Sample records for peony glycosides reverses

  1. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    PubMed

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Microsatellite marker development in Peony using next generation sequencing

    Treesearch

    Barbara Gilmore; Nahla Bassil; April Nyberg; Brian Knaus; Don Smith; Danny L. Barney; Kim Hummer

    2013-01-01

    Peonies (Paeonia), the grand garden perennial of spring and early summer, are economically important to the international cut flower market. Herbaceous peonies (Paeonia section Paeonia), tree peonies (Paeonia section Moutan), and intersectional crosses between the two types (...

  3. Microsatellite marker development in peony using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Peonies (Paeonia), the grand garden perennial of spring and early summer, are economically important to the international cut flower market. Herbaceous peonies (Paeonia section Paeonia), tree peonies (Paeonia section Moutan), and intersectional crosses between the two types (Itoh Paeonia hybrids) ...

  4. Phytochemical variation among the traditional Chinese medicine Mu Dan Pi from Paeonia suffruticosa (tree peony).

    PubMed

    Li, Shan-Shan; Wu, Qian; Yin, Dan-Dan; Feng, Cheng-Yong; Liu, Zheng-An; Wang, Liang-Sheng

    2018-02-01

    Mu Dan Pi is a traditional Chinese medicine used to treat inflammation, cancer, allergies, diabetes, angiocardiopathy, and neurodegenerative diseases. In this study, the metabolome variation within Mu Dan Pi collected from 372 tree peony cultivars was systematically investigated. In total, 42 metabolites were identified, comprising of 14 monoterpene glucosides, 11 tannins, 8 paeonols, 6 flavonoids, and 3 phenols. All cultivars revealed similar metabolite profiles, however, they were further classified into seven groups on the basis of their varying metabolite contents by hierarchical cluster analysis. Traditional cultivars for Mu Dan Pi were found to have very low metabolite contents, falling into clusters I and II. Cultivars with the highest amounts of metabolites were grouped in clusters VI and VII. Five potential cultivars, namely, 'Bai Yuan Qi Guan', 'Cao Zhou Hong', 'Da Zong Zi', 'Sheng Dan Lu', and 'Cheng Xin', with high contents of monoterpene glycosides, tannins, and paeonols, were further screened. Interestingly, the majority of investigated cultivars had relatively higher metabolite contents compared to the traditional medicinal tree peony cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  6. Finding Brown's peony a sweet attraction

    Treesearch

    Nan. Vance

    2012-01-01

    I first encountered Brown’s peony (Paeonia brownie) with its verdant, lavender-tinged leaves and elegantly nodding maroon flowers growing among bitterbrush and bunchgrass on the eastern flank of the Oregon Cascades. My first thought was “What is a plant like you doing in a place like this?” It would be natural to visualize this native wild peony as...

  7. Epicotyl dormancy of tree peony as an oil plant broken by cyanamide

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Gong, Mingfu; Liu, Fang; Wu, Sanlin; Liu, Xiaojie; Zhang, Ya; Xu, Gaoyu

    2018-04-01

    This test materials is `feng Dan', an oil peony, or tree peony as an oil plant, growing in Yangtze river basin. Impact of cyanamide on oil peony epicotyl dormancy was represented with germination rate of peony feeds, a-amylase activity, soluble sugar content, soluble protein content and peroxidase (POD) activity. Results showed that hypocotyls' dormancy of peony seeds was significant breaken by 0.3% cyanamide concentration. Alpha-amylase activity, soluble sugar content, soluble protein content and POD activity in 0.3% cyanamide concentration treatment was significantly higher than other treatments. There was no significant difference between the rest treatments.

  8. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.

    PubMed

    Luo, Jianrang; Shi, Qianqian; Niu, Lixin; Zhang, Yanlong

    2017-02-20

    Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.

  9. Genetic diversity analysis of tree peony germplasm using iPBS markers.

    PubMed

    Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G

    2015-07-06

    We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties.

  10. Pollination ecology and floral function of Brown's peony (Paeonia brownii) in the Blue Mountains of northeastern Oregon

    Treesearch

    Peter Bernhardt; Retha Meier; Nan Vance

    2013-01-01

    Brown’s peony, Paeonia brownie (Paeoniaceae), is one of only two peony species native to the Western Hemisphere, yet its pollination ecology and breeding system have never been documented. Using flowering individuals of an endemic colony in the Blue Mountains of Oregon, U.S., we investigated the peony’s pollination system and floral function. We...

  11. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells.

    PubMed

    Figueroa-González, Gabriela; Jacobo-Herrera, Nadia; Zentella-Dehesa, Alejandro; Pereda-Miranda, Rogelio

    2012-01-27

    Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 μg/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 μg/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy.

  12. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  13. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  14. Chemical Composition Analysis, Sensory, and Feasibility Study of Tree Peony Seed.

    PubMed

    Mao, Yingyi; Han, Jigang; Tian, Fang; Tang, Xue; Hu, Yonghong; Guan, Yan

    2017-02-01

    Eight wild species in Sect. Moutan DC (tree peony) of the genus Paeonia grown in natural habitats and 1 cultivated specie were investigated to analyze their fatty acid and bioactive phenolic compound profiles. For fatty acid composition, P. ludlowii contained the lowest α-linolenic acid (27.68%) and P. jishanensis contained the highest (51.96 %) content of the 9 species. For phenolic compounds, P. qiui contained the highest resveratrol (2.12 mg/g), P. delavayi contained the highest β-gentiobiosylpaeoniflorin (26.23 mg/g), and P. ostii contained the highest paeoniflorin (23.66 mg/g). P. ostii was selected to perform a feasibility study because of its relatively high level of α-linolenic acid 46.53%, low in ω-6 to ω-3 ratio of 1:2, and high level of the preferred bioactive phenolic compounds l including paeoniflorin and resveratrol. Physical pressing and refining process were conducted to obtain P. ostii seed oil. It exhibited bland sensory attributes described as slight grassy, very slight nutty, no painty or fishy aroma and slight grassy, slight nutty flavor with a very slight throat catch. Tocol results reported high level in tree peony seed oil 223.5 ± 13.65 mg/100 g with γ-tocopherol 70.1 ± 2.14 mg/100 g, and γ-tocotrienol 149.6 ± 15.83 mg/g. Because of the high total tocol, γ-tocopherol and γ-tocotrienol levels, and tree peony seed oil exhibited better oxidation stability than flaxseed oil even with similar α-linolenic acid levels. In addition, high levels of γ-tocopherol and γ-tocotrienol can introduce therapeutic effects such as antiinflammation and antioxidation. Therefore, this study showed that tree peony seed oil has a great potential to be used in edible oil, nutraceutical supplement, and other health care products. © 2017 Institute of Food Technologists®.

  15. Two EST-derived marker systems for cultivar identification in tree peony.

    PubMed

    Zhang, J J; Shu, Q Y; Liu, Z A; Ren, H X; Wang, L S; De Keyser, E

    2012-02-01

    Tree peony (Paeonia suffruticosa Andrews), a woody deciduous shrub, belongs to the section Moutan DC. in the genus of Paeonia of the Paeoniaceae family. To increase the efficiency of breeding, two EST-derived marker systems were developed based on a tree peony expressed sequence tag (EST) database. Using target region amplification polymorphism (TRAP), 19 of 39 primer pairs showed good amplification for 56 accessions with amplicons ranging from 120 to 3,000 bp long, among which 99.3% were polymorphic. In contrast, 7 of 21 primer pairs demonstrated adequate amplification with clear bands for simple sequence repeats (SSRs) developed from ESTs, and a total of 33 alleles were found in 56 accessions. The similarity matrices generated by TRAP and EST-SSR markers were compared, and the Mantel test (r = 0.57778, P = 0.0020) showed a moderate correlation between the two types of molecular markers. TRAP markers were suitable for DNA fingerprinting and EST-SSR markers were more appropriate for discriminating synonyms (the same cultivars with different names due to limited information exchanged among different geographic areas). The two sets of EST-derived markers will be used further for genetic linkage map construction and quantitative trait locus detection in tree peony.

  16. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Zhang, Y X; Yu, D; Tian, X L; Liu, C Y; Gai, S P; Zheng, G S

    2015-01-01

    Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Effect of calcium sprays on mechanical strength and cell wall fractions of herbaceous peony (Paeonia lactiflora pall.) inflorescence stems.

    PubMed

    Li, Chengzhong; Tao, Jun; Zhao, Daqiu; You, Chao; Ge, Jintao

    2012-01-01

    Calcium is an essential element and imparts significant structural rigidity to the plant cell walls, which provide the main mechanical support to the entire plant. In order to increase the mechanical strength of the inflorescence stems of herbaceous peony, the stems are treated with calcium chloride. The results shows that preharvest sprays with 4% (w/v) calcium chloride three times after bud emergence are the best at strengthening "Da Fugui" peonies' stems. Calcium sprays increased the concentrations of endogenous calcium, total pectin content as well as cell wall fractions in herbaceous peonies stems, and significantly increased the contents of them in the top segment. Correlation analysis showed that the breaking force of the top segment of peonies' stems was positively correlated with the ratio of water insoluble pectin to water soluble pectin (R = 0.673) as well as lignin contents (R = 0.926) after calcium applications.

  18. Multiple species of wild tree peonies gave rise to the ‘king of flowers’, Paeonia suffruticosa Andrews

    PubMed Central

    Zhou, Shi-Liang; Zou, Xin-Hui; Zhou, Zhi-Qin; Liu, Jing; Xu, Chao; Yu, Jing; Wang, Qiang; Zhang, Da-Ming; Wang, Xiao-Quan; Ge, Song; Sang, Tao; Pan, Kai-Yu; Hong, De-Yuan

    2014-01-01

    The origin of cultivated tree peonies, known as the ‘king of flowers' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of tree peonies and all wild species from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild species inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast trees suggested that there had been gene flow between the wild species. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated tree peonies originated from homoploid hybridization among five wild species. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental species are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in tree peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication. PMID:25377453

  19. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  20. The effect of flavonol glycosides on opiate withdrawal.

    PubMed

    Capasso, Anna

    2007-07-01

    Our interest has been centered on flavonol glycosides from Croton Menthodorus (Euphorbiaceae) and Aristeguietia discolor (Asteraceae). In this respect, the effect of flavonol glycosides from Croton Menthodorus (Euphorbiaceae) and Aristeguietia discolor (Asteraceae) was investigated on the naloxone-precipitated withdrawal contracture of the acute morphine-dependent guinea-pig ileum in vitro. Furthermore, the effect of these flavonol glycosides was also considered on DAGO (highly selective micro-agonist) and U50-488H (highly selective k-agonist) withdrawal to test whether the possible interaction of flavonol glycosides on opioid withdrawal involves micro- and/or k-opioid receptors. Flavonol glycosides from Croton Menthodorus (1 x 10(-5), 5 x 10(-5) and 1 x 10(-4) M) and from Aristeguietia discolor (1 x 10(-7)-1 x 10(-6)-1 x 10(-5) M) before or after the opioid agonists were able to both prevent and reverse the naloxone-induced contracture after exposure to micro (morphine and DAGO) or k (U50-488H) opiate agonists in a concentration-dependent fashion. Both acetylcholine response and electrical stimulation were reduced by flavonol glycosides treatment as well as the final opiate withdrawal was still reduced. The results of the present study indicate that flavonol glycosides were able to produce significant influence on the opiate withdrawal in vitro and these compounds were able to exert their effects both at micro and k opioid agonists.

  1. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.

    PubMed

    Yin, Dan-Dan; Li, Shan-Shan; Shu, Qing-Yan; Gu, Zhao-Yu; Wu, Qian; Feng, Cheng-Yong; Xu, Wen-Zhong; Wang, Liang-Sheng

    2018-08-05

    MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) act as important molecular regulators in a wide range of biological processes during plant development and seed formation, including oil production. Tree peony seeds contain >90% unsaturated fatty acids (UFAs) and high proportions of α-linolenic acid (ALA, > 40%). To dissect the non-coding RNAs (ncRNAs) pathway involved in fatty acids synthesis in tree peony seeds, we construct six small RNA libraries and six transcriptome libraries from developing seeds of two cultivars (J and S) containing different content of fatty acid compositions. After deep sequencing the RNA libraries, the ncRNA expression profiles of tree peony seeds in two cultivars were systematically and comparatively analyzed. A total of 318 known and 153 new miRNAs and 22,430 lncRNAs were identified, among which 106 conserved and 9 novel miRNAs and 2785 lncRNAs were differentially expressed between the two cultivars. In addition, potential target genes of the microRNA and lncRNAs were also predicted and annotated. Among them, 9 miRNAs and 39 lncRNAs were predicted to target lipid related genes. Results showed that all of miR414, miR156b, miR2673b, miR7826, novel-m0027-5p, TR24651|c0_g1, TR24544|c0_g15, and TR27305|c0_g1 were up-regulated and expressed at a higher level in high-ALA cultivar J when compared to low-ALA cultivar S, suggesting that these ncRNAs and target genes are possibly involved in different fatty acid synthesis and lipid metabolism through post-transcriptional regulation. These results provide a better understanding of the roles of ncRNAs during fatty acid biosynthesis and metabolism in tree peony seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Huang, Xin; Zhu, Wei; Dai, Silan; Gai, Shupeng; Zheng, Guosheng; Zheng, Chengchao

    2008-09-01

    A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.

  3. Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony.

    PubMed

    Wang, Shunli; Beruto, Margherita; Xue, Jingqi; Zhu, Fuyong; Liu, Chuanjiao; Yan, Yueming; Zhang, Xiuxin

    2015-08-01

    The central flower integrator PsSOC1 was isolated and its expression profiles were analyzed; then the potential function of PsSOC1 in tree peony was postulated. The six flowering genes PrSOC1, PdSOC1, PsSOC1, PsSOC1-1, PsSOC1-2, and PsSOC1-3 were isolated from Paeonia rockii, Paeonia delavayi, and Paeonia suffruticosa, respectively. Sequence comparison analysis showed that the six genes were highly conserved and shared 99.41% nucleotide identity. Further investigation suggested PsSOC1 was highly homologous to the floral integrators, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), from Arabidopsis. Phylogenetic analysis showed that the SOC1 protein clustering has family specificity and PsSOC1 has a close relationship with homologous SOC1 from Asteraceae species. The studies of PsSOC1's expression patterns in different buds and flower buds, and vegetative organs indicated that PsSOC1 could express in both vegetative and reproductive organs. While the expression of PsSOC1 in different developmental stages of buds was different; high expression levels of PsSOC1 occurred in the bud at the bud sprouting stage and the type I aborted the flower bud. PsSOC1 expression was also shown to be affected by gibberellins (GA), low temperature, and photoperiod. One of the pathways that regulates tree peony flowering may be the GA-inductive pathway. Ectopic expression of PsSOC1 in tobacco demonstrated that greater PsSOC1 expression in the transgenic tobacco plants not only promoted plant growth, but also advanced the flowering time. Finally, the potential function of PsSOC1 in tree peony was postulated.

  4. Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides

    PubMed Central

    Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2014-01-01

    Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228

  5. Dynamic Perturbation of the Active Site Determines Reversible Thermal Inactivation in Glycoside Hydrolase Family 12.

    PubMed

    Jiang, Xukai; Li, Wen; Chen, Guanjun; Wang, Lushan

    2017-02-27

    The temperature dependence of enzyme catalysis is highly debated. Specifically, how high temperatures induce enzyme inactivation has broad implications for both fundamental and applied science. Here, we explored the mechanism of the reversible thermal inactivation in glycoside hydrolase family 12 (GH12) using comparative molecular dynamics simulations. First, we investigated the distribution of structural flexibility over the enzyme and found that the active site was the general thermal-sensitive region in GH12 cellulases. The dynamic perturbation of the active site before enzyme denaturation was explored through principal-component analysis, which indicated that variations in the collective motion and conformational ensemble of the active site may precisely correspond to enzyme transition from its active form to the inactive form. Furthermore, the degree of dynamic perturbation of the active site was found to be negatively correlated with the melting temperatures of GH12 enzymes, further proving the importance of the dynamic stability of the active site. Additionally, analysis of the residue-interaction network revealed that the active site in thermophilic enzyme was capable of forming additional contacts with other amino acids than those observed in the mesophilic enzyme. These interactions are likely the key mechanisms underlying the differences in rigidity of the active site. These findings provide further biophysical insights into the reversible thermal inactivation of enzymes and potential applications in future protein engineering.

  6. Lipoxygenase-inhibiting phenolic glycosides and monoterpene glycosides from Paeonia lactiflora.

    PubMed

    Zou, Liang; Hu, Lin-Feng; Guo, Yi-Dong; Song, Yu; Fu, Qiang

    2015-01-01

    The EtOH extract of the roots of Paeonia lactiflora afforded a new phenolic glycoside paenoside A (1) and a new monoterpene glycoside paeonin D (2), and five known monoterpene glycosides. Their structures were elucidated on the basis of spectroscopic means and hydrolysis products. All compounds displayed inhibitory potential against enzyme lipoxygenase.

  7. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China.

    PubMed

    Zhang, Xiao-Xiao; Shi, Qian-Qian; Ji, Duo; Niu, Li-Xin; Zhang, Yan-Long

    2017-07-01

    As an important resource of functional food, the seeds of tree peony are rich in phenolic compounds, which are associated with antioxidant activity. However, so far there has not been systematic study on phenolic compositions and antioxidant activity of the seeds from wild tree peony species. The aim of this study was to determine the phenolic content, antioxidant compounds and antioxidant activity of seeds from nine tree peony species native to China. Among the seed samples, Paeonia rockii had the highest total flavonoid content, strongest DPPH and ABTS radical scavenging activities, and strongest cupric reducing capacity; P. decomposita subsp. rotundiloba had the highest total phenolic and flavanol contents, as well as the strongest hydroxyl radical scavenging activity. Sixteen individual phenolic compounds were quantitatively measured, with (+)-catechin being the most abundant component. The content of the phenolic compounds luteolin, paeonol, and the total flavonoid content were significantly correlated with four antioxidant activities. Hierarchical cluster analysis showed that P. rockii and P. decomposita subsp. rotundiloba could be clustered in a group having a high phenolic content and strong antioxidant activity. These results suggest P. rockii and P. decomposita subsp. rotundiloba are the most promising candidates as useful sources of natural antioxidants. Copyright © 2017. Published by Elsevier Ltd.

  8. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression

    PubMed Central

    Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-01-01

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants. PMID:27129170

  9. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    PubMed

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.

  10. Simulating spatiotemporal variation in full-flowering dates for tree peonies (1955-2011) in the middle and lower reaches of the Yellow River, China: using a panel data model

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2015-12-01

    In China, the tree peony (Paeonia suffruticosa) is well known as the "king of flowers" since ancient times. The springtime flowering of it attracts a great number of tourists every year. Under the current background of rapid climate change, the flowering time of the tree peony has changed accordingly, which affected the travel arrangements of tourists. This paper is concerned with developing a panel data model to describe the relationship between full-flowering date (FFD) of the tree peony (Zhongyuan cultivar group) and relevant temperature change in the middle and lower reaches of the Yellow River. Then FFD time series at 24 sites in the period 1955-2011 were reconstructed using the above-mentioned model. At last, spatial and temporal variations in FFD were analysed. The results showed that the panel data model could simulate the FFDs of the tree peony accurately, with explained variance (R2)>0.65 and the root-mean-square error (RMSE)<4.0 in the steps of double cross-validation. The simulated 57-year mean FFDs in the distribution area generally followed the latitudinal gradient. The FFDs in this area have advanced by 6 to 9 days over the past 57 years, at the rate of 0.8 to 1.8 days/decade. Compared with the other sub-areas in this area, the eastern forelands of Taihang Mountains and Luliang Mountains showed clearer advances of FFD. These conclusions reflected the comprehensive impact of climate change and the foehn on phenophases and are helpful for historical climate studies and festival events management

  11. Process optimisation of microwave-assisted extraction of peony ( Paeonia suffruticosa Andr .) seed oil using hexane-ethanol mixture and its characterisation

    Treesearch

    Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao

    2016-01-01

    Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...

  12. Mass Spectrometric Characterization of Benzoxazinoid Glycosides from Rhizopus-Elicited Wheat (Triticum aestivum) Seedlings.

    PubMed

    de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry

    2016-08-17

    Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.

  13. Changes in soil microbial functional diversity and biochemical characteristics of tree peony with amendment of sewage sludge compost.

    PubMed

    Huang, Xiangdong; Xue, Dong; Xue, Lian

    2015-08-01

    A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly.

  14. Determination of triterpene glycosides in sea cucumber (Stichopus japonicus) and its related products by high-performance liquid chromatography.

    PubMed

    Dong, Ping; Xue, Chang-Hu; Yu, Lin-Fang; Xu, Jie; Chen, Shi-Guo

    2008-07-09

    A creative and sensitive method has been developed for the determination of triterpene glycosides concentrations in sea cucumber ( Stichopus japonicus) and related products by using d-quinovose (6-deoxyglucose) as the measurement standard by reverse-phase high-performance liquid chromatography (HPLC) and variable-wavelength detection. d-quinovose, which is a unique monosaccharide in holostane triterpene glycosides, was liberated by acid hydrolysis and precolumn derivatized by 1-phenyl-3-methyl-5-pyrazolone (PMP). PMP-quinovose was analyzed by HPLC with 22% acetonitrile in 0.05 M KH2PO4 aquatic solution (pH 5.2) as mobile phase. The calibration curves of d-quinovose were linear within the range of 6.56-164 mg/L (r(2) > 0.995). The contents of triterpene glycosides in various S. japonicus products were determined after appropriate pretreatment methods. The concentration of triterpene glycosides was calculated by the formula C = C(qui) x alpha (alpha = 8.5). The result showed that this method was a simple, rapid, and stable method for the determination of triterpene glycosides in S. japonicus products.

  15. Aroma Glycosides in Grapes and Wine.

    PubMed

    Liu, Jibin; Zhu, Xiao-Lin; Ullah, Niamat; Tao, Yong-Sheng

    2017-02-01

    The major aroma components in grapes and wine include free volatile compounds and glycosidic nonvolatile compounds. The latter group of compounds is more than 10 times abundant of the former, and constitutes a big aroma reserve in grapes and wine. This review summarizes the research results obtained recently for the identification of aroma glycosides in grapes and wine, including grape glycoside structures, differences in aroma glycosides among grape varieties, hydrolysis mechanisms, and the factors that influence them. It also presents the analytical techniques used to identify the glycosidic aroma precursors. The operational strategies, challenges, and improvements of each step encountered in the analysis of glycosidic aroma precursors are described. This review intends to provide a convenient reference for researchers interested in the methods used for the determination of the aroma glucosides composition and the recognition of their chemical structures. © 2017 Institute of Food Technologists®.

  16. Pregnane glycosides from Sansevieria trifasciata.

    PubMed

    Mimaki, Y; Inoue, T; Kuroda, M; Sashida, Y

    1997-01-01

    Phytochemical analysis of the whole plant of Sansevieria trifasciata, one of the most common Agavaceae plants, has resulted in the isolation of four new pregnane glycosides. Their structures have been determined by spectroscopic analysis and acid- and alkaline-catalysed hydrolysis to be 1 beta,3 beta-dihydroxypregna-5,16-dien-20-one glycosides. This is believed to be the first report of the isolation of the pregnane glycosides from a plant of the family Agavaceae.

  17. Phenolic glycosides and ionone glycoside from the stem of Sargentodoxa cuneata.

    PubMed

    Chang, Jun; Case, Ryan

    2005-12-01

    Four phenolic glycosides, cuneatasides A-D (1-4), and one ionone glycoside cuneataside E (5), together with seven known phenolic compounds (6-12) were isolated from the water-soluble constituents of the stem of Sargentodoxa cuneata (Sargentodoxaceae). Their structures were elucidated by spectroscopic analysis. In vitro tests for antimicrobial activity showed compounds 1 and 2 to possess significant activity against two Gram-positive organisms, Staphylococcus aureus and Micrococcus epidermidis.

  18. New lignan glycosides from Justicia procumbens.

    PubMed

    Jin, Hong; Yang, Shu; Dong, Jun-Xing

    2017-01-01

    Four new lignan glycosides (1-4), named procumbenosides I, K, L, and M, together with cleistanthin B (5) reported for the first time in the genus Justicia, and 5 other known arylnaphthalene lignan glycosides (6-10) were isolated from the whole plant of Justicia procumbens. The structures of the new compounds were elucidated by extensive one-dimensional (1D) and two-dimensional (2D) NMR experiments and mass spectrometry. Procumbenoside M (4) was a rare sesquilignan glycoside never previously reported in the species of Justicia. The paper also provided insight into the conformational equilibria existing in the lignan glycosides of the plant.

  19. Preparative isolation of flavonoid glycosides from Sphaerophysa salsula using hydrophilic interaction solid-phase extraction coupled with two-dimensional preparative liquid chromatography.

    PubMed

    Jiao, Lijin; Tao, Yanduo; Wang, Weidong; Shao, Yun; Mei, Lijuan; Wang, Qilan; Dang, Jun

    2017-10-01

    An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proteomic analysis of tree peony (Paeonia ostii 'Feng Dan') seed germination affected by low temperature.

    PubMed

    Ren, Xiu-Xia; Xue, Jing-Qi; Wang, Shun-Li; Xue, Yu-Qian; Zhang, Ping; Jiang, Hai-Dong; Zhang, Xiu-Xin

    Seed germination is a critical process that is influenced by various factors. In the present study, the effect of low temperature (4 °C) on tree peony seed germination was investigated. Compared to seeds maintained at 25 °C, germination was inhibited when seeds were kept at 4 °C. Furthermore, low-temperature exposure of seeds resulted in a delay in water uptake, starch degradation, and soluble sugar consumption and a subsequent increase in soluble protein levels. Two-dimensional gel electrophoresis (2-DE) proteomic analysis identified 100 protein spots. Comparative analysis indicated that low-temperature exposure apparently mainly affected glycolysis and the tricarboxylic acid (TCA) cycle, while also significantly affecting proteometabolism-related factors. Moreover, low-temperature exposure led to the induction of abscisic acid, whereas the gibberellin pathway was not affected. Further comparison of the two temperature conditions showed that low-temperature exposure delays carbohydrate metabolism, adenosine triphosphate (ATP) production, respiration, and proteolysis and increases defense response factors. To further examine the obtained proteomic findings, four genes were evaluated by quantitative polymerase chain reaction (qPCR). The obtained transcriptional results for the GAPC gene coincided with the translational results, thus further suggesting that the delay in glycolysis may play a key role in low-temperature-induced inhibition of seed germination. However, the other three genes examined, which included FPP synthase, PCNT115, and endochitinase, showed non-correlative transcriptional and translational profiles. Our results suggest that the exposure of tree peony seeds to low temperature results in a delay in the degradation of starch and other metabolites, which in turn affects glycolysis and some other processes, thereby ultimately inhibiting seed germination. Copyright © 2017. Published by Elsevier GmbH.

  1. Monoterpene glycosides from Paeonia veitchii.

    PubMed

    Fu, Qiang; Tan, Mao-Ling; Yuan, Hai-Mei; Chen, Jiang; Fu, Jia

    2017-01-01

    The EtOH extract of the roots of Paeonia veitchii afforded two new monoterpene glycosides paeonidanin I (1) and paeonidanin J (2), and a new dimeric monoterpene glycoside paeonidanin K (3). Their structures were elucidated on the basis of spectroscopic means and hydrolysis products.

  2. Perspectives for the industrial enzymatic production of glycosides.

    PubMed

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  3. Advance on the Flavonoid C-glycosides and Health Benefits.

    PubMed

    Xiao, Jianbo; Capanoglu, Esra; Jassbi, Amir Reza; Miron, Anca

    2016-07-29

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.

  4. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors

    PubMed Central

    Aminin, Dmitry; Pislyagin, Evgeny; Astashev, Maxim; Es’kov, Andrey; Kozhemyako, Valery; Avilov, Sergei; Zelepuga, Elena; Yurchenko, Ekaterina; Kaluzhskiy, Leonid; Kozlovskaya, Emma; Ivanov, Alexis; Stonik, Valentin

    2016-01-01

    Since ancient times, edible sea cucumbers have been considered a jewel of the seabed and used in Asian folk medicine for stimulation of resistance against different diseases. However, the power of this sea food has not been established on a molecular level. A particular group of triterpene glycosides was found to be characteristic metabolites of the animals, responsible for this biological action. Using one of them, cucumarioside A2-2 (CA2-2) from the edible Cucumaria japonica species as an example as well as inhibitory analysis, patch-clamp on single macrophages, small interfering RNA technique, immunoblotting, SPR analysis, computer modeling and other methods, we demonstrate low doses of CA2-2 specifically to interact with P2X receptors (predominantly P2X4) on membranes of mature macrophages, enhancing the reversible ATP-dependent Ca2+ intake and recovering Ca2+ transport at inactivation of these receptors. As result, interaction of glycosides of this type with P2X receptors leads to activation of cellular immunity. PMID:28004778

  5. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; He, Yu-Min; Kazuma, Kohei; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko

    2016-01-01

    The methanolic extract and its subfractions from red peony root, the dried roots of Paeonia lactiflora Pallas showed potent antiallergic effects, as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 16 monoterpene derivatives, including 3 new compounds, paeoniflorol (1), 4'-hydroxypaeoniflorigenone (2) and 4-epi-albiflorin (3), together with 13 known ones (4-16). The chemical structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidences. Among the isolated monoterpene derivatives, nine compounds showed potent anti-allergic effects and compound 1 was the most effective. A primary structure-activity relationship of monoterpene derivatives was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  7. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  8. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  9. A new furostanol glycoside from Tribulus terrestris.

    PubMed

    Xu, Yajuan; Liu, Yonghong; Xu, Tunhai; Xie, Shengxu; Si, Yunshan; Liu, Yue; Zhou, Haiou; Liu, Tonghua; Xu, Dongming

    2010-01-27

    Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-beta-D-glucopyranosyl-(25S)-5alpha-furostane-20(22)-en-12-one-3beta, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (1) on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  10. Quantification of appetite suppressing steroid glycosides from Hoodia gordonii in dried plant material, purified extracts and food products using HPLC-UV and HPLC-MS methods.

    PubMed

    Janssen, Hans-Gerd; Swindells, Chris; Gunning, Philip; Wang, Weijun; Grün, Christian; Mahabir, Krishna; Maharaj, Vinesh J; Apps, Peter J

    2008-06-09

    High-performance liquid chromatography (HPLC)-UV and HPLC-Mass Spectrometry (MS) methods were developed for the quantitative analysis of the family of Hoodia gordonii steroid glycosides with appetite suppressing properties in dried plant material, in purified and enriched extracts and in various prototype food-products fortified with H. gordonii extracts. For solid materials, e.g. dried plants or for non-fatty foods, extraction of the steroid glycosides is performed using methanol. For products where the steroid glycosides are present in an oil matrix, direct injection of the oil after dilution in tetrahydrofuran is applied. The HPLC separation is performed on an octyl-modified reversed-phase column in the gradient mode with UV detection at lambda = 220 nm. Quantification is performed against an external calibration line prepared using either one of the pure steroid glycosides or geranyl-tiglate. Short- and long-term repeatabilities of the methods are better than 3 and 6%, respectively. Recoveries are better than 85%, even in the analysis of the least abundant steroid glycosides in a complex yoghurt drink. Linearity is better than 3-4 orders of magnitude and the detection limits are below approximately 2 microg g(-1) for the individual steroid glycosides in dried plant material and food products. HPLC-MS is used to confirm that the steroid glycosides contain the characteristic steroid core, the carbohydrate chain and the tigloyl group.

  11. Bioinspired peony-like beta-Ni(OH)2 nanostructures with enhanced electrochemical activity and superhydrophobicity.

    PubMed

    Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H

    2010-02-01

    Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.

  12. Phytosterol glycosides reduce cholesterol absorption in humans

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  13. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate.

    PubMed

    Purkayastha, Sidd; Markosyan, Avetik; Prakash, Indra; Bhusari, Sachin; Pugh, George; Lynch, Barry; Roberts, Ashley

    2016-06-01

    The safety of steviol glycosides is based on data available on several individual steviol glycosides and on the terminal absorbed metabolite, steviol. Many more steviol glycosides have been identified, but are not yet included in regulatory assessments. Demonstration that these glycosides share the same metabolic fate would indicate applicability of the same regulatory paradigm. In vitro incubation assays with pooled human fecal homogenates, using rebaudiosides A, B, C, D, E, F and M, as well as steviolbioside and dulcoside A, at two concentrations over 24-48 h, were conducted to assess the metabolic fate of various steviol glycoside classes and to demonstrate that likely all steviol glycosides are metabolized to steviol. The data show that glycosidic side chains containing glucose, rhamnose, xylose, fructose and deoxy-glucose, including combinations of α(1-2), β-1, β(1-2), β(1-3), and β(1-6) linkages, were degraded to steviol mostly within 24 h. Given a common metabolite structure and a shared metabolic fate, safety data available for individual steviol glycosides can be used to support safety of purified steviol glycosides in general. Therefore, steviol glycosides specifications adopted by the regulatory authorities should include all steviol glycosides belonging to the five groups of steviol glycosides and a group acceptable daily intake established. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Stability of steviol glycosides in several food matrices.

    PubMed

    Jooken, Etienne; Amery, Ruis; Struyf, Tom; Duquenne, Barbara; Geuns, Jan; Meesschaert, Boudewijn

    2012-10-24

    As steviol glycosides are now allowed as a food additive in the European market, it is important to assess the stability of these steviol glycosides after they have been added to different food matrices. We analyzed and tested the stability of steviol glycosides in semiskimmed milk, soy drink, fermented milk drink, ice cream, full-fat and skimmed set yogurt, dry biscuits, and jam. The fat was removed by centrifugation from the dairy and soy drink samples. Proteins were precipitated by the addition of acetonitrile and also removed by centrifugation. Samples of jam were extracted with water. Dry biscuits were extracted with ethanol. The resulting samples were concentrated with solid-phase extraction and analyzed by high-performance liquid chromatography on a C18 stationary phase and a gradient of acetonitrile/aqueous 25 mM phosphoric acid. The accuracy was checked using a standard addition on some samples. For assessing the stability of the steviol glycosides, samples were stored in conditions relevant to each food matrix and analyzed periodically. The results indicate that steviol glycosides can be analyzed with good precision and accuracy in these food categories. The recovery was between 96 and 103%. The method was also validated by standard addition, which showed excellent agreement with the external calibration curve. No sign of decomposition of steviol glycosides was found in any of the samples.

  15. Impact of different post-harvest processing methods on the chemical compositions of peony root.

    PubMed

    Zhu, Shu; Shirakawa, Aimi; Shi, Yanhong; Yu, Xiaoli; Tamura, Takayuki; Shibahara, Naotoshi; Yoshimatsu, Kayo; Komatsu, Katsuko

    2018-06-01

    The impact of key processing steps such as boiling, peeling, drying and storing on chemical compositions and morphologic features of the produced peony root was investigated in detail by applying 15 processing methods to fresh roots of Paeonia lactiflora and then monitoring contents of eight main components, as well as internal root color. The results showed that low temperature (4 °C) storage of fresh roots for approximately 1 month after harvest resulted in slightly increased and stable content of paeoniflorin, which might be due to suppression of enzymatic degradation. This storage also prevented roots from discoloring, facilitating production of favorable bright color roots. Boiling process triggered decomposition of polygalloylglucoses, thereby leading to a significant increase in contents of pentagalloylglucose and gallic acid. Peeling process resulted in a decrease of albiflorin and catechin contents. As a result, an optimized and practicable processing method ensuring high contents of the main active components in the produced root was developed.

  16. Neolignan and flavonoid glycosides in Juniperus communis var. depressa.

    PubMed

    Nakanishi, Tsutomu; Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Inada, Akira; Murata, Jin; Lang, Frank A; Iinuma, Munekazu; Tanaka, Toshiyuki

    2004-01-01

    Two neolignan glycosides (junipercomnosides A and B) were isolated from aerial parts of Juniperus communis var. depressa along with two known neolignan glycosides and seven flavonoid glycosides. The structures of the isolated compounds were determined by spectral analysis, in particular by 2D-NMR analysis. The significance of distribution of flavonoids in the chemotaxonomy of genus Juniperus was also discussed.

  17. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties.

    PubMed

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Rahman, M Aminur; Islam, Mohamad Tofazzal

    2017-10-17

    Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.

  18. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Rahman, M. Aminur; Islam, Mohamad Tofazzal

    2017-01-01

    Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural–activity relationships (SARs) of sea cucumber glycosides are also discussed briefly. PMID:29039760

  19. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolasemore » genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta

  20. Flavonol glycosides in the petal of Rosa species as chemotaxonomic markers.

    PubMed

    Sarangowa, Ochir; Kanazawa, Tsutomu; Nishizawa, Makoto; Myoda, Takao; Bai, Changxi; Yamagishi, Takashi

    2014-11-01

    Thirteen flavonol glycosides were isolated from the petals of Rosa species belonging to the section Gallicanae, and their structures were identified from their spectroscopic data. These flavonol glycosides, along with two flavonol glycosides isolated from Rosa rugosa, in the petals of 31 Rosa species belonging to sections Gallicanae, Cinnamomeae, Caninae, and Synstylae were quantitatively analyzed by UPLC. The results indicated that the species belonging to these sections could be classified into four types (Type A, B, C and D) based on the pattern of flavonol glycoside contents, whereas the R. rugosa flavonol glycosides were detected only in section Cinnamomeae. A principal components analysis (PCA) calculated from the 15 flavonol glycosides contained in these samples supported the presence of four types. The distribution of the species in Type D (a group of Cinnamomeae) was shown to reflect close interrelationships, but species in Type B (one group of Gallicanae) could be subdivided into two groups, one of which contained species in section Synstylae. Moreover, the flavonol glycosides were grouped by sugar moieties: a disaccharide composed of two hexoses (S1), a hexose (S2), including a hexose with galloyl group, a pentose (S3), and a disaccharide composed of a hexose and a pentose (S4). The ratios of the amounts of S1-S4 to total flavonol glycoside content indicated that differences among the four sections were more distinctive than the amounts of the 15 flavonol glycosides. The 31 samples were divided into Type B, composed of one type of Gallicanae and Synstylae, Type A+C, composed of another type of Gallicanae and Caninae, and Type D, composed of Cinnamomeae. The R. rugosa flavonol glycosides were shown to be important chemotaxonomic markers for the classification of species in Cinnamomeae, and this method of using flavonol glycosides as chemotaxonomic markers could be useful for the identification of Rosa species belonging to sections Gallicanae, Cinnamomeae

  1. Phytosteryl glycosides reduce cholesterol absorption: mechanisms in mice

    USDA-ARS?s Scientific Manuscript database

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with...

  2. Flavonoid glycosides and limonoids from Citrus molasses.

    PubMed

    Kuroyanagi, Masanori; Ishii, Hiromi; Kawahara, Nobuo; Sugimoto, Hiroyuki; Yamada, Hideo; Okihara, Kiyoshi; Shirota, Osamu

    2008-01-01

    Molasses of tangerine orange (Citrus unshiu Markovich) is obtained as a waste product in the course of tangerine orange juice production. This molasses is expected to be a useful source of organic compounds such as flavonoids and limonoids. To elucidate a use for this molasses waste, we isolated and identified its organic constituents. Two new flavanonol glycosides were isolated from tangerine orange molasses, along with several flavonoids such as hesperidine, narirutin, eriodictyol, 3',4',5,6,7,8-hexamethoxy-3-O-beta-D-glucopyranosyloxyflavone, and 3',4',5,6,7,8-hexamethoxy- 3-beta-D-[4-O-(3-hydroxy-3-methylglutaloyl)]-glucopyranosyloxyflavone, and limonoids such as limonin, nomilin, and cyclic peptide, citrusin III. The structures of the new flavanonol glycosides were determined as (2R,3R)-7-O-(6-O-alpha-L-rahmnopyranosyl-beta-D-glucopyranosyl)-aromadendrin and 7-O-(6-O-alpha-L-rahmnopyranosyl-beta-D-glucopyranosyl)-3,3',5,7-tetrahydroxy-4'-methoxyflavanone by means of spectral analyses using (1)H-NMR, (13)C-NMR, and 2D-NMR. Of these compounds, flavanone glycoside, hesperidin and narirutin were isolated as the main constituents. Thus, molasses is a promising source of flavonoid glycosides.

  3. Apoptotic activities of cardenolide glycosides from Asclepias subulata.

    PubMed

    Rascón-Valenzuela, L A; Velázquez, C; Garibay-Escobar, A; Vilegas, W; Medina-Juárez, L A; Gámez-Meza, N; Robles-Zepeda, R E

    2016-12-04

    Asclepias subulata Decne. (Apocynaceae) is a shrub occurring in Sonora-Arizona desert. The ethnic groups of Sonora, Mexico, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To determine the cell death pathways that the cardenolide glycosides with antiproliferative activity found in the methanol extract of A. subulata are able to activate. The effect of cardenolide glycosides isolated of A. subulata on induction of apoptosis in cancer cells was evaluated through the measuring of several key events of apoptosis. A549 cells were treated for 12h with doses of 3.0, 0.2, 3.0 and 1.0µM of 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively. Apoptotic and necrotic cell levels were measured by double staining with annexin V-FITC/PI. Mitochondrial membrane depolarization was examined through JC-1 staining. Apoptosis cell death and the apoptosis pathways activated by cardenolide glycosides isolated of A. subulata were further characterized by the measurement of caspase-3, caspase-8 and caspase-9 activity. Apoptotic assays showed that the four cardenolide glycosides isolated of A. subulata induced apoptosis in A549 cells, which was evidencing by phosphatidylserine externalization in 18.2%, 17.0%, 23.9% and 22.0% for 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively, compared with 4.6% of control cells. Cell death was also associated with a decrease in mitochondrial membrane potential, which was more than 75% in the treated cultures respect to control. The activation of caspase-3 was observed in all cardenolide glycosides-treated cancer cells indicating the caspase-dependent apoptosis of A549 cells. Extrinsic and intrinsic apoptosis pathways were activated by cardenolide glycosides treatment at the doses tested. In this study was found that cardenolide glycosides, 12, 16-dihydroxicalotropin, calotropin

  4. New benzophenone and quercetin galloyl glycosides from Psidium guajava L.

    PubMed

    Matsuzaki, Keiichi; Ishii, Rie; Kobiyama, Kaori; Kitanaka, Susumu

    2010-07-01

    New benzophenone and flavonol galloyl glycosides were isolated from an 80% MeOH extract of Psidium guajava L. (Myrtaceae) together with five known quercetin glycosides. The structures of the novel glycosides were elucidated to be 2,4,6-trihydroxybenzophenone 4-O-(6''-O-galloyl)-beta-D: -glucopyranoside (1, guavinoside A), 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-beta-D: -glucopyranoside (2, guavinoside B), and quercetin 3-O-(5''-O-galloyl)-alpha-L: -arabinofuranoside (3, guavinoside C) by NMR, MS, UV, and IR spectroscopies. Isolated phenolic glycosides showed significant inhibitory activities against histamine release from rat peritoneal mast cells, and nitric oxide production from a murine macrophage-like cell line, RAW 264.7.

  5. Acylated-oxypregnane glycosides from the roots of Asclepias syriaca.

    PubMed

    Warashina, Tsutomu; Noro, Tadataka

    2009-02-01

    Twenty new pregnane glycosides were obtained from the roots of Asclepias syriaca L. (Asclepiadaceae). These glycosides were confirmed to contain ikemagenin, 12-O-nicotinoyllineolon, 5alpha,6-dihydroikemagenin, and 12-O-tigloylisolineolon, as their aglycones, using both spectroscopic and chemical methods.

  6. Photochemistry and pharmacology of 9, 19-cyclolanostane glycosides isolated from genus Cimicifuga.

    PubMed

    Su, Yang; Chi, Wen-Cheng; Wu, Lun; Wang, Qiu-Hong; Kuang, Hai-Xue

    2016-10-01

    The constituents of Cimicifuga plants have been extensively investigated, and the principal metabolites are 9, 19-cyclolanostane triterpenoid glycosides, which often exhibit extensive pharmacological activities. 9, 19-Cyclolanostane triterpenoid glycosides are distributed widely in genus Cimicifuga rather than in other members of the Ranunculaceae family. So far, more than 140 cycloartane triterpene glycosides have been isolated from Cimicifuga spp.. The aim of this review was to summarize all 9, 19-cyclolanostane triterpenoid glycosides based on the available relevant scientific literatures from 2000 to 2014. Biological studies of cycloartane triterpene glycosides from Cimicifuga spp. are also discussed. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Steroidal glycosides from the roots of Asclepias curassavica.

    PubMed

    Warashina, Tsutomu; Noro, Tadataka

    2008-03-01

    Twenty-six new acylated-oxypregnane glycosides were obtained along with three known cardenolide glycosides from the roots of Asclepias curassavica (Asclepiadaceae). The new compounds were confirmed to contain 12-O-benzoylsarcostin, 12-O-benzoyldeacylmetaplexigenin, kidjolanin, and 12-O-benzoyltayloron, and one new acylated-oxypregnane, 12-O-(E)-cinnamoyltayloron, as their aglycones, using both spectroscopic and chemical methods.

  8. Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro.

    PubMed

    Esposito, Debora; Munafo, John P; Lucibello, Teresa; Baldeon, Manuel; Komarnytsky, Slavko; Gianfagna, Thomas J

    2013-07-09

    Preparations derived from bulbs of various Lilium species have been used to promote the healing of skin abrasions, sores and burns and to aid in healing wounds in Traditional Chinese and Greco-Roman Medicine. To evaluate fractionated Easter lily bulb extracts and their steroidal glycosides (1-5) for the promotion of dermal fibroblast migration in vitro, a model for the early events in wound healing. An activity-guided screening approach was used by coupling sequential solvent extraction, gel permeation chromatography (GPC), and semi-preparative reverse-phase high performance liquid chromatography (RP-HPLC) with an in vitro dermal fibroblast migration assay. Cytotoxicity was evaluated with methyl thiazole tetrazolium (MTT). To gain insight into the mode of action of the steroidal glycosides, nitric oxide (NO) production, and expression of genes for transforming growth factor beta-1 (TGF-β) and its receptors were evaluated. Fractionated bulb extracts and the two isolated steroidal glycoalkaloids (1) and (2) induced NO production and TGF-β receptor I mRNA expression in fibroblast cell culture. In a cytotoxicity assay, steroidal glycosides (1) and (3) had IC50 values of 8.2 and 8.7 µM, but the natural acetylation of the C-6″' hydroxy of the terminal glucose unit in (2) resulted in a 3-fold decrease in cell cytotoxicity when compared with (1). Results from the dermal fibroblast migration assay revealed that the steroidal glycoalkaloids (1) and (2), and the furostanol saponin (3) promoted fibroblast migration from the range of 23.7±5.7 to 37.7±5.1%, as compared with the control. Collectively, our data demonstrate that the steroidal glycosides present in Easter lily bulbs induce, at least in part, the observed dermal fibroblast migration activity of the bulb extracts. This is the first evidence that steroidal glycosides from Lilium longiflorum may potentially play a role in the wound healing process and may provide a scientific basis for the historical use of lily

  9. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L.

    PubMed

    Beck, Sebastian; Stengel, Julia

    2016-10-01

    Ginkgo biloba L. is known to be rich in flavonoids and flavonoid glycosides. However, the distribution within specific plant organs (e.g. within leaves) is not known. By using HPLC-MS and MS/MS we have identified a number of previously known G. biloba flavonoid glycosides and biflavonoids from leaves. Namely, kaempferol, quercetin, isorhamnetin, myricetin, laricitrin/mearnsetin and apigenin glycosides were identified. Furthermore, biflavonoids like ginkgetin/isoginkgetin were also detected. The application of MALDI mass spectrometric imaging, enabled the compilation of concentration profiles of flavonoid glycosides and biflavonoids in G. biloba L. leaves. Both, flavonoid glycosides and biflavonoids show a distinct distribution in leaf thin sections of G. biloba L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Phenolic glycosides from sugar maple (Acer saccharum) bark.

    PubMed

    Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P

    2011-11-28

    Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines.

  11. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting.

    PubMed

    Parker, Mango; Black, Cory A; Barker, Alice; Pearson, Wes; Hayasaka, Yoji; Francis, I Leigh

    2017-10-01

    This study investigated the sensory significance of monoterpene glycosides during tasting, by retronasal perception of odorant aglycones released in-mouth. Monoterpene glycosides were isolated from Gewürztraminer and Riesling juices and wines, chemically characterised and studied using sensory time-intensity methodology, together with a synthesised monoterpene glucoside. When assessed in model wine at five times wine-like concentration, Gewürztraminer glycosides and geranyl glucoside gave significant fruity flavour, although at wine-like concentrations, or in the presence of wine volatiles, the effect was not significant. Gewürztraminer glycosides, geranyl glucoside and guaiacyl glucoside were investigated using a sensory panel (n=39), revealing large inter-individual variability, with 77% of panellists responding to at least one glycoside. The study showed for the first time that grape-derived glycosides can contribute perceptible fruity flavour, providing a means of enhancing flavour in wines, and confirms the results of previous studies that the effect is highly variable across individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. New Knowledge About Old Drugs: The Anti-Inflammatory Properties of Cardiac Glycosides.

    PubMed

    Fürst, Robert; Zündorf, Ilse; Dingermann, Theo

    2017-08-01

    In the 19th century, cardio-active steroid glycosides, shortly cardiac glycosides, were scientifically established as drugs against heart failure. Their in vivo , cellular, and molecular actions as well as their predominant target, Na + -K + -ATPase, have been comprehensively investigated in the 20th century and the discovery of endogenous cardiac glycosides has fostered this research field. In the last years, however, results from clinical trials and meta-analyses have questioned their therapeutic value due to efficacy and safety issues. This has led to a considerable decline of their usage. Beyond the cardiovascular system, cardiac glycosides have been increasingly recognized as antitumor compounds and Na + -K + -ATPase has evolved into a promising drug target in oncology. A wealth of review articles exists that intensively discuss these topics. Surprisingly, the anti-inflammatory actions of cardiac glycosides, which were discovered in the 1960s, have so far hardly been perceived and have not yet been summarized. This review provides an overview of the in vivo and in vitro actions of cardiac glycosides on inflammatory processes and of the signaling mechanisms responsible for these effects: cardiac glycosides have been found to decrease inflammatory symptoms in different animal models of acute and chronic inflammation. Regarding the underlying mechanisms most research has focused on leukocytes. In these cells, cardiac glycosides primarily inhibit cell proliferation and the secretion of proinflammatory cytokines. Georg Thieme Verlag KG Stuttgart · New York.

