Science.gov

Sample records for peptidase iv inhibition

  1. Generation of dipeptidyl peptidase-IV-inhibiting peptides from β-lactoglobulin secreted by Lactococcus lactis.

    PubMed

    Shigemori, Suguru; Oshiro, Kazushi; Wang, Pengfei; Yamamoto, Yoshinari; Wang, Yeqin; Sato, Takashi; Uyeno, Yutaka; Shimosato, Takeshi

    2014-01-01

    Previous studies showed that hydrolysates of β-lactoglobulin (BLG) prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV) activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus. PMID:25157356

  2. In vivo inhibition of dipeptidyl peptidase IV activity by pro-pro-diphenyl-phosphonate (Prodipine).

    PubMed

    De Meester, I; Belyaev, A; Lambeir, A M; De Meyer, G R; Van Osselaer, N; Haemers, A; Scharpé, S

    1997-07-01

    Dipeptidyl peptidase IV (DPP IV, EC 3.4.14.5), also known as CD26, is a membrane-bound serine protease that cleaves off aminoterminal dipeptides from peptides with a penultimate proline (or, at a much slower rate, a penultimate alanine). Recently, we synthesized and characterized a number of dipeptide-derived diphenylphosphonates. Out of the resulting series of slow-binding irreversible inhibitors of DPP IV, diphenyl 1-(S)-prolylpyrrolidine-2(R,S)-phosphonate hydrochloride (Pro-Pro-diphenylphosphonate or Prodipine) was selected for further study. We investigated the in vivo applicability of Prodipine. Male rabbits weighing 3-4 kg received a single intravenous injection with 10 mg Prodipine or saline. After 1 hr, plasma DPP IV activity had decreased to less than 20% of the preinjection value and remained unchanged during a 24-hr observation period. In a next step, we aimed to study (i) the dose dependency and (ii) the duration of the effect after a single intravenous dose of Prodipine. A profound and long-lasting inhibition of plasma DPP IV activity was observed in the treated animals (1, 5 or 10 mg). It took 5 to 8 days to reach half of the pretreatment DPP IV activity and generally more than 20 days for a complete recovery. Systemic treatment with Prodipine not only led to inhibition of plasma DPP IV activity but also decreased tissue DPP IV activity in circulating mononuclear cells, kidney cortex, thymus, spleen, lung, and liver. No differences in activities of the related peptidases aminopeptidase P (APP, EC 3.4.11.9), prolyl oligopeptidase (PO, EC 3.4.21.26), or aminopeptidase M (mAAP, EC 3.4.11.2) were detected between Prodipine-treated and control rabbits. The in vivo applicability of this chemically stable, irreversible inhibitor of DPP IV opens new possibilities, not only to further unravel the biological functions of this intriguing ectopeptidase, but also to explore this enzyme as a new target in various fields of pharmacological research.

  3. Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII.

    PubMed Central

    Leiting, Barbara; Pryor, KellyAnn D; Wu, Joseph K; Marsilio, Frank; Patel, Reshma A; Craik, Charles S; Ellman, Jonathan A; Cummings, Richard T; Thornberry, Nancy A

    2003-01-01

    There is currently intense interest in the emerging group of proline-specific dipeptidases, and their roles in the regulation of biological processes. Dipeptidyl peptidase IV (DPP-IV) is involved in glucose metabolism by contributing to the regulation of glucagon family peptides and has emerged as a potential target for the treatment of metabolic diseases. Two other proline-specific dipeptidases, DPP-VII (also known as quiescent cell proline dipeptidase) and DPP-II, have unknown functions and have recently been suggested to be identical proteases based on a sequence comparison of human DPP-VII and rat DPP-II (78% identity) [Araki, Li, Yamamoto, Haneda, Nishi, Kikkawa and Ohkubo (2001) J. Biochem. 129, 279-288; Fukasawa, Fukasawa, Higaki, Shiina, Ohno, Ito, Otogoto and Ota (2001) Biochem. J. 353, 283-290]. To facilitate the identification of selective substrates and inhibitors for these enzymes, a complete biochemical profile of these enzymes was obtained. The pH profiles, substrate specificities as determined by positional scanning, Michaelis-Menten constants and inhibition profiles for DPP-VII and DPP-II were shown to be virtually identical, strongly supporting the hypothesis that they are the same protease. In addition, substrate specificities, catalytic constants and IC(50) values were shown to be markedly different from those of DPP-IV. Selective DPP-IV and DPP-VII substrates were identified and they can be used to design selective inhibitors and probe further into the biology of these enzymes. PMID:12529175

  4. Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure.

    PubMed

    Arruda-Junior, Daniel F; Martins, Flavia L; Dariolli, Rafael; Jensen, Leonardo; Antonio, Ednei L; Dos Santos, Leonardo; Tucci, Paulo J F; Girardi, Adriana C C

    2016-01-01

    Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for 4 weeks with vildagliptin (120 mg/kg/day) or vehicle by oral gavage. Echocardiography was performed before (pretreatment) and at the end of treatment (post-treatment) to evaluate cardiac function. The fractional area change (FAC) increased (34 ± 5 vs. 45 ± 3%, p < 0.05), and the isovolumic relaxation time decreased (33 ± 2 vs. 27 ± 1 ms; p < 0.05) in HF rats treated with vildagliptin (post-treatment vs. pretreatment). On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR) and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1) serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with

  5. Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure

    PubMed Central

    Arruda-Junior, Daniel F.; Martins, Flavia L.; Dariolli, Rafael; Jensen, Leonardo; Antonio, Ednei L.; dos Santos, Leonardo; Tucci, Paulo J. F.; Girardi, Adriana C. C.

    2016-01-01

    Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for 4 weeks with vildagliptin (120 mg/kg/day) or vehicle by oral gavage. Echocardiography was performed before (pretreatment) and at the end of treatment (post-treatment) to evaluate cardiac function. The fractional area change (FAC) increased (34 ± 5 vs. 45 ± 3%, p < 0.05), and the isovolumic relaxation time decreased (33 ± 2 vs. 27 ± 1 ms; p < 0.05) in HF rats treated with vildagliptin (post-treatment vs. pretreatment). On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR) and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1) serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with

  6. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV.

    PubMed

    Bower, Allyson M; Real Hernandez, Luis M; Berhow, Mark A; de Mejia, Elvira Gonzalez

    2014-07-01

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis), and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims were to characterize and examine extracts from greenhouse-grown or commercially purchased herbs for their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and protein tyrosine phosphatase 1B (PTP1B), enzymes that play a role in insulin secretion and insulin signaling, respectively. Greenhouse herbs contained more polyphenols (302.7-430.1 μg of gallic acid equivalents/mg of dry weight of extract (DWE)) and flavonoids (370.1-661.4 μg of rutin equivalents/mg of DWE) compared to the equivalent commercial herbs. Greenhouse rosemary, Mexican oregano, and marjoram extracts were the best inhibitors of DPP-IV (IC₅₀=16, 29, and 59 μM, respectively). Commercial rosemary, Mexican oregano, and marjoram were the best inhibitors of PTP1B (32.4-40.9% at 500 μM). The phytochemicals eriodictyol, naringenin, hispidulin, cirsimaritin, and carnosol were identified by LC-ESI-MS as being present in greenhouse-grown Mexican oregano and rosemary. Computational modeling indicated that hispidulin, carnosol, and eriodictyol would have the best binding affinities for DPP-IV. Biochemically, the best inhibitors of DPP-IV were cirsimaritin (IC₅₀=0.43±0.07 μM), hispidulin (IC₅₀=0.49±0.06 μM), and naringenin (IC₅₀=2.5±0.29 μM). Overall, herbs contain several flavonoids that inhibit DPP-IV and should be investigated further regarding their potential in diabetes management.

  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  8. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  9. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  10. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  11. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling. PMID:22798209

  12. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase.

    PubMed

    Yamane, Takuya; Kozuka, Miyuki; Konda, Daisuke; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2016-05-01

    Aronia berries have many potential effects on health. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. Recently, we have reported that aronia juice has an inhibitory effect on dipeptidyl peptidase (DPP IV) activity and that the DPP IV inhibitor in aronia juice was identified as cyanidin 3,5-diglucoside. In this study, we found that body weights and blood glucose levels were reduced in diabetes model KK-Ay mice given aronia juice. We also found that weights of white adipose tissues were reduced in KK-Ay mice given aronia juice. Furthermore, levels of DPP IV activity in the serum and liver from KK-Ay mice were lower than those in the serum and liver from C57BL/6JmsSlc mice. Interestingly, although levels of DPP IV activity were not changed in the serum and liver from aronia-juice-administered KK-Ay mice, levels of DPP IV activity were increased in those from aronia-juice-administered C57BL/6JmsSlc mice. Furthermore, α-glucosidase activity was inhibited in the upper region of the small intestine from aronia-juice-administered KK-Ay mice but not in the lower region. Inhibition of α-glucosidase activity in the upper portion of the small intestine induced a reduction of glucose-dependent insulinotropic polypeptide (GIP) level. The results suggest that DPP IV activity in diabetic mice is inhibited by aronia juice, that the GIP level in the upper region of the small intestine is reduced by inhibition of α-glucosidase activity and that weights of adipose tissues are reduced by aronia juice.

  13. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.

    PubMed

    Mojica, Luis; Chen, Karen; de Mejía, Elvira González

    2015-01-01

    The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health.

  14. Molecular cloning and biochemical characterization of Xaa-Pro dipeptidyl-peptidase from Streptococcus mutans and its inhibition by anti-human DPP IV drugs.

    PubMed

    De, Arpan; Lupidi, Giulio; Petrelli, Dezemona; Vitali, Luca A

    2016-05-01

    Streptococcus mutans harbours an intracellular, human DPP IV-analogous enzyme Xaa-Pro dipeptidyl-peptidase (EC 3.4.14.11). According to previous reports, an extracellular isozyme in S. gordonii and S. suis has been associated with virulence. Speculating that even an intracellular form may aid in virulence of S. mutans, we have tried to purify, characterize and evaluate enzyme inhibition by specific inhibitors. The native enzyme was partially purified by ion-exchange and gel filtration chromatography. Owing to low yield, the enzyme was overexpressed in Lactococcus lactis and purified by affinity chromatography. The recombinant enzyme (rSm-XPDAP) had a specific activity of 1070 U mg(-1), while the Vmax and Km were 7 μM min(-1) and 89 ± 7 μM (n = 3), respectively. The serine protease inhibitor phenylmethylsulphonyl fluoride and a DPP IV-specific inhibitor diprotin A proved to be active against rSm-XPDAP. As a novel approach, the evaluation of the effect of anti-human DPP IV (AHD) drugs on rSm-XPDAP activity found saxagliptin to be effective to some extent (Ki = 129 ± 16 μM), which may lead to the synthesis and development of a new class of antimicrobial agents. PMID:27010012

  15. Dipeptidyl peptidase IV (DPPIV/CD26) inhibition does not improve engraftment of unfractionated syngeneic or allogeneic bone marrow after nonmyeloablative conditioning.

    PubMed

    Schwaiger, Elisabeth; Klaus, Christoph; Matheeussen, Veerle; Baranyi, Ulrike; Pilat, Nina; Ramsey, Haley; Korom, Stephan; De Meester, Ingrid; Wekerle, Thomas

    2012-02-01

    In order to develop minimally toxic bone marrow transplantation (BMT) protocols suitable for use in a wider range of indications, it is important to identify ways to enhance BM engraftment at a given level of recipient conditioning. CXCL12/stromal cell-derived factor-1α plays a crucial physiological role in homing of hematopoietic stem cells to BM. It is regulated by the ectopeptidase dipeptidyl peptidase IV (DPPIV; DPP4) known as CD26, which cleaves dipeptides from the N-terminus of polypeptide chains. Blocking DPPIV enzymatic activity had a beneficial effect on hematopoietic stem cell engraftment in various but very specific experimental settings. Here we investigated whether inhibition of DPPIV enzymatic activity through Diprotin A or sitagliptin (Januvia) improves BM engraftment in nonmyeloablative murine models of syngeneic (i.e., CD45-congenic) and allogeneic (i.e., Balb/c to B6) BMT (1 Gy total body irradiation, 10-15 × 10(6) unseparated BM cells/mouse). Neither Diprotin A administered in vivo at the time of BMT and/or used for in vitro pretreatment of BM nor sitagliptin administered in vivo had a detectable effect on the level of multilineage chimerism (follow-up >20 weeks). Similarly, sitagliptin did not enhance chimerism after allogeneic BMT, even though DPPIV enzymatic activity measured in serum was profoundly inhibited (>98% inhibition at peak exposure). Our results provide evidence that DPPIV inhibition via Diprotin A or sitagliptin does not improve engraftment of unseparated BM in a nonmyeloablative BMT setting.

  16. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    SciTech Connect

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.

  17. Dipeptidyl Peptidase IV Is a Human and Murine Neutrophil Chemorepellent

    PubMed Central

    Herlihy, Sarah E.; Pilling, Darrell; Maharjan, Anu S.; Gomer, Richard H.

    2013-01-01

    In Dictyostelium discoideum, AprA is a secreted protein that inhibits proliferation and causes chemorepulsion of Dictyostelium cells, yet AprA has little sequence similarity to any human proteins. We found that a predicted structure of AprA has similarity to human dipeptidyl peptidase IV (DPPIV). DPPIV is a serine protease present in extracellular fluids that cleaves peptides with a proline or alanine in the second position. In Insall chambers, DPPIV gradients below, similar to, and above the human serum DPPIV concentration cause movement of human neutrophils away from the higher concentration of DPPIV. A 1% DPPIV concentration difference between the front and back of the cell is sufficient to cause chemorepulsion. Neutrophil speed and viability are unaffected by DPPIV. DPPIV inhibitors block DPPIV-mediated chemorepulsion. In a murine model of acute respiratory distress syndrome, aspirated bleomycin induces a significant increase in the number of neutrophils in the lungs after 3 d. Oropharyngeal aspiration of DPPIV inhibits the bleomycin-induced accumulation of mouse neutrophils. These results indicate that DPPIV functions as a chemorepellent of human and mouse neutrophils, and they suggest new mechanisms to inhibit neutrophil accumulation in acute respiratory distress syndrome. PMID:23677473

  18. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice.

    PubMed

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside.

  19. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham.

    PubMed

    Gallego, Marta; Aristoy, María-Concepción; Toldrá, Fidel

    2014-02-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising new therapies for type 2 diabetes. The aim of this study was to assay DPP-IV inhibitory peptides that can be present in a water soluble extract of Spanish dry-cured ham. Such an extract was fractionated by size-exclusion chromatography and the in vitro DPP-IV inhibitory activity determined in each collected fraction. Then, several peptides previously identified in dry-cured ham extracts or known to be products of DPP IV action were synthesised and assayed for DPP-IV inhibition. Peptides KA and AAATP showed the strongest DPP-IV inhibitory activity, with IC50 values of 6.27 mM and 6.47 mM, respectively. Dipeptides AA, GP, PL, and carnosine, as well as peptides AAAAG, ALGGA, and LVSGM were also DPP-IV inhibitors, although at a lower degree. These findings suggest the potential of Spanish dry-cured ham as a natural precursor of DPP-IV inhibitory peptides. These biopeptides could also be used as ingredients for functional foods or pharmaceutical products against type 2 diabetes. PMID:24200567

  20. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related α-glucosidase inhibitors and liver X receptor antagonists.

    PubMed

    Motoshima, Kazunori; Sugita, Kazuyuki; Hashimoto, Yuichi; Ishikawa, Minoru

    2011-05-15

    Novel dipeptidyl peptidase IV (DPP-IV) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on α-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Representative compounds showed non-competitive inhibition of DPP-IV and 28a exhibited 10-fold selectivity for DPP-IV over DPP-8. Compound 28a is the first non-competitive, selective DPP-IV inhibitor.

  1. Novel N-substituted aminobenzamide scaffold derivatives targeting the dipeptidyl peptidase-IV enzyme

    PubMed Central

    Al-Balas, Qosay A; Sowaileh, Munia F; Hassan, Mohammad A; Qandil, Amjad M; Alzoubi, Karem H; Mhaidat, Nizar M; Almaaytah, Ammar M; Khabour, Omar F

    2014-01-01

    Background The dipeptidyl peptidase-IV (DPP-IV) enzyme is considered a pivotal target for controlling normal blood sugar levels in the body. Incretins secreted in response to ingestion of meals enhance insulin release to the blood, and DPP-IV inactivates these incretins within a short period and stops their action. Inhibition of this enzyme escalates the action of incretins and induces more insulin to achieve better glucose control in diabetic patients. Thus, inhibition of this enzyme will lead to better control of blood sugar levels. Methods In this study, computer-aided drug design was used to help establish a novel N-substituted aminobenzamide scaffold as a potential inhibitor of DPP-IV. CDOCKER software available from Discovery Studio 3.5 was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the DPP-IV enzyme. The designed compounds were synthesized and tested against a DPP-IV enzyme kit provided by Enzo Life Sciences. The synthesized compounds were characterized using proton and carbon nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and determination of melting point. Results Sixty-nine novel compounds having an N-aminobenzamide scaffold were prepared, with full characterization. Ten of these compounds showed more in vitro activity against DPP-IV than the reference compounds, with the most active compounds scoring 38% activity at 100 μM concentration. Conclusion The N-aminobenzamide scaffold was shown in this study to be a valid scaffold for inhibiting the DPP-IV enzyme. Continuing work could unravel more active compounds possessing the same scaffold. PMID:24470754

  2. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium.

    PubMed

    Morikawa, Toshio; Ninomiya, Kiyofumi; Akaki, Junji; Kakihara, Namiko; Kuramoto, Hiroyuki; Matsumoto, Yurie; Hayakawa, Takao; Muraoka, Osamu; Wang, Li-Bo; Wu, Li-Jun; Nakamura, Seikou; Yoshikawa, Masayuki; Matsuda, Hisashi

    2015-10-01

    A methanol extract of everlasting flowers of Helichrysum arenarium L. Moench (Asteraceae) was found to inhibit the increase in blood glucose elevation in sucrose-loaded mice at 500 mg/kg p.o. The methanol extract also inhibited the enzymatic activity against dipeptidyl peptidase-IV (DPP-IV, IC50 = 41.2 μg/ml), but did not show intestinal α-glucosidase inhibitory activities. From the extract, three new dimeric dihydrochalcone glycosides, arenariumosides V-VII (2-4), were isolated, and the stereostructures were elucidated based on their spectroscopic properties and chemical evidence. Of the constituents, several flavonoid constituents, including 2-4, were isolated, and these isolated constituents were investigated for their DPP-IV inhibitory effects. Among them, chalconaringenin 2'-O-β-D-glucopyranoside (16, IC50 = 23.1 μM) and aureusidin 6-O-β-D-glucopyranoside (35, 24.3 μM) showed relatively strong inhibitory activities.

  3. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors.

    PubMed

    Fukushima, Hiroshi; Hiratate, Akira; Takahashi, Masato; Mikami, Ayako; Saito-Hori, Masako; Munetomo, Eiji; Kitano, Kiyokazu; Chonan, Sumi; Saito, Hidetaka; Suzuki, Akio; Takaoka, Yuji; Yamamoto, Koji

    2008-04-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.

  4. Novel water-soluble prodrugs of acyclovir cleavable by the dipeptidyl-peptidase IV (DPP IV/CD26) enzyme.

    PubMed

    Diez-Torrubia, Alberto; Cabrera, Silvia; de Castro, Sonia; García-Aparicio, Carlos; Mulder, Gwenn; De Meester, Ingrid; Camarasa, María-José; Balzarini, Jan; Velázquez, Sonsoles

    2013-01-01

    We herein report for the first time the successful use of the dipeptidyl peptidase IV (DPPIV/CD26) prodrug approach to guanine derivatives such as the antiviral acyclovir (ACV). The solution- and solid-phase synthesis of the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of acyclovir are reported. The synthesis of the demanding tetrapeptide amide prodrug of ACV 3 was first established in solution and successfully transferred onto solid support by using Ellman's dihydropyran (DHP) resin. In contrast with the valyl ester prodrug (valacyclovir, VACV), the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of ACV proved fully stable in PBS. Both prodrugs converted to VACV (for 4) or ACV (for 3) upon exposure to purified DPPIV/CD26 or human or bovine serum. Vildagliptin, a potent inhibitor of DPPIV/CD26 efficiently inhibited the DPPIV/CD26-catalysed hydrolysis reaction. Both amide and ester prodrugs of ACV showed pronounced anti-herpetic activity in cell culture and significantly improved the water solubility in comparison with the parent drug.

  5. Isolation and characterisation of dipeptidyl peptidase IV from Prevotella loescheii ATCC 15930.

    PubMed

    Koreeda, Y; Hayakawa, M; Ikemi, T; Abiko, Y

    2001-08-01

    A proline-specific dipeptidyl aminopeptidase, dipeptidyl peptidase IV (EC 3.4.14.5), was purified from a cell sonicate soluble fraction of Prevotella loescheii ATCC 15930 by sequential column chromatography. The molecular mass of the native enzyme was estimated as 160 kDa by high-pressure liquid gel filtration column chromatography and unheated sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The subunit molecular mass was 80 kDa when the enzyme was heated to 100 degrees C in the presence of 2-mercaptoethanol before SDS-PAGE, suggesting that the native enzyme consists of two identical subunits and is folded in 2% SDS. The optimum pH, with glycyl-prolyl-4-methyl-coumaryl-7-amide as the substrate, was 8.0; the isoelectric point was 5.2. Purified enzyme showed a strong preference for dipeptide substrates containing proline and, less efficiently, alanine in the P1 position. The enzyme was markedly inhibited by Cd(2+), Zn(2+), Hg(2+), Co(2+), and serine proteinase inhibitor di-isopropylfluorophosphate. PMID:11389867

  6. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes.

    PubMed

    Power, Orla; Nongonierma, A B; Jakeman, P; FitzGerald, R J

    2014-02-01

    The prevalence of type 2 diabetes mellitus (T2DM) is increasing and it is estimated that by 2030 approximately 366 million people will be diagnosed with this condition. The use of dipeptidyl peptidase IV (DPP-IV) inhibitors is an emerging strategy for the treatment of T2DM. DPP-IV is a ubiquitous aminodipeptidase that cleaves incretins such as glucagon like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), resulting in a loss in their insulinotropic activity. Synthetic DPP-IV drug inhibitors are being used to increase the half-life of the active GLP-1 and GIP. Dietary intervention is accepted as a key component in the prevention and management of T2DM. Therefore, identification of natural food protein-derived DPP-IV inhibitors is desirable. Peptides with DPP-IV inhibitory activity have been identified in a variety of food proteins. This review aims to provide an overview of food protein hydrolysates as a source of the DPP-IV inhibitory peptides with particular focus on milk proteins. In addition, the proposed modes of inhibition and structure-activity relationship of peptide inhibitors are discussed. Milk proteins and associated peptides also display insulinotropic activity and help regulate blood glucose in healthy and diabetic subjects. Therefore, milk protein derived peptide inhibitors may be a unique multifunctional peptide approach for the management of T2DM.

  7. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part II): In Silico Prediction in Antidiabetic Extracts

    PubMed Central

    Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712

  8. The contributions of dipeptidyl peptidase IV to inflammation in heart failure.

    PubMed

    de Almeida Salles, Thiago; Zogbi, Camila; de Lima, Thais Martins; de Godoi Carneiro, Camila; Garcez, Alexandre Teles; Barbeiro, Hermes Vieira; Antonio, Ednei Luiz; Dos Santos, Leonardo; da Costa Pereira, Alexandre; Tucci, Paulo José Ferreira; de Paula Faria, Daniele; Soriano, Francisco Garcia; Girardi, Adriana Castello Costa

    2016-06-01

    Circulating dipeptidyl peptidase IV (DPPIV) activity correlates with cardiac dysfunction in humans and experimental heart failure (HF) models. Similarly, inflammatory markers are associated with poorer outcomes in HF patients. However, the contributions of DPPIV to inflammation in HF remain elusive. Therefore, this study aimed to investigate whether the cardioprotective effects of DPPIV inhibition after myocardial injury are accompanied by reduced cardiac inflammation, whether circulating DPPIV activity correlates with the levels of systemic inflammatory markers in HF patients, and whether leukocytes and/or splenocytes may be one of the sources of circulating DPPIV in HF. Experimental HF was induced in male Wistar rats by left ventricular myocardial injury after radiofrequency catheter ablation. The rats were divided into three groups: sham, HF, and HF + DPPIV inhibitor (sitagliptin). Six weeks after surgery, cardiac function, perfusion and inflammatory status were evaluated. Sitagliptin treatment improved cardiac function and perfusion, reduced macrophage infiltration, and diminished the levels of inflammatory biomarkers including TNF-α, IL-1β, and CCL2. In HF patients, serum DPPIV activity correlated with CCL2, suggesting that leukocytes may be the source of circulating DPPIV in HF. Unexpectedly, DPPIV release was higher in splenocytes from HF rats and similar in HF circulating mononuclear cells compared with those from sham, suggesting an organ-specific modulation of DPPIV in HF. Collectively, our data provide new evidence that the cardioprotective effects of DPPIV inhibition in HF may be due to suppression of inflammatory cytokines. Moreover, they suggest that a vicious circle between DPPIV and inflammation may contribute to HF development and progression. PMID:27199127

  9. The dipeptidyl peptidase IV inhibitor NVP-DPP728 reduces plasma glucagon concentration in cats.

    PubMed

    Furrer, Daniela; Kaufmann, Karin; Tschuor, Flurin; Reusch, Claudia E; Lutz, Thomas A

    2010-03-01

    Glucagon-like peptide-1 (GLP-1) analogues and inhibitors of its degrading enzyme, dipeptidyl peptidase IV (DPPIV), are interesting therapy options in human diabetics because they increase insulin secretion and reduce postprandial glucagon secretion. Given the similar pathophysiology of human type 2 and feline diabetes mellitus, this study investigated whether the DPPIV inhibitor NVP-DPP728 reduces plasma glucagon levels in cats. Intravenous glucose tolerance tests (ivGTT; 0.5 g/kg glucose after 12 h fasting) and a meal response test (test meal of 50% of average daily food intake, offered after 24 h fasting) were performed in healthy experimental cats. NVP-DPP728 (0.5-2.5 mg/kg i.v. or s.c.) significantly reduced glucagon output in all tests and increased insulin output in the ivGTT. Follow-up studies will investigate the potential usefulness as therapy in diabetic cats.

  10. Secreted dipeptidyl peptidase IV activity in the dimorphic fungal pathogen Histoplasma capsulatum.

    PubMed

    Cooper, Kendal G; Woods, Jon P

    2009-06-01

    Dipeptidyl peptidase type IV (DppIV) enzymes are broadly distributed phylogenetically and display diverse functions, including intercellular signaling, immunomodulation, protein maturation and processing, metabolism, and nutrient acquisition. We identified a secreted proteolytic activity in Histoplasma capsulatum effective toward DppIV-specific substrates. In order to determine the gene(s) that encodes this activity, we identified two putative DPPIV homologs (HcDPPIVA and HcDPPIVB) in H. capsulatum based on a homology search with Aspergillus fumigatus DppIV. Comparative sequence analysis revealed that HcDppIVA is similar to secreted DppIV enzymes, while HcDppIVB clusters with intracellular DapB-like enzymes. Unexpectedly, silencing of HcDPPIVA by RNA interference (RNAi) had no effect on secreted DppIV activity and an HcDPPIVA-null deletion mutant also showed no abrogation of secreted DppIV activity. In contrast, RNAi silencing of HcDPPIVB significantly reduced the level of secreted DppIV activity. RNAi silencing of HcDPPIVB in the HcDPPIVA-null mutant had no additional effect on secreted DppIV activity, indicating that HcDPPIVA does not contribute to secreted activity. RNAi silencing of HcDPPIVB did not affect the ability to kill a murine macrophage-like cell line, RAW 264.7, indicating that this gene is not required for infection of macrophages. PMID:19349421

  11. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.

  12. Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice.

    PubMed

    Mentzel, S; Dijkman, H B; Van Son, J P; Koene, R A; Assmann, K J

    1996-05-01

    The hydrolases aminopeptidase A and dipeptidyl peptidase IV, both present in the kidney on the brush borders of the proximal tubule epithelial cells and podocytes, are involved in the induction of experimental membranous glomerulonephritis in the mouse. However, little is known about their (co)distribution in other tissues and their function in health and disease. A detailed insight into the localization of these two enzymes is a prerequisite to elucidation of their function. Therefore, we investigated the presence and co-distribution of aminopeptidase A and dipeptidyl peptidase IV by immunohistology with two different rat monoclonal antibodies, the specificity of which was determined by an immunodepletion technique. In addition, the molecular weight of the hydrolases; was analyzed by SDS-PAGE after isolation by solid-phase immunoprecipitation from glomeruli, renal brush borders, and thymus. Both hydrolases showed different molecular weights in renal corpuscle, renal brush borders, and thymic cells. A widespread organ distribution of the two hydrolases was observed, with co-localization in kidney, liver, small intestine, thymus, brain, spleen, and lymph nodes, either on the same cells or on different cells in the same organ. This distribution and partial co-localization suggests that the two hydrolases, acting either alone or in concert, have a role in many diverse biological processes.

  13. Peptide array on cellulose support--a screening tool to identify peptides with dipeptidyl-peptidase IV inhibitory activity within the sequence of α-lactalbumin.

    PubMed

    Lacroix, Isabelle M E; Li-Chan, Eunice C Y

    2014-11-13

    The inhibition of the enzyme dipeptidyl-peptidase IV (DPP-IV) is an effective pharmacotherapeutic approach for the management of type 2 diabetes. Recent findings have suggested that dietary proteins, including bovine α-lactalbumin, could be precursors of peptides able to inhibit DPP-IV. However, information on the location of active peptide sequences within the proteins is far from being comprehensive. Moreover, the traditional approach to identify bioactive peptides from foods can be tedious and long. Therefore, the objective of this study was to use peptide arrays to screen α-lactalbumin-derived peptides for their interaction with DPP-IV. Deca-peptides spanning the entire α-lactalbumin sequence, with a frame shift of 1 amino acid between successive sequences, were synthesized on cellulose membranes using "SPOT" technology, and their binding to and inhibition of DPP-IV was studied. Among the 114 α-lactalbumin-derived decamers investigated, the peptides 60WCKDDQNPHS69 (αK(i) = 76 µM), 105LAHKALCSEK114 (K(i) = 217 µM) and 110LCSEKLDQWL119 (K(i) = 217 µM) were among the strongest DPP-IV inhibitors. While the SPOT- and traditionally-synthesized peptides showed consistent trends in DPP-IV inhibitory activity, the cellulose-bound peptides' binding behavior was not correlated to their ability to inhibit the enzyme. This research showed, for the first time, that peptide arrays are useful screening tools to identify DPP-IV inhibitory peptides from dietary proteins.

  14. Anti-α-glucosidase and Anti-dipeptidyl Peptidase-IV Activities of Extracts and Purified Compounds from Vitis thunbergii var. taiwaniana.

    PubMed

    Lin, Yin-Shiou; Chen, Chiy-Rong; Wu, Wei-Hau; Wen, Chi-Luan; Chang, Chi-I; Hou, Wen-Chi

    2015-07-22

    Ethanol extracts (Et) from the stem (S) and leaf (L) of Vitis thunbergii var. taiwaniana (VTT) were used to investigate yeast α-glucosidase and porcine kidney dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Both VTT-Et showed complete α-glucosidase inhibition at 0.1 mg/mL; VTT-S-Et and VTT-L-Et showed 26 and 11% DPP-IV inhibition, respectively, at 0.5 mg/mL. The VTT-Et interventions (20 and 50 mg/kg) resulted in improvements in impaired glucose tolerance of diet-induced obese rats. (+)-Hopeaphenol, (+)-vitisin A, and (-)-vitisin B were isolated from the ethyl acetate fractions of S-Et and showed yeast α-glucosidase inhibition (IC50 = 18.30, 1.22, and 1.02 μM) and porcine kidney DPP-IV inhibition (IC50 = 401, 90.75, and 15.3 μM) compared to acarbose (6.39 mM) and sitagliptin (47.35 nM), respectively. Both (+)-vitisin A and (-)-vitisin B showed mixed noncompetitive inhibition against yeast α-glucosidase and porcine kidney DPP-IV, respectively. These results proposed that VTT extracts might through inhibitions against α-glucosidase and DPP-IV improve the impaired glucose tolerance in diet-induced obese rats.

  15. Potential Role of Dipeptidyl Peptidase IV in the Pathophysiology of Heart Failure

    PubMed Central

    Salles, Thiago A.; dos Santos, Leonardo; Barauna, Valério G.; Girardi, Adriana C. C.

    2015-01-01

    Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water. PMID:25690036

  16. Attractin, a dipeptidyl peptidase IV/CD26-like enzyme, is expressed on human peripheral blood monocytes and potentially influences monocyte function.

    PubMed

    Wrenger, Sabine; Faust, Jürgen; Friedrich, Daniel; Hoffmann, Torsten; Hartig, Roland; Lendeckel, Uwe; Kähne, Thilo; Thielitz, Anja; Neubert, Klaus; Reinhold, Dirk

    2006-09-01

    The ectoenzyme dipeptidyl peptidase IV (DP IV; CD26) was shown to play a crucial role in T cell activation. Several compounds inhibiting DP IV-like activity are currently under investigation for the treatment of Type 2 diabetes, rheumatoid arthritis, colitis ulcerosa, psoriasis, multiple sclerosis, and other diseases. In the present study, we show that human peripheral blood monocytes express a DP IV-like enzyme activity, which could be inhibited completely by the synthetic DP IV inhibitor Lys[Z(NO(2))]-thiazolidide. DP IV immunoreactivity was not detectable on monocytes, and DP IV transcript levels of monocytes were near the detection limit of quantitative polymerase chain reaction. However, monocytes exhibit a strong mRNA expression of the multifunctional DP IV-like ectoenzyme attractin and were highly positive for attractin in flow cytometric analysis. Fluorescence microscopy clearly demonstrated that attractin is located on the cell surface of monocytes. Attractin immunoprecipitates hydrolyzed Gly-Pro-pNA, indicating that monocyte-expressed attractin possesses DP IV-like activity. Inhibitor kinetic studies with purified human plasma attractin revealed that Lys[Z(NO(2))]-thiazolidide not only inhibits DP IV but also attractin (50% inhibition concentration=8.45 x 10(-9) M). Studying the influence of this inhibitor on monocyte functions, we observed a clear reduction of cell adhesion to fibronectin-coated culture plates in the presence of Lys[Z(NO(2))]-thiazolidide. Moreover, this inhibitor significantly modulates the production of interleukin-1 (IL-1) receptor antagonist, IL-6, and transforming growth factor-beta1 in lipopolysaccharide-stimulated monocyte cultures. In summary, here, we demonstrate for the first time expression of attractin on monocytes and provide first data suggesting that drugs directed to DP IV-like enzyme activity could affect monocyte function via attractin inhibition. PMID:16835316

  17. Specific localization of membrane dipeptidase and dipeptidyl peptidase IV in secretion granules of two different pancreatic islet cells.

