, Shaun; Comp, Robert A.; Grace, R. Randal

    2015-01-01

    A 50-year-old black man presented at the emergency department with midsternal, nonradiating chest pressure and chronic dyspnea on exertion. Four years before the current admission, he had been diagnosed with nonischemic cardiomyopathy at another facility. After our complete evaluation, we suspected that his symptoms arose from left-to-left shunting in association with pulmonary sequestration, a congenital malformation. Our preliminary diagnosis of secondary dilated cardiomyopathy was confirmed by normalization of the patient's ventricular size and function after lobectomy. To our knowledge, this patient is the oldest on record to present with cardiomyopathy consequent to pulmonary sequestration. His case is highly unusual because of his age and the rapid resolution of his symptoms after lobectomy. We believe that pulmonary sequestration should be included in the differential diagnosis of dilated cardiomyopathy. PMID:25873803

  12. Cocaine-induced myocardial infarction associated with severe reversible systolic dysfunction and pulmonary edema.

    PubMed

    Arzola-Castañer, Daniel; Johnson, Charles

    2004-12-01

    Myocardial infarction (MI) associated to cocaine use was originally reported in 1982 and cases are being encountered more frequently in our milieu. The literature regarding this diagnosis has included mostly cases of cocaine associated chest pain and MI without serious sequelae. A lesser number of reports however focus on the clinical presentation of severe myocardial dysfunction and severe pulmonary edema, with the mechanism for pulmonary edema still being debated. Although previously described individually, these manifestations are thought to be an uncommon complication of cocaine ingestion. In this article the subject is reviewed and we report our experience with two patients that presented to our care with severe pulmonary edema and concomitant severe left ventricular systolic dysfunction that resolved spontaneously with supportive therapy. It is felt that this clinical picture after cocaine use may be more common than expected. In this article we discuss the possible mechanisms associated to this presentation as well as review the literature regarding this subject.

  13. Vascular endothelial-cadherin downregulation as a feature of endothelial transdifferentiation in monocrotaline-induced pulmonary hypertension.

    PubMed

    Nikitopoulou, Ioanna; Orfanos, Stylianos E; Kotanidou, Anastasia; Maltabe, Violetta; Manitsopoulos, Nikolaos; Karras, Panagiotis; Kouklis, Panos; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2016-08-01

    Increased pulmonary vascular resistance in pulmonary hypertension (PH) is caused by vasoconstriction and obstruction of small pulmonary arteries by proliferating vascular cells. In analogy to cancer, subsets of proliferating cells may be derived from endothelial cells transitioning into a mesenchymal phenotype. To understand phenotypic shifts transpiring within endothelial cells in PH, we injected rats with alkaloid monocrotaline to induce PH and measured lung tissue levels of endothelial-specific protein and critical differentiation marker vascular endothelial (VE)-cadherin. VE-cadherin expression by immonoblotting declined significantly 24 h and 15 days postinjection to rebound to baseline at 30 days. There was a concomitant increase in transcriptional repressors Snail and Slug, along with a reduction in VE-cadherin mRNA. Mesenchymal markers α-smooth muscle actin and vimentin were upregulated by immunohistochemistry and immunoblotting, and α-smooth muscle actin was colocalized with endothelial marker platelet endothelial cell adhesion molecule-1 by confocal microscopy. Apoptosis was limited in this model, especially in the 24-h time point. In addition, monocrotaline resulted in activation of protein kinase B/Akt, endothelial nitric oxide synthase (eNOS), nuclear factor (NF)-κB, and increased lung tissue nitrotyrosine staining. To understand the etiological relationship between nitrosative stress and VE-cadherin suppression, we incubated cultured rat lung endothelial cells with endothelin-1, a vasoconstrictor and pro-proliferative agent in pulmonary arterial hypertension. This resulted in activation of eNOS, NF-κB, and Akt, in addition to induction of Snail, downregulation of VE-cadherin, and synthesis of vimentin. These effects were blocked by eNOS inhibitor N(ω)-nitro-l-arginine methyl ester. We propose that transcriptional repression of VE-cadherin by nitrosative stress is involved in endothelial-mesenchymal transdifferentiation in experimental PH.