  13. Prenylated flavonol glycosides Epimedium grandiflorum: Cytotoxicity and evaluation against inflammation and metabolic disorders

    USDA-ARS?s Scientific Manuscript database

    Two new prenylated flavonol glycosides, epimedigrandiosides A and B (1 and 2), and 28 previously known compounds including prenylated flavonol derivatives, flavonol glycoside, megastigmanes, phenyl alkanoids, sesquiterpenoid glycoside, lignan, and hexene glucoside were isolated from the methanol ext...

  14. Resin Glycosides from Ipomoea alba Seeds as Potential Chemosensitizers in Breast Carcinoma Cells.

    PubMed

    Cruz-Morales, Sara; Castañeda-Gómez, Jhon; Rosas-Ramírez, Daniel; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Lorence, Argelia; Pereda-Miranda, Rogelio

    2016-12-23

    Multidrug resistance is the expression of one or more efflux pumps, such as P-glycoprotein, and is a major obstacle in cancer therapy. The use of new potent and noncytotoxic efflux pump modulators, coadministered with antineoplastic agents, is an alternative approach for increasing the success rate of therapy regimes with different drug combinations. This report describes the isolation and structure elucidation of six new resin glycosides from moon vine seeds (Ipomoea alba) as potential mammalian multidrug-resistance-modifying agents. Albinosides IV-IX (1-6), along with the known albinosides I-III (7-9), were purified from the CHCl 3 -soluble extract. Degradative chemical reactions in combination with NMR spectroscopy and mass spectrometry were used for their structural elucidation. Four new glycosidic acids, albinosinic acids D-G (10-13), were released by saponification of natural products 3-6. They were characterized as tetrasaccharides of either convolvulinolic (11S-hydroxytetradecanoic) or jalapinolic (11S-hydroxyhexadecanoic) acids. The potentiation of vinblastine susceptibility in multidrug-resistant human breast carcinoma cells of albinosides 1-6 was evaluated by modulation assays. The noncytotoxic albinosides VII (4) and VIII (5), at a concentration of 25 μg/mL, exerted the strongest potentiation of vinblastine susceptibility, with a reversal factor (RF MCF-7/Vin + ) of 201- and >2517-fold, respectively.

  15. Diterpenoid glycosides from the bitter fern Gleichenia quadripartita.

    PubMed

    Socolsky, Cecilia; Asakawa, Yoshinori; Bardón, Alicia

    2007-12-01

    Fifteen new diterpenoid glycosides (1a-n, 2) were isolated from an Argentine collection of the bitter fern Gleichenia quadripartita along with the known flavonoid glycoside afzelin. Structure elucidation was accomplished by 1D and 2D NMR spectroscopy and by high-resolution MS analyses. In addition, X-ray crystallographic analysis of a monocrystal of 1a as well as chemical derivatization of 1h and 1m were performed to confirm their structures.

  16. Plant-derived cardiac glycosides: Role in heart ailments and cancer management.

    PubMed

    Patel, Seema

    2016-12-01

    Cardiac glycosides, the cardiotonic steroids such as digitalis have been in use as heart ailment remedy since ages. They manipulate the renin-angiotensin axis to improve cardiac output. However; their safety and efficacy have come under scrutiny in recent times, as poisoning and accidental mortalities have been observed. In order to better understand and exploit them as cardiac ionotropes, studies are being pursued using different cardiac glycosides such as digitoxin, digoxin, ouabain, oleandrin etc. Several cardiac glycosides as peruvoside have shown promise in cancer control, especially ovary cancer and leukemia. Functional variability of these glycosides has revealed that not all cardiac glycosides are alike. Apart from their specific affinity to sodium-potassium ATPase, their therapeutic dosage and behavior in poly-morbidity conditions needs to be considered. This review presents a concise account of the key findings in recent years with adequate elaboration of the mechanisms. This compilation is expected to contribute towards management of cardiac, cancer, even viral ailments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Synthesis and anti-fungal activity of acetylated glycosides of 1,4-naphthoquinone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polonik, S.G.; Tolkach, A.M.; Uvarova, N.I.

    1986-12-01

    The authors synthesize a series of glycoside derivatives of 1,4-naphthoquinones (VIII-XXII) and study their anti-fungal activity in a search for more effective preparations for the medical and food industries. The structures of the newly prepared glycosides were verified by IR and /sup 1/H and /sup 13/C NMR spectroscopy. The properties of acetylated 1,4-naphthoquinone glycosides are presented.

  18. MATE2 Mediates Vacuolar Sequestration of Flavonoid Glycosides and Glycoside Malonates in Medicago truncatula[C][W][OA

    PubMed Central

    Zhao, Jian; Huhman, David; Shadle, Gail; He, Xian-Zhi; Sumner, Lloyd W.; Tang, Yuhong; Dixon, Richard A.

    2011-01-01

    The majority of flavonoids, such as anthocyanins, proanthocyanidins, and isoflavones, are stored in the central vacuole, but the molecular basis of flavonoid transport is still poorly understood. Here, we report the functional characterization of a multidrug and toxin extrusion transporter (MATE2), from Medicago truncatula. MATE 2 is expressed primarily in leaves and flowers. Despite its high similarity to the epicatechin 3′-O-glucoside transporter MATE1, MATE2 cannot efficiently transport proanthocyanidin precursors. In contrast, MATE2 shows higher transport capacity for anthocyanins and lower efficiency for other flavonoid glycosides. Three malonyltransferases that are coexpressed with MATE2 were identified. The malonylated flavonoid glucosides generated by these malonyltransferases are more efficiently taken up into MATE2-containing membrane vesicles than are the parent glycosides. Malonylation increases both the affinity and transport efficiency of flavonoid glucosides for uptake by MATE2. Genetic loss of MATE2 function leads to the disappearance of leaf anthocyanin pigmentation and pale flower color as a result of drastic decreases in the levels of various flavonoids. However, some flavonoid glycoside malonates accumulate to higher levels in MATE2 knockouts than in wild-type controls. Deletion of MATE2 increases seed proanthocyanidin biosynthesis, presumably via redirection of metabolic flux from anthocyanin storage. PMID:21467581

  19. A novel glycoside from Acanthus hirsutus (Acanthaceae).

    PubMed

    Capanlar, Seval; Böke, Nazli; Yaşa, Ihsan; Kirmizigül, Süheyla

    2010-04-01

    A novel glycoside, hirsutusoide (1), characterized as 2-(o-hydroxyphenyl)-2-hydroxyethenyl-O-beta-glucopyranoside, was isolated from the endemic Acanthus hirsutus Boiss. In addition to compound 1, three known glycosides, luteolin-7-O-beta-D-glucuronide (2), beta-sitosterol-3-O-beta-D-glucopyranoside (3) and (2R)-2-O-beta-D-glucopyranosyl-2H-1,4-benzoxazin-3(4H)-one (4), were also isolated. Compound 2 was the first report from this genus. Antimicrobial and antioxidant activity of the extracts and the novel compound were investigated by determining MIC (microg/mL) and IC50 (microg/mL) values, respectively.

  20. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni.

    PubMed

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D; Ramirez, Catherine; Devkota, Krishna P; Snyder, Tara M

    2017-01-31

    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX-a novel steviol glycoside-from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation-based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data-of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.

  1. A new cinnamic acid glycoside from roots of Heracleum dissectum.

    PubMed

    Wang, Zhi-Gang; Mi, Jie; Wang, Xin-Rui; Huo, Ya-Yu; Peng, Ya-Jie; Zhang, Hai-Min; Gao, Yang; Zhang, Hai-Long

    2018-01-01

    From the roots of Heracleum dissectum Lebb., one new cinnamic acid glycoside derivative named dissectumoside (1), together with eight known compounds including three phenolics, three phenolic glycosides and two phenylpropanoic glycoside were isolated using various chromatographic methods. Among them compound 2-9 was isolated from the plant for the first time. Their structures were elucidated and identified on the basis of their physicochemical properties and by extensive analyses of NMR spectroscopy and high-resolution mass spectrometry. The results of triglyceride accumulation screening in 3T3-L1 cells showed that compounds 1, 5 and 9 exhibited significantly accelerating activities of adipogenesis in adipocytes.

  2. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, G.; Gold, C.; Ferro-Luzzi, A.

    1980-08-01

    Many substances in the plant kingdom and in man's diet occur as glycosides. Recent studies have indicated that many glycosides that are not mutagenic in tests such as the Salmonella test become mutagenic upon hydrolysis of the glycosidic linkages. The Salmonella test utilizes a liver homogenate to approximate mammalian metabolism but does not provide a source of the enzymes present in intestinal bacterial flora that hydrolyze the wide variety of glycosides present in nature. We describe a stable cell-free extract of human feces, fecalase, which is shown to contain various glycosidases that allow the in vitro activation of many naturalmore » glycosides to mutagens in the Salmonella/liver homogenate test. Many beverages, such as red wine (but apparently not white wine) and tea, contain glycosides of the mutagen quercetin. Red wine, red grape juice, and teas were mutagenic in the test when fecalase was added, and red wine contained considerable direct mutagenic activity in the absence of fecalase. The implications of quercetin mutagenicity and carcinogenicity are discussed.« less

  3. Selective hydrolysis of flavonoid glycosides by Curvularia lunata.

    PubMed

    Liu, Jing-Yuan; Yu, He-Shui; Feng, Bing; Kang, Li-Ping; Pang, Xu; Xiong, Cheng-Qi; Zhao, Yang; Li, Chun-Mei; Zhang, Yi; Ma, Bai-Ping

    2013-11-01

    Twelve flavonoid glycosides were involved in the biotransformation of the glycosyl moieties by Curvularia lunata 3.4381, and the products were analyzed by UPLC/PDA-Q-TOF-MS(E). Curvularia lunata displayed hydrolyzing activities on the terminal Rha or Glc units of some flavonoid glycosides. Terminal Rha with a 1 → 2 linkage of isorhamnetin-3-O-neohesperidoside and typhaneoside could be hydrolyzed by Curvularia lunata, but terminal Rha with a 1 → 6 linkage of rutin, typhaneoside, and quercetin-3-O-apiosyl-(1 → 2)-[rhamnosyl-(1 → 6)]-glucoside could not be hydrolyzed. Curvularia lunata could also hydrolyze the Glc of icariin, floramanoside B, and naringin. This is the first report of the hydrolysis of glycosyl units of flavonoid glycosides by Curvularia lunata. A new way to convert naringin to naringenin was found in this research. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages

    NASA Astrophysics Data System (ADS)

    Hahm, Heung Sik; Hurevich, Mattan; Seeberger, Peter H.

    2016-09-01

    Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans-glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis-glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides.

  5. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.).

    PubMed

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Gutiérrez-Uribe, Janet A; Cepeda-Cañedo, Eduardo; Serna-Saldívar, Sergio O

    2017-08-22

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp (AP-BL) ) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp (AP-BL) values than triglycosides. Sugar substituents affected the Papp (AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.

  6. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.)

    PubMed Central

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Cepeda-Cañedo, Eduardo

    2017-01-01

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp(AP-BL)) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp(AP-BL) values than triglycosides. Sugar substituents affected the Papp(AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo. PMID:28829356

  7. Dietary flavonoid aglycones and their glycosides: Which show better biological significance?

    PubMed

    Xiao, Jianbo

    2017-06-13

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of

  8. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.)

    PubMed Central

    Yang, Xin; Song, Li-min; Xu, Qian; Li, Hong

    2017-01-01

    Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases. PMID:29081895

  9. Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach.

    PubMed

    Well, Caroline; Frank, Oliver; Hofmann, Thomas

    2013-11-27

    Meeting the rising consumer demand for natural food ingredients, steviol glycosides, the sweet principle of Stevia rebaudiana Bertoni (Bertoni), have recently been approved as food additives in the European Union. As regulatory constraints require sensitive methods to analyze the sweet-tasting steviol glycosides in foods and beverages, a HILIC-MS/MS method was developed enabling the accurate and reliable quantitation of the major steviol glycosides stevioside, rebaudiosides A-F, steviolbioside, rubusoside, and dulcoside A by using the corresponding deuterated 16,17-dihydrosteviol glycosides as suitable internal standards. This quantitation not only enables the analysis of the individual steviol glycosides in foods and beverages but also can support the optimization of breeding and postharvest downstream processing of Stevia plants to produce preferentially sweet and least bitter tasting Stevia extracts.

  10. Flavonol Glycosides from Gaura Biennis

    USDA-ARS?s Scientific Manuscript database

    Phytochemical investigation of the native American plant Gaura biennis led to the isolation of three new flavonol glycosides (1-3), along with eight known ones. Their structures were established primarily by spectroscopic data as quercetin 3-O-(2"-O-a-L-rhamnopyranosyl-6"-O-E-p-coumaroyl)-ß-D- gluco...

  11. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur.

    PubMed

    Senica, Mateja; Stampar, Franci; Veberic, Robert; Mikulic-Petkovsek, Maja

    2016-07-15

    Popular liqueurs made from apricot/cherry pits were evaluated in terms of their phenolic composition and occurrence of cyanogenic glycosides (CGG). Analyses consisted of detailed phenolic and cyanogenic profiles of cherry and apricot seeds as well as beverages prepared from crushed kernels. Phenolic groups and cyanogenic glycosides were analyzed with the aid of high-performance liquid chromatography (HPLC) and mass spectrophotometry (MS). Lower levels of cyanogenic glycosides and phenolics have been quantified in liqueurs compared to fruit kernels. During fruit pits steeping in the alcohol, the phenolics/cyanogenic glycosides ratio increased and at the end of beverage manufacturing process higher levels of total analyzed phenolics were detected compared to cyanogenic glycosides (apricot liqueur: 38.79 μg CGG per ml and 50.57 μg phenolics per ml; cherry liqueur 16.08 μg CGG per ml and 27.73 μg phenolics per ml). Although higher levels of phenolics are characteristic for liqueurs made from apricot and cherry pits these beverages nevertheless contain considerable amounts of cyanogenic glycosides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phenylethanoid glycosides from Phlomis integrifolia Hub.-Mor.

    PubMed

    Saracoglu, Iclal; Varel, Mehtap; Hada, Junko; Hada, Noriyasu; Takeda, Tadahiro; Donmez, Ali A; Calis, Ihsan

    2003-01-01

    Two new phenylethanoid glycosides integrifoliosides A (2) and B (3), along with a known phenylethanoid glycoside alyssonoside (1) and a flavone glucoside chrysoeriol-7-O-beta-D-glucopyranoside (4) were isolated from the aerial parts of Phlomis integrifolia. The structures of the new compounds were identified as 3,4-dihydroxy-beta-phenylethoxy-O-beta-D-apiofuranosyl-(1 --> 4)-alpha-L-rhamnopyranosyl-(1 --> 3)-4-O-feruloyl-beta-D-glucopyranoside (2) and 3-hydroxy-4-methoxy-beta-phenylethoxy-O-beta-D-apiofuranosyl-(1 --> 4)-alpha-L-rhamnopyranosyl-(1 --> 3)-4-O-feruloyl-beta-D-glucopyranoside (3), on the basis of spectroscopic (UV, IR, 1D- and 2D-NMR, and HR-FABMS) methods.

  13. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    PubMed Central

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  14. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  15. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni

    PubMed Central

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D.; Ramirez, Catherine; Devkota, Krishna P.; Snyder, Tara M.

    2017-01-01

    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX—a novel steviol glycoside—from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation—based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data—of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 1→6 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog. PMID:28146121

  16. The influence of stevia glycosides on the growth of Lactobacillus reuteri strains.

    PubMed

    Deniņa, I; Semjonovs, P; Fomina, A; Treimane, R; Linde, R

    2014-03-01

    Use of stevia-derived sweeteners was recently officially approved by the European Commission, and their application in the food industry has increased, especially in functional foods. However, there are scarce data about the influence of stevia on probiotic bacteria, which are important both as an inhabitant of the human gut and as a functional food additive. Taking into consideration the broad application of Lactobacillus reuteri in functional foods, the aim of the research was to evaluate the influence of stevia glycosides on its growth. Six Lact. reuteri strains were tested for their ability to grow in the presence of stevioside and rebaudioside A (0·2-2·6 g l(-1) ). The effect of stevia glycosides on biomass concentration, cell count, pH and lactic and acetic acid synthesis was analysed. Both glycosides impaired the growth of analysed strains. However, the inhibitory effect was strain specific, and the concentration-dependent effect was not observed for all parameters. The most pronounced concentration-dependent effect was on lactic and acetic acid production. Taking into account the observed strain-specific inhibitory effect of stevia glycosides, it could be suggested to evaluate the influence of them on each strain employed before their simultaneous application in functional foods. The study showed that the growth of Lactobacillus reuteri strains was inhibited in the presence of stevia sweeteners stevioside and rebaudioside A. Probiotics, for example Lact. reuteri strains, are often used as functional additives in health foods and are an important natural inhabitant of the human gastrointestinal tract. Stevia glycosides application in food is increasing; yet, there are no data about the influence of stevia glycosides on Lact. reuteri growth and very few data on growth of other lactobacilli, either in probiotic foods or in the gastrointestinal tract. This research shows that it is necessary to evaluate the influence of stevia glycosides on other groups

  17. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  18. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria.

    PubMed

    Corona-Castañeda, Berenice; Pereda-Miranda, Rogelio

    2012-01-01

    Twenty-six microbiologically inactive (MIC > 512 µg/mL) convolvulaceous resin glycosides ( 1- 26) were tested for resistance modulatory activity in vitro against Escherichia coli Rosetta-gami and two nosocomial pathogens, Salmonella typhi and Shigella flexneri. These compounds exerted a potentiation effect of the clinically useful antibiotics tetracycline, kanamycin, and chloramphenicol against the tested gram-negative bacteria by increasing antibiotic susceptibility up to 32-fold at concentrations of 25 µg/mL. Therefore, the oligosaccharides from the morning glory family (Convolvulaceae) represent metabolites that reverse microbial resistance mechanisms, favoring an increase in the strength and effectiveness of current antibiotics that are not effective in the treatment of refractive infections caused by multidrug-resistant strains. © Georg Thieme Verlag KG Stuttgart · New York.

  19. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.

    2006-01-01

    A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.

  20. Phenolic Glycosides in Populus tremuloides and their Effects on Long-Term Ungulate Browsing.

    PubMed

    Lastra, R A; Kenkel, N C; Daayf, F

    2017-10-01

    In the aspen-grassland ecotone of Riding Mountain, Manitoba, lightly browsed vigorous clones of trembling aspen (Populus tremuloides Michx.) occur in close proximity to heavily browsed dieback clones. This study examines whether intraspecific variation in the production of phenolic glycosides is correlated with this strong dichotomy in clonal vigor. Individual clones were sampled over four years at three sites located along a gradient of increasing soil moisture stress. At each site, eight aspen clones of similar size and age were sampled: four vigorous and four dieback clones (total of 24 individual clones). The severity of wapiti (elk) browsing was assessed as the ratio of browse-damaged to total branches per aspen ramet. Statistically significant differences in foliar concentrations of the phenolic glycosides salicortin and tremulacin were observed between vigorous and dieback clones: a mean of 14.8% dry mass for lightly browsed (vigorous) clones, versus just 7.0% for heavily browsed (dieback) clones. Mean concentrations of foliar phenolics were also significantly greater in more moisture-stressed sites. These results demonstrate that the strong dichotomy in clonal vigor (vigorous versus dieback clones) is associated with large differences in phenolic glycoside production. Vigorous clone ramets produce high amounts of phenolic glycosides and have low levels of herbivore browsing and low mortality rates, whereas dieback clone ramets have low amounts of phenolic glycosides and much higher herbivore browsing and mortality rates. This suggests that intraspecific variation in phenolic glycosides in trembling aspen is an important predisposing factor leading to ramet mortality, and by extension to the decline of aspen clones.

  1. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS.

    PubMed

    Wu, Yahui; Jiang, Xiaolan; Zhang, Shuxiang; Dai, Xinlong; Liu, Yajun; Tan, Huarong; Gao, Liping; Xia, Tao

    2016-04-01

    Phenolic compounds are major components of tea flavour, in which catechins and flavonol glycosides play important roles in the astringent taste of tea infusion. However, the flavonol glycosides are difficult to quantify because of the large variety, as well as the inefficient seperation on chromatography. In this paper, a total of 15 flavonol glycosides in the tea plant (Camellia sinensis) were identified by the high performance liquid chromatography (HPLC) coupled to a time-of-flight mass spectrometer (TOF-MS), and a quantitative method was established based on multiple reaction monitoring (MRM) mode of ultra-high performance liquid chromatography (UPLC) coupled to a triple quadrupole mass spectrometer (QQQ-MS/MS). It provided the limit of detection and quantification to the order of picogram, which was more sensitive than the HPLC detection of the order of nanogram. The relative standard deviations of the intra- and inter-day variations in retention time and signal intensity (peak area) of six analytes were less than 0.26% and 4%, respectively. The flavonol glycosides of four tea cultivars were relatively quantified using the signal intensity (peak area) of product ion, in which six flavonol glycosides were quantified by the authentic standards. The results showed that the flavonol mono-, di- and tri-glycoside mostly accumulated in young leaves of the four tea cultivars. Notably, the myricetin 3-O-galactoside was the major component among the six flavonol glycosides detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. New cardenolide and acylated lignan glycosides from the aerial parts of Asclepias curassavica.

    PubMed

    Warashina, Tsutomu; Shikata, Kimiko; Miyase, Toshio; Fujii, Satoshi; Noro, Tadataka

    2008-08-01

    Three new cardenolide glycosides and six new acylated lignan glycosides were obtained along with nineteen known compounds from the aerial parts of Asclepias curassavica L. (Asclepiadaceae). The structure of each compound was determined based on interpretations of NMR and MS measurements and chemical evidence.

  3. 8,14-Secopregnane glycosides from the aerial parts of Asclepias tuberosa.

    PubMed

    Warashina, Tsutomu; Noro, Tadataka

    2009-07-01

    Twenty pregnane glycosides, tuberoside A(1)-L(5), were isolated from the diethyl ether-soluble fraction of the MeOH extract from the aerial parts of Asclepias tuberosa (Asclepiadaceae). The pregnane glycosides were composed of 8,12;8,20-diepoxy-8,14-secopregnane as aglycon, and D-cymarose, D-oleandrose, D-digitoxose and/or D-glucose as the component sugars. Their structures were established using NMR spectroscopic analysis and chemical methodologies.

  4. Use of qNMR for speciation of flaxseeds (Linum usitatissimum) and quantification of cyanogenic glycosides.

    PubMed

    Roulard, Romain; Fontaine, Jean-Xavier; Jamali, Arash; Cailleu, Dominique; Tavernier, Reynald; Guillot, Xavier; Rhazi, Larbi; Petit, Emmanuel; Molinie, Roland; Mesnard, François

    2017-12-01

    This report describes a routine method taking less than 20 min to quantify cyanogenic glycosides such as linustatin and neolinustatin from flaxseeds (Linum usitatissimum L.) using 1 H nuclear magnetic resonance. After manual dehulling, a higher linustatin content was shown in the almond fraction, while neolinustatin and total cyanogenic glycoside contents were significantly higher in hulls. Linustatin and neolinustatin were quantified in seven cultivars grown in two locations in three different years. Linustatin, neolinustatin, and total cyanogenic glycosides ranged between 91 and 267 mg/100 g, 78-272 mg/100 g, and 198-513 mg/100 g dry weight flaxseeds, respectively. NMR revealed differences of up to 70% between samples with standard deviation variations lower than 6%. This study shows that NMR is a very suitable tool to perform flaxseed varietal selection for the cyanogenic glycoside content. Graphical abstract qNMR can be used to perform flaxseed varietal selection for the cyanogenic glycoside content.

  5. Evaluation of the potential carcinogenic activity of Senna and Cascara glycosides for the rat colon.

    PubMed

    Mereto, E; Ghia, M; Brambilla, G

    1996-03-19

    Anthraquinone glycosides of Senna and Cascara were investigated for their ability to induce aberrant crypt foci (ACF) in the rat colon mucosa, which are considered putative preneoplastic lesions. Dietary exposure to high doses of these glycosides for 56 successive days did not cause the appearance of ACF or increase in incidence of ACF induced by 1,2-dimethyl-hydrazine (DMH). However, in rats treated with both DMH and the highest dose of glycosides, the average number of aberrant crypts per focus, considered a consistent predictor of tumor outcome, was higher than in rats given DMH alone. These findings suggest that Senna and Cascara glycoside might behave as weak promoters in rat colon carcinogenesis.

  6. Hillasides A and B, two new cytotoxic triterpene glycosides from the sea cucumber Holothuria hilla Lesson.

    PubMed

    Wu, Jun; Yi, Yang-Hua; Tang, Hai-Feng; Wu, Hou-Ming; Zhou, Zhen-Rong

    2007-01-01

    Two new triterpene glycosides, hillasides A (1) and B (2), were isolated from the sea cucumber H. hilla Lesson, together with one known glycoside holothuria B (3). Their structures were deduced by extensive spectral analysis and chemical evidences. The presence of conjugated double bonds [22E,24-diene] in the aglycone of 1 is a rare structural feature among sea cucumber glycosides. The two glycosides showed significant cytotoxicity against eight human tumour cell lines (A-549, MCF-7, IA9, CAKI-1, PC-3, KB, KB-VIN and HCT-8) with IC(50) in the range of 0.1-3.8 microg/ml.

  7. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching

    PubMed Central

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855

  8. Triterpenoid glycosides from Bacopa monnieri.

    PubMed

    Sivaramakrishna, Chillara; Rao, Chirravuri V; Trimurtulu, Golakoti; Vanisree, Mulabagal; Subbaraju, Gottumukkala V

    2005-12-01

    Two triterpenoid glycosides have been isolated along with 10 known saponins from Bacopa monnieri. Structures of the compounds have been elucidated as 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl] jujubogenin (1) and 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl] pseudojujubogenin (2) by high resolution NMR spectral data and chemical correlations. Further, the chemical compositions of bacosides A and B have been delineated.

  9. Identification of a flavonoid C-glycoside as potent antioxidant.

    PubMed

    Wen, Lingrong; Zhao, Yupeng; Jiang, Yueming; Yu, Limei; Zeng, Xiaofang; Yang, Jiali; Tian, Miaomiao; Liu, Huiling; Yang, Bao

    2017-09-01

    Flavonoids have been documented to have good antioxidant activities in vitro. However, reports on the cellular antioxidant activities of flavonoid C-glycosides are very limited. In this work, an apigenin C-glycoside was purified from Artocarpus heterophyllus by column chromatography and was identified to be 2″-O-β-D-xylosylvitexin by nuclear magnetic resonance spectroscopy. The cellular antioxidant activity and anticancer activity of 2″-O-β-D-xylosylvitexin were evaluated for the first time. The quantitative structure-activity relationship was analysed by molecular modeling. Apigenin presented an unexpected cellular antioxidation behaviour. It had an antioxidant activity at low concentration and a prooxidant activity at high concentration, whereas 2″-O-β-D-xylosylvitexin showed a dose-dependent cellular antioxidant activity. It indicated that C-glycosidation improved the cellular antioxidation performance of apigenin and eliminated the prooxidant effect. The ortho-dihydroxyl at C-3'/C-4' and C-3 hydroxyl in the flavonoid skeleton play important roles in the antioxidation behaviour. The cell proliferation assay revealed a low cytotoxicity of 2″-O-β-D-xylosylvitexin. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Enzymatic Biosynthesis of Novel Resveratrol Glucoside and Glycoside Derivatives

    PubMed Central

    Pandey, Ramesh Prasad; Parajuli, Prakash; Shin, Ju Yong; Lee, Jisun; Lee, Seul; Hong, Young-Soo; Park, Yong Il; Kim, Joong Su

    2014-01-01

    A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides. PMID:25239890

  11. Nickel-catalyzed proton-deuterium exchange (HDX) procedures for glycosidic linkage analysis of complex carbohydrates

    USDA-ARS?s Scientific Manuscript database

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of non-carbohydrate substituents. The glycosidic linkage positions are often de...

  12. Solubility Enhancement of Steviol Glycosides and Characterization of Their Inclusion Complexes with Gamma-Cyclodextrin

    PubMed Central

    Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra

    2011-01-01

    Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615

  13. Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca.

    PubMed

    Araya, Juan J; Kindscher, Kelly; Timmermann, Barbara N

    2012-03-23

    Phytochemical investigation of the dried biomass of Asclepias syriaca afforded five new compounds (1-5), along with 19 known structures. Overall, the secondary metabolites isolated and identified from this plant showed a wide structural diversity including pentacyclic triterpenes, cardiac glycosides, flavonoid glycosides, lignans, a phenylethanoid, and a glycosylated megastigmane. In addition, the isolates were tested against the cancer breast cell line Hs578T, and those showing IC(50) values lower than 50 μM (1 and 6-9) were further investigated in three additional breast cancer cell lines (MCF-7, T47D, and Sk-Br-3) and the normal breast cell line Hs578Bst.

  14. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC).

    PubMed

    Zhu, Yindi; Liu, Yue; Zhan, Ying; Liu, Lin; Xu, Yajuan; Xu, Tunhai; Liu, Tonghua

    2013-12-16

    Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.

  15. Glycoside hydrolases having multiple hydrolase activities

    DOEpatents

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  16. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.).

    PubMed

    Mayorga, H; Knapp, H; Winterhalter, P; Duque, C

    2001-04-01

    The bound volatile fraction of cape gooseberry (Physalis peruviana L.) fruit harvested in Colombia has been examined by HRGC and HRGC-MS after enzymatic hydrolysis using a nonselective pectinase (Rohapect D5L). Forty bound volatiles could be identified, with 21 of them being reported for the first time in cape gooseberry. After preparative isolation of the glycosidic precursors on XAD-2 resin, purification by multilayer coil countercurrent chromatography and HPLC of the peracetylated glycosides were carried out. Structure elucidation by NMR, ESI-MS/MS, and optical rotation enabled the identification of (1S,2S)-1-phenylpropane-1,2-diol 2-O-beta-D-glucopyranoside (1) and p-menth-4(8)-ene-1,2-diol 1-O-alpha-L-arabinopyranosyl-(1-6)-beta-D-glucopyranoside (2). Both glycosides have been identified for the first time in nature. They could be considered as immediate precursors of 1-phenylpropane-1,2-diol and p-menth-4(8)-ene-1,2-diol, typical volatiles found in the fruit of cape gooseberry.

  17. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.

    Background Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Results Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolasesmore » were down-regulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Conclusions Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases was not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a

  18. New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum.

    PubMed

    Masuoka, Chikako; Ono, Masateru; Ito, Yasuyuki; Okawa, Masafumi; Nohara, Toshihiro

    2002-10-01

    A new megastigmane glycoside, called pipeloside A, and a new aromadendrane type sesquiterpenoid, pipelol A, were isolated from the MeOH extract of the aerial part of Piper elongatum VAHL. along with a known megastigmane glycoside, byzantionoside B. The structures of these compounds were elucidated on the basis of spectroscopic data and chemical evidence.

  19. Simultaneous quantitative assessment of nine glycosides in tobacco by liquid chromatography-tandem mass spectrometry.

    PubMed

    Yuan, Yue; Zhou, Rong; Li, Dongliang; Luo, Cheng; Li, Guoyou

    2018-03-01

    A simple and efficient method combining ultrasound-assisted extraction, the conditions of which were optimized by response surface methodology, with liquid chromatography and tandem mass spectrometry was established and validated for the absolute quantification of nine non-volatile neutral glycosides originating from tobacco (Nicotiana tobaccum L.) leaves, comprising three phenolic glycosides, one benzanoid glycoside, and five sesquiterpene glycosides within three isomers, originating from tobacco leaves. Factors of extraction time, sample quantity, extraction solvent, liquid chromatographic conditions, and electrospray ionization parameters were carefully investigated to ensure the selectivity and sensitivity of the method. All calibration curves showed excellent coefficients of determination ranging from 0.9940 to 0.9996, within the range of tested concentrations. The limits of detection and quantification were 2.33-25.9 and 7.06-78.5 ng/mL, respectively. Satisfactory values of accuracy were between 80.1 to 107.9% among different sample matrixes. The relative standard deviations of intra- and inter-day analysis were less than 13.7 and 13.0% respectively. The developed method was successfully applied in a pilot study to determine the amounts of the nine endogenous glycosides in real flue-cured tobacco samples obtained from different habitats in China. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Effects of cornel iridoid glycoside on activity of cholinesterases in vitro].

    PubMed

    Chu, Si-Juan; Zhang, Lan; Liu, Gang; Zhou, Wen-Xia; Li, Lin

    2013-05-01

    The purpose of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on the activity of cholinesterases in vitro, and to investigate the mechanism of CIG's treating Alzheimer's disease (AD). The sources of cholinesterases were prepared from human blood cells, rat brain homogenate and human blood plasma, respectively. The biochemical methods were used to detect the activity of acetylcholine esterase (AChE) and butyryl cholinesterase (BuChE) to investigate the influence of CIG on cholinesterases. The results showed that CIG inhibited the activity of AChE of human blood cells and rat brain homogenate, with the 50% inhibition rate (IC50) of 1.6 g . L-1 and 3.3 g . L-1, respectively; and the inhibition of AChE of CIG is reversible. CIG also inhibited the activity of BuChE of human blood plasma, with the IC50 of 2.9 g . L-1. In conclusion, CIG can inhibit the activity of AChE and BuChE in vitro, which may be one of the mechanisms of CIG to treat AD.

  1. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    DOE PAGES

    Chen, Mo; Bu, Lintao; Alahuhta, Markus; ...

    2016-02-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the productmore » inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.« less

  2. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mo; Bu, Lintao; Alahuhta, Markus

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the productmore » inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.« less

  3. New phenylpropanoid glycosides from Juniperus communis var. depressa.

    PubMed

    Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Murata, Jin; Lang, Frank A; Tanaka, Toshiyuki; Nakanishi, Tsutomu; Inada, Akira

    2010-05-01

    Two new phenylpropanoid glycosides were isolated from the leaves and stems of Juniperus communis var. depressa (Cupressaceae) along with 14 known compounds. Their structures were determined by spectral analyses, in particular by 2D-NMR spectral evidence.

  4. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    PubMed

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties.

    PubMed

    Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong

    2017-01-01

    HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à Petit VvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera "Muscat blanc à Petit" between two regions is closely correlated to monoterpenyl glucosyltransferase ( VvGT14 , XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety "Muscat blanc à Petit" and "Gewurztraminer" under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis -rose oxide and geraniol were major components contributing to the aroma odors of "Gewürztraminer" grapes while linalool was major aroma contributor to the "Muscat blanc à Petit grain" grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14 . Only one allele of VvGT7 was found in the variety "Gewürztraminer" and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in "Muscat blanc à Petit grain." The mutation on its enzyme active site

  6. Glycosides from Bougainvillea glabra.

    PubMed

    Simon, András; Tóth, Gábor; Duddeck, Helmut; Soliman, Hesham S M; Mahmoud, Ibrahim I; Samir, Hanan

    2006-01-01

    Three glycosides were isolated from Bougainvillea glabra and their structures were determined by extensive use of 1D and 2D NMR spectroscopy ((1)H and (13)C). First compound was identical to momordin IIc (quinoside D) [beta-D-glucopyranosyl 3-O-[beta-D-xylopyranosyl-(1 --> 3)-O-(beta-D-glucopyranosyluronic acid)] oleanolate], second compound was quercetin 3-O-alpha-L-(rhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopy-ranosyl(1 --> 2)]-beta-D-galactopyranoside and third compound was its derivative quercetin 3-O-alpha-L-(4-caffeoylrhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopyranosyl (1 --> 2)]-beta-D-galactopyranoside, a new natural product.

  7. Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla.

    PubMed

    Barnes, Curtis C; Smalley, Mary K; Manfredi, Kirk P; Kindscher, Kelly; Loring, Hillary; Sheeley, Douglas M

    2003-11-01

    The organic soluble extract from the leaves of the native North American prairie plant Ipomoea leptophylla (big root morning glory) showed in vitro activity against M. tuberculosis. Bioassay-guided fractionation of this extract resulted in the identification of two new resin glycosides (6, 7). Base-catalyzed hydrolysis of these glycosides gave operculinic acid (1) as the glycosidic acid component as well as trans-cinnamic acid, propanoic acid, and lauric acid. The complete structure elucidation was accomplished through derivatization, 1D and 2D NMR spectroscopy (TOCSY, ROESY, HSQC, HMBC), and MS/MS experiments on 6 and 7 as well as the permethylated derivative 8.

  8. Profiling of iridoid glycosides in Vaccinium species by UHPLC-MS.

    PubMed

    Heffels, Peter; Müller, Laura; Schieber, Andreas; Weber, Fabian

    2017-10-01

    The iridoid profile of four Vaccinium species was investigated using UHPLC-MS to obtain further information about this group of species for phytochemical characterization. Fruits of bog bilberry (Vaccinium uliginosum L.) showed 14 different iridoid glycosides with a total amount of 20mg/kg fresh weight (FW), whereas bilberry (Vaccinium myrtillus L.) contained 11 iridoid glycosides and a total amount of 127mg/kg FW. Highbush blueberry (Vaccinium corymbosum L.) and lowbush blueberry (Vaccinium angustifolium L.) contained none of the investigated iridoid glycosides. Among the different iridoids, the isomers scandoside and deacetylasperulosidic acid as well as a dihydro derivative thereof were described for the first time in the Ericaceae family. The p-coumaroyl isomers of scandoside, deacetylasperulosidic acid and dihydromonotropein are reported for the first time in V. myrtillus and V. uliginosum. Monotropein and its p-coumaroyl isomers were found for the first time in V. uliginosum. The comparison of iridoid profiles in bilberry fruit and juice samples revealed constant proportions throughout the juice processing. Quantification and profile determination of iridoids may be used for species differentiation and thus for authentication purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sweet Poisons: Honeys Contaminated with Glycosides of the Neurotoxin Tutin.

    PubMed

    Larsen, Lesley; Joyce, Nigel I; Sansom, Catherine E; Cooney, Janine M; Jensen, Dwayne J; Perry, Nigel B

    2015-06-26

    Poisonings due to consumption of honeys containing plant toxins have been reported widely. One cause is the neurotoxin tutin, an oxygenated sesquiterpene picrotoxane, traced back to honeybees (Apis mellifera) collecting honeydew produced by passionvine hoppers (Scolypopa australis) feeding on sap of the poisonous shrub tutu (Coriaria spp.). However, a pharmacokinetic study suggested that unidentified conjugates of tutin were also present in such honeys. We now report the discovery, using ion trap LC-MS, of two tutin glycosides and their purification and structure determination as 2-(β-d-glucopyranosyl)tutin (4) and 2-[6'-(α-d-glucopyranosyl)-β-d-glucopyranosyl]tutin (5). These compounds were used to develop a quantitative triple quadrupole LC-MS method for honey analysis, which showed the presence of tutin (3.6 ± 0.1 μg/g honey), hyenanchin (19.3 ± 0.5), tutin glycoside (4) (4.9 ± 0.4), and tutin diglycoside (5) (4.9 ± 0.1) in one toxic honey. The ratios of 4 and 5 to tutin varied widely in other tutin-containing honeys. The glycosidation of tutin may represent detoxification by one or both of the insects involved in the food chain from plant to honey.

  10. Phenylethanoid Glycosides: Research Advances in Their Phytochemistry, Pharmacological Activity and Pharmacokinetics.

    PubMed

    Xue, Zhenzhen; Yang, Bin

    2016-07-29

    Phenylethanoid glycosides (PhGs) are widely distributed in traditional Chinese medicines as well as in other medicinal plants, and they were characterized by a phenethyl alcohol (C₆-C₂) moiety attached to a β-glucopyranose/β-allopyranose via a glycosidic bond. The outstanding activity of PhGs in diverse diseases proves their importance in medicinal chemistry research. This review summarizes new findings on PhGs over the past 10 years, concerning the new structures, their bioactivities, including neuroprotective, anti-inflammatory, antioxidant, antibacterial and antivirus, cytotoxic, immunomodulatory, and enzyme inhibitory effects, and pharmacokinetic properties.

  11. Enhanced profiling of flavonol glycosides in the fruits of sea buckthorn (Hippophae rhamnoides).

    PubMed

    Fang, Rui; Veitch, Nigel C; Kite, Geoffrey C; Porter, Elaine A; Simmonds, Monique S J

    2013-04-24

    Use of enhanced LC-MS/MS methods to identify common glycosyl groups of flavonoid glycosides enabled better characterization of the flavonoids in fruits of sea buckthorn (Hippophae rhamnoides). The saccharide moieties of 48 flavonol O-glycosides detected in a methanol extract were identified by these methods. Several of the flavonol glycosides were acylated, two of which were isolated and found to be new compounds. Their structures were determined using spectroscopic and chemical methods as isorhamnetin 3-O-(6-O-E-sinapoyl-β-D-glucopyranosyl)-(1→2)-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (24) and isorhamnetin 3-O-(6-O-E-feruloyl-β-D-glucopyranosyl)-(1→2)-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (30). Analysis of the acylated glycosyl groups of 24 and 30 by serial mass spectrometry provided evidence to suggest the acylation position of 11 other minor flavonol glycosides acylated with hydroxycinnamic or hydroxybenzoic acids. The nitric oxide scavenging activities of 24 and 30 were compared with those of other flavonoids and with ascorbic acid and the potassium salt of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (carboxy-PTIO).

  12. A new withanolide glycoside from physalis peruviana

    PubMed

    Ahmad; Malik; Afza; Yasmin

    1999-03-01

    A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations.

  13. Two new chalcone glycosides from the stems of Entada phaseoloides.

    PubMed

    Zhao, Zhong-xiang; Jin, Jing; Lin, Chao-zhan; Zhu, Chen-chen; Liu, Yi-ming; Lin, Ai-hua; Liu, Ying-xiang; Zhang, Li; Luo, Hua-feng

    2011-10-01

    Two new chalcone glycosides 4'-O-(6″-O-galloyl-β-d-glucopyranosyl)-2',4-dihydroxychalcone (1) and 4'-O-(6″-O-galloyl-β-d-glucopyranosyl)-2'-hydroxy-4-methoxychalcone (2) together with one known chalcone glycoside 4'-O-β-d-glucopyranosyl-2'-hydroxy-4-methoxychalcone (3) were isolated from the stems of Entada phaseoloides. The structures of the new compounds were elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC, (1)H-(1)H COSY, and chemical evidences. This is the first report of chalcone-type compounds isolated from the genus Entada. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Non-targeted glycosidic profiling of international wines using neutral loss-high resolution mass spectrometry.

    PubMed

    Barnaba, C; Dellacassa, E; Nicolini, G; Nardin, T; Serra, M; Larcher, R

    2018-07-06

    Many metabolites naturally occur as glycosides, since sugar moieties can be crucial for their biological activity and increase their water solubility. In the plant kingdom they may occur as glycosides or sugar esters, depending on precursor chemical structure, and in wine they have traditionally attracted attention due to their organoleptic properties, such as astringency and bitterness, and because they affect the colour and aroma of wines. A new approach directed at detailed description of glycosides in a large selection of monovarietal wines (8 samples each of Pinot Blanc, Muller Thurgau, Riesling, Traminer, Merlot, Pinot Noir and Cabernet Sauvignon) was developed by combining high performance liquid chromatography with high resolution tandem mass spectrometry. Analytical separation was performed on an Accucore™ Polar Premium LC column, while mass analysis was performed in negative ion mode with an non-targeted screening approach, using a Full MS/AIF/NL dd-MS 2 experiment at a resolving power of 140,000 FWHM. Over 280 glycoside-like compounds were detected, of which 133 (including low-molecular weight phenols, flavonoids and monoterpenols) were tentatively identified in the form of pentose (6), deoxyhexose (17), hexose (73), hexose-pentose (16), hexose-deoxyhexose (7), dihexose (5) and hexose ester (9) derivatives. It was not possible to univocally define the corresponding chemical structure for the remaining 149 glycosides. Non-parametric statistical analysis showed it was possible to well characterise the glycosylated profile of all red and Traminer wines, while the identified glycosides were almost entirely lacking in Pinot Blanc, Riesling and Muller Thurgau wines. Also Tukey's Honestly Significant Difference test (p < 0.05) and Principal Component Analysis confirmed that it was possible to almost entirely distinguish the selected red wines from each other according to their glycosylated profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties

    PubMed Central

    Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong

    2017-01-01

    HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à PetitVvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera “Muscat blanc à Petit” between two regions is closely correlated to monoterpenyl glucosyltransferase (VvGT14, XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety “Muscat blanc à Petit” and “Gewurztraminer” under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis-rose oxide and geraniol were major components contributing to the aroma odors of “Gewürztraminer” grapes while linalool was major aroma contributor to the “Muscat blanc à Petit grain” grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14. Only one allele of VvGT7 was found in the variety “Gewürztraminer” and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in “Muscat blanc à Petit grain.” The mutation on its

  16. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    PubMed

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. C-glycosides from the stems of Calophyllum membranaceum.

    PubMed

    Zhu, Ling-Juan; Yi, Sen; Li, Xue; Chen, Hai-Feng; Ming, Meng; Zhang, Xue; Yao, Xin-Sheng

    2018-01-01

    Three new C-glycosides, calophymembransides D-F (1-3), were isolated from the stems of Calophyllum membranaceum Gardn. et Champ.. The structures were assigned on the basis of spectroscopic data. RXRα transcriptional inhibition and α-glucosidase inhibition assays indicated that all the isolates were inactive.

  18. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    PubMed

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  19. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    PubMed

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.

  20. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    PubMed

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.

  1. Cytotoxicity of natural ginseng glycosides and semisynthetic analogues.

    PubMed

    Atopkina, L N; Malinovskaya, G V; Elyakov, G B; Uvarova, N I; Woerdenbag, H J; Koulman, A; Pras, N; Potier, P

    1999-02-01

    The cytotoxicity of natural glycosides from Ginseng, semisynthetic analogues and related triterpenes of the dammarane series, isolated from the leaves of the Far-East species of the genus Betula was studied in order to elucidate structure-activity relationships. Some of the compounds studied were active against the human lung carcinoma GLC4 and adenocarcinoma COLO 320 cell lines. The natural glycosides displayed the lowest cytotoxicity. The triterpenes of the dammarane series used as starting aglycones for semisynthetic derivatives were moderately cytotoxic. The dammarane triterpenes possessing keto groups and their semisynthetic glucosides were the most active compounds tested. Cytotoxic effects of the dammarane glucosides were inversely proportional both to the number of sugars attached to the aglycones and to the number of hydroxy groups of the aglycones. The type of side chain and the configuration of the hydroxy group at C-3 in aglycones did not have a significant influence on the cytotoxicity.

  2. New pregnane glycosides from Gymnema sylvestre.

    PubMed

    Xu, Rui; Yang, Yu; Zhang, Yang; Ren, Fengxia; Xu, Jinlong; Yu, Nengjiang; Zhao, Yimin

    2015-02-12

    Four new pregnane glycosides 1-4 were isolated from the ethanol extract of the stem of Gymnema sylvestre and named gymsylvestrosides A-D. Hydrolysis of compound 1 under the catalysis of Aspergilus niger β-glucosidase afforded compound 5 (gymsylvestroside E). Their structures were determined by spectroscopic methods such as HRESIMS, 1D and 2D NMR, as well as HMQC-TOCSY experiment. Compounds 1-4 were screened for Saccharomyces cerevisiae α-glucosidase inhibitory activity.

  3. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    PubMed

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A Review on the Pharmacology and Toxicology of Steviol Glycosides Extracted from Stevia rebaudiana.

    PubMed

    Momtazi-Borojeni, Amir Abbas; Esmaeili, Seyed-Alireza; Abdollahi, Elham; Sahebkar, Amirhossein

    2017-01-01

    Stevia rebaudiana Bertoni is a sweet and nutrient-rich plant belonging to the Asteraceae family. Stevia leaves contain steviol glycosides including stevioside, rebaudioside (A to F), steviolbioside, and isosteviol, which are responsible for the plant's sweet taste, and have commercial value all over the world as a sugar substitute in foods, beverages and medicines. Among the various steviol glycosides, stevioside, rebaudioside A and rebaudioside C are the major metabolites and these compounds are on average 250-300 times sweeter than sucrose. Steviol is the final product of Stevia metabolism. The metabolized components essentially leave the body and there is no accumulation. Beyond their value as sweeteners, Stevia and its glycosdies possess therapeutic effects against several diseases such as cancer, diabetes mellitus, hypertension, inflammation, cystic fibrosis, obesity and tooth decay. Studies have shown that steviol glycosides found in Stevia are not teratogenic, mutagenic or carcinogenic and cause no acute and subacute toxicity. The present review provides a summary on the biological and pharmacological properties of steviol glycosides that might be relevant for the treatment of human diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from Phyllanthus emblica.

    PubMed

    Lv, Jun-Jiang; Wang, Ya-Feng; Zhang, Jing-Min; Yu, Shan; Wang, Dong; Zhu, Hong-Tao; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2014-11-21

    During the process exploring anti-viral compounds from Phyllanthus species, eight new highly oxygenated bisabolane sesquiterpenoid glycoside phyllaemblicins G1–G8 (1–8) were isolated from Phyllanthus emblica, along with three known compounds, phyllaemblicin F (9), phyllaemblic acid (10) and glochicoccin D (11). Phyllaemblicin G2 (2), bearing a tricyclo [3.1.1.1] oxygen bridge ring system, is an unusual sesquiterpenoid glycoside, while phyllaemblicins G6–G8 (6–8) are dimeric sesquiterpenoid glycosides with two norbisabolane units connecting through a disaccharide. All the structures were elucidated by the extensive analysis of HRMS and NMR data. The relative configuration of phyllaemblicin G2 was constructed based on heteronuclear coupling constants measurement, and the absolute configurations for all new compounds were established by calculated electronic circular dichroism (ECD) using time dependent density functional theory. The sesquiterpenoid glycoside dimers 6–9 displayed potential anti-hepatitis B virus (HBV) activities, especially for the new compound 6 with IC50 of 8.53 ± 0.97 and 5.68 ± 1.75 μM towards the HBV surface antigen (HBsAg) and HBV excreted antigen (HBeAg) secretion, respectively.