    PubMed

    Grondin, G; Hooper, N M; LeBel, D

    1999-04-01

    Endocrine cells require several protein convertases to process the precursors of hormonal peptides that they secrete. In addition to the convertases, which have a crucial role in the maturation of prohormones, many other proteases are present in endocrine cells, the roles of which are less well established. Two of these proteases, dipeptidyl peptidase IV (EC 3.4.14.5) and membrane dipeptidase (EC 3.4.13.19), have been immunocytochemically localized in the endocrine pancreas of the pig. Membrane dipeptidase was present exclusively in cells of the islet of Langerhans that were positive for the pancreatic polypeptide, whereas dipeptidyl peptidase IV was restricted to cells positive for glucagon. Both enzymes were observed in the content of secretory granules and therefore would be released into the interstitial space as the granules undergo exocytosis. At this location they could act on secretions of other islet cells. The relative concentration of dipeptidyl peptidase IV was lower in dense glucagon granules, where the immunoreactivity to glucagon was higher, and vice versa for light granules. This suggests that, in A-cells, dipeptidyl peptidase IV could be sent for degradation in the endosomal/lysosomal compartment during the process of granule maturation or could be removed from granules for continuous release into the interstitial space. The intense proteolytic activity that takes place in the endocrine pancreas could produce many potential dipeptide substrates for membrane dipeptidase. (J Histochem Cytochem 47:489-497, 1999)

  18. Inhibition of a Secreted Glutamic Peptidase Prevents Growth of the Fungus Talaromyces emersonii*

    PubMed Central

    O'Donoghue, Anthony J.; Mahon, Cathal S.; Goetz, David H.; O'Malley, James M.; Gallagher, Denise M.; Zhou, Min; Murray, Patrick G.; Craik, Charles S.; Tuohy, Maria G.

    2008-01-01

    The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1′ such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (kcat/Km = 2 × 105 m-1 s-1). Maximum hydrolysis occurs at pH 3.4 and 50 °C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (Ki = 1.5 nm), as well as a portion of the propeptide sequence, PT1 (Ki = 32 nm). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii. PMID:18687686

  19. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else?

    PubMed

    Juillerat-Jeanneret, Lucienne

    2014-03-27

    The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest. PMID:24099035

  20. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    PubMed

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P < 0.05 or 0.001). These results suggested that RRDY and yam dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models. PMID:27499387

  1. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

    SciTech Connect

    Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.; Parmee, Emma R.; Eiermann, George J.; Fisher, Michael H.; He, Huaibing; Leiting, Barbara; Lyons, Kathryn; Scapin, Giovanna; Patel, Sangita B.; Petrov, Aleksandr; Pryor, KellyAnn D.; Roy, Ranabir Sinha; Wu, Joseph K.; Zhang, Xiaoping; Wyvratt, Matthew J.; Zhang, Bei B.; Zhu, Lan; Thornberry, Nancy A.; Weber, Ann E.

    2008-06-30

    A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.

  2. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities.

    PubMed

    Fontoura, Roberta; Daroit, Daniel J; Correa, Ana P F; Meira, Stela M M; Mosquera, Mauricio; Brandelli, Adriano

    2014-09-25

    The antioxidant and antihypertensive activities of feather hydrolysates obtained with the bacterium Chryseobacterium sp. kr6 were investigated. Keratin hydrolysates were produced with different concentrations of thermally denatured feathers (10-75 g l(-1)) and initial pH values (6.0-9.0). Soluble proteins accumulated in high amounts in media with 50 and 75 g l(-1) of feathers, reaching values of 18.5 and 22 mg ml(-1), respectively, after 48 hours of cultivation. In media with 50 g l(-1) of feathers, initial pH had minimal effect after 48 hours. Maximal protease production was observed after 24 hours of cultivation, and feather concentration and initial pH values showed no significant effect on enzyme yields at this time. Feather hydrolysates displayed in vitro antioxidant properties, and optimal antioxidant activities were observed in cultures with 50 g l(-1) feathers, at initial pH 8.0, after 48 hours growth at 30°C. Also, feather hydrolysates were demonstrated to inhibit the angiotesin I-converting enzyme by 65% and dipeptidyl peptidase-IV by 44%. The bioconversion of an abundant agroindustrial waste such as chicken feathers can be utilized as a strategy to obtain hydrolysates with antioxidant and antihypertensive activities. Feather hydrolysates might be employed as supplements in animal feed, and also as a potential source of bioactive molecules for feed, food and drug development.

  3. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    PubMed Central

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  4. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells

    PubMed Central

    1993-01-01

    Attachment of circulating tumor cells to endothelial cell adhesion molecules restricted to select vascular compartments is thought to be responsible for site-specific metastasis. Lung-metastatic rat R3230AC- MET breast and RPC-2 prostate carcinoma cells bound outside-out endothelial cell membrane vesicles, prepared by perfusion of the rat lung vasculature with a low-strength formaldehyde solution, in significantly higher numbers than their nonmetastatic counterparts R3230AC-LR and RPC-LR. In contrast, vesicles derived from the vasculature of a nonmetastasized organ (e.g., hind leg muscle) showed no binding preference for either of the four tumor cell lines. Lung- derived endothelial vesicles were used here to generate mAbs against lung endothelial cell adhesion molecules. The first group of mice were actively immunized against lung endothelial vesicles, whereas the second group was injected with syngeneic mouse antiserum against leg endothelial vesicles before active immunization with lung endothelial vesicles. 17 hybridoma supernatants obtained from the two fusions bound lung vesicles with at least a 10-fold higher affinity than leg vesicles. Seven (four obtained by a passive/active immunization protocol) stained rat capillary endothelia. One mAb, mAb 8.6A3, inhibited specific adhesion of lung-derived vesicles to lung-metastatic breast and prostate carcinoma cells. Purification of the antigen (endothelial cell adhesion molecule) from rat lung extracts revealed a protein with a 110-kD mol wt. NH2-terminal sequencing established identity with dipeptidyl peptidase IV which had been reported to serve as a fibronectin-binding protein. These results indicate that vesicles obtained from in situ perfused organs are a convenient immunogen for the production of antibodies to compartment-specific endothelial cell surface molecules, and reinforce the concept that endothelial cell surface components are selectively recognized by circulating cancer cells during metastasis

  5. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism.

    PubMed

    Grimshaw, Charles E; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  6. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism

    PubMed Central

    Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  7. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGES

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; et al

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  8. Dipeptidyl-peptidase IV (DPP IV/CD26)-activated prodrugs: a successful strategy for improving water solubility and oral bioavailability.

    PubMed

    Velázquez, Sonsoles; de Castro, Sonia; Diez-Torrubia, Alberto; Balzarini, Jan; Camarasa, María-José

    2015-01-01

    In the search of novel enzyme-based prodrug approaches to improve pharmacological properties of therapeutic drugs such as solubility and bioavailability, dipeptidyl-peptidase IV (DPP IV, also termed as CD26) enzyme activity provides a previously unexplored successful prodrug strategy. This review covers key aspects of the enzyme useful for the design of CD26-directed prodrugs. The proof-of-concept of this prodrug technology is provided for amine-containing agents by directly linking appropriate di- (or oligo)peptide moieties to a free amino group of a non-peptidic drug through an amide bond which is specifically hydrolized by DPP IV/CD26. Special emphasis is also made in discussing the design and synthesis of more elaborated tripartite prodrug systems, for further extension of the strategy to hydroxy-containing drugs. The application of this technology to improve water solubility and oral bioavailability of prominent examples of antiviral nucleosides is highlighted.

  9. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    PubMed

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides.

  10. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin.

    PubMed

    Silveira, Silvana T; Martínez-Maqueda, Daniel; Recio, Isidra; Hernández-Ledesma, Blanca

    2013-11-15

    Dipeptidyl peptidase-IV (DPP-IV) is a serine protease involved in the degradation and inactivation of incretin hormones that act by stimulating glucose-dependent insulin secretion after meal ingestion. DPP-IV inhibitors have emerged as new and promising oral agents for the treatment of type 2 diabetes. The purpose of this study was to investigate the potential of β-lactoglobulin as natural source of DPP-IV inhibitory peptides. A whey protein concentrate rich in β-lactoglobulin was hydrolysed with trypsin and fractionated using a chromatographic separation at semipreparative scale. Two of the six collected fractions showed notable DPP-IV inhibitory activity. These fractions were analysed by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) to identify peptides responsible for the observed activity. The most potent fragment (IPAVF) corresponded to β-lactoglobulin f(78-82) which IC50 value was 44.7μM. The results suggest that peptides derived from β-lactoglobulin would be beneficial ingredients of foods against type 2 diabetes.

  11. Effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters of lymphocytes in intact animals and animals with experimental autoimmune process.

    PubMed

    Robinson, M V; Mel'nikova, E V; Trufakin, V A

    2014-11-01

    The effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters were studied in animals with experimental autoimmune process. The effects of the drug administered in preventive (before manifestation of autoimmune processes) and therapeutic (after manifestation of autoimmune process) modes were studied. PMID:25408522

  12. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors.

    PubMed

    Tulipano, Giovanni; Sibilia, Valeria; Caroli, Anna Maria; Cocchi, Daniela

    2011-04-01

    Preclinical and clinical studies suggest that whey proteins can reduce postprandial glucose levels and stimulate insulin release in healthy subjects and in subjects with type 2 diabetes by reducing dipeptidyl peptidase-4 (DPP-4) activity in the proximal bowel and hence increasing intact incretin levels. Our aim was to identify DPP-4 inhibitors among short peptides occurring in hydrolysates of β-lactoglobulin, the major whey protein found in the milk of ruminants. We proved that the bioactive peptide Ile-Pro-Ala can be regarded as a moderate DPP-4 inhibitor.

  13. Arrabidaea chica Hexanic Extract Induces Mitochondrion Damage and Peptidase Inhibition on Leishmania spp.

    PubMed Central

    Rodrigues, Igor A.; Azevedo, Mariana M. B.; Chaves, Francisco C. M.; Alviano, Celuta S.; Alviano, Daniela S.; Vermelho, Alane B.

    2014-01-01

    Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 μg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents. PMID:24818162

  14. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    PubMed

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.

  15. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    SciTech Connect

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  16. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): a key to the beneficial effects of guava in type II diabetes mellitus.

    PubMed

    Eidenberger, Thomas; Selg, Manuel; Krennhuber, Klaus

    2013-09-01

    Based on the traditional use in popular medicine, the effect of extracts from Psidium guajava L. leaves and of the main flavonol-glycoside components on dipeptidyl-peptidase IV (DP-IV), a key enzyme of blood glucose homoeostasis, has been investigated in-vitro. An ethanolic extract was prepared from dried, powdered leaves of guava and was found to contain seven main flavonol-glycosides, which were isolated by semipreparative HPLC and tested individually. The ethanolic guava leave extract was shown to exert a dose-dependent inhibition of DP-IV, with an IC50 of 380 μg/ml test assay solution. Also the individual flavonol-glycosides inhibited DP-IV dose-dependently, with variations of the effects by a factor of 10, and an overall effect accounting for 100% of that observed for the total guava extract. The recovery of individual flavonol-glycosides in CaCo-2 epithelial cells, a model of gastrointestinal tract absorption, amounted to 2.3-5.3% of the amount available for absorption over 60 min at 37°C. PMID:23707747

  17. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): a key to the beneficial effects of guava in type II diabetes mellitus.

    PubMed

    Eidenberger, Thomas; Selg, Manuel; Krennhuber, Klaus

    2013-09-01

    Based on the traditional use in popular medicine, the effect of extracts from Psidium guajava L. leaves and of the main flavonol-glycoside components on dipeptidyl-peptidase IV (DP-IV), a key enzyme of blood glucose homoeostasis, has been investigated in-vitro. An ethanolic extract was prepared from dried, powdered leaves of guava and was found to contain seven main flavonol-glycosides, which were isolated by semipreparative HPLC and tested individually. The ethanolic guava leave extract was shown to exert a dose-dependent inhibition of DP-IV, with an IC50 of 380 μg/ml test assay solution. Also the individual flavonol-glycosides inhibited DP-IV dose-dependently, with variations of the effects by a factor of 10, and an overall effect accounting for 100% of that observed for the total guava extract. The recovery of individual flavonol-glycosides in CaCo-2 epithelial cells, a model of gastrointestinal tract absorption, amounted to 2.3-5.3% of the amount available for absorption over 60 min at 37°C.

  18. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    PubMed

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides. PMID:25020248

  19. Dipeptidyl-peptidase 4 Inhibition: Linking Metabolic Control to Cardiovascular Protection

    PubMed Central

    Avogaro, Angelo; de Kreutzenberg, Saula; Fadini, Gianpaolo

    2014-01-01

    Dipeptidyl peptidases 4 (DPP4) inhibitors are a new class of oral anti-hyperglycemic drugs for the treatment of type 2 diabetes (T2DM). They are also called “incretins” because they act by inhibiting the degradation of endogenous incretin hormones, in particular GLP-1, that mediates their main metabolic effects. DPP4 is an ubiquitous protease that regulates not only glucose and lipid metabolism, but also exhibits several systemic effects at different site levels. DPP4 inhibition improves endothelial function, reduces the pro-oxidative and the pro-inflammatory state, and exerts renal effects. These actions are mediated by different DPP4 ligands, such as cytokines, growth factors, neuotransmitters etc. Clinical and experimental studies have demonstrated that DPP4 inhibitors are efficient in protecting cardiac, renal and vascular systems, through antiatherosclerotic and vasculoprotective mechanisms. For these reasons DDP4 inhibitors are thought to be “cardiovascular protective” as well as anti-diabetic drugs. Clinical trials aimed to demonstrate the efficacy of DPP4 inhibitors in reducing cardiovascular events, independent of their anti-hyperglycemic action, are ongoing. These trials will also give necessary information on their safety. PMID:23844811

  20. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors.

    PubMed

    Ji, Xun; Su, Mingbo; Wang, Jiang; Deng, Guanghui; Deng, Sisi; Li, Zeng; Tang, Chunlan; Li, Jingya; Li, Jia; Zhao, Linxiang; Jiang, Hualiang; Liu, Hong

    2014-03-21

    A series of novel hetero-aromatic moieties substituted α-amino pyrrole-2-carbonitrile derivatives was designed and synthesized based on structure-activity relationships (SARs) of pyrrole-2-carbonitrile inhibitors. All compounds demonstrated good dipeptidyl peptidase IV (DPP4) inhibitory activities (IC50 = 0.004-113.6 μM). Moreover, compounds 6h (IC50 = 0.004 μM) and 6n (IC50 = 0.01 μM) showed excellent inhibitory activities against DPP4, good selectivity (compound 6h, selective ratio: DPP8/DPP4 = 450.0; DPP9/DPP4 = 375.0; compound 6n, selective ratio: DPP8/DPP4 = 470.0; DPP9/DPP4 = 750.0) and good efficacy in an oral glucose tolerance test in ICR mice. Furthermore, compounds 6h and 6n demonstrated moderate PK properties (compound 6h, F% = 37.8%, t1/2 = 1.45 h; compound 6n, F% = 16.8%, t1/2 = 3.64 h). PMID:24531224

  1. Inhibition of collagen peptidase in HeLa cells and human tumours by compounds including drugs used in cancer therapy.

    PubMed Central

    Boggust, W. A.; McGauley, H.

    1978-01-01

    Collagen-peptidase activity in extracts of HeLa cells and human tumours is inactivated by Razoxane (ICRF-159), cyclophosphamide, 5-fluorouracil, thiotepa, aprotinin, EDTA and phenanthroline. As this activity, in association with other enzymes, may contribute to tissue lysis in cancers, chemical intervention may reduce invasiveness and modify the processes of infiltration and metastasis. Accordingly, some drugs used in therapy or for the prevention of metastasis may produce their observed effects by a combination of factors including enzyme inhibition. PMID:212092

  2. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition. PMID:27621658

  3. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition.

  4. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part I): Virtual Screening and Activity Assays

    PubMed Central

    Guasch, Laura; Ojeda, Maria José; González-Abuín, Noemí; Sala, Esther; Cereto-Massagué, Adrià; Mulero, Miquel; Valls, Cristina; Pinent, Montserrat; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site. Methodology/Principal Findings We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives. Conclusions/Significance We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for

  5. Effects of Inhibiting Dipeptidyl Peptidase-4 (DPP4) in Cows with Subclinical Ketosis.

    PubMed

    Schulz, Kirsten; Frahm, Jana; Kersten, Susanne; Meyer, Ulrich; Rehage, Jürgen; Piechotta, Marion; Meyerholz, Maria; Breves, Gerhard; Reiche, Dania; Sauerwein, Helga; Dänicke, Sven

    2015-01-01

    The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like

  6. Effects of Inhibiting Dipeptidyl Peptidase-4 (DPP4) in Cows with Subclinical Ketosis

    PubMed Central

    Schulz, Kirsten; Frahm, Jana; Kersten, Susanne; Meyer, Ulrich; Rehage, Jürgen; Piechotta, Marion; Meyerholz, Maria; Breves, Gerhard; Reiche, Dania; Sauerwein, Helga; Dänicke, Sven

    2015-01-01

    The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like

  7. β-casomorphin-7 alters μ-opioid receptor and dipeptidyl peptidase IV genes expression in children with atopic dermatitis.

    PubMed

    Fiedorowicz, Ewa; Kaczmarski, Maciej; Cieślińska, Anna; Sienkiewicz-Szłapka, Edyta; Jarmołowska, Beata; Chwała, Barbara; Kostyra, Elżbieta

    2014-12-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with heterogeneous clinical phenotypes reflecting genetic predisposition and exposure to environmental factors. Reactions to food may play a significant role especially in young children. Milk proteins are particularly strong allergens and are additional source of bioactive peptides including β-casomorphin-7 (BCM7, Tyr-Pro-Phe-Pro-Gly-Pro-Ile). BCM7 exerts its influence on nervous, digestive, and immune functions via the μ-opioid receptor (MOR). Proline dipeptidyl peptidase IV (DPPIV; EC 3.4.14.5) appears to be the primary degrading enzyme of BCM7. Moreover, DPPIV is known to restrict activity of proinflammatory peptides. BCM7 is considered to modulate an immune response by affecting MOR and DPPIV genes expression. In this study, we determined the MOR and DPPIV genes expression in children diagnosed with a severe form of AD. 40 healthy children and 62 children diagnosed with severe AD (AD score ≥60) were included in the study. Peripheral blood mononuclear cells (PBMCs) from the studied subjects were incubated with the peptide extracts of raw and hydrolysed cow milk with defined β-casein genotypes (A1A1, A2A2 and A1A2) and MOR and DPPIV genes expression was determined with real-time PCR. Incubation PBMCs with peptide extracts from cow milk caused an increase of the MOR gene expression (p<0.05; p<0.001) in AD children with a simultaneous decrease in the DPPIV gene expression (p<0.001). The obtained results supplement the knowledge on the BCM7 participation in AD etiology and provide an important diagnostic tool. PMID:25281794

  8. Serum activities of adenosine deaminase, dipeptidyl peptidase IV and prolyl endopeptidase in patients with fibromyalgia: diagnostic implications.

    PubMed

    Čulić, Ognjen; Cordero, Mario D; Žanić-Grubišić, Tihana; Somborac-Bačura, Anita; Pučar, Lara Batičić; Detel, Dijana; Varljen, Jadranka; Barišić, Karmela

    2016-10-01

    Fibromyalgia (FM) is a chronic pain syndrome with number of symptoms that present challenge in terms of diagnosis and treatment. Patients with FM show abnormal profile of purines in plasma. In this work, we measured serum activities of enzymes involved in purine metabolism, namely total adenosine deaminase (ADE) and its isoforms (ADE1 and ADE2), ecto-ATPase, and 5'-nucleotidase (5'-NT). We also measured activity of dipeptidyl peptidase IV (DPPIV) and prolyl endopeptidase (PEP). Spectrophotometric and fluorometric methods were used for enzyme activity determinations. Enzyme activities were measured in sera of 24 patients with FM that were not undergoing pharmacological treatment during the study. Control group comprised 32 healthy control subjects. Significantly higher activities of total ADE (P = 0.025) and ADE2 (P = 0.011) were observed in FM patients, while no significant differences in ADE1, ecto-ATPase, and 5'-NT activities (P > 0.05) were found when compared to healthy controls. Moreover, increase in the activity of DPPIV (P = 0.015) and lower activity of PEP (P = 0.011) were also found in the FM group. ROC analysis pointed to different diagnostic sensitivities/specificities for individual enzyme activities measured as follows: ADE (50.0/87.5), ADE2 (41.7/90.6), DPPIV (62.5/71.9), and PEP (83.3/62.5). ADE2 and PEP were shown to be independent predictors of FM, while combination of the two gives AUC of 0.786 (95 % confidence interval of 0.656-0.885, P < 0.05). Our results are showing that serum activities of ADE2 and PEP could be useful as biomarkers for FM diagnosis. However, relatively low diagnostic sensitivity of ADE2 and specificity of PEP must be taken into account.

  9. Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity.

    PubMed

    Karl, Tim; Hoffmann, Torsten; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    Dipeptidyl-peptidase IV (DPPIV/CD26) is involved in several physiological functions by cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY(3-36), which lacks affinity for the Y(1) but not for other NPY receptor subtypes. Among other effects, the NPY Y(1) receptor mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking endogenous DPPIV-like activity we found a reduced behavioral stress response, which might be due to a differential degradation of NPY. Here we tested this hypothesis and administered intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding motivation, decreased motor activity in the plus maze and social interaction test, and exerted anxiolytic-like effects. More important for the present hypothesis, NPY administration was found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects (increased social interaction time in the social interaction test) and sedative-like effects (decreased motor activity in the elevated plus maze). These data demonstrate for the first time a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-specificity of NPY, which may result from a differential degradation of NPY in this genetic model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated effects in the central nervous system are modulated by DPPIV-like enzymatic activity. PMID:12957230

  10. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS.

    PubMed

    Zhang, Ying; Chen, Ran; Ma, Huiqin; Chen, Shangwu

    2015-10-14

    New dipeptidyl peptidase IV (DPP-IV)-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates were isolated and identified by two-dimensional silica thin-layer chromatography (2D-TLC) combined to nano LC-MS/MS. 2D-TLC with chloroform/methanol/25% ammonia (2:2:1) and n-butanol/acetic acid/water (4:1:1) as the first- and second-dimension eluents, respectively, in analytical and semipreparative scales, was set up and verified by reversed-phase high-performance liquid chromatography (RP-HPLC) to be feasible and efficient to separate the hydrolysates. Five new DPP-IV-inhibitory peptides, four relatively large oligopeptides (MHQPPQPL, SPTVMFPPQSVL, VMFPPQSVL, and INNQFLPYPY), and AWPQYL were identified, and INNQFLPYPY showed a notable IC50 value of 40.08 μM as an uncompetitive inhibitor. Interactive effects on DPP-IV inhibition were also observed among separated fractions and pure synthetic peptide mixtures with concentration-dependent activity. The study gives new insights into goat casein hydrolysates with identified DPP-IV-inhibitory peptides efficiently isolated by 2D-TLC, which provides a simple and cost-efficient separation process and is compatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification. PMID:26323964

  11. The serine protease, dipeptidyl peptidase IV as a myokine: dietary protein and exercise mimetics as a stimulus for transcription and release.

    PubMed

    Neidert, Leslie E; Mobley, C Brooks; Kephart, Wesley C; Roberts, Michael D; Kluess, Heidi A

    2016-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme with numerous roles within the body, mostly related to regulating energy metabolism. DPP-IV is also a myokine, but the stimulus for its release is poorly understood. We investigated the transcription and release of DPP-IV from skeletal muscle in a three-part study using C2C12 myotube cultures, an acute rat exercise and postexercise feeding model, and human feeding or human exercise models. When myotubes were presented with leucine only, hydrolyzed whey protein, or chemicals that cause exercise-related signaling to occur in cell culture, all caused an increase in the mRNA expression of DPP-IV (1.63 to 18.56 fold change, P < 0.05), but only whey protein caused a significant increase in DPP-IV activity in the cell culture media. When rats were fed whey protein concentrate immediately following stimulated muscle contractions, DPP-IV mRNA in both the exercised and nonexercised gastrocnemius muscles significantly increased 2.5- to 3.7-fold (P < 0.05) 3-6 h following the exercise/feeding bout; of note exercise alone or postexercise leucine-only feeding had no significant effect. In humans, plasma and serum DPP-IV activities were not altered by the ingestion of whey protein up to 1 h post consumption, after a 10 min bout of vigorous running, or during the completion of three repeated lower body resistance exercise bouts. Our cell culture and rodent data suggest that whey protein increases DPP-IV mRNA expression and secretion from muscle cells. However, our human data suggest that DPP-IV is not elevated in the bloodstream following acute whey protein ingestion or exercise.

  12. Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function.

    PubMed Central

    Flentke, G R; Munoz, E; Huber, B T; Plaut, A G; Kettner, C A; Bachovchin, W W

    1991-01-01

    Dipeptidyl peptidase IV (DP-IV; dipeptidyl-peptide hydrolase, EC 3.4.14.5) is a serine protease with a specificity for cleaving Xaa-Pro dipeptides from polypeptides and proteins. It is found in a variety of mammalian cells and tissues, including those of lymphoid origin where it is found specifically on the surface of CD4+ T cells. Although the functional significance of this enzyme has not been established, a role in T-cell activation and immune regulation has been proposed. Here we report that Ala-boroPro and Pro-boroPro, where boroPro is the alpha-amino boronic acid analog of proline, are potent and specific inhibitors of DP-IV, having Ki values in the nanomolar range. Blocking the N terminus of Ala-boroPro abolishes the affinity of this inhibitor for DP-IV, while removal of the N-terminal residue, to give boroPro, reduces the affinity for DP-IV by 5 orders of magnitude. The dipeptide boronic acids exhibit slow-binding kinetics, while boroPro does not. We also report here that low concentrations of Pro-boroPro inhibit antigen-induced proliferation and interleukin 2 production in murine T-cell lines but do not inhibit the response of these T cells to the mitogen concanavalin A. These results indicate that DP-IV plays a role in antigen-induced, but not mitogen-induced, activation of T lymphocytes. PMID:1671716

  13. Inhibition of DD-Peptidases by a Specific Trifluoroketone: Crystal Structure of a Complex with the Actinomadura R39 DD-Peptidase†

    PubMed Central

    Dzhekieva, Liudmila; Adediran, S. A.; Herman, Raphael; Kerff, Frédéric; Duez, Colette; Charlier, Paulette; Sauvage, Eric; Pratt, R.F.

    2013-01-01

    Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures on reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter include a boronic acid, two alcohols, an aldehyde and a trifluoroketone. The compounds were tested against two low molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but, rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl-(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates, as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics. PMID:23484909

  14. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  15. The Simpson-Golabi-Behmel syndrome causative glypican-3, binds to and inhibits the dipeptidyl peptidase activity of CD26.

    PubMed

    Davoodi, Jamshid; Kelly, John; Gendron, Nathalie H; MacKenzie, Alex E

    2007-06-01

    Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked condition shown to be the result of deletions of the glypican-3 (GPC3) gene. GPC3 is a proteoglycan localized to the cell membrane via a glycosylphosphatidyl-inositol (GPI) anchor. To further elucidate the GPC3 function(s), we have screened various cell lines for proteins that interact with GPC3, resulting in the isolation of a 115 kDa protein, identified as CD26. The interaction occurred with both the glycosylated and unglycosylated forms of GPC3 and led to the inhibition of CD26 peptidase activity. Moreover, introduction of CD26 into Cos-1 cells was accompanied by the up-regulation of cell growth, while inclusion of recombinant GPC3 in the media reduced the growth of CD26 transfected Cos-1 cells, drastically. Furthermore, HepG2 C3A cells containing CD26 underwent apoptosis in the presence of recombinant GPC3 in both concentration and time-dependant manner. In light of the fact that inhibition of CD26 reduces the rate of cell proliferation, we propose that a number of physical findings observed in SGBS patients may be a consequence of a direct interaction of GPC3 with CD26. Furthermore, GPC3 without the GPI anchor is capable of inducing apoptosis indicating that neither the GPI anchor nor the membrane attachment is required for apoptosis induction.

  16. Origins of Yersinia pestis Sensitivity to the Arylomycin Antibiotics and the Inhibition of Type I Signal Peptidase

    PubMed Central

    Steed, Danielle B.; Liu, Jian; Wasbrough, Elizabeth; Miller, Lynda; Halasohoris, Stephanie; Miller, Jeremy; Somerville, Brandon; Hershfield, Jeremy R.

    2015-01-01

    Yersinia pestis is the etiologic agent of the plague. Reports of Y. pestis strains that are resistant to each of the currently approved first-line and prophylactic treatments point to the urgent need to develop novel antibiotics with activity against the pathogen. We previously reported that Y. pestis strain KIM6+, unlike most Enterobacteriaceae, is susceptible to the arylomycins, a novel class of natural-product lipopeptide antibiotics that inhibit signal peptidase I (SPase). In this study, we show that the arylomycin activity is conserved against a broad range of Y. pestis strains and confirm that it results from the inhibition of SPase. We next investigated the origins of this unique arylomycin sensitivity and found that it does not result from an increased affinity of the Y. pestis SPase for the antibiotic and that alterations to each component of the Y. pestis lipopolysaccharide—O antigen, core, and lipid A—make at most only a small contribution. Instead, the origins of the sensitivity can be traced to an increased dependence on SPase activity that results from high levels of protein secretion under physiological conditions. These results highlight the potential of targeting protein secretion in cases where there is a heavy reliance on this process and also have implications for the development of the arylomycins as an antibiotic with activity against Y. pestis and potentially other Gram-negative pathogens. PMID:25896690

  17. Determination of a dipeptidyl peptidase IV agonist, β-aminoacyl containing thiazolidine derivatives (KR-66223) in rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Kim, Min-Sun; Park, Jong-Shik; Jang, Su-Min; Lee, Byung Hoi; Ahn, Sung-Hoon; Ahn, Jin Hee; Yoo, Sung Eun; Song, Im-Sook; Silinski, Peter; Schneider, Stephen Edward; Bae, Myung Ae

    2011-07-15

    A sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for a novel dipeptidyl peptidase IV agonist (DDP-IV) agonist, KR-66223, in rat plasma. It involves liquid-liquid extraction (LLE) followed by HPLC separation and electrospray ionization tandem mass spectrometry. KR-66223 and imipramine (IS) was separated on Gemini-NX C18 column with mixture of acetonitrile-ammonium formate (10mM) (90:10, v/v) as mobile phase. The ion transitions monitored were m/z 553.2→206.2 for KR-66223, m/z 281.3→86.1 for imipramine in multiple reaction monitoring (MRM) mode. The linear ranges of the assay were 0.003-10μg/ml with a correlation coefficient (R(2)) greater than 0.99 and the lower limit of quantification was 3ng/ml. The average recovery was 78.9% and 87.1% from rat plasma for KR-66223 and imipramine, respectively. The coefficients of variation of intra- and inter-assay were 3.9-14.4% and the relative error was 0.8-11.5%. The method was validated and successfully applied to the pharmacokinetic study of KR-66223 in rat.

  18. Inhibition of Circulating Dipeptidyl Peptidase 4 Activity in Patients with Metastatic Prostate Cancer*

    PubMed Central

    Nazarian, Arpi; Lawlor, Kevin; Yi, San San; Philip, John; Ghosh, Mousumi; Yaneva, Mariana; Villanueva, Josep; Saghatelian, Alan; Assel, Melissa; Vickers, Andrew J.; Eastham, James A.; Scher, Howard I.; Carver, Brett S.; Lilja, Hans; Tempst, Paul

    2014-01-01

    Cancer is responsible for many deaths and is a major source of healthcare expenditures. The identification of new, non-invasive biomarkers might allow improvement of the direct diagnostic or prognostic ability of already available tools. Here, we took the innovative approach of interrogating the activity of exopeptidases in the serum of cancer patients with the aim of establishing a distinction based on enzymatic function, instead of simple protein levels, as a means to biomarker discovery. We first analyzed two well-characterized mouse models of prostate cancer, each with a distinct genetic lesion, and established that broad exopeptidase and targeted aminopeptidase activity tests reveal proteolytic changes associated with tumor development. We also describe new peptide-based freeze-frame reagents uniquely suited to probe the altered balance of selected aminopeptidases, as opposed to the full array of exopeptidases, and/or their modulators in patient serum or plasma. One particular proteolytic activity was impaired in animals with aggressive disease relative to cancer-free littermates. We identified the protease in question as dipeptidyl peptidase 4 (DPP4) by analyzing selected knockout mice and evaluating the effect of specific inhibitors. DPP4 activity was also reduced in the sera of patients with metastatic prostate cancer relative to patients with localized disease or healthy controls. However, no significant differences in DPP4 serum levels were observed, which established the loss of activity as the result of impaired enzymatic function. Biochemical analysis indicated that reduced activity was the result not of post-translational modifications or allosteric changes, but instead of a low-molecular-weight inhibitor. After we adjusted for age and total prostate-specific antigen, reduced DPP4 activity remained a significant predictor of cancer status. The results of this proof-of-principle study suggest that DPP4 activity might be a potential blood

  19. Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes.

    PubMed

    Marfella, Raffaele; Sasso, Ferdinando Carlo; Rizzo, Maria Rosaria; Paolisso, Pasquale; Barbieri, Michelangela; Padovano, Vincenzo; Carbonara, Ornella; Gualdiero, Pasquale; Petronella, Pasquale; Ferraraccio, Franca; Petrella, Antonello; Canonico, Raffaele; Campitiello, Ferdinando; Della Corte, Angela; Paolisso, Giuseppe; Canonico, Silvestro

    2012-01-01

    The pathophysiology of chronic diabetic ulcers is complex and still incompletely understood, both micro- and macroangiopathy strongly contribute to the development and delayed healing of diabetic wounds, through an impaired tissue feeding and response to ischemia. With adequate treatment, some ulcers may last only weeks; however, many ulcers are difficult to treat and may last months, in certain cases years; 19-35% of ulcers are reported as nonhealing. As no efficient therapy is available, it is a high priority to develop new strategies for treatment of this devastating complication. Because experimental and pathological studies suggest that incretin hormone glucagon-like peptide-1 may improves VEGF generation and promote the upregulation of HIF-1α through a reduction of oxidative stress, the study evaluated the effect of the augmentation of GLP-1, by inhibitors of the dipeptidyl peptidase-4, such as vildagliptin, on angiogenesis process and wound healing in diabetic chronic ulcers. Although elucidation of the pathophysiologic importance of these aspects awaits further confirmations, the present study evidences an additional aspect of how DPP-4 inhibition might contribute to improved ulcer outcome.

  20. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    PubMed

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-01

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM.