  14. Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level

    PubMed Central

    Herrera, Emilio A.; Riquelme, Raquel A.; Ebensperger, Germán; Reyes, Roberto V.; Ulloa, César E.; Cabello, Gertrudis; Krause, Bernardo J.; Parer, Julian T.; Giussani, Dino A.

    2010-01-01

    We determined whether postnatal pulmonary hypertension induced by 70% of pregnancy at high altitude (HA) persists once the offspring return to sea level and investigated pulmonary vascular mechanisms operating under these circumstances. Pregnant ewes were divided into two groups: conception, pregnancy, and delivery at low altitude (580 m, LLL) and conception at low altitude, pregnancy at HA (3,600 m) from 30% of gestation until delivery, and return to lowland (LHL). Pulmonary arterial pressure (PAP) was measured in vivo. Vascular reactivity and morphometry were assessed in small pulmonary arteries (SPA). Protein expression of vascular mediators was determined. LHL lambs had higher basal PAP and a greater increment in PAP after NG-nitro-l-arginine methyl ester (20.9 ± 1.1 vs. 13.7 ± 0.5 mmHg; 39.9 ± 5.0 vs. 18.3 ± 1.3 mmHg, respectively). SPA from LHL had a greater maximal contraction to K+ (1.34 ± 0.05 vs. 1.16 ± 0.05 N/m), higher sensitivity to endothelin-1 and nitroprusside, and persistence of dilatation following blockade of soluble guanylate cyclase. The heart ratio of the right ventricle-to-left ventricle plus septum was higher in the LHL relative to LLL. The muscle area of SPA (29.3 ± 2.9 vs. 21.1 ± 1.7%) and the protein expression of endothelial nitric oxide synthase (1.7 ± 0.1 vs. 1.1 ± 0.2), phosphodiesterase (1.4 ± 0.1 vs. 0.7 ± 0.1), and Ca2+-activated K+ channel (0.76 ± 0.16 vs. 0.30 ± 0.01) were greater in LHL compared with LLL lambs. In contrast, LHL had decreased heme oxygenase-1 expression (0.82 ± 0.26 vs. 2.22 ± 0.44) and carbon monoxide production (all P < 0.05). Postnatal pulmonary hypertension induced by 70% of pregnancy at HA promotes cardiopulmonary remodeling that persists at sea level. PMID:20881096

  15. Combined itraconazole-pentoxifylline treatment promptly reduces lung fibrosis induced by chronic pulmonary paracoccidioidomycosis in mice.

    PubMed

    Naranjo, Tonny W; Lopera, Damaris E; Diaz-Granados, Lucy R; Duque, Jhon J; Restrepo, Angela M; Cano, Luz E

    2011-02-01

    Fibrosis is a severe and progressive sequel of many pulmonary diseases, has no effective therapy at present and, consequently, represents a serious health problem. In Latin America, chronic pulmonary paracoccidioidomycosis (PCM) is one of the most important, prevalent and systemic fungal diseases that allows the development of lung fibrosis, with the additional disadvantage that this sequel may appear even after an apparently successful course of antifungal therapy. In this study, was propose the pentoxifylline as complementary treatment in the pulmonary PCM due to its immunomodulatory and anti-fibrotic properties demonstrated in vitro and in vivo in liver, skin and lung. Our objective was to investigate the possible beneficial effects that a combined antifungal (Itraconazole) and immunomodulatory (Pentoxifylline) therapy would have in the development of fibrosis in a model of experimental chronic pulmonary PCM in an attempt to simulate the naturally occurring events in human patients. Two different times post-infection (PI) were chosen for starting therapy, an "early time" (4 weeks PI) when fibrosis was still absent and a "late time" (8 weeks PI) when the fibrotic process had started. Infected mice received the treatments via gavage and were sacrificed during or upon termination of treatment; their lungs were then removed and processed for immunological and histopathologic studies in order to assess severity of fibrosis. When pulmonary paracoccidioidomycosis had evolved and reached an advanced stage of disease before treatment began (as normally occurs in many human patients when first diagnosed), the combined therapy (itraconazole plus pentoxifylline) resulted in a significantly more rapid reduction of granulomatous inflammation and pulmonary fibrosis, when compared with the results of classical antifungal therapy using itraconazole alone.