  6. Chalconoid and stilbenoid glycosides from Guibourtia tessmanii.

    PubMed

    Fuendjiep, V; Wandji, J; Tillequin, F; Mulholland, D A; Budzikiewicz, H; Fomum, Z T; Nyemba, A M; Koch, M

    2002-08-01

    Phytochemical studies on the stem bark of Guibourtia tessmanii yielded a dihydrochalcone glucoside, 2',4-dihydroxy-4'-methoxy-6'-O-beta-glucopyranoside dihydrochalcone and a new stilbene glycoside, 3,5-dimethoxy-4'-O-(beta-rhamnopyranosyl-(1-->6)-beta- glucopyranoside) stilbene besides the known pterostilbene. Their structures were established on the basis of one and two dimensional NMR spectroscopic techniques, FABMS and chemical evidence.

  7. Minor diterpene glycosides from the leaves of Stevia rebaudiana.

    PubMed

    Ibrahim, Mohamed A; Rodenburg, Douglas L; Alves, Kamilla; Fronczek, Frank R; McChesney, James D; Wu, Chongming; Nettles, Brian J; Venkataraman, Sylesh K; Jaksch, Frank

    2014-05-23

    Two new diterpene glycosides in addition to five known glycosides have been isolated from a commercial extract of the leaves of Stevia rebaudiana. Compound 1 (rebaudioside KA) was shown to be 13-[(O-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid 2-O-β-d-glucopyranosyl-β-d-glucopyranosyl ester and compound 2, 12-α-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester. Five additional known compounds were identified, rebaudioside E, rebaudioside M, rebaudioside N, rebaudioside O, and stevioside, respectively. Enzymatic hydrolysis of stevioside afforded the known ent-kaurane aglycone 13-hydroxy-ent-kaur-16-en-19-oic acid (steviol) (3). The isolated metabolite 1 possesses the ent-kaurane aglycone steviol (3), while compound 2 represents the first example of the isomeric diterpene 12-α-hydroxy-ent-kaur-16-en-19-oic acid existing as a glycoside in S. rebaudiana. The structures of the isolated metabolites 1 and 2 were determined based on comprehensive 1D- and 2D-NMR (COSY, HSQC, and HMBC) studies. A high-quality crystal of compound 3 has formed, which allowed the acquisition of X-ray diffraction data that confirmed its structure. The structural similarities between the new metabolites and the commercially available stevioside sweeteners suggest the newly isolated metabolites should be examined for their organoleptic properties. Accordingly rebaudiosides E, M, N, O, and KA have been isolated in greater than gram quantities.

  8. A new C-methylated flavonoid glycoside from Pinus densiflora.

    PubMed

    Jung, M J; Choi, J H; Chung, H Y; Jung, J H; Choi, J S

    2001-12-01

    A new C-methyl flavonol glycoside, 5,7,8,4'-tetrahydroxy-3-methoxy-6-methylflavone 8-O-beta-D-glucopyranoside (1), has been isolated from the needles of Pinus densiflora, together with kaempferol 3-O-beta-(6"-acetyl)-galactopyranoside.

  9. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    PubMed

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    PubMed

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  11. Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides, and antioxidants in Ficus deltoidea , a malaysian herbal tea.

    PubMed

    Omar, Maizatul Hasyima; Mullen, William; Crozier, Alan

    2011-02-23

    Phenolic compounds in an aqueous infusion of leaves of Ficus deltoidea (Moraceae), a well-known herbal tea in Malaysia, were analyzed by HPLC coupled to photodiode array and fluorescence detectors and an electrospray ionization tandem mass spectrometer. Following chromatography of extracts on a reversed phase C(12) column, 25 flavonoids were characterized and/or tentatively identified with the main constituents being flavan-3-ol monomers, proanthocyanidins, and C-linked flavone glycosides. The proanthocyanidins were dimers and trimers comprising (epi)catechin and (epi)afzelechin units. No higher molecular weight proanthocyanidin polymers were detected. The antioxidant activity of F. deltoidea extract was analyzed using HPLC with online antioxidant detection. This revealed that 85% of the total antioxidant activity of the aqueous F. deltoidea infusion was attributable to the flavan-3-ol monomers and the proanthocyanidins.

  12. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International

  13. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International

  14. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS.

    PubMed

    Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan

    2010-05-01

    A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.

  15. [Separation and identification of 5 glycosidic flavor precursors in tobacco by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry].

    PubMed

    Wu, Xinhua; Zhu, Ruizhi; Ren, Zhuoying; Wang, Kai; Mou, Dingrong; Wei, Wanzhi; Miao, Mingming

    2009-11-01

    A qualitative method for the identification of 5 main glycosidic flavor precursors in tobacco was developed by using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS) and gas chromatography-mass spectrometry (GC-MS). The glycosidic flavor precursors in tobacco were extracted with methanol, cleaned up with an XAD-2 column. The aglycones were later released by enzyme-mediated hydrolysis under the condition of pH 5. The 5 volatile aglycone moieties were identified by GC-MS standard spectra library. The precursor ions of glycosides were determined by using electrospray ionization mass spectrometry in negative ion mode, then the 5 glycosidic flavor precursors were identified by using product ion scan (MS2) finally, using UPLC-ESI MS/MS, separation and identification of 5 glycosidic flavor precursors were accomplished on an RP-C,8 column in the multiple reaction monitoring (MRM) mode by using methanol and acetic acid-ammonium acetate aqueous solution as eluent. This work lays a foundation for the analysis of glycosidic flavor precursors without the standards by using liquid chromatography-mass spectrometry.

  16. Non‐glycosidic compounds can stimulate both human and mouse iNKT cells

    PubMed Central

    Jukes, John‐Paul; Gileadi, Uzi; Ghadbane, Hemza; Yu, Ting‐Fong; Shepherd, Dawn; Cox, Liam R.; Besra, Gurdyal S.

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize CD1d/glycolipid complexes and upon activation with synthetic agonists display immunostimulatory properties. We have previously described that the non‐glycosidic CD1d‐binding lipid, threitolceramide (ThrCer) activates murine and human iNKT cells. Here, we show that incorporating the headgroup of ThrCer into a conformationally more restricted 6‐ or 7‐membered ring results in significantly more potent non‐glycosidic analogs. In particular, ThrCer 6 was found to promote strong anti‐tumor responses and to induce a more prolonged stimulation of iNKT cells than does the canonical α‐galactosylceramide (α‐GalCer), achieving an enhanced T‐cell response at lower concentrations compared with α‐GalCer both in vitro, using human iNKT‐cell lines and in vivo, using C57BL/6 mice. Collectively, these studies describe novel non‐glycosidic ThrCer‐based analogs that have improved potency in iNKT‐cell activation compared with that of α‐GalCer, and are clinically relevant iNKT‐cell agonists. PMID:26873393

  17. Characterization of two-step deglycosylation via oxidation by glycoside oxidoreductase and defining their subfamily

    PubMed Central

    Kim, Eun-Mi; Seo, Joo-Hyun; Baek, Kiheon; Kim, Byung-Gee

    2015-01-01

    Herein, we report a two-step deglycosylation mediated by the oxidation of glycoside which is different from traditional glycoside hydrolase (GH) mechanism. Previously, we reported a novel flavin adenine dinucleotide (FAD)-dependent glycoside oxidoreductase (FAD-GO) having deglycosylation activity. Various features of the reaction of FAD-GO such as including mechanism and catalytic residue and substrate specificity were studied. In addition, classification of novel FAD-GO subfamily was attempted. Deglycosylation of glycoside was performed spontaneously via oxidation of 3-OH of glycone moiety by FAD-GO mediated oxidation reaction. His493 residue was identified as a catalytic residue for the oxidation step. Interestingly, this enzyme has broad glycone and aglycon specificities. For the classification of FAD-GO enzyme subfamily, putative FAD-GOs were screened based on the FAD-GO from Rhizobium sp. GIN611 (gi 365822256) using BLAST search. The homologs of R. sp. GIN611 included the putative FAD-GOs from Stenotrophomonas strains, Sphingobacterium strains, Agrobacterium tumefaciens str. C58, and etc. All the cloned FAD-GOs from the three strains catalyzed the deglycosylation via enzymatic oxidation. Based on their substrate specificities, deglycosylation and oxidation activities to various ginsenosides, the FAD-GO subfamily members can be utilized as novel biocatalysts for the production of various aglycones. PMID:26057169

  18. A new phenylpropanoid glycoside from Jasminum subtriplinerve Blume.

    PubMed

    Huong, Nguyen Thi Hong; Cu, Nguyen Khac Quynh; Quy, Trinh Van; Zidorn, Christian; Ganzera, Markus; Stuppner, Hermann

    2008-01-01

    From the ethyl acetate extract of the aerial parts of Jasminum subtriplinerve Blume (Oleaceae), 6'-O-menthiafoloylverbascoside (1), rutin (2), isoverbascoside (4), isooleoverbascoside (6), apiosylverbascoside (7), astragalin (9), isoquercitrin (10), and verbascoside (11) were isolated. Their structures were elucidated by extensive MS and NMR spectroscopy. Amongst 6'-O-menthiafoloylverbascoside (1) is a new phenylpropanoid glycoside.

  19. Electrospray ionization mass spectrometry of mixtures of triterpene glycosides with L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Lekar, A. V.; Vetrova, E. V.; Borisenko, N. I.; Yakovishin, L. A.; Grishkovets, V. I.; Borisenko, S. N.

    2011-09-01

    Electrospray-ionization mass spectrometry (ESI-MS) was used to investigate for the first time the molecular complexation of L-phenylalanine with hederagenin 3-O- α- L-rhamnopyranosyl-(1 → 2)-O- α- L-arabinopyranoside ( α-hederin) and its 28-O- α- L-rhamnopyranosyl-(1 → 4)-O-β- D-glucopyranosyl-(1 → 6)-O-β- D-glucopyranosyl ester (hederasaponin C). The glycoside/ L-phenylalanine complexes with a 1:1 molar ratio turned out to be most stable. The structures of the glycosides and L-phenylalanine have been concluded to have an impact on the complexation process.

  20. New 8,12;8,20-diepoxy-8,14-secopregnane hexa- and hepta-glycosides from the roots of Asclepias tuberosa.

    PubMed

    Warashina, Tsutomu; Miyase, Toshio

    2018-01-01

    Previously, phytochemical investigation of the roots of Asclepias tuberosa (Asclepiadaceae) led to the isolation of some 8,12;8,20-diepoxy-8,14-secopregnane tri-, tetra-, and penta-glycosides. An additional eight new minor 8,12;8,20-diepoxy-8,14-secopregnane glycosides were afforded in the recent investigation of this plant. These glycosides consisted of six or seven 2,6-dideoxy-hexopyranoses together with the aglycone, tuberogenin. The structures of each of these compounds were established using NMR, mass spectroscopic analysis and chemical evidence. As 8,12;8,20-diepoxy-8,14-secopregnane-type glycosides were observed only in A. tuberosa, these compounds were considered to be characteristic phytochemicals of this plant.

  1. A comparative dose-effect study with cardiac glycosides assessing cardiac and extracardiac responses in normal subjects.

    PubMed

    Alken, R G; Belz, G G

    1984-01-01

    We tested the hypothesis that differences exist in the pharmacodynamic pattern of different cardiac glycosides. We conducted a randomized, placebo-controlled study in normal volunteers and evaluated the effects of weekly increased oral dosing of digoxin (n = 10; from 0.25 to 1.0 mg/day), meproscillarin (n = 10; from 0.5 to 2.0 mg/day), and placebo (n = 5). To determine the glycoside effects, corrected electromechanical systole (QS2c) was used to measure inotropy and the PQ interval to test dromotropy. Red-green discrimination and critical flicker fusion (CFF) assessed visual functions. Subjective complaints were collected using rating lists. Both glycosides dose dependently shortened QS2c and prolonged PQ interval. PQ prolongations over +20 ms occurred in seven of 10 digoxin subjects, in two of 10 meproscillarin, and in one of five placebo. Equi-inotropic response, identified at 12 ms mean QS2c shortening, revealed the relative potency of digoxin to be 2.4 times higher than meproscillarin; this ratio increased to sevenfold for equi-effective negative dromotropic effects at 12 ms mean PQ prolongation. Each drug was associated with a dominant subjective complaint: digoxin with anergy and meproscillarin with diarrhea. Red-green discrimination was better under meproscillarin and CFF was depressed by digoxin. The results indicate that pharmacodynamic differences exist between cardiac glycosides. A differential use of various glycosides should be considered and tested clinically.

  2. Cardenolide glycosides from seeds of Corchorus olitorius.

    PubMed

    Nakamura, T; Goda, Y; Sakai, S; Kondo, K; Akiyama, H; Toyoda, M

    1998-12-01

    Three new cardenolide glycosides were isolated from the seeds of Corchorus olitorius L. On the basis of chemical and spectroscopic evidence, their structures were established as cannogenol 3-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-boivinopyranoside, periplogenin 3-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-digitoxopyranoside and digitoxigenin 3-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl-(1-->4)-O-beta - D-digitoxopyranoside.

  3. Iridoid and phenylethanoid glycosides from Phlomis tuberosa L.

    PubMed

    Ersöz, T; Ivancheva, S; Akbay, P; Sticher, O; Caliş, I

    2001-01-01

    A new iridoid glucoside, 8-O-acetylshanzhiside (1), was isolated from the aerial parts of Phlomis tuberosa, together with two known iridoid glucosides, shanzhiside methyl ester and lamalbide. The known phenylethanoid glycosides acteoside and forsythoside B were also obtained and characterized. The structure of 1 was determined by means of 1D- and 2D-NMR spectroscopic evidence.

  4. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn.

    PubMed

    Jaiswal, Rakesh; Müller, Heiko; Müller, Anja; Karar, Mohamed Gamaleldin Elsadig; Kuhnert, Nikolai

    2014-12-01

    The chlorogenic acids, chlorogenic acid glycosides and flavonoids of the leaves of Lonicera henryi L. (Caprifoliaceae) were investigated qualitatively by liquid chromatography tandem mass spectrometry. Thirty-one chlorogenic acids and their glycosides were detected and characterized to their regioisomeric level on the basis of their unique fragmentation pattern in the negative ion mode tandem MS spectra. All of them were extracted for the first time from this source and thirteen of them were not reported previously in nature. For the positive identification of chlorogenic acid glycosides by LC-MS(n), multiple reaction monitoring and targeted MS(n) experiments were performed. We have developed an LC-MS(n) method for the systematic identification of chlorogenic acid glycosides and were also able to discriminate between chlorogenic acids and their isobaric glycosides. It was also possible to discriminate between 5-O-(3'-O-caffeoyl glucosyl)quinic acid and 5-O-(4'-O-caffeoyl glucosyl)quinic acid by LC-MS(n). This method can be applied for the rapid and positive identification of chlorogenic acids and their glycosides in plant materials, food and beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites.

    PubMed

    Ma, Xueying; Laaksonen, Oskar; Zheng, Jie; Yang, Wei; Trépanier, Martin; Kallio, Heikki; Yang, Baoru

    2016-06-01

    Flavonol glycosides of wild sea buckthorn (Hippophaë rhamnoides ssp. sinensis) berries from China and cultivated berries (H. rhamnoides ssp. mongolica) from Finland and Canada were identified and quantified. Twenty-six flavonol glycosides were found with isorhamnetin and quercetin as the major aglycones. The contents of flavonol glycosides ranged 23-250 mg/100 g fresh berries and were significantly higher in the berries of ssp. sinensis than in those of ssp. mongolica. Among the cultivars of ssp. mongolica, the berries of 'Oranzhevaya' had the lowest (23 mg/100 g) content, and those of 'Prevoshodnaya' the highest content of flavonol glycosides (80 mg/100 g). Within the ssp. mongolica, the samples from Kittilä (Northern Finland) had higher levels of most flavonol glycosides than those from Turku (Southern Finland) and Québec. Among the ssp. sinensis berries of different growth sites, increasing trends were detected in the contents of most of the compounds as the altitude increased and as the latitude decreased. The wild berries (ssp. sinensis) from Sichuan had remarkably high contents and unique profiles of flavonol glycosides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    PubMed

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Pregnane Glycosides Interfere With Steroidogenic Enzymes to Down-Regulate Corticosteroid Production in Human Adrenocortical H295R Cells

    PubMed Central

    KOMARNYTSKY, SLAVKO; ESPOSITO, DEBORA; POULEV, ALEXANDER; RASKIN, ILYA

    2013-01-01

    A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na+/K+ ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11β-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21β-hydroxylase, but not 3β-hydroxysteroid dehydrogenase/isomerase. PMID:23065845

  8. Resin glycosides from Ipomoea pes-caprae.

    PubMed

    Escobedo-Martínez, Carolina; Pereda-Miranda, Rogelio

    2007-06-01

    Ipomoea pes-caprae (beach morning-glory; "riñonina" for the herbal drug in Mexico) is prescribed by traditional healers to moderate "heat" in an infected kidney. The hexane-soluble extract from the aerial parts of this medicinal plant, through preparative-scale recycling HPLC, yielded six new lipophilic oligosaccharides of jalapinolic acid: pescaproside B (1) and pescapreins V-IX (2-6). The previously known pescaproside A (7), pescapreins I-IV (8-11), and stoloniferin III (12) were also identified in the analyzed material by means of HPLC comparison with authentic samples. The glycosidic acid structure for all pentasaccharides was confirmed as simonic acid B. Pescaproside B (1), an acylated glycosidic acid methyl ester, is structurally related to pescaprein III (10). Pescapreins V (2) and VI (3) are diasteroisomeric tetraglycosidic lactones of operculinic acid C. Both of these compounds contain (2S)-methylbutyric and n-dodecanoic acids as their esterifying residues. Pescapreins VII (4) and IX (6) are pentasaccharides that contain an n-decanoyl group as their esterifying fatty acid residue instead of the n-dodecanoyl found in pescapreins I (8) and IV (11). Pescaprein VIII (5) represents an isomer of pescaprein II (9) containing an n-dodecanoyl unit as the esterifying residue at position C-4 of the third rhamnose moiety and a 2-methylpropanoyl at C-2 of the second rhamnose. High-field NMR spectroscopy and FAB mass spectrometry were used to characterize all new isolated compounds.

  9. Norwegian scabies in a patient treated with Tripterygium glycoside for rheumatoid arthritis.

    PubMed

    Bu, Xiaolin; Fan, Juan; Hu, Xiaoli; Bi, Xinling; Peng, Bin; Zhang, Denghai

    2017-01-01

    We report an 80-year-old male patient with severe rheumatoid arthritis who was treated with tripterygium glycoside, an immunosuppressive agent made from the extract of a Chinese medicinal herb called Tripterygium wilfordii Hook F. The patient had no apparent skin lesions before the treatment, but he developed aggressive hyperkeratotic lesions with rapid progression after using tripterygium glycoside. He was repeatedly diagnosed with eczema, but treatment failed to achieve efficacy. Interestingly, a microscopic examination of the lesions revealed numerous scabies mites and eggs. Thus, we confirmed the diagnosis of Norwegian scabies infection. Treated with crotamiton 10% cream and 10% sulfur ointment for one month, the patient's clinical symptoms disappeared.

  10. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Bursać Kovačević, Danijela; Barba, Francisco J; Granato, Daniel; Galanakis, Charis M; Herceg, Zoran; Dragović-Uzelac, Verica; Putnik, Predrag

    2018-07-15

    Stevia rebaudiana Bertoni leaves are a natural source of diterpenic glycosides, and various bioactive compounds. The objectives were to characterize antioxidants and steviol glycosides in the extracts obtained from Stevia after "green" pressurized hot water extraction (PHWE). PHWE extracts were obtained at different temperatures (100, 130, 160 °C); static extraction times (5 and 10 min), and cycle numbers (1, 2, 3) using a constant pressure of 10.34 MPa. Temperature was the most important parameter for extraction, where the highest recoveries of all bioactive compounds (except for carotenoids) were at 160 °C. Extracts obtained at longer static times had more steviol glycosides, condensed tannins, and chlorophyll A. Higher amounts of total phenols, condensed tannins, and steviol glycosides were obtained under higher cycle numbers. This study indicated that PHWE is useful for recovering polar and nonpolar antioxidants and steviol glycosides. PHWE may be a suitable technique for scale-up to industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effects of pregnane glycosides on food intake depend on stimulation of the melanocortin pathway and BDNF in an animal model.

    PubMed

    Komarnytsky, Slavko; Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Raskin, Ilya

    2013-02-27

    Pregnane glycosides appear to modulate food intake by possibly affecting the hypothalamic feeding circuits; however, the mechanisms of the appetite-regulating effect of pregnane glycosides remain obscure. Here, we show that pregnane glycoside-enriched extracts from swamp milkweed Asclepias incarnata at 25-100 mg/kg daily attenuated food intake (up to 47.1 ± 8.5% less than controls) and body weight gain in rats (10% for males and 9% for females, respectively) by activating melanocortin signaling and inhibiting gastric emptying. The major milkweed pregnane glycoside, ikemagenin, exerted its appetite-regulating effect by decreasing levels of agouti-related protein (0.6-fold) but not NPY satiety peptides. Ikemagenin treatment also increased secretion of brain-derived neurotropic factor (BDNF) downstream of melanocortin receptors in the hypothalamus (1.4-fold) and in the C6 rat glioma cell culture in vitro (up to 6-fold). These results support the multimodal effects of pregnane glycosides on feeding regulation, which depends on the activity of the melanocortin signaling pathway and BDNF.

  12. Two aurone glycosides from heartwood of Pterocarpus santalinus.

    PubMed

    Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Watal, Geeta

    2004-12-01

    Two new aurone glycosides, 6 hydroxy 5 methyl 3',4',5' trimethoxy aurone 4-O-alpha-L-rhamnopyranoside and 6,4' dihydroxy aurone 4-O-rutinoside have been isolated from the ethanolic extract of the wood of Pterocarpus santalinus. Their structures were determined on the basis of chemical and spectroscopic analysis (UV, IR, EIMS, (1)H and (13)C NMR).

  13. Characterisation of soy isoflavones and screening for novel malonyl glycosides using high-performance liquid chromatography-electrospray ionisation-mass spectrometry.

    PubMed

    Gu, L; Gu, W

    2001-01-01

    HPLC combined with electrospray ionisation (ESI)-MS and photodiode array detection has been employed to study the isoflavone components of soy. All of the known soy isoflavones separated by HPLC were identified and characterised, and three novel isoflavones were detected and screened out. These minor isoflavones were deduced to be isomers of 6"-O-malonyl isoflavone glycosides, based on the ESI-MS and UV data, in which the malonyl group is attached at a position other than the 6" position of the glycosyl moiety of the molecule. These novel malonyl glycosides are as thermally labile as the 6"-O-malonyl glycosides, being converted into known isoflavone glycosides after heating in aqueous ethanol. The advantages of HPLC-ESI-MS in detection of novel isoflavones from plant extracts are reviewed.

  14. A new phenol glycoside from Physalis angulata.

    PubMed

    Sun, Cheng-Peng; Nie, Xiu-Fang; Kang, Ning; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2017-05-01

    A new phenol glycoside, physanguloside A (1), was isolated from Physalis angulata together with four known compounds. We report herein, for the first time, the presence of compounds 2-5 in the genus Physalis. The structures of all the compounds were established by NMR, IR, UV and HRESIMS spectroscopic analyses, and comparison with the literature data. All isolated compounds were assayed for inhibitory activity on nitric oxide production by LPS-induced in RAW 264.7 macrophages.

  15. Cycloartane glycosides from leaves of Oxyanthus pallidus.

    PubMed

    Tigoufack, Ignas Bertrand Nzedong; Ngnokam, David; Tapondjou, Leon Azefack; Harakat, Dominique; Voutquenne, Laurence

    2010-12-01

    From the MeOH extract of leaves of Oxyanthus pallidus, three cycloartane glycosides, named pallidiosides A-C, were isolated together with two known compounds, oleanolic acid and 3-O-β-D-glucopyranosyl-β-sitosterol. The structures of pallidiosides A-C were assigned on the basis of spectral studies and comparison with published literature data. The known compounds were identified by means of Co TLC and confirmed by their physical constants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.

    PubMed

    Marca, Eduardo; Valero-Gonzalez, Jessika; Delso, Ignacio; Tejero, Tomás; Hurtado-Guerrero, Ramon; Merino, Pedro

    2013-12-15

    A series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction. Finally, the compounds were evaluated against two glycosidases and two endo-glucanases and no inhibitory activity was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Two new monoterpenoid glycosides from the fresh rhizome of Tongling White Ginger (Zingiber officinale).

    PubMed

    Guo, Tao; Tan, Su-Bei; Wang, Ya; Chang, Jun

    2018-01-01

    Two new monoterpenoid glycosides, trans-1,8-cineole-3,6-dihydroxy-3-O-β-D-glucopyranoside (1), and 5,9-dihydroxy borneol 2-O-β-D-glucopyranoside (2), together with four known monoterpenoid glycosides (3-6), were isolated from the water-soluble constituents of the fresh rhizome of Tongling White Ginger (Zingiber officinale). Their structures were decisively elucidated by spectroscopic analysis. In vitro tests for antimicrobial activity showed that compounds 1 and 3 possess significant activity against two Gram-positive organisms, Staphylococcus aureus and Staphylococcus epidermidis.

  18. Determination of catechins and flavonol glycosides in Chinese tea varieties.

    PubMed

    Wu, Chunyan; Xu, Hairong; Héritier, Julien; Andlauer, Wilfried

    2012-05-01

    A standardised profiling method based on high performance liquid chromatography combined with ultraviolet (UV) and mass spectrometric detection (MS) was established to analyse the phenolic compounds of selected tea varieties used for manufacturing of green, black and oolong teas. The composition and content of 24 tea constituents were analysed, including catechins, flavonol and flavones glycosides, phenolic acids and purine alkaloids. Each tea variety had a unique chemical profile. The compositions of catechins were lower in the tea varieties for green tea manufacturing, while the content of myricetin glycosides was the lowest in the tea variety for oolong tea manufacturing. The content of individual phenolic compounds in the selected tea varieties is highly variable. However, the content of total catechins is proposed to be helpful to classify tea according to the future application as non fermented green and fermented oolong or black tea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Metabolite Profiling of Triterpene Glycosides of the Far Eastern Sea Cucumber Eupentacta fraudatrix and Their Distribution in Various Body Components Using LC-ESI QTOF-MS.

    PubMed

    Popov, Roman S; Ivanchina, Natalia V; Silchenko, Alexandra S; Avilov, Sergey A; Kalinin, Vladimir I; Dolmatov, Igor Yu; Stonik, Valentin A; Dmitrenok, Pavel S

    2017-10-02

    The Far Eastern sea cucumber Eupentacta fraudatrix is an inhabitant of shallow waters of the south part of the Sea of Japan. This animal is an interesting and rich source of triterpene glycosides with unique chemical structures and various biological activities. The objective of this study was to investigate composition and distribution in various body components of triterpene glycosides of the sea cucumber E. fraudatrix . We applied LC-ESI MS (liquid chromatography-electrospray mass spectrometry) of whole body extract and extracts of various body components for metabolic profiling and structure elucidation of triterpene glycosides from the E. fraudatrix . Totally, 54 compounds, including 26 sulfated, 18 non-sulfated and 10 disulfated glycosides were detected and described. Triterpene glycosides from the body walls, gonads, aquapharyngeal bulbs, guts and respiratory trees were extracted separately and the distributions of the detected compounds in various body components were analyzed. Series of new glycosides with unusual structural features were described in E. fraudatrix , which allow clarifying the biosynthesis of these compounds. Comparison of the triterpene glycosides contents from the five different body components revealed that the profiles of triterpene glycosides were qualitatively similar, and only some quantitative variabilities for minor compounds were observed.

  20. A novel cytotoxic flavonoid glycoside from Physalis angulata.

    PubMed

    Ismail, N; Alam, M

    2001-08-01

    A new flavonol glycoside, myricetin 3-O-neohesperidoside (1) was isolated from a cytotoxic MeOH extract of the leaves of Physalis angulata. Compound 1 showed remarkable cytotoxicity in vitro against murine leukemia cell line P-388, epidermoid carcinoma of the nasopharynx KB-16 cells, and lung adenocarcinoma A-549 with ED(50) values of 0.048, 0.50 and 0.55 microg ml(-1), respectively.

  1. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.

    PubMed

    Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen

    2017-08-01

    In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Effects of Pregnane Glycosides on Food Intake Depend on Stimulation of the Melanocortin Pathway and BDNF in an Animal Model

    PubMed Central

    Komarnytsky, Slavko; Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Raskin, Ilya

    2013-01-01

    Pregnane glycosides appear to modulate food intake by possibly affecting the hypothalamic feeding circuits; however, the mechanisms of the appetite-regulating effect of pregnane glycosides remain obscure. Here, we show that pregnane glycoside-enriched extracts from swamp milkweed Asclepias incarnata at 25–100 mg/kg daily attenuated food intake (up to 47.1 ± 8.5% less than controls) and body weight gain in rats (10% for males and 9% for females, respectively) by activating melanocortin signaling and inhibiting gastric emptying. The major milkweed pregnane glycoside, ikemagenin, exerted its appetite-regulating effect by decreasing levels of agouti-related protein (0.6-fold) but not NPY satiety peptides. Ikemagenin treatment also increased secretion of brain-derived neurotropic factor (BDNF) downstream of melanocortin receptors in the hypothalamus (1.4-fold) and in the C6 rat glioma cell culture in vitro (up to 6-fold). These results support the multimodal effects of pregnane glycosides on feeding regulation, which depends on the activity of the melanocortin signaling pathway and BDNF. PMID:23308358

  3. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry.

    PubMed

    Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika

    2010-07-30

    Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides. Copyright 2010 John Wiley & Sons, Ltd.

  4. An enzyme-linked immunosorbant assay using monoclonal antibody against bacoside A₃ for determination of jujubogenin glycosides in Bacopa monnieri (L.) Wettst.

    PubMed

    Tothiam, Charinrat; Phrompittayarat, Watoo; Putalun, Waraporn; Tanaka, Hiroyuki; Sakamoto, Seiichi; Khan, Ikhlas A; Ingkaninan, Kornkanok

    2011-01-01

    In Ayurvedic medicines, Bacopa monnieri (L.) Wettst. (brahmi) is known as a medicinal plant used for memory enhancement. Its active compounds are classified as pseudojujubogenin and jujubogenin glycosides. Owing to the lack of chromophore in the saponin glycoside structures, HPLC-UV-vis gives low sensitivity for determination of such compounds. In the case of the detection of small amounts of saponin glycosides, immunological assay could be a suitable method. To develop and validate a sensitive enzyme-linked immunosorbant assay (ELISA) using monoclonal antibody (MAb) against bacoside A₃, the major jujubogenin glycoside found in brahmi. An immunogen was prepared by conjugating bacoside A₃ with a bovine serum albumin (BSA). To determine its immunogenicity, the ratio of hapten in bacoside A₃-BSA conjugate was determined by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). After immunisation in mice, hybridomas secreting MAbs against bacoside A₃ were produced by fusing the immunised splenocytes with SP2/0- Ag14 myeloma cells. The antibody was raised specifically against jujubogenin glycosides. The ELISA using anti-bacoside A₃ MAb was developed. Bacoside A₃ in the range of 3.05-97.70 ng mL⁻¹ could be detected by ELISA using anti-bacoside A₃ MAb. The assay showed a detection limit of 0.48 ng mL⁻¹ (0.517 nm). The validation study showed that the method was precise, accurate and sensitive. Interestingly, the MAb showed cross-reactivity with the other jujubogenin glycosides, bacopaside X and IV. However, it did not show cross-reactivity with any of pseudojujubogenin glycosides. The study demonstrated that ELISA using anti-bacoside A₃ MAb can be used for determination of total jujubogenin glycosides in brahmi. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Morning glory resin glycosides as α-glucosidase inhibitors: In vitro and in silico analysis.

    PubMed

    Rosas-Ramírez, Daniel; Escandón-Rivera, Sonia; Pereda-Miranda, Rogelio

    2018-04-01

    Twenty-seven individual resin glycosides from the morning glory family (Convolvulaceae) were evaluated for their α-glucosidase inhibitory potential. Four of these compounds displayed an inhibitory activity comparable to acarbose, which was used as a positive control. Molecular modeling studies performed by docking analysis were accomplished to predict that the active compounds and acarbose bind to the α-1,4-glucosidase enzyme catalytic site of MAL12 from the yeast Saccharomyces cerevisiae through stable hydrogen bonds primarily with the amino acid residues HIS279 and GLN322. Docking studies with the human maltase-glucoamylase (MGAM) also identified binding modes for resin glycosides inside the catalytic site in the proximity of TYR1251. These results postulate that resin glycosides may be a source of phytotherapeutic agents with antihyperglycemic properties for the prophylaxis and treatment of non-insulin-dependent type 2 diabetes mellitus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan peony.

    PubMed

    Hao, Hai-ping; He, Zhi; Li, Hui; Shi, Lei; Tang, Yu-Dan

    2014-02-01

    Epicotyl dormancy break in seeds that have deep simple epicotyl morphophysiological dormancy (MPD) requires radicle emergence and even a certain root length in some species. However, the mechanisms by which root length affects epicotyl dormancy break are not clear at present. This study aims to explore the relationship between root length and epicotyl dormancy release in radicle-emerged seeds of Tibetan peony, Paeonia ludlowii, with discussion of the possible mechanisms. Radicle-emerged seeds (radicle length 1.5, 3.0, 4.5 and 6.0 cm) were incubated at 5, 10 and 15 °C. During the stratification, some seeds were transferred to 15 °C and monitored for epicotyl-plumule growth. Hormone content was determined by ELISA, and the role of hormones in epicotyl dormancy release was tested by exogenous hormone and embryo culture. Cold stratification did not break the epicotyl dormancy until the root length was ≥6 cm. The indole-3-actic acid (IAA) and GA3 contents of seeds having 6 cm roots were significantly higher than those of seeds with other root lengths, but the abscisic acid (ABA) content was lowest among radicle-emerged seeds. GA3 (400 mg L(-1)) could break epicotyl dormancy of all radicle-emerged seeds, while IAA (200 mg L(-1)) had little or no effect. When grown on MS medium, radicles of naked embryos grew and cotyledons turned green, but epicotyls did not elongate. Naked embryos developed into seedlings on a mixed medium of MS + 100 mg L(-1) GA3. A root length of ≥6.0 cm is necessary for epicotyl dormancy release by cold stratification. The underlying reason for root length affecting epicotyl dormancy release is a difference in the GA3/ABA ratio in the epicotyl within radicle-emerged seeds, which is mainly as a result of a difference in ABA accumulation before cold stratification.

  7. Metabolic fate of cardiac glycosides and flavonoids upon fermentation of aqueous sea squill (Drimia maritima L.) extracts.

    PubMed

    Knittel, Diana N; Stintzing, Florian C; Kammerer, Dietmar R

    2015-06-10

    Sea squill (Drimia maritima L.) extracts have been used for centuries for the medical treatment of heart diseases. A procedure for the preparation of Drimia extracts applied for such purposes comprising a fermentation step is described in the German Homoeopathic Pharmacopoeia (GHP). However, little is known about the secondary metabolite profile of such extracts and the fate of these components upon processing and storage. Thus, in the present study sea squill extracts were monitored during fermentation and storage by HPLC-DAD-MS(n) and GC-MS to characterise and quantitate individual cardiac glycosides and phenolic compounds. For this purpose, a previously established HPLC method for the separation and quantitation of pharmacologically relevant cardiac glycosides (bufadienolides) was validated. Within 12 months of storage, total bufadienolide contents decreased by about 50%, which was attributed to microbial and plant enzyme activities. The metabolisation and degradation rates of individual bufadienolide glycosides significantly differed, which was attributed to differing structures of the aglycones. Further degradation of bufadienolide aglycones was also observed. Besides reactions well known from human metabolism studies, dehydration of individual compounds was monitored. Quantitatively predominating flavonoids were also metabolised throughout the fermentation process. The present study provides valuable information about the profile and stability of individual cardiac glycosides and phenolic compounds in fermented Drimia extracts prepared for medical applications, and expands the knowledge of cardiac glycoside conversion upon microbial fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 8,12;8,20-Diepoxy-8,14-secopregnane glycosides from the aerial parts of Asclepias tuberosa.

    PubMed

    Warashina, Tsutomu; Noro, Tadataka

    2010-02-01

    Further study of constituents from the aerial parts of Asclepias tuberosa afforded twenty-two new steroidal glycosides along with tuberoside B(5) and G(5). These glycosides were confirmed to contain 8,12;8,20-diepoxy-8,14-secopregnanes, tuberogenin and its congeners, as their aglycones. The structure of each of these compounds was elucidated based on the interpretation of NMR and MS measurements and from chemical evidence.

  9. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad

    PubMed Central

    Sarian, Fean D.; Janeček, Štefan; Pijning, Tjaard; Ihsanawati; Nurachman, Zeily; Radjasa, Ocky K.; Dijkhuizen, Lubbert; Natalia, Dessy; van der Maarel, Marc J. E. C.

    2017-01-01

    α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13. PMID:28287181

  10. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  11. Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum.

    PubMed

    Jeya, Marimuthu; Kalyani, Dayanand; Dhiman, Saurabh Sudha; Kim, Hoon; Woo, Seongmin; Kim, Dongwook; Lee, Jung-Kul

    2012-08-01

    Enzymatic saccharification of woody biomasses was performed using glycoside hydrolases from Stereum hirsutum, a newly isolated fungal strain found to secrete efficient glycoside hydrolases. The strain showed the highest β-glucosidase, cellobiohydrolase, endoglucanase, endoxylanase, laccase, and filter paper activity of 10.3, 1.7, 10.3, 29.9, 0.12, and 0.58 U/ml, respectively. Among the various biomasses tested for saccharification, pine biomass produced maximum reducing sugar. Response surface methodology was used to optimize the hydrolysis of pine biomass to achieve the highest level of sugars. The parameters including enzyme, substrate concentration, temperature and pH were found to be critical for the conversion of pine biomass into sugars. Maximum saccharification of 49.7% (435 mg/g-substrate) was obtained after 96 h of hydrolysis. A close agreement between the experimental results and the model predictions was achieved. S. hirsutum could be a good choice for the production of reducing sugars from cellulosic biomasses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. C21 steroidal glycosides and oligosaccharides from the root bark of Periploca sepium.

    PubMed

    Gu, Xin-Yue; Wu, Zhou-Wei; Wang, Lun; Li, Fu; Chen, Bin; Yu, Kai; Wang, Ming-Kui

    2017-04-01

    Four new C 21 steroidal glycosides (1-4), named perisepiumosides FI (1-4) together with six known steroidal glycosides (5-10) and four oligosaccharides (11-14), were isolated from the root bark of Periploca sepium. Their structures were characterized on the basis of 1D and 2D-NMR spectroscopic data as well as HR-ESI-MS analysis. The evaluation of inhibition activity against human A-549 and HepG2 cell lines indicated that compounds 2, 8, 10 and 13 showed different levels of cytotoxic activities with IC 50 values ranging from 0.61 to 7.86μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Triterpene glycosides from the whole plant of Anemone hupehensis var. japonica and their cytotoxic activity.

    PubMed

    Yokosuka, Akihito; Sano, Tomoe; Hashimoto, Ken; Sakagami, Hiroshi; Mimaki, Yoshihiro

    2009-12-01

    Three new triterpene glycosides (1-3), together with eight known triterpene glycosides (4-11), were isolated from the whole plant of Anemone hupehensis var. japonica (Ranunculaceae). The structures of the new compounds were determined on the basis of spectroscopic analysis and the results of hydrolytic cleavage experiments. The isolated compounds were evaluated for their cytotoxic activities against HL-60 human leukemia cells, HSC-2 human oral squamous carcinoma cells, HSC-4 human oral squamous carcinoma cells, and A549 human lung adenocarcinoma cells.

  14. Effect of different drying methods on the composition of steviol glycosides in Stevia rebaudiana Bertoni leaves

    NASA Astrophysics Data System (ADS)

    Aranda-González, Irma; Betancur-Ancona, David; Chel-Guerrero, Luis; Moguel-Ordóñez, Yolanda

    2017-01-01

    Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g-1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.

  15. Investigation of different concentrations of MS media effects on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni.

    PubMed

    Kahrizi, Danial; Ghaheri, Matin; Yari, Zahra; Yari, Khirollah; Bahraminejad, Sohbat

    2018-02-10

    Stevia rebaudiana Bertoni is one of two species that contains steviol glycosides. Among steviol glycosides that extracted from leaves, stevioside and rebaudioside A are the two major and the sweetest glycosides that are about 200-300 times sweeter than sucrose with zero calories. The best method for stevia propagation is tissue culture. So, for investigation of nutrients in medium, we studied the effect of different concentrations of MS media (MS, 0.5 MS, 0.25 MS, 0 MS) on morphological traits, UGT74G1 and UGT76G1 genes expression and accumulation of steviol glycosides in stevia leaves. The best growth rate (0.472 mm/d) has occurred in plants grown in MS media. Also, the highest gene expression of UGT74G1 gene (1.000 Total lab unit) was seen under MS treatment. However, the highest expression level of UGT76G1 gene (1.701 Total lab unit) was observed at plants grown in 0 MS. The highest amount of both Stevioside and Rebaudioside A (14.23 and 8.12, respectively) were accumulated in plants under MS treatment. Obviously, dilution of MS media associated with decreasing in both expression of the intended genes and accumulation of steviol glycosides.

  16. [Comparative studies on scavenging DPPH free radicals activity of flavone C-glycosides from different parts of Dendrobium officinale].

    PubMed

    Zhou, Guifen; Lv, Guiyuan

    2012-06-01

    To study the scavenging DPPH free radicals activity of flavone C-glycosides from different parts of Dendrobium officinale. The types and contents of flavonoids from different parts of D. officinale were analyzed by TLC and HPLC. The antioxidant effect was tested by scavenging DPPH free radicals activity. The stems, leaves and flowers contained the same type of flavone C-A glycosides and 8 common peaks were identified. The content of flavone C-A glycosides was significantly different. The content of flavone C-glycosides in leaves and flowers was higher than that in stems. The flavonoid in roots was less. Stems contained naringenin, which was not identified in root, leave and flower. Both stems and leaves had antioxidant capacity of eliminating DPPH free radicals, of which scavenging DPPH free radicals activity of leaves was better than stems. Considering the content of flavonoid and antioxidant activity leave and flower of D. officinale may substitute stems. The study provides a preliminary basis for the development and utilization of leave and flower of D. officinale.

  17. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades

    PubMed Central

    Bahrami, Yadollah; Franco, Christopher M. M.

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ7(8) or Δ9(11) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  18. The potential for the indirect crystal structure verification of methyl glycosides based on acetates' parent structures: GIPAW and solid-state NMR approaches

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna

    2017-10-01

    A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.

  19. Samioside, a new phenylethanoid glycoside with free-radical scavenging and antimicrobial activities from Phlomis samia.

    PubMed

    Kyriakopoulou, I; Magiatis, P; Skaltsounis, A L; Aligiannis, N; Harvala, C

    2001-08-01

    A new phenylethanoid glycoside, samioside, was isolated from the aerial parts of Phlomis samia and identified as 1-O-3,4-(dihydroxyphenyl)ethyl beta-D-apiofuranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->3)-4-O-caffeoyl-beta-D-glucopyranoside (1). In addition, one known phenylethanoid glycoside and three known flavonoids were identified as acteoside (2), apigenin, chrysoeriol, and ermanin, respectively. The structure of 1 was elucidated on the basis of its spectroscopic data. Samioside (1) demonstrated scavenging properties toward the DPPH radical and antimicrobial activity against Gram-positive and -negative bacteria.

  20. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  1. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036

  2. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b ' (410.0 μg/g), chlorophyll a (162.4 μg/g), 9'- Z -neoxanthin (142.8 μg/g) and all- E -violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5- O -caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  3. A new phenolic glycoside from the stem of Dendrobium nobile.

    PubMed

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Zhang, Bin; Sun, Chong-Ge

    2017-05-01

    A new phenolic glycoside dendroside (1), together with seven known compounds (2-8) were isolated from the stems of Dendrobium nobile. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated.

  4. Mesophyll distribution of 'antioxidant' flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance.

    PubMed

    Agati, Giovanni; Stefano, Giovanni; Biricolti, Stefano; Tattini, Massimiliano

    2009-10-01

    Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance. In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD. Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4'-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths. The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf.

  5. Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages.

    PubMed

    Carakostas, M C; Curry, L L; Boileau, A C; Brusick, D J

    2008-07-01

    Rebaudioside A is a sweet tasting steviol glycoside extracted and purified from Stevia rebaudiana (Bertoni). Steviol glycosides can currently be used as a food ingredient in only a handful of countries. Questions on specifications, safety and special population effects have prevented steviol glycosides from obtaining a legal status permitting their use as a sweetener in most countries. A set of papers reporting results of research studies and reviews has been compiled in this Supplement to definitively answer unresolved questions. Specifically, recently completed studies on the general and reproductive toxicity of rebaudioside A corroborate studies carried out with purified steviol glycosides demonstrating safety at high dietary intake levels. Comparative metabolism studies provide further affirmation of the common metabolic pathway for all steviol glycosides and the common metabolism between rats and humans. Finally, clinical studies provide further evidence that purified rebaudioside A has no effect on either blood pressure or glucose homeostasis. This paper summarizes the information used to conclude that high purity rebaudioside A (rebiana) produced to food-grade specifications and according to Good Manufacturing Practices is safe for human consumption under its intended conditions of use as a general purpose sweetener.

  6. Development and application of a quantitative method based on LC-QqQ MS/MS for determination of steviol glycosides in Stevia leaves.

    PubMed

    Molina-Calle, M; Sánchez de Medina, V; Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D

    2016-07-01

    Stevia is a currently well-known plant thanks to the presence of steviol glycosides, which are considered as sweeteners obtained from a natural source. In this research, a method based on LC-MS/MS by using a triple quadrupole detector was developed for quantitation of 8 steviol glycosides in extracts from Stevia leaves. The ionization and fragmentation parameters for selected reaction monitoring were optimized. Detection and quantitation limits ranging from 0.1 to 0.5ng/mL and from 0.5 to 1ng/mL, respectively, were achieved: the lowest attained so far. The steviol glycosides were quantified in extracts from leaves of seven varieties of Stevia cultivated in laboratory, greenhouse and field. Plants cultivated in field presented higher concentration of steviol glycosides than those cultivated in greenhouse. Thus, the way of cultivation clearly influences the concentration of these compounds. The inclusion of branches together with leaves as raw material was also evaluated, showing that this inclusion modifies, either positively or negatively, the concentration of steviol glycosides. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.

    PubMed

    Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2011-12-01

    Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist. Copyright

  9. Iridoid glycosides from Gardeniae Fructus for treatment of ankle sprain.

    PubMed

    Chen, Quan Cheng; Zhang, Wei Yun; Youn, Uijoung; Kim, Hongjin; Lee, IkSoo; Jung, Hyun-Ju; Na, MinKyun; Min, Byung-Sun; Bae, KiHwan

    2009-04-01

    The iridoid glycosides, genipin 1-O-beta-D-isomaltoside (1) and genipin 1,10-di-O-beta-D-glucopyranoside (2), together with six known iridoid glycosides, genipin 1-O-beta-D-gentiobioside (3), geniposide (4), scandoside methyl ester (5), deacetylasperulosidic acid methyl ester (6), 6-O-methyldeacetylasperulosidic acid methyl ester (7), and gardenoside (8) were isolated from an EtOH extract of Gardeniae Fructus. The structures and relative stereochemistries of the metabolites were elucidated on the basis of 1D- and 2D-NMR spectroscopic techniques, high-resolution mass spectrometry, and chemical evidence. Geniposide (4), one of the main compounds of Gardeniae Fructus, was tested for treatment of ankle sprain using an ankle sprain model in rats. From the second to fifth day, the geniposide (4) (100mg/ml) treated group exhibited significant differences (p<0.01) with approximately 21-34% reduction in swelling ratio compared with those of the vehicle treated control group. This indicated the potential effect of geniposide (4) for the treatment of disorders such as ankle sprain.

  10. Terpene and lignan glycosides from the twigs and leaves of an endangered conifer, Cathaya argyrophylla.

    PubMed

    He, Wen-Jun; Fu, Zhao-Hui; Zeng, Guang-Zhi; Zhang, Yu-Mei; Han, Hong-Jin; Yan, He; Ji, Chang-Jiu; Chu, Hong-Biao; Tan, Ning-Hua

    2012-11-01

    Labdane diterpene glycosides cathargyroside A and cathargyroside B, monoterpene glycosides vervenone-10-O-β-D-glucopyranoside and vervenone-10-O-β-D-apiofuranosyl-(1″→6')-β-D-glucopyranoside, as well as lignan glycosides cedrusinin-4-O-α-L-rhamnopyranoside and (+)-cyclo-olivil-9'-O-β-D-xylopyranoside, along with 39 known compounds, were obtained from the methanol extract of the twigs and leaves of Cathaya argyrophylla. These compounds were identified mainly by analyzing their NMR and MS data. Almost all of these compounds were hitherto unknown in this genus. The isolated compounds were screened against Candida albicans and Staphylococcus aureus for antimicrobial assay, and against K562, HT-29, BEL-7402, SGC-7901, B16, BGC-823, U251 and A549 cancer cell lines for cytotoxic activities. One compound showed antimicrobial activity against C. albicans, and four of them displayed cytotoxicity. Similarity analysis on the chemical constituents of the genera Cathaya, Picea and Pinus supported their close phylogenetic relationships. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis).

    PubMed

    Szakiel, Anna; Ruszkowski, Dariusz; Grudniak, Anna; Kurek, Anna; Wolska, Krystyna I; Doligalska, Maria; Janiszowska, Wirginia

    2008-11-01

    The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acid's influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.