  1. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    PubMed

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-01

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM. PMID:26468909

  2. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    PubMed

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  3. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome

    PubMed Central

    Birnbaum, Yochai; Bajaj, Mandeep; Qian, Jinqiao; Ye, Yumei

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1) receptor activation delays the progression of diabetic nephropathy (DN) in rodents. The NOD-like receptor 3 (Nlrp3) inflammasome plays an important role in DN. Dipeptidyl peptidase-4 inhibitors (DPP4I) inhibit the degradation of endogenous GLP-1 and various other active substances. We assessed whether DPP4I attenuates diabetes-induced activation of the inflammasome and progression of DN in mice with type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Methods BTBR (T2DM), Akita (T1DM) and their matched non-diabetic control (wild-type (WT)) mice received 8-week treatment with Saxagliptin (Saxa) or vehicle. Results Kidney weight and kidney/body weight ratio increased in the BTBR and Akita mice compared to their WT mice. Saxa attenuated these changes in the BTBR, but not in the Akita mice and had no effect in the WT mice. Serum blood urea nitrogen and creatinine significantly increased in the BTBR and Akita mice. Saxa attenuated the increase in the BTBR and Akita mice. Saxa improved glycemic control in the BTBR mice, but had no effect on glucose levels in the Akita and WT mice. Serum C reactive protein, tumor necrosis factor α (TNFα), interleukin (IL)-1β, IL-6 and IL-18 were significantly higher in the BTBR and Akita mice than in the WT mice. Saxa attenuated the increase in the BTBR and Akita mice. Kidney and adipose protein levels of apoptosis-associated speck-like protein 1, NLRP3, TNFα and Caspase-1 were higher in the BTBR and Akita mice than in the WT mice. Saxa reduced the levels in both types of diabetic mice. Conclusions Saxa attenuated diabetes-induced activation of the inflammasome and progression of DN. As Saxa did not affect glucose levels in the Akita mice, these effects are independent of glucose lowering. PMID:27547413

  4. Recent Advances in Dipeptidyl-Peptidase-4 Inhibition Therapy: Lessons from the Bench and Clinical Trials

    PubMed Central

    Zhong, Jixin; Gong, Quan; Goud, Aditya; Srinivasamaharaj, Srividya; Rajagopalan, Sanjay

    2015-01-01

    DPP4 inhibitors (DPP4i) are a class of newly developed antidiabetic drugs which preserve incretin hormones and promote postprandial insulin secretion. Although the cardiovascular effect of DPP4 inhibition has been substantially studied, the exact role of DPP4 in cardiovascular disease especially in humans remains elusive. Previous small studies and meta-analyses have suggested a benefit in both surrogate outcomes and cardiovascular events for these agents. However, there was growing evidence in recent years questioning the cardioprotective effect of DPP4i. Further, a signal of heart failure hospitalization in a recent large scale clinical trial SAVOR-TIMI 53 has called into question the safety of these agents and their utility in the treatment of cardiovascular disease. In this review, we will revisit the physiologic function of DPP4 and discuss its role in cardiometabolic disease based on recent experimental and clinical studies. PMID:26075284

  5. Expression of trophinin and dipeptidyl peptidase IV in endometrial co-culture in the presence of an embryo: A comparative immunocytochemical study.

    PubMed

    Dolanbay, Elif Gelenli; Yardimoglu, Melda; Yalcinkaya, Ender; Yazir, Yusufhan; Aksoy, Ayca; Karaoz, Erdal; Caliskan, Eray

    2016-05-01

    Recurrent implantation failure leads to a reduced pregnancy rate. The expression patterns of trophinin and dipeptidyl peptidase IV (CD26) indicate the involvement of embryo implantation and early placental development. The purpose of the present study was to evaluate endometrial co‑culture cells in the presence of embryo with trophinin and CD26 immunofluorescence staining. Patients with recurrent implantation failure were enrolled in the present study. The patients were aged between 26 and 36 years. Co‑cultures were prepared from endometrial biopsies for each patient. Controlled ovarian hyperstimulation was performed on each of the patients. Certain embryos were maintained in a conventional culture environment (n=80), and others in an endometrial co‑culture environment (n=25). Following embryo transfer, the co‑culture cells were examined under an inverted wide‑field fluorescence microscope. The ratio of a successful pregnancy was 0.38 in the present study (n=5/13 pregnancies). The average age of the successful group (28±3.54 years) was younger compared with the unsuccessful (32.67±2.81) group (P≤0.05). The number of trophinin (+) endometrial cells in the presence of an embryo was significantly lower (P=0.046) in the successful group on the first day. No significant difference between the groups was observed in terms of the number of CD26 (+) cells on the first to the fourth days (P≤0.05). Trophinin and CD26 immunostaining is important in the early period of pregnancy, and it will be beneficial in terms of providing the deficit of conventional culture medium in performed studies with the endometrial co‑culture medium. The co‑culture may be important, particularly in the early period, in patients with recurrent implantation failure in terms of enabling a connection between the cells belonging to the endometrium and the embryo.

  6. Influence of candidate polymorphisms on the dipeptidyl peptidase IV and μ-opioid receptor genes expression in aspect of the β-casomorphin-7 modulation functions in autism.

    PubMed

    Cieślińska, Anna; Sienkiewicz-Szłapka, Edyta; Wasilewska, Jolanta; Fiedorowicz, Ewa; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Cieśliński, Tomasz; Bukało, Marta; Kostyra, Elżbieta

    2015-03-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with population prevalence of approximately 60-70 per 10,000. Data shows that both opioid system function enhancement and opiate administration can result in autistic-like symptoms. Cow milk opioid peptides, including β-casomorphin-7 (BCM7, Tyr-Pro-Phe-Pro-Gly-Pro-Ile), affect the μ-opioid receptor (MOR) and are subjected to degradation resulting from the proline dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) enzyme activity. The presence of MOR and DPPIV activity are crucial factors determining biological activity of BCM7 in the human body. Our study examined the effect of β-casomorphin-7 on the MOR and DPPIV genes expression according to specific point mutations in these genes. In addition, we investigated frequency of A118G SNP in the MOR gene and rs7608798 of the DPPIV (A/G) gene in healthy and autistic children. Our research indicated correlation in DPPIV gene expression under the influence of BCM7 and hydrolyzed milk between healthy and ASD-affected children with genotype GG (P<0.0001). We also observed increased MOR gene expression in healthy children with genotype AG at polymorphic site A118G under influence of BCM7 and hydrolyzed milk. The G allele frequency was 0.09 in MOR gene and 0.68 in the DPPIV gene. But our results suggest no association between presence of the alleles G and A at position rs7608798 in DPPIV gene nor alleles A and G at position A118G of the MOR and increased incidence of ASD. Our studies emphasize the compulsion for genetic analysis in correlation with genetic factors affecting development and enhancement of autism symptoms. PMID:25625371

  7. Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats

    PubMed Central

    Lim, Soo; Choi, Sung Hee; Shin, Hayley; Cho, Bong Jun; Park, Ho Seon; Ahn, Byung Yong; Kang, Seon Mee; Yoon, Ji Won; Jang, Hak Chul; Kim, Young-Bum; Park, Kyong Soo

    2012-01-01

    Background Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. Methods and Findings Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. Conclusions Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes. PMID:22493727

  8. Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae.

    PubMed

    Kasný, M; Mikes, L; Dalton, J P; Mountford, A P; Horák, P

    2007-10-01

    Cercariae of the bird schistosome Trichobilharzia regenti and of the human schistosome Schistosoma mansoni employ proteases to invade the skin of their definitive hosts. To investigate whether a similar proteolytic mechanism is used by both species, cercarial extracts of T. regenti and S. mansoni were biochemically characterized, with the primary focus on cysteine peptidases. A similar pattern of cysteine peptidase activities was detected by zymography of cercarial extracts and their chromatographic fractions from T. regenti and S. mansoni. The greatest peptidase activity was recorded in both species against the fluorogenic peptide substrate Z-Phe-Arg-AMC, commonly used to detect cathepsins B and L, and was markedly inhibited (> 96%) by Z-Phe-Ala-CHN2 at pH 4.5. Cysteine peptidases of 33 kDa and 33-34 kDa were identified in extracts of T. regenti and S. mansoni cercariae employing a biotinylated Clan CA cysteine peptidase-specific inhibitor (DCG-04). Finally, cercarial extracts from both T. regenti and S. mansoni were able to degrade native substrates present in skin (collagen II and IV, keratin) at physiological pH suggesting that cysteine peptidases are important in the pentration of host skin. PMID:17517170

  9. Serum Levels of Soluble CD26/Dipeptidyl Peptidase-IV in Type 2 Diabetes Mellitus and Its Association with Metabolic Syndrome and Therapy with Antidiabetic Agents in Malaysian Subjects

    PubMed Central

    Ahmed, Radwan H.; Huri, Hasniza Zaman; Al-Hamodi, Zaid; Salem, Sameer D.; Muniandy, Sekaran

    2015-01-01

    Background A soluble form of CD26/dipeptidyl peptidase-IV (sCD26/DPP-IV) induces DPP-IV enzymatic activity that degrades incretin. We investigated fasting serum levels of sCD26/DPP-IV and active glucagon-like peptide-1 (GLP-1) in Malaysian patients with type 2 diabetes mellitus (T2DM) with and without metabolic syndrome (MetS), as well as the associations between sCD26/DPP-IV levels, MetS, and antidiabetic therapy. Methods We assessed sCD26/DPP-IV levels, active GLP-1 levels, body mass index (BMI), glucose, insulin, A1c, glucose homeostasis indices, and lipid profiles in 549 Malaysian subjects (including 257 T2DM patients with MetS, 57 T2DM patients without MetS, 71 non-diabetics with MetS, and 164 control subjects without diabetes or metabolic syndrome). Results Fasting serum levels of sCD26/DPP-IV were significantly higher in T2DM patients with and without MetS than in normal subjects. Likewise, sCD26/DPP-IV levels were significantly higher in patients with T2DM and MetS than in non-diabetic patients with MetS. However, active GLP-1 levels were significantly lower in T2DM patients both with and without MetS than in normal subjects. In T2DM subjects, sCD26/DPP-IV levels were associated with significantly higher A1c levels, but were significantly lower in patients using monotherapy with metformin. In addition, no significant differences in sCD26/DPP-IV levels were found between diabetic subjects with and without MetS. Furthermore, sCD26/DPP-IV levels were negatively correlated with active GLP-1 levels in T2DM patients both with and without MetS. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-cholesterol (LDL-c) levels. Conclusion Serum sCD26/DPP-IV levels increased in T2DM subjects with and without MetS. Active GLP-1 levels decreased in T2DM patients both with and without MetS. In addition, sCD26/DPP-IV levels were associated with Alc levels and negatively correlated with active GLP-1 levels. Moreover, metformin

  10. Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.

    PubMed

    Ramos, Márcio V; Pereira, Danielle A; Souza, Diego P; Silva, Maria-Lídia S; Alencar, Luciana M R; Sousa, Jeanlex S; Queiroz, Juliany-Fátima N; Freitas, Cleverson D T

    2015-01-01

    Studies investigating the resistance-susceptibility of crop insects to proteins found in latex fluids have been reported. However, latex-bearing plants also host insects. In this study, the gut proteolytic system of Pseudosphinx tetrio, which feeds on Plumeria rubra leaves, was characterized and further challenged against the latex proteolytic system of its own host plant and those of other latex-bearing plants. The gut proteolytic system of Danaus plexippus (monarch) and the latex proteolytic system of its host plant (Calotropis procera) were also studied. The latex proteins underwent extensive hydrolysis when mixed with the corresponding gut homogenates of the hosted insects. The gut homogenates partially digested the latex proteins of foreign plants. The fifth instar of D. plexippus that were fed diets containing foreign latex developed as well as those individuals who were fed diets containing latex proteins from their host plant. In vitro assays detected serine and cysteine peptidase inhibitors in both the gut homogenates and the latex fluids. Curiously, the peptidase inhibitors of caterpillars did not inhibit the latex peptidases of their host plants. However, the peptidase inhibitors of laticifer origin inhibited the proteolysis of gut homogenates. In vivo analyses of the peritrophic membrane proteins of D. plexippus demonstrate resistance against latex peptidases. Only discrete changes were observed when the peritrophic membrane was directly treated with purified latex peptidases in vitro. This study concludes that peptidase inhibitors are involved in the defensive systems of both caterpillars and their host plants. Although latex peptidase inhibitors inhibit gut peptidases (in vitro), the ability of gut peptidases to digest latex proteins (in vivo) regardless of their origin seems to be important in governing the resistance-susceptibility of caterpillars.

  11. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%. PMID:16257208

  12. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  13. Effect of dipeptidyl peptidase-4 inhibition on circadian blood pressure during the development of salt-dependent hypertension in rats

    PubMed Central

    Sufiun, Abu; Rafiq, Kazi; Fujisawa, Yoshihide; Rahman, Asadur; Mori, Hirohito; Nakano, Daisuke; Kobori, Hiroyuki; Ohmori, Koji; Masaki, Tsutomu; Kohno, Masakazu; Nishiyama, Akira

    2015-01-01

    A growing body of evidence has indicated that dipeptidyl peptidase-4 (DPP-4) inhibitors have antihypertensive effects. Here, we aim to examine the effect of vildagliptin, a DPP-4-specific inhibitor, on blood pressure and its circadian-dipping pattern during the development of salt-dependent hypertension in Dahl salt-sensitive (DSS) rats. DSS rats were treated with a high-salt diet (8% NaCl) plus vehicle or vildagliptin (3 or 10 mg kg−1 twice daily by oral gavage) for 7 days. Blood pressure was measured by the telemetry system. High-salt diet for 7 days significantly increased the mean arterial pressure (MAP), systolic blood pressure (SBP) and were also associated with an extreme dipping pattern of blood pressure in DSS rats. Treatment with vildagliptin dose-dependently decreased plasma DPP-4 activity, increased plasma glucagon-like peptide 1 (GLP-1) levels and attenuated the development of salt-induced hypertension. Furthermore, vildagliptin significantly increased urine sodium excretion and normalized the dipping pattern of blood pressure. In contrast, intracerebroventricular infusion of vildagliptin (50, 500 or 2500 μg) did not alter MAP and heart rate in DSS rats. These data suggest that salt-dependent hypertension initially develops with an extreme blood pressure dipping pattern. The DPP-4 inhibitor, vildagliptin, may elicit beneficial antihypertensive effects, including the improvement of abnormal circadian blood pressure pattern, by enhancing urinary sodium excretion. PMID:25588850

  14. Effect of dipeptidyl peptidase-4 inhibition on circadian blood pressure during the development of salt-dependent hypertension in rats.

    PubMed

    Sufiun, Abu; Rafiq, Kazi; Fujisawa, Yoshihide; Rahman, Asadur; Mori, Hirohito; Nakano, Daisuke; Kobori, Hiroyuki; Ohmori, Koji; Masaki, Tsutomu; Kohno, Masakazu; Nishiyama, Akira

    2015-04-01

    A growing body of evidence has indicated that dipeptidyl peptidase-4 (DPP-4) inhibitors have antihypertensive effects. Here, we aim to examine the effect of vildagliptin, a DPP-4-specific inhibitor, on blood pressure and its circadian-dipping pattern during the development of salt-dependent hypertension in Dahl salt-sensitive (DSS) rats. DSS rats were treated with a high-salt diet (8% NaCl) plus vehicle or vildagliptin (3 or 10 mg kg(-1) twice daily by oral gavage) for 7 days. Blood pressure was measured by the telemetry system. High-salt diet for 7 days significantly increased the mean arterial pressure (MAP), systolic blood pressure (SBP) and were also associated with an extreme dipping pattern of blood pressure in DSS rats. Treatment with vildagliptin dose-dependently decreased plasma DPP-4 activity, increased plasma glucagon-like peptide 1 (GLP-1) levels and attenuated the development of salt-induced hypertension. Furthermore, vildagliptin significantly increased urine sodium excretion and normalized the dipping pattern of blood pressure. In contrast, intracerebroventricular infusion of vildagliptin (50, 500 or 2500 μg) did not alter MAP and heart rate in DSS rats. These data suggest that salt-dependent hypertension initially develops with an extreme blood pressure dipping pattern. The DPP-4 inhibitor, vildagliptin, may elicit beneficial antihypertensive effects, including the improvement of abnormal circadian blood pressure pattern, by enhancing urinary sodium excretion.

  15. Dipeptidyl peptidase-4 inhibition by gemigliptin prevents abnormal vascular remodeling via NF-E2-related factor 2 activation.

    PubMed

    Choi, Seung Hee; Park, Sungmi; Oh, Chang Joo; Leem, Jaechan; Park, Keun-Gyu; Lee, In-Kyu

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors exert a potent anti-hyperglycemic effect and reduce cardiovascular risk in type 2 diabetic patients. Several studies have shown that DPP-4 inhibitors including sitagliptin have beneficial effects in atherosclerosis and cardiac infarction involving reactive oxygen species. Here, we show that gemigliptin can directly attenuate the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) via enhanced NF-E2-related factor 2 (Nrf2) activity. Gemigliptin dramatically prevented ligation injury-induced neointimal hyperplasia in mouse carotid arteries. Likewise, the proliferation of primary VSMCs was significantly attenuated by gemigliptin in a dose-dependent manner consistent with a decrease in phospho-Rb, resulting in G1 cell cycle arrest. We found that gemigliptin enhanced Nrf2 activity not only by mRNA expression, but also by increasing Keap1 proteosomal degradation by p62, leading to the induction of Nrf2 target genes such as HO-1 and NQO1. The anti-proliferative role of gemigliptin disappeared with DPP-4 siRNA knockdown, indicating that the endogenous DPP-4 in VSMCs contributed to the effect of gemigliptin. In addition, gemigliptin diminished TNF-α-mediated cell adhesion molecules such as MCP-1 and VCAM-1 and reduced MMP2 activity in VSMCs. Taken together, our data indicate that gemigliptin exerts a preventative effect on the proliferation and migration of VSMCs via Nrf2. PMID:26187356

  16. Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function.

    PubMed

    Aroor, Annayya R; Habibi, Javad; Ford, David A; Nistala, Ravi; Lastra, Guido; Manrique, Camila; Dunham, Merlow M; Ford, Kaitlin D; Thyfault, John P; Parks, Elizabeth J; Sowers, James R; Rector, R Scott

    2015-06-01

    Novel therapies are needed for treating the increasing prevalence of hepatic steatosis in Western populations. In this regard, dipeptidyl peptidase-4 (DPP-4) inhibitors have recently been reported to attenuate the development of hepatic steatosis, but the potential mechanisms remain poorly defined. In the current study, 4-week-old C57Bl/6 mice were fed a high-fat/high-fructose Western diet (WD) or a WD containing the DPP-4 inhibitor, MK0626, for 16 weeks. The DPP-4 inhibitor prevented WD-induced hepatic steatosis and reduced hepatic insulin resistance by enhancing insulin suppression of hepatic glucose output. WD-induced accumulation of hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content was significantly attenuated with DPP-4 inhibitor treatment. In addition, MK0626 significantly reduced mitochondrial incomplete palmitate oxidation and increased indices of pyruvate dehydrogenase activity, TCA cycle flux, and hepatic TAG secretion. Furthermore, DPP-4 inhibition rescued WD-induced decreases in hepatic PGC-1α and CPT-1 mRNA expression and hepatic Sirt1 protein content. Moreover, plasma uric acid levels in mice fed the WD were decreased after MK0626 treatment. These studies suggest that DPP-4 inhibition ameliorates hepatic steatosis and insulin resistance by suppressing hepatic TAG and DAG accumulation through enhanced mitochondrial carbohydrate utilization and hepatic TAG secretion/export with a concomitant reduction of uric acid production.

  17. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    SciTech Connect

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  18. Suppression of Ubiquitin-Specific Peptidase 17 (USP17) Inhibits Tumorigenesis and Invasion in Non-Small Cell Lung Cancer Cells.

    PubMed

    Zhang, Shengchao; Yuan, Jun; Zheng, Ruheng

    2016-01-01

    Recently, deubiquitinating enzymes (DUBs) are emerging as new regulators in cancer progression. However, understanding of the involvement of DUBs in non-small cell lung cancer (NSCLC) is just beginning. In this study, we investigated the expression and biological function of ubiquitin-specific peptidase 17 (USP17) in NSCLC progression in vitro and in vivo. We found that the expression of USP17 was higher than in a normal control. We further efficiently depleted USP17 expression in two different NSCLC cells, A549 and H1299. The anchorage-independent growth ability of these cells, estimated by soft agar colony formation assay, was significantly reduced after USP17 knockdown. Moreover, Matrigel-Transwell analysis showed that suppression of USP17 decreased cell migration and invasion capacity. Molecular mechanism studies found that USP17 silencing downregulated the expression of matrix metalloproteases (MMP3 and MMP9) in NSCLC cells. Furthermore, animal model results showed that USP17 suppression inhibited NSCLC tumorigenesis and growth. Altogether, this study illustrates the important functions of USP17 in NSCLC and suggests that USP17 might be an attractive target for NSCLC therapy. PMID:27656837

  19. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis) and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims of this study were to characterize extracts from greenhouse grown or commercially purchased herbs for th...

  20. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  1. Astragaloside IV inhibits NF- κ B activation and inflammatory gene expression in LPS-treated mice.

    PubMed

    Zhang, Wei-Jian; Frei, Balz

    2015-01-01

    In this study we investigated the role of astragaloside IV (AS-IV), one of the major active constituents purified from the Chinese medicinal herb Astragalus membranaceus, in LPS-induced acute inflammatory responses in mice in vivo and examined possible underlying mechanisms. Mice were assigned to four groups: vehicle-treated control animals; AS-IV-treated animals (10 mg/kg b.w. AS-IV daily i.p. injection for 6 days); LPS-treated animals; and AS-IV plus LPS-treated animals. We found that AS-IV treatment significantly inhibited LPS-induced increases in serum levels of MCP-1 and TNF by 82% and 49%, respectively. AS-IV also inhibited LPS-induced upregulation of inflammatory gene expression in different organs. Lung mRNA levels of cellular adhesion molecules, MCP-1, TNFα, IL-6, and TLR4 were significantly attenuated, and lung neutrophil infiltration and activation were strongly inhibited, as reflected by decreased myeloperoxidase content, when the mice were pretreated with AS-IV. Similar results were observed in heart, aorta, kidney, and liver. Furthermore, AS-IV significantly suppressed LPS-induced NF-κB and AP-1 DNA-binding activities in lung and heart. In conclusion, our data provide new in vivo evidence that AS-IV effectively inhibits LPS-induced acute inflammatory responses by modulating NF-κB and AP-1 signaling pathways. Our results suggest that AS-IV may be useful for the prevention or treatment of inflammatory diseases. PMID:25960613

  2. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  3. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    PubMed

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  4. NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4.

    PubMed

    Zhu, Xiao; Gillespie, Delbert G; Jackson, Edwin K

    2015-11-01

    Cardiac sympathetic nerves release neuropeptide Y (NPY)1-36, and peptide YY (PYY)1-36 is a circulating peptide; therefore, these PP-fold peptides could affect cardiac fibroblasts (CFs). We examined the effects of NPY1-36 and PYY1-36 on the proliferation of and collagen production ([(3)H]proline incorporation) by CFs isolated from Wistar-Kyoto (WKY) normotensive rats and spontaneously hypertensive rats (SHRs). Experiments were performed with and without sitagliptin, an inhibitor of dipeptidyl peptidase 4 [DPP4; an ectoenzyme that metabolizes NPY1-36 and PYY1-36 (Y1 receptor agonists) to NPY3-36 and PYY3-36 (inactive at Y1 receptors), respectively]. NPY1-36 and PYY1-36, but not NPY3-36 or PYY3-36, stimulated proliferation of CFs, and these effects were more potent than ANG II, enhanced by sitagliptin, blocked by BIBP3226 (Y1 receptor antagonist), and greater in SHR CFs. SHR CF membranes expressed more receptor for activated C kinase (RACK)1 [which scaffolds the Gi/phospholipase C (PLC)/PKC pathway] compared with WKY CF membranes. RACK1 knockdown (short hairpin RNA) and inhibition of Gi (pertussis toxin), PLC (U73122), and PKC (GF109203X) blocked the proliferative effects of NPY1-36. NPY1-36 and PYY1-36 stimulated collagen production more potently than did ANG II, and this was enhanced by sitagliptin and greater in SHR CFs. In conclusion, 1) NPY1-36 and PYY1-36, via the Y1 receptor/Gi/PLC/PKC pathway, activate CFs, and this pathway is enhanced in SHR CFs due to increased localization of RACK1 in membranes; and 2) DPP4 inhibition enhances the effects of NPY1-36 and PYY1-36 on CFs, likely by inhibiting the metabolism of NPY1-36 and PYY1-36. The implications are that endogenous NPY1-36 and PYY1-36 could adversely affect cardiac structure/function by activating CFs, and this may be exacerbated in genetic hypertension and by DPP4 inhibitors.

  5. In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate.

    PubMed

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Jao, Chia-Ling; Hsieh, You-Liang; Wu, Si-Xian; Hsu, Kuo-Chiang

    2016-02-01

    The frequency (A), a novel in silico parameter, was developed by calculating the ratio of the number of truncated peptides with Xaa-proline and Xaa-alanine to all peptide fragments from a protein hydrolyzed with a specific protease. The highest in vitro DPP-IV inhibitory activity (72.7%) was observed in the hydrolysate of sodium caseinate by bromelain (Cas/BRO), and the constituent proteins of bovine casein also had relatively high A values (0.10-0.17) with BRO hydrolysis. 1CBR (the <1 kDa fraction of Cas/BRO) showed the greatest in vitro DPP-IV inhibitory activity of 77.5% and was used for in vivo test by high-fat diet-fed and low-dose streptozotocin-induced diabetic rats. The daily administration of 1CBR for 6 weeks was effective to improve glycaemic control in diabetic rats. The results indicate that the novel in silico method has the potential as a screening tool to predict dietary proteins to generate DPP-IV inhibitory and antidiabetic peptides. PMID:26796955

  6. In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate.

    PubMed

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Jao, Chia-Ling; Hsieh, You-Liang; Wu, Si-Xian; Hsu, Kuo-Chiang

    2016-02-01

    The frequency (A), a novel in silico parameter, was developed by calculating the ratio of the number of truncated peptides with Xaa-proline and Xaa-alanine to all peptide fragments from a protein hydrolyzed with a specific protease. The highest in vitro DPP-IV inhibitory activity (72.7%) was observed in the hydrolysate of sodium caseinate by bromelain (Cas/BRO), and the constituent proteins of bovine casein also had relatively high A values (0.10-0.17) with BRO hydrolysis. 1CBR (the <1 kDa fraction of Cas/BRO) showed the greatest in vitro DPP-IV inhibitory activity of 77.5% and was used for in vivo test by high-fat diet-fed and low-dose streptozotocin-induced diabetic rats. The daily administration of 1CBR for 6 weeks was effective to improve glycaemic control in diabetic rats. The results indicate that the novel in silico method has the potential as a screening tool to predict dietary proteins to generate DPP-IV inhibitory and antidiabetic peptides.

  7. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  8. MEROPS: the peptidase database.

    PubMed

    Rawlings, N D; Barrett, A J

    1999-01-01

    The MEROPS database (http://www.bi.bbsrc.ac.uk/Merops/Merops.+ ++htm) provides a catalogue and structure-based classification of peptidases (i.e. all proteolytic enzymes). This is a large group of proteins (approximately 2% of all gene products) that is of particular importance in medicine and biotechnology. An index of the peptidases by name or synonym gives access to a set of files termed PepCards each of which provides information on a single peptidase. Each card file contains information on classification and nomenclature, and hypertext links to the relevant entries in online databases for human genetics, protein and nucleic acid sequence data and tertiary structure. Another index provides access to the PepCards by organism name so that the user can retrieve all known peptidases from a particular species. The peptidases are classified into families on the basis of statistically significant similarities between the protein sequences in the part termed the 'peptidase unit' that is most directly responsible for activity. Families that are thought to have common evolutionary origins and are known or expected to have similar tertiary folds are grouped into clans. The MEROPS database provides sets of files called FamCards and ClanCards describing the individual families and clans. Each FamCard document provides links to other databases for sequence motifs and secondary and tertiary structures, and shows the distribution of the family across the major kingdoms of living creatures. Release 3.03 of MEROPS contains 758 peptidases, 153 families and 22 clans. We suggest that the MEROPS database provides a model for a way in which a system of classification for a functional group of proteins can be developed and used as an organizational framework around which to assemble a variety of related information.

  9. Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases.

    PubMed

    Bezerra, Gustavo Arruda; Dobrovetsky, Elena; Dong, Aiping; Seitova, Almagul; Crombett, Lissete; Shewchuk, Lisa M; Hassell, Annie M; Sweitzer, Sharon M; Sweitzer, Thomas D; McDevitt, Patrick J; Johanson, Kyung O; Kennedy-Wilson, Karen M; Cossar, Doug; Bochkarev, Alexey; Gruber, Karl; Dhe-Paganon, Sirano

    2012-01-01

    Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The "specificity domains" are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.

  10. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation.

    PubMed

    Ripoll-Rozada, Jorge; García-Cazorla, Yolanda; Getino, María; Machón, Cristina; Sanabria-Ríos, David; de la Cruz, Fernando; Cabezón, Elena; Arechaga, Ignacio

    2016-06-01

    Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV secretion traffic ATPase, as the molecular target for fatty acid-mediated inhibition of conjugation. Moreover, 2-alkynoic fatty acids, which are also potent inhibitors of bacterial conjugation, are also powerful inhibitors of the ATPase activity of TrwD. Characterization of the kinetic parameters of ATPase inhibition has led us to identify the catalytic mechanism by which fatty acids exert their activity. These results open a new avenue for the rational design of inhibitors of bacterial conjugation in the fight against the dissemination of antibiotic resistance genes. PMID:26915347

  11. Astragaloside IV Inhibits NF-κB Activation and Inflammatory Gene Expression in LPS-Treated Mice

    PubMed Central

    Zhang, Wei-Jian; Frei, Balz

    2015-01-01

    In this study we investigated the role of astragaloside IV (AS-IV), one of the major active constituents purified from the Chinese medicinal herb Astragalus membranaceus, in LPS-induced acute inflammatory responses in mice in vivo and examined possible underlying mechanisms. Mice were assigned to four groups: vehicle-treated control animals; AS-IV-treated animals (10 mg/kg b.w. AS-IV daily i.p. injection for 6 days); LPS-treated animals; and AS-IV plus LPS-treated animals. We found that AS-IV treatment significantly inhibited LPS-induced increases in serum levels of MCP-1 and TNF by 82% and 49%, respectively. AS-IV also inhibited LPS-induced upregulation of inflammatory gene expression in different organs. Lung mRNA levels of cellular adhesion molecules, MCP-1, TNFα, IL-6, and TLR4 were significantly attenuated, and lung neutrophil infiltration and activation were strongly inhibited, as reflected by decreased myeloperoxidase content, when the mice were pretreated with AS-IV. Similar results were observed in heart, aorta, kidney, and liver. Furthermore, AS-IV significantly suppressed LPS-induced NF-κB and AP-1 DNA-binding activities in lung and heart. In conclusion, our data provide new in vivo evidence that AS-IV effectively inhibits LPS-induced acute inflammatory responses by modulating NF-κB and AP-1 signaling pathways. Our results suggest that AS-IV may be useful for the prevention or treatment of inflammatory diseases. PMID:25960613

  12. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA

    PubMed Central

    Cunha, Larissa D.; Ribeiro, Juliana M.; Fernandes, Talita D.; Massis, Liliana M.; Khoo, Chen Ai; Moffatt, Jennifer H.; Newton, Hayley J.; Roy, Craig R.; Zamboni, Dario S.

    2015-01-01

    Coxiella burnetii is a highly infectious bacterium that promotes its own replication in macrophages by inhibiting several host cell responses. Here, we show that C. burnetii inhibits caspase-1 activation in primary mouse macrophages. By using co-infection experiments, we determine that the infection of macrophages with C. burnetii inhibits the caspase-11-mediated non-canonical activation of the NLRP3 inflammasome induced by subsequent infection with Escherichia coli or Legionella pneumophila. Genetic screening using flagellin mutants of L. pneumophila as a surrogate host, reveals a novel C. burnetii gene (IcaA) involved in the inhibition of caspase activation. Expression of IcaA in L. pneumophila inhibited the caspase-11 activation in macrophages. Moreover, icaA- mutants of C. burnetii failed to suppress the caspase-11-mediated inflammasome activation induced by L. pneumophila. Our data reveal IcaA as a novel C. burnetii effector protein that is secreted by the Dot/Icm type IV secretion system and interferes with the caspase-11-induced, non-canonical activation of the inflammasome. PMID:26687278

  13. A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly.

    PubMed

    Chung, In-Young; Jang, Hye-Jeong; Bae, Hee-Won; Cho, You-Hee

    2014-08-01

    Type IV pili (TFPs) are required for bacterial twitching motility and for phage infection in the opportunistic human pathogen Pseudomonas aeruginosa. Here we describe a phage-encoded protein, D3112 protein gp05 (hereafter referred to as Tip, representing twitching inhibitory protein), whose expression is necessary and sufficient to mediate the inhibition of twitching motility. Tip interacts with and blocks the activity of bacterial-encoded PilB, the TFP assembly/extension ATPase, at an internal 40-aa region unique to PilB. Tip expression results in the loss of surface piliation. Based on these observations and the fact that many P. aeruginosa phages require TFPs for infection, Tip-mediated twitching inhibition may represent a generalized strategy for superinfection exclusion. Moreover, because TFPs are required for full virulence, PilB may be an attractive target for the development of novel antiinfectives. PMID:25049409

  14. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases.

    PubMed

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2015-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  15. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases

    PubMed Central

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2016-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer’s inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  16. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases.

    PubMed

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2015-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  17. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway

    PubMed Central

    Liu, Hong-Shuai; Shi, Hai-Lian; Huang, Fei; Peterson, Karin E.; Wu, Hui; Lan, Yun-Yi; Zhang, Bei-Bei; He, Yi-Xin; Woods, Tyson; Du, Min; Wu, Xiao-Jun; Wang, Zheng-Tao

    2016-01-01

    Inhibition of microglia activation may provide therapeutic treatment for many neurodegenerative diseases. Astragaloside IV (ASI) with anti-inflammatory properties has been tested as a therapeutic drug in clinical trials of China. However, the mechanism of ASI inhibiting neuroinflammation is unknown. In this study, we showed that ASI inhibited microglia activation both in vivo and in vitro. It could enhance glucocorticoid receptor (GR)-luciferase activity and facilitate GR nuclear translocation in microglial cells. Molecular docking and TR-FRET GR competitive binding experiments demonstrated that ASI could bind to GR in spite of relative low affinity. Meanwhile, ASI modulated GR-mediated signaling pathway, including dephosphorylation of PI3K, Akt, I κB and NF κB, therefore, decreased downstream production of proinflammatory mediators. Suppression of microglial BV-2 activation by ASI was abrogated by GR inhibitor, RU486 or GR siRNA. Similarly, RU486 counteracted the alleviative effect of ASI on microgliosis and neuronal injury in vivo. Our findings demonstrated that ASI inhibited microglia activation at least partially by activating the glucocorticoid pathway, suggesting its possible therapeutic potential for neuroinflammation in neurological diseases. PMID:26750705

  18. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties.