  16. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced By Plasma After Hemorrhagic Shock.

    PubMed

    Wu, Feng; Peng, Zhanglong; Park, Pyong Woo; Kozar, Rosemary A

    2017-01-19

    Syndecan-1 is considered a biomarker of injury to the endothelial glycocalyx following hemorrhagic shock, with shedding of sdc1 deleterious. Resuscitation with fresh frozen plasma (FFP) has been correlated with restitution of pulmonary sdc1 and reduction of lung injury, but the precise contribution of sdc1 to FFPs protection in the lung remains unclear. Human lung endothelial cells were used to assess the time and dose dependent effect of FFP on sdc1 expression and the effect of sdc1 silencing on in vitro endothelial cell permeability and actin stress fiber formation. Wild-type (WT) and syndecan-1 mice were subjected to hemorrhagic shock followed by resuscitation with lactated ringers (LR) or FFP and compared to shock alone and shams. Lungs were harvested after 3 hours for analysis of permeability, histology, and inflammation and for measurement of syndecan- 2 and 4 expression. In vitro, FFP enhanced pulmonary endothelial sdc1 expression in time- and dose-dependent manners and loss of sdc1 in pulmonary endothelial cells worsened permeability and stress fiber formation by FFP. Loss of sdc1 in vivo lead to equivalency between LR and FFP in restoring pulmonary injury, inflammation, and permeability after shock. Lastly, sdc1 mice demonstrated a significant increase in pulmonary syndecan 4 expression after hemorrhagic shock and FFP based resuscitation. Taken together, our findings support a key role for sdc1 in modulating pulmonary protection by FFP after hemorrhagic shock. Our results also suggest that other members of the syndecan family may at least be contributing to FFP's effects on the endothelium, an area that warrants further investigation.

  17. Systemic treatment with interleukin-4 induces regression of pulmonary metastases in a murine renal cell carcinoma model.

    PubMed

    Hillman, G G; Younes, E; Visscher, D; Ali, E; Lam, J S; Montecillo, E; Pontes, J E; Haas, G P; Puri, R K

    1995-02-01

    Advanced metastatic renal cell carcinoma has been shown to be responsive to immunotherapy but the response rate is still limited. We have investigated the therapeutic potential of systemic interleukin-4 (IL-4) administration for the treatment of pulmonary metastases in the murine Renca renal adenocarcinoma model. Renca cells were injected iv in Balb/c mice to induce multiple pulmonary tumor nodules. From Day 5, Renca-bearing mice were treated with two daily injections of recombinant murine IL-4 for 5 consecutive days. IL-4 treatment induced a significant reduction in the number of lung metastases in a dose-dependent manner and significantly augmented the survival of treated animals. Immunohistochemistry studies, performed on lung sections, showed macrophage and CD8+ T cell infiltration in the tumor nodules 1 day after the end of IL-4 treatment. The CD8 infiltration increased by Day 7 after IL-4 treatment. Granulocyte infiltration was not detectable. To clarify further the role of the immune system in IL-4 anti-tumor effect, mice were depleted of lymphocyte subpopulations by in vivo injections of specific antibodies prior to treatment with IL-4. Depletion of CD8+ T cells or AsGM1+ cells abrogated the effect of IL-4 on lung metastases, whereas depletion of CD4+ T cells had no impact. These data indicate that CD8+ T cells and AsGM1+ cells are involved in IL-4-induced regression of established renal cell carcinoma.