  12. Novel Synthetic Mono-triazole Glycosides Induce G0/G1 Cell-cycle Arrest and Apoptosis in Cholangiocarcinoma Cells.

    PubMed

    Obchoei, Sumalee; Saeeng, Rungnapha; Wongkham, Chaisiri; Wongkham, Sopit

    2016-11-01

    The treatment of cholangiocarcinoma (CCA) is still ineffective and the search for a novel treatment is needed. In this study, eight novel mono-triazole glycosides (W1-W8) were synthesized and tested for their anticancer activities in CCA cell lines. The anti-proliferation effect and the underlying mechanisms of the triazole glycosides were explored. Viable cells were determined using the MTT test. Among glycosides tested, W4 and W5 exhibited the most potent anticancer activity in a dose- and time-dependent fashion. Flow cytometry and wstern blot analysis revealed that W4 and W5 induced G 0 /G 1 phase cell-cycle arrest through down-regulation of cyclin D1, cyclin E and induction of cyclin-dependent kinase inhibitors, p27 and p21 protein expression. Annexin V/propidium iodide (PI) staining demonstrated that W4 and W5 also induced apoptotic cells in a dose-dependent manner via caspase signaling cascade. Together, these findings imply that the novel synthetic glycosides might be a promising anticancer agent for CCA. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Development and application of a fluorescent glucose uptake assay for the high-throughput screening of non-glycoside SGLT2 inhibitors.

    PubMed

    Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi

    2015-07-10

    Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of Extraction Methods on the Yield of Steviol Glycosides and Antioxidants in Stevia rebaudiana Extracts.

    PubMed

    Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel

    2015-06-01

    This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves.

  15. Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves.

    PubMed

    Lorenzo, Cándida; Serrano-Díaz, Jéssica; Plaza, Miguel; Quintanilla, Carmen; Alonso, Gonzalo L

    2014-08-15

    The aim of this work is to propose an HPLC method for analysing major steviol glycosides as well as to optimise the extraction and clarification conditions for obtaining these compounds. Toward this aim, standards of stevioside and rebaudioside A with purities ⩾99.0%, commercial samples from different companies and Stevia rebaudiana Bertoni leaves from Paraguay supplied by Insobol, S.L., were used. The analytical method proposed is adequate in terms of selectivity, sensitivity and accuracy. Optimum extraction conditions and adequate clarification conditions have been set. Moreover, this methodology is safe and eco-friendly, as we use only water for extraction and do not use solid-phase extraction, which requires solvents that are banned in the food industry to condition the cartridge and elute the steviol glycosides. In addition, this methodology consumes little time as leaves are not ground and the filtration is faster, and the peak resolution is better as we used an HPLC method with gradient elution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.

    PubMed

    Puttick, G M; Bowers, M D

    1988-01-01

    The behavioral and physiological effects of plant allelochemicals have been difficult to demonstrate; it is not often clear whether the compounds are deterrent, toxic, or both. In this study, we compared the qualitative and quantitative effects of several iridoid glycosides on a generalist lepidopteran herbivore,Spodoptera eridania (Noctuidae). Larval growth and survivorship and larval preference or avoidance were measured on artificial diets containing different iridoid glycosides at different concentrations. We also tested the toxicity/deterrence of these compounds. We found that iridoid glycosides retarded larval growth significantly at relatively low concentrations and that they were usually avoided in preference tests. The toxicity/ deterrence test did not always reflect the results of these other tests. The merits of using a variety of methods for determining deterrence and/or toxicity of plant allelochemicals are discussed.

  17. New phenethyl alcohol glycosides from Stachys parviflora.

    PubMed

    Ahmad, Viqar Uddin; Arshad, Saima; Bader, Sadia; Ahmed, Amir; Iqbal, Shazia; Tareen, Rasool Buksh

    2006-01-01

    Phytochemical investigations of the whole plant of Stachys parviflora (Lamiaceae) resulted in the isolation of two new phenethyl alcohol glycosides. The structures of the new compounds named parviflorosides A and B were established as 2-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl-(1 --> 2)-4-O-E-caffeoyl-beta-D-glucopyranoside (1) and 2-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl-(1 --> 2)-6-O-E-caffeoyl-beta-D-glucopyranoside (2), respectively. The structure elucidation of the new compounds was based primarily on 1D and 2D NMR analysis, including COSY, HMBC and HMQC correlations.

  18. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    PubMed Central

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  19. Synthetic study on the relationship between structure and sweet taste properties of steviol glycosides.

    PubMed

    Upreti, Mani; Dubois, Grant; Prakash, Indra

    2012-04-05

    The structure activity relationship between the C₁₆-C₁₇ methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C₁₆-C₁₇ methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  20. Potent in vivo antifungal activity against powdery mildews of pregnane glycosides from the roots of Cynanchum wilfordii.

    PubMed

    Yoon, Mi-Young; Choi, Nam Hee; Min, Byung Sun; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Han, Seong-Sook; Cha, Byeongjin; Kim, Jin-Cheol

    2011-11-23

    Two new pregnane glycosides, kidjoranine 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-α-L-cymaropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1→4)-α-L-diginopyranosyl-(1 → 4)-β-D-cymaropyranoside (5) and caudatin 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-α-L-cymaropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-α-L-diginopyranosyl-(1 → 4)-β-D-cymaropyranoside (6), were isolated from the roots of Cynanchum wilfordii along with four known compounds (1-4). The antifungal activities of the six compounds against barley powdery mildew caused by Blumeria graminis f. sp. hordei were compared to the antifungal activity of polyoxin B. The caudatin glycosides (1, 4, and 6) showed stronger antifungal activities than polyoxin B, whereas kidjoranine glycosides (2, 3, and 5) had weaker activities than polyoxin B. A wettable powder-type formulation (C. wilfordii-WP20) of the ethyl acetate extract from C. wilfordii roots prohibited the development of barley powdery mildew much more effectively than the commercial fungicide polyoxin B-WP10. In addition, C. wilfordii-WP20 effectively controlled strawberry powdery mildew caused by Sphaerotheca humuli under greenhouse conditions. Thus, the crude extract containing the pregnane glycosides can be used as a botanical fungicide for the environmentally benign control of powdery mildews.

  1. Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan peony

    PubMed Central

    Hao, Hai-ping; He, Zhi; Li, Hui; Shi, Lei; Tang, Yu-Dan

    2014-01-01

    Background and Aims Epicotyl dormancy break in seeds that have deep simple epicotyl morphophysiological dormancy (MPD) requires radicle emergence and even a certain root length in some species. However, the mechanisms by which root length affects epicotyl dormancy break are not clear at present. This study aims to explore the relationship between root length and epicotyl dormancy release in radicle-emerged seeds of Tibetan peony, Paeonia ludlowii, with discussion of the possible mechanisms. Methods Radicle-emerged seeds (radicle length 1·5, 3·0, 4·5 and 6·0 cm) were incubated at 5, 10 and 15 °C. During the stratification, some seeds were transferred to 15 °C and monitored for epicotyl–plumule growth. Hormone content was determined by ELISA, and the role of hormones in epicotyl dormancy release was tested by exogenous hormone and embryo culture. Key Results Cold stratification did not break the epicotyl dormancy until the root length was ≥6 cm. The indole-3-actic acid (IAA) and GA3 contents of seeds having 6 cm roots were significantly higher than those of seeds with other root lengths, but the abscisic acid (ABA) content was lowest among radicle-emerged seeds. GA3 (400 mg L−1) could break epicotyl dormancy of all radicle-emerged seeds, while IAA (200 mg L−1) had little or no effect. When grown on MS medium, radicles of naked embryos grew and cotyledons turned green, but epicotyls did not elongate. Naked embryos developed into seedlings on a mixed medium of MS + 100 mg L−1 GA3. Conclusions A root length of ≥6·0 cm is necessary for epicotyl dormancy release by cold stratification. The underlying reason for root length affecting epicotyl dormancy release is a difference in the GA3/ABA ratio in the epicotyl within radicle-emerged seeds, which is mainly as a result of a difference in ABA accumulation before cold stratification. PMID:24284815

  2. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers.

    PubMed

    Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun

    2015-04-10

    Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in

  3. A new lignan glycoside from the rhizomes of Imperata cylindrica.

    PubMed

    Lee, Dae-Young; Han, Kyung-Min; Song, Myoung-Chong; Lee, Do-Gyeong; Rho, Yeong-Deok; Baek, Nam-In

    2008-01-01

    A new lignan glycoside, 6-acetyl-1-[1,3-(4,4'-dihydroxy-3,3'-dimethoxy-beta-truxinyl)-beta-d-fructofuranosyl]-alpha-d-glucopyranoside (1), named impecyloside, was isolated from the rhizomes of Imperata cylindrica. The structure of the compound was determined by spectroscopic data including FABMS, UV, IR, 1H NMR and 13C NMR (DEPT) and 2D NMR (COSY, HSQC, HMBC).

  4. Two new flavonol glycosides from Gymnema sylvestre and Euphorbia ebracteolata.

    PubMed

    Liu, Xin; Ye, Wencai; Yu, Biao; Zhao, Shouxun; Wu, Houming; Che, Chuntao

    2004-03-15

    Two new flavonol glycosides, namely kaempferol 3-O-beta-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside (1) and quercetin 3-O-6"-(3-hydroxyl-3-methylglutaryl)-beta-D-glucopyranoside (2), have been isolated from the aerial parts of Gymnema sylvestre and Euphorbia ebracteolata, respectively. Their structures were determined on the basis of chemical and spectroscopic methods.

  5. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  6. Nickel-Catalyzed Proton-Deuterium Exchange (HDX) Procedures for Glycosidic Linkage Analysis of Complex Carbohydrates.

    PubMed

    Price, Neil P J; Hartman, Trina M; Vermillion, Karl E

    2015-07-21

    The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step.

  7. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    USDA-ARS?s Scientific Manuscript database

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  8. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry.

    PubMed

    Gardana, Claudio; Scaglianti, Martina; Simonetti, Paolo

    2010-02-26

    Stevia rebaudiana leaves contain non-cariogenic and non-caloric sweeteners (steviol-glycosides) whose consumption could exert beneficial effects on human health. Steviol-glycosides are considered safe; nonetheless, studies on animals highlighted adverse effects attributed to the aglycone steviol. The aim of the present study was to develop and validate two different ultra-high-performance liquid chromatography methods with electrospray ionization mass spectrometry (UHPLC-MS) to evaluate steviol-glycosides or steviol in Stevia leaves and commercial sweetener (Truvia). Steviol-glycosides identity was preliminarily established by UV spectra comparison, molecular ion and product ions evaluation, while routine analyses were carried out in single ion reaction (SIR) monitoring their negative chloride adducts. Samples were sequentially extracted by methanol, cleaned-up by SPE cartridge and the analytes separated by UHPLC HSS C18 column (150 mm x 2.1 mm I.D., 1.8 microm). The use of CH2Cl2 added to the mobile phase as source of Cl- enhance sensitivity. The LLOD for stevioside, rebaudioside A, steviolbioside and steviol was 15, 50, 10 and 1 ng ml(-1), respectively. Assay validation demonstrated good performances in terms of accuracy (89-103%), precision (<4.3%), repeatability (<5.7%) and linearity (40-180 mg/g). Stevioside (5.8+/-1.3%), rebaudioside A (1.8+/-1.2%) and rebaudioside C (1.3+/-1.4%) were the most abundant steviol-glycosides found in samples of Stevia (n=10) from southern Italy. Rebaudioside A was the main steviol-glycosides found in Truvia (0.84+/-0.03%). The amounts of steviol-glycosides obtained by the UHPLC-MS method matched those given by the traditional LC-NH2-UV method. Steviol was found in all the leaves extract (2.7-13.2 mg kg(-1)) but was not detected in Truvia (<1 microg kg(-1)). The proposed UHPLC-MS methods can be applied for the routine quality control of Stevia leaves and their commercial preparations. Copyright 2009 Elsevier B.V. All rights

  9. Effects of elevated CO2 and ozone on phenolic glycosides of trembling aspen

    Treesearch

    James K. Nitao; Muraleedharan G. Nair; William J. Mattson; Daniel A. Herms; Bruce A. Birr; Mark D. Coleman; Terry M. Trier; J. G. Isebrands

    1996-01-01

    We tested the effects of elevated CO2 and ozone on concentrations of the phenolic glycosides salicortin and tremulacin in immature and mature foliage of the trembling aspen (Populus tremuloides) clones 216, 259, and 271.

  10. Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine.

    PubMed

    Guo, Zhi-Yong; Li, Ping; Huang, Wen; Wang, Jian-Jun; Liu, Yu-Jing; Liu, Bo; Wang, Ye-Ling; Wu, Shi-Biao; Kennelly, Edward J; Long, Chun-Lin

    2014-10-01

    Eight compounds including four caffeoyl phenylpropanoid glycosides, jasnervosides A-D (1-4), one monoterpenoid glycoside, jasnervoside E (5), and three secoiridoid glycosides, jasnervosides F-H (10-12), were isolated from the stems of Jasminum nervosum Lour. (Oleaceae), along with four known compounds, poliumoside (6), verbascoside (7), α-l-rhamnopyranosyl-(1→3)-O-(α-l-rhamnopyranosyl(1→6)-1-O-E-caffeoyl-β-d-glucopyranoside (8), and jaspolyanthoside (9). Their structures were elucidated on the basis of their physicochemical and spectroscopic properties. Compounds 1, 2, 4 and 11 displayed potent antioxidant activities in the DPPH assay, while 2 and 3 displayed good activities against LPS-induced TNF-α and IL-1β production in BV2 cells. Compounds 1-5 and 10-12 were evaluated for their cytotoxic activities against three human cancer cell lines (A-549, Bel-7402, and HCT-8), but none displayed significant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isolation and structure determination of a new flavone glycoside from seed residues of seabuckthorn (Hippophae rhamnoides L.).

    PubMed

    Zhou, Wenna; Yuan, Zhenzhen; Li, Gang; Ouyang, Jian; Suo, Yourui; Wang, Honglun

    2018-04-01

    In this study, a valid method was established for the isolation and purification of flavone glycosides from Hippophae rhamnoides L. seed residues using high-speed counter-current chromatography in one step, with a solvent system of ethyl acetate-methanol-n-butyl alcohol-water (9:1:0.5:9, v/v/v/v). A total of 28.8 mg compound I and 57.3 mg compound II were obtained from 200 mg of flavone H-glycosides rich extract, with purities of 98.3 and 96.4%, respectively. The structures of two compounds were identified by MS and NMR. 3-O-β-D-Sophorosylkaempferol-7-O-{3-O-[2(E)-2,6-dimethyl-6-hydroxyocta-2,7-dienoyl]}-α-L-rhamnoside is compound I and compound II named hippophanone is a new compound were identified by MS and NMR. The method was efficient and convenient, which could be used for the preparative separation of flavone glycosides from H. rhamnoides L. seed residues.

  12. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    PubMed Central

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering. PMID:22606025

  13. Effects of inflorescence stem structure and cell wall components on the mechanical strength of inflorescence stem in herbaceous peony.

    PubMed

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.

  14. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors.

    PubMed

    Nile, Shivraj Hariram; Nile, Arti Shivraj; Keum, Young Soo; Sharma, Kavita

    2017-11-15

    This study aimed to determine the flavonol glycosides from onion solid waste (OSW) using HPLC analysis, with antioxidant and enzyme inhibitory activities. We found considerable amount of quercetin-4'-O-monoglucoside (QMG: 254.85), quercetin-3,4'-O-diglucoside (QDG: 162.34), quercetin (Q: 60.44), and isorhamnetin-3-glucoside (IMG: 23.92) (mg/100g) dry weight (DW) of OSW. For OSW, the methanol and ethanol showed the strongest antioxidant activities, followed by ethyl acetate, chloroform, and n-hexane extracts. Among the flavonols, Q and QDG possessed higher antioxidant activities. OSW and flavonol glycosides displayed significant enzyme inhibitory activity, with IC 50 values ranging from 12.5±0.11 to 32.5±0.28 for OSW, 8.2±0.07 to 16.8±0.02 for flavonol glycosides, and 4.2±0.05μg/mL for thiourea (positive control) towards urease; while 15.2±0.8 to 35.8±0.2 (μg/mL) for OSW, 10.5±0.06 to 20.8±0.05 (μg/mL) for flavonol glycosides, and 6.5±0.05μg/mL for allopurinol (positive control) towards xanthine oxidase, respectively. The OSW and flavonol glycosides may thus be considered as potential antioxidant and antigout agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cardenolide glycosides from Elaeodendron australe var. integrifolium.

    PubMed

    Butler, Mark S; Towerzey, Leanne; Pham, Ngoc B; Hyde, Edward; Wadi, Sao Khemar; Guymer, Gordon P; Quinn, Ronald J

    2014-02-01

    Extracts from dried leaf and stems of Elaeodendron australe var. integrifolium (Celastraceae) collected in South East Queensland, Australia, were active in an assay that measured Ca(2+) driven expression of IL-2/luciferase designed to identify inhibitors of the ICRAC channel. Bioassay-guided isolation using C18 and polyamide column chromatography, HPLC (Phenyl and C18) and centrifugal partition chromatography (CPC) led to the isolation of digitoxigenin (1) and three cardenolide glycosides, glucoside 2, quinovoside 3 and the new natural product xyloside 4, as the active components with low nM activity in the reporter assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Resin glycoside constituents of Ipomoea pes-caprae (beach morning glory).

    PubMed

    Tao, Hongwen; Hao, Xiaojiang; Liu, Jinggen; Ding, Jian; Fang, Yuchun; Gu, Qianqun; Zhu, Weiming

    2008-12-01

    Eight new resin glycosides, pescapreins X-XVII (1-8), were isolated from a lipophilic fraction of an ethanol extract of the entire plant of beach morning glory, Ipomoea pes-caprae. Their structures were elucidated by spectroscopic data analysis and by chemical transformation. These compounds were evaluated biologically in terms of cancer cell line cytotoxicity, antibacterial and antifungal activity, and effects on the mu-opioid receptor.

  17. Separation of glycosidic catiomers by TWIM-MS using CO2 as a drift gas.

    PubMed

    Bataglion, Giovana A; Souza, Gustavo Henrique Martins Ferreira; Heerdt, Gabriel; Morgon, Nelson H; Dutra, José Diogo Lisboa; Freire, Ricardo Oliveira; Eberlin, Marcos N; Tata, Alessandra

    2015-02-01

    Traveling wave ion mobility mass spectrometry (TWIM-MS) is shown to be able to separate and characterize several isomeric forms of diterpene glycosides stevioside (Stv) and rebaudioside A (RebA) that are cationized by Na(+) and K(+) at different sites. Determination and characterization of these coexisting isomeric species, herein termed catiomers, arising from cationization at different and highly competitive coordinating sites, is particularly challenging for glycosides. To achieve this goal, the advantage of using CO2 as a more massive and polarizable drift gas, over N2, was demonstrated. Post-TWIM-MS/MS experiments were used to confirm the separation. Optimization of the possible geometries and cross-sectional calculations for mobility peak assignments were also performed. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Bacteroides thetaiotaomicron VPI-5482 glycoside hydrolase family 66 homolog catalyzes dextranolytic and cyclization reactions.

    PubMed

    Kim, Young-Min; Yamamoto, Eiji; Kang, Min-Sun; Nakai, Hiroyuki; Saburi, Wataru; Okuyama, Masayuki; Mori, Haruhide; Funane, Kazumi; Momma, Mitsuru; Fujimoto, Zui; Kobayashi, Mikihiko; Kim, Doman; Kimura, Atsuo

    2012-09-01

    Bacteroides thetaiotaomicron VPI-5482 harbors a gene encoding a putative cycloisomaltooligosaccharide glucanotransferase (BT3087) belonging to glycoside hydrolase family 66. The goal of the present study was to characterize the catalytic properties of this enzyme. Therefore, we expressed BT3087 (recombinant endo-dextranase from Bacteroides thetaiotaomicron VPI-5482) in Escherichia coli and determined that recombinant endo-dextranase from Bacteroides thetaiotaomicron VPI-5482 preferentially synthesized isomaltotetraose and isomaltooligosaccharides (degree of polymerization > 4) from dextran. The enzyme also generated large cyclic isomaltooligosaccharides early in the reaction. We conclude that members of the glycoside hydrolase 66 family may be classified into three types: (a) endo-dextranases, (b) dextranases possessing weak cycloisomaltooligosaccharide glucanotransferase activity, and (c) cycloisomaltooligosaccharide glucanotransferases. © 2012 The Authors Journal compilation © 2012 FEBS.

  19. Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion.

    PubMed

    Lehtonen, Henna-Maria; Lehtinen, Outi; Suomela, Jukka-Pekka; Viitanen, Matti; Kallio, Heikki

    2010-01-13

    Glucuronidation and excretion of sea buckthorn and lingonberry flavonols were investigated in a postprandial trial by analyzing the intact forms of flavonol glycosides as well as glucuronides in plasma, urine, and feces. Four study subjects consumed sea buckthorn (study day 1) and lingonberry (study day 2) breakfasts, and blood, urine, and fecal samples were collected for 8, 24, and 48 h, respectively. Both glycosides and glucuronides of the flavonol quercetin as well as kaempferol glucuronides were detected in urine and plasma samples after the consumption of lingonberries; 14% of flavonols in urine were glycosides, and 86% were glucuronidated forms (wt %). After the consumption of sea buckthorn, 5% of flavonols excreted in urine were detected intact, and 95% as the glucuronides (wt %). Solely glucuronides of flavonols isorhamnetin and quercetin were found in plasma after the consumption of sea buckthorn berries. Only glycosides were detected in the feces after each berry trial. Flavonol glycosides and glucuronides remained in blood and urine quite long, and the peak concentrations appeared slightly later than previously described. The berries seemed to serve as a good flavonol supply, providing steady flavonol input for the body for a relatively long time.

  20. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography.

    PubMed

    Wan, Qun; Parks, Jerry M; Hanson, B Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E; Graham, David E; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey

    2015-10-06

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD=pH+0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.

  1. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography

    PubMed Central

    Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E.; Graham, David E.; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey

    2015-01-01

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen. PMID:26392527

  2. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Qun; Parks, Jerry M.; Hanson, B. Leif

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pK a values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. Themore » general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pK a values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pK a of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. Lastly, these findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.« less

  3. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography

    DOE PAGES

    Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; ...

    2015-09-21

    Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pK a values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. Themore » general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pK a values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pK a of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. Lastly, these findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.« less

  4. Effect of harvest timing on leaf production and yield of diterpene glycosides in Stevia rebaudiana Bert: a specialty perennial crop for Mississippi

    USDA-ARS?s Scientific Manuscript database

    Stevia rebaundiana (Bertoni), a perennial shrub of the Asteraceae, is one of the most important sources of non-caloric natural sweeteners. Stevia’s plant extracts and glycosides have been used for several years in Paraguay and Brazil. Several studies suggest that Stevia and its glycosides exert ben...

  5. Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance

    PubMed Central

    Agati, Giovanni; Stefano, Giovanni; Biricolti, Stefano; Tattini, Massimiliano

    2009-01-01

    Background and Aims Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance. Methods In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD. Key Results Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4′-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths. Conclusions The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf. PMID:19633310

  6. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  7. A New ent-Labdane Diterpene Glycoside form the Leaves of Casearia sylvestris

    USDA-ARS?s Scientific Manuscript database

    Sylvestin (1), a new ent-labdane glycoside, was isolated from the leaves of Casearia sylvestris. The structure was determined on the basis of 1D and 2 D NMR and HR-ESI-MS analyses. The diterpenoid of ent-labdane type was isolated for the first time from C. sylvestris....

  8. Soulieoside O, a new cyclolanostane triterpenoid glycoside from Souliea vaginata.

    PubMed

    Wu, Hai-Feng; Li, Peng-Fei; Zhu, Yin-Di; Zhang, Xiao-Po; Ma, Guo-Xu; Xu, Xu-Dong; Liu, Yi-Lin; Luo, Zheng-Hong; Chen, Di-Zhao; Zou, Qiong-Yu; Zhao, Zi-Jian

    2017-12-01

    A new cyclolanostane triterpenoid glycoside, soulieoside O (1), together with 25-O-acetylcimigenol-3-O-β-d-xylopyranoside (2) and cimigenol-3-O-β-d-xylopyranoside (3), was isolated from the rhizomes of Souliea vaginata. Their structures were characterized by spectroscopic analysis and chemical methods. The new compound showed moderate inhibitory activity against three human cancer cell lines with IC 50 values of 9.3-22.5 μM.

  9. Neo-clerodane diterpenoids and phenylethanoid glycosides from Teucrium chamaedrys L.

    PubMed

    Bedir, Erdal; Manyam, Rangavalli; Khan, Ikhlas A

    2003-08-01

    A neo-clerodane type diterpenoid, 12(S)-15,16-epoxy-19-hydroxy-neo-cleroda-13(16),14-dien-18,6alpha:20,12-diolide, and two phenylethanoid glycosides, teucrioside-3(IIII)-O-methylether and teucrioside-3(IIII),4(IIII)-O-dimethylether were isolated from the aerial parts of Teucrium chamaedrys. Their structures were identified on the basis of extensive NMR spectra, LC-ESIMS analysis, and molecular modeling studies.

  10. Antioxidant activities and structural characterization of flavonol O-glycosides from seeds of Japanese horse chestnut (Aesculus turbinata BLUME).

    PubMed

    Kimura, Hideto; Ogawa, Satoshi; Ishihara, Tomoe; Maruoka, Mahoko; Tokuyama-Nakai, Shota; Jisaka, Mitsuo; Yokota, Kazushige

    2017-08-01

    We attempted to evaluate the contents and distribution of antioxidants in the whole seeds, seed shells, and peeled seeds of the Japanese horse chestnut. The seed shells exhibited the highest antioxidant activities due to the presence of highly polymeric proanthocyanidins as we have reported recently. On the other hand, the peeled seeds predominantly contained flavonols such as quercetin and kaempferol at a high level of 66.7% of total polyphenols, also contributing to the predominant antioxidant activities. The instrumental analysis of the extract from the whole seeds revealed the identification of eight flavonol O-glycosides, including six compounds with quercetin and two species with kaempferol as aglycones. The isolated species exhibited different antioxidant activities depending on the types of aglycones, glycosides, and acylated moieties. The results indicate that the peeled seeds are a good source of flavonol O-glycosides serving as antioxidants to be used for food additives and dietary supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Flavonoid glycosides in bergamot juice (Citrus bergamia Risso).

    PubMed

    Gattuso, Giuseppe; Caristi, Corrado; Gargiulli, Claudia; Bellocco, Ersilia; Toscano, Giovanni; Leuzzi, Ugo

    2006-05-31

    A comprehensive profile of flavonoids in bergamot juice was obtained by a single DAD-ESI-LC-MS-MS course. Eight flavonoids were found for the first time, five of these are C-glucosides (lucenin-2, stellarin-2, isovitexin, scoparin, and orientin 4'-methyl ether), and three are O-glycosides (rhoifolin 4'-O-glucoside, chrysoeriol 7-O-neohesperidoside-4'-O-glucoside, and chrysoeriol 7-O-neohesperidoside). A method is proposed to differentiate chrysoeriol and diosmetin derivatives, which are often indistinguishable by LC-MS-MS. In-depth knowledge of the flavonoid content is the starting point for bergamot juice exploitation in food industry applications.

  12. Cyanogenic glycosides in plant-based foods available in New Zealand.

    PubMed

    Cressey, Peter; Saunders, Darren; Goodman, Janet

    2013-01-01

    Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread. 

  13. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    PubMed

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [The clinical efficacy and safety study of Esculin and Digitalis glycosides Eye Drops in treating ametropic asthenopia].

    PubMed

    Jiang, Zhen-ying; Qu, Xiao-mei; Li, Xiao-xin; Liu, Yu-ling; Shen, Nian-ci; Zhang, Lin; Ke, Bi-lian; Zhao, Pei-quan; Jiang, Jun; Yao, Ke; Zeng, Jin; Yang, Xiao; Chu, Ren-yuan

    2010-12-01

    To study the clinical efficacy and safety of the Esculin and Digitalis glycosides Eye Drops used in the patients of ametropic asthenopia. Multicenter clinical trial. Asthenopia patients were chosen from eleven hospitals cross China from July, 2008 to January, 2009. The experiment was conducted asthenopia patients who used the Esculin and Digitalis glycosides Eye Drops for 4 weeks continuously. Symptoms of asthenopia, UCVA (uncorrected vision acuity), refraction, amplitude of accommodation, accommodative lag, accommodative sensitivity and positive/negative relative accommodation were measured at different time points, such as treated before, 1 week and 4 week in treated after. After the 4-week's use of Esculin and Digitalis glycosides Eye Drops, each subjective symptom of the patients was decreased significantly (F=353.30, P<0.05). In addition, most of the objective exams of accommodation ability were significantly improved, such as UCVA (left eye: F=23.39, P<0.05; right eye: F=15.62, P<0.05), refraction (left eye: F=10.34, P<0.05; right eye: F=17.13, P<0.05), amplitude of accommodation (left eye: F=14.46, P<0.05; right eye: F=8.29, P<0.05; eyes: F=13.86, P<0.05), accommodative lag (F=14.89, P<0.05) and accommodative sensitivity (left eye: F=62.67, P<0.05; right eye: F=68.77, P<0.05; eyes: F=82.74, P<0.05). And no patient appeared any adverse reaction in whole experiment. Esculin and Digitalis glycosides Eye Drops is effective and safety for use in the patients of ametropia asthenopia.

  15. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity

    Treesearch

    Franz J. St John; Diane Dietrich; Casey Crooks; Edwin Pozharski; Javier M. González; Elizabeth Bales; Kennon Smith; Jason C. Hurlbert

    2014-01-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the

  16. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE PAGES

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; ...

    2018-04-16

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.

  17. Effect of 1,25-dihydroxycholecalciferol and 1,25-dihydroxycholecalciferol glycoside on 2,3-diphosphoglycerate levels of the rat erythrocyte.

    PubMed

    Skliar, M I; Fernandez, M C; Faienza, H; Orsatti, M B; Puche, R C; Boland, R L; Skliar, M I

    1980-12-01

    The erythrocytes of rats treated with 1, 25-dihydroxycholecalciferol or 1, 25-dihydroxycholecalciferol glycoside showed decreased levels of 2, 3-diphosphoglycerate. The same result has been obtained in vitro, indicating a direct effect of the sterol on the red cell. The glycoside is less active than the free sterol in vivo and more active in vitro. The decreased levels of diphosphoglycerate induced tissue hypoxia as shown by a higher plasma lactate/pyruvate ratio and a three fold increase in plasma erythropoietin concentration.

  18. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.

  19. Dibenzoyl and isoflavonoid glycosides from Sophora flavescens: inhibition of the cytotoxic effect of D-galactosamine on human hepatocyte HL-7702.

    PubMed

    Shen, Yi; Feng, Zi-Ming; Jiang, Jian-Shuang; Yang, Ya-Nan; Zhang, Pei-Cheng

    2013-12-27

    Twelve new dibenzoyl derivatives sophodibenzoside A-L (1-12) and five new isoflavone glycosides (13-17) have been isolated from the roots of Sophora flavescens together with eight known compounds (18-25). Notably, the use of acetic acid-d4 was required to enable identification of the dibenzoyl glycoside structures. Compounds 1, 2, 13, 14, and 19 exhibited weak inhibition of the cytotoxic effect of d-galactosamine on the human hepatic cell line HL-7702.

  20. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities.

    PubMed

    Shi, Yan-Ni; Shi, Yi-Ming; Yang, Lian; Li, Xing-Cong; Zhao, Jin-Hua; Qu, Yan; Zhu, Hong-Tao; Wang, Dong; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2015-03-13

    Piper wallichii (Miq.) Hand.-Mazz. is a medicinal plant used widely for the treatment of rheumatoid arthritis, inflammatory diseases, cerebral infarction and angina in China. Previous study showed that lignans and neolignans from Piper spp. had potential inhibitory activities on platelet aggregation. In the present study, we investigated the chemical constituents of Piper wallichii and their antithrombotic activities, to support its traditional uses. The methanolic extract of the air-dried stems of Piper wallichii was separated and purified using various chromatographic methods, including semi-preparative HPLC. The chemical structures of the isolates were determined by detailed spectroscopic analysis, and acidic hydrolysis in case of the new glycoside 2. Determination of absolute configurations of the new compound 1 was facilitated by calculated electronic circular dichroism using time-dependent density-functional theory. All compounds were tested for their inhibitory effects on platelet aggregation induced by platelet activating factor (PAF) in rabbits׳ blood model, from which the active ones were further evaluated the in vivo antithrombotic activity in zebrafish model. A new neolignan, piperwalliol A (1), and four new aromatic glycosides, piperwalliosides A-D (2-5) were isolated from the stems of Piper wallichii, along with 25 known compounds, including 13 lignans, six aromatic glycosides, two phenylpropyl aldehydes, and four biphenyls. Five known compounds (6-10) showed in vitro antiplatelet aggregation activities. Among them, (-)-syringaresinol (6) was the most active compound with an IC50 value of 0.52 mM. It is noted that in zebrafish model, the known lignan 6 showed good in vivo antithrombotic effect with a value of 37% at a concentration of 30 μM, compared with the positive control aspirin with the inhibitory value of 74% at a concentration of 125μM. This study demonstrated that lignans, phenylpropanoid and biphenyl found in Piper wallichii may be

  1. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves.

    PubMed

    Salminen, Juha-Pekka; Roslin, Tomas; Karonen, Maarit; Sinkkonen, Jari; Pihlaja, Kalevi; Pulkkinen, Pertti

    2004-09-01

    Oaks have been one of the classic model systems in elucidating the role of polyphenols in plant-herbivore interactions. This study provides a comprehensive description of seasonal variation in the phenolic content of the English oak (Quercus robur). Seven different trees were followed over the full course of the growing season, and their foliage repeatedly sampled for gallic acid, 9 individual hydrolyzable tannins, and 14 flavonoid glycosides, as well as for total phenolics, total proanthocyanidins, carbon, and nitrogen. A rare dimeric ellagitannin, cocciferin D2, was detected for the first time in leaves of Q. robur, and relationships between the chemical structures of individual tannins were used to propose a biosynthetic pathway for its formation. Overall, hydrolyzable tannins were the dominant phenolic group in leaves of all ages. Nevertheless, young oak leaves were much richer in hydrolyzable tannins and flavonoid glycosides than old leaves, whereas the opposite pattern was observed for proanthocyanidins. However, when quantified as individual compounds, hydrolyzable tannins and flavonoid glycosides showed highly variable seasonal patterns. This large variation in temporal trends among compounds, and a generally weak correlation between the concentration of any individual compound and the total concentration of phenolics, as quantified by the Folin-Ciocalteau method, leads us to caution against the uncritical use of summary quantifications of composite phenolic fractions in ecological studies.

  2. Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model.

    PubMed

    Jiang, Yirong; Mao, Shuqin; Huang, Weisu; Lu, Baiyi; Cai, Zengxuan; Zhou, Fei; Li, Maiquan; Lou, Tiantian; Zhao, Yajing

    2016-03-30

    Variations of phenylethanoid glycoside profiles and antioxidant activities in Osmanthus fragrans flowers through the digestive tract were evaluated by a simulated digestion model and UPLC/PDA/MS. Major phenylethanoid glycosides and phenolic acids, namely, salidroside, acteoside, isoacteoside, chlorogenic acid, and caffeic acid, were identified in four cultivars of O. fragrans flowers, and the concentration of acteoside was the highest, being up to 71.79 mg/g dry weight. After simulated digestion, total phenylethanoid glycoside contents and antioxidant activities were significantly decreased. Acteoside was identified as decomposing into caffeic acid, whereas salidroside was found to be stable during simulated digestion. According to Pearson's correlation analysis, acteoside contents showed good correlations with antioxidant activities during simulated digestion (R(2) = 0.994, P < 0.01). In conclusion, acteoside was the major contributor to the antioxidant activity of O. fragrans flowers, and salidroside was considered as the major antioxidant compound of O. fragrans flowers in vivo.

  3. Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings.

    PubMed

    Ismailoglu, U B; Saracoglu, I; Harput, U S; Sahin-Erdemli, I

    2002-02-01

    The protective effect of phenylpropanoid glycosides, forsythoside B and alyssonoside, and the iridoid glycoside lamiide, isolated from the aerial parts of Phlomis pungens var. pungens, against free radical-induced impairment of endothelium-dependent relaxation in isolated rat aorta was investigated. Aortic rings were exposed to free radicals by the electrolysis of the physiological bathing solution. Free radical-induced inhibition of the endothelium-dependent relaxation in response to acetylcholine was countered by incubation of the aortic rings before electrolysis with the aqueous extract (200 microg/ml), phenylpropanoid fraction (100 microg/ml) and iridoid fraction (150 microg/ml) of P. pungens var. pungens. Major components of the phenylpropanoid fraction forsythoside B and alyssonoside also prevented the inhibition of the acetylcholine response, at 10(-4) M concentration. However, the major component of iridoid fraction lamiide was found ineffective at the same concentration. The protective activity of phenylpropanoid glycosides against the free radical-induced impairment of endothelium-dependent relaxation may be related to their free radical scavenging property.

  4. New isoflavone glycosides from the stems of Dalbergia vietnamensis.

    PubMed

    Loan, Pham Thanh; Le Anh, Hoang Tuan; Cuc, Nguyen Thi; Yen, Duong Thi Hai; Hang, Dan Thi Thuy; Ha, Tran Minh; Nhiem, Nguyen Xuan; Van Du, Nguyen; Thai, Tran Huy; Van Minh, Chau; Van Kiem, Phan

    2014-06-01

    Two new isoflavone glycosides, dalspinosin 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (1) and caviunin 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (2), and two known compounds, caviunin 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (3) and caviunin (4) were isolated from the stems of Dalbergia vietnamensis. Their structures were determined by the combination of spectroscopic and chemical methods, including 1D- and 2D-NMR spectroscopy, as well as by comparing with the NMR data reported in the literature.

  5. A new dihydrochalcone glycoside from the stems of Homalium stenophyllum.

    PubMed

    Wu, Shou-Yuan; Fu, Yan-Hui; Zhou, Qi; Bai, Meng; Chen, Guang-Ying; Han, Chang-Ri; Song, Xiao-Ping

    2018-04-01

    A new dihydrochalcone glycoside, phloretin-4-O-β-D-glucopyranoside (1), together with seven known flavonoids (2-8), were isolated from the stems of Homalium stenophyllum. The structure of 1 was elucidated by extensive spectroscopic methods and the known compounds were identified by comparisons with data reported in the literature. The known compounds (2-8) were isolated from the genus Homalium for the first time. All compounds were evaluated for their antibacterial activities against six pathogenic bacteria in vitro.

  6. New steroidal glycosides from Tribulus terrestris L.

    PubMed

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments.

  7. Pentasaccharide resin glycosides from Ipomoea pes-caprae.

    PubMed

    Yu, Bang-Wei; Luo, Jian-Guang; Wang, Jun-Song; Zhang, Dong-Ming; Yu, Shi-Shan; Kong, Ling-Yi

    2011-04-25

    Pescapreins XXI-XXX (1-10), pentasaccharide resin glycosides, together with the known pescapreins I-IV and stoloniferin III were isolated from the aerial parts of Ipomoea pes-caprae (beach morning-glory). The pescapreins are macrolactones of simonic acid B, partially esterified with different fatty acids. The lactonization site of the aglycone, jalapinolic acid, was located at C-2 or C-3 of the second saccharide moiety. Their structures were established by a combination of spectroscopic and chemical methods. Compounds 1-10 were evaluated for their potential to modulate multidrug resistance in the human breast cancer cell line MCF-7/ADR. The combined use of these new compounds at a concentration of 5 μg/mL increased the cytotoxicity of doxorubicin by 1.5-3.7-fold.

  8. Anti-Inflammatory Properties of Flavone di-C-Glycosides as Active Principles of Camellia Mistletoe, Korthalsella japonica

    PubMed Central

    Kim, Min Kyoung; Yun, Kwang Jun; Lim, Da Hae; Kim, Jinju; Jang, Young Pyo

    2016-01-01

    The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at 100 μg/mL while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents. PMID:27302962

  9. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    PubMed

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  10. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.

    PubMed

    Hernández, T; Lundquist, P; Oliveira, L; Pérez Cristiá, R; Rodriguez, E; Rosling, H

    1995-01-01

    We studied if consumption of boiled fresh roots from sweet cassava varieties grown in Cuba resulted in exposure to cyanogenic glycosides and their final breakdown product, cyanide. When adult, nonsmoking subjects consumed 1-4 kg cassava over 2 days, their urinary levels of the main cyanide metabolite, thiocyanate, only increased from a mean +/- SEM of 12 +/- 2 to 22 +/- 2 mumol/l, indicating a negligible cyanide exposure. Their mean urinary linamarin, the main cyanogenic glucoside in cassava, increased from 2 +/- 1 to 68 +/- 16 mumol/l. In a second experiment 5 subjects consumed one meal of 0.5 kg boiled cassava that contained 105 mumol linamarin and 8 mumol hydrogen cyanide (HCN). Quantitative urine collections prior to and after intake showed that 28% of linamarin was excreted during the following 24 hours, whereas a modest increase of urinary thiocyanate (SCN) only corresponded to the small amount of free HCN ingested. These results indicate that the dominant cyanogen in boiled cassava is glycosides that pass through the human body without causing cyanide exposure. It remains to be studied whether humans occasionally possess intestinal or tissue beta-glucosidases that can hydrolyse cyanogenic glycosides from cassava.

  11. Hepatoprotective glycosides from the rhizomes of Imperata cylindrical.

    PubMed

    Ma, Jie; Sun, Hua; Liu, Hui; Shi, Gao-Na; Zang, Ying-Da; Li, Chuang-Jun; Yang, Jing-Zhi; Chen, Fang-You; Huang, Ji-Wu; Zhang, Dan; Zhang, Dong-Ming

    2018-05-01

    Three new C-methylated phenylpropanoid glycosides (1, 2), a new 8-4'-oxyneolignan (3), together with two known analogs (4, 5), were isolated from the rhizomes of Imperata cylindrical Beauv. var. major (Nees) C. E. Hubb. Their structures were determined by spectroscopic and chemical methods. Compounds 1, 2, and 5 (10 μM) exhibited pronounced hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2 cell damage in vitro assays. Furthermore, their antioxidant activities against Fe 2+ -cysteine-induced rat liver microsomal lipid peroxidation and the effects on the secretion of TNF-α in murine peritoneal macrophages (RAW264.7) induced by lipopolysaccharides were evaluated.

  12. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis.

    PubMed

    Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-09-15

    A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. Copyright 2010 John Wiley & Sons, Ltd.

  13. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Tasuku; Saikawa, Kyo; Kim, Seonah

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system ofmore » hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.« less

  14. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    PubMed

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  15. Transcript Quantification of Genes Involved in Steviol Glycoside Biosynthesis in Stevia rebaudiana Bertoni by Real-Time Polymerase Chain Reaction (RT-PCR).

    PubMed

    Modi, Arpan; Kumar, Nitish; Narayanan, Subhash

    2016-01-01

    Stevia (Stevia rebaudiana Bertoni) is a medicinal plant having sweet, diterpenoid glycosides known as steviol glycosides which are 200-300 times sweeter than sucrose (0.4 % solution). They are synthesized mainly in the leaves via plastid localized 2-C-methyl-D-erythrose-4-phosphate pathway (MEP pathway). Fifteen genes are involved in the formation of these glycosides. In the present protocol, a method for the quantification of transcripts of these genes is shown. The work involves RNA extraction and cDNA preparation, and therefore, procedures for the confirmation of DNA-free cDNA preparation have also been illustrated. Moreover, details of plant treatments are not mentioned as this protocol may apply to relative gene expression profile in any medicinal plant with any treatment. The treatments are numbered as T0 (Control), T1, T2, T3, and T4.

  16. An effective identification and quantification method for Ginkgo biloba flavonol glycosides with targeted evaluation of adulterated products.

    PubMed

    Ma, Yuan-Chun; Mani, Ana; Cai, Yaling; Thomson, Jaclyn; Ma, Jie; Peudru, Flavie; Chen, Sarah; Luo, Mai; Zhang, Junzeng; Chapman, Robert G; Shi, Zhen-Tuo

    2016-04-15

    Ginkgo biloba L. (Ginkgoaceae) leaf extract is one of the most popular herbal products on the market, as it contains flavone glycosides (≥ 24%) and terpene lactones (≥ 6%), which are proposed to have significant physiological effects. Unfortunately, the challenging financial climate has resulted in a natural health product market containing adulterated ginkgo products. 42 ginkgo samples were analyzed to establish an HPLC profile for authentic ginkgo and common ginkgo adulterants, and to develop a method capable of easily detecting adulteration in ginkgo commercial products. In this study an efficient and targeted HPLC analysis method was established that is capable of distinguishing flavonol glycosides and aglycones simultaneously for the evaluation of ginkgo powdered extracts (PEs) and finished products in a single, 13 min run. Thirteen ginkgo leaf samples, fifteen standardized powdered extracts, and fourteen commercially available ginkgo products have been analyzed using this new HPLC method. Chromatograms were compared to six standard reference materials: one flavonol glycoside (rutin), three aglycones (quercetin, kaempferol and isorhamnetin), and two isoflavones (genestin and genistein). The quantitative chromatographic data was interpreted by principal component analysis (PCA), which assisted in the detection of unexpected chromatographic features in various adulterated botanical products. Only three of the commercially available ginkgo finished products tested in this study were determined to be authentic, with flavonol glycoside rutin, and aglycones quercetin, kaempferol, and isorhamnetin found to be common adulterants in the ginkgo powdered extract and finished product samples. Despite evidence of adulteration in most of the samples, each of the samples discussed herein met most of the current pharmacopeial standards. It is therefore critical that a preliminary evaluation be utilized to detect adulteration in commercial ginkgo products, prior to the

  17. Triterpene glycosides from the tubers of Anemone coronaria.

    PubMed

    Mimaki, Yoshihiro; Watanabe, Kazuki; Matsuo, Yukiko; Sakagami, Hiroshi

    2009-07-01

    Six new triterpene glycosides (1-6), together with 11 known ones (7-17), have been isolated from a glycoside-enriched fraction prepared from the tubers of Anemone coronaria L. (Ranunculaceae). On the basis of extensive spectroscopic analysis, including 2D NMR data, and the results of hydrolytic cleavage, the structures of 1-6 were determined to be 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid (1), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (2), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (4), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta-hydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (5), and 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-18-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (6), respectively. Furthermore, the isolated compounds were evaluated for their cytotoxic activity against HSC-2 cells.

  18. Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.

    PubMed

    Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi

    2004-04-01

    Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells.

  19. Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon.

    PubMed

    Diaz, Gonzalo J; Krska, Rudolf; Sulyok, Michael

    2015-01-01

    A study was conducted to determine the incidence and levels of mycotoxins in the main staple foods of three indigenous people of the Colombian Amazon. A total of 20 corn, 24 rice and 59 cassava samples were analysed by a multi-analyte liquid chromatography-tandem mass spectrometry method covering the major classes of mycotoxins. In addition, cassava samples were also analysed for cyanogenic glycosides. The indigenous Amazon communities tested are exposed to potentially carcinogenic mycotoxins (particularly aflatoxins), as well as other mycotoxins, mainly through the intake of locally grown corn. Citrinin content in this corn was unusually high and has not been reported elsewhere. Two cassava samples contained high levels of cyanogenic glycosides. It is strongly recommended not to grow corn in the Amazon but instead purchase it from vendors capable of guaranteeing mycotoxin levels below the maximum allowable concentration in Colombia.

  20. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY.

    PubMed

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2014-04-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside ( I , 20.2 mg),, syringin ( II , 56.8 mg), sinapaldehyde glucoside ( III , 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside ( IV , 20.4 mg), and pedunculoside ( V , 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1 H and 13 C NMR studies. Glycoside I was isolated from this plant for the first time.

  1. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    PubMed Central

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1H and 13C NMR studies. Glycoside I was isolated from this plant for the first time. PMID:25132792

  2. Seco-pregnane steroidal glycosides from the roots of Cynanchum atratum and their anti-TMV activity.

    PubMed

    Yan, Ying; Zhang, Jian-xin; Liu, Kai-xing; Huang, Tao; Yan, Chen; Huang, Lie-jun; Liu, Sheng; Mu, Shu-zhen; Hao, Xiao-jiang

    2014-09-01

    Fifteen new seco-pregnane steroidal glycosides cynanosides A-O (1-15) together with twenty-seven known ones were isolated from the roots of Cynanchum atratum. The structures of 1-15 were determined by extensive analysis of spectroscopic data. The anti-tobacco mosaic virus (TMV) activity of these steroidal glycosides was screened by the conventional half-leaf method, enzyme-linked immunosorbent assay, and Western blot methods, most of them showed potent anti-TMV activity. Among them, compounds 1, 7, 13, 28 and 31 showed significantly anti-TMV activity with an IC50 value of 20.5, 18.6, 22.0, 19.2 and 22.2 μg/mL, respectively, and were much more effective than the positive control, ningnanmycin (IC50=49.6 μg/mL). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Glycosides derived from Hemidesmus indicus R. Br. root inhibit adherence of Salmonella typhimurium to host cells: receptor mimicry.