    PubMed

    Drahota, Z; Palenickova, E; Endlicher, R; Milerova, M; Brejchova, J; Vosahlikova, M; Svoboda, P; Kazdova, L; Kalous, M; Cervinkova, Z; Cahova, M

    2014-01-01

    In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.

  19. PCCG-IV inhibits the induction of long-term potentiation in the dentate gyrus in vitro.

    PubMed

    Huang, L; Breakwell, N A; Rowan, M J; Anwyl, R

    1997-08-01

    The effects of two ligands with previously established high and selective potency for metabotropic glutamate receptors (mGlu receptors) group II have been investigated on the high frequency stimulation (HFS) induced long-term potentiation of the field excitatory postsynaptic potential (EPSP) in the dentate gyrus of the rat hippocampus in vitro. The ligands investigated were (2S,1'S,2'S,3'R)-2-(2"-carboxy-3'-phenylcyclopropyl)glycine (PCCG-IV) and (R,S)-alpha-methyl-4-tetrazolylphenylglycine (MTPG). PCCG-IV (10 microM) strongly inhibited the induction of long-term potentiation of the field EPSP by high frequency stimulation. MTPG (50 microM) did not inhibit the induction of long-term potentiation, but prevented the inhibition of long-term potentiation induction by PCCG-IV. The inhibition of long-term potentiation induction by PCCG-IV is suggested to be due to an agonistic action on mGlu receptor group II, probably mGlu3 receptor, as the inhibition of long-term potentiation can be reversed by the application of MTPG, a well-known selective and potent antagonist of mGlu receptor group II. PMID:9286617

  20. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening.

    PubMed

    Sun, Qinru; Jia, Ning; Wang, Weixi; Jin, Hui; Xu, Jiehua; Hu, Haitao

    2014-01-01

    Mitochondrial dysfunction caused by amyloid β-peptide (Aβ) plays an important role in the pathogenesis of Alzheimer disease (AD). Substantial evidence has indicated that the mitochondrial permeability transition pore (mPTP) opening is involved in Aβ-induced neuronal death and reactive oxygen species (ROS) generation. Astragaloside IV (AS-IV), one of the major active constituents of Astragalus membranaceus, has been reported as an effective anti-oxidant for treating neurodegenerative diseases. However, the molecular mechanisms still need to be clarified. In this study, we investigated whether AS-IV could prevent Aβ1-42-induced neurotoxicity in SK-N-SH cells via inhibiting the mPTP opening. The results showed that pretreatment of AS-IV significantly increased the viability of neuronal cells, reduced apoptosis, decreased the generation of intracellular reactive oxygen species (ROS) and decreased mitochondrial superoxide in the presence of Aβ1-42. In addition, pretreatment of AS-IV inhibited the mPTP opening, rescued mitochondrial membrane potential (ΔΨm), enhanced ATP generation, improved the activity of cytochrome c oxidase and blocked cytochrome c release from mitochondria in Aβ1-42 rich milieu. Moreover, pretreatment of AS-IV reduced the expression of Bax and cleaved caspase-3 and increased the expression of Bcl-2 in an Aβ1-42 rich environment. These data indicate that AS-IV prevents Aβ1-42-induced SK-N-SH cell apoptosis via inhibiting the mPTP opening and ROS generation. These results provide novel insights of AS-IV for the prevention and treatment of neurodegenerative disorders such as AD. PMID:24905226

  1. Inhibition of Ubiquitin-specific Peptidase 8 Suppresses Adrenocorticotropic Hormone Production and Tumorous Corticotroph Cell Growth in AtT20 Cells

    PubMed Central

    Jian, Fang-Fang; Li, Yun-Feng; Chen, Yu-Fan; Jiang, Hong; Chen, Xiao; Zheng, Li-Li; Zhao, Yao; Wang, Wei-Qing; Ning, Guang; Bian, Liu-Guan; Sun, Qing-Fang

    2016-01-01

    Background: Two recent whole-exome sequencing researches identifying somatic mutations in the ubiquitin-specific protease 8 (USP8) gene in pituitary corticotroph adenomas provide exciting advances in this field. These mutations drive increased epidermal growth factor receptor (EGFR) signaling and promote adrenocorticotropic hormone (ACTH) production. This study was to investigate whether the inhibition of USP8 activity could be a strategy for the treatment of Cushing's disease (CD). Methods: The anticancer effect of USP8 inhibitor was determined by testing cell viability, colony formation, apoptosis, and ACTH secretion. The immunoblotting and quantitative reverse transcription polymerase chain reaction were conducted to explore the signaling pathway by USP8 inhibition. Results: Inhibition of USP8-induced degradation of receptor tyrosine kinases including EGFR, EGFR-2 (ERBB2), and Met leading to a suppression of AtT20 cell growth and ACTH secretion. Moreover, treatment with USP8 inhibitor markedly induced AtT20 cells apoptosis. Conclusions: Inhibition of USP8 activity could be an effective strategy for CD. It might provide a novel pharmacological approach for the treatment of CD. PMID:27569239

  2. Anti-neuroblastoma cell line antibodies in inflammatory demyelinating polyneuropathy: inhibition in vitro and in vivo by IV immunoglobulin.

    PubMed

    van Doorn, P A; Brand, A; Vermeulen, M

    1988-10-01

    We tested serum from 48 patients with Guillain-Barré syndrome and 42 with chronic inflammatory demyelinating polyneuropathy (CIDP) against a selected neuroblastoma cell line (NBL 108cc15). Forty-two percent of the patients showed a positive immunofluorescence test against the NBL 108cc15. These antibodies were mainly of the IgM-class; they disappeared in all seven CIDP patients retested after improvement following intravenous IgG treatment (IV-IgG) and were present in only 5% of serum from patients with other disorders. Absorption studies showed a partial homology between the NBL 108cc15 and human sciatic nerve. In vitro studies showed that IgG from pooled normal donors (IV-IgG) inhibits the reaction between serum from a CIDP patient and the NBL cell line. This inhibition may be due to neutralization of autoantibodies against nervous tissue by anti-idiotypic antibodies in IV-IgG.

  3. Astragaloside IV attenuates apoptosis of hypertrophic cardiomyocyte through inhibiting oxidative stress and calpain-1 activation.

    PubMed

    Mei, Meng; Tang, Futian; Lu, Meili; He, Xin; Wang, Hongxin; Hou, Xuwei; Hu, Jin; Xu, Chonghua; Han, Ronghui

    2015-11-01

    Calpain-1 activation and oxidative stress are two critical factors contributing to apoptosis of hypertrophic cardiomyocyte. Astragaloside IV (ASIV) exhibits protective effect against various heart diseases. The present study was designed to investigate whether the inhibitory effect of ASIV on isoproterenol (ISO)-induced apoptosis of hypertrophic cardiomyocyte was associated with the anti-oxidation and calpain-1 inhibition. Hypertrophy, apoptosis, mitochondrial oxidative stress and calpain-1 expression were measured in the heart tissue of Sprague-Dawley (SD) rats and H9C2 cells treated with ISO alone or combination with ASIV. The results showed that ASIV attenuated apoptotic rate, increased Bcl-2 expression, decreased Bax expression, ameliorated the integrity of mitochondrial structure and improved mitochondrial membrane potential (MMP). Moreover, ASIV combination reduced both calpain-1 protein expression and calpain activity, down-regulated mitochondrial NOX4 (mito-NOX4) expression, increased activity of mitochondrial superoxide dismutase (mito-SOD) and mitochondrial catalase (mito-CAT) compared to ISO treated alone. The results suggested that ASIV exerted anti-apoptosis effect on ISO-induced hypertrophic cardiomyocyte by attenuating oxidative stress and calpain-1 activation. PMID:26433482

  4. Physiological Roles of Pneumococcal Peptidases

    PubMed Central

    Johnson, Mary K.

    1974-01-01

    A methionyl-specific dipeptidase from Streptococcus pneumoniae has been described. This enzyme and the pneumococcal tripeptidase have been shown to be intracellular, soluble, and constitutive. In addition to their function in cleavage of peptide nutrients, these peptidases may play a role in protein synthesis and turnover. PMID:4212242

  5. Astragaloside IV inhibits renal tubulointerstitial fibrosis by blocking TGF-β/Smad signaling pathway in vivo and in vitro.

    PubMed

    Wang, Li; Chi, Yang-Feng; Yuan, Ze-Ting; Zhou, Wen-Chao; Yin, Pei-Hao; Zhang, Xue-Mei; Peng, Wen; Cai, Hui

    2014-10-01

    Astragaloside IV (AS-IV) is a major active ingredient from Radix astragali, which has been considered as a renoprotective agent; however, its molecular mechanisms are unclear. Thus, we designed to investigate the renoprotective effects and mechanisms of AS-IV in rat model of renal fibrosis induced by unilateral ureteral obstruction (UUO) in vivo and TGF-β1-stimulated rat renal fibroblasts (NRK-49F) in vitro. Sprague-Dawley rats were randomly divided into six groups: sham operation, UUO, UUO/AS-IV (3.3, 10, 33 mg·kg(-1)·d(-1)), and UUO/enalapril (4 mg·kg(-1)·d(-1)). Renal function, tubulointerstitial damage index score, extracellular matrix (ECM) deposition, and the expressions of TGF-β1, connective tissue growth factor (CTGF), α-SMA, fibronectin, collagen I, III, Smad2/3, phosphorylated-Smad2/3, and Smad7 were measured. In addition, the expressions of CTGF, α-SMA, fibronectin, collagen I, III, Smad2/3, phosphorylated-Smad2/3, and Smad7 were measured in TGF-β1-stiumlated NRK-49F cell line. AS-IV significantly decreased UUO-induced renal fibrosis and functional impairment, which are associated with inhibition of TGF-β1, CTGF, α-SMA, and collagen matrix expression, and a decrease in serum creatinine and urea nitrogen. The renoprotective effects of AS-IV on fibrosis were associated with up-regulation of Smad7, thereby blocking up-regulations of TGF-β1, CTGF, and α-SMA, and activation of phosphorylated-Smad2/3. These effects were further conformed in NRK-49F cell line stimulated by TGF-β1. Moreover, knockdown of Smad7 gene in NRK-49F cells was able to prevent AS-IV-induced inhibition to Smad2/3 signaling activation, expression of CTGF, α-SMA, and ECM proteins in response to TGF-β1. Renal tubulointerstitial fibrosis was attenuated by treatment with AS-IV, which was closely related to induction of Smad7, thereby inhibiting TGF-β/Smad signaling.

  6. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  7. Anti-apoptotic seminal vesicle protein IV inhibits cell-mediated immunity.

    PubMed

    Fuggetta, M P; Lanzilli, G; Cottarelli, A; Ravagnan, G; Cartenì, M; De Maria, S; Metafora, B M; Metafora, V; Metafora, S

    2008-07-01

    The in vitro effect of seminal vesicle protein IV (SV-IV) on the cytotoxic activity of human natural or acquired cellular immunity has been investigated by standard immunological procedures, a (51)Cr-release cytotoxicity assay, and labeled-ligand binding experiments. The data obtained demonstrate that: (1) fluoresceinated or [(125)I]-labeled SV-IV binds specifically to the surface of human purified non-adherent mononuclear cells (NA-MNC); (2) SV-IV suppresses the cytotoxicity of natural killer (NK) cells against K562 target cells, that of IL-2-stimulated NK (LAK) cells against DAUDI target cells, and that of VEL antigen-sensitized cytotoxic T lymphocytes (CTLs) against VEL target cells; (3) treatment of K562 target cells alone with SV-IV decreases their susceptibility to NK-induced lysis. These findings indicate that the protein SV-IV has a marked in vitro inhibitory effect on NK, LAK and CTL cytotoxicity, providing a better understanding of its immune regulatory functions.

  8. Extracellular peptidases from Deinococcus radiodurans.

    PubMed

    Dalmaso, Gabriel Z L; Lage, Claudia A S; Mazotto, Ana Maria; Dias, Edilma Paraguai de Souza; Caldas, Lucio Ayres; Ferreira, Davis; Vermelho, Alane B

    2015-09-01

    The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism.

  9. Extracellular peptidases from Deinococcus radiodurans.

    PubMed

    Dalmaso, Gabriel Z L; Lage, Claudia A S; Mazotto, Ana Maria; Dias, Edilma Paraguai de Souza; Caldas, Lucio Ayres; Ferreira, Davis; Vermelho, Alane B

    2015-09-01

    The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism. PMID:26216108

  10. Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major

    PubMed Central

    Eschenlauer, Sylvain C P; Faria, Marilia S; Morrison, Lesley S; Bland, Nicolas; Ribeiro-Gomes, Flavia L; DosReis, George A; Coombs, Graham H; Lima, Ana Paula C A; Mottram, Jeremy C

    2009-01-01

    Ecotin is a potent inhibitor of family S1A serine peptidases, enzymes lacking in the protozoan parasite Leishmania major. Nevertheless, L. major has three ecotin-like genes, termed inhibitor of serine peptidase (ISP). ISP1 is expressed in vector-borne procyclic and metacyclic promastigotes, whereas ISP2 is also expressed in the mammalian amastigote stage. Recombinant ISP2 inhibited neutrophil elastase, trypsin and chymotrypsin with Kis between 7.7 and 83 nM. L. major ISP2–ISP3 double null mutants (Δisp2/3) were created. These grew normally as promastigotes, but were internalized by macrophages more efficiently than wild-type parasites due to the upregulation of phagocytosis by a mechanism dependent on serine peptidase activity. Δisp2/3 promastigotes transformed to amastigotes, but failed to divide for 48 h. Intracellular multiplication of Δisp2/3 was similar to wild-type parasites when serine peptidase inhibitors were present, suggesting that defective intracellular growth results from the lack of serine peptidase inhibition during promastigote uptake. Δisp2/3 mutants were more infective than wild-type parasites to BALB/c mice at the early stages of infection, but became equivalent as the infection progressed. These data support the hypothesis that ISPs of L. major target host serine peptidases and influence the early stages of infection of the mammalian host. PMID:19016791

  11. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor

    SciTech Connect

    Ammirati, Mark J.; Andrews, Kim M.; Boyer, David D.; Brodeur, Anne M.; Danley, Dennis E.; Doran, Shawn D.; Hulin, Bernard; Liu, Shenping; McPherson, R. Kirk; Orena, Stephen J.; Parker, Janice C.; Polivkova, Jana; Qiu, Xiayang; Soglia, Carolyn B.; Treadway, Judith L.; VanVolkenburg, Maria A.; Wilder, Donald C.; Piotrowski, David W.; Pfizer

    2010-10-01

    A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC{sub 50} = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.

  12. Fluorometric assay using naphthylamide substrates for assessing novel venom peptidase activities.

    PubMed

    Gasparello-Clemente, Elaine; Silveira, Paulo Flávio

    2002-11-01

    In the present study we examined the feasibility of using the fluorometry of naphthylamine derivatives for revealing peptidase activities in venoms of the snakes Bothrops jararaca, Bothrops alternatus, Bothrops atrox, Bothrops moojeni, Bothrops insularis, Crotalus durissus terrificus and Bitis arietans, of the scorpions Tityus serrulatus and Tityus bahiensis, and of the spiders Phoneutria nigriventer and Loxosceles intermedia. Neutral aminopeptidase (APN) and prolyl-dipeptidyl aminopeptidase IV (DPP IV) activities were presented in all snake venoms, with the highest levels in B. alternatus. Although all examined peptidase activities showed relatively low levels in arthropod venoms, basic aminopeptidase (APB) activity from P. nigriventer venom was the exception. Compared to the other peptidase activities, relatively high levels of acid aminopeptidase (APA) activity were restricted to B. arietans venom. B. arietans also exhibited a prominent content of APB activity which was lower in other venoms. Relatively low prolyl endopeptidase and proline iminopeptidase activities were, respectively, detectable only in T. bahiensis and B. insularis. Pyroglutamate aminopeptidase activity was undetectable in all venoms. All examined peptidase activities were undetectable in T. serrulatus venom. In this study, the specificities of a diverse array of peptidase activities from representative venoms were demonstrated for the first time, with a description of their distribution which may contribute to guiding further investigations. The expressive difference between snake and arthropod venoms was indicated by APN and DPP IV activities while APA and APB activities distinguished the venom of B. arietans from those of Brazilian snakes. The data reflected the relatively uniform qualitative distribution of the peptidase activities investigated, together with their unequal quantitative distribution, indicating the evolutionary divergence in the processing of peptides in these different

  13. The Inhibition Of Pb(IV) Oxide Formation In Chlorinated Water By Orthophosphate

    EPA Science Inventory

    Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the co...

  14. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  15. Astragaloside IV inhibits doxorubicin-induced cardiomyocyte apoptosis mediated by mitochondrial apoptotic pathway via activating the PI3K/Akt pathway.

    PubMed

    Jia, Yuanyuan; Zuo, Daiying; Li, Zengqiang; Liu, Hanmo; Dai, Zhengning; Cai, Jiayi; Pang, Lili; Wu, Yingliang

    2014-01-01

    Doxorubicin (DOX) is a widely used antitumor drug whose application is seriously limited by its cardiotoxicity. Mitochondria-mediated cardiomyocyte apoptosis plays a critical role in DOX-induced cardiotoxicity (DIC). The aim of the present study was to investigate the protective effect of astragaloside IV (3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol, AS-IV), a pure saponin isolated from Astragalus membranaceus, against DOX-induced cardiomyocyte apoptosis in primary cultured neonatal rat cardiomyocytes. Immunocytochemistry and Microculture Tetrazolium (MTT) assays showed that AS-IV significantly reduced DOX-induced cardiomyocyte loss. Additionally, AS-IV markedly ameliorated DOX-caused cardiomyocyte dysfunction via restoring the beating cell ratio and beating rate in cardiomyocytes. Furthermore, AS-IV substantially reduced the mitochondrial reactive oxygen species (ROS) production and lactate dehydrogenase (LDH), creatine kinase-MB isoenzyme (CK-MB) and cytochrome c (CytC) release, and restored the reduced ATP level, succinate dehydrogenase (SDH) and ATP synthase activities induced by DOX, suggesting that AS-IV significantly attenuated DOX-induced mitochondrial damage and dysfunction. It was further observed that DOX-induced cardiomyocyte apoptosis, as qualitatively evaluated by Hoechst 33258 staining and accurately quantified by flow cytometry, was markedly inhibited by AS-IV. Western blot analysis manifested that AS-IV significantly inhibited the activation of mitochondrial apoptotic pathway (MAP) via inducing the phosphorylation of Akt and Bad. Furthermore, phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) remarkably inhibited the anti-apoptotic effect of AS-IV. Moreover, AS-IV didn't compromise the antitumor activity of DOX. Taken together, our findings indicate that AS-IV ameliorates DIC, and this beneficial effect appears to be dependent on the activation of the PI3K

  16. An Essential Signal Peptide Peptidase Identified in an RNAi Screen of Serine Peptidases of Trypanosoma brucei

    PubMed Central

    Moss, Catherine X.; Brown, Elaine; Hamilton, Alana; Van der Veken, Pieter; Augustyns, Koen; Mottram, Jeremy C.

    2015-01-01

    The serine peptidases of Trypanosoma brucei have been viewed as potential drug targets. In particular, the S9 prolyl oligopeptidase subfamily is thought to be a good avenue for drug discovery. This is based on the finding that some S9 peptidases are secreted and active in the mammalian bloodstream, and that they are a class of enzyme against which drugs have successfully been developed. We collated a list of all serine peptidases in T. brucei, identifying 20 serine peptidase genes, of which nine are S9 peptidases. We screened all 20 serine peptidases by RNAi to determine which, if any, are essential for bloodstream form T. brucei survival. All S9 serine peptidases were dispensable for parasite survival in vitro, even when pairs of similar genes, coding for oligopeptidase B or prolyl oligopeptidase, were targeted simultaneously. We also found no effect on parasite survival in an animal host when the S9 peptidases oligopeptidase B, prolyl oligopeptidase or dipeptidyl peptidase 8 were targeted. The only serine peptidase to emerge from the RNAi screen as essential was a putative type-I signal peptide peptidase (SPP1). This gene was essential for parasite survival both in vitro and in vivo. The growth defect conferred by RNAi depletion of SPP1 was rescued by expression of a functional peptidase from an RNAi resistant SPP1 gene. However, expression of catalytically inactive SPP1 was unable to rescue cells from the SPP1 depleted phenotype, demonstrating that SPP1 serine peptidase activity is necessary for T. brucei survival. PMID:25816352

  17. DPP IV inhibitor blocks mescaline-induced scratching and amphetamine-induced hyperactivity in mice.

    PubMed

    Lautar, Susan L; Rojas, Camilo; Slusher, Barbara S; Wozniak, Krystyna M; Wu, Ying; Thomas, Ajit G; Waldon, Daniel; Li, William; Ferraris, Dana; Belyakov, Sergei

    2005-06-28

    Dipeptidyl peptidase IV (DPP IV) is a ubiquitous membrane-bound enzyme that cleaves the two N-terminal amino acids from peptides with a proline or alanine residue in the second position from the amino end. Potential substrates for DPP IV include several neuropeptides, suggesting a role for DPP IV in neurological processes. We have developed a potent DPP IV inhibitor (IC50 = 30 nM), 1-(2-amino-3-methyl-butyryl)-azetidine-2-carbonitrile (AMAC), which has shown efficacy in two established models of psychosis: mescaline-induced scratching and amphetamine-induced hyperactivity. In the mescaline-induced scratching model, AMAC treatment before mescaline administration reduced the number of scratching paroxysms by 68% (P < 0.01). The compound showed a dose-dependent effect, inhibiting significantly at 6, 20 and 60 mg/kg (37%, 39% and 68%, respectively). In the amphetamine-induced hyperactivity model, 50 and 60 mg/kg AMAC, given before injection of amphetamine, significantly reduced hyper-locomotion by 65% and 76%, respectively. Additionally, AMAC showed no significant activity in binding assays for 20 receptors thought to be involved in the pathology of schizophrenia, including dopamine, serotonin and glutamate. A structurally similar analog, 1-(2-dimethylamino-3-methyl-butyryl)-azetidine-2-carbonitrile (DAMAC), that does not inhibit DPP IV, was inactive in both models. Taken together, these data suggest that the antipsychotic effects of AMAC are the result of DPP IV inhibition.

  18. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  19. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    PubMed

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    The present study aimed at developing a natural compound with anti-allergic effect and stability under latex glove manufacturing conditions and investigating whether its anti-allergic effect is maintained after its addition into the latex. The effects of nine natural compounds on growth of the RBL-2H3 cells and mouse primary spleen lymphocytes were determined using MTT assay. The compounds included glycyrrhizin, osthole, tetrandrine, tea polyphenol, catechin, arctigenin, oleanolic acid, baicalin and oxymatrine. An ELISA assay was used for the in vitro anti-type I/IV allergy screening; in this process β-hexosaminidase, histamine, and IL-4 released from RBL-2H3 cell lines and IFN-γ and IL-2 released from mouse primary spleen lymphocytes were taken as screening indices. The physical stability of eight natural compounds and the dissolubility of arctigenin, selected based on the in vitro pharnacodynamaic screening and the stability evaluation, were detected by HPLC. The in vivo pharmacodynamic confirmation of arctigenin and final latex product was evaluated with a passive cutaneous anaphylaxis (PCA) model and an allergen-specific skin response model. Nine natural compounds showed minor growth inhibition on RBL-2H3 cells and mouse primary spleen lymphocytes. Baicalin and arctigenin had the best anti-type I and IV allergic effects among the natural compounds based on the in vitro pharmacodynamic screening. Arctigenin and catechin had the best physical stability under different manufacturing conditions. Arctigenin was the selected for further evaluation and proven to have anti-type I and IV allergic effects in vivo in a dose-dependent manner. The final product of the arctigenin-containing latex glove had anti-type I and IV allergic effects in vivo which were mainly attributed to arctigenin as proved from the dissolubility results. Arctigenin showed anti-type I and IV allergic effects in vitro and in vivo, with a good stability under latex glove manufacturing conditions

  20. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    PubMed

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    The present study aimed at developing a natural compound with anti-allergic effect and stability under latex glove manufacturing conditions and investigating whether its anti-allergic effect is maintained after its addition into the latex. The effects of nine natural compounds on growth of the RBL-2H3 cells and mouse primary spleen lymphocytes were determined using MTT assay. The compounds included glycyrrhizin, osthole, tetrandrine, tea polyphenol, catechin, arctigenin, oleanolic acid, baicalin and oxymatrine. An ELISA assay was used for the in vitro anti-type I/IV allergy screening; in this process β-hexosaminidase, histamine, and IL-4 released from RBL-2H3 cell lines and IFN-γ and IL-2 released from mouse primary spleen lymphocytes were taken as screening indices. The physical stability of eight natural compounds and the dissolubility of arctigenin, selected based on the in vitro pharnacodynamaic screening and the stability evaluation, were detected by HPLC. The in vivo pharmacodynamic confirmation of arctigenin and final latex product was evaluated with a passive cutaneous anaphylaxis (PCA) model and an allergen-specific skin response model. Nine natural compounds showed minor growth inhibition on RBL-2H3 cells and mouse primary spleen lymphocytes. Baicalin and arctigenin had the best anti-type I and IV allergic effects among the natural compounds based on the in vitro pharmacodynamic screening. Arctigenin and catechin had the best physical stability under different manufacturing conditions. Arctigenin was the selected for further evaluation and proven to have anti-type I and IV allergic effects in vivo in a dose-dependent manner. The final product of the arctigenin-containing latex glove had anti-type I and IV allergic effects in vivo which were mainly attributed to arctigenin as proved from the dissolubility results. Arctigenin showed anti-type I and IV allergic effects in vitro and in vivo, with a good stability under latex glove manufacturing conditions

  1. Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei.

    PubMed

    da Silva, Ronivaldo Rodrigues; Souto, Tatiane Beltramini; de Oliveira, Tássio Brito; de Oliveira, Lilian Caroline Gonçalves; Karcher, Daniel; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rodrigues, André; Rosa, Jose C; Cabral, Hamilton

    2016-08-01

    In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese. PMID:27165660

  2. Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei.

    PubMed

    da Silva, Ronivaldo Rodrigues; Souto, Tatiane Beltramini; de Oliveira, Tássio Brito; de Oliveira, Lilian Caroline Gonçalves; Karcher, Daniel; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rodrigues, André; Rosa, Jose C; Cabral, Hamilton

    2016-08-01

    In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese.

  3. Secreted dipeptidyl peptidases as potential virulence factors for Microsporum canis.

    PubMed

    Vermout, Sandy; Baldo, Aline; Tabart, Jérémy; Losson, Bertrand; Mignon, Bernard

    2008-12-01

    Dermatophytoses caused by Microsporum canis are frequently encountered in cats and dogs; they are highly contagious and readily transmissible to humans. In this study, two single genes, respectively coding for dipeptidyl peptidases IV and V (DppIV and DppV), were isolated and characterized. Both proteins share homology with serine proteases of the S9 family, some of which display properties compatible with implication in pathogenic processes. Both genes are expressed in vivo in experimentally infected guinea-pigs and in naturally infected cats, and when the fungus is grown on extracellular matrix proteins as the sole nitrogen and carbon source. DppIV and V were produced as active recombinant proteases in the yeast Pichia pastoris; the apparent molecular weight of rDppV is 83 kDa, whereas rDppIV appears as a doublet of 95 and 98 kDa. Like other members of its enzymatic subfamily, rDppIV has an unusual ability to cleave Pro-X bonds. This activity does not enhance the solubilization of keratin by fungal secreted endoproteases, and the protease probably acts solely on small soluble peptides. RDppV showed no ability to induce delayed-type hypersensitivity (DTH) skin reactions in guinea-pigs, despite the known immunogenic properties of homologous proteins.

  4. Vanadium(IV) complexes inhibit adhesion, migration and colony formation of UMR106 osteosarcoma cells.

    PubMed

    Molinuevo, María S; Cortizo, Ana M; Etcheverry, Susana B

    2008-04-01

    Vanadium is a trace element widely distributed in the environment. In vertebrates it is mainly stored in bone tissue. The unique cellular environment in the bone and the variety of interactions that mediate cancer metastasis determine that certain types of cancer, such as breast and prostate cancer, preferentially metastize in the skeleton. Since this effect usually signifies serious morbidity and grave prognosis there is an increasing interest in the development of new treatments for this pathology. The present work shows that vanadium complexes can inhibit some parameters related to cancer metastasis such as cell adhesion, migration and clonogenicity. We have also investigated the role of protein kinase A in these processes.

  5. Ternary oxovanadium(IV) complexes with amino acid-Schiff base and polypyridyl derivatives: synthesis, characterization, and protein tyrosine phosphatase 1B inhibition.

    PubMed

    Lu, Liping; Yue, Jinjun; Yuan, Caixia; Zhu, Miaoli; Han, Hong; Liu, Zhiwei; Guo, Maolin

    2011-10-01

    To investigate the structure-activity relationship of vanadium complexes in inhibiting protein tyrosine phosphatase1B (PTP1B), eight mixed-ligand oxovanadium(IV) complexes, [V(IV)O(SalAla)(NN)] (H(2)SalAla for salicylidene alanine, NN for N,N'-donor heterocyclic base, namely, 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4)), [V(IV)O(SalLys)(dpq)] (5), [V(IV)O(SalLys)(dppz)] (6), [V(IV)O(SalAsp)(dppz)], (7) and [V(IV)O(SalTrp)(dppz)] (8)), of which 3-8 are new, have been prepared and characterized by elemental analysis, infrared, UV-visible, electrospray ionization mass spectrometry and conductivity. The molar conductance data confirmed the non-electrolytic nature of the complexes in DMSO solution. The coordination in [V(IV)O (SalAla)(phen)] (2) was confirmed by X-ray crystal structure analysis. The oxidation state of V(IV) with d(1) configuration in 2 was confirmed by EPR. The speciation of VO-SalAla-phen in aqueous solution was investigated by potentiometric pH titrations. The results indicate that the main species are two ternary complexes at the pH range 7.0-7.4. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of PTP1B with IC(50) values in the range of 62-597nM, approximately 3-10 fold weaker in potency than those of similar mixed-ligand oxovanadium(IV) complexes of salicylidene anthranilic acid (SAA) derivative with polypyridyl ligands, except complex 8, which exhibits comparable or better inhibition activity than those of the mixed-ligand oxovanadium(IV) complexes of SAA derivative with polypyridyl ligands. The results demonstrate that the structures of vanadium complexes influence the PTP1B inhibition activity. Kinetics assays reveal that complex 2 inhibits PTP1B in a competitive manner.

  6. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells.

    PubMed

    Kim, Kyu Kwang; Abelman, Sarah; Yano, Naohiro; Ribeiro, Jennifer R; Singh, Rakesh K; Tipping, Marla; Moore, Richard G

    2015-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that triggers adaptive responses upon low oxygen conditions and plays a crucial role in cancer metabolism and therapy resistance. Tetrathiomolybdate (TM), a therapy option for copper overload disorder, has also been shown to be capable of limiting tumor angiogenesis, although its underlying mechanism remains unclear. Using ovarian and endometrial cancer cell lines, we observed that TM downregulates HIF-1α protein levels and HIF-transcriptional targets involved in tumor angiogenesis and glycolysis, but did not affect HIF-1α protein synthesis. TM-mediated HIF-1α downregulation was suppressed when HIF-prolyl hydroxylase activity was pharmacologically inhibited using deferoxamine or dimethyloxaloylglycine, and also when the oxygen-dependent degradation domains of HIF-1α, which are responsible for the interaction with HIF-prolyl hydroxylase, were deleted. These findings suggest that TM causes HIF-1α downregulation in a HIF-prolyl hydroxylase-dependent manner. Our studies showed that TM inhibits the activity of the copper-dependent mitochondrial complex IV and reduces mitochondrial respiration, thereby possibly increasing oxygen availability, which is crucial for HIF-prolyl hydroxylase activity. Pimonidazole staining also showed that TM elevates oxygen tension in hypoxic cells. Our studies provide mechanistic evidence for TM-mediated HIF-1α regulation and suggest its therapeutic potential as a method of blocking angiogenesis in ovarian and endometrial tumors.

  7. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells

    PubMed Central

    Kwang Kim, Kyu; Abelman, Sarah; Yano, Naohiro; Ribeiro, Jennifer R.; Singh, Rakesh K.; Tipping, Marla; Moore, Richard G.

    2015-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that triggers adaptive responses upon low oxygen conditions and plays a crucial role in cancer metabolism and therapy resistance. Tetrathiomolybdate (TM), a therapy option for copper overload disorder, has also been shown to be capable of limiting tumor angiogenesis, although its underlying mechanism remains unclear. Using ovarian and endometrial cancer cell lines, we observed that TM downregulates HIF-1α protein levels and HIF-transcriptional targets involved in tumor angiogenesis and glycolysis, but did not affect HIF-1α protein synthesis. TM-mediated HIF-1α downregulation was suppressed when HIF-prolyl hydroxylase activity was pharmacologically inhibited using deferoxamine or dimethyloxaloylglycine, and also when the oxygen-dependent degradation domains of HIF-1α, which are responsible for the interaction with HIF-prolyl hydroxylase, were deleted. These findings suggest that TM causes HIF-1α downregulation in a HIF-prolyl hydroxylase-dependent manner. Our studies showed that TM inhibits the activity of the copper-dependent mitochondrial complex IV and reduces mitochondrial respiration, thereby possibly increasing oxygen availability, which is crucial for HIF-prolyl hydroxylase activity. Pimonidazole staining also showed that TM elevates oxygen tension in hypoxic cells. Our studies provide mechanistic evidence for TM-mediated HIF-1α regulation and suggest its therapeutic potential as a method of blocking angiogenesis in ovarian and endometrial tumors. PMID:26469226

  8. Kinetics of Extracellular Peptidases in Sediments of the White Oak River, NC, USA

    NASA Astrophysics Data System (ADS)

    Steen, A. D.; Kevorkian, R. T.; Alperin, M. J.; Lloyd, K. G.

    2013-12-01

    Recent molecular work has shed light on the mechanisms underlying organoheterotrophy in the marine subsurface, including production of extracellular peptidases by deeply-branching Archaea. Here we present measurements of the potential activity (Vmax) and half-saturation constants (Km) for six extracellular peptidase substrates in sediments from 0 to 83 cm deep in the White Oak River estuary, NC, USA. Potential activities at 83 cm were on average 12% of the values at the surface, but because surface Vmax values were several orders of magnitude greater than comparable values from surface seawater, the deep activities were still substantial. Km values did not display a clear trend with depth. Activities consistent with leucyl aminopeptidase were higher than any other extracellular peptidase, but there was no clear division in activities between endopeptidases (which cleave bonds in the interior of proteins) versus aminopeptidases (which cleave N-terminal amino acids). Competitive inhibition experiments will reveal the extent to which the activities we measured reflect the distinct enzymes. We will also present model-based estimates of organic carbon mineralization rates based on methane and sulfate profiles in order to assess the relative importance of extracellular peptidases as a means to acquire organic carbon in the subsurface. Saturation curves for 5 peptidase substrates at the surface and 83 cm in the White Oak River.