  18. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment.

    PubMed

    Aragon, Mario J; Topper, Lauren; Tyler, Christina R; Sanchez, Bethany; Zychowski, Katherine; Young, Tamara; Herbert, Guy; Hall, Pamela; Erdely, Aaron; Eye, Tracy; Bishop, Lindsey; Saunders, Samantha A; Muldoon, Pretal P; Ottens, Andrew K; Campen, Matthew J

    2017-03-07

    Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.

  19. Albuterol-induced downregulation of Gsα accounts for pulmonary β2-adrenoceptor desensitization in vivo

    PubMed Central

    Finney, Paul A.; Belvisi, Maria G.; Donnelly, Louise E.; Chuang, Tsu-Tshen; Mak, Judith C.W.; Scorer, Carol; Barnes, Peter J.; Adcock, Ian M.; Giembycz, Mark A.

    2000-01-01

    The aim of the present study was to develop a chronic in vivo model of pulmonary β2-adrenoceptor desensitization and to elucidate the nature and molecular basis of this state. Subcutaneous infusion of rats with albuterol for 7 days compromised the ability of albuterol, given acutely, to protect against acetylcholine-induced bronchoconstriction. The bronchoprotective effect of prostaglandin E2, but not forskolin, was also impaired, indicating that the desensitization was heterologous and that the primary defect in signaling was upstream of adenylyl cyclase. β2-Adrenoceptor density was reduced in lung membranes harvested from albuterol-treated animals, and this was associated with impaired albuterol-induced cyclic adenosine monophosphate (cAMP) accumulation and activation of cAMP-dependent protein kinase ex vivo. Gsα expression was reduced in the lung and tracheae of albuterol-treated rats, and cholera toxin–induced cAMP accumulation was blunted. Chronic treatment of rats with albuterol also increased cAMP phosphodiesterase activity and G protein–coupled receptor kinase-2, but the extent to which these events contributed to β2-adrenoceptor desensitization was unclear given that forskolin was active in both groups of animals and that desensitization was heterologous. Collectively, these results indicate that albuterol effects heterologous desensitization of pulmonary Gs-coupled receptors in this model, with downregulation of Gsα representing a primary molecular etiology. PMID:10880056

  20. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood–brain barrier impairment

    PubMed Central

    Aragon, Mario J.; Topper, Lauren; Tyler, Christina R.; Sanchez, Bethany; Zychowski, Katherine; Young, Tamara; Herbert, Guy; Hall, Pamela; Erdely, Aaron; Eye, Tracy; Bishop, Lindsey; Saunders, Samantha A.; Muldoon, Pretal P.; Ottens, Andrew K.; Campen, Matthew J.

    2017-01-01

    Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity. PMID:28223486

  1. EETs alleviate ox-LDL-induced inflammation by inhibiting LOX-1 receptor expression in rat pulmonary arterial endothelial cells.

    PubMed

    Jiang, Jun-xia; Zhang, Shui-juan; Liu, Ya-nan; Lin, Xi-xi; Sun, Yan-hong; Shen, Hui-juan; Yan, Xiao-feng; Xie, Qiang-min