    PubMed

    Das, Sarita; Devaraj, S Niranjali

    2006-09-01

    For centuries, indigenous plants have been used against enteritis but their molecular targets and mode of action remain obscure. The present study was carried out to elucidate the protective and therapeutic role, if any, of glycosides from Hemidesmus indicus against S. typhimurium-induced pathogenesis. Studies were carried out in a human intestinal cell line (Int 407) and a murine macrophage cell line (P388D1) in order to evaluate its potency in local as well as systemic infections. The inhibitory role of the glycosides present in Hemidesmus indicus root extract (GHI) were tested by pre-coating the cells (both Int 407 and P388D1) with GHI prior to infection, and by neutralizing the wild-type bacteria with GHI before cell infection. In both cases, GHI protected the host cells from the cytotoxic effects of the wild S. typhimurium. This suggests that the biologically significant sugars (hexose, hexosamine, fucose and sialic acid etc) present in GHI might be mimicking host cell receptor saccharides and thereby blocking the bacterial ligands from binding to the host cells. Int 407 cells infected with wild-type bacteria had a diffused adherence pattern after 4 h incubation, but this typical character was not observed in cells infected with GHI-treated bacteria and the cells were normal in appearance at 4 h. After 18 h cells infected with wild-type bacteria were hypertrophoid with a disintegrated membrane and wrapped in a bacterial coat, whereas cells infected with treated bacteria had comparatively less morphological changes and few defective shrunken rods adhered locally. This suggests that the glycosides can change the adherence pattern of S. typhimurium from diffused to local. Treated bacteria had less adherence and invasion capability in Int 407 as well as P388D1 cells. The results show the decreased ability of adherence of GHI-treated S. typhimurium was due to a loss of surface hydrophobicity. A nonspecific binding between S. typhimurium and the glycosides was

  4. Biogenesis of C-Glycosyl Flavones and Profiling of Flavonoid Glycosides in Lotus (Nelumbo nucifera)

    PubMed Central

    Li, Shan-Shan; Wu, Jie; Chen, Li-Guang; Du, Hui; Xu, Yan-Jun; Wang, Li-Jing; Zhang, Hui-Jin; Zheng, Xu-Chen; Wang, Liang-Sheng

    2014-01-01

    Flavonoids in nine tissues of Nelumbo nucifera Gaertner were identified and quantified by high-performance liquid chromatography with diode array detector (HPLC-DAD) and HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MSn). Thirty-eight flavonoids were identified; eleven C-glycosides and five O-glycosides were discovered for the first time in N. nucifera. Most importantly, the C-glycosyl apigenin or luteolin detected in lotus plumules proved valuable for deep elucidation of flavonoid composition in lotus tissues and for further utilization as functional tea and medicine materials. Lotus leaves possessed the significantly highest amount of flavonoids (2.06E3±0.08 mg 100 g−1 FW) and separating and purifying the bioactive compound, quercetin 3-O-glucuronide, from leaves showed great potential. In contrast, flavonoids in flower stalks, seed coats and kernels were extremely low. Simultaneously, the optimal picking time was confirmed by comparing the compound contents in five developmental phases. Finally, we proposed the putative flavonoid biosynthesis pathway in N. nucifera. PMID:25279809

  5. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves.

    PubMed

    Periche, Angela; Castelló, María Luisa; Heredia, Ana; Escriche, Isabel

    2015-04-01

    The application of different drying conditions (hot air drying at 100 °C and 180 °C, freeze drying and shade drying) on steviol glycosides (stevioside, dulcoside A, rebaudioside A and rebaudioside C) and antioxidants in Stevia leaves was evaluated. Stevioside, the major glycoside found in fresh leaves (81.2mg/g), suffered an important reduction in all cases, although shade drying was the least aggressive treatment. Considering the antioxidant parameters (total phenols, flavonoids and total antioxidants), the most suitable drying method was hot air at 180 °C, since it substantially increased all of them (76.8 mg gallic acid, 45.1mg catechin and 126 mg Trolox, all equivalent/g Stevia, respectively), with respect to those present in fresh leaves (44.4, 2.5 and 52.9 mg equivalent/g). Therefore, the ideal method for drying Stevia leaves depends on their final use (sweetener or antioxidant), although, hot air at 180 °C is the most recommendable if only one treatment has to be chosen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A monoterpene glucoside and three megastigmane glycosides from Juniperus communis var. depressa.

    PubMed

    Nakanishi, Tsutomu; Iida, Naoki; Inatomi, Yuka; Murata, Hiroko; Inada, Akira; Murata, Jin; Lang, Frank A; Iinuma, Munekazu; Tanaka, Toshiyuki; Sakagami, Yoshikazu

    2005-07-01

    A new monoterpene glucoside (1) and three new natural megastigmane glycosides (2-4) were isolated along with a known megastigmane glucoside (5) from twigs with leaves of Juniperus communis var. depressa (Cupressaceae) collected in Oregon, U.S.A., and their structures were determined on the basis of spectral and chemical evidence. In addition, the antibacterial activities of the isolated components against Helicobacter pylori were also investigated.

  7. Active site and laminarin binding in glycoside hydrolase family 55

    DOE PAGES

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; ...

    2015-03-09

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium. Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define themore » active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ~30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Furthermore, application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.« less

  8. Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real-time mass spectrometry.

    PubMed

    Li, Xianjiang; Wang, Xin; Ma, Wen; Ai, Wanpeng; Bai, Yu; Ding, Li; Liu, Huwei

    2017-04-01

    Glycosides are a kind of highly important natural aromatic precursors in tobacco leaves. In this study, a novel HKUST-1-coated monolith dip-it sampler was designed for the fast and sensitive analysis of trace glycosides using direct analysis in real-time mass spectrometry. This device was prepared in two steps: in situ polymerization of monolith in a glass capillary of dip-it and layer-by-layer growth of HKUST-1 on the surface of monolith. Sufficient extraction was realized by immersing the tip to solution and in situ desorption was carried out by plasma direct analysis in real time. Compared with traditional solid-phase microextraction protocols, sample desorption was not needed anymore, and only extraction conditions were needed to be optimized in this method, including the gas temperature of direct analysis in real time, extraction time, and CH 3 COONH 4 additive concentration. This method enabled the simultaneous detection of six kinds of glycosides with the limits of detection of 0.02-0.05 μg/mL and the linear ranges covering two orders of magnitude with the limits of quantitation of 0.05-0.1 μg/mL. Moreover, the developed method was applied for the glycosides analysis of three tobacco samples, which only took about 2 s for every sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Approach to the study of flavone di-C-glycosides by high performance liquid chromatography-tandem ion trap mass spectrometry and its application to characterization of flavonoid composition in Viola yedoensis.

    PubMed

    Cao, Jie; Yin, Chengle; Qin, Yan; Cheng, Zhihong; Chen, Daofeng

    2014-10-01

    The mass spectrometric (MS) analysis of flavone di-C-glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di-C-glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography-electrospray ionization-tandem ion trap mass spectrometry (HPLC-ESI-IT-MS(n)) in the negative ion mode to analyze their fragmentation patterns. A new MS(2) and MS(3) hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C-6 and C-8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS(2) and MS(3) structure-diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C-6 and C-8. The base peak ((0,2) X1 (0,2) X(2)(-) ion) in MS(3) spectra of di-C-glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di-C-glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono-C-hexoside, 2 flavone 6,8-di-C-hexosides, 11 flavone 6,8-di-C-pentosides, 13 flavone 6,8-C-hexosyl-C-pentosides, 5 acetylated flavone C-glycosides and 3 flavonol O-glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MS(n) (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C-glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms

    PubMed Central

    Baker, Perrin; Hill, Preston J.; Snarr, Brendan D.; Alnabelseya, Noor; Pestrak, Matthew J.; Lee, Mark J.; Jennings, Laura K.; Tam, John; Melnyk, Roman A.; Parsek, Matthew R.; Sheppard, Donald C.; Wozniak, Daniel J.; Howell, P. Lynne

    2016-01-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics. PMID:27386527

  11. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms.

    PubMed

    Baker, Perrin; Hill, Preston J; Snarr, Brendan D; Alnabelseya, Noor; Pestrak, Matthew J; Lee, Mark J; Jennings, Laura K; Tam, John; Melnyk, Roman A; Parsek, Matthew R; Sheppard, Donald C; Wozniak, Daniel J; Howell, P Lynne

    2016-05-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics.

  12. Unusual enzymatic glycoside cleavage mechanisms.

    PubMed

    Jongkees, Seino A K; Withers, Stephen G

    2014-01-21

    Over the sixty years since Koshland initially formulated the classical mechanisms for retaining and inverting glycosidases, researchers have assembled a large body of supporting evidence and have documented variations of these mechanisms. Recently, however, researchers have uncovered a number of completely distinct mechanisms for enzymatic cleavage of glycosides involving elimination and/or hydration steps. In family GH4 and GH109 glycosidases, the reaction proceeds via transient NAD(+)-mediated oxidation at C3, thereby acidifying the proton at C2 and allowing for elimination across the C1-C2 bond. Subsequent Michael-type addition of water followed by reduction at C3 generates the hydrolyzed product. Enzymes employing this mechanism can hydrolyze thioglycosides as well as both anomers of activated substrates. Sialidases employ a conventional retaining mechanism in which a tyrosine functions as the nucleophile, but in some cases researchers have observed off-path elimination end products. These reactions occur via the normal covalent intermediate, but instead of an attack by water on the anomeric center, the catalytic acid/base residue abstracts an adjacent proton. These enzymes can also catalyze hydration of the enol ether via the reverse pathway. Reactions of α-(1,4)-glucan lyases also proceed through a covalent intermediate with subsequent abstraction of an adjacent proton to give elimination. However, in this case, the departing carboxylate "nucleophile" serves as the base in a concerted but asynchronous syn-elimination process. These enzymes perform only elimination reactions. Polysaccharide lyases, which act on uronic acid-containing substrates, also catalyze only elimination reactions. Substrate binding neutralizes the charge on the carboxylate, which allows for abstraction of the proton on C5 and leads to an elimination reaction via an E1cb mechanism. These enzymes can also cleave thioglycosides, albeit slowly. The unsaturated product of polysaccharide

  13. Two new glycosides from the fruits of Morinda citrifolia L.

    PubMed

    Hu, Ming-Xu; Zhang, Hong-Cai; Wang, Yu; Liu, Shu-Min; Liu, Li

    2012-10-26

    To study the chemical constituents of the fruits of noni (Morinda citrifolia L.), and find novel compounds, an n-butanol extract of the ethanol soluble fraction was subjected to repeated silica gel and ODS column chromatography and HPLC. Two new glycosides were isolated and their structures elucidated by NMR and HRFAB-MS spectrometry as (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-β-D-glucopyranosyl-β-D-glucopyranoside and amyl-1-O-β-D-apio-furanosyl-1,6-O-β-D-glucopyranoside, respectively.

  14. Verticillosides A-M: Polyoxygenated pregnane glycosides from Asclepias verticillata L.

    PubMed

    Araya, Juan J; Binns, Franklin; Kindscher, Kelly; Timmermann, Barbara N

    2012-06-01

    As part of our ongoing effort to explore the chemical diversity of plants of the United States Midwest region, the isolation and identification of 13 pregnane glycosides named verticillosides A-M from Asclepias verticillata L. are reported. The structures of these compounds were elucidated by various spectroscopic techniques, including 1D and 2D NMR, IR, UV, and HRMS. The cytotoxicity of the isolates was evaluated against paired breast cell lines Hs578T (cancer) and Hs578Bst (normal), however, no significant growth inhibition was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Clerodane and Ent-kaurane Diterpene Glycosyl and Glycoside Derivatives from the Leaves of Casearia sylvestris

    USDA-ARS?s Scientific Manuscript database

    Five new clerodane diterpene glycosides caseariasides A-E (1-4) and three new ent-kaurane diterpene glucosides sylvestrisides C-E (6-8) were isolated from the leaves of Casearia sylvestris. Their structures were determined on the basis of chemical and spectroscopic analyses....

  16. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reindl, W.; Deng, K.; Gladden, J.M.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation ofmore » the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.« less

  17. All human Na(+)-K(+)-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides.

    PubMed

    Wang, J; Velotta, J B; McDonough, A A; Farley, R A

    2001-10-01

    Three alpha-subunit isoforms of the sodium pump, which is the receptor for cardiac glycosides, are expressed in human heart. The aim of this study was to determine whether these isoforms have distinct affinities for the cardiac glycoside ouabain. Equilibrium ouabain binding to membranes from a panel of different human tissues and cell lines derived from human tissues was compared by an F statistic to determine whether a single population of binding sites or two populations of sites with different affinities would better fit the data. For all tissues, the single-site model fit the data as well as the two-site model. The mean equilibrium dissociation constant (K(d)) for all samples calculated using the single-site model was 18 +/- 6 nM (mean +/- SD). No difference in K(d) was found between nonfailing and failing human heart samples, although the maximum number of binding sites in failing heart was only approximately 50% of the number of sites in nonfailing heart. Measurement of association rate constants and dissociation rate constants confirmed that the binding affinities of the different human alpha-isoforms are similar to each other, although calculated K(d) values were lower than those determined by equilibrium binding. These results indicate both that the affinity of all human alpha-subunit isoforms for ouabain is similar and that the increased sensitivity of failing human heart to cardiac glycosides is probably due to a reduction in the number of pumps in the heart rather than to a selective inhibition of a subset of pumps with different affinities for the drugs.

  18. Pharmacokinetics and disposition of monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) after intravenous dosing of antiseptic XueBiJing injection in human subjects and rats.

    PubMed

    Cheng, Chen; Lin, Jia-zhen; Li, Li; Yang, Jun-ling; Jia, Wei-wei; Huang, Yu-hong; Du, Fei-fei; Wang, Feng-qing; Li, Mei-juan; Li, Yan-fen; Xu, Fang; Zhang, Na-ting; Olaleye, Olajide E; Sun, Yan; Li, Jian; Sun, Chang-hai; Zhang, Gui-ping; Li, Chuan

    2016-04-01

    Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.

  19. The rate of uptake of cardiac glycosides into human cultured cells and the effects of chloroquine on it.

    PubMed

    Algharably, N; Owler, D; Lamb, J F

    1986-10-15

    HeLa cells grown on Petri dishes were either pulse labelled with various cardiac glycosides or grown in low concentrations of them for up to 2 days; either in the presence of chloroquine or not. The cells were then homogenised and the cell free homogenate layered on a continuous sucrose gradient; and the glycoside content and that of various markers measured. In another series of experiments HeLa cells were grown on plastic beads under the above conditions and then the content of glycosides and of some marker enzymes measured. The rate of internalisation of ouabain, digoxin and digitoxin from the plasma membrane preparation produced by the bead method is at 9% hr-1, similar to the rate of loss of digoxin and digitoxin from whole cells but much faster than that of ouabain. In the sucrose gradient experiments it was found that [3H]ouabain, digoxin and digitoxin all initially co-distribute with the plasma membrane marker, 5'-nucleotidase, and then leave this fraction of the homogenate at a fast rate when kept at 37 degrees, to co-distribute with the lysosomal marker, beta-hexosaminidase. At 2 degrees the ouabain remains co-distributed with the plasma membrane marker. The rate of transfer is estimated to be some 90% hr-1, much faster than previously thought. Chloroquine causes an increased retention of digoxin and digitoxin in the lysosomal fraction of the homogenate. These results are best explained by supposing that the sodium pump-glycoside complex rapidly enters a region of the peripheral cytoplasm, and that this region then controls the subsequent exit of digoxin and digitoxin from the cell. The main barrier for ouabain occurs at a stage later than this. The consequences of this model on other aspects of pump activity is discussed.

  20. Rehabilitation of faulty kinetic determinations and misassigned glycoside hydrolase family of retaining mechanism ß-xylosidases

    USDA-ARS?s Scientific Manuscript database

    We obtained Cx1 from a commercial supplier, whose catalog listed it as a ß-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein...

  1. Medicinal flowers. XXX. Eight new glycosides, everlastosides F-M, from the flowers of Helichrysum arenarium.

    PubMed

    Morikawa, Toshio; Wang, Li-Bo; Ninomiya, Kiyofumi; Nakamura, Seikou; Matsuda, Hisashi; Muraoka, Osamu; Wu, Li-Jun; Yoshikawa, Masayuki

    2009-08-01

    Eight new glycosides, everlastosides F (1), G (2), H (3), I (4), J (5), K (6), L (7), and M (8), were isolated from the methanolic extract of the flowers of Helichrysum arenarium. Their structures were elucidated on the basis of chemical and physicochemical evidence.

  2. Transcriptomic Analysis of the Underground Renewal Buds during Dormancy Transition and Release in ‘Hangbaishao’ Peony (Paeonia lactiflora)

    PubMed Central

    Zhang, Jiaping; Wang, Guanqun; Li, Xin; Xia, Yiping

    2015-01-01

    Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora ‘Hangbaishao’ to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named “Trinity” and “Trinity+PRICE”, respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset

  3. Influence of substrates on the in vitro kinetics of steviol glucuronidation and interaction between steviol glycosides metabolites and UGT2B7.

    PubMed

    Chen, Jun-Ming; Xia, Yong-Mei; Zhang, Yan-Dong; Zhang, Tong-Tong; Peng, Qing-Rui; Fang, Yun

    2018-06-01

    Steviol glycosides, a natural sweetener, may perform bioactivities via steviol, their main metabolite in human digestion. The metabolising kinetics, i.e. glucuronidation kinetics and interaction between steviol glycosides or their metabolites and metabolising enzyme, are important for understanding the bioactivity and cytotoxicity. The present study investigated kinetics of steviol glucuronidation in human liver microsome and a recombinant human UDP-glucuronosyltransferases isomer, UGT2B7, along with molecular docking to analyse interaction between UGT2B7 and steviol or glucose. The active pocket of UGT2B7 is consisted of Arg352, Leu347, Lys343, Phe339, Tyr354, Lys355 and Leu353. The influence of stevioside, rebaudioside A, glucose and some chemotherapy reagents on the glucuronidation was also studied. The predicted hepatic clearence suggested that steviol could be classified as high-clearence drug. The steviol glycosides did not affect the glucuronidation of steviol notably.

  4. A general synthetic strategy and the anti-proliferation properties on prostate cancer cell lines for natural phenylethanoid glycosides.

    PubMed

    Mulani, Shaheen K; Guh, Jih-Hwa; Mong, Kwok-Kong Tony

    2014-05-14

    A general strategy for the synthesis of phenylethanoid glycosides (PhG) including echinacoside 1, acteoside 2, calceolarioside-A 3 and calceolarioside-B 4 is reported. The strategy features the application of low substrate concentration glycosylation and N-formyl morpholine modulated glycosylation methods for the construction of 1,2-trans β- and α-glycosidic bonds. The reported strategy does not invoke the use of the participatory acyl protecting function, which is incompatible with the ester function present in target PhG compounds. A preliminary study of the anti-proliferation properties of the PhG compounds 1–4 was performed; the acteoside 2 exhibited the best inhibition on the prostatic cancer cell proliferation.

  5. [One new chroman glycoside derivative from unmatured fruits of Citrus aurantium].

    PubMed

    Peng, Wen-Wen; Yan, He; Tan, Ning-Hua

    2013-01-01

    To study the chemical constituents of the unmatured fruits of Citrus aurantium. The AcOEt fraction of the methanol extracts of the unmatured fruits of C. aurantium were subjected on column chromatographies including silica gel, RP-18 and HPLC. Compound structures isolated were determined on the basis of spectroscopic data. Three compounds were isolated from the unmatured fruits of C. aurantium, which were identified as citrauranoside (1), limonexin (2) and limonin (3). Compound 1 is a new chroman glycoside derivative, named as citrauranoside.

  6. Effects of life cycle and leaves location on gene expression and glycoside biosynthesis pathway in Stevia rebaudiana Bertoni.

    PubMed

    Ghaheri, Matin; Adibrad, Elaheh; Safavi, Seyed Mehdi; Kahrizi, Danial; Soroush, Ali; Muhammadi, Saare; Ghorbani, Tayebeh; Sabzevari, Ali; Ansarypour, Zahra; Rahmanian, Elham

    2018-02-10

    Stevia rebaudiana Bertoni is One of the most important biologically sourced and low-calorie sweeteners that known as "Sweet Weed". It contains steviol glycosides that they are about 200-300 times sweeter than sucrose. Tissue culture is the best method with high efficiency that can overcome to problems of traditional methods, and it is the most useful tools for studying stress tolerance mechanisms under in vitro conditions to obtain drought tolerance. In the present research, we investigated the impact of life cycle, leaves location and the harvesting time on expression of UGT74G1 and UGT76G1 as well as steviol glycosides accumulation. The highest gene expression of both UGT74G1 and UGT76G1 (207.677 and 208.396 Total Lab unit, respectively) was observed in young leaves in the second vegetative year. Also, the highest amount of stevioside accumulation (13.04) was due to the old leaves in vegetative stage which had significant differences with other effects whereas the lowest accumulation (7.47) was seen at young leaves at vegetative stage. Interestingly, the highest level of rebaudioside a production (15.74) was occurred at the young leaves at vegetative stage. There was significant differences between life cycle and leaves location on steviol glycoside production in stevia.

  7. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis.

    PubMed

    Lenz, Stefan A P; Kohout, Johnathan D; Wetmore, Stacey D

    2016-12-22

    Despite the inherent stability of glycosidic linkages in nucleic acids that connect the nucleobases to sugar-phosphate backbones, cleavage of these bonds is often essential for organism survival. The current study uses DFT (B3LYP) to provide a fundamental understanding of the hydrolytic deglycosylation of the natural RNA nucleosides (A, C, G, and U), offers a comparison to DNA hydrolysis, and examines the effects of acid, base, or simultaneous acid-base catalysis on RNA deglycosylation. By initially examining HCOO - ···H 2 O mediated deglycosylation, the barriers for RNA hydrolysis were determined to be 30-38 kJ mol -1 higher than the corresponding DNA barriers, indicating that the 2'-OH group stabilizes the glycosidic bond. Although the presence of HCOO - as the base (i.e., to activate the water nucleophile) reduces the barrier for uncatalyzed RNA hydrolysis (i.e., unactivated H 2 O nucleophile) by ∼15-20 kJ mol -1 , the extreme of base catalysis as modeled using a fully deprotonated water molecule (i.e., OH - nucleophile) decreases the uncatalyzed barriers by up to 65 kJ mol -1 . Acid catalysis was subsequently examined by selectively protonating the hydrogen-bond acceptor sites of the RNA nucleobases, which results in an up to ∼80 kJ mol -1 barrier reduction relative to the corresponding uncatalyzed pathway. Interestingly, the nucleobase proton acceptor sites that result in the greatest barrier reductions match sites typically targeted in enzyme-catalyzed reactions. Nevertheless, simultaneous acid and base catalysis is the most beneficial way to enhance the reactivity of the glycosidic bonds in RNA, with the individual effects of each catalytic approach being weakened, additive, or synergistic depending on the strength of the base (i.e., degree of water nucleophile activation), the nucleobase, and the hydrogen-bonding acceptor site on the nucleobase. Together, the current contribution provides a greater understanding of the reactivity of the glycosidic

  8. Identification, quantification, and sensory characterization of steviol glycosides from differently processed Stevia rebaudiana commercial extracts.

    PubMed

    Espinoza, María Inés; Vincken, Jean-Paul; Sanders, Mark; Castro, Cristian; Stieger, Markus; Agosin, Eduardo

    2014-12-10

    Stevia rebaudiana is known for its sweet-tasting ent-kaurene diterpenoid glycosides. Several manufacturing strategies are currently employed to obtain Stevia sweeteners with the lowest possible off-flavors. The chemical composition of four commercial S. rebaudiana extracts, obtained by different technologies, was characterized using UHPLC-ESI-MS(n). The composition of one of the ethanol-crystallized extracts (EC2) was entirely rebaudioside A, whereas the enzymatically modified (EM) extract contained the lowest concentration of this compound (2.7 mg/100 mg). The membrane-purified (MP) extract had the highest content of minor natural steviol glycosides (23.7 mg/100 mg total extract) versus an average of 2.4 mg/100 mg total extract for the EC samples. Thirteen trained panelists evaluated sweetness, bitterness, licorice, and metallic attributes of all four extracts. The highest licorice intensity (p ≤ 0.05) was found for MP. Both samples EC1 and EC2, despite their different chemical compositions, showed no significant differences in sensory perception.

  9. Two new phenylpropanoid glycosides with interesterification from Scrophularia dentata Royle ex Benth

    NASA Astrophysics Data System (ADS)

    Zhang, Liuqiang; Yang, Zhuo; Jia, Qi; Dorje, Gaawe; Zhao, Zhili; Guo, Fujiang; Li, Yiming

    2013-10-01

    Two new phenylpropanoid glycosides (1-2), along with seven known ones (3-9), were isolated from the whole plant of Scrophularia dentata Royle ex Benth. Their structures were elucidated by spectroscopic methods. Among them, compounds 1 and 2 failed to separated, because they can easily transform into each other by acyl migrant reaction. In this paper, the interesterification mechanism was discussed firstly and the rule can be used in the similar structure elucidation in future.

  10. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.

  11. Protective effect of total phenylethanoid glycosides from Monochasma savatieri Franch on myocardial ischemia injury.

    PubMed

    Shi, Mengfan; He, Wenjun; Liu, Yanli; Li, Xiaoran; Yang, Shilin; Xu, Qiongming

    2013-11-15

    The present study was designed to investigate the cardioprotective effect of total phenylethanoid glycosides from Monochasma savatieri Franch (TPG). The data showed that there were mainly four phenylethanoid glycosides isolated and identified from TPG. TPG significantly increased cells viability and inhibited morphological changes on H9c2 cardiomyocytes induced by H2O2 or Na2S2O4. In addition, TPG significantly decreased T-wave elevation and histopathological changes of heart tissues in myocardial infracted rats induced by isoproterenol. It also significantly reduced the infarct size induced by ligating the coronary artery in rats, increased the activities of antioxidative enzymes superoxide dismutase (SOD), the content of glutathione (GSH), and decreased the leakage of lactic dehydrogenase (LDH), the activities of creatine kinase (CK) and the content of maleic dialdehyde (MDA). In conclusion, these results suggested that TPG from Monochasma savatieri Franch might be developed as new natural medicine or food additives with effects of prevention of coronary artery disease due to its significant antioxidant activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): a key to the beneficial effects of guava in type II diabetes mellitus.

    PubMed

    Eidenberger, Thomas; Selg, Manuel; Krennhuber, Klaus

    2013-09-01

    Based on the traditional use in popular medicine, the effect of extracts from Psidium guajava L. leaves and of the main flavonol-glycoside components on dipeptidyl-peptidase IV (DP-IV), a key enzyme of blood glucose homoeostasis, has been investigated in-vitro. An ethanolic extract was prepared from dried, powdered leaves of guava and was found to contain seven main flavonol-glycosides, which were isolated by semipreparative HPLC and tested individually. The ethanolic guava leave extract was shown to exert a dose-dependent inhibition of DP-IV, with an IC50 of 380 μg/ml test assay solution. Also the individual flavonol-glycosides inhibited DP-IV dose-dependently, with variations of the effects by a factor of 10, and an overall effect accounting for 100% of that observed for the total guava extract. The recovery of individual flavonol-glycosides in CaCo-2 epithelial cells, a model of gastrointestinal tract absorption, amounted to 2.3-5.3% of the amount available for absorption over 60 min at 37°C. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Determination of eight artificial sweeteners and common Stevia rebaudiana glycosides in non-alcoholic and alcoholic beverages by reversed-phase liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2015-02-01

    The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks.

  14. UHPLC-PDA-ESI/HRMS/MSn Analysis of Anthocyanins, Flavonol Glycosides, and Hydroxycinnamic Acid Derivatives in Red Mustard Greens (Brassica juncea Coss Variety)

    PubMed Central

    Lin, Long-Ze; Sun, Jianghao; Chen, Pei; Harnly, James

    2013-01-01

    An UHPLC-PDA-ESI/HRMS/MSn profiling method was used for a comprehensive study of the phenolic components of red mustard greens (Brassica juncea Coss variety) and identified 67 anthocyanins, 102 flavonol glycosides, and 40 hydroxycinnamic acid derivatives. The glycosylation patterns of the flavonoids were assigned on the basis of direct comparison of the parent flavonoid glycosides with reference compounds. The putative identifications were obtained from tandem mass data analysis and confirmed by the retention time, elution order, and UV–vis and high-resolution mass spectra. Further identifications were made by comparing the UHPLC-PDA-ESI/HRMS/MSn data with those of reference compounds in the polyphenol database and in the literature. Twenty-seven acylated cyanidin 3-sophoroside-5-diglucosides, 24 acylated cyanidin 3-sophoroside-5- glucosides, 3 acylated cyanidin triglucoside-5-glucosides, 37 flavonol glycosides, and 10 hydroxycinnamic acid derivatives were detected for the first time in brassica vegetables. At least 50 of them are reported for the first time in any plant materials. PMID:21970730

  15. [Iridoid glycosides from buds of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-qin; Yin, Zhi-feng; Liu, Yu-cui; Li, Hong-bo

    2011-10-01

    The study on the buds of Jasminum officinale L. var. grandiflorum was carried out to look for anti-HBV constituents. The isolation and purification were performed by HPLC and chromatography on silica gel, polyamide and Sephadex LH-20 column. The structures were elucidated on the basis of physicochemical properties and spectral analysis. Six iridoid glycosides were identified as jasgranoside B (1), 6-O-methy-catalpol (2), deacetyl asperulosidic acid (3), aucubin (4), 8-dehydroxy shanzhiside (5), and loganin (6). Jasgranoside B (1) is a new compound. Compounds 2-6 were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  16. Physocalycoside, a new phenylethanoid glycoside from Phlomis physocalyx Hub.-Mor.

    PubMed

    Ersöz, Tayfun; Alipieva, Kalina Iv; Yalçin, Funda Nuray; Akbay, Pinar; Handjieva, Nedjalka; Dönmez, Ali A; Popov, Simeon; Caliş, Ihsan

    2003-01-01

    A new phenylethanoid tetraglycoside, physocalycoside (2), was isolated from the aerial parts of Phlomis physocalyx. Its structure was identified as 3-hydroxy-4-methoxy-beta-phenylethoxy-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)]-4-O-feruloyl-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside, on the basis of spectroscopic evidence. In addition, one known iridoid glucoside, lamiide (1) and five known phenylethanoid glycosides, wiedemannioside C (3), verbascoside (= acteoside) (4), leucosceptoside A (5), martynoside (6), and forsythoside B (7) were also characterized. Compounds 2-7 demonstrated radical scavenging properties towards the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.

  17. Antioxidant flavonol glycosides from Schinus molle.

    PubMed

    Marzouk, Mohamed S; Moharram, Fatma A; Haggag, Eman G; Ibrahim, Magda T; Badary, Osama A

    2006-03-01

    Chromatographic separation of aqueous MeOH extract of the leaves of Schinus molle L. has yielded two new acylated quercetin glycosides, named isoquercitrin 6''-O-p-hydroxybenzoate (12) and 2''-O-alpha-L-rhamnopyranosyl-hyperin 6''-O-gallate (13), together with 12 known polyphenolic metabolites for the first time from this species, namely gallic acid (1), methyl gallate (2), chlorogenic acid (3), 2''-alpha-L-rhamnopyranosyl-hyperin (4), quercetin 3-O-beta-D-neohesperidoside (5), miquelianin (6), quercetin 3-O-beta-D-galacturonopyranoside (7), isoquercitrin (8), hyperin (9), isoquercitrin 6''-gallate (10), hyperin 6''-O-gallate (11) and (+)-catechin (14). Their structures were established on the basis of chromatographic properties, chemical, spectroscopic (UV, 1H, 13C NMR) and ESI-MS (positive and negative modes) analyses. Compounds 4-9 and 11 exhibited moderate to strong radical scavenging properties on lipid peroxidation, hydroxyl radical and superoxide anion generations with the highest activities shown by 6 and 7 in comparison with that of quercetin as a positive control in vitro. Copyright 2006 John Wiley & Sons, Ltd.

  18. Simultaneous analysis of steviol and steviol glycosides by liquid chromatography with ultraviolet detection on a mixed-mode column: application to Stevia plant material and Stevia-containing dietary supplements.

    PubMed

    Jaworska, Karolina; Krynitsky, Alexander J; Rader, Jeanne I

    2012-01-01

    Simultaneous separation of steviol and steviol glycosides is challenging because of differences in their polarity and chemical structure. In this study, simultaneous analysis of steviol and steviol glycosides was achieved by LC with UV detection using a mixed-mode RP weak anion exchange chromatography column. Steviol and seven steviol glycosides were analyzed on an Acclaim Mixed-Mode Wax-1 (Dionex) column with a linear gradient of deionized water adjusted to pH 3.00 with phosphoric acid and acetonitrile. The extraction was performed by sonicating dry plant material at 40 degreesC in acetonitrile-water (30 + 70, v/v). LOQ values (mg/g dry weight of plant material) were rebaudioside B, 0.50; steviol, 0.70, dulcoside A, 1.0; steviolbioside, 1.2; stevioside and rebaudioside C, 2.0; rebaudioside D, 3.3; and rebaudioside A, 5.0. The method demonstrated suitable performance for all analytes tested with respect to accuracy (mean recoveries 95-99%), intraday and interday precision for retention times (0.070-0.28% and 0.33-1.0% RSD, respectively), and linearity. The method was used to authenticate steviol glycosides in several samples of Stevia plant material as well as to quantitate steviol glycosides in dietary supplements containing Stevia.

  19. Electron Impact Ion Fragmentation Pathways of Peracetylated C-glycoside Ketones Derived from Cyclic 1,3-diketones

    USDA-ARS?s Scientific Manuscript database

    Monosaccharide C-glycoside ketones have been prepared by aqueous-based Knoevenagel condensation of isotopically-labeled and unlabeled aldoses with cyclic diketones, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and 1,3-cyclohexanedione (1,3-CHD). The reaction products and their corresponding acetyla...

  20. A new flavonoid glycoside (APG) isolated from Clematis tangutica attenuates myocardial ischemia/reperfusion injury via activating PKCε signaling.

    PubMed

    Zhu, Yanrong; Di, Shouyin; Hu, Wei; Feng, Yingda; Zhou, Qing; Gong, Bing; Tang, Xinlong; Liu, Juntian; Zhang, Wei; Xi, Miaomiao; Jiang, Lin; Guo, Chao; Cao, Jingyi; Fan, Chongxi; Ma, Zhiqiang; Yang, Yang; Wen, Aidong

    2017-03-01

    Clematis tangutica has been shown to be beneficial for the heart; however, the mechanism of this effectremains unknown. Apigenin-7-O-β-D-(-6″-p-coumaroyl)-glucopyranoside (APG) is a new flavonoid glycoside isolated from Clematis tangutica. This study investigates the effects of APG on myocardial ischemia/reperfusion (IR) injury (IRI). An IRI model of primary myocardial cells and mice was used in this study. Compared with the IR group, APG preconditioning is protective against IRI in primary myocardial cells and in mice hearts in a dose-dependent manner. The cardioprotective mechanisms of APG may involve a significant PKCε translocation into the mitochondria and an activation of the Nrf2/HO-1 pathway, which respectively suppressesmitochondrial oxidative stress and inhibits apoptosis. In addition, PKCε-targeted siRNA and a PKCε specialized inhibitor (ε-V1-2) were used to inhibit PKCε expression and activity. The inhibition of PKCε reversed the cardioprotective effect of APG, with an inhibition of Nrf2/HO-1 activation and increased mitochondrial oxidative stress and cardiomyocyte apoptosis. In conclusion, PKCε activation plays an important role in the cardioprotective effects of APG. PKCε activation induced by APG preconditioning reduces mitochondrial oxidative stress and promotes Nrf2/HO-1-mediated anti-apoptosis signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identification and anti-oxidant capacity determination of phenolics and their glycosides in elderflower by on-line HPLC-CUPRAC method.

    PubMed

    Çelik, S Esin; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra; Apak, Reşat

    2014-01-01

    Development and application of an on-line cupric reducing anti-oxidant capacity (CUPRAC) assay coupled with HPLC for separation and on-line determination of phenolic anti-oxidants in elderflower (Sambucus nigra L.) extracts for their anti-oxidant capacity are significant for evaluating health-beneficial effects. Moreover, this work aimed to assay certain flavonoid glycosides of elderflower that could not be identified/quantified by other similar on-line HPLC methods (i.e. 2,2-diphenyl-1-picrylhdrazyl and 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid). To identify anti-oxidant constituents in elderflower by HPLC and to evaluate their individual anti-oxidant capacities by on-line HPLC-CUPRAC assay with a post-column derivatisation system. The separation and UV detection of polyphenols were performed on a C18 -column using gradient elution with two different mobile phase solutions, that is acetonitrile and 1% glacial acetic acid, with detection at 340 nm. The HPLC-separated anti-oxidant polyphenols in column effluent react with copper(II)-neocuproine in a reaction-coil to reduce the latter to copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The detection limits of tested compounds at 450 nm after post-column derivatisation were compared with those of at 340 nm UV-detection without derivatisation. LOD values (µg/mL) of quercetin and its glycosides at 450 nm were lower than those of UV detection at 340 nm. This method was applied successfully to elderflower extract. The flavonol glycosides of quercetin and kaempferol bound to several sugar components (glucose, rhamnose, galactose and rutinose) were identified in the sample. The on-line HPLC-CUPRAC method was advantageous over on-line ABTS and DPPH methods for measuring the flavonoid glycosides of elderflower. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgaier, M.; Reddy, A.; Park, J. I.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  3. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  4. Dielectric studies on mobility of the glycosidic linkage in seven disaccharides.

    PubMed

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Pawlus, S; Kimla, D; Kasprzycka, A; Paluch, M; Ziolo, J; Szeja, W; Ngai, K L

    2008-10-09

    Isobaric dielectric relaxation measurements were performed on seven chosen disaccharides. For five of them, i.e., sucrose, maltose, trehalose, lactulose, and leucrose, we were able to observe the temperature evolution of the structural relaxation process. In the case of the other disaccharides studied (lactose and cellobiose), it was impossible to obtain such information because of the large contribution of the dc conductivity and polarization of the capacitor plates to the imaginary and real part of the complex permittivity, respectively. On the other hand, in the glassy state, two secondary relaxations have been identified in the dielectric spectra of all investigated carbohydrates. The faster one (gamma) is a common characteristic feature of the entire sugar family (mono-, di-, oligo-, and polysaccharide). The molecular origin of this process is still not unambiguously identified but is expected to involve intramolecular degrees of freedom as inferred from insensitivity of its relaxation time to pressure found in some monosaccharides (fructose and ribose). The slower one (labeled beta) was recently identified to be intermolecular in origin (i.e., a Johari-Goldstein (JG) beta-relaxation), involving twisting motion of the monosugar rings around the glycosidic bond. The activation energies and dielectric strengths for the beta-relaxation determined herein provide us valuable information about the flexibility of the glycosidic bond and the mobility of this particular linkage in the disaccharides studied. In turn, this information is essential for the control of the diffusivity of drugs or water entrapped in the sugar matrix.

  5. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis).

    PubMed

    Chen, Chu; Xu, Xue-Min; Chen, Yang; Yu, Meng-Yao; Wen, Fei-Yan; Zhang, Hao

    2013-12-01

    A novel acylated flavonol glycoside: isorhamnetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (1), together with two known acylated flavonol glycosides: quercetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (2) and kaempferol (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (3) were isolated from the n-butanol fraction of sea buckthorn (Hippophae rhamnoides ssp. sinensis) berries for the first time by chromatographic methods, and their structures were elucidated using UV, MS, (1)H and (13)C NMR, and 2D NMR. Compounds 1-3 showed good scavenging activities, with respective IC50 values of 8.91, 4.26 and 30.90 μM toward the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical; respective Trolox equivalent antioxidant capacities of 2.89, 4.04 and 2.44 μM μM(-1) toward 2,2'-azino-bis-3-ethyl-benzothiazoline-6-sulphonate (ABTS) radical. The quantitative analysis of the isolated acylated flavonol glycosides was performed by HPLC-DAD method. The contents of compounds 1-3 were in the range of 12.2-31.4, 4.0-25.3, 7.5-59.7 mg/100 g dried berries and 9.1-34.5, 75.1-182.1, 29.2-113.4 mg/100 g dried leaves, respectively. Copyright © 2013. Published by Elsevier Ltd.

  6. Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation.

    PubMed

    Coleman, David T; Gray, Alana L; Stephens, Charles A; Scott, Matthew L; Cardelli, James A

    2016-05-31

    The tumor microenvironment, primarily composed of myofibroblasts, directly influences the progression of solid tumors. Through secretion of growth factors, extracellular matrix deposition, and contractile mechanotransduction, myofibroblasts, or cancer-associated fibroblasts (CAFs), support angiogenesis and cancer cell invasion and metastasis. The differentiation of fibroblasts to CAFs is primarily induced by TGF-β from cancer cells. To discover agents capable of blocking CAF differentiation, we developed a high content immunofluorescence-based assay to screen repurposed chemical libraries utilizing fibronectin expression as an initial CAF marker. Screening of the Prestwick chemical library and NIH Clinical Collection repurposed drug library, totaling over 1700 compounds, identified cardiac glycosides as particularly potent CAF blocking agents. Cardiac glycosides are traditionally used to regulate intracellular calcium by inhibiting the Na+/K+ ATPase to control cardiac contractility. Herein, we report that multiple cardiac glycoside compounds, including digoxin, are able to inhibit TGF-β-induced fibronectin expression at low nanomolar concentrations without undesirable cell toxicity. We found this inhibition to hold true for multiple fibroblast cell lines. Using real-time qPCR, we determined that digoxin prevented induction of multiple CAF markers. Furthermore, we report that digoxin is able to prevent TGF-β-induced fibroblast contraction of extracellular matrix, a major phenotypic consequence of CAF differentiation. Assessing the mechanism of inhibition, we found digoxin reduced SMAD promoter activity downstream of TGF-β, and we provide data that the effect is through inhibition of its known target, the Na+/K+ ATPase. These findings support a critical role for calcium signaling during CAF differentiation and highlight a novel, repurposable modality for cancer therapy.

  7. Theoretical Studies of the Glycosidation of 2-O-Substituted 5-Fluorouracil: N-Regioselective Synthesis with the Phase-Transfer-Catalysis Method.

    PubMed

    Wang, Yi-Gui; Barnes, Ericka C

    2017-11-22

    The observed N-regioselective glycosidation of 2-O-substituted 5-fluorouracil (5-FU) via the phase-transfer-catalysis (PTC) method was investigated computationally. The Gibbs free energy reaction barrier of the N-reaction between the 5-FU anion and 1-bromo-1-deoxy-2,3,4,6-tetra-O-acetyl-α-d-glucopyranose was computed at the MP2/6-311++G(2d,p)//B3LYP/6-31+G* level. The calculated transition states were, in general, quite "loose", with the ambident reaction sites at the N3- or O4-positions on 5-FU located approximately 2.0 Å from the anomeric carbon. With the S N 2 mechanism, the formation of β-glycosides was explained by the characteristics of transition states, and the N-regioselectivity was explained by three considerations: (1) the conformations of initial complexes and the structural requirement of the reactions; (2) the formation of an ionic pair between nBu 4 N + and 2-O-substituted 5-FU anions; and (3) the thermodynamic conversion of O-glycosides to N-glycosides. The reactions between the oxocarbenium ion and the 2-O-substituted 5-FU anions (the fast step of S N 1 mechanism) were also examined at the same level of theory. Because there were no "promoters" to extract Br in the PTC method, the S N 1 mechanism might have an unfavorably high barrier to produce oxocarbenium ion. However, both the formation of β-glycosides and the experimentally observed N-regioselectivity could also be explained by the S N 1 mechanism: The former was explained by the neighboring group participation, and the latter was explained by the formation of ionic pairs between nBu 4 N + and 2-O-substituted 5-FU anions. The formation of ionic pairs possibly changed the diffusion-controlled mechanism into an activation-controlled mechanism. Two factors were demonstrated by Marcus theory to play an important role for the experimentally observed N-resioselectivity in the PTC method: (1) the thermodynamic stability of N-products over O-products; (2) the formation of ionic pair between nBu 4

  8. Separation of three anthraquinone glycosides including two isomers by preparative high-performance liquid chromatography and high-speed countercurrent chromatography from Rheum tanguticum Maxim. ex Balf.

    PubMed

    Chen, Tao; Li, Hongmei; Zou, Denglang; Liu, Yongling; Chen, Chen; Zhou, Guoying; Li, Yulin

    2016-08-01

    Anthraquinone glycosides, such as chrysophanol 1-O-β-d-glucoside, chrysophanol 8-O-β-d-glucoside, and physion 8-O-β-d-glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above-mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1-O-β-d-glucoside and chrysophanol 8-O-β-d-glucoside. This study demonstrated an efficient strategy based on preparative high-performance liquid chromatography and high-speed countercurrent chromatography for the separation of the above-mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside.

    PubMed

    López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga

    2016-04-01

    Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.

  10. Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice.

    PubMed

    Itoh, Kimihisa; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Matsuda, Hideaki

    2009-10-01

    Oral administration of a 50% ethanolic extract (CH-ext) obtained from unripe Citrus hassaku fruits collected in July exhibited a potent dose-dependent inhibition of IgE (immunoglobulin E)-mediated triphasic cutaneous reaction at 1 h [immediate phase response (IPR)], 24 h [late phase response (LPR)] and 8 days [very late phase response (vLPR)] after dinitrofluorobenzene challenge in mice. Naringin, a major flavanone glycoside component of CH-ext, showed a potent dose-dependent inhibition against IPR, LPR and vLPR. Neohesperidin, another major glycoside component of CH-ext, showed an inhibition against vLPR. The effect of CH-ext on type IV allergic reaction was examined by determining inhibitory activity against ear swelling in mice by using the picryl chloride-induced contact dermatitis (PC-CD) model. Oral administration (p.o.) of CH-ext and subcutaneous administration (s.c.) of prednisolone inhibited ear swelling during the induction phase of PC-CD. The inhibitory activities of combinations of CH-ext (p.o.) and prednisolone (s.c.) against PC-CD in mice were more potent than those of CH-ext alone and prednisolone alone, without enhancing the adverse effects. Other combinations of prednisolone (s.c.) and flavanone glycoside (p.o.) components of CH-ext, i.e. naringin and neohesperidin, exerted similar synergistic effects.

  11. Glycosides of naphthohydroquinones and anthraquinones isolated from the aerial parts of Morinda parvifolia Bartl. ex DC (Rubiaceae) increase p53 mRNA expression in A2780 cells.

    PubMed

    Su, Xianming; Zhang, Jian; Li, Changkang; Li, Fenghua; Wang, Hongqing; Gu, Haifeng; Li, Baoming; Chen, Ruoyun; Kang, Jie

    2018-05-11

    Eight previously undescribed naphthohydroquinone glycosides, namely morindaparvins H-O, together with four known anthraquinone glycosides were isolated from the n-BuOH extract of the aerial parts of Morinda parvifolia Bartl. ex DC (Rubiaceae). The structures of morindaparvins H-O were elucidated on the basis of spectroscopic analysis. To our knowledge, this is the first isolation of quinone glycosides from the plant M. parvifolia. The results showed that all 12 compounds at the concentration of 50 μM significantly increased p53 mRNA expression in A2780 cells compared with the blank control group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors.

    PubMed

    Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M

    2015-11-15

    Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Polypropionate lactones of deoxysugars glycosides from slime mold Lycogala epidendrum.

    PubMed

    Rezanka, Tomás; Dvoráková, Radmila

    2003-08-01

    Two novel polypropionate lactone glycosides (1 and 2, i.e. lycogalinosides A and B) were isolated from the slime mold Lycogala epidendrum. Their structures, including the absolute configurations of the hydroxyl and methyls groups, were determined by means of extensive spectroscopic data such as mass, IR, UV, and 1D and 2D NMR spectra and chemical degradation followed by spectroscopic and chromatographic analysis. Compounds 1 and 2 are unique in structure containing a 2-deoxy-alpha-L-fucopyranosyl-(1-4)-6-deoxy-beta-D-gulopyranosyl unit and a beta-D-olivopyranosyl-(1-4)-beta-D-fucopyranosyl unit, respectively, and showed growth inhibitory activities against Gram-positive bacteria.

  14. Deoxycholate-Based Glycosides (DCGs) for Membrane Protein Stabilisation.

    PubMed

    Bae, Hyoung Eun; Gotfryd, Kamil; Thomas, Jennifer; Hussain, Hazrat; Ehsan, Muhammad; Go, Juyeon; Loland, Claus J; Byrne, Bernadette; Chae, Pil Seok

    2015-07-06

    Detergents are an absolute requirement for studying the structure of membrane proteins. However, many conventional detergents fail to stabilise denaturation-sensitive membrane proteins, such as eukaryotic proteins and membrane protein complexes. New amphipathic agents with enhanced efficacy in stabilising membrane proteins will be helpful in overcoming the barriers to studying membrane protein structures. We have prepared a number of deoxycholate-based amphiphiles with carbohydrate head groups, designated deoxycholate-based glycosides (DCGs). These DCGs are the hydrophilic variants of previously reported deoxycholate-based N-oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside-bearing amphiphiles DCG-1 and DCG-2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given their excellent properties, these agents should have significant potential for membrane protein studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A phenolic glycoside from Flacourtia indica induces heme mediated oxidative stress in Plasmodium falciparum and attenuates malaria pathogenesis in mice.

    PubMed

    Singh, Shiv Vardan; Manhas, Ashan; Singh, Suriya P; Mishra, Sonali; Tiwari, Nimisha; Kumar, Parmanand; Shanker, Karuna; Srivastava, Kumkum; Sashidhara, Koneni V; Pal, Anirban

    2017-07-01

    Flacourtia indica is especially popular among the various communities of many African countries where it is being used traditionally for the treatment of malaria. In our previous report, we have identified some phenolic glycosides from the aerial parts of F. indica as promising antiplasmodial agents under in vitro conditions. Antimalarial bioprospection of F. indica derived phenolic glycoside in Swiss mice (in vivo) with special emphasis on its mode of action. Chloroquine sensitive strain of Plasmodium falciparum was routinely cultured and used for the in vitro studies. The in vivo antimalarial potential of phenolic glycoside was evaluated against P. berghei in Swiss mice through an array of parameters viz., hematological, biochemical, chemo-suppression and mean survival time. 2-(6-benzoyl-β-d-glucopyranosyloxy)-7-(1α, 2α, 6α-trihydroxy-3-oxocyclohex-4-enoyl)-5-hydroxybenzyl alcohol (CPG), a phenolic glycoside isolated from the aerial parts of F. indica was found to exhibit promising antiplasmodial activity by arresting the P. falciparum growth at the trophozoite stage. Spectroscopic investigations reveal that CPG possesses a strong binding affinity with free heme moieties. In addition, these interactions lead to the inhibition of heme polymerization in malaria parasite, augmenting oxidative stress, and delaying the rapid growth of parasite. Under in-vivo condition, CPG exhibited significant antimalarial activity against P. berghei at 50 and 75mg/kg body weight through chemo-suppression of parasitemia and ameliorating the parasite induced inflammatory and oxidative (hepatic) imbalance in the experimental mice. CPG was found to be a potential antimalarial constituent of F. indica with an explored mechanism of action, which also offers the editing choices for developing CPG based antimalarial chemotypes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. A sulphated flavone glycoside from Livistona australis and its antioxidant and cytotoxic activity.

    PubMed

    Kassem, Mona E S; Shoela, Soha; Marzouk, Mona M; Sleem, Amany A

    2012-01-01

    A new flavone glycoside tricin 7-O-β-glucopyranoside-2″-sulphate sodium salt along with 14 known flavonoid compounds were isolated and identified from the aqueous methanol extract of Livistona australis leaves. Their structures were established on the basis of extensive NMR (¹H, ¹³C, HSQC and H-H COSY) and ESIMS data. Antioxidant and cytotoxicity properties of the methanol extract of the leaves as well as the new compound were investigated.