  9. Dipeptidyl peptidase 4 – an important digestive peptidase in Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae ...

  10. Aminopiperidine-Fused Imidazoles as Dipeptidyl Peptidase-IV Inhibitors

    SciTech Connect

    Edmondson, S.; Mastracchio, A; Cox, J; Eiermann, G; He, H; Lyons, K; Patel, R; Patel, S; Petrov, A; et. al.

    2009-01-01

    A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

  11. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP–WT1–TBL1 axis

    PubMed Central

    Zhang, Jingwan; Tsoi, Ho; Li, Xiaoxing; Wang, Hua; Gao, Jing; Wang, Kunning; Go, Minnie YY; Ng, Siew C; Chan, Francis KL; Sung, Joseph JY; Yu, Jun

    2016-01-01

    Objective We found that carbonic anhydrase IV (CA4), a member of the carbonic anhydrases, is silenced in colorectal cancer (CRC). We analysed its epigenetic inactivation, biological effects and prognostic significance in CRC. Design The biological functions of CA4 were determined by in vitro and in vivo tumorigenicity assays. The CA4 co-operator was identified by immunoprecipitation and mass spectrometry. CA4 downstream effectors and signalling pathways were elucidated by promoter luciferase assay, electrophoretic mobility shift assay and chromatin immunoprecipitation. The clinical impact of CA4 was assessed in 115 patients with CRC. Results CA4 was silenced in all nine CRC cell lines and 92.6% of CRC tumours. The promoter hypermethylation contributed to the inactivation of CA4, and it was detected in 75.7% of the patients with CRC. After a median follow-up of 49.3 months, multivariate analysis showed that the patients with CA4 hypermethylation had a recurrence of Stage II/III CRC. The re-expression of CA4 inhibited cell proliferation, induced apoptosis and cell cycle arrest in the G1 phase. CA4 inhibited the activity of the Wnt signalling pathway and mediated the degradation of β-catenin. CA4 interacted with Wilms’ tumour 1-associating protein (WTAP) and induced WTAP protein degradation through polyubiquitination. Moreover, CA4 promoted the transcriptional activity of Wilms’ tumour 1 (WT1), an antagonist of the Wnt pathway, which resulted in the induction of transducin β-like protein 1 (TBL1) and the degradation of β-catenin. Conclusions CA4 is a novel tumour suppressor in CRC through the inhibition of the Wnt signalling pathway by targeting the WTAP–WT1–TBL1 axis. CA4 methylation may serve as an independent biomarker for the recurrence of CRC. PMID:26071132

  12. Cysteine Peptidases, Secreted by Trichomonas gallinae, Are Involved in the Cytopathogenic Effects on a Permanent Chicken Liver Cell Culture

    PubMed Central

    Amin, Aziza; Nöbauer, Katharina; Patzl, Martina; Berger, Evelyn; Hess, Michael; Bilic, Ivana

    2012-01-01

    Trichomonas gallinae, the aetiological agent of avian trichomonosis, was shown to secrete soluble factors involved in cytopathogenic effect on a permanent chicken liver (LMH) cell culture. The present study focused on the characterization of these molecules. The addition of specific peptidase inhibitors to the cell-free filtrate partially inhibited the monolayer destruction, which implied the presence of peptidases in the filtrate and their involvement in the cytopathogenic effect. One-dimensional substrate (gelatin) SDS-PAGE confirmed the proteolytic character of the filtrate by demonstrating the proteolytic activity within the molecular weight range from 38 to 110 kDa. In addition, the proteolytic activity was specifically inhibited by addition of TLCK and E-64 cysteine peptidase inhibitors implying their cysteine peptidase nature. Furthermore, variations in the intensity and the number of proteolytic bands were observed between cell-free filtrates of low and high passages of the same T. gallinae clonal culture. Two-dimensional substrate gel electrophoresis of concentrated T. gallinae cell-free filtrate identified at least six proteolytic spots. The mass spectrometric analysis of spots from 2-D gels identified the presence of at least two different Clan CA, family C1, cathepsin L-like cysteine peptidases in the cell-free filtrate of T. gallinae. In parallel, a PCR approach using degenerated primers based on the conserved amino acid sequence region of cysteine peptidases from Trichomonas vaginalis identified the coding sequences for four different Clan CA, family C1, cathepsin L-like cysteine peptidases. Finally, this is the first report analyzing molecules secreted by T. gallinae and demonstrating the ubiquity of peptidases secreted by this protozoon. PMID:22649527

  13. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  14. [Influence of coordination compounds of germanium (IV) and stannum (IV) on activity of some microbial enzymes with glycolytic and proteolytic action].

    PubMed

    Varbanets', L D; Matseliukh, O V; Nidialkova, N A; Hudzenko, O V; Avdiiuk, K V; Shmatkova, N V; Seĭfullina, I Ĭ

    2014-01-01

    Influence of coordinative compounds of germanium (IV) and stanum (IV) (complexes of germanium (IV) with nicotinamide (Nad) [GeCl2(Nad)4]Cl2 (1) and complexes of stanum (IV) with 2-hydroxybenzoilhydrazone 4-dimetylaminobenzaldehide (2-OH-HBdb) [SnCl4(2-OH-Bdb-H)] (2), 3-hydroxy-2-naphtoilhydrazone 2-hydroxynaphtaldehide (3-OH-H2Lnf) [SnCl3(3-OH-HLnf)] (3) and izonicotinoilhydrazone 2-hydroxyibenzaldehide [SnCl3 (Is·H)] (4) on activity of peptidases 1 and 2 Bacillus thuringiensis, α-L-rhamnosidase Cryptococcus albidus, Eupenicillium erubescens and α-amylase Aspergillus flavus var. oryzae. Results testify that all studied compounds differ on their influence on activity of the enzymes tested: significantly don't change elastolytic activity of peptidases 1 and 2 B. thuringiensis, completely inhibit A. flavus var. oryzae amylase, activate or oppress of α-L-rhamnosidase C. albidus and E. erubescens. Considerable differences in compounds (3, 4) on activity observed in case of the last. It's possible that peculiarity of influence (1) in compare with (2-4) is connected with existence of different central atoms of complexants: germanium (IV) (1) and stanum (IV) (2-4). A certain analogy in oppression of C. albidus α-L-rhamnosidase by compounds (1) and (4) can explain with presence of a pyridinic ring at molecules of their ligands. The less activsty displayed compound (2) with coordinative knot {SnCl4ON}. Nature of compounds (3, 4) activity was absolutely different: essential increase of activity of C. albidus α-L-rhamnosidase and full oppression of E. erubescens α-L-rhamnosidase by compound (3), while the action of compound (4) was feed back. Taking into account identical coordination knot {SnCl3O2N} the major role in this case play change of a hydrazide fragment in molecules of their ligands.

  15. Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus

    PubMed Central

    2013-01-01

    Background Aedes albopictus, a ubiquitous mosquito, is one of the main vectors of dengue and yellow fever, representing an important threat to public health worldwide. Peptidases play key roles in processes such as digestion, oogenesis, and metamorphosis of insects. However, most of the information on the proteolytic enzymes of mosquitoes is derived from insects in the adult stages and is often directed towards the understanding of blood digestion. The aim of this study was to investigate the expression of active peptidases from the preimaginal stages of Ae. albopictus. Methods Ae. albopictus eggs, larvae, and pupae were analyzed using zymography with susbtrate-SDS-PAGE. The pH, temperature and peptidase inhibitor sensitivity was evaluated. In addition, the proteolytic activities of larval instars were assayed using the fluorogenic substrate Z-Phe-Arg-AMC. Results The proteolytic profile of the larval stage was composed of 8 bands ranging from 17 to 130 kDa. These enzymes displayed activity in a broad range of pH values, from 5.5 to 10.0. The enzymatic profile of the eggs was similar to that of the larvae, although the proteolytic bands of the eggs showed lower intensities. The pupal stage showed a complex proteolytic pattern, with at least 6 bands with apparent molecular masses ranging from 30 to 150 kDa and optimal activity at pH 7.5. Peptidases from larval instars were active from 10°C to 60°C, with optimal activity at temperatures between 37°C and 50°C. The proteolytic profile of both the larval and pupal stages was inhibited by phenyl-methyl sulfonyl-fluoride (PMSF) and Nα-Tosyl L-lysine chloromethyl ketone hydrochloride (TLCK), indicating that the main peptidases expressed during these developmental stages are trypsin-like serine peptidases. Conclusion The preimaginal stages of Ae. albopictus exhibited a complex profile of trypsin-like serine peptidase activities. A comparative analysis of the active peptidase profiles revealed differential expression

  16. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    PubMed

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN. PMID:24718766

  17. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  18. Peptidase activity of beta-lactamases.

    PubMed Central

    Rhazi, N; Galleni, M; Page, M I; Frère, J M

    1999-01-01

    Although beta-lactamases have generally been considered as being devoid of peptidase activity, a low but significant hydrolysis of various N-acylated dipeptides was observed with representatives of each class of beta-lactamases. The kcat/Km values were below 0.1 M(-1). s(-1), but the enzyme rate enhancement factors were in the range 5000-20000 for the best substrates. Not unexpectedly, the best 'peptidase' was the class C beta-lactamase of Enterobacter cloacae P99, but, more surprisingly, the activity was always higher with the phenylacetyl- and benzoyl-d-Ala-d-Ala dipeptides than with the diacetyl- and alpha-acetyl-l-Lys-d-Ala-d-Ala tripeptides, which are the preferred substrates of the low-molecular-mass, soluble dd-peptidases. A comparison between the beta-lactamases and dd-peptidases showed that it might be as difficult for a dd-peptidase to open the beta-lactam ring as it is for the beta-lactamases to hydrolyse the peptides, an observation which can be explained by geometric and stereoelectronic considerations. PMID:10393100

  19. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment.

    PubMed

    Pène, V; Hernandez, C; Vauloup-Fellous, C; Garaud-Aunis, J; Rosenberg, A R

    2009-10-01

    Hepatitis C virus (HCV) core protein is believed to play critical roles in the virus morphogenesis and pathogenesis. In HCV polyprotein, core protein terminates with a signal peptide followed by E1 envelope protein. It has remained unclear whether cleavage by host cell signal peptidase (SP) at the core-E1 junction to generate the complete form of core protein, which is anchored in the endoplasmic reticulum membrane, is absolutely required for cleavage within the signal peptide by host cell signal peptide peptidase (SPP) to liberate the mature form of core protein, which is then free for trafficking to lipid droplets. In this study, the possible sources of disagreement in published reports have been examined, and we conclude that a product generated upon inhibition of SP-catalysed cleavage at the core-E1 junction in heterologous expression systems was incorrectly identified as mature core protein. Moreover, inhibition of this cleavage in the most relevant model of human hepatoma cells replicating a full-length HCV genome was shown to abolish interaction of core protein with lipid droplets and production of infectious progeny virus. These results firmly establish that SPP-catalysed liberation of mature core protein is absolutely dependent on prior cleavage by SP at the correct core-E1 site to generate the complete form of core protein, consistent with this obligatory order of processing playing a role in HCV infectious cycle. PMID:19281487

  20. Divergent actions by inhibitors of DP IV and APN family enzymes on CD4+ Teff cell motility and functions.

    PubMed

    Biton, Aliza; Ansorge, Siegfried; Bank, Ute; Täger, Michael; Reinhold, Dirk; Brocke, Stefan

    2011-12-01

    Dipeptidyl peptidase IV (DP IV)/CD26 and aminopeptidase N (APN)/CD13 family enzymes control T cell functions. We have previously defined these peptidases as targets to treat autoimmune disease, but the underlying mechanism is unclear. Here, we determined the effect of enzymatic inhibitors on chemotaxis by CD4+ effector T (Teff) cells. Exposure of Teff cells to the inhibitor of DP IV activity, Lys[Z(NO2)]-pyrrolidide (LZNP) and the inhibitor of APN activity, actinonin has no effect on chemotaxis or unstimulated cell migration, even at high inhibitor concentrations. LZNP and actinonin also fail to suppress migration of unfractionated lymph node cells, excluding paracrine action through other leukocyte subsets. In contrast, inhibition of DP IV and APN activities selectively suppresses lymphocyte functions including proliferation and production of the T helper type (Th)1 cytokine IFN-γ, the Th17 cytokine IL-17, as well as TNF-α, and ameliorates autoimmunity in vivo. The present results combined with previous studies suggest that LZNP and actinonin do not prevent migration of pathogenic Teff cells into target tissues, but rather suppress disease through inhibitor induced release of TGF-β by T cells at the site of inflammation.

  1. Aspartate-specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E.

    PubMed Central

    Carter, T H; Miller, C G

    1984-01-01

    The only dipeptide found to serve as a leucine source for a Salmonella strain lacking peptidases N, A, B, D, P, and Q was alpha-L-aspartyl-L-leucine. A peptidase (peptidase E) that specifically hydrolyzes Asp-X peptides was identified and partially purified from cell extracts. The enzyme (molecular weight, 35,000) is inactive toward dipeptides with N-terminal asparagine or glutamic acid. Mutants (pepE) lacking this enzyme were isolated by screening extracts for loss of the activity. Genetic mapping placed the pepE locus at 91.5 map units and established the gene order metA pepE zja-861::Tn5 malB. Duplications of the pepE locus showed a gene dosage effect on levels of peptidase E, suggesting that pepE is the structural gene for this enzyme. Mutations in pepE resulted in the loss of the ability to grow on Asp-Pro as a proline source but did not affect utilization of other dipeptides with N-terminal aspartic acid. Loss of peptidase E did not cause a detectable impairment in protein degradation. Two other peptidases present in cell extracts of mutants lacking peptidases N, A, B, D, P, Q, and E also hydrolyze many Asp-X dipeptides. Images PMID:6086568

  2. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis

    PubMed Central

    Waumans, Yannick; Baerts, Lesley; Kehoe, Kaat; Lambeir, Anne-Marie; De Meester, Ingrid

    2015-01-01

    Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease. PMID:26300881

  3. The Crude Skin Secretion of the Pepper Frog Leptodactylus labyrinthicus Is Rich in Metallo and Serine Peptidases

    PubMed Central

    Libério, Michelle da Silva; Bastos, Izabela M. D.; Pires Júnior, Osmindo R.; Fontes, Wagner; Santana, Jaime M.; Castro, Mariana S.

    2014-01-01

    Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology. PMID:24906116

  4. Intracellular expression of a single-chain antibody directed against type IV collagenase inhibits the growth of lung cancer xenografts in nude mice.

    PubMed

    Wang, W; Zhang, S; Li, Y; Xu, L; Zhou, J; Zhen, Y

    2000-08-01

    It was documented that type IV collagenase with two subtypes of 72 ku/MMP-2 and 92 ku/MMP-9 plays an important role in tumor invasion and metastasis. The endoplasmic reticulum (ER)-retained, single chain Fv antibody fragment (scFv) was used to inhibit the function of type IV collagenase. For expression in mammalian cells, the assembled scFv M97 gene with ER retention signal encoding 6 additional amino acids (SEKDEL) was reamplified by PCR. The amplified fragments were cloned into the pcDNA3.1 vector. The resulting plasmid was sequenced and then introduced into PG cells, a highly metastatic human lung cancer cell line, by lipofectAMINE method. The result of intrabody gene therapy showed that type IV collegenase expression was down regulated significantly as measured by ELISA. The biological behavior of PG cell, such as the ability of in vitro invasion through Matrigel, colony formation on soft agar, was also inhibited by scFv M97 transfection. Animal experiments in a xenograft model of human lung cancer showed that scFv M97 transfection significantly prolonged the survival time of nude mice. The results indicate that intracellular antibody technology represents a novel and efficient way to abrogate selectively the activity of type IV collagenase. PMID:18726348

  5. Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2*

    PubMed Central

    Wiemhoefer, Anne; Stargardt, Anita; van der Linden, Wouter A.; Renner, Maria C.; van Kesteren, Ronald E.; Stap, Jan; Raspe, Marcel A.; Tomkinson, Birgitta; Kessels, Helmut W.; Ovaa, Huib; Overkleeft, Herman S.; Florea, Bogdan; Reits, Eric A.

    2015-01-01

    Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function. PMID:26041847

  6. Carbonic Anhydrase Inhibitors. Part 551 Metal Complexes of 1,3,4-Thiadiazole-2-Sulfonamide Derivatives: In Vitro Inhibition Studies With Carbonic Anhydrase Isozymes I, II and IV

    PubMed Central

    Scozzafava, Andrea; Briganti, Fabrizio; Ilies, Marc A.; Jitianu, Andrei

    1998-01-01

    Coordination compounds of 5-chloroacetamido-1,3,4-thiadiazole-2-sulfonamide (Hcaz) with V(IV), Cr(lll), Fe(ll), Co(ll), Ni(ll) and Cu(ll) have been prepared and characterized by standard procedures (spectroscopic, magnetic, EPR, thermogravimetric and conductimetric measurements). Some of these compounds showed very good in vitro inhibitory properties against three physiologically relevant carbonic anhydrase (CA)isozymes, i.e., CA I, II, and IV. The differences between these isozymes in susceptibility to inhibition by these metal complexes is discussed in relationship to the characteristic features of their active sites, and is rationalized in terms useful for developing isozyme-specific CA inhibitors. PMID:18475829

  7. Disease-Associated Neisseria meningitidis Isolates Inhibit Wound Repair in Respiratory Epithelial Cells in a Type IV Pilus-Independent Manner

    PubMed Central

    Ren, Xiaoyun

    2014-01-01

    Neisseria meningitidis is the causative agent of meningococcal disease. Onset of meningococcal disease can be extremely rapid and can kill within a matter of hours. However, although a much-feared pathogen, Neisseria meningitidis is frequently found in the nasopharyngeal mucosae of healthy carriers. The bacterial factors that distinguish disease- from carriage-associated meningococci are incompletely understood. Evidence suggesting that disruptions to the nasopharynx may increase the risk of acquiring meningococcal disease led us to evaluate the ability of disease- and carriage-associated meningococcal isolates to inhibit cell migration, using an in vitro assay for wound repair. We found that disease-associated isolates in our collection inhibited wound closure, while carriage-associated isolates were more variable, with many isolates not inhibiting wound repair at all. For isolates selected for further study, we found that actin morphology, such as presence of lamellipodia, correlated with cell migration. We demonstrated that multiple meningococcal virulence factors, including the type IV pili, are dispensable for inhibition of wound repair. Inhibition of wound repair was also shown to be an active process, i.e., requiring live bacteria undergoing active protein synthesis. PMID:25225250

  8. Disease-associated Neisseria meningitidis isolates inhibit wound repair in respiratory epithelial cells in a type IV pilus-independent manner.

    PubMed

    Ren, Xiaoyun; MacKichan, Joanna K

    2014-12-01

    Neisseria meningitidis is the causative agent of meningococcal disease. Onset of meningococcal disease can be extremely rapid and can kill within a matter of hours. However, although a much-feared pathogen, Neisseria meningitidis is frequently found in the nasopharyngeal mucosae of healthy carriers. The bacterial factors that distinguish disease- from carriage-associated meningococci are incompletely understood. Evidence suggesting that disruptions to the nasopharynx may increase the risk of acquiring meningococcal disease led us to evaluate the ability of disease- and carriage-associated meningococcal isolates to inhibit cell migration, using an in vitro assay for wound repair. We found that disease-associated isolates in our collection inhibited wound closure, while carriage-associated isolates were more variable, with many isolates not inhibiting wound repair at all. For isolates selected for further study, we found that actin morphology, such as presence of lamellipodia, correlated with cell migration. We demonstrated that multiple meningococcal virulence factors, including the type IV pili, are dispensable for inhibition of wound repair. Inhibition of wound repair was also shown to be an active process, i.e., requiring live bacteria undergoing active protein synthesis. PMID:25225250

  9. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae).

    PubMed

    Bruno, Mariela A; Pardo, Marcelo F; Caffini, Néstor O; López, Laura M I

    2003-02-01

    A new peptidase, named hieronymain I, was purified to homogeneity from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae) by acetone fractionation followed by cation exchange chromatography (FPLC) on CM-Sepharose FF. Homogeneity of the enzyme was confirmed by mass spectroscopy (MALDI-TOF), isoelectric focusing, and SDS-PAGE. Hieronymain is a basic peptidase (pI > 9.3) and its molecular mass was 24,066 Da. Maximum proteolytic activity on casein (>90% of maximum activity) was achieved at pH 8.5-9.5. The enzyme was completely inhibited by E-64 and iodoacetic acid and activated by the addition of cysteine; these results strongly suggest that the isolated protease should be included within the cysteine group. The N-terminal sequence of hieronymain (ALPESIDWRAKGAVTEVKRQDG) was compared with 25 plant cysteine proteases that showed more than 50% of identity.

  10. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods

    NASA Astrophysics Data System (ADS)

    Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio

    2014-02-01

    Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

  11. Dipeptidyl peptidase 4 - An important digestive peptidase in Tenebrio molitor larvae.

    PubMed

    Tereshchenkova, Valeriia F; Goptar, Irina A; Kulemzina, Irina A; Zhuzhikov, Dmitry P; Serebryakova, Marina V; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2016-09-01

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor. PMID:27395781

  12. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease. PMID:27499433

  13. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease.

  14. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    PubMed

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  15. Blockade of N-acetylaspartylglutamate peptidases: a novel protective strategy for brain injuries and neurological disorders.

    PubMed

    Zhong, Chunlong; Luo, Qizhong; Jiang, Jiyao

    2014-12-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress glutamate release mainly through selective activation of presynaptic Group II metabotropic glutamate receptor subtype 3 (mGluR3). Therefore, strategies of inhibition of NAAG peptidases and subsequent NAAG hydrolysis to elevate levels of NAAG could reduce glutamate release under pathological conditions and be neuroprotective by attenuating excitotoxic cell injury. A series of potent inhibitors of NAAG peptidases has been synthesized and demonstrated efficacy in experimental models of ischemic-hypoxic brain injury, traumatic brain injury, inflammatory pain, diabetic neuropathy, amyotrophic lateral sclerosis and phencyclidine-induced schizophrenia-like behaviors. The excessive glutamatergic transmission has been implicated in all of these neurological disorders. Thus, blockade of NAAG peptidases may augment an endogenous protective mechanism and afford neuroprotection in the brain. This review aims to summarize and provide insight into the current understanding of the novel neuroprotective strategy based on limiting glutamate excitotoxicity for a wide variety of brain injuries and neurological disorders.

  16. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    PubMed Central

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of potently inducing the synthesis of heme oxygenase protein in liver cells while, concurrently, completely inhibiting the activity of the newly formed enzyme. Substitution of tin for the central iron atom of heme thus leads to the formation of a synthetic heme analogue that regulates heme oxygenase by a dual mechanism, which involves competitive inhibition of the enzyme for the natural substrate heme and simultaneous enhancement of new enzyme synthesis. Cobaltic(III)-protoporphyrin (Co-protoporphyrin) also inhibits heme oxygenase activity in vitro, but unlike Sn-protoporphyrin it greatly enhances the activity of the enzyme in the whole animal. Co-protoporphyrin also acts as an in vivo inhibitor of heme oxygenase; however, its inducing effect on heme oxygenase synthesis is so pronounced as to prevail in vivo over its inhibitory effect on the enzyme. These studies show that certain synthetic heme analogues possess the ability to simultaneously inhibit as well as induce the enzyme heme oxygenase in liver. The net balance between these two actions, as reflected in the rate of heme oxidation activity in the whole animal, appears to be influenced by the nature of the central metal atom of the synthetic metalloporphyrin. Images PMID:3470805

  17. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    PubMed Central

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  18. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  19. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  20. Three-dimensional Structure of the Signal Peptide Peptidase*

    PubMed Central

    Miyashita, Hiroyuki; Maruyama, Yuusuke; Isshiki, Hayato; Osawa, Satoko; Ogura, Toshihiko; Mio, Kazuhiro; Sato, Chikara; Tomita, Taisuke; Iwatsubo, Takeshi

    2011-01-01

    Signal peptide peptidase (SPP) is an atypical aspartic protease that hydrolyzes peptide bonds within the transmembrane domain of substrates and is implicated in several biological and pathological functions. Here, we analyzed the structure of human SPP by electron microscopy and reconstructed the three-dimensional structure at a resolution of 22 Å. Enzymatically active SPP forms a slender, bullet-shaped homotetramer with dimensions of 85 × 85 × 130 Å. The SPP complex has four concaves on the rhombus-like sides, connected to a large chamber inside the molecule. Intriguingly, the N-terminal region of SPP is sufficient for the tetrameric assembly. Moreover, overexpression of the N-terminal region inhibited the formation of the endogenous SPP tetramer and the proteolytic activity within cells. These data suggest that the homotetramer is the functional unit of SPP and that its N-terminal region, which works as the structural scaffold, has a novel modulatory function for the intramembrane-cleaving activity of SPP. PMID:21636854

  1. Intraduodenal milk protein concentrate augments the glycemic and food intake suppressive effects of DPP-IV inhibition

    PubMed Central

    Olivos, Diana R.; McGrath, Lauren E.; Turner, Christopher A.; Montaubin, Orianne; Mietlicki-Baase, Elizabeth G.

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone released from intestinal L-cells in response to food entering into the gastrointestinal tract. GLP-1-based pharmaceuticals improve blood glucose regulation and may hold promise for obesity treatment, as GLP-1 drugs reduce food intake and body weight in humans and animals. In an effort to improve GLP-1 pharmacotherapies, we focused our attention on macronutrients that, when present in the gastrointestinal tract, may enhance GLP-1 secretion and improve glycemic regulation and food intake suppression when combined with systemic administration of sitagliptin, a pharmacological inhibitor of DPP-IV (enzyme responsible for GLP-1 degradation). In particular, previous data suggest that specific macronutrient constituents found in dairy foods may act as potent secretagogues for GLP-1 and therefore may potentially serve as an adjunct dietary therapy in combination with sitagliptin. To directly test this hypothesis, rats received intraperitoneal injections of sitagliptin (6 mg/kg) or saline vehicle followed by intraduodenal infusions of either milk protein concentrate (MPC; 80/20% casein/whey; 4 kcal), soy protein (nondairy control infusate; 4 kcal), or 0.9% NaCl. Food intake was assessed 30 min postinfusion. In separate studies, regulation of blood glucose was examined via a 2-h oral glucose tolerance test (2 g/kg) following identical sitagliptin treatment and intraduodenal nutrient infusions. Collectively, results show that intraduodenal MPC, but not soy protein, significantly enhances both the food intake suppression and improved control of blood glucose produced by sitagliptin. These data support the hypothesis that dietary intake of dairy protein may be beneficial as an adjunct behavioral therapy to enhance the glycemic and food intake suppressive effects of GLP-1-based pharmacotherapies. PMID:24352410

  2. Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors.

    PubMed

    Matteucci, E; Giampietro, O

    2015-01-01

    Prospective epidemiological studies suggest that type 2 diabetes is a risk factor for neurodegenerative pathologies such as Alzheimer disease, vascular dementia, and Parkinson disease. Drugs that act as incretin receptor agonists or inhibit the proteolytic degradation of incretins (dipeptidyl peptidase 4 inhibitors) have been approved since 2005 for use in diabetes treatment. Dipeptidyl peptidase 4 (DPP4) cleaves N-terminal dipeptides from polypeptides when the second residue is proline, hydroxyproline, dehydroproline or alanine. The inhibition of DPP4 hydrolytic activities extends the halflife of these peptides by preventing their degradation. Several peptides have been identified as DPP4 substrates, including neuropeptides, chemokines, and the incretin hormones; hence the pleomorphic effects of DPP4 inhibition. Recently, the neuroprotective properties of these drugs have been evaluated in cell cultures and animal models, not yet in human trials. Although mechanisms distinct from glycaemic control alone have been claimed to account for protection against neuronal degeneration, the precise cellular mechanism by which DPP4 inhibitors exert their neuroprotective effects remain unknown. The present review is focused on the candidate pathways that could be involved in mediating DPP4 inhibitors-mediated protection against neuronal degeneration. PMID:25723507

  3. AST IV inhibits H₂O₂-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-β1/Smad2 pathway.

    PubMed

    Ma, Yuhong; Li, Weizu; Yin, Yanyan; Li, Weiping

    2015-06-01

    Endothelial cell apoptosis plays an important role in the pathophysiological mechanisms of vascular complications in diabetes mellitus (DM). NADPH oxidase 4 (Nox4)-dependent reactive oxygen species (ROS) aggregation is the main cause of vascular endothelial cell apoptosis. The transforming growth factor-β1 (TGF-β1)/Smad2 signaling pathway is involved in the apoptosis of several types of cells. However, the association between vascular endothelial cell apoptosis and Nox4, and the involvement of the TGF-β1/Smad2 signaling pathway in vascular endothelial cell apoptosis remain unclear. In the present study, we aimed to investigate the role of Nox4-dependent ROS production and to determine the involvement of the TGF-β1/Smad2 signaling pathway in endothelial cell apoptosis induced by oxidative stress which causes vascular injury in DM. We demonstrated that hydrogen peroxide (H2O2) increased Nox4-dependent-ROS aggregation, as well as the expression of TGF-β1, Smad2, Bax and caspase-3, decreased Bcl-2 expression and increased the apoptosis of human umbilical vein endothelial cells (HUVECs). Treatment with diphenyliodonium (DPI), a specific inhibitor of Nox4 or astragaloside IV (AST IV), a monomer located in an extract of astragaloside, decreased Nox4 expression and the levels of ROS, decreased TGF-β1 and Smad2 expression, altered the expression of apoptosis-related genes and decreased the apoptosis of HUVECs. Treatment with LY2109761, a selective inhibitor of the TGF-β1/Smad2 pathway, produced results similar to those of DPI; however, LY2109761 had no effect on Nox4 expression and ROS levels. Taken together, the findings of the present study suggest that H2O2 contributes to HUVEC apoptosis by inducing Nox4-dependent ROS aggregation and activating the TGF-β1/Smad2 signaling pathway. Our data indicate that the protective effects of AST IV against vascular endothelial cell apoptosis in DM are mainly associated with the decrease in Nox4 expression through the TGF-β1

  4. Plasma peptidases as prognostic biomarkers in patients with first-episode psychosis.

    PubMed

    Fernández-Atucha, Ainhoa; Echevarría, Enrique; Larrinaga, Gorka; Gil, Javier; Martínez-Cengotitabengoa, Mónica; González-Pinto, Ana M; Irazusta, Jon; Seco, Jesús

    2015-08-15

    The plasma activity of nine aminopeptidases was monitored over a year in first-episode psychotic patients. We observed significant differences in aminopeptidase B (APB), aminopeptidase N (APN) and dipeptidyl peptidase IV (DPPIV), but not in puromycin-sensitive aminopeptidase (PSA), prolyl endopeptidase (PEP), cysteine aminopeptidase (Cys-AP), aspartate aminopeptidase (Asp-AP), glutamate aminopeptidase (Glu) or piroglutamate aminopeptidase (PGI) in these patients compared to controls, and also a progressive increase in plasma activity, correlated to changes in scores on clinical scales, Global Assessment of Functioning scale (GAF) and Hamilton Depression Rating Scale (HDRS), at 1 month of follow-up. At 1 month after diagnosis, the median score obtained by patients on the GAF was negatively associated with the plasma activity of APB and PEP measured at the beginning of the psychotic episode, indicating a role as a negative prognostic factor that can predict psychiatric symptomatology. In the case of HDRS, scores at 1 month after diagnosis were found to be positively associated with the initial plasma activity of DPPIV, APN and PSA, indicating that their initial elevation is a negative prognostic factor that can predict subsequent depressive symptomatology. Taken together, these results suggest a pathophysiological involvement of plasma peptidases and indicate that aminopeptidase activity can predict the course of first-episode psychosis patients, acting as a prognostic indicator.

  5. Activation Mechanism of the Bacteroides fragilis Cysteine Peptidase, Fragipain.

    PubMed

    Herrou, Julien; Choi, Vivian M; Bubeck Wardenburg, Juliane; Crosson, Sean

    2016-07-26

    Enterotoxigenic Bacteroides fragilis produces a secreted metalloprotease known as B. fragilis toxin (BFT), which contributes to anaerobic sepsis, colitis, and colonic malignancy in mouse models of disease. A C11 family cysteine protease, fragipain (Fpn), directly activates BFT in the B. fragilis cell by removing the BFT prodomain. Fpn is itself a proenzyme and is autoactivated upon cleavage at an arginine residue in its activation loop. We have defined the proteolytic active site of Fpn, demonstrated that Fpn autoactivation can occur by an in trans loop cleavage mechanism, and characterized structural features of the Fpn activation loop that control peptidase activity against several substrates, including BFT. An arginine residue at the autocleavage site determines the fast activation kinetics of Fpn relative to the homologous C11 protease, PmC11, which is cleaved at lysine. Arginine to alanine substitution at the cleavage site ablated peptidase activity, as did partial truncation of the Fpn activation loop. However, complete truncation of the activation loop yielded an uncleaved, pro form of Fpn that was active as a peptidase against both Fpn and BFT substrates. Thus, Fpn can be transformed into an active peptidase in the absence of activation loop cleavage. This study provides insight into the mechanism of fragipain activation and, more generally, defines the role of the C11 activation loop in the control of peptidase activity and substrate specificity.

  6. Type I Signal Peptidase and Protein Secretion in Staphylococcus aureus

    PubMed Central

    Schallenberger, Mark A.; Niessen, Sherry; Shao, Changxia; Fowler, Bruce J.