    2014-03-15

    Oxidized low-density lipoprotein (Ox-LDL) is associated with atherosclerotic events through the modulation of arachidonic acid (AA) metabolism and activation of inflammatory signaling. Cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) mitigate inflammation through nuclear factor-κB (NF-κB). In this study, we explored the effects and mechanisms of exogenous EETs on the ox-LDL-induced inflammation of pulmonary artery endothelial cells (PAECs), which were cultured from rat pulmonary arteries. We determined that pre-treatment with 11,12-EET or 14,15-EET attenuated the ox-LDL-induced expression and release of intercellular adhesion molecule-1 (ICAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1) in a concentration-dependent manner. In addition, the ox-LDL-induced expression of CYP2J4 was upregulated by 11,12-EET and 14,15-EET (1μM). Furthermore, the endothelial receptor of lectin-like oxidized low-density lipoprotein (LOX-1) was downregulated in PAECs treated with EETs. The inflammatory responses evoked by ox-LDL (100μg/mL) were blocked by pharmacological inhibitors of Erk1/2 mitogen-activated protein kinase (MAPK) (U0126), p38 MAPK (SB203580), and NF-κB (PDTC). In addition, we confirmed that 11,12-EET suppresses phosphorylation of p38, degradation of IκBα, and activation of NF-κB (p65), whereas 14,15-EET can significantly suppress the phosphorylation of p38 and Erk1/2. Our results indicate that EETs exert beneficial effects on ox-LDL-induced inflammation primarily through the inhibition of LOX-1 receptor upregulation, MAPK phosphorylation, and NF-κB activation and through the upregulation of CYP2J4 expression. This study helps focus the current understanding of the contribution of EETs to the regulation of the inflammation of pulmonary vascular endothelial cells. Furthermore, the therapeutic potential of targeting the EET pathway in pulmonary vascular disease will be highlighted.

  2. Prevention of Endotoxin-Induced Pulmonary Hypertension in Primates by the Use of a Selective Thromboxane Synthetase Inhibitor, OXY 1581

    DTIC Science & Technology

    1982-09-01

    inhibitor to prevent endotoxin-induced Chemical name: Sodium-(E) - 3 -[ 4 - ( 3 -pyridylmethyl) phenyll -2- pulmonary hypertension in subhuman primates...1:B4, 6 mg/kg) and Group II (n = 6) received a bolus of 2 mg/kg of Results are expressed as mean ± S.EM. OKY 1581 (fig. I) (sodium-(E)- 3 -[ 4 -( 3 ...UK 37248 endotoxines. Ann. Inst. Pasteur 73: 565. 1947. [ 4 -(2- 1H -imidazole-lyl)ethoxyl benzoic acid], given to humans, DELAUNAY, A., LEBRUN, J

  3. MicroRNA-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1)

    PubMed Central

    Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-01-01

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension. PMID:27322082

  4. Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1).

    PubMed

    Wang, Ran; Ding, Xing; Zhou, Sijing; Li, Min; Sun, Li; Xu, Xuan; Fei, Guanghe

    2016-11-08

    MicroRNAs are involved in the control of cell growth, and deregulated pulmonary artery smooth muscle cell proliferation plays an essential role in the development of pulmonary hypertension. The objective of this study was to identify differentially expressed microRNA(s) and explore its therapeutic role in treatment of the disease. MicroRNA expression profile analysis showed microRNA-26b was differentially expressed in pulmonary artery smooth muscle cells harvested from monocrotaline-treated rats, and we validated microRNA-26b targets, in vitro and in vivo, CTGF and CCND1, both of which have been shown, in our previous work, to be involved in the pathogenesis of pulmonary hypertension. In vivo experiments demonstrated monocrotaline-induced pulmonary artery remodeling could be almost completely abolished by administration of microRNA-26b, while CTGF or CCND1 shRNA significantly, but only partially, attenuated the remodeling by silencing the designed target. Additionally, exogenous expression of the microRNA-26b substantially downregulated CTGF and CCND1 in human pulmonary artery smooth muscle cells. MicroRNA-26b might be a potent therapeutic tool to treat pulmonary hypertension.