  17. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    PubMed

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  18. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway.

    PubMed

    Okoye, Festus B C; Sawadogo, Wamtinga Richard; Sendker, Jandirk; Aly, Amal H; Quandt, Bettina; Wray, Victor; Hensel, Andreas; Esimone, Charles O; Debbab, Abdessamad; Diederich, Marc; Proksch, Peter

    2015-12-24

    Olax mannii Oliv. (Olacaceae) is among the many medicinal plants used in Nigeria for the ethnomedicinal management of both cancer and inflammation. Such plants represent potential sources of innovative therapeutic agents for the treatment of cancer and other malignant disorders. While the majority of medicinal plants exert their anticancer effects by direct cytotoxicity on tumor cells, it is important that other mechanisms through which these plants can exhibit anticancer effects are investigated. Preliminary studies indicated that Olax mannii leaves are rich sources of novel flavonoid glycosides. The detailed chemistry as well the mechanisms through which these flavonoid constituents may exert their cancer chemo-preventive and therapeutic effects are, however, not yet investigated. The aim of this study is to carry out a detailed chemical investigation of Olax mannii leaves and the effects of the isolated constituents on the nuclear factor kappa B (NF-κB) pathway. A methanol leaf extract was subjected to various chromatographic separations to achieve isolation of flavonoid glycosides and the structures of the isolated compounds were elucidated by a combination of 1D and 2D NMR and high resolution mass spectrometry. Biological activities were assessed by measurement of cellular viability and proliferation using quantitative IncuCyte videomicroscopy, trypan blue staining and by quantification of the number of metabolically active K562 cells based on quantitation of ATP. The effect of the compounds on the inhibition of the NF-κB pathway as well as toxicity towards peripheral blood mononuclear cells to evaluate differential toxicity was also assayed. Chemical investigation of the methanol leaf extract of the plant material led to the isolation of three new flavonoid triglycosides, kaempferol 3-O-[α-D-apiofuranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (1), kaempferol 3-O-[β-D-glucopyranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O

  19. 8,12;8,20-diepoxy-8,14-secopregnane glycosides from roots of Asclepias tuberosa and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio; Noro, Tadataka

    2011-10-01

    A pregnane glycoside fraction from the roots of Asclepias tuberosa L. caused normal human skin fibroblasts to proliferate. This fraction contained 21 pregnane glycosides whose structures were established using NMR spectroscopic analysis and chemical evidence. The aglycones of most of these compounds were identified as 8,12;8,20-diepoxy-8,14-secopregnanes, such as tuberogenin or 5,6-didehydrotuberogenin, the same aglycones as constituents of the aerial parts of this plant. Some of these compounds also caused proliferation of skin fibroblasts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effect of the C-2 hydroxyl group on the mesomorphism of alkyl glycosides: synthesis and thermotropic behavior of alkyl 2-deoxy-D-arabino-hexopyranosides.

    PubMed

    Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna

    2008-10-01

    A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.

  1. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.

    PubMed

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.

  2. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    PubMed Central

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  3. Enzymes that cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravit, Nancy G.; Schmidt, Katherine A.

    The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.

  4. Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Silva, Mariana; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel; Marina, María Luisa; Aturki, Zeineb; Fanali, Salvatore

    2017-03-24

    In this paper a chiral stationary phase (CSP) was prepared by the immobilization of a β-CD derivative (3,5-dimethylphenylcarbamoylated β-CD) onto the surface of amino-functionalized spherical ordered mesoporous silica (denoted as SM) via a urea linkage using the Staudinger reaction. The CSP was packed into fused silica capillaries 100μm I.D. and evaluated by means of nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) using model compounds for the enantio- and the diastereomeric separation. The compounds flavanone, 2'-hydroxyflavanone, 4'-hydroxyflavanone, 6-hydroxyflavanone, 4'-methoxyflavanone, 7-methoxyflavanone, hesperetin, hesperidin, naringenin, and naringin were studied using reversed and polar organic elution modes. Baseline stereoisomer resolution and good results in terms of peak efficiency and short analysis time of all studied flavonoids and flavanones glycosides were achieved in reversed phase mode, using as mobile phase a mixture of MeOH/H 2 O, 10mM ammonium acetate pH 4.5 at different ratios. For the polar organic mode using 100% of MeOH as mobile phase, the CSP showed better performances and the baseline chiral separation of several studied compounds occurred in an analysis time of less than 10min. Good results were also achieved by CEC employing two different mobile phases. The use of MeOH/H 2 O, 5mM ammonium acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral resolution of flavanone and its methoxy and hydroxy derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Glycosides from flowers of Jasminum officinale L. var. grandiflorum].

    PubMed

    Zhao, Gui-qin; Xia, Jing-jing; Dong, Jun-xing

    2007-10-01

    To study the chemical constituents of the flower of Jasminum officinale L. var. grandiflorum. The compounds were isolated and purified by re-crystallization and chromatography on silica gel and Sephadex LH-20 column. Their structures were elucidated on the physicochemical properties and spectral analysis. Seven glycosides were identified as kaempferol-3-O-alpha-L-rhamnopyranosyl (1-->3)-[alpha-L-rhamnopyranosyl (1-->6)]-beta-D-galactopyranoside (I), kaempferol-3-O-rutinoside (II), 7-ketologanin (III), oleoside-11-methyl ester (IV), 7-glucosyl-l1-methyl oleoside (V), ligstroside (VI), oleuropein (VII). Compound I is a new compound. Compounds III and V were isolated from the family of Jasminum for the first time and compounds II, IV and VI were isolated from Jasminum officinale L. var. grandiflorum for the first time.

  6. Phenolic glycosides with antimalarial activity from Grevillea "Poorinda Queen".

    PubMed

    Ovenden, Simon P B; Cobbe, Melanie; Kissell, Rebecca; Birrell, Geoffrey W; Chavchich, Marina; Edstein, Michael D

    2011-01-28

    In search of new antimalarial compounds, three new phenolic glycosides, robustasides E (1), F (2), and G (3), in addition to the known compounds robustaside D (4) and quercetin-7-O-[α-l-rhamnopyranosyl(1→6)-β-d-galactopyranoside] (5), were identified during chemical investigations of the MeOH extract from the leaves and twigs of Grevillea "Poorinda Queen". The chemical structures of the new compounds were elucidated through 2D NMR spectroscopy, while the absolute configuration of the sugar was elucidated through chemical degradation and comparison with an authentic standard. Discussed in detail are the isolation and structure elucidation of 1-3, as well as the associated in vitro anitmalarial activities for 1-5. Also discussed are the in vivo anitmalarial and in vitro cytotoxic activities for 1, 3, and 4.

  7. Resin Glycosides from the Morning Glory Family

    NASA Astrophysics Data System (ADS)

    Pereda-Miranda, Rogelio; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon

    Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution capabilities of modern analytical isolation techniques used in conjunction with powerful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products.

  8. UPLC-ESI-MS/MS and HPTLC Method for Quantitative Estimation of Cytotoxic Glycosides and Aglycone in Bioactivity Guided Fractions of Solanum nigrum L.

    PubMed Central

    Chester, Karishma; Paliwal, Sarvesh; Khan, Washim; Ahmad, Sayeed

    2017-01-01

    Solanum nigrum L., is traditionally used for the management of the various liver disorders. Investigating the effect of polarity based fractionation of S. nigrum for its hepatoprotective effect on Hep G2 cells in vitro to provide base of its activity by quantifying in steroidal glycosides responsible for hepatoprotective potential. A new UPLC-ESI-MS/MS method following a high performance thin layer chromatography (HPTLC) has been developed and validated for quantification of steroidal glycosides and aglycone (solasonine, solamargine, and solasodine, respectively). The in vitro antioxidant potential, total phenolics, and flavonoid content were also determined in different fractions. The newly developed UPLC-ESI-MS/MS and HPTLC methods were linear (r2 ≥ 0.99), precise, accurate, and showing recovery more than 97%. The n-butanol enriched fraction of S. nigrum berries was found to be the most potent hepatoprotective fraction against all other fractions as it showed significantly (p < 0.01) better in vitro anti-oxidant potential than other fractions. Quantification by both methods revealed that, content of steroidal glycosides and aglycones are more than 20% in n-butanol fraction as compared to other fractions. The screened steroidal glycoside n-butanol enriched fraction underwent bioefficacy studies against D-galactosamine and H2O2 induced toxicity in HepG2 cell line showing significant (p < 0.05) liver protection. However, developed method can be used for the quality control analysis with respect to targeted metabolites and it can be explored for the pharmacokinetic and pharmacodynamic analysis in future. PMID:28729835

  9. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Jentzer, Jean-Baptiste; Alignan, Marion; Vaca-Garcia, Carlos; Rigal, Luc; Vilarem, Gérard

    2015-01-01

    Following the approval of steviol glycosides as a food additive in Europe in December 2011, large-scale stevia cultivation will have to be developed within the EU. Thus there is a need to increase the efficiency of stevia evaluation through germplasm enhancement and agronomic improvement programs. To address the need for faster and reproducible sample throughput, conditions for automated extraction of dried stevia leaves using Accelerated Solvent Extraction were optimised. A response surface methodology was used to investigate the influence of three factors: extraction temperature, static time and cycle number on the stevioside and rebaudioside A extraction yields. The model showed that all the factors had an individual influence on the yield. Optimum extraction conditions were set at 100 °C, 4 min and 1 cycle, which yielded 91.8% ± 3.4% of total extractable steviol glycosides analysed. An additional optimisation was achieved by reducing the grind size of the leaves giving a final yield of 100.8% ± 3.3%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34.

    PubMed

    Yu, Haibo; Griffiths, Thomas M

    2014-03-28

    Glycoside hydrolase families 33 and 34 catalyse the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates with a net retention of the stereochemistry at the anomeric centre. It is generally believed that the conserved aspartic acid in the active site functions as a general acid to protonate the hydroxyl group of the departing aglycone during glycosylation, and then as a general base to facilitate the nucleophilic attack of the water molecule on the intermediate state during the deglycosylation reaction. The dual role of the general acid/base places specific demands upon its protonation state, and thus pKa values. However, it is not fully understood how this catalytic residue can achieve such pKa cycling during catalysis. We present both MM and combined QM/MM simulations to characterise the pKa values of the proposed catalytic general acid/base in the glycoside hydrolase families 33 and 34. Collectively, our study suggests that the binding of anionic substrates and the local solvation properties along with the neutralisation of the nearby glutamic acid upon glycosylation modulate the electrostatic environment around the general acid/base to achieve its proper protonation states.

  11. Hepatotoxicity of kaurene glycosides from Xanthium strumarium L. fruits in mice.

    PubMed

    Wang, Yang; Han, Ting; Xue, Li-Ming; Han, Ping; Zhang, Qiao-Yan; Huang, Bao-Kang; Zhang, Hong; Ming, Qian-Liang; Peng, Wei; Qin, Lu-Ping

    2011-06-01

    The fruit of Xanthium strumarium L. (Cang-Er-Zi) is a traditional Chinese medicine that is used in curing nasal diseases and headache according to the Chinese Pharmacopoeia. However, clinical utilization of Xanthium strumarium is relatively limited because of its toxicity. The present investigation was carried out to evaluate the toxic effects on acute liver injury in mice of the two kaurene glycosides (atractyloside and carbxyatractyloside), which are main toxic constituents isolated from Fructus Xanthii on acute liver injury in mice. Histopathological examinations revealed that there were not obviously visible injury in lungs, heart, spleen, and the central nervous system in the mice by intraperitoneal injection of atractyloside (ATR, at the doses 50,125 and 200 mg/kg) and carbxyatractyloside (CATR, at the doses 50,100 and 150 mg/kg) for 5 days. However, it revealed extensive liver injuries compared with the normal group. In the determination of enzyme levels in serum, intraperitoneal injection of ATR and CATR resulted in significantly elevated serum alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP) activities compared to controls. In the hepatic oxidative stress level, antioxidant-related enzyme activity assays showed that ATR and CATR administration significantly increased hepatic malondialdehyde (MDA) concentration, as well as decreased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) concentration, and this was in good agreement with the results of serum aminotransferase activity and histopathological examinations. Taken together, our results demonstrate that kaurene glycosides induce hepatotoxicity in mice by way of its induction of oxidative stress as lipid peroxidation in liver, which merited further studies. Therefore, these toxic constituents explain, at least in part, the hepatotoxicity of X. strumarium L. in traditional medicine.

  12. Ultra-HPLC method for quality and adulterant assessment of steviol glycosides sweeteners - Stevia rebaudiana and stevia products.

    PubMed

    Wang, Yan-Hong; Avula, Bharathi; Tang, Wenzhao; Wang, Mei; Elsohly, Mahmoud A; Khan, Ikhlas A

    2015-01-01

    Stevia products are advertised as a zero-calorie sweetener. Glucose should not be an intrinsic component of this product, but it has been identified from some of stevia products in a preliminary study. An UHPLC-UV method was developed for the quantitative determination of glucose from stevia products. After stevia products reacted with 1-phenyl-3-methyl-5-pyrazolone (PMP), PMP derivatives were analysed and glucose was found in seven out of 35 products in the range 0.3-91.5% (w/w). Two products, SPR-12 and SPR-27, showed remarkable amounts of glucose at 61.6% and 91.5%, respectively. In addition, an UHPLC-UV-evaporative light-scattering detector (ELSD) method was developed for the quantitative determination of rebaudioside A, stevioside, rebaudioside D, dulcoside A and steviolbioside from Stevia rebaudiana and related products. In a 12 min run, five steviol glycosides were baseline-separated. ELSD and ultraviolet (UV) detections showed comparable results. The LC methods were validated for linearity, repeatability, accuracy, limits of detection (LOD) and limits of quantification (LOQ). For steviol glycosides, the LODs and LOQs were found to be less than 10 and 30 μg ml(-1), respectively. The RSD for intra- and inter-day analyses was less than 2.5%, and the recovery was 90-94%. For PMP derivative of glucose, the LOD and LOQ were 0.01 and 0.05 μg ml(-1), respectively. Repeatability (RSD) was less than 2.6%; recovery was 98.6-101.7%. The methods are useful for the identification, quality assurance, and adulterant assessment of S. rebaudiana and steviol glycosides sweeteners (stevia products).

  13. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase

    PubMed Central

    2014-01-01

    Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328

  14. Quercetin ameliorates liver injury induced with Tripterygium glycosides by reducing oxidative stress and inflammation.

    PubMed

    Wang, Junming; Miao, Mingsan; Zhang, Yueyue; Liu, Ruixin; Li, Xaobing; Cui, Ying; Qu, Lingbo

    2015-06-01

    Quercetin (Que) is one of main compounds in Lysimachia christinae Hance (Christina loosestrife), and has both medicinal and nutritional value. Glycosides from Tripterygium wilfordii Hook.f. (léi gōng téng [the thunder duke vine]; TG) have diverse and broad bioactivities but with a high incidence of liver injury. Our previous study reported on the hepatoprotective properties of an ethanol extract from L. christinae against TG-induced liver injury in mice. This research is designed to observe, for the first time, the possible protective properties of the compound Que against TG-induced liver injury, and the underlying mechanisms that are involved in oxidative stress and anti-inflammation. The results indicated that TG caused excessive elevation in serum levels of alanine/aspartate transaminase (ALT/AST), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT), and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α), as well as hepatic lipid peroxidation (all P < 0.01). On the other hand, following TG exposure, we observed significantly reduced levels of biomarkers, including hepatic glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and the anti-inflammatory cytokine interleukin (IL)-10, as well as the enzyme activity and mRNA expression of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) (all P < 0.01). Nevertheless, all of these alterations were reversed by the pre-administration of Que or the drug bifendate (positive control) for 7 consecutive days. Therefore, this study suggests that Que ameliorates TG-induced acute liver injury, probably through its ability to reduce oxidative stress and its anti-inflammatory properties.

  15. Quantification of quercetin glycosides in 6 onion cultivars and comparisons of hydrolysis-HPLC and spectrophotometric methods in measuring total quercetin concentrations.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2010-03-01

    This study was performed to purify and quantify quercetin glycosides (QG) and aglycone (free) quercetin (Q) in 6 selected onion cultivars and to compare analytical approaches based on high-performance liquid chromatography (HPLC) and spectrophotometry for the quantification of total quercetin (TQ) concentrations. Individual mono- and di-glycoside Q compounds were purified using a semipreparative HPLC and identified by comparing spectral data and by confirming corresponding peaks of QG and Q after incomplete enzyme-hydrolysis. Purified QG were quantified as Q by enzyme-hydrolysis/HPLC. TQ concentrations obtained from 20 onion bulbs with enzyme-hydrolysis/HPLC, no-hydrolysis/HPLC, and a spectrophotometric method without prior hydrolysis were significantly correlated (r(2)= 0.99) and were about 15% higher, identical, or 10% less than those concentrations by a standard acid-hydrolysis/HPLC method, respectively. During enzyme-hydrolysis of onion extracts, progressive reduction of the QG and formation of the corresponding mono-glycosides and Q were monitored using an analytical HPLC. TQ ranged from 83 to 330 microg/g F.W. in 6 selected cultivars of long-day or short-day onions. Q3,4'G and Q4'G were the 2 major compounds and comprised approximately between 94% and 97% of TQ in onions.

  16. Three new Anthraquinones, one new Benzochromene and one new Furfural glycoside from Lasianthus acuminatissimus.

    PubMed

    Huang, Teng; Ming, Jianxin; Zhong, Jialiang; Zhong, Youquan; Wu, Huaqiang; Liu, Hongdong; Li, Bin

    2018-06-01

    Three new anthraquinones, lasianthurin B (1), C (2), lasianthuoside D (3), a new benzochromene, lasianthurin D (4), and a new furfural glycoside, lasianthuoside E (5), together with one known compound 4- hydroxymethyl-2-furaldehyde (6) were isolated from an alcohol extract of the root of Lasianthus acuminatissimus. Their structures were elucidated on the basis of extensive spectroscopic data analysis (including 1D, 2D NMR, X-ray, and MS experiments) and comparsion to literature data.

  17. A possible glycosidic benzophenone with full substitution on B-ring from Psidium guajava leaves.

    PubMed

    Venditti, Alessandro; Ukwueze, Stanley E

    2017-04-01

    Bidimensional NMR analysis may be a useful tool to resolve the structure of chemical compounds also in mixture. This letter would demonstrate how these techniques could be applied e.g. to the reported case on identification of benzophenone glycoside from Psidium guajava. A tentative structure for the secondary component, not yet described, was possibly proposed on the basis of observation and critic review of available 1D and 2D NMR spectra.

  18. Inhibitory Activities of Cyanidin and Its Glycosides and Synergistic Effect with Acarbose against Intestinal α-Glucosidase and Pancreatic α-Amylase

    PubMed Central

    Akkarachiyasit, Sarinya; Charoenlertkul, Piyawan; Yibchok-anun, Sirintorn; Adisakwattana, Sirichai

    2010-01-01

    Cyanidin and its glycosides are naturally dietary pigments which have been indicated as promising candidates to have potential benefits to humans, especially in the prevention and treatment of diabetes mellitus. We investigated the structure activity relationships of cyanidin and its glycosides to inhibit intestinal α-glucosidases and pancreatic α-amylase in vitro. The results found that cyanidin and its glycosides are more specific inhibitors of intestinal sucrase than intestinal maltase. Cyanidin-3-galactoside and cyanidin-3-glucoside were the most potent inhibitors against intestinal sucrase and pancreatic α-amylase with IC50 values of 0.50 ± 0.05 and 0.30 ± 0.01 mM, respectively. Our findings indicate that the structural difference between glucose and galactose at the 3-O-position of cyanidin was an important factor for modulating the inhibition of intestinal sucrase and pancreatic α-amylase. The combination of cyandin-3-glucoside, cyanidin-3- galactoside or cyanidin-3,5-diglucosides with a low concentration of acarbose showed synergistic inhibition on intestinal maltase and sucrase. The synergistic inhibition was also found for a combination of cyanidin or cyanidin-3-glucoside with a low concentration of acarbose. The findings could provide a new insight into a use for the naturally occurring intestinal α-glucosidase and pancreatic α-amylase inhibitors for the prevention and treatment of diabetes and its complications. PMID:20957102

  19. A general approach to quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides by UV spectrophotometry

    USDA-ARS?s Scientific Manuscript database

    A general method was developed for the quantification of hydroxycinnamic acid derivatives and flavones, flavonols, and their glycosides based on the UV molar relative response factors (MRRF) of the standards. Each of these phenolic compounds contains a cinnamoyl structure and has a maximum absorban...

  20. Separation of Rebaudiana A from Steviol glycoside using a polymeric adsorbent with multi-hydrogen bonding in a non-aqueous system.

    PubMed

    Ba, Jing; Zhang, Na; Yao, Lijuan; Ma, Ning; Wang, Chunhong

    2014-11-15

    Rebaudioside A (RA) and stevioside (SS) are the primary effective glycoside components in Stevia Rebaudiana. The RA glycoside is sweeter, and it tastes similarly to sucrose. Because extracts with a high RA content can be used as natural sweeteners for food additives approved by the FAO and FDA, RA should generate high market demand. In this study, an efficient method for separating RA was established based on the synergistic multi-hydrogen bonding interaction between a polymeric adsorbent and the RA glycoside. To overcome the destruction of the hydrophobic affinity required for the selective adsorption of RA, an innovative non-aqueous environment was established for adsorption and separation. To this end, an initial polymeric adsorbent composed of a glycidyl methacrylate and trimethylolpropane trimethacrylate (GMA-co-TMPTMA) copolymer matrix was synthesized, and polyethylene polyamine was employed as a functional reagent designed to react with the epoxy group on GME-co-TMPTMA to form a highly selective macroporous adsorbent. The effects of the different functional reagents and the solvent polarity on the adsorption selectivity for RA and SS, respectively, were investigated. Matching the structure of the polyethylene polyamine and sugar ligand on the glycoside molecule was essential in ensuring that the maximum synergistic interaction between adsorbent and adsorbate would be achieved. Moreover, the hydrogen-bonding force was observed to increase when the polarity of the adsorption solvent decreased. Therefore, among the synthesized macroporous polymeric adsorbents, the GTN4 adsorbent-bonding tetraethylenepentamine functional group provided the best separation in an n-butyl alcohol solution. Under the optimized gradient elution conditions, RA and SS can be effectively separated, and the contents of RA and SS increased from 33.5% and 51.5% in the initial crude extract to 95.4% and 78.2% after separation, respectively. Compared to conventional methods, the adsorption

  1. Identification of cardiac glycosides in fractions from Periploca forrestii by high-performance liquid chromatography/diode-array detection/electrospray ionization multi-stage tandem mass spectrometry and liquid chromatography/nuclear magnetic resonance.

    PubMed

    Li, Yong; Wu, Xianfu; Li, Jianbei; Wang, Yinghong; Yu, Shishan; Lv, Haining; Qu, Jing; Abliz, Zeper; Liu, Jing; Liu, Yuanyan; Du, Dan

    2010-02-01

    Cardiac glycosides are a class of naturally occurring compounds that are characterized by some interesting biological activities and are widely distributed in the plant kingdom and can also be found in some animals. There is an interest in the chemical characterization of these molecules due to their toxicity and their use in medicines. In the study reported here, a combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography equipped with diode-array detector (HPLC-DAD/ESI-MS(n)), and hyphenation to both liquid chromatography and nuclear magnetic resonance spectroscopy (HPLC/NMR) were utilized for the on-line analyses of cardiac glycosides from Periploca forrestii. The fragmentation patterns and (1)H NMR spectra of nine isolated cardiac glycosides were investigated; their fragmentation rules and (1)H NMR spectral characteristics were summarized and applied to the structural identification of similar constituents in fractions from P. forrestii. As a result, a total of nine trace cardiac glycosides were tentatively determined by analyses of accurate molecular masses, representative fragment ions and characteristic (1)H NMR signals provided by HPLC/high-resolution mass spectrometry (HRMS), HPLC-DAD/ESI-MS(n) and HPLC/(1)H NMR experiments, respectively. Of these, eight (2-9) are new compounds and one (1) is reported from P. forrestii for the first time. Results of the present study can benefit the rapid identification and targeted isolation of new cardiac glycosides from crude plant extracts. 2009 Elsevier B.V. All rights reserved.

  2. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil.

    PubMed

    Johansen, Henrik; Rasmussen, Lars Holm; Olsen, Carl Erik; Bruun Hansen, Hans Christian

    2007-02-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids.

  3. Pharmacokinetics of anthocyanidin-3-glycosides following consumption of Hibiscus sabdariffa L. extract.

    PubMed

    Frank, Thomas; Janssen, Marlies; Netzel, Michael; Strass, Gabriele; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard

    2005-02-01

    Pharmacokinetic parameters of several dietary anthocyanins following consumption of Hibiscus sabdariffa L. extract were determined in 6 healthy volunteers. Subjects were given a single oral dose of 150 mL of Hibiscus sabdariffa L. extract yielding 62.6 mg of cyanidin-3-sambubioside, 81.6 mg of delphindin-3-sambubioside, and 147.4 mg of total anthocyanins (calculated as cyanidin equivalents). Within 7 hours, the urinary excretion of cyanidin-3-sambubioside, delphinidin-3-sambubioside, and total anthocyanins (ie, the sum of all quantifiable anthocyanidin glycosides) was 0.016%, 0.021%, and 0.018% of the administered doses, respectively. Maximum excretion rates were determined at 1.5 to 2.0 hours after intake. The dose-normalized plasma area under the curve estimates were 0.076, 0.032, and 0.050 ng x h/mL/mg for cyanidin-3-sambubioside, delphinidin-3-sambubioside, and total anthocyanins, respectively. The dose-normalized C(max) estimates were 0.036, 0.015, and 0.023 ng/mL/mg in the same sequence. They were reached each at 1.5 hours (median) after intake. The geometric means of t1/2 were 2.18, 3.34, and 2.63 hours for cyanidin-3-sambubioside, delphinidin-3-sambubioside, and total anthocyanins, respectively. The urinary excretion of intact anthocyanins was fast and appeared to be monoexponential. To evaluate the contribution of anthocyanins to the health-protecting effects of Hibiscus sabdariffa L. extract, it will be necessary to perform further studies on both the intact glycosides and their in vivo metabolites or conjugates in human plasma and urine.

  4. Preparative isolation and purification of three stilbene glycosides from the tibetan medicinal plant Rheum tanguticum maxim. Ex Balf. by high-speed counter-current chromatography.

    PubMed

    Zhao, Xiao-Hui; Han, Fa; Li, Yu-Lin; Yue, Hui-Lan

    2013-02-01

    Stilbene glycosides are the primary constituents of Rheum tanguticum Maxim. ex Balf., to which different bioactivities has been attributed, including: anti-HIV, anti-oxidant, anti-tumour, anti-malarial, and anti-allergy activity. However, effective methods for the isolation and purification of stilbene glycosides, such as trans-rhapontin, cis-rhapontin and trans-desoxyrhaponticin, from this herb are not currently available. To develop an efficient method for the preparative isolation and purification of three stilbene glycosides from Rheum tanguticum Maxim. ex Balf. via high-speed counter-current chromatography (HSCCC). A solvent system composed of chloroform:n-butanol:methanol:water (4:1:3:2, v/v/v/v) was developed for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. The flow rate was 1.8 mL/min. The apparatus was controlled at 800 rpm and 25 °C, and the effluent was monitored at 280 nm. Chemical constituents were analysed by high-performance liquid chromatography (HPLC), and their structures were identified by ¹H- and ¹³C-NMR. Under the optimised conditions, 25.5 mg trans-rhapontin, 16.0 mg cis-rhapontin and 20.5 mg trans-desoxyrhaponticin were separated from 80 mg crude sample; the isolates had purities of 99.6, 97.2 and 99.2%, respectively. A simple and efficient HSCCC method has been optimised for the preparative separation of stilbene glycosides from Rheum tanguticum Maxim. ex Balf. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Therapeutic effect of alkaloids and glycosides of colocynth seeds on liver injury, associated with metabolic syndrome in wistar rats, subject to nutritional stress.

    PubMed

    Tabani, Khadidja; Birem, Zahia; Halzoune, Hanane; Saiah, Wassila; Lahfa, Farid; Koceir, Elhadj Ahmed; Omari, Naima

    2018-01-01

    The Citrullus colocynthis, commonly called colocynth, is known because of its purgative effects and whose seeds are commonly used as certain diseases treatment, namely liver diseases, in the Mediterranean countries traditional medicine. This study aims to analyze the effect of two colocynth extracts « glycosides » and « alkaloids » on metabolic and histological disorders associated with liver function in Wistar rats (Rattus norvegicus). This pathology is due to an enriched oil palm diet. For this purpose, Wistar male rats n = 18, weighing between 130g and 150g, are divided into two lots. A control group (C) n = 6, receives a standard laboratory diet ; an experimental group (E) n = 12, receives a standard laboratory diet supplemented with palm oil. After seven months of experimentation, 8 experimental rats were sacrificed for the morphological study and the remaining 12 rats undergo a colocynth treatment (Tr) for eight weeks. They are subdivided into: The first six experimental rats receive a 70mg/kg single intraperitoneal injection of ethanol extract of cucurbitacin glycosides (Glc). The second lot receives a 70mg/kg single intraperitoneal injection of total alkaloids extract (Alc). The animals of (E) group showed hyperglycemia, hyperinsulinemia, hyperlipemia, dyslipoproteinemia, a significant increase of the enzymatic activity of transaminase (AST and ALT) and alkaline phosphatase (ALP). Histological examination of the liver gland shows major damages Non-alcoholic steatohepatitis [NASH]. Treatment with colocynth glycosides and alkaloids reveals a significant improvement at different levels in plasma as well as in tissue. Treatment with colocynth glycosides and alkaloids shows a hypoglycemic effect, lipid-lowering a well as a hepato-protective effect.

  6. Streptococcus pneumoniae Endohexosaminidase D, Structural and Mechanistic Insight into Substrate-Assisted Catalysis in Family 85 Glycoside Hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, D.; Macauley, M; Vocadlo, D

    2009-01-01

    Endo-?-d-glucosaminidases from family 85 of glycoside hydrolases (GH85 endohexosaminidases) act to cleave the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. Endohexosaminidase D (Endo-D), produced by Streptococcus pneumoniae, is believed to contribute to the virulence of this organism by playing a role in the deglycosylation of IgG antibodies. Endohexosaminidases have received significant attention for this reason and, moreover, because they are powerful tools for chemoenzymatic synthesis of proteins having defined glycoforms. Here we describe mechanistic and structural studies of the catalytic domain (SpGH85) of Endo-D that provide compelling support for GH85 enzymes usingmore » a catalytic mechanism involving substrate-assisted catalysis. Furthermore, the structure of SpGH85 in complex with the mechanism-based competitive inhibitor NAG-thiazoline (Kd = 28 ?m) provides a coherent rationale for previous mutagenesis studies of Endo-D and other related GH85 enzymes. We also find GH85, GH56, and GH18 enzymes have a similar configuration of catalytic residues. Notably, GH85 enzymes have an asparagine in place of the aspartate residue found in these other families of glycosidases. We propose that this residue, as the imidic acid tautomer, acts analogously to the key catalytic aspartate of GH56 and GH18 enzymes. This topographically conserved arrangement of the asparagine residue and a conserved glutamic acid, coupled with previous kinetic studies, suggests these enzymes may use an unusual proton shuttle to coordinate effective general acid and base catalysis to aid cleavage of the glycosidic bond. These results collectively provide a blueprint that may be used to facilitate protein engineering of these enzymes to improve their function as biocatalysts for synthesizing glycoproteins having defined glycoforms and also may serve as a guide for generating inhibitors of GH85 enzymes.« less

  7. Influence of glycosidic linkage on solution conformational entropy of oligosaccharides: Malto- vs. isomalto- and cello- vs. laminarioligosaccharides.

    PubMed

    Striegel, André M; Boone, Marcus A

    2011-04-01

    Carbohydrate flexibility can influence a variety of recognition, processing, and end-use properties, at both the polymeric and oligomeric levels. The influence of glycosidic linkage, in particular, on carbohydrate flexibility is manifested in properties such as bacterial selectivity, solution viscosity, and the ability to regulate the spread of disease. Here, we apply size-exclusion chromatography, an entropically controlled technique, to determine the solution conformational entropy (ΔS) of various oligosaccharide series. The aim of the present study is to highlight how, for a given anomeric configuration, glycosidic linkage affects ΔS, and to do so quantitatively as a function of degree of polymerization (DP). To this end, we compare ΔS values for DP 1-7 for malto- and isomaltooligosaccharides, and for DP 1-5 for cello- and laminarioligosaccharides. To do so, we realize previously unattainable separations of disaccharides via a strict size-exclusion mechanism. Also given here are the requirements for extending our method to other oligomers, as well as to biopolymers Copyright © 2010 Wiley Periodicals, Inc.

  8. Pretreatment with ethanol as an alternative to improve steviol glycosides extraction and purification from a new variety of stevia.

    PubMed

    Formigoni, Maysa; Milani, Paula Gimenez; da Silva Avíncola, Alexandre; Dos Santos, Vanessa Jorge; Benossi, Livia; Dacome, Antônio Sergio; Pilau, Eduardo Jorge; da Costa, Silvio Claudio

    2018-02-15

    Leaves of a new variety of Stevia rebaudiana with a high content of rebaudioside A were pretreated with ethanol. The ethanolic extract showed high antioxidant potential and 39 compounds were identified, by UPLC/HRMS, among them one not yet mentioned in the literature for stevia leaves. From the in natura leaves and pretreated leaves, the conditions of aqueous extraction of steviol glycosides were investigated using response surface methodology. The aqueous extracts obtained were purified by ion exchange chromatography techniques and membrane separation methods. The recuperation of steviol glycosides was 4.02g for pretreated leaves and 2.20g for in natura leaves. The level of purity was, respectively, 87% and 84.8%. The results obtained demonstrate that pretreatment increases the yield and purity level of stevia sweeteners by the use of environmentally friendly methodologies and the final product presented acceptable sensory characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cytotoxic rearranged angucycline glycosides from deep sea-derived Streptomyces lusitanus SCSIO LR32.

    PubMed

    Zhu, Xiangcheng; Duan, Yanwen; Cui, Zhaomeng; Wang, Zhen; Li, Zengxia; Zhang, Yun; Ju, Jianhua; Huang, Hongbo

    2017-07-01

    Two new rearranged linear angucycline glycosides, designated grincamycins G and H (1 and 2), together with three known congers P-1894B (vineomycin A 1 , 3), saquayamycin B (4) and vineomycin B 2 (5), were obtained from marine-derived actinomycete Streptomyces lusitanus SCSIO LR32. The structures of 1 and 2 were elucidated by MS, 1D and 2D NMR techniques. Compounds 2-5 showed significant inhibitory effect on Jurkat T-cell proliferation with IC 50 values of 3.0, 0.011, 0.037 and 0.3 μM, respectively.

  10. Preparative separation and purification of rebaudioside a from steviol glycosides using mixed-mode macroporous adsorption resins.

    PubMed

    Liu, Yongfeng; Di, Duolong; Bai, Qingqing; Li, Jintian; Chen, Zhenbin; Lou, Song; Ye, Helin

    2011-09-14

    Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins (MARs) were systematically investigated. Mixed-mode MARs were prepared by a physical blending method. By evaluation of the adsorption/desorption ratio and adsorption/desorption capacity of mixed-mode MARs with different proportions toward RA and ST, the mixed-mode MAR 18 was chosen as the optimum strategy. On the basis of the static tests, it was found that the experimental data fitted best to the pseudosecond-order kinetics and Temkin-Pyzhev isotherm. Furthermore, the dynamic adsorption/desorption experiments were performed on the mini column packed with mixed-mode MAR 18. After one run treatment, the purity of rebaudioside A in purified product increased from 40.77 to 60.53%, with a yield rate of 38.73% (W/W), and that in residual product decreased from 40.77 to 36.17%, with a recovery yield of 57.61% (W/W). The total recovery yield reached 96.34% (W/W). The results showed that this method could be utilized in large-scale production of rebaudioside A from steviol glycosides in industry.

  11. HPLC-DAD-MS/MS profiling of antioxidant flavonoid glycosides in sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Arimboor, Ranjith; Arumughan, C

    2012-09-01

    This study was aimed at the chemical profiling of flavonoid glycosides in antioxidant (AO) fractions of sea buckthorn (Hippophae rhamnoides) seed. Seed fractions were evaluated for their DPPH, ABTS, superoxide and hydroxyl radical scavenging, ferric reduction, ferrous chelation and xanthine oxidase inhibitory capacities. HPLC-DAD-ESI-MS/MS analytical conditions for the profiling of seed flavonoids were optimized and the AO-rich fraction was analysed. Quercetin-3-O-rutinoside (5.9%), isorhamnetin-3-O-rutinoside (4.9%) and isorhamnetin-3-O-sophroside-7-O-rhamnoside (3.7%) were found as the major flavonoid glycosides in the fraction. Significant amounts of isorhamnetin-3-O-glucoside (2.8%), 3-O-sophroside-7-O-rhamnosides of quercetin (2.4%) and kaempherol (1.3%), and 3-O-glucoside-7-O-rhamnosides of quercetin (1.1%) and isorhamnetin (1.1%) along with their free forms: isorhamnetin (2.7%), quercetin (1.1%) and kaempherol (0.6%) were also found in the fraction. The identification of flavonoids as the major less polar AO phenolics in the seeds was rationalized by demonstrating the high AO activity of isorhamnetin, quercetin, kaempherol and quercetin-3-O-rutinoside.

  12. Antiproliferative Activity of Triterpene Glycoside Nutrient from Monk Fruit in Colorectal Cancer and Throat Cancer.

    PubMed

    Liu, Can; Dai, Longhai; Liu, Yueping; Rong, Long; Dou, Dequan; Sun, Yuanxia; Ma, Lanqing

    2016-06-13

    Colorectal cancer and throat cancer are the world's most prevalent neoplastic diseases, and a serious threat to human health. Plant triterpene glycosides have demonstrated antitumor activity. In this study, we investigated potential anticancer effects of mogroside IVe, a triterpenoid glycoside from monk fruit, using in vitro and in vivo models of colorectal and laryngeal cancer. The effects of mogroside IVe on the proliferation of colorectal cancer HT29 cells and throat cancer Hep-2 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression levels of p53, phosphorylated ERK1/2, and MMP-9 were analyzed by western blotting and immunohistochemistry. The results indicated that mogroside IVe inhibited, in a dose-dependent manner, the proliferation of HT29 and Hep-2 cells in culture and in xenografted mice, which was accompanied by the upregulation of tumor suppressor p53, and downregulation of matrix metallopeptidase 9 (MMP-9) and phosphorylated extracellular signal-regulated kinases (ERK)1/2. This study revealed the suppressive activity of mogroside IVe towards colorectal and throat cancers and identified the underlying mechanisms, suggesting that mogroside IVe may be potentially used as a biologically-active phytochemical supplement for treating colorectal and throat cancers.

  13. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  14. Structural analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    USDA-ARS?s Scientific Manuscript database

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  15. Antioxidant properties of selected Oriental non-culinary/nutraceutical herb extracts as evaluated in raw and cooked meat.

    PubMed

    Han, J; Rhee, K S

    2005-05-01

    Ethanol extracts of white peony (WP), red peony (RP), sappanwood (SW), Moutan peony (MP), rehmania (RE) or angelica (AN) were individually added to ground goat meat at 0.5-2.0% (g dry extract/100 g final meat sample), and raw and cooked samples were aerobically refrigerated for 0, 3 or 6 days. These extracts and rosemary extract (RO) were also individually added to salted or unsalted ground beef at 0.01-0.25% and refrigerated as raw or cooked patties. WP, RP, RE, SW and MP markedly reduced (P<0.05) lipid oxidation in cooked-stored goat meat. With 0.25% of WP, RP, SW, MP or RO in beef, lipid oxidation during storage was minimal in raw and cooked patties (plain or salted); raw patty redness values at day 6 were higher (P<0.05) for SW, WP, RP or MP than RO treatment or the control. At 0.01%, SW was more antioxidative (P<0.05) than the other extracts.

  16. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds.

    PubMed

    Wang, Fang; Zhong, Huan-Huan; Chen, Wei-Ke; Liu, Qing-Pu; Li, Cun-Yu; Zheng, Yun-Feng; Peng, Guo-Ping

    2017-08-01

    Moringa oleifera seed has remarkable curative effects on reducing blood pressure, blood sugar and enhancing human immunity. In this study, one novel phenolic glycoside (1) together with four known compounds 2-5 were isolated from the macroporous resin adsorption extract of M. oleifera seeds, and the compound 3 was reported for the first time from this plant. The structure of the new crystalline compound was determined on the basis of spectroscopic analyses including mass spectrometry, 1D and 2D NMR experiments. The hypoglycaemic activity of isolated compounds was investigated with HepG2 cell and STZ-induced mice. It was found that compound 1, 4 and 5 could promote the glucose consumption of insulin resistance cells and reduce blood glucose levels of STZ-induced mice. This study concludes that compound 1, 4 and 5 may be developed as new and safe hypoglycaemic drugs.

  17. Cardiac Glycoside Constituents of Streblus asper with Potential Antineoplastic Activity.

    PubMed

    Ren, Yulin; Chen, Wei-Lun; Lantvit, Daniel D; Sass, Ellen J; Shriwas, Pratik; Ninh, Tran Ngoc; Chai, Hee-Byung; Zhang, Xiaoli; Soejarto, Djaja D; Chen, Xiaozhuo; Lucas, David M; Swanson, Steven M; Burdette, Joanna E; Kinghorn, A Douglas

    2017-03-24

    Three new (1-3) and two known (4 and 5) cytotoxic cardiac glycosides were isolated and characterized from a medicinal plant, Streblus asper Lour. (Moraceae), collected in Vietnam, with six new analogues and one known derivative (5a-g) synthesized from (+)-strebloside (5). A preliminary structure-activity relationship study indicated that the C-10 formyl and C-5 and C-14 hydroxy groups and C-3 sugar unit play important roles in the mediation of the cytotoxicity of (+)-strebloside (5) against HT-29 human colon cancer cells. When evaluated in NCr nu/nu mice implanted intraperitoneally with hollow fibers facilitated with either MDA-MB-231 human breast or OVCAR3 human ovarian cancer cells, (+)-strebloside (5) showed significant cell growth inhibitory activity in both cases, in the dose range 5-30 mg/kg.

  18. Biosynthesis and regulation of cyanogenic glycoside production in forage plants.

    PubMed

    Sun, Zhanmin; Zhang, Kaixuan; Chen, Cheng; Wu, Yanmin; Tang, Yixiong; Georgiev, Milen I; Zhang, Xinquan; Lin, Min; Zhou, Meiliang

    2018-01-01

    The natural products cyanogenic glycosides (CNglcs) are present in various forage plant species including Sorghum spp., Trifolium spp., and Lotus spp. The release of toxic hydrogen cyanide (HCN) from endogenous CNglcs, which is known as cyanogenesis, leads to a serious problem for animal consumption while as defensive secondary metabolites, CNglcs play multiple roles in plant development and responses to adverse environment. Therefore, it is highly important to fully uncover the molecular mechanisms of CNglc biosynthesis and regulation to manipulate the contents of CNglcs in forage plants for fine-tuning the balance between defensive responses and food safety. This review summarizes recent studies on the production, function, polymorphism, and regulation of CNglcs in forage plants, aiming to provide updated knowledge on the ways to manipulate CNglcs for further beneficial economic effects.

  19. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    that even highly functionalized aglycon acceptors add. Following the coupling event, the TMS ethers are readily removed by methanolysis, and since all of the byproducts are volatile, multiple reactions can be performed in a single reaction vessel without isolation of intermediates. In this fashion, per-O-TMS monosaccharides can be converted to biologically relevant α-linked glycolipids in one pot. The stereochemical outcome of these reactions can also be switched to β-glycoside formation by addition of silver to chelate the iodide, thus favoring SN2 displacement of the α-iodide. While iodides derived from benzyl and silyl ether-protected oligosaccharides are susceptible to interglycosidic bond cleavage when treated with TMSI, the introduction of a single acetate protecting group prevents this unwanted side reaction. Partial acetylation of armed glycosyl iodides also attenuates HI elimination side reactions. Conversely, fully acetylated glycosyl iodides are deactivated and require metal catalysis in order for glycosidation to occur. Recent findings indicate that I2 activation of per-O-acetylated mono-, di-, and trisaccharides promotes glycosidation of cyclic ethers to give β-linked iodoalkyl glycoconjugates in one step. Products of these reactions have been converted into multivalent carbohydrate displays. With these synthetic pathways elucidated, chemical reactivity can be exquisitely controlled by the judicious selection of protecting groups to achieve high stereocontrol in step-economical processes.

  20. Pharmacological treatment of cardiac glycoside poisoning.

    PubMed

    Roberts, Darren M; Gallapatthy, Gamini; Dunuwille, Asunga; Chan, Betty S

    2016-03-01

    Cardiac glycosides are an important cause of poisoning, reflecting their widespread clinical usage and presence in natural sources. Poisoning can manifest as varying degrees of toxicity. Predominant clinical features include gastrointestinal signs, bradycardia and heart block. Death occurs from ventricular fibrillation or tachycardia. A wide range of treatments have been used, the more common including activated charcoal, atropine, β-adrenoceptor agonists, temporary pacing, anti-digoxin Fab and magnesium, and more novel agents include fructose-1,6-diphosphate (clinical trial in progress) and anticalin. However, even in the case of those treatments that have been in use for decades, there is debate regarding their efficacy, the indications and dosage that optimizes outcomes. This contributes to variability in use across the world. Another factor influencing usage is access. Barriers to access include the requirement for transfer to a specialized centre (for example, to receive temporary pacing) or financial resources (for example, anti-digoxin Fab in resource poor countries). Recent data suggest that existing methods for calculating the dose of anti-digoxin Fab in digoxin poisoning overstate the dose required, and that its efficacy may be minimal in patients with chronic digoxin poisoning. Cheaper and effective medicines are required, in particular for the treatment of yellow oleander poisoning which is problematic in resource poor countries. © 2015 The British Pharmacological Society.

  1. LC-MS determination of steroidal glycosides from Dioscorea deltoidea Wall cell suspension culture: Optimization of pre-LC-MS procedure parameters by Latin Square design.

    PubMed

    Sarvin, Boris; Fedorova, Elizaveta; Shpigun, Oleg; Titova, Maria; Nikitin, Mikhail; Kochkin, Dmitry; Rodin, Igor; Stavrianidi, Andrey

    2018-03-30

    In this paper, the ultrasound assisted extraction method for isolation of steroidal glycosides from D. deltoidea plant cell suspension culture with a subsequent HPLC-MS determination was developed. After the organic solvent was selected via a two-factor experiment the optimization via Latin Square 4 × 4 experimental design was carried out for the following parameters: extraction time, organic solvent concentration in extraction solution and the ratio of solvent to sample. It was also shown that the ultrasound assisted extraction method is not suitable for isolation of steroidal glycosides from the D. deltoidea plant material. The results were double-checked using the multiple successive extraction method and refluxing extraction. Optimal conditions for the extraction of steroidal glycosides by the ultrasound assisted extraction method were: extraction time, 60 min; acetonitrile (water) concentration in extraction solution, 50%; the ratio of solvent to sample, 400 mL/g. Also, the developed method was tested on D. deltoidea cell suspension cultures of different terms and conditions of cultivation. The completeness of the extraction was confirmed using the multiple successive extraction method. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Reverse Algols

    NASA Technical Reports Server (NTRS)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  3. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2014-05-07

    Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.

  4. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    PubMed

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.

  5. A new pregnane glycoside from Rubus phoenicolasius and its antiproliferative activity.

    PubMed

    Liu, Chao; Liao, Zhi-Xin; Liu, Shi-Jun; Sun, Jin-Yue; Yao, Gui-Yang; Wang, Heng-Shan

    2014-01-01

    Chemical investigations of the whole plant ethanol extract of Rubus phoenicolasius led to the isolation and identification of a new pregnane glycoside, 3-O-β-glucopyranosyl-3β,15β-dihydroxypregn-5-en-20-one (1), along with other nine known compounds (2-10). All the isolates were reported from this plant for the first time. The structure of compound 1 was determined by detailed analysis of its spectral data including 1D and 2D NMR. In vitro anti-proliferative activities of compounds 1-3 on MCF-7 and NCI-H460 tumour cell lines were evaluated, and compound 1 was active against the two cell lines with IC50 values of 15.6 and 13.5 μM, respectively.

  6. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    PubMed Central

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented. PMID:24690139

  7. Identification of the sequence motif of glycoside hydrolase 13 family members

    PubMed Central

    Kumar, Vikash

    2011-01-01

    A bioinformatics analysis of sequences of enzymes of the glycoside hydrolase (GH) 13 family members such as α-amylase, cyclodextrin glycosyltransferase (CGTase), branching enzyme and cyclomaltodextrinase has been carried out in order to find out the sequence motifs that govern the reactions specificities of these enzymes by using hidden Markov model (HMM) profile. This analysis suggests the existence of such sequence motifs and residues of these motifs constituting the −1 to +3 catalytic subsites of the enzyme. Hence, by introducing mutations in the residues of these four subsites, one can change the reaction specificities of the enzymes. In general it has been observed that α -amylase sequence motif have low sequence conservation than rest of the motifs of the GH13 family members. PMID:21544166

  8. Quantitative determination of cucurbitane-type triterpenes and triterpene glycosides in dietary supplements containing bitter melon (Momordica charantia) by HPLC-MS/MS.