    2012-01-01

    Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection. PMID:22447899

  7. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Songtawee, Napat; Monnor, Teerawat; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    This study represents the first large-scale study on the chemical space of inhibitors of dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from the geometrically optimized low-energy conformers of these compounds at the semiempirical AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular descriptors that accounted for the unique physicochemical properties inherently present in the active and inactive sets of compounds as defined by their respective half maximal inhibitory concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree analysis revealed the importance of molecular weight, total energy of a molecule, topological polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen bond donors, respectively. The prediction model was subjected to rigorous independent testing via three external sets. Scaffold and chemical fragment analysis was also performed on these active and inactive sets of compounds to shed light on the distinguishing features of the functional moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key interacting residues. The results of this study are anticipated to be useful in guiding the rational design of novel and robust DPP4 inhibitors for the treatment of diabetes. PMID:26309399

  8. Structural and functional characterization of microcin C resistance peptidase MccF from Bacillus anthracis

    PubMed Central

    Nocek, Boguslaw; Tikhonov, Anton; Babnigg, Gyorgy; Gu, Minyi; Zhou, Min; Makarova, Kira S.; Vondenhoff, Gaston; Van Aerschot, Arthur; Kwon, Keehwan; Anderson, Wayne F.; Severinov, Konstantin; Joachimiak, Andrzej

    2012-01-01

    Microcin C (McC) is heptapeptide-adenylate antibiotic produced by Escherichia coli strains carrying the mccABCDEF gene cluster encoding enzymes, in addition to the heptapeptide structural gene mccA, necessary for McC biosynthesis and self-immunity of the producing cell. The heptapeptide facilitates McC transport into susceptible cells, where it is processed releasing a non-hydrolyzable aminoacyl adenylate that inhibits an essential aminoacyl-tRNA synthetase. The self-immunity gene mccF encodes a specialized serine-peptidase that cleaves an amide bond connecting the peptidyl or aminoacyl moieties of, respectively, intact and processed McC with the nucleotidyl moiety. Most mccF orthologs from organisms other than E. coli are not linked to the McC biosynthesis gene cluster. Here, we show that a protein product of one such gene, MccF from Bacillus anthracis (BaMccF), is able to cleave intact and processed McC and we present a series of structures of this protein. Structural analysis of apo-BaMccF and its AMP-complex reveal specific features of MccF-like peptidases that allow them to interact with substrates containing nucleotidyl moieties. Sequence analyses and phylogenetic reconstructions suggest that several distinct subfamilies form the MccF clade of the large S66 family of bacterial serine peptidases. We show that various representatives of the MccF clade can specifically detoxify non-hydrolyzable aminoacyl adenylates differing in their aminoacyl moieties. We hypothesize that bacterial mccF genes serve as a source of bacterial antibiotic resistance. PMID:22516613

  9. Decoding the Anti-Trypanosoma cruzi Action of HIV Peptidase Inhibitors Using Epimastigotes as a Model

    PubMed Central

    Sangenito, Leandro S.; Menna-Barreto, Rubem F. S.; d′Avila-Levy, Claudia M.; Branquinha, Marta H.

    2014-01-01

    Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand

  10. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.

    PubMed

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  11. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

    PubMed Central

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  12. The first structure in a family of peptidase inhibitors reveals an unusual Ig-like fold

    PubMed Central

    Rigden, Daniel J; Xu, Qingping; Chang, Yuanyuan; Eberhardt, Ruth Y; Finn, Robert D; Rawlings, Neil D

    2013-01-01

    We report the crystal structure solution of the Intracellular Protease Inhibitor (IPI) protein from Bacillus subtilis, which has been reported to be an inhibitor of the intracellular subtilisin Isp1 from the same organism. The structure of IPI is a variant of the all-beta, immunoglobulin (Ig) fold. It is possible that IPI is important for protein-protein interactions, of which inhibition of Isp1 is one. The intracellular nature of ISP is questioned, because an alternative ATG codon in the ipi gene would produce a protein with an N-terminal extension containing a signal peptide. It is possible that alternative initiation exists, producing either an intracellular inhibitor or a secreted form that may be associated with the cell surface.  Homologues of the IPI protein from other species are multi-domain proteins, containing signal peptides and domains also associated with the bacterial cell-surface. The cysteine peptidase inhibitors chagasin and amoebiasin also have Ig-like folds, but their topology differs significantly from that of IPI, and they share no recent common ancestor. A model of IPI docked to Isp1 shows similarities to other subtilisin:inhibitor complexes, particularly where the inhibitor interacts with the peptidase active site. PMID:24555072

  13. Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression

    PubMed Central

    Casgrain, Pierre-André; Martel, Caroline; McMaster, W. Robert; Mottram, Jeremy C.; Olivier, Martin; Descoteaux, Albert

    2016-01-01

    Cysteine peptidases play a central role in the biology of Leishmania. In this work, we sought to further elucidate the mechanism(s) by which the cysteine peptidase CPB contributes to L. mexicana virulence and whether CPB participates in the formation of large communal parasitophorous vacuoles induced by these parasites. We initially examined the impact of L. mexicana infection on the trafficking of VAMP3 and VAMP8, two endocytic SNARE proteins associated with phagolysosome biogenesis and function. Using a CPB-deficient mutant, we found that both VAMP3 and VAMP8 were down-modulated in a CPB-dependent manner. We also discovered that expression of the virulence-associated GPI-anchored metalloprotease GP63 was inhibited in the absence of CPB. Expression of GP63 in the CPB-deficient mutant was sufficient to down-modulate VAMP3 and VAMP8. Similarly, episomal expression of GP63 enabled the CPB-deficient mutant to establish infection in macrophages, induce the formation of large communal parasitophorous vacuoles, and cause lesions in mice. These findings implicate CPB in the regulation of GP63 expression and provide evidence that both GP63 and CPB are key virulence factors in L. mexicana. PMID:27191844

  14. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes.

    PubMed

    Appolaire, Alexandre; Colombo, Matteo; Basbous, Hind; Gabel, Frank; Girard, E; Franzetti, Bruno

    2016-03-01

    The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».

  15. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  16. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets.

    PubMed

    Sojka, Daniel; Hartmann, David; Bartošová-Sojková, Pavla; Dvořák, Jan

    2016-09-01

    Inhibition of aspartic cathepsin D-like peptidases (APDs) has been often discussed as an antiparasite intervention strategy. APDs have been considered as virulence factors of Trypanosoma cruzi and Leishmania spp., and have been demonstrated to have important roles in protein trafficking mechanisms of apicomplexan parasites. APDs also initiate blood digestion as components of multienzyme proteolytic complexes in malaria, platyhelminths, nematodes, and ticks. Increasing DNA and RNA sequencing data indicate that parasites express multiple APD isoenzymes of various functions that can now be specifically evaluated using new functional-genomic and biochemical tools, from which we can further assess the potential of APDs as targets for novel effective intervention strategies against parasitic diseases that still pose an alarming threat to mankind. PMID:27344362

  17. Dipeptidyl Peptidase-4 Regulation of SDF-1/CXCR4 Axis: Implications for Cardiovascular Disease.

    PubMed

    Zhong, Jixin; Rajagopalan, Sanjay

    2015-01-01

    Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed protease that regulates diverse number of physiological functions. As a dipeptidase, it exerts its catalytic effects on proteins/peptides with proline, alanine, or serine in the penultimate (P1) amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is perhaps an increasingly recognized target, given its importance in processes, such as hematopoiesis, angiogenesis, and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease. PMID:26441982

  18. Dipeptidyl Peptidase-4 Regulation of SDF-1/CXCR4 Axis: Implications for Cardiovascular Disease

    PubMed Central

    Zhong, Jixin; Rajagopalan, Sanjay

    2015-01-01

    Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed protease that regulates diverse number of physiological functions. As a dipeptidase, it exerts its catalytic effects on proteins/peptides with proline, alanine, or serine in the penultimate (P1) amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is perhaps an increasingly recognized target, given its importance in processes, such as hematopoiesis, angiogenesis, and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease. PMID:26441982

  19. The first crystal structure of the peptidase domain of the U32 peptidase family.

    PubMed

    Schacherl, Magdalena; Montada, Angelika A M; Brunstein, Elena; Baumann, Ulrich

    2015-12-01

    The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins from Helicobacter and Salmonella. The first crystal structure analysis of a U32 catalytic domain from Methanopyrus kandleri (gene mk0906) reveals a modified (βα)8 TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to a Strep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.

  20. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  1. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS. PMID:25066578

  2. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS.

  3. Excretion of the dipeptidyl peptidase-4 inhibitor linagliptin in rats is primarily by biliary excretion and P-gp-mediated efflux.

    PubMed

    Fuchs, Holger; Runge, Frank; Held, Heinz-Dieter

    2012-04-11

    Linagliptin is a selective, competitive dipeptidyl peptidase-4 (DPP-4) inhibitor, recently approved in the USA, Japan and Europe for the treatment of type 2 diabetes. It has non-linear pharmacokinetics and, unlike other DPP-4 inhibitors, a largely non-renal excretion route. It was hypothesised that P-glycoprotein (P-gp)-mediated intestinal transport could influence linagliptin bioavailability, and might contribute to its elimination. Two studies evaluated the role of P-gp-mediated transport in the bioavailability and intestinal secretion of linagliptin in rats. In the bioavailability study, male Wistar rats received single oral doses of linagliptin, 1 or 15 mg/kg, plus either the P-gp inhibitor, zosuquidar trihydrochloride, or vehicle. For the intestinal secretion study, rats underwent bile duct cannulation, and urine, faeces, and bile were collected. At the end of the study, gut content was sampled. Inhibition of intestinal P-gp increased the bioavailability of orally administered linagliptin, indicating that this transport system plays a role in limiting the uptake of linagliptin from the intestine. This effect was dependent on linagliptin dose, and could play a role in its non-linear pharmacokinetics after oral dosing. Systemically available linagliptin was mainly excreted unchanged via bile (49% of i.v. dose), but some (12%) was also excreted directly into the gut independently of biliary excretion. Thus, direct excretion of linagliptin into the gut may be an alternative excretion route in the presence of liver and renal impairment. The primarily non-renal route of excretion is likely to be of benefit to patients with type 2 diabetes, who have a high prevalence of renal insufficiency.

  4. Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line.

    PubMed

    Tong, Zhenyue; Illek, Beate; Bhagwandin, Vikash J; Verghese, George M; Caughey, George H

    2004-11-01

    Prostasin is a tryptic peptidase expressed in prostate, kidney, lung, and airway. Mammalian prostasins are related to Xenopus channel-activating protease, which stimulates epithelial Na+ channel (ENaC) activity in frogs. In human epithelia, prostasin is one of several membrane peptidases proposed to regulate ENaC. This study tests the hypothesis that prostasin can regulate ENaC in cystic fibrosis epithelia in which excessive Na+ uptake contributes to salt and water imbalance. We show that prostasin mRNA and protein are strongly expressed by human airway epithelial cell lines, including immortalized JME/CF15 nasal epithelial cells homozygous for the DeltaF508 cystic fibrosis mutation. Epithelial cells transfected with vectors encoding recombinant soluble prostasin secrete active, tryptic peptidase that is highly sensitive to inactivation by aprotinin. When studied as monolayers in Ussing chambers, JME/CF15 cells exhibit amiloride-sensitive, transepithelial Na+ currents that are markedly diminished by aprotinin, suggesting regulation by serine-class peptidases. Overproduction of membrane-anchored prostasin in transfected JME/CF15 cells does not augment Na+ currents, and trypsin-induced increases are small, suggesting that baseline serine peptidase-dependent ENaC activation is maximal in these cells. To probe prostasin's involvement in basal ENaC activity, we silenced expression of prostasin using short interfering RNA targeting of prostasin mRNA's 3'-untranslated region. This drops ENaC currents to 26 +/- 9% of baseline. These data predict that prostasin is a major regulator of ENaC-mediated Na+ current in DeltaF508 cystic fibrosis epithelia and suggest that airway prostasin is a target for therapeutic inhibition to normalize ion current in cystic fibrosis airway. PMID:15246975

  5. Extracellular peptidases of the cereal pathogen Fusarium graminearum

    PubMed Central

    Lowe, Rohan G. T.; McCorkelle, Owen; Bleackley, Mark; Collins, Christine; Faou, Pierre; Mathivanan, Suresh; Anderson, Marilyn

    2015-01-01

    The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases. PMID:26635820

  6. Streptococcal C5a peptidase is a highly specific endopeptidase.

    PubMed Central

    Cleary, P P; Prahbu, U; Dale, J B; Wexler, D E; Handley, J

    1992-01-01

    Compositional analysis of streptococcal C5a peptidase (SCPA) cleavage products from a synthetic peptide corresponding to the 20 C-terminal residues of C5a demonstrated that the target cleavage site is His-Lys rather than Lys-Asp, as previously suggested. A C5a peptide analog with Lys replaced by Gln was also subject to cleavage by SCPA. This confirmed that His-Lys rather than Lys-Asp is the scissile bond. Cleavage at histidine is unusual but is the same as that suggested for a peptidase produced by group B streptococci. Native C5 protein was also resistant to SCPA, suggesting that the His-Lys bond is inaccessible prior to proteolytic cleavage by C5 convertase. These experiments showed that the streptococcal C5a peptidase is highly specific for C5a and suggest that its function is not merely to process protein for metabolic consumption but to act primarily to eliminate this chemotactic signal from inflammatory foci. Images PMID:1452354

  7. Structural and functional insights into Escherichia coli α2-macroglobulin endopeptidase snap-trap inhibition

    PubMed Central

    Garcia-Ferrer, Irene; Arêde, Pedro; Gómez-Blanco, Josué; Luque, Daniel; Duquerroy, Stephane; Castón, José R.; Goulas, Theodoros; Gomis-Rüth, F. Xavier

    2015-01-01

    The survival of commensal bacteria requires them to evade host peptidases. Gram-negative bacteria from the human gut microbiome encode a relative of the human endopeptidase inhibitor, α2-macroglobulin (α2M). Escherichia coli α2M (ECAM) is a ∼180-kDa multidomain membrane-anchored pan-peptidase inhibitor, which is cleaved by host endopeptidases in an accessible bait region. Structural studies by electron microscopy and crystallography reveal that this cleavage causes major structural rearrangement of more than half the 13-domain structure from a native to a compact induced form. It also exposes a reactive thioester bond, which covalently traps the peptidase. Subsequently, peptidase-laden ECAM is shed from the membrane and may dimerize. Trapped peptidases are still active except against very large substrates, so inhibition potentially prevents damage of large cell envelope components, but not host digestion. Mechanistically, these results document a novel monomeric “snap trap.” PMID:26100869

  8. Structural and functional insights into Escherichia coli α2-macroglobulin endopeptidase snap-trap inhibition.

    PubMed

    Garcia-Ferrer, Irene; Arêde, Pedro; Gómez-Blanco, Josué; Luque, Daniel; Duquerroy, Stephane; Castón, José R; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2015-07-01

    The survival of commensal bacteria requires them to evade host peptidases. Gram-negative bacteria from the human gut microbiome encode a relative of the human endopeptidase inhibitor, α2-macroglobulin (α2M). Escherichia coli α2M (ECAM) is a ∼ 180-kDa multidomain membrane-anchored pan-peptidase inhibitor, which is cleaved by host endopeptidases in an accessible bait region. Structural studies by electron microscopy and crystallography reveal that this cleavage causes major structural rearrangement of more than half the 13-domain structure from a native to a compact induced form. It also exposes a reactive thioester bond, which covalently traps the peptidase. Subsequently, peptidase-laden ECAM is shed from the membrane and may dimerize. Trapped peptidases are still active except against very large substrates, so inhibition potentially prevents damage of large cell envelope components, but not host digestion. Mechanistically, these results document a novel monomeric "snap trap."

  9. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures.

    PubMed

    Semashko, Tatiana A; Vorotnikova, Elena A; Sharikova, Valeriya F; Vinokurov, Konstantin S; Smirnova, Yulia A; Dunaevsky, Yakov E; Belozersky, Mikhail A; Oppert, Brenda; Elpidina, Elena N; Filippova, Irina Y

    2014-03-15

    This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes.

  10. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    PubMed Central

    Karlyshev, A.V.; Thacker, G.; Jones, M.A.; Clements, M.O.; Wren, B.W.

    2014-01-01

    According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection. PMID:24918062

  11. Identification of dipeptidyl peptidase 3 as the Angiotensin-(1-7) degrading peptidase in human HK-2 renal epithelial cells.

    PubMed

    Cruz-Diaz, Nildris; Wilson, Bryan A; Pirro, Nancy T; Brosnihan, K Bridget; Marshall, Allyson C; Chappell, Mark C

    2016-09-01

    Angiotensin-(1-7) (Ang-(1-7)) is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic and pro-oxidant effects of the Ang II-AT1 receptor axis. We previously identified a peptidase activity from sheep brain, proximal tubules and human HK-2 proximal tubule cells that metabolized Ang-(1-7); thus, the present study isolated and identified the Ang-(1-7) peptidase. Utilizing ion exchange and hydrophobic interaction chromatography, a single 80kDa protein band on SDS-PAGE was purified from HK-2 cells. The 80kDa band was excised, the tryptic digest peptides analyzed by LC-MS and a protein was identified as the enzyme dipeptidyl peptidase 3 (DPP 3, EC: 3.4.14.4). A human DPP 3 antibody identified a single 80kDa band in the purified enzyme preparation identical to recombinant human DPP 3. Both the purified Ang-(1-7) peptidase and DPP 3 exhibited an identical hydrolysis profile of Ang-(1-7) and both activities were abolished by the metallopeptidase inhibitor JMV-390. DPP 3 sequentially hydrolyzed Ang-(1-7) to Ang-(3-7) and rapidly converted Ang-(3-7) to Ang-(5-7). Kinetic analysis revealed that Ang-(3-7) was hydrolyzed at a greater rate than Ang-(1-7) [17.9 vs. 5.5 nmol/min/μg protein], and the Km for Ang-(3-7) was lower than Ang-(1-7) [3 vs. 12μM]. Finally, chronic treatment of the HK-2 cells with 20nM JMV-390 reduced intracellular DPP 3 activity and tended to augment the cellular levels of Ang-(1-7). We conclude that DPP 3 may influence the cellular expression of Ang-(1-7) and potentially reflect a therapeutic target to augment the actions of the peptide. PMID:27315786

  12. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  13. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    SciTech Connect

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  14. Gliptins and their target dipeptidyl peptidase 4: implications for the treatment of vascular disease.

    PubMed

    Remm, Friederike; Franz, Wolfgang-Michael; Brenner, Christoph

    2016-07-01

    Gliptins are accepted as a standard therapy for diabetes mellitus today. By inhibition of the enzyme dipeptidyl peptidase 4 (DPP4), gliptins prolong the GLP1-dependent insulin secretion in the pancreatic β-cells and thus support physiological blood glucose control. Various studies have now raised hope for an additional protective effect of pharmacological DPP4 inhibition in vascular diseases. Besides GLP1, especially, the inhibition of SDF1 cleavage has been shown to depict a relevant mechanism to enhance endothelial regeneration and reduce atherosclerosis progression via the SDF1-CXCR4 axis. Furthermore, several clinical trials have now shown an excellent safety profile of gliptin therapy in cardiovascular risk patients. In this review, we give a comprehensive overview on DPP4-dependent vascular functions and pathophysiological mechanisms with a detailed discussion of the underlying molecular mechanisms. We further analyse the role of pharmacological DPP4 inhibitors and their potential therapeutic impact on endothelial function and regeneration besides their effect during atherosclerosis development. Finally, we discuss presently available data from in vitro and in vivo studies with respect to the results of the recent clinical trials in diabetic and non-diabetic patients. PMID:27533760

  15. Analysis of the Structural and Molecular Basis of Voltage-sensitive Sodium Channel Inhibition by the Spider Toxin Huwentoxin-IV (μ-TRTX-Hh2a)

    PubMed Central

    Minassian, Natali A.; Gibbs, Alan; Shih, Amy Y.; Liu, Yi; Neff, Robert A.; Sutton, Steven W.; Mirzadegan, Tara; Connor, Judith; Fellows, Ross; Husovsky, Matthew; Nelson, Serena; Hunter, Michael J.; Flinspach, Mack; Wickenden, Alan D.

    2013-01-01

    Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity. PMID:23760503

  16. Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (μ-TRTX-Hh2a).

    PubMed

    Minassian, Natali A; Gibbs, Alan; Shih, Amy Y; Liu, Yi; Neff, Robert A; Sutton, Steven W; Mirzadegan, Tara; Connor, Judith; Fellows, Ross; Husovsky, Matthew; Nelson, Serena; Hunter, Michael J; Flinspach, Mack; Wickenden, Alan D

    2013-08-01

    Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity. PMID:23760503

  17. Insecticidal effect of Canavalia ensiformis major urease on nymphs of the milkweed bug Oncopeltus fasciatus and characterization of digestive peptidases.

    PubMed

    Defferrari, Marina S; Demartini, Diogo R; Marcelino, Thiago B; Pinto, Paulo M; Carlini, Celia R

    2011-06-01

    Jackbean (Canavalia ensiformis) ureases are entomotoxic upon the release of internal peptides by insect's digestive enzymes. Here we studied the digestive peptidases of Oncopeltus fasciatus (milkweed bug) and its susceptibility to jackbean urease (JBU). O. fasciatus nymphs fed urease showed a mortality rate higher than 80% after two weeks. Homogenates of midguts dissected from fourth instars were used to perform proteolytic activity assays. The homogenates hydrolyzed JBU in vitro, yielding a fragment similar in size to known entomotoxic peptides. The major proteolytic activity at pH 4.0 upon protein substrates was blocked by specific inhibitors of aspartic and cysteine peptidases, but not significantly affected by inhibitors of metallopeptidases or serine peptidases. The optimal activity upon N-Cbz-Phe-Arg-MCA was at pH 5.0, with complete blockage by E-64 in all pH tested. Optimal activity upon Abz-AIAFFSRQ-EDDnp (a substrate for aspartic peptidases) was detected at pH 5.0, with partial inhibition by Pepstatin A in the pH range 2-8. Fluorogenic substrates corresponding to the N- and C-terminal regions flanking a known entomotoxic peptide within urease sequence were also tested. While the midgut homogenate did not hydrolyze the N-terminal peptide, it cleaved the C-terminal peptide maximally at pH 4.0-5.0, and this activity was inhibited by E-64 (10 μM). The midgut homogenate was submitted to ion-exchange chromatography followed by gel filtration. A 22 kDa active fraction was obtained, resolved in SDS-PAGE (12%), the corresponding band was in-gel digested by trypsin, the peptides were analyzed by mass spectrometry, retrieving a cathepsin L protein. The purified cathepsin L was shown to have at least two possible cleavage sites within the urease sequence, and might be able to release a known insecticidal peptide in a single or cascade event. The results suggest that susceptibility of O. fasciatus nymphs to jackbean urease is, like in other insect models, due mostly

  18. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen.

    PubMed

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  19. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen

    PubMed Central

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  20. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  1. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia.

    PubMed

    Gurkoff, Gene G; Feng, Jun-Feng; Van, Ken C; Izadi, Ali; Ghiasvand, Rahil; Shahlaie, Kiarash; Song, Minsoo; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2013-06-17

    Immediately following traumatic brain injury (TBI) and TBI with hypoxia, there is a rapid and pathophysiological increase in extracellular glutamate, subsequent neuronal damage and ultimately diminished motor and cognitive function. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, is co-released with glutamate, binds to the presynaptic group II metabotropic glutamate receptor subtype 3 (mGluR3) and suppresses glutamate release. However, the catalytic enzyme glutamate carboxypeptidase II (GCP II) rapidly hydrolyzes NAAG into NAA and glutamate. Inhibition of the GCP II enzyme with NAAG peptidase inhibitors reduces the concentration of glutamate both by increasing the duration of NAAG activity on mGluR3 and by reducing degradation into NAA and glutamate resulting in reduced cell death in models of TBI and TBI with hypoxia. In the following study, rats were administered the NAAG peptidase inhibitor PGI-02776 (10mg/kg) 30 min following TBI combined with a hypoxic second insult. Over the two weeks following injury, PGI-02776-treated rats had significantly improved motor function as measured by increased duration on the rota-rod and a trend toward improved performance on the beam walk. Furthermore, two weeks post-injury, PGI-02776-treated animals had a significant decrease in latency to find the target platform in the Morris water maze as compared to vehicle-treated animals. These findings demonstrate that the application of NAAG peptidase inhibitors can reduce the deleterious motor and cognitive effects of TBI combined with a second hypoxic insult in the weeks following injury. PMID:23562458

  2. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cysteine peptidases are important in many biological processes. In this study, we describe the design, synthesis and use of selective peptide substrates for cysteine peptidases of the C1 papain family. The structure of the proposed substrates can be expressed by the general formula Glp-Xaa-Ala-Y, wh...

  3. Regulatory signals for intestinal amino acid transporters and peptidases

    SciTech Connect

    Ferraris, R.P.; Kwan, W.W.; Diamond, J. )

    1988-08-01

    Dietary protein ultimately regulates many processes involved in protein digestion, but it is often unclear whether proteins themselves, peptides, or amino acids (AAs) are the proximate regulatory signal. Hence the authors compared several processes involved in protein digestion in mice adapted to one of three rations, identical except for containing 54% of either casein, a partial hydrolysate of casein, or a free AA mixture simulating a complete hydrolysate of casein. The authors measured brush-border uptakes of seven AAs that variously serve as substrates for four AA transporters, and brush-border and cytosolic activities of four peptidases. The three rations yielded essentially the same AA uptake rates. Peptidase activities tended to be lower on the AA ration than on the protein ration. In other studies, all three rations yielded the same rates of brush-border peptide uptake; protein is only modestly more effective than AAs at inducing synthesis of pancreatic proteases; and, depending on the animal species, protein is either much less or much more effective than AAs at stimulating release of cholecystokinin and hence of pancreatic enzymes. Thus the regulators of each process involved in protein digestion are not necessarily that process's substrate.

  4. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV.

    PubMed

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin; Ding, Nan; Qi, Yongmei; Zhang, Yingmei; Wang, Jufang; Huang, Dejun

    2015-09-01

    Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1-8h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  5. Response inhibition in children with DSM-IV subtypes of AD/HD and related disruptive disorders: the role of reward.

    PubMed

    Scheres, A; Oosterlaan, J; Sergeant, J A

    2001-09-01

    The current study had four aims: (a) to replicate previous findings of slow response inhibition in Attention Deficit/Hyperactivity Disorder (AD/HD), (b) to explore whether poor response inhibition in children with AD/HD is a core problem or rather a result of an underlying problem related to reward, (c) to investigate the specificity of poor response inhibition and the role of reward in relation to AD/HD, and (d) to study whether findings would be different for three subtypes of AD/HD. In order to address these issues, a stop paradigm was administered under a reward condition and under a nonreward condition to an AD/HD group (n=24), an Oppositional Defiant Disorder (ODD)/Conduct Disorder (CD) group (n=21), a comorbid AD/HD+ODD/CD group (n=27), and a normal control (NC) group (n=41). Firstly, contrary to prediction, none of the Disruptive Behavior Disorder (DBD) groups differed from the NC group with respect to the speed of the inhibition process. Secondly, it was shown that children with AD/HD and children with comorbid AD/HD+ODD/CD, but not children with ODD/CD alone, slowed down more dramatically in the reward condition than normal controls. This finding was interpreted as a strategy to increase the chance of being rewarded in children with AD/HD and children with comorbid AD/HD+ODD/CD, but not in children with pure ODD/CD. Finally, analysis of AD/HD subtypes did not change the main findings of this study.

  6. Kinetic investigation of human dipeptidyl peptidase II (DPPII)-mediated hydrolysis of dipeptide derivatives and its identification as quiescent cell proline dipeptidase (QPP)/dipeptidyl peptidase 7 (DPP7).

    PubMed

    Maes, Marie-Berthe; Lambeir, Anne-Marie; Gilany, Kambiz; Senten, Kristel; Van der Veken, Pieter; Leiting, Barbara; Augustyns, Koen; Scharpé, Simon; De Meester, Ingrid

    2005-03-01

    The presence of DPPII (dipeptidyl peptidase II; E.C. 3.4.14.2) has been demonstrated in various mammalian tissues. However, a profound molecular and catalytic characterization, including substrate selectivity, kinetics and pH-dependence, has not been conducted. In the present study, DPPII was purified from human seminal plasma to apparent homogeneity with a high yield (40%) purification scheme, including an inhibitor-based affinity chromatographic step. The inhibitor lysyl-piperidide (K(i) approximately 0.9 microM at pH 5.5) was chosen, as it provided a favourable affinity/recovery ratio. The human enzyme appeared as a 120 kDa homodimer. Mass spectrometric analysis after tryptic digestion together with a kinetic comparison indicate strongly its identity with QPP (quiescent cell proline dipeptidase), also called dipeptidyl peptidase 7. pH profiles of both kcat and kcat/K(m) clearly demonstrated that DPPII/QPP possesses an acidic and not a neutral optimum as was reported for QPP. Kinetic parameters of the human natural DPPII for dipeptide-derived chromogenic [pNA (p-nitroanilide)] and fluorogenic [4Me2NA (4-methoxy-2-naphthylamide)] substrates were determined under different assay conditions. DPPII preferred the chromogenic pNA-derived substrates over the fluorogenic 4Me2NA-derived substrates. Natural human DPPII showed high efficiency towards synthetic substrates containing proline at the P1 position and lysine at P2. The importance of the P1' group for P2 and P1 selectivity was revealed, explaining many discrepancies in the literature. Furthermore, substrate preferences of human DPPII and dipeptidyl peptidase IV were compared based on their selectivity constants (kcat/K(m)). Lys-Pro-pNA (k(cat)/K(m) 4.1x10(6) s(-1) x M(-1)) and Ala-Pro-pNA (kcat/K(m) 2.6x10(6) s(-1) x M(-1)) were found to be the most sensitive chromogenic substrates for human DPPII, but were less selective than Lys-Ala-pNA (kcat/K(m) 0.4x10(6) s(-1) x M(-1)).

  7. Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II

    PubMed Central

    Chuang, Crystal K.; Rockel, Beate; Seyit, Gönül; Walian, Peter J.; Schönegge, Anne–Marie; Peters, Jürgen; Zwart, Petrus H.; Baumeister, Wolfgang; Jap, Bing K.

    2010-01-01

    Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6MDa). It is believed to act downstream of the 26S proteasome cleaving tripeptides from the N– termini of longer peptides and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach: The structure of the dimer was solved by x–ray crystallography and docked into the three– dimensional map of the holocomplex obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active–site serine, coupling it to holocomplex assembly and active site sequestration. PMID:20676100

  8. Crystal Structure of a Bacterial Signal Peptide Peptidase

    SciTech Connect

    Kim,A.; Oliver, D.; Paetzel, M.

    2008-01-01

    Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppAEC). SppAEC forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.

  9. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  10. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  11. Dipeptidyl peptidase-4 inhibitors and their effects on the cardiovascular system.

    PubMed

    Solun, B; Marcoviciu, D; Dicker, D

    2013-08-01

    It is well known that patients with type 2 diabetes mellitus (T2DM) are at increased risk of cardiovascular (CV) disease. Elevated plasma glucose levels that independently lead to increased cardiovascular risk, combined with associated co-morbidities such as obesity, hypertension, and dyslipidemia, further contribute to the development of CV complications. Dipeptidyl peptidase 4 inhibitors (DPP-4 inhibitors) are a relatively new class of drugs used for the treatment of diabetes and recently have been widely used in clinical practice. They exert their actions through degradation inhibition of endogenous glucagon-like peptides (GLP-1) and glucose-dependent insulinotropic peptides (GIP), with a resulting increase in glucose mediated insulin secretion and a suppression of glucagon secretion. Since GLP-1 is known to have an impact not only on plasma glucose levels but also to have cardiovascular protective effects there is increased speculation of whether DPP-4 inhibitors will have similar effects. Though many short-term studies have been encouraging, ongoing long-term clinical trials on humans are needed to provide further clarity to the complete safety profiles of these agents in terms of cardiovascular risk, and whether they may exert potential cardiovascular benefit. This review includes available data on the cardiovascular effects of DPP-4 inhibitors as well as their overall safety profile.

  12. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  13. Characterization of the pcp gene of Pseudomonas fluorescens and of its product, pyrrolidone carboxyl peptidase (Pcp).

    PubMed Central

    Gonzales, T; Robert-Baudouy, J

    1994-01-01

    The gene pcp, encoding pyrrolidone carboxyl peptidase (Pcp), from Pseudomonas fluorescens MFO was cloned and its nucleotide sequence was determined. This sequence contains a unique open reading frame (pcp) coding for a polypeptide of 213 amino acids (M(r) 22,441) which has significant homology to the Pcps from Streptococcus pyogenes, Bacillus subtilis, and Bacillus amyloliquefaciens. Comparison of the four Pcp sequences revealed two highly conserved motifs which may be involved in the active site of these enzymes. The cloned Pcp from P. fluorescens was purified to homogeneity and appears to exist as a dimer. This enzyme displays a Michaelis constant of 0.21 mM with L-pyroglutamyl-beta-naphthylamide as the substrate and an absolute substrate specificity towards N-terminal pyroglutamyl residues. Studies of inhibition by chemical compounds revealed that the cysteine and histidine residues are essential for enzyme activity. From their conservation in the four enzyme sequences, the Cys-144 and His-166 amino acids are proposed to form a part of the active site of these enzymes. Images PMID:7909543

  14. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes.

    PubMed

    Koska, Juraj; Sands, Michelle; Burciu, Camelia; Reaven, Peter

    2015-05-01

    Cardiovascular (CV) disease is the leading cause of mortality and morbidity in patients with type 2 diabetes mellitus (T2DM). However, improving glycaemic control alone has not decreased CV events. Therapies that improve glycaemic control, CV disease risk factors and CV function are more likely to be successful. Dipeptidyl peptidase-4 (DPP-4) inhibitors prevent breakdown of incretin hormones glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic peptide and improve glycaemic control in patients with T2DM. DPP-4 acts on other substrates, many associated with cardioprotection. Thus, inhibition of DPP-4 may lead to elevations in these potentially beneficial substrates. Data from animal studies and small observational studies in humans suggest that DPP-4 inhibitors may potentially reduce CV risk. However, recently completed CV outcome trials in patients with T2DM and CV disease or at high risk of adverse CV events have shown that the DPP-4 inhibitors saxagliptin and alogliptin neither increased nor decreased major adverse CV events. PMID:25852133

  15. Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors.

    PubMed

    Liu, Yang; Si, Meimei; Tang, Li; Shangguan, Shihao; Wu, Haoshu; Li, Jia; Wu, Peng; Ma, Xiaodong; Liu, Tao; Hu, Yongzhou

    2013-09-15

    A series of novel benzyl-substituted (S)-phenylalanine derivatives were synthesized and evaluated for their dipeptidyl peptidase 4 (DPP-4) inhibitory activity and selectivity. It was found that most synthesized target compounds were potent DPP-4 inhibitors with IC50 values in 3.79-25.52 nM, which were significantly superior to that of the marketed drug sitagliptin. Furthermore, the 4-fluorobenzyl substituted phenylalanine derivative 6g not only displayed the potent DPP-4 inhibition with an IC50 value of 3.79 nM, but also showed better selectivity against DPP-4 over other related enzymes including DPP-7, DPP-8, and DPP-9. In an oral glucose tolerance test (OGTT) in normal Sprague Dawley rats, compound 6g reduced blood glucose excursion in a dose-dependent manner.

  16. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    PubMed

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases.

  17. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice.