  5. Inhibitory effect of l-mimosine on bleomycin-induced pulmonary fibrosis in rats: Role of eIF3a and p27.

    PubMed

    Li, Xian-Wei; Hu, Chang-Ping; Li, Yuan-Jian; Gao, Yuan-Xing; Wang, Xiang-Ming; Yang, Jie-Ren

    2015-07-01

    It has also been shown that the decreased expression of eukaryotic translation initiation factor 3a (eIF3a) by L-mimosine caused cell cycle arrest. Our previous study has found that eIF3a is involved in bleomycin-induced pulmonary fibrosis. Whether the eIF3a/p27 signal pathway is involved in the inhibitory effect of L-mimosine on bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. The expression of eIF3a, p27, α-SMA, collagen I and collagen III was analyzed by qPCR and Western blot. In vivo, L-mimosine treatment significantly ameliorated the bleomycin-mediated histological fibrosis alterations and blocked collagen deposition concomitantly with reversing bleomycin-induced expression up-regulation of eIF3a, α-SMA, collagen I and collagen III (both mRNA and protein) and expression down- regulation of p27. In vitro, L-mimosine remarkably attenuated proliferation of pulmonary fibroblasts and expression of α-SMA, collagen I and collagen III induced by TGF-β1, and this inhibitory effect of L-mimosine was accompanied by inhibiting eIF3a expression and increasing p27 expression. Knockdown of eIF3a gene expression reversed TGF-β1-induced proliferation of fibroblasts, down-regulation of p27 expression and up-regulation of α-SMA, collagen I, and collagen III expression. These results suggest that L-mimosine inhibited the progression of bleomycin-induced pulmonary fibrosis in rats via the eIF3a/p27 pathway.

  6. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction

    PubMed Central

    Weber, Daniel J.; Allette, Yohance M.; Wilkes, David S.

    2015-01-01

    Abstract Significance: Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. Recent Advances: Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). Critical Issues: Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. Future Directions: Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes. Antioxid. Redox Signal. 23, 1316–1328. PMID:25751601

  7. Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Hu, Biao; Wu, Zhe; Bai, David; Liu, Tianju; Ullenbruch, Matthew R; Phan, Sem H

    2015-11-01

    Notch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking. In this study, we examined the effects of conditional mesenchymal-specific deletion of Notch1 on pulmonary fibrosis. Crossing of mice bearing the floxed Notch1 gene with α2(I) collagen enhancer-Cre-ER(T)-bearing mice successfully generated progeny with a conditional knockout (CKO) of Notch1 in collagen I-expressing (mesenchymal) cells on treatment with tamoxifen (Notch1 CKO). Because Notch signaling is known to be activated in the bleomycin model of pulmonary fibrosis, control and Notch1 CKO mice were analyzed for their responses to bleomycin treatment. The results showed significant attenuation of pulmonary fibrosis in CKO relative to control mice, as examined by collagen deposition, myofibroblast differentiation, and histopathology. However, there were no significant differences in inflammatory or immune cell influx between bleomycin-treated CKO and control mouse lungs. Analysis of isolated lung fibroblasts confirmed absence of Notch1 expression in cells from CKO mice, which contained fewer myofibroblasts and significantly diminished collagen I expression relative to those from control mice. These findings revealed an essential role for Notch1-mediated myofibroblast differentiation in the pathogenesis of pulmonary fibrosis.

  8. Acute pulmonary toxicity and inflammation induced by combined exposure to didecyldimethylammonium chloride and ethylene glycol in rats.

    PubMed

    Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek

    2016-02-01

    Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health.

  9. Aryl radical involvement in amiodarone-induced pulmonary toxicity: Investigation of protection by spin-trapping nitrones

    SciTech Connect

    Nicolescu, Adrian C.; Comeau, Jeannette L.; Hill, Bruce C.; Bedard, Leanne L.; Takahashi, Takashi; Brien, James F.; Racz, William J.; Massey, Thomas E. . E-mail: masseyt@post.queensu.ca