    PubMed

    Ma, Jun; Krynitsky, Alexander J; Grundel, Erich; Rader, Jeanne I

    2012-01-01

    Momordica charantia L. (Cucurbitaceae), commonly known as bitter melon, is widely cultivated in many tropical and subtropical areas of the world. It is a common food staple; its fruits, leaves, seeds, stems, and roots also have a long history of use in traditional medicine. In the United States, dietary supplements labeled as containing bitter melon can be purchased over-the-counter and from Internet suppliers. Currently, no quantitative analytical method is available for monitoring the content of cucurbitane-type triterpenes and triterpene glycosides, the major constituents of bitter melon, in such supplements. We investigated the use of HPLC-electrospray ionization (ESI)-MS/MS for the quantitative determination of such compounds in dietary supplements containing bitter melon. Values for each compound obtained from external calibration were compared with those obtained from the method of standard additions to address matrix effects associated with ESI. In addition, the cucurbitane-type triterpene and triterpene glycoside contents of two dietary supplements determined by the HPLC-ESI-MS/MS method with standard additions were compared with those measured by an HPLC method with evaporative light scattering detection, which was recently developed for quantification of such compounds in dried fruits of M. charantia. The contents of five cucurbitane-type triterpenes and triterpene glycosides in 10 dietary supplements were measured using the HPLC-ESI-MS/MS method with standard additions. The total contents of the five compounds ranged from 17 to 3464 microg/serving.

  9. Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography.

    PubMed

    Piao, Shu-juan; Chen, Li-xia; Kang, Ning; Qiu, Feng

    2011-01-01

    Cortex Mori, one of the well-known traditional Chinese herbal medicines, is derived from the root bark of Morus alba L. according to the China Pharmacopeia. Stilbene glycosides are the main components isolated from aqueous extracts of Morus alba and their content varies depending on where Cortex Mori was collected. We have established a qualitative and quantitative method based on the bioactive stilbene glycosides for control of the quality of Cortex Mori from different sources. To develop a high-performance liquid chromatography coupled with ultraviolet absorption detection for simultaneous quantitative determination of five major characteristic stilbene glycosides in 34 samples of the root bark of Morus alba L. (Cortex Mori) from different sources. The analysis was performed on an ODS column using methanol-water-acetic acid (18: 82: 0.1, v/v/v) as the mobile phase and the peaks were monitored at 320 nm. All calibration curves showed good linearity (r ≥ 0.9991) within test ranges. This method showed good repeatability for the quantification of these five components in Cortex Mori with intra- and inter-day standard deviations less than 2.19% and 1.45%, respectively. The validated method was successfully applied to quantify the five investigated components, including a pair of cis-trans-isomers 1 and 2 and a pair of isomers 4 and 5 in 34 samples of Cortex Mori from different sources. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masuda, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Deng, Shixin; Matsuda, Hideaki

    2014-07-01

    The aim of this study was to investigate the effect of Morinda citrifolia fruit on blood fluidity. M. citrifolia fruit extract (MCF-ext) was investigated for its influence on blood aggregation and fibrinolysis. MCF-ext inhibited polybrene-induced erythrocyte aggregation and thrombin activity. The fibrinolytic activity of MCF-ext, in the euglobulin lysis time test and fibrin plate assay, is reported here for the first time. One of the active compounds was an iridoid glycoside, asperulosidic acid. The results indicated that MCF-ext is a potentially useful health food which is capable of improving blood flow and preventing lifestyle-related diseases.

  11. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: a crossover study in humans.

    PubMed

    Abraham, Klaus; Buhrke, Thorsten; Lampen, Alfonso

    2016-03-01

    The acute toxicity of cyanide is determined by its peak levels reached in the body. Compared to the ingestion of free cyanide, lower peak levels may be expected after consumption of foods containing cyanogenic glycosides with the same equivalent dose of cyanide. This is due to possible delayed and/or incomplete release of cyanide from the cyanogenic glycosides depending on many factors. Data on bioavailability of cyanide after consumption of foods containing high levels of cyanogenic glycosides as presented herein were necessary to allow a meaningful risk assessment for these foods. A crossover study was carried out in 12 healthy adults who consumed persipan paste (equivalent total cyanide: 68 mg/kg), linseed (220 mg/kg), bitter apricot kernels (about 3250 mg/kg), and fresh cassava roots (76-150 mg/kg), with each "meal" containing equivalents of 6.8 mg cyanide. Cyanide levels were determined in whole blood using a GC-MS method with K(13)C(15)N as internal standard. Mean levels of cyanide at the different time points were highest after consumption of cassava (15.4 µM, after 37.5 min) and bitter apricot kernels (14.3 µM, after 20 min), followed by linseed (5.7 µM, after 40 min) and 100 g persipan (1.3 µM, after 105 min). The double dose of 13.6 mg cyanide eaten with 200 g persipan paste resulted in a mean peak level of 2.9 µM (after 150 min). An acute reference dose of 0.075 mg/kg body weight was derived being valid for a single application/meal of cyanides or hydrocyanic acid as well as of unprocessed foods with cyanogenic glycosides also containing the accompanying intact β-glucosidase. For some of these foods, this approach may be overly conservative due to delayed release of cyanide, as demonstrated for linseed. In case of missing or inactivated β-glucosidase, the hazard potential is much lower.

  12. Triterpene glycosides and other polar constituents of shea (Vitellaria paradoxa) kernels and their bioactivities.

    PubMed

    Zhang, Jie; Kurita, Masahiro; Shinozaki, Takuro; Ukiya, Motohiko; Yasukawa, Ken; Shimizu, Naoto; Tokuda, Harukuni; Masters, Eliot T; Akihisa, Momoko; Akihisa, Toshihiro

    2014-12-01

    The MeOH extract of defatted shea (Vitellaria paradoxa; Sapotaceae) kernels was investigated for its constituents, and fifteen oleanane-type triterpene acids and glycosides, two steroid glucosides, two pentane-2,4-diol glucosides, seven phenolic compounds, and three sugars, were isolated. The structures of five triterpene glycosides were elucidated on the basis of spectroscopic and chemical methods. Upon evaluation of the bioactivity of the isolated compounds, it was found that some or most of the compounds have potent or moderate inhibitory activities against the following: melanogenesis in B16 melanoma cells induced by α-melanocyte-stimulating hormone (α-MSH); generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, against Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-teradecanoylphorbol 13-acetate (TPA) in Raji cells; t TPA-induced inflammation in mice, and proliferation of one or more of HL-60, A549, AZ521, and SK-BR-3 human cancer cell lines, respectively. Western blot analysis established that paradoxoside E inhibits melanogenesis by regulation of expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1) and TRP-2. In addition, tieghemelin A was demonstrated to exhibit cytotoxic activity against A549 cells (IC50 13.5 μM) mainly due to induction of apoptosis by flow cytometry. The extract of defatted shea kernels and its constituents may be, therefore, valuable as potential antioxidant, anti-inflammatory, skin-whitening, chemopreventive, and anticancer agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Two new lignan glycosides from the seeds of Cuscuta chinensis.

    PubMed

    He, Xiang-Hui; Yang, Wen-Zhi; Meng, A-Hui; He, Wen-Ni; Guo, De-An; Ye, Min

    2010-11-01

    Two new lignan glycosides, 2'-hydroxyl asarinin 2'-O-β-D-glucopyranoside (cuscutoside C, 1) and 2'-hydroxyl asarinin 2'-O-β-D-apiofuranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (cuscutoside D, 2), were isolated from the seeds of Cuscuta chinensis Lam., along with six known compounds, 2'-hydroxyl asarinin 2'-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (3), 2'-hydroxyl asarinin 2'-O-β-D-apiofuranosyl-(1 → 2)-β-D-glucopyranoside (cuscutoside A, 4), kaempferol 3,7-di-O-β-D-glucopyranoside (5), 5-caffeoyl quinic acid (6), 4-caffeoyl quinic acid (7), and cinnamic acid (8). Their structures were elucidated on the basis of spectroscopic analyses including HR-ESI-MS, ESI-MS/MS, (1)H and (13)C NMR, HSQC, HMBC, and TOCSY.

  14. A novel dimeric flavonol glycoside from Cynanchum acutum subsp. sibiricum.

    PubMed

    Yuan, Si-Wen; Dai, Wei; Pan, Xin-Hui; Lu, Yan; Chen, Dao-Feng; Wang, Qi

    2018-06-11

    A novel dimeric flavonol glycoside, Cynanflavoside A (1), together with six analogues, kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (5), kaempferol-3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (6), and quercetin-3-O-galactoside (7) were isolated from the n-butyl alcohol extract of Cynanchum acutum subsp. sibiricum. Their structures were determined spectroscopically and compared with previously reported spectral data. All compounds were evaluated for their anti-complementary activity in vitro, and only compound 5 exhibited anti-complement effects with CH 50 value of 0.33 mM.

  15. Simultaneous qualification and quantification of baccharane glycosides in Impatientis Semen by HPLC-ESI-MSD and HPLC-ELSD.

    PubMed

    Li, Hui-Jun; Yu, Jun-Jie; Li, Ping

    2011-03-25

    This study presents a high performance liquid chromatography (HPLC) with electrospray ionization mass spectrometric detection (ESI-MSD) and evaporative light scattering detection (ELSD) method for the simultaneous qualification and quantification of eight major baccharane glycosides, namely hosenlosides A, B, C, F, G, K, L, and M in Impatientis Semen, a Chinese herbal medicine derived from the seeds of Impatiens balsamina L. In order to achieve optimum performance, several extraction parameters (including extraction solvent, extraction mode, extraction time) were optimized. The baccharane glycosides were separated on a Shim-pack CLC-ODS column with gradient elution of water and methanol. Temperature for the ELSD drift tube was set at 98°C and the nitrogen flow rate was 2.7l/min. The unambiguous identities of the analytes were realized by comparing retention times and mass data with those of reference compounds. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, recovery as well as robustness, and subsequently applied to evaluate the quality of 14 batches of Impatientis Semen commercial samples from different collections. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    PubMed

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).

  17. Effects of various glutamine concentrations on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni.

    PubMed

    Esmaeili, Fatemeh; Ghaheri, Matin; Kahrizi, Danial; Mansouri, Mohsen; Safavi, Seyed Mehdi; Ghorbani, Tayebeh; Muhammadi, Sarre; Rahmanian, Elham; Vaziri, Siavash

    2018-02-10

    Stevia rebaudiana Bertoni is one of the most important biologically sourced and low-calorie sweeteners that contains a lots of Steviol glycosides. Tissue culture is the best method for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. In the present study, we investigated the effect of different concentrations of glutamine (10, 20, 30 and 40 g/l) on expression of UGT74G1 and UGT76G1 genes and stevioside and rebaudioside A accumulation in the leaves of stevia under in vitro conditions. The highest level of expression for UGT74G1 (1.000 Total lab unit) was seen at plants grown in MS media without glutamine and the highest gene expression level for UGT76G1 (1.321 Total lab unit) was observed at plants grown in 2% glutamine. Based on HPLC results, the highest amount of stevioside (22.74) was accumulated in plants which were under 3% glutamine treatment and the lowest production level of stevioside (16.19) was resulted under MS (0 glutamine) medium. The highest rebaudioside A (12.19) accumulation was observed under 2% glutamine treatment and the lowest accumulation of rebaudioside A (8.41) was seen at plants grown in MS medium.

  18. Dianthosaponins A-F, triterpene saponins, flavonoid glycoside, aromatic amide glucoside and γ-pyrone glucoside from Dianthus japonicus.

    PubMed

    Nakano, Takahiro; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki

    2011-01-01

    From aerial parts of Dianthus japonicus, six new and seven known oleanane-type triterpene saponins were isolated. The structures of the new saponins, named dianthosaponins A-F, were elucidated by means of high resolution mass spectrometry, and extensive inspection of one- and two-dimensional NMR spectroscopic data. A new C-glycosyl flavone, a glycosidic derivative of anthranilic acid amide and a maltol glucoside were also isolated.

  19. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi

    PubMed Central

    2011-01-01

    Background Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production. Results The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis. Conclusions Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts

  20. The basic mechanism of inotropic action of digitalis glycosides.

    PubMed

    Smith, T W

    1984-01-01

    A broad survey of the experimental literature suggests that the only unifying concept of digitalis action is that these drugs, at pharmacologically relevant doses, bind with high affinity and specificity to sites on the NaK-ATPase complex that face the outer surface of nearly all eukaryotic cells. Alternative receptors, if they exist, have not been defined. As might be expected, a broad range of biologic effects results from this basic interaction. The clinical therapeutic effects of digitalis include enhancement of myocardial contractility and changes in the properties of the cardiac conduction system; the latter, in turn, result from both direct and autonomically mediated effects [44]. Autonomic effects involve alterations in both parasympathetic and sympathetic activity, and these are attributable to both central and peripheral neural mechanisms [44]. As we have reviewed, there is compelling evidence that one mechanism leading to sustained positive inotropic effects of digitalis glycosides in heart muscle is partial inhibition of sodium transport. Earlier evidence [16, 17] is now supported by electrophysiologic studies [29, 30, 45, 46], intracellular ion-sensitive microelectrode methods [47, 48], and ion flux measurements using radioisotope tracers [14, 15, 49]. Inhibition of myocardial monovalent cation transport has been documented in intact glycoside-sensitive animal models at doses and plasma and myocardial levels causing a positive inotropic effect without overt toxicity [12]. However, these findings do not preclude other mechanisms that may be operative in addition to, or in some circumstances instead of, myocardial Na-K pump inhibition. In the context of much seemingly conflicting evidence [35, 36, 37, 50, 51], the hypothesis advanced by Akera and Brody is of interest [17]. These authors suggest that interaction of subtoxic digitalis concentrations with myocardial NaK-ATPase reduces maximum sodium transport capacity, resulting in an enhanced transient

  1. Low energy electron induced cytosine base release in 2′-deoxycytidine-3′-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran, Renjith; Sarma, Manabendra, E-mail: msarma@iitg.ernet.in

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed aftermore » impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.« less

  2. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.

    In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less

  3. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases

    DOE PAGES

    Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.; ...

    2016-06-01

    In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less

  4. Antiproliferative Cardenolide Glycosides of Elaeodendron alluaudianum from the Madagascar Rainforest1

    PubMed Central

    Hou, Yanpeng; Cao, Shugeng; Brodie, Peggy; Callmander, Martin; Ratovoson, Fidisoa; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.; Rakotonandrasana, Stephan; TenDyke, Karen; Suh, Edward M.; Kingston, David G. I.

    2010-01-01

    Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of Elaeodendron alluaudianum led to the isolation of two new cardenolide glycosides (1 and 2). The 1H and 13C NMR spectra of both compounds were fully assigned using a combination of 2D NMR experiments, including 1H-1H COSY, HSQC, HMBC, and ROESY sequences. Both compounds 1 and 2 were tested against the A2780 human ovarian cancer cell line and the U937 human histiocytic lymphoma cell line assays, and showed significant antiproliferative activity with IC50 values of 0.12 and 0.07 μM against the A2780 human ovarian cancer cell line, and 0.15 and 0.08 μM against the U937 human histiocytic lymphoma cell line, respectively. PMID:19058971

  5. 4,6-α-glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70.

    PubMed

    Kralj, Slavko; Grijpstra, Pieter; van Leeuwen, Sander S; Leemhuis, Hans; Dobruchowska, Justyna M; van der Kaaij, Rachel M; Malik, Amarila; Oetari, Ariyanti; Kamerling, Johannis P; Dijkhuizen, Lubbert

    2011-11-01

    Lactobacillus reuteri 121 uses the glucosyltransferase A (GTFA) enzyme to convert sucrose into large amounts of the α-D-glucan reuteran, an exopolysaccharide. Upstream of gtfA lies another putative glucansucrase gene, designated gtfB. Previously, we have shown that the purified recombinant GTFB protein/enzyme is inactive with sucrose. Various homologs of gtfB are present in other Lactobacillus strains, including the L. reuteri type strain, DSM 20016, the genome sequence of which is available. Here we report that GTFB is a novel α-glucanotransferase enzyme with disproportionating (cleaving α1→4 and synthesizing α1→6 and α1→4 glycosidic linkages) and α1→6 polymerizing types of activity on maltotetraose and larger maltooligosaccharide substrates (in short, it is a 4,6-α-glucanotransferase). Characterization of the types of compounds synthesized from maltoheptaose by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), methylation analysis, and 1-dimensional ¹H nuclear magnetic resonance (NMR) spectroscopy revealed that only linear products were made and that with increasing degrees of polymerization (DP), more α1→6 glycosidic linkages were introduced into the final products, ranging from 18% in the incubation mixture to 33% in an enriched fraction. In view of its primary structure, GTFB clearly is a member of the glycoside hydrolase 70 (GH70) family, comprising enzymes with a permuted (β/α)₈ barrel that use sucrose to synthesize α-D-glucan polymers. The GTFB enzyme reaction and product specificities, however, are novel for the GH70 family, resembling those of the GH13 α-amylase type of enzymes in using maltooligosaccharides as substrates but differing in introducing a series of α1→6 glycosidic linkages into linear oligosaccharide products. We conclude that GTFB represents a novel evolutionary intermediate between the GH13 and GH70 enzyme families, and we speculate about its origin.

  6. Genetic Structure of the Tree Peony (Paeonia rockii) and the Qinling Mountains as a Geographic Barrier Driving the Fragmentation of a Large Population

    PubMed Central

    Yuan, Jun–hui; Cheng, Fang–Yun; Zhou, Shi–Liang

    2012-01-01

    Background Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi–tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers. Methodology/Principal Findings Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (FST value of 0.302). Moderate genetic diversity at the population level (HS of 0.516) and high population diversity at the species level (HT of 0.749) were detected. Significant excess homozygosity (FIS of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r = 0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm. Conclusions/Significance Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation

  7. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. varieties.

    PubMed

    Pop, Raluca Maria; Socaciu, Carmen; Pintea, Adela; Buzoianu, Anca Dana; Sanders, Mark Gerardus; Gruppen, Harry; Vincken, Jean-Paul

    2013-01-01

    Sea buckthorn (Hippophaë rhamnoides L.) is known to be rich in many bioactive compounds (such as vitamins, phenolics, carotenoids) important for human health and nutrition. Among the phenolics, berries and leaves contain a wide range of flavonols that are good quality and authenticity biomarkers. To compare the composition of the main flavonols of Romanian sea buckthorn berry and leaf varieties and to identify the specific biomarkers that contribute to sample differentiation among varieties. Six varieties of cultivated sea buckthorn (ssp. Carpatica) berries and leaves were analysed by UHPLC/PDA-ESI/MS. Berries and leaves contained mainly isorhamnetin (I) glycosides in different ratios. Whereas I-3-neohesperidoside, I-3-glucoside, I-3-rhamnosylglucoside, I-3-sophoroside-7-rhamnoside and free isorhamnetin were predominant for berries (out of 17 compounds identified), I-3-rhamnosylglucoside, I-3-neohesperidoside, I-3-glucoside, quercetin-3-pentoside, kaempferol-3-rutinoside, and quercetin-3-glucoside were predominant in leaves (out of 19 compounds identified). Berries contained, on average, 917 mg/100 g DW flavonol glycosides. Leaves had higher content of flavonol glycosides than berries, on average 1118 mg/100 g DW. The variation of the quantitative dataset analysed using principal component analysis accounted for 91% of the total variance in the case of berries and 73% in case of leaves, demonstrating a good discrimination among samples. Based on quantitative analysis, by principal component analysis, the flavonol derivatives can be considered as biomarkers to discriminate among varieties and to recognise specifically the berry versus leaf composition. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Characterization of digitalis-like factors in human plasma. Interactions with NaK-ATPase and cross-reactivity with cardiac glycoside-specific antibodies.

    PubMed

    Kelly, R A; O'Hara, D S; Canessa, M L; Mitch, W E; Smith, T W

    1985-09-25

    Much of the evidence for a physiologically important endogenous inhibitor of the sodium pump has been either contradictory or indirect. We have identified three discrete fractions in desalted deproteinized plasma from normal humans that resemble the digitalis glycosides in that they: are of low molecular weight; are resistant to acid and enzymatic proteolysis; inhibit NaK-ATPase activity; inhibit Na+ pump activity in human erythrocytes; displace [3H]ouabain bound to the enzyme; and cross-react with high-affinity polyclonal and monoclonal digoxin-specific antibodies but not with anti-ouabain or anti-digitoxin antibodies. An additional fraction cross-reacted with digoxin-specific antibodies but had no detectable activity against NaK-ATPase. The three inhibitory fractions differed from cardiac glycosides in that their concentration-effect curves in a NaK-ATPase inhibition and [3H]ouabain radioreceptor assays were steeper than unlabeled ouabain. This suggests that these inhibitors are not simple competitive ligands for binding to NaK-ATPase. In the presence of sodium, no fraction required ATP for binding to NaK-ATPase, and in the presence of potassium, only one fraction had the reduced affinity for the enzyme that is characteristic of cardiac glycosides. Unlike digitalis, all three NaK-ATPase inhibitory fractions stimulated the activity of skeletal muscle sarcoplasmic reticulum Ca-ATPase. The presence of at least three fractions in human plasma that inhibit NaK-ATPase and cross-react to a variable degree with different digoxin-specific antibody populations could explain much of the conflicting evidence for the existence of endogenous digitalis-like compounds in plasma.

  9. Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity.

    PubMed

    Chen, Hong-Ming; Armstrong, Zachary; Hallam, Steven J; Withers, Stephen G

    2016-02-08

    Screening of large enzyme libraries such as those derived from metagenomic sources requires sensitive substrates. Fluorogenic glycosides typically offer the best sensitivity but typically must be used in a stopped format to generate good signal. Use of fluorescent phenols of pKa < 7, such as halogenated coumarins, allows direct screening at neutral pH. The synthesis and characterisation of a set of nine different glycosides of 6-chloro-4-methylumbelliferone are described. The use of these substrates in a pooled format for screening of expressed metagenomic libraries yielded a "hit rate" of 1 in 60. Hits were then readily deconvoluted with the individual substrates in a single plate to identify specific activities within each clone. The use of such a collection of substrates greatly accelerates the screening process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    PubMed

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs. Georg Thieme Verlag KG Stuttgart · New York.

  11. [Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina].

    PubMed

    Jaramillo Jaramillo, Carmita; Jaramillo Espinoza, Anyi; D'Armas, Haydelba; Troccoli, Luis; Rojas de Astudillo, Luisa

    2016-09-01

    Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher

  12. Hydrogenation of the Exocyclic Olefinic Bond at C-16/C-17 Position of ent-Kaurane Diterpene Glycosides of Stevia rebaudiana Using Various Catalysts

    PubMed Central

    Chaturvedula, Venkata Sai Prakash; Prakash, Indra

    2013-01-01

    Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597

  13. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Johnnie A.; Pattathil, Sivakumar; Bergeman, Lai F.

    Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss ofmore » specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.« less

  14. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling

    DOE PAGES

    Walker, Johnnie A.; Pattathil, Sivakumar; Bergeman, Lai F.; ...

    2017-02-02

    Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss ofmore » specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.« less

  15. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, M.; Whitworth, G; El Warry, N

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in themore » other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.« less

  16. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography.

    PubMed

    Mouly, P; Gaydou, E M; Auffray, A

    1998-03-27

    We present a simultaneous liquid chromatographic method for the separation of two flavonoid compound families, flavanone glycosides (FGs) and polymethoxylated flavones (PMFs), which are usually found in citrus fruits species and varieties. This technique permits the quantitation of six FGs (narirutin, naringin, hesperidin, neohesperidin, didymin, poncirin) and six PMFs (sinensetin, hexamethoxyflavone, nobiletin, scutellarein, heptamethoxyflavone and tangeretin). This technique, to be used to characterize a citrus juice by its polyphenolic profile, has been applied to the determination of flavonoid compounds in grapefruit- and orange juice. Differentiation of orange juice varieties and mixtures containing tangor juice using polyphenolic profiles and flavonoid content has been achieved.

  17. Re-evaluating the role of phenolic glycosides and ascorbic acid in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

    USDA-ARS?s Scientific Manuscript database

    To determine if membrane-bound G-proteins are involved in the regulation of defense responses against ozone in the leaf apoplast, the apoplastic concentrations of ascorbic acid and phenolic glycosides in Arabidopsis thaliana L. lines with null mutations in the alpha- and beta-subunits were compared ...

  18. Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria.

    PubMed

    Cioffi, Giuseppina; Morales Escobar, Luis; Braca, Alessandra; De Tommasi, Nunziatina

    2003-08-01

    Four chalcone glycosides (1-4), including three new natural products, and three flavanones (5-7) were isolated from the methanol extract of stem bark of Maclura tinctoria. The new compounds have been characterized as 4'-O-beta-D-(2' '-p-coumaroyl)glucopyranosyl-4,2',3'-trihydroxychalcone (1), 4'-O-beta-D-(2' '-p-coumaroyl-6' '-acetyl)glucopyranosyl-4,2',3'-trihydroxychalcone (2), and 3'-(3-methyl-2-butenyl)-4'-O-beta-D-glucopyranosyl-4,2'-dihydroxychalcone (3); the known derivatives were elucidated as 4'-O-beta-D-(2' '-acetyl-6' '-cinnamoyl)glucopyranosyl-4,2',3'-trihydroxychalcone (4), eriodictyol 7-O-beta-D-glucopyranoside (5), naringenin (6), and naringenin 4'-O-beta-D-glucopyranoside (7). Their structures were determined by 1D and 2D NMR and ESIMS. The antioxidant activity of all the isolated compounds was determined by measuring free-radical-scavenging effects using two different assays, namely, the Trolox Equivalent Antioxidant Capacity (TEAC) assay and the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay). The results showed that compound 3 was the most active in both antioxidant assays.

  19. A new flavonoid glycoside from the root bark of Morus alba L.

    PubMed

    Park, Ji-Hae; Jung, Ye-Jin; Jung, Jae-Woo; Shrestha, Sabina; Lim, Dong Wook; Han, Daeseok; Baek, Nam-In

    2014-01-01

    A new guibourtinidol glycoside, (2R,3S)-guibourtinidol-3-O-α-d-apiofuranosyl-(1 → 6)-O-β-D-glucopyranoside (1), and three known compounds, quercetin 7-O-β-D-glucopyranoside (2), syringaresinol-4-O-β-D-glucopyranoside (3) and dehydrodiconiferyl alcohol 4,9'-di-O-β-D-glucopyranoside (4), were isolated from the root bark of Morus alba L. through repeated silica gel, octadecyl silica gel and Sephadex LH-20 column chromatography for the n-BuOH fraction. The chemical structure of the compounds was elucidated based on MS, infrared, 1D and 2D NMR spectroscopic data. Compounds 2-4 were also isolated for the first time from the root bark of M. alba L. in this study.

  20. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus.

    PubMed

    Ju, Yuliang; Wang, Xuan; Guan, Tinglong; Peng, Deliang; Li, Hongmei

    2016-11-01

    The glycoside hydrolase family 18 (GH18) of chitinases is a gene family widely expressed in archaes, prokaryotes and eukaryotes, and hydrolyzes the β-1,4-linkages in chitin. The pinewood nematode Bursaphelenchus xylophilus is one of the organisms that produces GH18 chitinases. Notably, B. xylophilus has a higher number of GH18 chitinases compared with the obligate plant-parasitic nematodes Meloidogyne incognita and Meloidogyne hapla. In this study, seven GH18 chitinases were identified and cloned from B. xylophilus based on genomic analyses. The deduced amino acid sequences of all these genes contained an N-terminal signal peptide and a GH18 catalytic domain. Phylogenetic analysis showed that the origin of B. xylophilus GH18 chitinases was independent of those from fungi and bacteria. Real-time quantitative reverse transcription PCR analysis indicated that GH18 chitinase genes had discrete expression patterns, representing almost all the life stages of B. xylophilus. In situ hybridisation showed that the mRNA of GH18 chitinase genes of B. xylophilus were detected mainly in the spermatheca, esophageal gland cells, seminal vesicle and eggs. RNA interference (RNAi) results revealed different roles of GH18 chitinase genes in B. xylophilus. Bx-chi-1, Bx-chi-2 and Bx-chi-7 were associated with reproduction, fungal cell-wall degradation and egg hatching, respectively. Bx-chi-5 and Bx-chi-6 may be involved in sperm metabolism. In conclusion, this study demonstrates that GH18 chitinases have multiple functions in the life cycle of B. xylophilus. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  1. Intensified Separation of Steviol Glycosides from a Crude Aqueous Extract of Stevia rebaudiana Leaves Using Centrifugal Partition Chromatography.

    PubMed

    Hubert, Jane; Borie, Nicolas; Chollet, Sébastien; Perret, Joël; Barbet-Massin, Claire; Berger, Monique; Daydé, Jean; Renault, Jean-Hugues

    2015-11-01

    Aqueous extracts of Stevia rebaudiana leaves have been approved since 2008 by the Joint Expert Committee for Food Additives as sugar substitutes in many food and beverages in Western and Far East Asian countries. The compounds responsible for the natural sweetness of Stevia leaves include a diversity of diterpenoid glycosides derived from a steviol skeleton. These steviol glycosides also exhibit a low calorific value as well as promising therapeutic applications, particularly for the treatment of sugar metabolism disturbances. In this work, centrifugal partition chromatography is proposed as an efficient technical alternative to purify steviol glycosides from crude aqueous extracts of Stevia leaves on a multigram scale. Two different commercial instruments, including an ASCPC250® and a FCPE300® made of columns containing 1890 and 231 twin-cells, respectively, were evaluated and compared. All experiments were performed with a polar biphasic solvent system composed of ethyl acetate, n-butanol, and water in a gradient elution mode. When using the 1890 partition cell centrifugal partition chromatography column of 250 mL, 42 mg of stevioside, 68 mg of dulcoside A, and 172 mg of rebaudioside A, three major constituents of the initial extract were obtained from 1 g of the initial mixture at purities of 81%, 83%, and 99%, respectively. The productivity was further improved by intensifying the procedure on the 231 partition cell centrifugal partition chromatography column of 303 mL with the sample mass loading increased up to 5 g, resulting in the recovery of 1.2 g of stevioside, 100 mg of dulcoside A, and 1.1 g of rebaudioside A at purities of 79%, 62%, and 98%, respectively. The structures of the isolated compounds were validated by HPLC-UV, ESI-MS, (1)H, and (13)C NMR analyses. Altogether, the results demonstrate that the column design (i.e., the partition cell number) is an important aspect to be considered for a larger scale centrifugal partition chromatography

  2. Protein features as determinants of wild-type glycoside hydrolase thermostability.

    PubMed

    Geertz-Hansen, Henrik Marcus; Kiemer, Lars; Nielsen, Morten; Stanchev, Kiril; Blom, Nikolaj; Brunak, Søren; Petersen, Thomas Nordahl

    2017-11-01

    Thermostable enzymes for conversion of lignocellulosic biomass into biofuels have significant advantages over enzymes with more moderate themostability due to the challenging application conditions. Experimental discovery of thermostable enzymes is highly cost intensive, and the development of in-silico methods guiding the discovery process would be of high value. To develop such an in-silico method and provide the data foundation of it, we determined the melting temperatures of 602 fungal glycoside hydrolases from the families GH5, 6, 7, 10, 11, 43, and AA9 (formerly GH61). We, then used sequence and homology modeled structure information of these enzymes to develop the ThermoP melting temperature prediction method. Futhermore, in the context of thermostability, we determined the relative importance of 160 molecular features, such as amino acid frequencies and spatial interactions, and exemplified their biological significance. The presented prediction method is made publicly available at http://www.cbs.dtu.dk/services/ThermoP. © 2017 Wiley Periodicals, Inc.

  3. A new flavonol glycoside from the medicinal halophyte Suaeda fruticosa.

    PubMed

    Oueslati, Samia; Ksouri, Riadh; Pichette, André; Lavoie, Serge; Girard-Lalancette, Karl; Mshvildadze, Vakhtang; Abdelly, Chedly; Legault, Jean

    2014-01-01

    A new flavonol glycoside, namely 3-(α-rhamnopyranosyl-(1 → 2)-[β-xylopyranosyl-(1 → 6)]-β-glucopyranosyloxy) isorhamnetin was reported from methanol extracts of aerial parts of Suaeda fruticosa for the first time. In this work, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy were used to identify this new compound. Structure was elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC and (1)H-(1)H COSY. Antioxidant potentialities of a pure compound were evaluated. The estimation of antioxidant capacities using oxygen radical absorbance capacity (ORAC method) and a cell based-assay (WS1) indicated that this new flavonol exhibited the highest antioxidant activities with an ORAC value of 5.0 ± 0.3 μmol Trolox/μmol and inhibited the tBH-induced oxidation of 2',7'-dichlorofluorescin with an IC50 value of 4.9 ± 0.6 μM.

  4. A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves.

    PubMed

    Ukwueze, Stanley E; Osadebe, Patience O; Okoye, Festus B C

    2015-01-01

    Bioactivity-guided fractionation of methanol extract from the leaves of Psidium guajava L. (Myrtaceae) yielded a new benzophenone glycoside, Guajaphenone A (2) together with two known compounds, Garcimangosone D (1) and Guaijaverin (3). Their structures were elucidated by analysis of spectroscopic data including 1D and 2D NMR and electrospray ionisation mass spectrometry (ESI-MS). The isolated compounds were screened against standard strains of Gram-positive and Gram-negative bacteria using broth dilution assay method, and the MIC values determined and compared with reference antibiotic ceftriaxone. They were found to have significant antibacterial activities against Escherichia coli and Staphylococcus aureus with all of them showing better activities against S. aureus, but displaying weaker activities, in comparison to ceftriaxone. However, despite reduced effect of these compounds against the organisms, this work opens the perspective to use these molecules as 'leads' for the design of novel and selective drug candidates for some tropical infectious diseases.

  5. Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase.

    PubMed

    Honda, Yuji; Fushinobu, Shinya; Hidaka, Masafumi; Wakagi, Takayoshi; Shoun, Hirofumi; Taniguchi, Hajime; Kitaoka, Motomitsu

    2008-04-01

    The tyrosine residue Y198 is known to support a nucleophilic water molecule with the general base residue, D263, in the reducing-end xylose-releasing exo-oligoxylanase (Rex). A mutation in the tyrosine residue changing it into phenylalanine caused a drastic decrease in the hydrolytic activity and a small increase in the F(-) releasing activity from alpha-xylobiosyl fluoride in the presence of xylose. In contrast, mutations at D263 resulted in the decreased F(-) releasing activity. As a result of the high F(-) releasing activity and low hydrolytic activity, Y198F of Rex accumulates a large amount of product during the glycosynthase reaction. We propose a novel method for producing a glycosynthase from an inverting glycoside hydrolase by mutating a residue that holds the nucleophilic water molecule with the general base residue while keeping the general base residue intact.

  6. Process of forming compounds using reverse micelle or reverse microemulsion systems

    DOEpatents

    Linehan, John C.; Fulton, John L.; Bean, Roger M.

    1998-01-01

    The present invention is directed to a process for producing a nanometer-sized metal compound. The process comprises forming a reverse micelle or reverse microemulsion system comprising a polar fluid in a non-polar or low-polarity fluid. A first reactant comprising a multi-component, water-soluble metal compound is introduced into the polar fluid in a non-polar or low-polarity fluid. This first reactant can be introduced into the reverse micelle or reverse microemulsion system during formation thereof or subsequent to the formation of the reverse micelle or microemulsion system. The water-soluble metal compound is then reacted in the reverse micelle or reverse microemulsion system to form the nanometer-sized metal compound. The nanometer-sized metal compound is then precipitated from the reverse micelle or reverse microemulsion system.

  7. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding.

    PubMed

    Patil, Jitendra Gopichand; Ahire, Mahendra Laxman; Nitnaware, Kirti Manik; Panda, Sayantan; Bhatt, Vijay P; Kishor, Polavarapu B Kavi; Nikam, Tukaram Dayaram

    2013-03-01

    Digitalis purpurea L. (Scrophulariaceae; Foxglove) is a source of cardiotonic glycosides such as digitoxin and digoxin which are commercially applied in the treatment to strengthen cardiac diffusion and to regulate heart rhythm. This investigation deals with in vitro propagation and elicited production of cardiotonic glycosides digitoxin and digoxin in shoot cultures of D. purpurea L. In vitro germinated seedlings were used as a primary source of explants. Multiple shoot formation was achieved for three explant types (nodal, internodal, and leaf) cultured on Murashige and Skoog (MS) medium with several treatments of cytokinins (6-benzyladenine-BA; kinetin-Kin; and thidiazuron-TDZ) and auxins (indole-3-acetic acid-IAA; α-naphthaleneacetic acid-NAA; and 2,4-dichlorophenoxy acetic acid-2,4-D). Maximum multiple shoots (12.7 ± 0.6) were produced from nodal explants on MS + 7.5 μM BA. Shoots were rooted in vitro on MS containing 15 μM IAA. Rooted plantlets were successfully acclimatized. To further maintain the multiple shoot induction, mother tissue was cut into four equal parts and repeatedly sub-cultured on fresh shoot induction liquid medium after each harvest. On adaptation of this strategy, an average of 18 shoots per explant could be produced. This strategy was applied for the production of biomass and glycosides digitoxin and digoxin in shoot cultures on MS medium supplemented with 7.5 μM BA and several treatments with plant growth regulators, incubation period, abiotic (salicylic acid, mannitol, sorbitol, PEG-6000, NaCl, and KCl), biotic (Aspergillus niger, Helminthosporium sp., Alternaria sp., chitin, and yeast extract) elicitors, and precursors (progesterone, cholesterol, and squalene). The treatment of KCl, mycelial mass of Helminthosporium sp., and progesterone were highly effective for the production of cardenolides. In the presence of progesterone (200 to 300 mg/l), digitoxin and digoxin accumulation was enhanced by 9.1- and 11.9-folds

  8. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.

    PubMed

    Kudo, Kanako; Watanabe, Akira; Ujiie, Seiryu; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative β-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl β-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl β-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal β-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three β-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel β-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS.

    PubMed

    Aberham, Anita; Schwaiger, Stefan; Stuppner, Hermann; Ganzera, Markus

    2007-11-05

    The here described HPLC-method enables the determination of all major, currently known bioactive compounds in gentian roots. A separation of iridoids (loganic acid), secoiridoids (swertiamarin, gentiopicroside, amarogentin, sweroside), xanthones (gentisin, isogentisin) and two xanthone glycosides (gentiosides) was possible on RP-18 column material, using 0.025% aqueous TFA, acetonitrile and n-propanol as mobile phase. The method is sensitive (LODglycosides. Gentisin and isogentisin were found in much lower concentrations between 0.02 and 0.11%, respectively.

  10. Hydrolysis of Glycosidic Flavonoids during the Preparation of Danggui Buxue Tang: An Outcome of Moderate Boiling of Chinese Herbal Mixture

    PubMed Central

    Zhang, Wendy Li; Chen, Jian-Ping; Lam, Kelly Yin-Ching; Zhan, Janis Ya-Xian; Yao, Ping; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2014-01-01

    Chemical change during boiling of herbal mixture is a puzzle. By using Danggui Buxue Tang (DBT), a herbal decoction that contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), we developed a model in analyzing the hydrolysis of flavonoid glycosides during the boiling of herbal mixture in water. A proper preparation of DBT is of great benefit to the complete extraction of bioactive ingredients. Boiling of DBT in water increased the solubility of AR-derived astragaloside IV, calycosin, formononetin, calycosin-7-O-β-D-glucoside, and ononin in a time- and temperature-dependent manner: the amounts of these chemicals reached a peak at 2 h. The glycosidic resides of AR, calycosin-7-O-β-D-glucoside, and ononin could be hydrolyzed during the moderate boiling process to form calycosin and formononetin, respectively. The hydrolysis efficiency was strongly affected by pH, temperature, and amount of herbs. Interestingly, the preheated herbs were not able to show this hydrolytic activity. The current results supported the rationality of ancient preparation of DBT in boiling water by moderate heat. PMID:24744813

  11. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles

    PubMed Central

    2011-01-01

    We report a reparameterization of the glycosidic torsion χ of the Cornell et al. AMBER force field for RNA, χOL. The parameters remove destabilization of the anti region found in the ff99 force field and thus prevent formation of spurious ladder-like structural distortions in RNA simulations. They also improve the description of the syn region and the syn–anti balance as well as enhance MD simulations of various RNA structures. Although χOL can be combined with both ff99 and ff99bsc0, we recommend the latter. We do not recommend using χOL for B-DNA because it does not improve upon ff99bsc0 for canonical structures. However, it might be useful in simulations of DNA molecules containing syn nucleotides. Our parametrization is based on high-level QM calculations and differs from conventional parametrization approaches in that it incorporates some previously neglected solvation-related effects (which appear to be essential for obtaining correct anti/high-anti balance). Our χOL force field is compared with several previous glycosidic torsion parametrizations. PMID:21921995

  12. The use of neutron scattering to determine the functional structure of glycoside hydrolase.

    PubMed

    Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko

    2016-10-01

    Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microsolvated Model for the Kinetics and Thermodynamics of Glycosidic Bond Dissociative Cleavage of Nucleoside D4G.

    PubMed

    Jiang, Yang; Xue, Ying; Zeng, Yi

    2018-02-15

    Using the microsolvated model that involves explicit water molecules and implicit solvent in the optimization, two proposed dissociative hydrolysis mechanisms of 2',3'-didehydro-2',3'-dideoxyguanosine (d4G) have been first investigated by means of M06-2X(CPCM, water)/6-31++G(d,p) method. The glycosidic bond dissociation for the generation of the oxacarbenium ion intermediate is the rate-determining step (RDS). The subsequent nucleophilic water attack from different side of the oxacarbenium ion intermediate gives either the α-product [(2S,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] or β-product [(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] and is thus referred to as α-path (inversion) and β-path (retention). Two to five explicit water molecules (n = 2-5) are considered in the microsolvated model, and n = 3 or 4 is the smallest model capable of minimizing the activation energy for α-path and β-path, respectively. Our theoretical results suggest that α-path (n = 3) is more kinetically favorable with lower free energy barrier (RDS) of 27.7 kcal mol -1 , in contrast to that of 30.7 kcal mol -1 for the β-path (n = 4). The kinetic preference of the α-path is rationalized by NBO analysis. Whereas thte β-path is more thermodynamically favorable over the α-path, where the formation of β-product and α-product are exergonic and endergonic, respectively, providing theoretical support for the experimental observation that the β-cleavage product was the major one after sufficient reaction time. Comparisons of d4G with analogous cyclo-d4G and dG from kinetic free energy barriers and thermodynamic heterolytic dissociation energies were also carried out. Our kinetic and thermodynamic results manifest that the order of glycosidic bond stability should be d4G < cyclo-d4G < dG, which agrees well with the reported experimental stability order of d4G compounds and analogues and gives further understanding on the influence of 6-cyclopropylamino and unsaturated ribose to

  14. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  15. Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides.

    PubMed

    Dai, Longhai; Li, Jiao; Yao, Peiyuan; Zhu, Yueming; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Yuanxia

    2017-04-20

    Glycosylation is a prominent biological mechanism for structural and functional diversity of natural products. Uridine diphosphate-dependent glycosyltransferases with aglycon promiscuity are generally recognised as effective biocatalysts for glycodiversification of natural products for practical applications. In this study, the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis 168 was explored. Bs-YjiC, with uridine diphosphate glucose (UDPG) as sugar donor, exhibited robust capabilities to glycosylate 19 structurally diverse types of drug-like scaffolds with regio- and stereospecificities and form O-, N- and S-linkage glycosides. Twenty-four glycosides of 17 aglycons were purified from scale-up reactions using Bs-YjiC as a biocatalyst, and their structures were confirmed by nuclear magnetic resonance spectra. Furthermore, a one-pot reaction by coupling Bs-YjiC to sucrose synthase from Arabidopsis thaliana was applied to glycosylate pterostilbene. Without adding the costly UDPG as sugar donor, 9mM (3.8g/L) pterostilbene 4'-O-β-glucoside was obtained by periodic feeding of pterostilbene. These results suggest the aglycon promiscuity of Bs-YjiC and demonstrate its significant application prospect in biosynthesis of valuable natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct analysis of 18 flavonol glycosides, aglycones and terpene trilactones in Ginkgo biloba tablets by matrix solid phase dispersion coupled with ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry.

    PubMed

    Liu, Xin-Guang; Yang, Hua; Cheng, Xiao-Lan; Liu, Lei; Qin, Yong; Wang, Qi; Qi, Lian-Wen; Li, Ping

    2014-08-01

    Analysis and quality control of Ginkgo biloba have been comprehensively studied. However, little attention has been devoted to the simultaneous extraction and analysis of flavonols and terpene trilactones, especially for direct quantification of flavonol glycosides. This work described a rapid strategy for one-step extraction and quantification of the components. A matrix solid phase dispersion (MSPD) method was designed for the extraction of ginkgo ingredients and compared with the heat-reflux and ultrasonic extraction methods. An ultra-high performance liquid chromatography (UHPLC)-tandem-triple-quadrupole-mass spectrometry (QQQ-MS) method was developed for detection of the 18 components, including 10 original flavonol glycosides, 3 aglycones, and 5 lactones. Subsequently, the proposed strategy was used for the analysis of 12 G. biloba tablets. Results showed that MSPD produced comparable extraction efficiency but consumed less time and required lower solvent volumes compared with conventional methods. Without hydrolysis, the concentration detected was much closer to the original in the sample. The total flavonol glycoside contents in ginkgo tablets ranged from 3.59 to 125.21μgmg(-1), and the terpene trilactone varied from 3.45 to 57.8μgmg(-1) among different manufacturers. In conclusion, the proposed MSPD and UHPLC-QQQ-MS is rapid and sensitive in providing comprehensive profile of chemical constituents especially the genuine flavonol glycosides for improved quality control of ginkgo products. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  19. Triterpene glycosides with stimulatory activity on melanogenesis from the aerial parts of Weigela subsessilis.

    PubMed

    Won, Yu-Mi; Seong, Zuh-Kyung; Kim, Jae-Lim; Kim, Hui-Seong; Song, Hyuk-Hwan; Kim, Doo-Young; Kim, Jung-Hee; Oh, Sei-Ryang; Cho, Hyun-Woo; Cho, Jung-Hee; Lee, Hyeong-Kyu

    2015-08-01

    Three new triterpene glycosides (Lonicerosides K, L and M) and 11 known compounds were isolated from the aerial parts of Weigela subsessilis. Among the known isolated compounds, loniceroside A, sweroside, kaempferol-3-O-glucopyranoside 6″-(3-hydroxy-3-methylglutarate), kaempferol-3-O-acetylglucoside and grandifloroside were reported for the first time in a Weigela genus plant. Their chemical structures were identified using extensive spectroscopic analysis including two-dimensional (2D)-NMR experiments, HR-ESI-QTOF-MS and comparison with reported data. Among these compounds, lonicerosides A and L had potent melanogenesis stimulatory activity in murine B16F0 melanoma cells. The structural relationship of active compounds was discussed.

  20. [Study on Megastigmane Glycosides and Lignan Constituents from Leaves of Psidium littorale].

    PubMed

    Peng, Cai-ying; Liu, Jian-qun; Shu, Ji-cheng; Zhang, Rui

    2014-12-01

    To study the chemical constituents of the leaves of Psidium littorale. The constituents were isolated with silica gel column chromatography and the structures of these compounds were elucidated on the basis of spectral analysis. Four megastigmane glycosides and three lignans were isolated and their structures were identified as Bridelionoside B(1), Euodinoside E(2), (3S,5R,6R,7E,9S)-Megastignan-7-ene-3,5,6,9-tetrol 9-O-β-D-glucopyranoside (3), Bridelionoside C(4), (--)-Isolaricires-inol 3-α-O-β-D-glucopyranoside (5), (--)-5'-methoxy-Isolariciresinol 3-α-O-β-D-glucopyranoside (6) and dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside(7). Compounds 1-7 are isolated from this plant for the first time. The results have provided the scientific basis for further exploitation of Psidium littoratle.

  1. Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis.

    PubMed

    Itoh, Kimihisa; Hirata, Noriko; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Wakabayashi, Keitaro; Matsuda, Hideaki

    2009-03-01

    The 50% ethanolic extract (CH-ext) obtained from the unripe fruit of Citrus hassaku exhibited significant tyrosinase inhibitory activity. The CH-ext showed antioxidant activity, such as superoxide dismutase (SOD)-like activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Activity-guided fractionation of the CH-ext indicated that flavanone glycoside-rich fractions showed potent tyrosinase inhibitory activity. Further examination revealed that the tyrosinase inhibitory activity and antioxidant activity of the CH-ext were attributable to naringin and neohesperidin, respectively. The CH-ext showed inhibition of melanogenesis without any effects on cell proliferation in cultured murine B16 melanoma cells after glucosamine exposure. The topical application of the CH-ext to the dorsal skin of brownish guinea pigs showed in vivo preventive effects against UVB-induced pigmentation.

  2. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  3. Structural complexes in the squid giant axon membrane sensitive to ionic concentrations and cardiac glycosides

    PubMed Central

    Villegas, GM; Villegas, J

    1976-01-01

    Giant nerve fibers of squid Sepioteuthis sepiodea were incubated for 10 min in artificial sea water (ASW) under control conditions, in the absence of various ions, and in the presence of cardiac glycosides. The nerve fibers were fixed in OsO(4) and embedded in Epon, and structural complexes along the axolemma were studied. These complexes consist of a portion of axolemma exhibiting a three-layered substructure, an undercoating of a dense material (approximately 0.1μm in length and approximately 70-170 A in thickness), and a narrowing to disappearance of the axon-Schwann cell interspace. In the controls, the incidence of complexes per 1,000μm of axon perimeter was about 137. This number decreased to 10-25 percent when magnesium was not present in the incubating media, whatever the calcium concentration (88, 44, or 0 mM). In the presence of magnesium, the number and structural features of the complexes were preserved, though the number decreased to 65 percent when high calcium was simultaneously present. The complexes were also modified and decreased to 26-32 percent by incubating the nerves in solutions having low concentrations of sodium and potassium. The adding of 10(-5) M ouabain or strophanthoside to normal ASW incubating solution decreased them to 20-40 percent. Due to their sensitivity to changes in external ionic concentrations and to the presence of cardiac glycosides, the complexes are proposed to represent the structural correlate of specialized sites for active ion transport, although other factors may be involved. PMID:1254642

  4. New Human CD22/Siglec-2 Ligands with a Triazole Glycoside.

    PubMed

    Prescher, Horst; Schweizer, Astrid; Kuhfeldt, Elena; Nitschke, Lars; Brossmer, Reinhard

    2017-07-04

    CD22 is a member of the Siglec family. Considerable attention has been drawn to the design and synthesis of new Siglec ligands to explore target biology and innovative therapies. In particular, CD22-ligand-targeted nanoparticles with therapeutic functions have proved successful in preclinical settings for blood cancers, autoimmune diseases, and tolerance induction. Here we report the design, synthesis and affinity evaluation of a new class of Siglec ligands: namely sialic acid derivatives with a triazole moiety replacing the natural glycoside oxygen atom. In addition, we describe important and surprising differences in binding to CD22 expressed at the cell surface for compounds with distinct valences. The new class of compounds might serve as a template for the design of ligands for other members of the Siglec family and next-generation CD22-ligand-based targeted therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Teucrium polium phenylethanol and iridoid glycoside characterization and flavonoid inhibition of biofilm-forming Staphylococcus aureus.