    PubMed

    Liu, Limei; Liu, Jian; Yu, Xiaoxing

    2016-02-12

    Autophagy is cellular machinery for maintenance of β-cell function and mass. The current study aimed to investigate the regulatory effects of MK-626, a dipeptidyl peptidase-4 inhibitor, on insulin secretion through the activation of autophagy in high fat diet-induced obese mice. C57BL/6 mice were fed with a rodent diet containing 45 kcal% fat for 16 weeks to induce obesity and then were received either vehicle or MK-626 (3 mg/kg/day) orally during the final 4 weeks. Mouse islets were isolated. Phosphorylation of serine/threonine-protein kinase mTOR and levels of light chain 3B I (LC3B I), LC3B II, sequestosome-1 (SQSTM1/p62) and autophagy-related protein-7 (Atg7) were examined by Western blotting. Glucagon like-peptide-1 (GLP-1) level and insulin secretion were measured by ELISA. GLP-1 level in plasma was decreased in obese mice, which was elevated by dipeptidyl peptidase-4 inhibitor MK-626. In the islets of obese mice, phosphorylation of mTOR, ratio of LC3B I and LC3B II, and level of p62 were elevated and the expression of Atg7 and insulin secretion were reduced compared to those of C57BL/6 mice. However, such effects were reversed by MK-626. Autophagy activator rapamycin stimulated insulin secretion in obese mice but autophagy inhibitor chloroquine treatment inhibited insulin secretion in obese mice administrated by MK-626. Furthermore, the beneficial effects of MK-626 were inhibited by GLP-1 receptor antagonist exendin 9-39. The present study reveals the activation of autophagy to mediate the anti-diabetic effect of GLP-1.

  18. Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo.

    PubMed

    Kim, Sung-Ho; Jung, Eunsoo; Yoon, Min Kyung; Kwon, O Hwan; Hwang, Dal-Mi; Kim, Dong-Wook; Kim, Junghyun; Lee, Sun-Mee; Yim, Hyeon Joo

    2016-10-01

    Gemigliptin, a novel dipeptidyl peptidase (DPP)-4 inhibitor, is approved for use as a monotherapy or in combination therapy to treat hyperglycemia in patients with type 2 diabetes mellitus. In this study, we investigated the pharmacological profiles of gemigliptin in vitro and in vivo and compared them to those of the other DPP-4 inhibitors. Gemigliptin was a reversible and competitive inhibitor with a Ki value of 7.25±0.67nM. Similar potency was shown in plasma from humans, rats, dogs, and monkeys. The kinetics of DPP-4 inhibition by gemigliptin was characterized by a fast association and a slow dissociation rate compared to sitagliptin (fast on and fast off rate) or vildagliptin (slow on and slow off rate). In addition, gemigliptin showed at least >23,000-fold selectivity for DPP-4 over various proteases and peptidases, including DPP-8, DPP-9, and fibroblast activation protein (FAP)-α. In the rat, dog, and monkey, gemigliptin showed more potent DPP-4 inhibitory activity in vivo compared with sitagliptin. In mice and dogs, gemigliptin prevented the degradation of active glucagon-like peptide-1 by DPP-4 inhibition, which improved glucose tolerance by increasing insulin secretion and reducing glucagon secretion during an oral glucose tolerance test. The long-term anti-hyperglycemic effect of gemigliptin was evaluated in diet-induced obese mice and high-fat diet/streptozotocin-induced diabetic mice. Gemigliptin dose-dependently decreased hemoglobin A1c (HbA1c) levels and ameliorated β-cell damage. In conclusion, gemigliptin is a potent, long-acting, and highly selective DPP-4 inhibitor and can be a safe and effective drug for the long-term treatment of type 2 diabetes. PMID:27298192

  19. Antidiabetic Property of Symplocos cochinchinensis Is Mediated by Inhibition of Alpha Glucosidase and Enhanced Insulin Sensitivity

    PubMed Central

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Mishra, Arvind; Anilkumar, Karunakaran S.; Chandrakanth, Chandrasekharan K.; Tamrakar, Akhilesh K.; Srivastava, Arvind K.; Raghu, K. Gopalan

    2014-01-01

    The study is designed to find out the biochemical basis of antidiabetic property of Symplocos cochinchinensis (SC), the main ingredient of ‘Nisakathakadi’ an Ayurvedic decoction for diabetes. Since diabetes is a multifactorial disease, ethanolic extract of the bark (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90% ethanol) were evaluated by in vitro methods against multiple targets relevant to diabetes such as the alpha glucosidase inhibition, glucose uptake, adipogenic potential, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPP-IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition (IC50 value-82.07±2.10 µg/mL), insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F (3.5 fold increase) and reduced triglyceride accumulation (22% decrease) in 3T3L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells (59.57% decrease) with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence and quantity of bioactives (beta-sitosterol, phloretin 2′glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. We conclude that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with moderate antiglycation and antioxidant activity. PMID:25184241

  20. Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus.

    PubMed

    Beauvais, A; Monod, M; Debeaupuis, J P; Diaquin, M; Kobayashi, H; Latgé, J P

    1997-03-01

    A novel dipeptidyl-peptidase (DPP V) was purified from the culture medium of Aspergillus fumigatus. This is the first report of a secreted dipeptidyl-peptidase. The enzyme had a molecular mass of 88 kDa and contained approximately 9 kDa of N-linked carbohydrate. The expression and secretion of dipeptidyl-peptidase varied with the growth conditions; maximal intra- and extracellular levels were detected when the culture medium contained only proteins or protein hydrolysates in the absence of sugars. The gene of DPP V was cloned and showed significant sequence homology to other eukaryotic dipeptidyl-peptidase genes. Unlike the other dipeptidyl-peptidases, which are all intracellular, DPP V contained a signal peptide. Like the genes of other dipeptidyl-peptidases, that of DPP V displayed the consensus sequences of the catalytic site of the nonclassical serine proteases. The biochemical properties of native and recombinant DPP V obtained in Pichia pastoris were unique and were characterized by a substrate specificity limited to the hydrolysis of X-Ala, His-Ser, and Ser-Tyr dipeptides at a neutral pH optimum. In addition, we showed that DPP V is identical to one of the two major antigens used for the diagnosis of aspergillosis. PMID:9045640

  1. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type.

    PubMed Central

    Tomkinson, B; Wernstedt, C; Hellman, U; Zetterqvist, O

    1987-01-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with [3H]diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases. PMID:3313395

  2. Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2 mouse model of Huntington's disease after phosphodiesterase IV inhibition.

    PubMed

    Fusco, Francesca R; Anzilotti, Serenella; Giampà, Carmela; Dato, Clemente; Laurenti, Daunia; Leuti, Alessandro; Colucci D'Amato, Luca; Perrone, Lorena; Bernardi, Giorgio; Melone, Mariarosa A B

    2012-04-01

    The mitogen-activated protein kinases (MAPKs) superfamily comprises three major signaling pathways: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases or stress-activated protein kinases (JNKs/SAPKs) and the p38 family of kinases. ERK 1/2 signaling has been implicated in a number of neurodegenerative disorders, including Huntington's disease (HD). Phosphorylation patterns of ERK 1/2 and JNK are altered in cell models of HD. In this study, we aimed at studying the correlations between ERK 1/2 and the neuronal vulnerability to HD degeneration in the R6/2 transgenic mouse model of HD. Single and double-label immunofluorescence for phospho-ERK (pERK, the activated form of ERK) and for each of the striatal neuronal markers were employed on perfusion-fixed brain sections from R6/2 and wild-type mice. Moreover, Phosphodiesterase 4 inhibition through rolipram was used to study the effects on pERK expression in the different types of striatal neurons. We completed our study with western blot analysis. Our study shows that pERK levels increase with age in the medium spiny striatal neurons and in the parvalbumin interneurons, and that rolipram counteracts such increase in pERK. Conversely, cholinergic and somatostatinergic interneurons of the striatum contain higher levels of pERK in the R6/2 mice compared to the controls. Rolipram induces an increase in pERK expression in these interneurons. Thus, our study confirms and extends the concept that the expression of phosphorylated ERK 1/2 is related to neuronal vulnerability and is implicated in the pathophysiology of cell death in HD.

  3. Structure–activity studies with high-affinity inhibitors of pyroglutamyl-peptidase II

    PubMed Central

    2005-01-01

    Inhibitors of PPII (pyroglutamyl-peptidase II) (EC 3.4.19.6) have potential applications as investigative and therapeutic agents. The rational design of inhibitors is hindered, however, by the lack of an experimental structure for PPII. Previous studies have demonstrated that replacement of histidine in TRH (thyrotropin-releasing hormone) with asparagine produces a competitive PPII inhibitor (Ki 17.5 μM). To gain further insight into which functional groups are significant for inhibitory activity, we investigated the effects on inhibition of structural modifications to Glp-Asn-ProNH2 (pyroglutamyl-asparaginyl-prolineamide). Synthesis and kinetic analysis of a diverse series of carboxamide and C-terminally extended Glp-Asn-ProNH2 analogues were undertaken. Extensive quantitative structure–activity relationships were generated, which indicated that key functionalities in the basic molecular structure of the inhibitors combine in a unique way to cause PPII inhibition. Data from kinetic and molecular modelling studies suggest that hydrogen bonding between the asparagine side chain and PPII may provide a basis for the inhibitory properties of the asparagine-containing peptides. Prolineamide appeared to be important for interaction with the S2′ subsite, but some modifications were tolerated. Extension of Glp-Asn-ProNH2 with hydrophobic amino acids at the C-terminus led to a novel set of PPII inhibitors active in vitro at nanomolar concentrations. Such inhibitors were shown to enhance recovery of TRH released from rat brain slices. Glp-Asn-Pro-Tyr-Trp-Trp-7-amido-4-methylcoumarin displayed a Ki of 1 nM, making it the most potent competitive PPII inhibitor described to date. PPII inhibitors with this level of potency should find application in exploring the biological functions of TRH and PPII, and potentially provide a basis for development of novel therapeutics. PMID:15799721

  4. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  5. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    PubMed Central

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  6. Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase-activated B2 receptor agonists.

    PubMed

    Charest-Morin, Xavier; Roy, Caroline; Fortin, Emile-Jacques; Bouthillier, Johanne; Marceau, François

    2014-01-01

    While bradykinin (BK) is known to be degraded by angiotensin converting enzyme (ACE), we have recently discovered that Met-Lys-BK-Ser-Ser is paradoxically activated by ACE. We designed and evaluated additional "prodrug" peptides extended around the BK sequence as potential ligands that could be locally activated by vascular or blood plasma peptidases. BK regeneration was estimated using the contractility of the human umbilical vein as model of vascular functions mediated by endogenous B2 receptors (B2Rs) and the endocytosis of the fusion protein B2R-green fluorescent protein (B2R-GFP) expressed in Human Embryonic Kidney 293 cells. Of three BK sequences extended by a C-terminal dipeptide, BK-His-Leu had the most desirable profile, exhibiting little direct affinity for the receptor but a significant one for ACE (as shown by competition of [(3)H]BK binding to B2R-GFP or of [(3)H]enalaprilat to recombinant ACE, respectively). The potency of the contractile effect of this analog on the vein was reduced 18-fold by the ACE inhibitor enalaprilat, pharmacologically evidencing BK regeneration in situ. BK-Arg, a potential substrate of arginine carboxypeptidases, had a low affinity for B2Rs and its potency as a contractile agent was reduced 15-fold by tissue treatment with an inhibitor of these enzymes, Plummer's inhibitor. B2R-GFP internalization in response to 100 nM of the extended peptides recapitulated these findings, as enalaprilat selectively inhibited the effect of BK-His-Leu and Plummer's inhibitor, that of BK-Arg. The two peptidase inhibitors did not affect BK-induced effects in either assay. The novel C-terminally extended BKs had no or very little affinity for the kinin B1 receptor (competition of [(3)H]Lys-des-Arg(9)-BK binding). The feasibility of peptidase-activated B2R agonists is illustrated by C-terminal extensions of the BK sequence.

  7. A New TASK for Dipeptidyl Peptidase-like Protein 6

    PubMed Central

    Nadin, Brian M.; Pfaffinger, Paul J.

    2013-01-01

    Dipeptidyl Peptidase-like Protein 6 (DPP6) is widely expressed in the brain where it co-assembles with Kv4 channels and KChIP auxiliary subunits to regulate the amplitude and functional properties of the somatodendritic A-current, ISA. Here we show that in cerebellar granule (CG) cells DPP6 also regulates resting membrane potential and input resistance by increasing the amplitude of the IK(SO) resting membrane current. Pharmacological analysis shows that DPP6 acts through the control of a channel with properties matching the K2P channel TASK-3. Heterologous expression and co-immunoprecipitation shows that DPP6 co-expression with TASK-3 results in the formation of a protein complex that enhances resting membrane potassium conductance. The co-regulation of resting and voltage-gated channels by DPP6 produces coordinate shifts in resting membrane potential and A-current gating that optimize the sensitivity of ISA inactivation gating to subthreshold fluctuations in resting membrane potential. PMID:23593319

  8. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.

    PubMed

    Deacon, C F; Lebovitz, H E

    2016-04-01

    Type 2 diabetes (T2DM) is a progressive disease, and pharmacotherapy with a single agent does not generally provide durable glycaemic control over the long term. Sulphonylurea (SU) drugs have a history stretching back over 60 years, and have traditionally been the mainstay choice as second-line agents to be added to metformin once glycaemic control with metformin monotherapy deteriorates; however, they are associated with undesirable side effects, including increased hypoglycaemia risk and weight gain. Dipeptidyl peptidase (DPP)-4 inhibitors are, by comparison, more recent, with the first compound being launched in 2006, but the class now globally encompasses at least 11 different compounds. DPP-4 inhibitors improve glycaemic control with similar efficacy to SUs, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse side effects, and have recently been shown not to increase cardiovascular risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms. The present article reviews these two classes of oral antidiabetic drugs (DPP-4 inhibitors and SUs), highlighting differences and similarities between members of the same class, as well as discussing the potential advantages and disadvantages of the two drug classes. While both classes have their merits, the choice of which to use depends on the characteristics of each individual patient; however, for the majority of patients, DPP-4 inhibitors are now the preferred choice. PMID:26597596

  9. Prolyl-specific peptidases for applications in food protein hydrolysis.

    PubMed

    Mika, Nicole; Zorn, Holger; Rühl, Martin

    2015-10-01

    Various food proteins including, e.g. gluten, collagen and casein are rich in L-proline residues. Due to the cyclic structure of proline, these proteins are well protected from enzymatic degradation by typical digestive enzymes. Proline-specific peptidases (PsP) belong to different families of hydrolases acting on peptide bonds (EC 3.4.x.x). They occur in various organisms including bacteria, fungi, plants and insects. Based on their biochemical characteristics, PsP type enzymes are further grouped into different subclasses of which prolyl aminopeptidases (EC 3.4.11.5, PAP), prolyl carboxypeptidases (EC 3.4.17.16, PCP) and prolyl oligopeptidases/prolyl endopeptidases (EC 3.4.21.26, POP/PEP) are of major interest for applications in food biotechnology. This mini review summarises the biochemical assays employed for these subclasses of PsP and their structural properties and the reaction mechanisms. A special focus was set on PsP derived from fungi and insects and important industrial applications in the field of food biotechnology. The degradation of gluten and collagen as well as the hydrolysis of bitter peptides are discussed.

  10. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  11. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Glas, Rickard

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  12. Alteration of Escherichia coli topoisomerase IV to novobiocin resistance.

    PubMed

    Hardy, Christine D; Cozzarelli, Nicholas R

    2003-03-01

    DNA gyrase and topoisomerase IV (topo IV) are the two essential type II topoisomerases of Escherichia coli. Gyrase is responsible for maintaining negative supercoiling of the bacterial chromosome, whereas topo IV's primary role is in disentangling daughter chromosomes following DNA replication. Coumarins, such as novobiocin, are wide-spectrum antimicrobial agents that primarily interfere with DNA gyrase. In this work we designed an alteration in the ParE subunit of topo IV at a site homologous to that which confers coumarin resistance in gyrase. This parE mutation renders the encoded topo IV approximately 40-fold resistant to inhibition by novobiocin in vitro and imparts a similar resistance to inhibition of topo IV-mediated relaxation of supercoiled DNA in vivo. We conclude that topo IV is a secondary target of novobiocin and that it is very likely to be inhibited by the same mechanism as DNA gyrase.

  13. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes.

    PubMed

    Costa, Danielle Cristina Machado; Vermelho, Alane Beatriz; Almeida, Catia Amancio; de Souza Dias, Edilma Paraguai; Cedrola, Sabrina Martins Lage; Arrigoni-Blank, Maria de Fátima; Blank, Arie Fitzgerald; Alviano, Celuta Sales; Alviano, Daniela Sales

    2014-02-01

    Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.

  14. Peptidase N encoded by Salmonella enterica serovar Typhimurium modulates systemic infection in mice.

    PubMed

    Patil, Veerupaxagouda; Kumar, Anujith; Kuruppath, Sanjana; Nandi, Dipankar

    2007-11-01

    The cytosolic protein degradation pathway, involving ATP-dependent proteases and ATP-independent peptidases, is important for modulating several cellular responses. The involvement of pathogen-encoded ATP-dependent proteases is well established during infection. However, the roles of ATP-independent peptidases in this process are not well studied. The functional role of Peptidase N (PepN), an ATP-independent enzyme belonging to the M1 family, during systemic infection of mice by Salmonella enterica serovar Typhimurium (Salmonella typhimurium) was investigated. In a systemic model of infection, the number of CFU of S. typhimurium containing a targeted deletion in peptidase N (DeltapepN), compared with wild type, was significantly higher in the lymph node and spleen. In addition, S. typhimurium replicated in the thymus and greatly reduced the number of immature CD4(+)CD8(+) thymocytes in a dose- and time-dependent manner. Strains lacking or overexpressing pepN were used to show that the reduction in the number of thymocytes, but not lymph node cells, depends on a critical number of CFU. These findings establish a role for PepN in reducing the in vivo CFU of S. typhimurium during systemic infection. The implications of these results, in the context of the roles of proteases and peptidases, during host-pathogen interactions are discussed.

  15. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1.

    PubMed

    Endow, Joshua K; Singhal, Rajneesh; Fernandez, Donna E; Inoue, Kentaro

    2015-11-27

    Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1.

  16. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    PubMed

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  17. An Entamoeba cysteine peptidase specifically expressed during encystation.

    PubMed

    Ebert, Frank; Bachmann, Anna; Nakada-Tsukui, Kumiko; Hennings, Ina; Drescher, Babette; Nozaki, Tomoyoshi; Tannich, Egbert; Bruchhaus, Iris

    2008-12-01

    Protozoan parasites of the genus Entamoeba possess a considerable number of cysteine peptidases (CPs), the function of most of these molecules for amoeba biology needs to be established. In order to determine whether CPs may play a role during Entamoeba stage conversion from trophozoites into cysts and vice versa, expression of cp genes was analysed in the reptilian parasite Entamoeba invadens, a model organism for studying Entamoeba cyst development. By homology search, 28 papain-like cp genes were identified in public E. invadens genome databases. For eight of these genes the expression profiles during stage conversion was determined. By Northern blot analysis, transcripts for eicp-a9, -b7, -b8 and -c2, respectively, were detected neither in trophozoites or cysts nor at any of the point of times analysed during stage conversion. On the other hand, eicp-a5 is constitutively expressed during all developmental stages, whereas eicp-a3 and eicp-a11, respectively, are trophozoite-specific. Only eicp-b9 was found to be cyst-specific as it is expressed exclusively 18 to 28 h after cyst induction. Cyst-specific expression was confirmed by immunofluorescence microscopy of the corresponding protein EiCP-B9. In immature cysts, the molecule is located in structures that accumulate near the cyst wall, but which are uniformly distributed in mature cysts. The precise function of EiCP-B9 during Entamoeba encystation remains to be determined. However, colocalisation studies with an Entamoeba marker for autophagosomes suggest that EiCP-B9 is not associated with Entamoeba autophagy.

  18. Characterization of kallikrein-related peptidase 4 glycosylations

    PubMed Central

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C.; Simmer, James P.

    2012-01-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1–6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. PMID:22243251

  19. Characterization of kallikrein-related peptidase 4 glycosylations.

    PubMed

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C; Simmer, James P

    2011-12-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids.

  20. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the coleopteran-specific Cry3Aa toxin from Bacillus thuringiensis (Bt). Larvae digest protein initially with cysteine peptidases in the anterior midgut and further with serine peptidases in middle and poste...

  1. ClbP Is a Prototype of a Peptidase Subgroup Involved in Biosynthesis of Nonribosomal Peptides*

    PubMed Central

    Dubois, Damien; Baron, Olivier; Cougnoux, Antony; Delmas, Julien; Pradel, Nathalie; Boury, Michèle; Bouchon, Bernadette; Bringer, Marie-Agnès; Nougayrède, Jean-Philippe; Oswald, Eric; Bonnet, Richard

    2011-01-01

    The pks genomic island of Escherichia coli encodes polyketide (PK) and nonribosomal peptide (NRP) synthases that allow assembly of a putative hybrid PK-NRP compound named colibactin that induces DNA double-strand breaks in eukaryotic cells. The pks-encoded machinery harbors an atypical essential protein, ClbP. ClbP crystal structure and mutagenesis experiments revealed a serine-active site and original structural features compatible with peptidase activity, which was detected by biochemical assays. Ten ClbP homologs were identified in silico in NRP genomic islands of closely and distantly related bacterial species. All tested ClbP homologs were able to complement a clbP-deficient E. coli mutant. ClbP is therefore a prototype of a new subfamily of extracytoplasmic peptidases probably involved in the maturation of NRP compounds. Such peptidases will be powerful tools for the manipulation of NRP biosynthetic pathways. PMID:21795676

  2. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats.

    PubMed

    Uchii, Masako; Kimoto, Naoya; Sakai, Mariko; Kitayama, Tetsuya; Kunori, Shunji

    2016-07-15

    Although previous studies have shown an important role of renal dipeptidyl peptidase-4 (DPP-4) inhibition in ameliorating kidney injury in hypertensive rats, the renal distribution of DPP-4 and mechanisms of renoprotective action of DPP-4 inhibition remain unclear. In this study, we examined the effects of the DPP-4 inhibitor saxagliptin on DPP-4 activity in renal cells (using in situ DPP-4 staining) and on renal gene expression related to inflammation and fibrosis in the renal injury in hypertensive Dahl salt-sensitive (Dahl-S) rats. Male rats fed a high-salt (8% NaCl) diet received vehicle (water) or saxagliptin (12.7mg/kg/day) for 4 weeks. Blood pressure (BP), serum glucose and 24-h urinary albumin and sodium excretions were measured, and renal histopathology was performed. High salt-diet increased BP and urinary albumin excretion, consequently resulting in glomerular sclerosis and tubulointerstitial fibrosis. Although saxagliptin did not affect BP and blood glucose levels, it significantly ameliorated urinary albumin excretion. In situ staining showed DPP-4 activity in glomerular and tubular cells. Saxagliptin significantly suppressed DPP-4 activity in renal tissue extracts and in glomerular and tubular cells. Saxagliptin also significantly attenuated the increase in inflammation and fibrosis-related gene expressions in the kidney. Our results demonstrate that saxagliptin inhibited the development of renal injury independent of its glucose-lowering effect. Glomerular and tubular DPP-4 inhibition by saxagliptin was associated with improvements in albuminuria and the suppression of inflammation and fibrosis-related genes. Thus, local glomerular and tubular DPP-4 inhibition by saxagliptin may play an important role in its renoprotective effects in Dahl-S rats. PMID:27063445

  3. Peptide utilization in Pseudomonas aeruginosa: evidence for membrane-associated peptidase.

    PubMed Central

    Miller, R V; Becker, J M

    1978-01-01

    A methionine auxotroph of Pseudomonas aeruginosa grew on methionine-containing peptides as a source of the required amino acid. Amino-terminus-blocked peptides would not serve as growth substrates, despite the fact that peptidases active on these blocked peptides were readily detectable in cell extracts. No evidence was found for extracellular enzymes capable of degrading the oligopeptides investigated. The degradative enzymes were not found in the periplasmic space of the cellular envelope. A high proportion of cellular peptidase activity was associated with the particulate (membrane) fraction of the cell lysate. PMID:412832

  4. Dipeptidyl peptidase with strict substrate specificity of an anaerobic periodontopathogen Porphyromonas gingivalis.

    PubMed

    Fujimura, Setsuo; Hirai, Kaname; Shibata, Yukinaga

    2002-03-19

    A dipeptidyl peptidase which hydrolyzed Xaa-Ala-p-nitroanilide was purified to homogeneity by sequential procedures including ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic interaction chromatography, gel filtration and isoelectric focusing from the cell extract of Porphyromonas gingivalis. The purified enzyme hydrolyzed p-nitroanilide derivatives of Lys-Ala, Ala-Ala, and Val-Ala, but not Xaa-Pro. Enzyme activity was maximum at neutral pHs. Its molecular mass was 64 kDa with an isoelectric point of 5.7. The enzyme belonged to the family of serine peptidases. PMID:12007665

  5. Synthesis of amino-acid derivatives and dipeptides with an original peptidase enzyme.

    PubMed

    Auriol, D; Paul, F; Yoshpe, I; Gripon, J C; Monsan, P

    1991-01-01

    A peptidase from the non pathogenic Staphylococcus sp. strain BEC 299 was purified to a final specific activity of 84,400 U/mg protein. Its molecular weight is 450 kDa and optimum pH 10.0. This enzyme catalyzes the synthesis of dipeptides (aspartame) and alpha-amino acid derivatives (N-L-malyl-L-tyrosine ethyl ester). The influence of cosolvents and pH on dipeptides and alpha-amino acid derivative synthesis is described. Finally, we detail the use of the peptidase as a reagent in protease-catalyzed peptide synthesis.

  6. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  7. [Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid--effectors of peptidases of Bacillus thuringiensis and alpha-L-rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus].

    PubMed

    Varbanets, L D; Matseliukh, E V; Seĭfullina, I I; Khitrich, N V; Nidialkova, N A; Hudzenko, E V

    2014-01-01

    The influence of cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activity and Eupenicillium erubescens and Cryptococcus albidus alpha-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R')-dithiocarbamatoisothiocyanate)cobalt (II)--[Co(RR'Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II)--[Co(S2CNRR')2]; 5) dithiocarbamates of cobalt (III)--[Co(S2CNRR')3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine--[Co(S2CNRR')3] x 2I(2). These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR' in their molecules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase--coordinately nonsaturated complexes of cobalt (II) (1-4) containing short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic

  8. [Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid--effectors of peptidases of Bacillus thuringiensis and alpha-L-rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus].

    PubMed

    Varbanets, L D; Matseliukh, E V; Seĭfullina, I I; Khitrich, N V; Nidialkova, N A; Hudzenko, E V

    2014-01-01

    The influence of cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activity and Eupenicillium erubescens and Cryptococcus albidus alpha-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R')-dithiocarbamatoisothiocyanate)cobalt (II)--[Co(RR'Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II)--[Co(S2CNRR')2]; 5) dithiocarbamates of cobalt (III)--[Co(S2CNRR')3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine--[Co(S2CNRR')3] x 2I(2). These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR' in their molecules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase--coordinately nonsaturated complexes of cobalt (II) (1-4) containing short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic

  9. Ovarian Cancer Stage IV

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IV Add to My Pictures View /Download : ... 1200x1335 View Download Large: 2400x2670 View Download Title: Ovarian Cancer Stage IV Description: Drawing of stage IV shows ...

  10. Chymotrypsin-like peptidases from Tribolium castaneum: A role in molting revealed by RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chymotrypsin-like peptidases (CTLPs) of insects are primarily secreted into the gut lumen where they act as digestive enzymes. We studied the gene family encoding CTLPs in the genome of the red flour beetle, Tribolium castaneum. Using an extended search pattern, we identified 14 TcCTLP genes that e...

  11. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  12. Formation of proteasome-PA700 complexes directly correlates with activation of peptidase activity.

    PubMed

    Adams, G M; Crotchett, B; Slaughter, C A; DeMartino, G N; Gogol, E P

    1998-09-15

    The proteolytic activity of the eukaryotic 20S proteasome is stimulated by a multisubunit activator, PA700, which forms both 1:1 and 2:1 complexes with the proteasome. Formation of the complexes is enhanced by an additional protein assembly called modulator, which also stimulates the enzymatic activity of the proteasome only in the presence of PA700. Here we show that the binding of PA700 to the proteasome is cooperative, as is the activation of the proteasome's intrinsic peptidase activity. Modulator increases the extent of complex formation and peptidase activation, while preserving the cooperative kinetics. Furthermore, the increase in activity is not linear with the number of PA700 assemblies bound to the proteasome, but rather with the number of proteasome-PA700 complexes, regardless of the PA700:proteasome stoichiometry. Hence the stimulation of peptidase activity is fully (or almost fully) effected by the binding of a single PA700 to the 20S proteasome. The stimulation of peptidase by modulator is explained entirely by the increased number of proteasome-PA700 complexes formed in its presence, rather than by any substantial direct stimulation of catalysis. These observations are consistent with a model in which PA700, either alone or assisted by modulator, promotes conformational changes in the proteasome that activate the catalytic sites and/or facilitate access of peptide substrates to these sites. PMID:9737872

  13. Extracellular peptidase hunting for improvement of protein production in plant cells and roots.

    PubMed

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  14. Extracellular peptidase hunting for improvement of protein production in plant cells and roots.

    PubMed

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing. PMID:25705212

  15. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    PubMed Central

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing. PMID:25705212

  16. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  17. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system.

    PubMed

    Klemann, C; Wagner, L; Stephan, M; von Hörsten, S

    2016-07-01

    CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation. PMID:26919392

  18. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes.

    PubMed

    Scheen, André J

    2013-05-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are oral incretin-based glucose-lowering agents with proven efficacy and safety in the management of type 2 diabetes mellitus (T2DM). In addition, preclinical data and mechanistic studies suggest a possible additional non-glycemic beneficial action on blood vessels and the heart, via both glucagon-like peptide-1-dependent and glucagon-like peptide-1-independent effects. As a matter of fact, DPP-4 inhibitors improve several cardiovascular risk factors: they improve glucose control (mainly by reducing the risk of postprandial hyperglycemia) and are weight neutral; may lower blood pressure somewhat; improve postprandial (and even fasting) lipemia; reduce inflammatory markers; diminish oxidative stress; improve endothelial function; and reduce platelet aggregation in patients with T2DM. In addition, positive effects on the myocardium have been described in patients with ischemic heart disease. Results of post hoc analyses of phase 2/3 controlled trials suggest a possible cardioprotective effect with a trend (sometimes significant) toward lower incidence of major cardiovascular events with sitagliptin, vildagliptin, saxagliptin, linagliptin, or alogliptin compared with placebo or other active glucose-lowering agents. However, the definite relationship between DPP-4 inhibition and better cardiovascular outcomes remains to be proven. Major prospective clinical trials involving various DPP-4 inhibitors with predefined cardiovascular outcomes are under way in patients with T2DM and a high-risk cardiovascular profile: the Sitagliptin Cardiovascular Outcome Study (TECOS) on sitagliptin, the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 trial on saxagliptin, the Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome (EXAMINE) trial on alogliptin, and the Cardiovascular Outcome

  19. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin.

    PubMed

    Capuano, Annalisa; Sportiello, Liberata; Maiorino, Maria Ida; Rossi, Francesco; Giugliano, Dario; Esposito, Katherine

    2013-01-01

    Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as 'gliptins' (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%-0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their tolerability

  20. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  1. A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters.

    PubMed

    Foltz, Martin; Meyer, Antje; Theis, Stephan; Demuth, Hans-Ulrich; Daniel, Hannelore

    2004-08-01

    Targeting drugs or prodrugs to a specific enzyme by simultaneously targeting cell membrane carriers for efficient transport should provide the highest bioavailability along with specificity at the site of action. The peptide transporters PEPT1 and PEPT2 are expressed in a variety of tissues, including the brush-border membranes of epithelial cells of the small intestine and kidney. The transporters accept a wide range of substrates and are therefore good targets for a transporter-mediated drug delivery. Here, we report a screening procedure for peptidomimetic drug candidates combining two independent expression systems: 1) a competition assay in transgenic Pichia pastoris yeast cells expressing either mammalian PEPT1 or PEPT2 for identifying substrate interaction with the transporter binding site; and 2) a Xenopus laevis-based oocyte expression of the peptide transporter for assessing electrogenic transport of drug candidates. Based on the known oral availability and in vivo efficacy of the dipeptidyl peptidase IV (DPIV) inhibitor isoleucine-thiazolidide and its peptide-like structure, we first tested whether this compound is a substrate of epithelial peptide transporters. Additionally, a series of structurally related inhibitors were analyzed for transport. We identified various compounds that serve as substrates of the intestinal peptide transporter PEPT1. In contrast, none of these DPIV inhibitors showed electrogenic transport by PEPT2, although a variety of the compounds displayed good affinities for competition in peptide uptake in PEPT2-expressing cells, suggesting that they may serve as efficient inhibitors. In conclusion, we have applied an in vitro screening system that predicts efficient intestinal absorption of peptide-derived peptidase inhibitors via PEPT1 in vivo. PMID:15051798

  2. A concise review of the bioanalytical methods for the quantitation of sitagliptin, an important dipeptidyl peptidase-4 (DPP4) inhibitor, utilized for the characterization of the drug.

    PubMed

    Suresh, P S; Srinivas, Nuggehally R; Mullangi, Ramesh

    2016-05-01

    Inhibition of dipeptidyl peptidase-4 (DPP4) is an emerging therapeutic approach for treating type 2 diabetes and has revolutionized the concept of diabetes management. Sitagliptin is the first approved orally active, potent, selective and nonpeptidomimetic DPP4 inhibitor. Incidence of hypoglycemia and weight gain is negligible with sitagliptin treatment. It is used as monotherapy or in combination with other anti-diabetic drugs to treat type 2 diabetes. There are numerous bioanalytical methods published for the analysis of sitagliptin in preclinical and clinical samples. This review focuses on the various HPLC and LC-MS/MS methods that have been used to analyze sitagliptin in various biological matrices. A small section is devoted to the bioanalysis of other DPP4 inhibitors such as vildagliptin, saxagliptin and linagliptin. This review provides key information in a concise manner regarding sample processing options, chromatographic/detection conditions and validation parameters of the chosen methods for sitagliptin and other DPP4 inhibitors. PMID:26873580

  3. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied protein digestion the tenebrionids Tenebrio molitor and Tribolium castaneum, pests of stored grains and grain products, to identify potential targets for biopesticide development. Tenebrionid larvae have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anter...

  4. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. PMID:27480840

  5. Using PLATO IV.

    ERIC Educational Resources Information Center

    Meller, David V.

    This beginning reference manual describes PLATO IV hardware for prospective users and provides an introduction to PLATO for new authors. The PLATO terminal is described in detail in Chapter 1. Chapter 2 provides a block diagram of the PLATO IV system. Procedures for getting on line are described in Chapter 3, and Chapter 4 provides references to…

  6. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function.

    PubMed

    Perkin, Lindsey; Elpidina, Elena N; Oppert, Brenda

    2016-01-01

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products.

  7. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function

    PubMed Central

    Elpidina, Elena N.; Oppert, Brenda

    2016-01-01

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products. PMID:26819843

  8. Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes

    PubMed Central

    Stefanini, Ana Carolina B.; da Cunha, Bianca Rodrigues; Henrique, Tiago; Tajara, Eloiza H.