    2007-04-01

    Amiodarone (AM), an antidysrrhythmic drug, can produce serious adverse effects, including potentially fatal AM-induced pulmonary toxicity (AIPT). AM-induced cytotoxicity and pulmonary fibrosis are well recognized, but poorly understood mechanistically. The hypothesis of aryl radical involvement in AM toxicity was tested in non-biological and biological systems. Photolysis of anaerobic aqueous solutions of AM, or N-desethylamiodarone (DEA) resulted in the formation of an aryl radical, as determined by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy experiments. The non-iodinated AM analogue, didesiodoamiodarone (DDIA), did not form aryl radicals under identical conditions. The toxic susceptibility of human lung epithelioid HPL1A cells to AM, DEA, and DDIA showed time- and concentration-dependence. DEA had a more rapid and potent toxic effect (LC{sub 50} = 8 {mu}M) than AM (LC{sub 50} = 146 {mu}M), whereas DDIA cytotoxicity was intermediate (LC{sub 50} = 26 {mu}M) suggesting a minor contribution of the iodine atoms. Incubation of human lung epithelial cells with the spin-trapping nitrones {alpha}-phenyl-N-t-butylnitrone (PBN, 10 mM) or {alpha}-(4-pyridyl N-oxide)-N-t-butylnitrone (POBN, 5.0 mM) did not significantly protect against AM, DEA, or DDIA cytotoxicity. Intratracheal administration of AM to hamsters produced pulmonary fibrosis at day 21, which was not prevented by 4 days of treatment with 150 mg/kg/day PBN or 164 mg/kg/day POBN. However, the body weight loss in AM-treated animals was counteracted by PBN. These results suggest that, although AM can generate an aryl radical photochemically, its in vivo formation may not be a major contributor to AM toxicity, and that spin-trapping reagents do not halt the onset of AM toxicity.

  10. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  11. A genetic algorithm approach for evaluation of optical functions of very thin tantalum pentoxide films on Si substrate

    NASA Astrophysics Data System (ADS)

    Sharlandjiev, P. S.; Nazarova, D. I.

    2013-11-01

    The optical characteristics of tantalum pentoxide films, deposited on Si(100) substrate by reactive sputtering, are studied. These films are investigated as high-kappa materials for the needs of nano-electronics, i.e. design of dynamic random access memories, etc. One problem in their implementation is that metal oxides are thermodynamically unstable with Si and an interfacial layer is formed between the oxide film and the silicon substrate during the deposition process. Herein, the center of attention is on the optical properties of that interfacial layer, which is studied by spectral photometric measurements. The evaluation of the optical parameters of the structure is fulfilled with the genetic algorithm approach. The spectral range of evaluation covers deep UV to NIR. The equivalent physical thickness (2.5 nm) and the equivalent refractive index of the interfacial layer are estimated from 236 to 750 nm as well as the thickness of the tantalum pentoxide film (9.5 nm).

  12. Pulmonary transcriptome analysis in the surgically induced rabbit model of diaphragmatic hernia treated with fetal tracheal occlusion.

    PubMed

    Engels, Alexander C; Brady, Paul D; Kammoun, Molka; Finalet Ferreiro, Julio; DeKoninck, Philip; Endo, Masayuki; Toelen, Jaan; Vermeesch, Joris R; Deprest, Jan

    2016-02-01

    Congenital diaphragmatic hernia (CDH) is a malformation leading to pulmonary hypoplasia, which can be treated in utero by fetal tracheal occlusion (TO). However, the changes of gene expression induced by TO remain largely unknown but could be used to further improve the clinically used prenatal treatment of this devastating malformation. Therefore, we aimed to investigate the pulmonary transcriptome changes caused by surgical induction of diaphragmatic hernia (DH) and additional TO in the fetal rabbit model. Induction of DH was associated with 378 upregulated genes compared to controls when allowing a false-discovery rate (FDR) of 0.1 and a fold change (FC) of 2. Those genes were again downregulated by consecutive TO. But DH+TO was associated with an upregulation of 157 genes compared to DH and controls. When being compared to control lungs, 106 genes were downregulated in the DH group and were not changed by TO. Therefore, the overall pattern of gene expression in DH+TO is more similar to the control group than to the DH group. In this study, we further provide a database of gene expression changes induced by surgical creation of DH and consecutive TO in the rabbit model. Future treatment strategies could be developed using this dataset. We also discuss the most relevant genes that are involved in CDH.