    PubMed

    Elmasri, Wael A; Yang, Tianjiao; Tran, Phat; Hegazy, Mohamed-Elamir F; Hamood, Abdul N; Mechref, Yehia; Paré, Paul W

    2015-01-23

    The chemical composition and biofilm regulation of 15 metabolites from Teucrium polium are reported. Compounds were isolated from a CH2Cl2-MeOH extract of the aerial parts of the plant and included iridoid and phenylethanol glycosides and a monoterpenoid, together with nine known compounds. The structures were elucidated based on standard spectroscopic (UV, (1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, HMQC, HMBC, and NOESY), and/or LC-ESIMS/MS data analyses. Inhibition of the biofilm-forming strain Staphylococcus aureus was observed with exposure to compounds 7 and 8.

  6. Pharmacokinetics of flavanone glycosides after ingestion of single doses of fresh-squeezed orange juice versus commercially processed orange juice in healthy humans

    USDA-ARS?s Scientific Manuscript database

    Orange juice is a rich source of flavonoids known to be beneficial to cardiovascular health in humans. The objective of this study was to analyze the pharmacokinetics of the main flavanone glycosides, hesperidin and narirutin, in humans after the consumption of two types of orange juice, fresh squee...

  7. Exhaustive Qualitative LC-DAD-MSn Analysis of Arabica Green Coffee Beans: Cinnamoyl-glycosides and Cinnamoylshikimic Acids as New Polyphenols in Green Coffee.

    PubMed

    Baeza, Gema; Sarriá, Beatriz; Bravo, Laura; Mateos, Raquel

    2016-12-28

    Coffee is one of the most consumed beverages in the world, due to its unique aroma and stimulant properties. Although its health effects are controversial, moderate intake seems to be beneficial. The present work deals with the characterization and quantification of polyphenols and methylxanthines in four Arabica green coffee beans from different geographical origins. The antioxidant activity was also evaluated. Forty-three polyphenols (cinnamic acid, cinnamoyl-amide, 5 cinammoyl-glycosides, and 36 cinnamate esters) were identified using LC-MS n . Among these, cinnamate esters of six different chemical groups (including two dimethoxycinnamoylquinic acid isomers, three caffeoyl-feruloylquinic acid isomers, caffeoyl-sinapoylquinic acid, p-coumaroyl-feruloylquinic acid, two caffeoylshikimic acid isomers, and trimethoxycinnamoylshikimic acid) in addition to five isomers of cinnamoyl-glycosides called caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosic acid (CDOA) are described for the first time in Arabica green coffee beans. Moreover, 38 polyphenols (6-7% w/w) and 2 methylxanthines (1.3% w/w) were quantified by HPLC-DAD. Caffeoylquinic was the most abundant group of compounds (up to 85.5%) followed by dicaffeoylquinic and feruloylquinic acids (up to 8 and 7%, respectively) and the newly identified cinnamoyl-glycosides (CDOA) (up to 2.5%). Caffeine was the main methylxanthine (99.8%), with minimal amounts of theobromine (0.2%). African coffees (from Kenya and Ethiopia) showed higher polyphenolic content than American beans (from Brazil and Colombia), whereas methylxanthine contents varied randomly. Both phenols and methylxanthines contributed to the antioxidant capacity associated with green coffee, with a higher contribution of polyphenols. We conclude that green coffee represents an important source of polyphenols and methylxanthines, with high antioxidant capacity.

  8. UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard green (Brassica juncea (L) Coss variety)

    USDA-ARS?s Scientific Manuscript database

    An UHPLC-PDA-ESI/HRMS/MSn profiling method was used for a comprehensive study of the polyphenols in red mustard greens and identified 209 phenolic compounds: 67 anthocyanin, 102 flavonol glycosides, and 40 hydroxycinnamic acid derivatives. The glycosylation patterns of the flavonoids were assigned ...

  9. Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides.

    PubMed

    Yashunsky, Dmitry V; Tsvetkov, Yury E; Grachev, Alexey A; Chizhov, Alexander O; Nifantiev, Nikolay E

    2016-01-01

    3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comprehensive two-dimensional liquid chromatography tandem diode array detector (DAD) and accurate mass QTOF-MS for the analysis of flavonoids and iridoid glycosides in Hedyotis diffusa.

    PubMed

    Li, Duxin; Schmitz, Oliver J

    2015-01-01

    The analysis of chemical constituents in Chinese herbal medicines (CHMs) is a challenge because of numerous compounds with various polarities and functional groups. Liquid chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (LC/MS) is of particular interest in the analysis of herbal components. One of the main attributes of QTOF that makes it an attractive analytical technique is its accurate mass measurement for both precursor and product ions. For the separation of CHMs, comprehensive two-dimensional chromatography (LCxLC) provides much higher resolving power than traditional one-dimensional separation. Therefore, a LCxLC-QTOF-MS system was developed and applied to the analysis of flavonoids and iridoid glycosides in aqueous extracts of Hedyotis diffusa (Rubiaceae). Shift gradient was applied in the two-dimensional separation in the LCxLC system to increase the orthogonality and effective peak distribution area of the analysis. Tentative identification of compounds was done by accurate mass interpretation and validation by UV spectrum. A clear classification of flavonol glycosides (FGs), acylated FGs, and iridoid glycosides (IGs) was shown in different regions of the LCxLC contour plot. In total, five FGs, four acylated FGs, and three IGs were tentatively identified. In addition, several novel flavonoids were found, which demonstrates that LCxLC-QTOF-MS detection also has great potential in herbal medicine analysis.

  11. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.).

    PubMed

    Zhao, Daqiu; Jiang, Yao; Ning, Chuanlong; Meng, Jiasong; Lin, Shasha; Ding, Wen; Tao, Jun

    2014-08-19

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). Transcriptome sequencing (RNA-Seq) analysis

  12. Reversible and non-reversible changes in nanostructured Si in humid atmosphere

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Pyatilova, O.; Timoshenkov, S.; Gavrilov, S.

    2014-12-01

    Atmosphere water influence in the nanostructured silicon (NSS) was investigated by IR-spectroscopy and electron work function measurement. Long-term non-reversible dynamics of IR-spectra was found as a result of 100% humidity influence on the nanostructured silicon. It was indicated that air humidity affects on the work function. Dynamics of the electron work function consists of reversible and non-reversible components. Reversible component appears as strong anti-correlation between work function and humidity. Work function change of NSS is about 0.4 eV while the humidity changes between 0% and 100%. Reversible component can be explained by physical sorption of water molecules on the surface. Non-reversible component manifests as long-term decreasing trend of work function in humid atmosphere. Transition curve during abruptly humidity changes alters its shape. Non-reversible component can be explained by chemisorption of water.

  13. Three New Sesquiterpene Glycosides from the Rhizomes of Trillium tschonoskii.

    PubMed

    Yang, Jie; Yang, Yin-Jun; Sun, Xin-Guang; Zhang, Jie; Zhao, Yang; Wang, Bei; Ding, Qian-Zhi; Guo, Bao-Lin; Ma, Bai-Ping

    2017-08-02

    Three new sesquiterpene glycosides, possessing a rare aglycone with a sulfonyl between C-1 and C-15 positions, named 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 1 ), 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 2 ), and 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-6'- O -acetyl-(1→4)- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 3 ), respectively, were isolated from the rhizomes of Trillium tschonoskii . Their structures were established on the basis of spectroscopic data, including HR-ESI-MS, IR, 1D and 2D NMR. The cytotoxic properties of the three compounds were investigated using human hepatic L02 cells.

  14. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai

    ABSTRACT Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacteriumThermobispora bisporathat were highly abundant in the most active consortium. Among the cellulases fromT. bispora,more » the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite ofT. bisporahydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered. IMPORTANCECellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose generated communities whose soluble enzymes exhibit differential abilities to

  15. Phenylpropanoid-substituted procyanidins and tentatively identified procyanidin glycosides from hawthorn (Crataegus spp.).

    PubMed

    Sendker, Jandirk; Petereit, Frank; Lautenschläger, Marcus; Hellenbrand, Nils; Hensel, Andreas

    2013-01-01

    The rational use of hawthorn leafs and flowers from Crataegus spp. for declining cardiac performance is mainly due to flavon-C-glycosides and oligomeric procyanidins (OPC). From OPC-enriched extracts from different batches, a dimeric phenylpropanoid-substituted procyanidin (cinchonain II b, 1) was isolated and characterized by MS, CD, and NMR. Also the presence of higher oligomeric cinchonains (degree of polymerization 3 to 8) in hawthorn extracts was shown by a specific ultrahigh-pressure liquid chromatography-ESI-qTOF-MS method. Interestingly, strong evidence for the occurrence of oligomeric procyanidin hexosides was found by ultrahigh-pressure liquid chromatography-ESI-qTOF-MS analysis which additionally revealed the presence of peaks indicative of dimeric procyanidin hexosides by their exact mass, which were clearly distinguishable from the cinchonain II type peaks. Georg Thieme Verlag KG Stuttgart · New York.

  16. Quantitative Analysis and Comparison of Four Major Flavonol Glycosides in the Leaves of Toona sinensis (A. Juss.) Roemer (Chinese Toon) from Various Origins by High-Performance Liquid Chromatography-Diode Array Detector and Hierarchical Clustering Analysis

    PubMed Central

    Sun, Xiaoxiang; Zhang, Liting; Cao, Yaqi; Gu, Qinying; Yang, Huan; Tam, James P.

    2016-01-01

    Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves

  17. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  18. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE PAGES

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.; ...

    2017-11-30

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  19. A "natural" approach: synthesis and cytoxicity of monodesmosidic glycyrrhetinic acid glycosides.

    PubMed

    Schwarz, Stefan; Siewert, Bianka; Xavier, Nuno M; Jesus, Ana R; Rauter, Amélia P; Csuk, René

    2014-01-24

    Several pentacyclic triterpenoic acids have shown noteworthy antitumor activity, among them betulinic acid as well as oleanolic acid and derivatives thereof. Glycyrrhetinic acid (GA) exhibits some cytotoxic activity albeit this compound is not as active as betulinic acid, but GA came in the focus of scientific interest since it triggers apoptosis in tumor cells. In addition, it can be extracted from the roots of liquorice in high yields. Previous studies revealed that the introduction of an extra hydrophilic moiety increases the cytotoxicity of these compounds. Thus, a series of GA glycosides was prepared utilizing hexoses as well as pentoses (in D- and L-configuration) by using glycosyl trichloroacetimidates and TMSOTf as catalyst. The compounds were screened for cytotoxic activity against seven human cancer cell lines and the not malignant murine cell line NIH 3T3using a photometric SRB assay. The compounds trigger apoptosis as shown from extra trypan blue and acridine orange/ethidium bromide staining. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    PubMed Central

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.

    2013-01-01

    Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification. PMID:23986771

  1. Enrichment and Purification of Total Ginkgo Flavonoid O-Glycosides from Ginkgo Biloba Extract with Macroporous Resin and Evaluation of Anti-Inflammation Activities In Vitro.

    PubMed

    Zhang, Lihu; Wu, Tingting; Xiao, Wei; Wang, Zhenzhong; Ding, Gang; Zhao, Linguo

    2018-05-13

    In the present study, the performance and separation characteristics of six macroporous resins for the enrichment and purification of total ginkgo flavonoid O -glycosides (TGFs) (quercetin (I), kaempferol (II), isorhamnetin (III)) from Ginkgo Biloba extracts (EGB) are evaluated. The adsorption and desorption properties of TGFs are studied on macroporous resins, including D101, D201, AB-8, HPD400, D301, and D311. Along with the results, AB-8 resin exhibits the best adsorption and desorption capacity for these three ginkgo flavonoid O -glycosides among the six resins. Adsorption isotherms are created on AB-8 resin and fit well to the Langmuir (R² > 0.96) and Freundlich (R² > 0.92, 0.3 < 1/n < 0.7) models. After the treatment with gradient elution on AB-8 resin packed chromatography column, the contents of the three main ginkgo flavonoid O -glycosides (I, II, and III) increase from 8.93%, 9.88%, and 6.11% in the extracts to 30.12%, 35.21%, and 14.14%, respectively, in the product. The recoveries of compounds I, II, and III are 88.76%, 93.78%, and 60.90%, respectively. Additionally, the anti-inflammatory effects of TGFs are evaluated in LPS-treated RAW 264.7 macrophages, and the result demonstrates that TGFs could significantly inhibit LPS-induced NO release in vitro in a dose-dependent manner compared with the control group. These findings suggest that TGFs could potentially be natural antioxidants and anti-inflammatory ingredients that could be used in pharmaceutical products and functional food additives.

  2. HPLC-ESI-IT-MS/MS Analysis and Biological Activity of Triterpene Glycosides from the Colombian Marine Sponge Ectyoplasia ferox

    PubMed Central

    Colorado-Ríos, Jhonny; Muñoz, Diana; Montoya, Guillermo; Márquez, Diana; Márquez, Maria-Elena; López, Juan; Martínez, Alejandro

    2013-01-01

    The marine sponge Ectyoplasia ferox produces antipredatory and allelopathic triterpenoid glycosides as part of its chemical defense repertoire against predators, competitors, and fouling organisms. These molecules are responsible for the pharmacological potential found in the glycosides present in this species. In order to observe the glycochemical diversity present in E. ferox, a liquid chromatography coupled to a tandem mass spectrometry approach to analyse a complex polar fraction of this marine sponge was performed. This gave valuable information for about twenty-five compounds three of which have been previously reported and another three which were found to be composed of known aglycones. Furthermore, a group of four urabosides, sharing two uncommon substitutions with carboxyl groups at C-4 on the terpenoid core, were identified by a characteristic fragmentation pattern. The oxidized aglycones present in this group of saponins can promote instability, making the purification process difficult. Cytotoxicity, cell cycle modulation, a cell cloning efficiency assay, as well as its hemolytic activity were evaluated. The cytotoxic activity was about IC50 40 µg/mL on Jurkat and CHO-k1 cell lines without exhibiting hemolysis. Discussion on this bioactivity suggests the scanning of other biological models would be worthwhile. PMID:24317472

  3. The effect of left-right reversal on film: Watching Kurosawa reversed

    PubMed Central

    Bertamini, Marco; Bode, Carole; Bruno, Nicola

    2011-01-01

    The mirror reversal of an image is subtly different from the original. Often such change goes unnoticed in pictures, although it can affect preference. For the first time we studied the effect of mirror reversal of feature films. People watched Yojimbo or Sanjuro in a cinema, both classic films by Akira Kurosawa. They knew that this was a study and filled out a questionnaire. On one day Yojimbo was shown in its original orientation, and on another day the film was mirror reversed. Sanjuro was shown reversed on one day and non-reversed on another day. Viewers did not notice the reversal, even when they had seen the film before and considered themselves fans of Kurosawa. We compared this with estimates from a survey. In addition, the question about the use of space (scenography) revealed that although people who had seen the film before gave higher ratings compared with those who had not, this was only true when the film was not reversed. PMID:23145243

  4. Thermodynamics of alpha-Cyclodextrin-p-Nitrophenyl Glycoside Complexes. A Simple System To Understand the Energetics of Carbohydrate Interactions in Water.

    PubMed

    Junquera, Elena; Laynez, José; Menéndez, Margarita; Sharma, Sunil; Penadés, Soledad

    1996-10-04

    Thermodynamic studies of the binding of a series of p-nitrophenyl glycosides (PNPGly) of varying stereochemistry to alpha-cyclodextrin (alpha-CD) were performed at three different temperatures (25, 35, and 42 degrees C) using a microcalorimetric technique. The system p-nitrophenol (PNP) at pH = 3 and alpha-CD was also studied for the sake of comparison. All these complexes were found to be enthalpy driven with a favorable enthalpic term clearly dominant over an unfavorable entropic term. A clear enthalpy-entropy compensation effect was observed at all the temperatures, with a slope close to unity (alpha = 1.02) and an intercept TDeltaS degrees (o) = 2.91 kcal mol(-)(1). This thermodynamic pattern is in agreement with those usually found for lectin-carbohydrate associations and for the binding processes of several host-guest systems. This pattern is explained in terms of the contribution of primarily two driving forces: the van der Waals interactions between the host and the guest, and the solvation/desolvation processes which accompany the association reaction. The presence of the carbohydrate molecule in the PNP ring causes a slight destabilization of the complex at 25 degrees C with respect to the alpha-CD-PNP (pH = 3) complex, although a different behavior has been observed depending on the axial/equatorial configuration of the glycoside and the temperature. This behavior is modulated by the stereochemistry of the glycoside. Differences were observed between the deoxy-derivatives (LAra and LFuc) and those derivatives with a hydroxymethyl group (Glc, Gal, Man). DeltaC(p) degrees values were obtained from the dependency of DeltaH degrees on temperature (=( partial differentialDeltaH degrees / partial differentialT)(p)). These values are small and negative except for alphaMan complex. For the latter complex, discrepancy between the calorimetric and the calculated van't Hoff enthalpies was observed. Parallels are drawn between the thermodynamics of our model and

  5. A New Benzofuran Glycoside and Indole Alkaloids from a Sponge-Associated Rare Actinomycete, Amycolatopsis sp.

    PubMed Central

    Kwon, Yun; Kim, Seong-Hwan; Shin, Yoonho; Bae, Munhyung; Kim, Byung-Yong; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Oh, Dong-Chan

    2014-01-01

    Three new secondary metabolites, amycofuran (1), amycocyclopiazonic acid (2), and amycolactam (3), were isolated from the sponge-associated rare actinomycete Amycolatopsis sp. Based on combined spectroscopic analyses, the structures of 1–3 were determined to be a new benzofuran glycoside and new indole alkaloids related to cyclopiazonic acids, a class that has previously only been reported in fungi. The absolute configurations of 1 and 3 were deduced by ECD calculations, whereas that of 2 was determined using the modified Mosher method. Amycolactam (3) displayed significant cytotoxicity against the gastric cancer cell line SNU638 and the colon cancer cell line HCT116. PMID:24759001

  6. The Effect of Antitumor Glycosides on Glioma Cells and Tissues as Studied by Proton HR-MAS NMR Spectroscopy

    PubMed Central

    García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón

    2013-01-01

    The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925

  7. Predictive modelling of the exposure to steviol glycosides in Irish patients aged 1-3 years with phenylketonuria and cow's milk protein allergy.

    PubMed

    O'Sullivan, Aaron J; Pigat, Sandrine; O'Mahony, Cian; Gibney, Michael J; McKevitt, Aideen I

    2018-01-01

    Children with Phenylketonuria (PKU) and severe cow's milk protein allergy (CMPA) consume prescribed, specially formulated, foods for special medical purposes (FSMPs) as well as restricted amounts of normal foods. These patients are exposed to artificial sweeteners from the consumption of a combination of free and prescribed foods. Young patients with PKU and CMPA have a higher risk of exceeding acceptable daily intakes (ADI) for additives than age-matched healthy children. A predictive modelling approach has been adapted successfully to assess the additive exposure of young patients with PKU and CMPA to artificial sweeteners. Steviol glycosides (E960) are at various stages of regulatory approval for the various food categories in the EU but are not as yet permitted for use in products intended for young children. The aim of this study was to predict potential steviol glycoside exposure in young children with PKU and CMPA considering the potential for future provisions for the use of this sweetener. The recent introduction of steviol glycosides means that no exposure data are available for children with CMPA and PKU. Food consumption data were derived from the food consumption survey data of healthy young children in Ireland from the National Preschool and Nutrition Survey (NPNS, 2010-11). Specially formulated amino acid-based FSMPs are used to replace whole or milk protein foods and were included in the exposure model to replace restricted foods. The recommendations to ensure adequate protein intake in these patients were used to determine FSMP intake. Exposure assessment results indicated that the maximum permitted level (MPL) for FSMPs would warrant careful consideration to avoid exposures above the ADI. These data can be used to inform recommendations for the medical nutrition industry.

  8. Crystal Structure of Glycoside Hydrolase Family 55 β-1,3-Glucanase from the Basidiomycete Phanerochaete chrysosporium*S⃞

    PubMed Central

    Ishida, Takuya; Fushinobu, Shinya; Kawai, Rie; Kitaoka, Motomitsu; Igarashi, Kiyohiko; Samejima, Masahiro

    2009-01-01

    Glycoside hydrolase family 55 consists of β-1,3-glucanases mainly from filamentous fungi. A β-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes β-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from β-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two β-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two β-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various β-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two β-helical domains, demonstrating an unexpected variety of carbohydrate binding modes. PMID:19193645

  9. The Role of Arabidopsis ABCG9 and ABCG31 ATP Binding Cassette Transporters in Pollen Fitness and the Deposition of Steryl Glycosides on the Pollen Coat[W

    PubMed Central

    Choi, Hyunju; Ohyama, Kiyoshi; Kim, Yu-Young; Jin, Jun-Young; Lee, Saet Buyl; Yamaoka, Yasuyo; Muranaka, Toshiya; Suh, Mi Chung; Fujioka, Shozo; Lee, Youngsook

    2014-01-01

    The pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure. We found that two Arabidopsis thaliana ATP binding cassette transporters, ABCG9 and ABCG31, were highly expressed in the tapetum and are involved in pollen coat deposition. Upon exposure to dry air, many abcg9 abcg31 pollen grains shriveled up and collapsed, and this phenotype was restored by complementation with ABCG9pro:GFP:ABCG9. GFP-tagged ABCG9 or ABCG31 localized to the plasma membrane. Electron microscopy revealed that the mutant pollen coat resembled the immature coat of the wild type, which contained many electron-lucent structures. Steryl glycosides were reduced to about half of wild-type levels in the abcg9 abcg31 pollen, but no differences in free sterols or steryl esters were observed. A mutant deficient in steryl glycoside biosynthesis, ugt80A2 ugt80B1, exhibited a similar phenotype. Together, these results indicate that steryl glycosides are critical for pollen fitness, by supporting pollen coat maturation, and that ABCG9 and ABCG31 contribute to the accumulation of this sterol on the surface of pollen. PMID:24474628

  10. Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis.

    PubMed

    Lu, Lili; Liu, Qian; Jin, Lan; Yin, Zhenhao; Xu, Li; Xiao, Min

    2015-01-01

    Rhamnose containing chemicals (RCCs) are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the α-L-rhamnosidases with wide acceptor specificity. In this work, an α-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be α-L-rhamnopyranosyl-(1→6')-D-mannitol, α-L-rhamnopyranosyl-(1→1')-β-D-fructopyranose, and 6,7-dihydroxycoumarin α-L-rhamnopyranosyl-(1→6')-β-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides.

  11. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii.

    PubMed

    Xiu, Yu; Wu, Guodong; Tang, Wensi; Peng, Zhengfeng; Bu, Xiangpan; Chao, Longjun; Yin, Xue; Xiong, Jiannan; Zhang, Haiwu; Zhao, Xiaoqing; Ding, Jing; Ma, Lvyi; Wang, Huafang; van Staden, Johannes

    2018-06-04

    Paeonia ostii var. lishizhenii, a well-known medicinal and horticultural plant, is indigenous to China. Recent studies have shown that its seed has a high oil content, and it was approved as a novel resource of edible oil with a high level of α-linolenic acid by the Chinese Government. This study measured the seed oil contents and fatty acid components of P. ostii var. lishizhenii and six other peonies, P. suffruticosa, P. ludlowii, P. decomposita, P. rockii, and P. lactiflora Pall. 'Heze' and 'Gansu'. The results show that P. ostii var. lishizhenii exhibits the average oil characteristics of tested peonies, with an oil content of 21.3%, α-linolenic acid 43.8%, and unsaturated fatty acids around 92.1%. Hygiene indicators for the seven peony seed oils met the Chinese national food standards. P. ostii var. lishizhenii seeds were used to analyze transcriptome gene regulation networks on endosperm development and oil biosynthesis. In total, 124,117 transcripts were obtained from six endosperm developing stages (S0-S5). The significant changes in differential expression genes (DEGs) clarify three peony endosperm developmental phases: the endosperm cell mitotic phase (S0-S1), the TAG biosynthesis phase (S1-S4), and the mature phase (S5). The DEGs in plant hormone signal transduction, DNA replication, cell division, differentiation, transcription factors, and seed dormancy pathways regulate the endosperm development process. Another 199 functional DEGs participate in glycolysis, pentose phosphate pathway, citrate cycle, FA biosynthesis, TAG assembly, and other pathways. A key transcription factor (WRI1) and some important target genes (ACCase, FATA, LPCAT, FADs, and DGAT etc.) were found in the comprehensive genetic networks of oil biosynthesis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Enzymatic acylation of flavonoid glycosides by a carbohydrate esterase of family 16.

    PubMed

    Biely, Peter; Cziszárová, Mária; Wong, Ken K Y; Fernyhough, Alan

    2014-11-01

    The acetyl esterase of Trichoderma reesei belonging to carbohydrate esterase (CE) family 16 catalyzes transacylations to carbohydrate moieties of flavonoid glycosides, esculin and rutin. The enzyme recognizes as acyl donors vinyl esters of short carboxylic acids. Esculin was acylated at position 3 of the glucosyl residue in aqueous solutions saturated with vinyl acetate and vinyl propionate. The yields of esculin monoacetate and monopropionate of esculin in aqueous medium (esculin 40 mM, enzyme 40 µg/ml, 40 °C, 3 days) were 67 and 55 %, respectively. Replacement of water by 2-propanol was required for a similar acylation of rutin at 4 mM concentration. The yields of rutin monoacetate and propionate were 60 and 30 %, respectively. The results indicate that the enzyme could be used for an easy modification of solubility and hydrophobicity of glycosylated compounds, including drugs and functional food additives.

  13. Anti-inflammatory steroidal glycosides from the berries of Solanum nigrum L. (European black nightshade).

    PubMed

    Xiang, Limin; Wang, Yihai; Yi, Xiaomin; He, Xiangjiu

    2018-04-01

    Seven previously undescribed steroidal glycosides, along with three known congeners were isolated from the unripe berries of Solanum nigrum L. (Solanaceae). Their structures were elucidated on basis of 1D and 2D NMR, HR-ESI-MS spectroscopic data and GC analysis after acid hydrolysis. The potential inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide in RAW 264.7 cell line and the anti-proliferative activities against five cancer cell lines (HL-60, U-937, Jurkat, K562 and HepG2) were evaluated. Seven compounds exhibited inhibition activities on NO production with IC 50 values ranging from 11.33 to 49.35 μM. Structure-activity relationships of the isolated compounds were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Reverse Dynamization

    PubMed Central

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-01-01

    Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327

  15. Toxicological study of the different organs of Corchorus olitorius L. plant with special reference to their cardiac glycosides content.

    PubMed

    Negm, S; El-Shabrawy, O; Arbid, M; Radwan, A S

    1980-03-01

    The acute toxicity of the alcoholic extracts of seeds, roots stems and leaves of the fully mature Corchorus olitorius L. plant was determined in mice by intraperitoneal injection. The cardiac glycosides content of each extract was estimated and the correlation between the two investigated parameters was established. The chronic toxicity of the alcoholic extract of the seeds was determined in term of its haematological and symptomatical effects on mice upon intraperitoneal injection for a period of two months.

  16. Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds.

    PubMed

    Kim, Yeong-Su; Yeom, Soo-Jin; Oh, Deok-Kun

    2011-11-09

    A recombinant β-glucosidase from Dictyoglomus turgidum was purified with a specific activity of 31 U/mg by His-Trap affinity chromatography. D. turgidum β-glucosidase was identified as a memmber of the glycoside hydrolase (GH) 3 family on the basis of its amino acid sequence. The native enzyme existed as an 86 kDa monomer with an activity maximum at pH 5 and 85 °C with a half-life of 334 min. The hydrolytic activity of the enzyme with aryl-glycoside substrates was the highest for p-nitrophenyl (pNP)-β-D-glucopyranoside (with a K(m) of 1.3 mM and a k(cat) of 13900 1/s), followed by oNP-β-D-glucopyranoside, pNP-β-D-xylopyranoside, pNP-β-D-fucopyranoside, and pNP-β-D-galactopyranoside. However, no activity was observed for oNP-β-D-galactopyranoside, pNP-α-D-glucopyranoside, pNP-α-D-glucopyranoside, pNP-β-D-mannopyranoside, pNP-β-L-arabinopyranoside, and pNP-α-L-rhamnopyranoside. The hydrolytic activity of the β-glucosidase for coffee isoflavones followed the order genistin (with a K(m) of 0.67 mM and a k(cat) of 5750 1/s) > daidzin > ononin > glycitin. The concentrations of daidzin in ground coffee and spent coffee grounds were 160 and 107 μg/g, respectively, but other isoflavones were present at low concentrations or absent. The enzyme completely hydrolyzed 1.2 mM daidzin in spent coffee grounds after 2 h, with a productivity of 0.6 mM/h. This is the first report concerning the enzymatic hydrolysis of isoflavone glycosides in spent coffee grounds.

  17. Synthesis of dihydroresveratrol glycosides and evaluation of their activity against melanogenesis in B16F0 melanoma cells.

    PubMed

    Oode, Chisato; Shimada, Wataru; Izutsu, Yukiko; Yokota, Mariko; Iwadate, Takehiro; Nihei, Ken-ichi

    2014-11-24

    Dihydroresveratrol glucoside 1 isolated from Camellia oleifera and its xyloside derivative 2 were synthesized for the first time in 5 steps from TBS-protected aldehyde 4. Natural product 1 is a potent melanogenesis inhibitor in B16F0 melanoma cells (approximately 40 fold more potent than kojic acid). In contrast, the synthetic product 2 stimulates melanogenesis, suggesting that a single hydroxymethyl group in the glycoside substituent of dihydroresveratrols is responsible for inhibition or activation of melanogenesis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  19. The preparation of Cistanche phenylethanoid glycosides liquid proliposomes: Optimized formulation, characterization and proliposome dripping pills in vitro and in vivo evaluation.

    PubMed

    Li, Meng; Li, Yunjing; Liu, Weiwei; Li, Rongli; Qin, Cuiying; Liu, Nan; Han, Jing

    2016-10-10

    Water-soluble Cistanche phenylethanoid glycosides (CPhGs) have poor permeability and low bioavailability. However, liposomes can improve the permeability of such drugs and their poor stability, and proliposomes have been used to overcome these problems. Based on this, Cistanche phenylethanoid glycoside liquid proliposomes (CPhGsP) and dripping(?) pills were prepared and optimized using response surface methodology. The properties of CPhGsP were evaluated in terms of their encapsulation efficiency, particle size, zeta potential, and morphology. The results obtained showed that the optimal formulation was drug/soybean phospholipid/poloxamer-188/sodium deoxycholate/propylene glycol 1:22.38:3.52:0.84:80 (w/w/w/w/v). This resulted in an encapsulation efficiency, particle size, and zeta potential of hydrated proliposomes with phosphate buffer solution (pH7.4) of 51.97%, 671.7nm, and -25.49mV, respectively. Stability testing of CPhGsP and CPhGs ordinary liposomes was carried out for 3months at 4±2°C, 25±2°C, 40±2°C, 75±5% RH. The results obtained showed that the stability of the proliposomes was better than that of ordinary liposomes at the same temperature, while a lower temperature of 4°C is ideal for storage. Cistanche phenylethanoid glycoside liquid proliposomes dripping pills (CPhGsPD) are efficiently released in gastrointestinal solution as shown by in vitro release experiments and the structure of the liposomes does not destroy the proliposome dripping pills by hydration. In vivo experiments showed that the areas under the plasma level-time curves and peak concentrations of CPhGsPD and hydrated proliposomes were higher than those of CPhGs. Moreover, with CPhGsPD, the pharmacokinetic parameters were similar to those with hydrated proliposomes. These results showed that CPhGsPD offer a good way to improve the oral delivery of CPhGs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Engineering glycoside hydrolase stability by the introduction of zinc binding

    DOE PAGES

    Ellinghaus, Thomas L.; Pereira, Jose H.; McAndrew, Ryan P.; ...

    2018-06-27

    The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activitymore » with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn 2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.« less

  1. Engineering glycoside hydrolase stability by the introduction of zinc binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellinghaus, Thomas L.; Pereira, Jose H.; McAndrew, Ryan P.

    The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activitymore » with a relatively low optimal temperature (50°C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn 2+ site, the thermal tolerance was increased by more than 10°C and was paralleled by an increase in the catalytic optimum temperature by more than 5°C.« less

  2. Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry.

    PubMed

    Jin, Yu; Xiao, Yuan-sheng; Zhang, Fei-fang; Xue, Xing-ya; Xu, Qing; Liang, Xin-miao

    2008-02-13

    The traditional Chinese medicine (TCM) is a complex system, which always consists of numerous compounds with significant difference in the content and physical and chemical properties. In this paper, a screening method based on target molecular weights was developed to characterize the flavonoid glycosides in the flower of Carthamus tinctorius L. The screening tables of aglycone and glycan were designed, respectively, in order to select and combine freely. The multiple reaction monitoring (MRM) scan mode with higher sensitivity and selectivity was adopted in the screening, which benefit the characterization for the minor components. Seventy-seven flavonoid glycosides were screened out finally, and their structures were characterized by tandem mass spectrometric method in both positive and negative ion modes. The glycosylation mode, aglycone, sequence and/or the interglycosidic linkages of the glycan portion and glycosylation position were elucidated by the fragmentation rule in the MS. Numerous compounds screened out with this method showed the structure variety in secondary plant metabolites, and the purposeful screening systemically and subsequent structure characterization offered more information about the chemical constitutions of TCM.

  3. Cyprotuoside C and Cyprotuoside D, Two New Cycloartane Glycosides from the Rhizomes of Cyperus rotundus.

    PubMed

    Lin, San-Qing; Zhou, Zhong-Liu; Li, Chun-Yan

    2018-01-01

    Cyprotuoside C (1) and cyprotuoside D (2), two new cycloartane glycosides were isolated from the ethanol extract of the rhizomes of Cyperus rotundus. Their structures were identified as 24R-9,10-seco-cycloartan-1(10),9(11)-dien-3β,7β,24,25-tetraol 3-O-β-D-xylopyranosyl-(1→4)-[α-L-arabinopyranosyl-(1→6)]-β-D-glucopyranosyl-25-O-β-D-glucuronide (1) and 9,10-seco-cycloartan-1(10),9(11),23(24)-trien-3β,7β,25-triol 3-O-β-D-xylopyranosyl-(1→4)-{α-L-arabinopyranosyl-(1→6)-[α-L-rhamnopyranosyl-(1→2)]}-β-D-glucopyranosyl-25-O-β-D-glucuronide (2) by spectroscopic methods.

  4. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity.

    PubMed

    dos Santos, Alda E; Kuster, Ricardo M; Yamamoto, Kristie A; Salles, Tiago S; Campos, Renata; de Meneses, Marcelo D F; Soares, Márcia R; Ferreira, Davis

    2014-03-28

    The arthropod-borne Mayaro virus (MAYV) causes 'Mayaro fever', a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus.

  5. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity

    PubMed Central

    2014-01-01

    Background The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus. PMID:24678592

  6. New chalcanonol glycoside from the seeds of saw palmetto: antiproliferative and antioxidant effects.

    PubMed

    Abdel Bar, Fatma M

    2015-01-01

    A new chalcanonol glycoside dimer, bis-O-[(I-4') → (II-6')]-α-hydroxyphloretin-2'-O-β-glucoside (1), in addition to six known compounds, namely (-)-epicatechin (2) and (-)-epiafzelechin (3), 4-hydroxybenzoic acid (4), protocatechuic acid (5), methylgallate (6), β-sitosterol (7) and β-sitosterol-3-O-glucoside (8), was isolated from the seeds of saw palmetto. The structures of the isolated compounds were established from the analysis of their MS and 1D and 2D NMR spectroscopic data. The antiproliferative activities of the isolated compounds towards PC3, the human prostate cancer cells were investigated. Amongst the isolated compounds, the new compound and the sterolic derivatives showed antiproliferative effects. Screening of the antioxidant effects of the isolated compounds by 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid radical assay revealed that the isolated phenolics were active free radical scavengers.

  7. Biotransformation of lignan glycoside to its aglycone by Woodfordia fruticosa flowers: quantification of compounds using a validated HPTLC method.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2017-12-01

    Saraca asoca Linn. (Caesalpiniaceae) is an important traditional remedy for gynaecological disorders and it contains lyoniside, an aryl tetralin lignan glycoside. The aglycone of lyoniside, lyoniresinol possesses structural similarity to enterolignan precursors which are established phytoestrogens. This work illustrates biotransformation of lyoniside to lyoniresinol using Woodfordia fruticosa Kurz. (Lythraceae) flowers and simultaneous quantification of lyoniside and lyoniresinol using a validated HPTLC method. The aqueous extract prepared from S. asoca bark was fermented using W. fruticosa flowers. The substrate and fermented product both were simultaneously analyzed using solvent system:toluene:ethyl acetate:formic acid (4:3:0.4) at 254 nm. The method was validated for specificity, accuracy, precision, linearity, sensitivity and robustness as per ICH guidelines. The substrate showed the presence of lyoniside, however, it decreased as the fermentation proceeded. On 3rd day, lyoniresinol starts appearing in the medium. In 8 days duration most of the lyoniside converted to lyoniresinol. The developed method was specific for lyoniside and lyoniresinol. Lyoniside and lyoniresinol showed linearity in the range of 250-3000 and 500-2500 ng. The method was accurate as resulted in 99.84% and 99.83% recovery, respectively, for lyoniside and lyoniresinol. Aryl tetralin lignan glycoside, lyoniside was successfully transformed into lyoniresinol using W. fruticosa flowers and their contents were simultaneously analyzed using developed validated HPTLC method.

  8. Time reversal acoustics for small targets using decomposition of the time reversal operator

    NASA Astrophysics Data System (ADS)

    Simko, Peter C.

    The method of time reversal acoustics has been the focus of considerable interest over the last twenty years. Time reversal imaging methods have made consistent progress as effective methods for signal processing since the initial demonstration that physical time reversal methods can be used to form convergent wave fields on a localized target, even under conditions of severe multipathing. Computational time reversal methods rely on the properties of the so-called 'time reversal operator' in order to extract information about the target medium. Applications for which time reversal imaging have previously been explored include medical imaging, non-destructive evaluation, and mine detection. Emphasis in this paper will fall on two topics within the general field of computational time reversal imaging. First, we will examine previous work on developing a time reversal imaging algorithm based on the MUltiple SIgnal Classification (MUSIC) algorithm. MUSIC, though computationally very intensive, has demonstrated early promise in simulations using array-based methods applicable to true volumetric (three-dimensional) imaging. We will provide a simple algorithm through which the rank of the time reversal operator subspaces can be properly quantified so that the rank of the associated null subspace can be accurately estimated near the central pulse wavelength in broadband imaging. Second, we will focus on the scattering from small acoustically rigid two dimensional cylindrical targets of elliptical cross section. Analysis of the time reversal operator eigenmodes has been well-studied for symmetric response matrices associated with symmetric systems of scattering targets. We will expand these previous results to include more general scattering systems leading to asymmetric response matrices, for which the analytical complexity increases but the physical interpretation of the time reversal operator remains unchanged. For asymmetric responses, the qualitative properties of the

  9. Quantitative analysis of steroidal glycosides in different organs of Easter lily (Lilium longiflorum Thunb.) by LC-MS/MS.

    PubMed

    Munafo, John P; Gianfagna, Thomas J

    2011-02-09

    The bulbs of the Easter lily ( Lilium longiflorum Thunb.) are regularly consumed in Asia as both food and medicine, and the beautiful white flowers are appreciated worldwide as an attractive ornamental. The Easter lily is a rich source of steroidal glycosides, a group of compounds that may be responsible for some of the traditional medicinal uses of lilies. Since the appearance of recent reports on the role steroidal glycosides in animal and human health, there is increasing interest in the concentration of these natural products in plant-derived foods. A LC-MS/MS method performed in multiple reaction monitoring (MRM) mode was used for the quantitative analysis of two steroidal glycoalkaloids and three furostanol saponins, in the different organs of L. longiflorum. The highest concentrations of the total five steroidal glycosides were 12.02 ± 0.36, 10.09 ± 0.23, and 9.36 ± 0.27 mg/g dry weight in flower buds, lower stems, and leaves, respectively. The highest concentrations of the two steroidal glycoalkaloids were 8.49 ± 0.3, 6.91 ± 0.22, and 5.83 ± 0.15 mg/g dry weight in flower buds, leaves, and bulbs, respectively. In contrast, the highest concentrations of the three furostanol saponins were 4.87 ± 0.13, 4.37 ± 0.07, and 3.53 ± 0.06 mg/g dry weight in lower stems, fleshy roots, and flower buds, respectively. The steroidal glycoalkaloids were detected in higher concentrations as compared to the furostanol saponins in all of the plant organs except the roots. The ratio of the steroidal glycoalkaloids to furostanol saponins was higher in the plant organs exposed to light and decreased in proportion from the aboveground organs to the underground organs. Additionally, histological staining of bulb scales revealed differential furostanol accumulation in the basal plate, bulb scale epidermal cells, and vascular bundles, with little or no staining in the mesophyll of the bulb scale. An understanding of the distribution of steroidal glycosides in the different

  10. An algebra of reversible computation.

    PubMed

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  11. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages.

    PubMed

    Rico-Díaz, Agustín; Ramírez-Escudero, Mercedes; Vizoso-Vázquez, Ángel; Cerdán, M Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2017-06-01

    β-Galactosidases are biotechnologically interesting enzymes that catalyze the hydrolysis or transgalactosylation of β-galactosides. Among them, the Aspergillus niger β-galactosidase (AnβGal) belongs to the glycoside hydrolase family 35 (GH35) and is widely used in the industry due to its high hydrolytic activity which is used to degrade lactose. We present here its three-dimensional structure in complex with different oligosaccharides, to illustrate the structural determinants of the broad specificity of the enzyme against different glycoside linkages. Remarkably, the residues Phe264, Tyr304, and Trp806 make a dynamic hydrophobic platform that accommodates the sugar at subsite +1 suggesting a main role on the recognition of structurally different substrates. Moreover, complexes with the trisaccharides show two potential subsites +2 depending on the substrate type. This feature and the peculiar shape of its wide cavity suggest that AnβGal might accommodate branched substrates from the complex net of polysaccharides composing the plant material in its natural environment. Relevant residues were selected and mutagenesis analyses were performed to evaluate their role in the catalytic performance and the hydrolase/transferase ratio of AnβGal. Thus, we generated mutants with improved transgalactosylation activity. In particular, the variant Y304F/Y355H/N357G/W806F displays a higher level of galacto-oligosaccharides production than the Aspergillus oryzae β-galactosidase, which is the preferred enzyme in the industry owing to its high transferase activity. Our results provide new knowledge on the determinants modulating specificity and the catalytic performance of fungal GH35 β-galactosidases. In turn, this fundamental background gives novel tools for the future improvement of these enzymes, which represent an interesting target for rational design. Structural data are available in PDB database under the accession numbers 5IFP (native form), 5IHR (in complex with 6

  12. Reversibility of female sterilization.

    PubMed

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  13. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry.

    PubMed

    Qi, Lian-Wen; Chen, Chun-Yun; Li, Ping

    2009-10-01

    A fast liquid chromatography method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF-MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8-microm porous particles (4.6 x 50 mm), three times faster than the performance of conventional 5.0-microm columns (4.6 x 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD-TOF-MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)-TOF-MS experiments, elimination of a glucose unit (162 Da), and successive losses of H(2)O, CH(3)OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M-H-caffeoyl](-) by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H(2)O, CO, RDA and C-ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the 'full mass spectral' information of TOF-MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. A new aurone glycoside with antifungal activity from marine-derived fungus Penicillium sp. FJ-1.

    PubMed

    Song, Yan-xia; Ma, Qiang; Li, Jie

    2015-03-01

    Endophytic fungi which reside in the tissue of mangrove plants seem to play an important role in the discovery of new biologically active substances. During the course of screening for the antimicrobial metabolites from the endophytic fugus Penicillium sp. FJ-1 of mangrove plant Avicennia marina, a new aurone glycoside (1) was isolated by repeated column chromatography on silica gel and recrystallization methods. The structure of 1 was elucidated as (Z)-7,4'-dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside, on the basis of spectroscopic analysis. Compound 1 exhibited antifungal activity against Candida sp., with the potency comparable to amphotericin B and much better than fluconazole. Compound 1 can also inhibit extracellular phospholipase secretion in a concentration-dependent manner.

  15. Fast characterization of C-glycoside acetophenones in Medemia argun male racemes (an Ancient Egyptian palm) using LC-MS analyses and computational study with their antioxidant effect

    NASA Astrophysics Data System (ADS)

    Ben Said, Ridha; Hamed, Arafa I.; Essalah, Khaled; Al-Ayed, Abdullah S.; Boughdiri, Salima; Tangour, Bahoueddine; Kowalczyk, Mariusz; Moldoch, Jaroslaw; Mahalel, Usama A.; Olezek, Wolesow; Stochmal, Anna

    2017-10-01

    Medemia argun is an ancient endemic palm growing in Nubian Desert of Egypt and Sudan. Liquid chromatography coupled with mass spectrometry in negative ion mode (LC/ESI-MS) has proved to be a potent tool for rapid identification and characterization of complex phytochemicals in male racemes of M. argun. A total of seven compounds were tentatively identified comprising of two C-glycoside acetophenones, along with the known compounds one stilbene derivative and four known flavonol derivatives from 40% methanolic portion. The product ions of acetophenone derivatives [M-H]- were shown to be cross-ring cleavages of the hexoside moiety [M-(90/120)-H]- characteristic for C-glycoside linkage. The position of Csbnd C-linkage was elucidated by DFT study using the Fukui functions and descriptors. The results revealed that hexose was conjugated with aglycones at C3 or C5. In addition, the theoretical antioxidant activity of compounds 6 and 7 was evaluated by using Bond Dissociation Enthalpy (BDE).

  16. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  17. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  18. Computational Investigation of the pH Dependence of Loop Flexibility and Catalytic Function in Glycoside Hydrolases*

    PubMed Central

    Bu, Lintao; Crowley, Michael F.; Himmel, Michael E.; Beckham, Gregg T.

    2013-01-01

    Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ∼5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pKa values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pKa values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pKa values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes. PMID:23504310

  19. A beta-l-Arabinopyranosidase from Streptomyces avermitilis is a novel member of glycoside hydrolase family 27.

    PubMed

    Ichinose, Hitomi; Fujimoto, Zui; Honda, Mariko; Harazono, Koichi; Nishimoto, Yukifumi; Uzura, Atsuko; Kaneko, Satoshi

    2009-09-11

    Arabinogalactan proteins (AGPs) are a family of plant cell surface proteoglycans and are considered to be involved in plant growth and development. Because AGPs are very complex molecules, glycoside hydrolases capable of degrading AGPs are powerful tools for analyses of the AGPs. We previously reported such enzymes from Streptomyces avermitilis. Recently, a beta-l-arabinopyranosidase was purified from the culture supernatant of the bacterium, and its corresponding gene was identified. The primary structure of the protein revealed that the catalytic module was highly similar to that of glycoside hydrolase family 27 (GH27) alpha-d-galactosidases. The recombinant protein was successfully expressed as a secreted 64-kDa protein using a Streptomyces expression system. The specific activity toward p-nitrophenyl-beta-l-arabinopyranoside was 18 micromol of arabinose/min/mg, which was 67 times higher than that toward p- nitrophenyl-alpha-d-galactopyranoside. The enzyme could remove 0.1 and 45% l-arabinose from gum arabic or larch arabinogalactan, respectively. X-ray crystallographic analysis reveals that the protein had a GH27 catalytic domain, an antiparallel beta-domain containing Greek key motifs, another antiparallel beta-domain forming a jellyroll structure, and a carbohydrate-binding module family 13 domain. Comparison of the structure of this protein with that of alpha-d-galactosidase showed a single amino acid substitution (aspartic acid to glutamic acid) in the catalytic pocket of beta-l-arabinopyranosidase, and a space for the hydroxymethyl group on the C-5 carbon of d-galactose bound to alpha-galactosidase was changed in beta-l-arabinopyranosidase. Mutagenesis study revealed that the residue is critical for modulating the enzyme activity. This is the first report in which beta-l-arabinopyranosidase is classified as a new member of the GH27 family.

  20. Putative identification of new p-coumaroyl glycoside flavonoids in grape by ultra-high performance liquid chromatography/high-resolution mass spectrometry.

    PubMed

    Panighel, Annarita; De Rosso, Mirko; Dalla Vedova, Antonio; Flamini, Riccardo

    2015-02-28

    Grape polyphenols are antioxidant compounds, markers in vine chemotaxonomy, and involved in color stabilization of red wines. Sugar acylation usually confers higher stability on glycoside derivatives and this effect is enhanced by an aromatic substituent such as p-coumaric acid. Until now, only p-coumaroyl anthocyanins have been found in grape. A method of 'suspect screening analysis' by ultra-high-performance liquid chromatography/high-resolution mass spectrometry (UHPLC/QTOFMS) has recently been developed to study grape metabolomics. In the present study, this approach was used to identify new polyphenols in grape by accurate mass measurement, MS/MS fragmentation, and study of correlations between fragments observed and putative structures. Three putative p-coumaroyl flavonoids were identified in Raboso Piave grape extract: a dihydrokaempferide-3-O-p-coumaroylhexoside-like flavanone, isorhamnetin-3-O-p-coumaroylglucoside, and a chrysoeriol-p-coumaroylhexoside-like flavone. Accurate MS provided structural characterization of functional groups, and literature data indicates their probable position in the molecule. A fragmentation scheme is proposed for each compound. Compounds were identified by overlapping various analytical methods according to recommendations in the MS-based metabolomics literature. Stereochemistry and the definitive position of substituents in the molecule can only be confirmed by isolation and characterization or synthesis of each compound. These findings suggest addressing research of acylated polyphenol glycosides to other grape varieties. Copyright © 2015 John Wiley & Sons, Ltd.