    2015-01-01

    Human kallikrein-related peptidases (KLKs) are a subgroup of serine proteases that participate in proteolytic pathways and control protein levels in normal physiology as well as in several pathological conditions. Their complex network of stimulatory and inhibitory interactions may induce inflammatory and immune responses and contribute to the neoplastic phenotype through the regulation of several cellular processes, such as proliferation, survival, migration, and invasion. This family of proteases, which includes one of the most useful cancer biomarkers, kallikrein-related peptidase 3 or PSA, also has a protective effect against cancer promoting apoptosis or counteracting angiogenesis and cell proliferation. Therefore, they represent attractive therapeutic targets and may have important applications in clinical oncology. Despite being intensively studied, many gaps in our knowledge on several molecular aspects of KLK functions still exist. This review aims to summarize recent data on their involvement in different processes related to health and disease, in particular those directly or indirectly linked to the neoplastic process. PMID:26783378

  9. Amyloid β-degrading cryptidases: insulin degrading enzyme, neprilysin, and presequence peptidase

    PubMed Central

    Malito, Enrico; Hulse, Raymond E.; Tang, Wei-Jen

    2009-01-01

    The accumulation of aggregates of amyloidogenic peptides is associated with numerous human diseases. One well studied example is the association between deposition of amyloid β (Aβ) and Alzheimer’s disease. Insulin degrading enzyme and neprilysin are involved in the clearance of Aβ, and presequence peptidase is suggested to play a role in the degradation of mitochondrial Aβ. Recent structural analyses reveal that these three peptidases contain a catalytic chamber (crypt) that selectively encapsulates and cleaves amyloidogenic peptides, hence the name cryptidase. The substrate selectivity of these cryptidases is determined by the size and charge distribution of their crypt as well as the conformational flexibility of substrates. The interaction of Aβ with the catalytic core of these cryptidases is controlled by conformational changes that make the catalytic chambers accessible for Aβ binding. These new structural and biochemical insights into cryptidases provide potential therapeutic strategies for the control of Aβ clearance. PMID:18470479

  10. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin.

    PubMed

    Malito, E; Hulse, R E; Tang, W-J

    2008-08-01

    The accumulation of aggregates of amyloidogenic peptides is associated with numerous human diseases. One well studied example is the association between deposition of amyloid beta (Abeta) and Alzheimer's disease. Insulin degrading enzyme and neprilysin are involved in the clearance of Abeta, and presequence peptidase is suggested to play a role in the degradation of mitochondrial Abeta. Recent structural analyses reveal that these three peptidases contain a catalytic chamber (crypt) that selectively encapsulates and cleaves amyloidogenic peptides, hence the name cryptidase. The substrate selectivity of these cryptidases is determined by the size and charge distribution of their crypt as well as the conformational flexibility of substrates. The interaction of Abeta with the catalytic core of these cryptidases is controlled by conformational changes that make the catalytic chambers accessible for Abeta binding. These new structural and biochemical insights into cryptidases provide potential therapeutic strategies for the control of Abeta clearance.

  11. System for expression of microsporidian methionine amino peptidase type 2 (MetAP2) in the yeast Saccharomyces cerevisiae.

    PubMed

    Upadhya, Rajendra; Zhang, Hong Shan; Weiss, Louis M

    2006-10-01

    Microsporidia are parasitic protists of all classes of vertebrates and most invertebrates. They recently emerged as important infections in various immunosuppressed and immunocompetent patient populations. They are also important veterinary and agricultural pathogens. Current therapies for microsporidiosis include benzimidazoles, which bind tubulin-inhibiting microtubule assembly, and fumagillin and its derivatives, which bind and inhibit methionine amino peptidase type 2 (MetAP2). Benzimidazoles are not active against Enterocytozoon bieneusi, the most common cause of human microsporidiosis. Fumagillin is active against most microsporidia, including E. bieneusi, but thrombocytopenia has been a problem in clinical trials. There is a pressing need for more-specific microsporidian MetAP2 inhibitors. To expedite and facilitate the discovery of safe and effective MetAP2 inhibitors, we have engineered Saccharomyces cerevisiae to be dependent on Encephalitozoon cuniculi MetAP2 (EcMetAP2) for its growth, where EcMetAP2 is harbored on an episomal uracil-selectable tetracycline-regulated plasmid. We have also constructed a leucine-selectable tetracycline-regulated expression plasmid into which any MetAP2 gene can be cloned. By utilizing a 5-fluoroorotic acid-mediated plasmid shuffle in the EcMetAP2 yeast strain, a yeast strain can be generated whose growth is dependent on MetAP2 from any organism. The level of heterologous MetAP2 gene expression can be controlled by the addition of tetracycline to the growth medium. These yeast strains should permit high-throughput screening for the identification of new inhibitors with high specificity and activity toward microsporidian MetAP2.

  12. Metabolism of aspartame by human and pig intestinal microvillar peptidases.

    PubMed

    Hooper, N M; Hesp, R J; Tieku, S

    1994-03-15

    The artificial sweetener aspartame (N-L-alpha-aspartyl-L-phenyl-alanine-1-methyl ester; Nutrasweet), its decomposition product alpha Asp-Phe and the related peptide alpha Asp-PheNH2 were rapidly hydrolysed by microvillar membranes prepared from human duodenum, jejunum and ileum, and from pig duodenum and kidney. The metabolism of aspartame by the human and pig intestinal microvillar membrane preparations was inhibited significantly (> 78%) by amastatin or 1,10-phenanthroline, and partially (> 38%) by actinonin or bestatin, and was activated 2.9-4.5-fold by CaCl2. The inhibition by amastatin and 1,10-phenanthroline, and the activation by CaCl2 are characteristic of the cell-surface ectoenzyme aminopeptidase A (EC 3.4.11.7) and a purified preparation of this enzyme hydrolysed aspartame with a Km of 0.25 mM and a Vmax of 126 mumol/min per mg. A purified preparation of aminopeptidase W (EC 3.4.11.16) also hydrolysed aspartame but with a Km of 4.96 mM and a Vmax of 110 mumol/min per mg. However, rentiapril, an inhibitor of aminopeptidase W, caused only slight inhibition (maximally 19%) of the hydrolysis of aspartame by the microvillar membrane preparations. Similar patterns of inhibition and kinetic parameters were observed for alpha Asp-Phe and alpha Asp-PheNH2. Two other decomposition products of aspartame, beta Asp-PheMe and cyclo-Asp-Phe, were essentially resistant to hydrolysis by both the human and pig intestinal microvillar membrane preparations and the purified preparations of aminopeptidases A and W. Although the relatively selective inhibitor of aminopeptidase N (EC 3.4.11.2), actinonin, partially inhibited the metabolism of aspartame, alpha Asp-Phe and alpha Asp-PheNH2 by the human and pig intestinal microvillar membrane preparations, these peptides were not hydrolysed by a purified preparation of aminopeptidase N. Membrane dipeptidase (EC 3.4.13.19) only hydrolysed the unblocked dipeptide, alpha Asp-Phe, but the selective inhibitor of this enzyme, cilastatin

  13. Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.

    2007-01-01

    Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.

  14. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action?

    PubMed Central

    Davis, Joseph Alex; Sharma, Suchitra; Mittra, Shivani; Sujatha, S.; Kanaujia, Anil; Shukla, Gyanesh; Katiyar, Chandrakant; Lakshmi, B.S.; Bansal, Vinay Sheel; Bhatnagar, Pradip Kumar

    2012-01-01

    Aim: The mechanism of action of Annona squamosa hexane extract in mediating antihyperglycemic and antitriglyceridimic effect were investigated in this study. Materials and Methods: The effects of extract on glucose uptake, insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1) phosphorylation and glucose transporter type 4 (GLUT4) and phosphoinositide 3-kinase (PI3 kinase) mRNA expression were studied in L6 myotubes. The in vitro mechanism of action was tested in protein-tyrosine phosphatase 1B (PTP1B), G-protein-coupled receptor 40 (GPR40), silent mating type information regulation 2 homolog 1 (SIRT1) and dipeptidyl peptidase-IV (DPP-IV) assays. The in vivo efficacy was characterized in ob/ob mice after an oral administration of the extract for 21 days. Results: The effect of extract promoted glucose uptake, IR-β and IRS-1 phosphorylation and GLUT4 and PI3 kinase mRNA upregulation in L6 myotubes. The extract inhibited PTP1B with an IC50 17.4 μg/ml and did not modulate GPR40, SIRT1 or DPP-IV activities. An oral administration of extract in ob/ob mice for 21 days improved random blood glucose, triglyceride and oral glucose tolerance. Further, the extract did not result in body weight gain before and after treatment (29.3 vs. 33.6 g) compared to rosiglitazone where significant body weight gain was observed (28.4 vs. 44.5 g; *P<0.05 after treatment compared to before treatment). Conclusion: The results suggest that Annona squamosa hexane extract exerts its action by modulating insulin signaling through inhibition of PTP1B. PMID:22701240

  15. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera.

    PubMed

    Dias, Renata O; Via, Allegra; Brandão, Marcelo M; Tramontano, Anna; Silva-Filho, Marcio C

    2015-03-01

    Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic L-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.

  16. Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase*

    PubMed Central

    Staniec, Dominika; Ksiazek, Miroslaw; Thøgersen, Ida B.; Enghild, Jan J.; Sroka, Aneta; Bryzek, Danuta; Bogyo, Matthew; Abrahamson, Magnus; Potempa, Jan

    2015-01-01

    Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein's activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis. PMID:26385924

  17. Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase.

    PubMed

    Staniec, Dominika; Ksiazek, Miroslaw; Thøgersen, Ida B; Enghild, Jan J; Sroka, Aneta; Bryzek, Danuta; Bogyo, Matthew; Abrahamson, Magnus; Potempa, Jan

    2015-11-01

    Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein's activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis.

  18. Localization of post-proline cleaving peptidases in Tenebrio molitor larval midgut.

    PubMed

    Goptar, Irina A; Filippova, Irina Yu; Lysogorskaya, Elena N; Oksenoit, Elena S; Vinokurov, Konstantin S; Zhuzhikov, Dmitry P; Bulushova, Natalja V; Zalunin, Igor A; Dunaevsky, Yakov E; Belozersky, Mikhail A; Oppert, Brenda; Elpidina, Elena N

    2008-03-01

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in Tenebrio molitor larval midgut with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activity at pH 5.3, and was located mainly in the more acidic anterior midgut lumen. The dynamics of PPCP1 activity and the total activity of soluble digestive peptidases in the course of food digestion were similar, suggesting that the enzyme participates in protein digestion. PPCP2 is a nondigestive soluble tissue enzyme evenly distributed along the midgut. An increase in the activity of PPCP2 was observed in buffers of pH 5.6-8.6 and was maximal at pH 7.4. The sensitivity of PPCP2 to inhibitors and the effect of pH are similar to prolyl oligopeptidases with a cysteine residue near the substrate binding site.

  19. Peptidases released by necrotic cells control CD8+ T cell cross-priming

    PubMed Central

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P.; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O.; Citrin, Deborah E.; Korangy, Firouzeh; Greten, Tim F.

    2013-01-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells. PMID:24216478

  20. Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13.

    PubMed

    Deussing, Jan; Kouadio, Martin; Rehman, Salima; Werber, Ingrid; Schwinde, Anne; Peters, Christoph

    2002-02-01

    Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.

  1. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    PubMed

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed.

  2. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    PubMed

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  3. IV treatment at home

    MedlinePlus

    ... home; PICC line - home; Infusion therapy - home; Home health care - IV treatment ... Often, home health care nurses will come to your home to give you the medicine. Sometimes, a family member, a friend, or ...

  4. [Analysis of the biological effect of city smog extract IV. Growth inhibition of kidney cell cultures (cercopithecus aethiops) under the influence of a city smog extract and its polyaromatic fractions (author's transl)].

    PubMed

    Seemayer, N; de Ruiter, N; Manojlovic, N; Tomingas, R

    1978-11-01

    The cell growth of exponentially growing kidney cell cultures of Cercopithecus aethiops was determined by estimation of protein content. The effect of city smog extracts and its polyaromatic fractions on cell growth was examined. Based on the benzo(a)pyren-content the crude extract of city smog exerted the strongest inhibition of cell growth, followed by non purified and purified fraction of polyaromates. The inhibition of cell growth was dose dependent. Results indicate, that for cell growth inhibition are of importance concentrations of toxic substances and exposition time.

  5. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  6. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  7. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    PubMed

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes.

  8. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  9. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing

    PubMed Central

    Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  10. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  11. Novel Class of Mutations of pilS Mutants, Encoding Plasmid R64 Type IV Prepilin: Interface of PilS-PilV Interactions▿

    PubMed Central

    Shimoda, Eriko; Muto, Tatsuya; Horiuchi, Takayuki; Furuya, Nobuhisa; Komano, Teruya

    2008-01-01

    The type IV pili of plasmid R64 belonging to the type IVB group are required only for liquid mating. They consist of the major and minor components PilS pilin and PilV adhesin, respectively. PilS pilin is first synthesized as a 22-kDa prepilin from the pilS gene and is then processed to a 19-kDa mature pilin by PilU prepilin peptidase. In a previous genetic analysis, we identified four classes of the pilS mutants (T. Horiuchi and T. Komano, J. Bacteriol. 180:4613-4620, 1998). The products of the class I pilS mutants were not processed by prepilin peptidase; the products of the class II mutants were not secreted; in the class III mutants type IV pili with reduced activities in liquid mating were produced; and in the class IV mutants type IV pili with normal activities were produced. Here, we describe a novel class, class V, of pilS mutants. Mutations in the pilS gene at Gly-56 or Tyr-57 produced type IV pili lacking PilV adhesin, which were inactive in liquid mating. Residues 56 and 57 of PilS pilin are suggested to function as an interface of PilS-PilV interactions. PMID:18065540

  12. Crystal structure and activity studies of the C11 cysteine peptidase from Parabacteroides merdae in the human gut microbiome

    DOE PAGES

    McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Coombs, Graham H.; Elsliger, Marc-André; Wilson, Ian A.; Mottram, Jeremy C.

    2016-03-03

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other familiesmore » in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.« less

  13. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome*

    PubMed Central

    Das, Debanu; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Coombs, Graham H.; Elsliger, Marc-André; Wilson, Ian A.

    2016-01-01

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms. PMID:26940874

  14. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome.

    PubMed

    McLuskey, Karen; Grewal, Jaspreet S; Das, Debanu; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Coombs, Graham H; Elsliger, Marc-André; Wilson, Ian A; Mottram, Jeremy C

    2016-04-29

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys(147), resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys(147) to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca(2+) for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms. PMID:26940874

  15. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  16. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    PubMed Central

    Rhee, Su-jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  17. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects.

    PubMed

    Rhee, Su-Jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration-time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01-1.12) and 1.02 (0.99-1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration-time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79-0.89) and 0.94 (0.89-0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  18. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choe, Mi Sun; Kim, Sung-Woo; Lee, In-Kyu

    2016-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. Methods Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. Results Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. Conclusion Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes. PMID:27098503

  19. Metabolism of enkephalins in head membranes of the leech Theromyzon tessulatum by peptidases: isolation of an enkephalin-degrading aminopeptidase.

    PubMed

    Laurent, V; Salzet, M

    1996-09-01

    Metabolism of leucine and methionine enkephalins by enzyme preparations from head parts of the leech Theromyzon tessulatum was investigated. Leech homogenate degraded enkephalins by cleavage of the Tyr1-Gly2 and Gly3-Phe4 bonds. The Tyr1-Gly2-Gly3 was detected as a major metabolite when amastatin (aminopeptidase inhibitor) was present to prevent Tyr1-Gly2 breakdown. Around 50% of enkephalin-degrading activity was isolated in a 20000 x g membrane fraction and was shown to be almost entirely due to an aminopeptidase activity. This enzyme, a homodimer of approx. 70 kDa, has been purified to homogeneity by a combined approach including gel permeation and anion exchange chromatographies followed by reversed-phase HPLC. This enkephalin-degrading aminopeptidase is a typical integral membrane 'zincin' metalloprotein with an apparent k(m) of 30 microM, a specific activity of 12 nmol GGFM min-1 mg protein-1 and a catalytic efficiency (kcat/k(m)) of 46 x 10(6) mol-1 min-1. This enzyme is specifically inhibited by amastatin (IC50 = 0.5 microM), but not by bestatin and actinonin. In leech membranes, the other degrading activities performed at the same time were due to a neuropeptide-endopeptidase (NEP)-like enzyme attack, inhibited by phosphoramidon (IC50 = 0.1 microM) and in the case of the Met-enkephalin by a combined action of an angiotensin-converting-like enzyme, inhibited by captopril (IC50 = 0.2 microM) and the NEP-like enzyme. These two enzymes were previously isolated from head membranes of T. tessulatum and possess towards Met-enkephalin a catalytic efficiency (kcat/k(m)) of, respectively, 12 x 10(6) mol-1 min-1 and 78 x 10(6) mol-1 min-1. These findings constitute the first report in leeches on the nature and the sites of attack of the membrane peptidases involved in the metabolism of enkephalins and also the first biochemical evidence for a novel member of the aminopeptidase family.

  20. PNT1 Is a C11 Cysteine Peptidase Essential for Replication of the Trypanosome Kinetoplast.

    PubMed

    Grewal, Jaspreet S; McLuskey, Karen; Das, Debanu; Myburgh, Elmarie; Wilkes, Jonathan; Brown, Elaine; Lemgruber, Leandro; Gould, Matthew K; Burchmore, Richard J; Coombs, Graham H; Schnaufer, Achim; Mottram, Jeremy C

    2016-04-29

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His(99) and Cys(136)), and an Asp (Asp(134)) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast. PMID:26940875

  1. PNT1 Is a C11 Cysteine Peptidase Essential for Replication of the Trypanosome Kinetoplast*

    PubMed Central

    Das, Debanu; Myburgh, Elmarie; Wilkes, Jonathan; Brown, Elaine; Lemgruber, Leandro; Gould, Matthew K.; Burchmore, Richard J.; Coombs, Graham H.; Schnaufer, Achim

    2016-01-01

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast. PMID:26940875

  2. PNT1 is a C11 cysteine peptidase essential for replication of the Trypanosome Kinetoplast

    DOE PAGES

    Grewal, Jaspreet S.; McLuskey, Karen; Das, Debanu; Myburgh, Elmarie; Wilkes, Jonathan; Brown, Elaine; Lemgruber, Leandro; Gould, Matthew K.; Burchmore, Richard J.; Coombs, Graham H.; et al

    2016-03-03

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrialmore » genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. Furthermore, these data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.« less

  3. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom.

    PubMed

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M; Neves-Ferreira, Ana G C; Sánchez, Elda E; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2016-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1nM). Aprotinin (2nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05nM) was inhibited by 67% following incubation with TP1 (0.1nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2nM) acts like aprotinin (0.4nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed.

  4. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom

    PubMed Central

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M.; Neves-Ferreira, Ana G.C.; Sánchez, Elda E.; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2015-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542 Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5 nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1 nM). Aprotinin (2 nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05 nM) was inhibited by 67% following incubation with TP1 (0.1 nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2 nM) acts like aprotinin (0.4 nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed. PMID:26419785

  5. PLATO IV Accountancy Index.

    ERIC Educational Resources Information Center

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  6. The PLATO IV Architecture.

    ERIC Educational Resources Information Center

    Stifle, Jack

    The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…

  7. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  8. Phosphodiesterase type IV inhibition prevents sequestration of CREB binding protein, protects striatal parvalbumin interneurons and rescues motor deficits in the R6/2 mouse model of Huntington's disease.

    PubMed

    Giampà, Carmela; Middei, Silvia; Patassini, Stefano; Borreca, Antonella; Marullo, Fabrizia; Laurenti, Daunia; Bernardi, Giorgio; Ammassari-Teule, Martine; Fusco, Francesca R

    2009-03-01

    The phosphodiesterase type IV inhibitor rolipram increases cAMP response element-binding protein (CREB) phosphorylation and exerts neuroprotective effects in both the quinolinic acid rat model of Huntington's disease (DeMarch et al., 2007) and the R6/2 mouse including sparing of striatal neurons, prevention of neuronal intranuclear inclusion formation and attenuation of microglial reaction (DeMarch et al., 2008). In this study, we sought to determine if rolipram has a beneficial role in the altered distribution of CREB binding protein in striatal spiny neurons and in the motor impairments shown by R6/2 mutants. Moreover, we investigated whether rolipram treatment altered the degeneration of parvalbuminergic interneurons typical of Huntington's disease (Fusco et al., 1999). Transgenic mice and their wild-type controls from a stable colony maintained in our laboratory were treated with rolipram (1.5 mg/kg) or saline daily starting from 4 weeks of age. The cellular distribution of CREB binding protein in striatal spiny neurons was assessed by immunofluorescence, whereas parvalbuminergic neuron degeneration was evaluated by cell counts of immunohistochemically labeled tissue. Motor coordination and motor activity were also examined. We found that rolipram was effective in preventing CREB binding protein sequestration into striatal neuronal intranuclear inclusions, sparing parvalbuminergic interneurons of R6/2 mice, and rescuing their motor coordination and motor activity deficits. Our findings demonstrate the possibility of reversing pharmacologically the behavioral and neuropathological abnormalities of symptomatic R6/2 mice and underline the potential therapeutic value of phosphodiesterase type IV inhibitors in Huntington's disease.

  9. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    PubMed Central

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  10. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  11. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  12. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part IV. Is a new haem polymerisation inhibition test pertinent for the detection of antimalarial natural products?

    PubMed

    Baelmans, R; Deharo, E; Bourdy, G; Muñoz, V; Quenevo, C; Sauvain, M; Ginsburg, H

    2000-11-01

    The search for new antimalarial agents in plant crude extracts using traditional screening tests is time-consuming and expensive. New in vitro alternative techniques, based on specific metabolic or enzymatic process, have recently been developed to circumvent testing of antimalarial activity in parasite culture. The haem polymerisation inhibition test (HPIA) was proposed as a possible routine in vitro assay for the detection of antimalarial activity in natural products. A total of 178 plant extracts from the Pharmacopeia of the Bolivian ethnia Tacana, were screened for their ability to inhibit the polymerisation of haematin. Five extracts from Aloysia virgata (Ruíz & Pavón) A.L. Jussieu (Verbenaceae), Bixa orellana L. (Bixaceae), Caesalpinia pluviosa D.C. (Caesalpiniaceae), Mascagnia stannea (Griseb) Nied. (Malpighiaceae) and Trichilia pleenea (Adr. Jussieu) (Meliaceae) demonstrated more than 70% inhibition of haematin polymerisation at 2.5 mg/ml. The extracts were also tested for antimalarial activity in culture against F32 strain (chloroquine-sensitive) and D2 strain (chloroquine-resistant) of Plasmodium falciparum and in vivo against P. berghei. The extract from Caesalpinia pluviosa was the only one that showed activity in HPIA and in the classical test in culture. The accuracy and pertinence of HPIA, applied to natural products is discussed. PMID:11025165

  13. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity

    PubMed Central

    Shiina, Yohei; Muto, Tomohiro; Zhang, Zhili; Baihaqie, Ahmad; Yoshizawa, Takamasa; Lee, Hye-in J.; Park, Eulsoon; Tsukiji, Shinya; Takimoto, Koichi

    2016-01-01

    Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K+ channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides. PMID:27198182

  14. Site-directed mutagenesis of the Actinomadura R39 DD-peptidase.

    PubMed Central

    Zhao, G H; Duez, C; Lepage, S; Forceille, C; Rhazi, N; Klein, D; Ghuysen, J M; Frère, J M

    1997-01-01

    The role of various residues in the conserved structural elements of the Actinomadura R39 penicillin-sensitive dd-peptidase has been studied by site-directed mutagenesis. Replacement of Ser-298 of the 'SDN loop' by Ala or Gly significantly decreased the kcat/Km value for the peptide substrate, but only by a factor of 15 and had little effect on the other catalytic properties. Mutations of Asn-300 of the same loop and of Lys-410 of the KTG triad yielded very unstable proteins. However, the N300S mutant could be purified as a fusion protein with thioredoxin that exhibited decreased rates of acylation by the peptide substrate and various cephalosporins. Similar fusion proteins obtained with the N300A, K410H and K410N mutants were unstable and their catalytic and penicillin-binding properties were very strongly affected. In transpeptidation reactions, the presence of the acceptor influenced the kcat/Km values, which suggested a catalytic pathway more complex than a simple partition of the acyl-enzyme between hydrolysis and aminolysis. These results are compared with those obtained with two other penicillin-sensitive enzymes, the Streptomyces R61 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5. PMID:9359404

  15. SOM 1, a small new gene required for mitochondrial inner membrane peptidase function in Saccharomyces cerevisiae.

    PubMed

    Esser, K; Pratje, E; Michaelis, G

    1996-09-25

    IMP1 encodes a subunit of the mitochondrial inner membrane peptidase responsible for the proteolytic processing of cytochrome oxidase subunit 2 (Cox2) and cytochrome b2 (Cytb2). The molecular defect in an imp1 mutation and the characterisation of a high-copy-number suppressor is described. A deletion of the suppressor region causes respiration deficiency. The DNA sequence revealed three very small overlapping ORFs. Constructs which carried termination codons within the ORFs or lacked ATG initiation codons still retained complementing activity on a high-copy-number plasmid. Nevertheless, the possibility that the suppressor acts at DNA or RNA level could be excluded. Subcloning of the ORFs, complementation analysis in low-copy-number plasmids and transcript mapping identified the 222 bp ORF as the suppressor gene designated SOM1. The SOM1 gene is transcribed into a 375 bp polyadenylated RNA and the deduced amino acid sequence predicts a small protein of 8.4 kDa with no significant sequence similarity to known proteins. In the som1 deletion mutant, proteolytic processing of the Cox2 precursor is prevented and Cytb2 is strongly reduced. SOM1 represents a new small gene which encodes a novel factor that is essential for the correct function of the Imp1 peptidase and/or the protein sorting machinery. PMID:8879245

  16. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability.

    PubMed

    Ketnawa, Sunantha; Benjakul, Soottawat; Martínez-Alvarez, Oscar; Rawdkuen, Saroat

    2017-01-15

    The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations. PMID:27542490

  17. A Computational Study of the Glycine-Rich Loop of Mitochondrial Processing Peptidase

    PubMed Central

    Kučera, Tomáš; Otyepka, Michal; Matušková, Anna; Samad, Abdul; Kutejová, Eva; Janata, Jiří

    2013-01-01

    An all atomic, non-restrained molecular dynamics (MD) simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL) of the α-subunit of the yeast mitochondrial processing peptidase (MPP) and its importance for the tertiary and quaternary conformation of MPP. Wild-type and GRL-deleted MPP structures were studied using non-restrained MD simulations, both in the presence and the absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition), but also later, at least during the first third of the substrate translocation trajectory. Further, we show that the substrate remains in contact with the GRL during the whole first half of the translocation trajectory and that hydrophobic interactions play a major role. Finally, we conclude that the GRL acts as a precisely balanced structural element, holding the MPP subunits in a partially closed conformation regardless the presence or absence of a substrate in the active site. PMID:24058582

  18. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization

    PubMed Central

    Ting, Yi Tian; Harris, Paul W. R.; Batot, Gaelle; Brimble, Margaret A.; Baker, Edward N.; Young, Paul G.

    2016-01-01

    Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase–substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB–peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB–peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival. PMID:26870377

  19. Enhanced Design Alternative IV

    SciTech Connect

    N. E. Kramer

    1999-05-18

    This report evaluates Enhanced Design Alternative (EDA) IV as part of the second phase of the License Application Design Selection (LADS) effort. The EDA IV concept was compared to the VA reference design using criteria from the ''Design Input Request for LADS Phase II EDA Evaluations'' (CRWMS M&O 1999b) and (CRWMS M&O 1999f). Briefly, the EDA IV concept arranges the waste packages close together in an emplacement configuration known as ''line load''. Continuous pre-closure ventilation keeps the waste packages from exceeding the 350 C cladding and 200 C (4.3.13) drift wall temperature limits. This EDA concept keeps relatively high, uniform emplacement drift temperatures (post-closure) to drive water away from the repository and thus dry out the pillars between emplacement drifts. The waste package is shielded to permit human access to emplacement drifts and includes an integral filler inside the package to reduce the amount of water that can contact the waste form. Closure of the repository is desired 50 years after first waste is emplaced. Both backfill and a drip shields will be emplaced at closure to improve post-closure performance.

  20. Gene cloning and biochemical characterization of eryngase, a serine aminopeptidase of Pleurotus eryngii belonging to the family S9 peptidases.

    PubMed

    Arima, Jiro; Tokai, Shota; Chiba, Masanori; Ichiyanagi, Tsuyoshi; Yabuta, Yukinori; Mori, Nobuhiro; Aimi, Tadanori

    2014-01-01

    Pleurotus eryngii serine aminopeptidase that has peptide bond formation activity, redesignated as eryngase, was cloned and expressed. Eryngase has a family S9 peptidase unit in the C-terminal region having a catalytic triad of Ser, Asp, and His. In the phylogenetic relations among the subfamilies of family S9 peptidase (S9A, prolyl oligopeptidase; S9B, dipeptidyl peptidase; S9C, acylaminoacyl peptidase; S9D, glutamyl endopeptidase), eryngase existed alone in the neighbor of S9C subfamily. Mutation of the active site Ser524 of the eryngase with Ala eliminated its catalytic activity. In contrast, S524C mutant maintained low catalytic activity. Investigation of aminolysis activity using l-Phe-NH2 as a substrate showed that S524C mutant exhibited no hydrolysis reaction but synthesized a small amount of l-Phe-l-Phe-NH2 by the catalysis of aminolysis. In contrast, wild-type eryngase hydrolyzed the product of aminolysis l-Phe-l-Phe-NH2. Results show that the S524C mutant preferentially catalyzed aminolysis when on an l-Phe-NH2 substrate.

  1. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut. We have descri...

  2. On the substrate specificity of bacterial DD-peptidases: evidence from two series of peptidoglycan-mimetic peptides.

    PubMed Central

    Anderson, John W; Adediran, Suara A; Charlier, Paulette; Nguyen-Distèche, Martine; Frère, Jean-Marie; Nicholas, Robert A; Pratt, Rex F

    2003-01-01

    The reactions between bacterial DD-peptidases and beta-lactam antibiotics have been studied for many years. Less well understood are the interactions between these enzymes and their natural substrates, presumably the peptide moieties of peptidoglycan. In general, remarkably little activity has previously been demonstrated in vitro against potential peptide substrates, although in many cases the peptides employed were non-specific and not homologous with the relevant peptidoglycan. In this paper, the specificity of a panel of DD-peptidases against elements of species-specific D-alanyl-D-alanine peptides has been assessed. In two cases, those of soluble, low-molecular-mass DD-peptidases, high activity against the relevant peptides has been demonstrated. In these cases, the high specificity is towards the free N-terminus of the peptidoglycan fragment. With a number of other enzymes, particularly high-molecular-mass DD-peptidases, little or no activity against these peptides was observed. In separate experiments, the reactivity of the enzymes against the central, largely invariant, peptide stem was examined. None of the enzymes surveyed showed high activity against this structural element although weak specificity in the expected direction towards the one structural variable (D-gammaGln versus D-gammaGlu) was observed. The current state of understanding of the activity of these enzymes in vitro is discussed. PMID:12723972

  3. A sputnik IV saga

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.

    2009-12-01

    The Sputnik IV launch occurred on May 15, 1960. On May 19, an attempt to deorbit a 'space cabin' failed and the cabin went into a higher orbit. The orbit of the cabin was monitored and Moonwatch volunteer satellite tracking teams were alerted to watch for the vehicle demise. On September 5, 1962, several team members from Milwaukee, Wisconsin made observations starting at 4:49 a.m. of a fireball following the predicted orbit of Sputnik IV. Requests went out to report any objects found under the fireball path. An early morning police patrol in Manitowoc had noticed a metal object on a street and had moved it to the curb. Later the officers recovered the object and had it dropped off at the Milwaukee Journal. The Moonwarch team got the object and reported the situation to Moonwatch Headquarters at the Smithsonian Astrophysical Observatory. A team member flew to Cambridge with the object. It was a solid, 9.49 kg piece of steel with a slag-like layer attached to it. Subsequent analyses showed that it contained radioactive nuclei produced by cosmic ray exposure in space. The scientists at the Observatory quickly recognized that measurements of its induced radioactivity could serve as a calibration for similar measurements of recently fallen nickel-iron meteorites. Concurrently, the Observatory directorate informed government agencies that a fragment from Sputnik IV had been recovered. Coincidently, a debate in the UN Committee on Peaceful Uses of Outer Space involved the issue of liability for damage caused by falling satellite fragments. On September 12, the Observatory delivered the bulk of the fragment to the US Delegation to the UN. Two days later, the fragment was used by US Ambassador Francis Plimpton as an exhibit that the time had come to agree on liability for damage from satellite debris. He offered the Sputnik IV fragment to USSR Ambassador P.D. Morozov, who refused the offer. On October 23, Drs. Alla Massevitch and E.K. Federov of the USSR visited the

  4. A Nonhost Peptidase Inhibitor of ~14 kDa from Butea monosperma (Lam.) Taub. Seeds Affects Negatively the Growth and Developmental Physiology of Helicoverpa armigera

    PubMed Central

    Pandey, Prabhash K.; Singh, Dushyant; Singh, Sangram; Khan, M. Y.; Jamal, Farrukh

    2014-01-01

    Helicoverpa armigera is one of the major devastating pests of crop plants. In this context a serine peptidase inhibitor purified from the seeds of Butea monosperma was evaluated for its effect on developmental physiology of H. armigera larvae. B. monosperma peptidase inhibitor on 12% denaturing polyacrylamide gel electrophoresis exhibited a single protein band of ~14 kDa with or without reduction. In vitro studies towards total gut proteolytic enzymes of H. armigera and bovine trypsin indicated measurable inhibitory activity. B. monosperma peptidase inhibitor dose for 50% mortality and weight reduction by 50% were 0.5% w/w and 0.10% w/w, respectively. The IC50 of B. monosperma peptidase inhibitor against total H. armigera gut proteinases activity was 2.0 µg/mL. The larval feeding assays suggested B. monosperma peptidase inhibitor to be toxic as reflected by its retarded growth and development, consequently affecting fertility and fecundity of pest and prolonging the larval-pupal duration of the insect life cycle of H. armigera. Supplementing B. monosperma peptidase inhibitor in artificial diet at 0.1% w/w, both the efficiencies of conversion of ingested as well as digested food were downregulated, whereas approximate digestibility and metabolic cost were enhanced. The efficacy of Butea monosperma peptidase inhibitor against progressive growth and development of H. armigera suggest its usefulness in insect pest management of food crops. PMID:24860667

  5. Role of peptidases of the intestinal microflora and prey in temperature adaptations of the digestive system in planktivorous and benthivorous fish.

    PubMed

    Kuz'mina, V V; Skvortsova, E G; Shalygin, M V; Kovalenko, K E

    2015-12-01

    Many fish enzymatic systems possess limited adaptations to low temperature; however, little data are available to judge whether enzymes of fish prey and intestinal microbiota can mitigate this deficiency. In this study, the activity of serine peptidases (casein-lytic, mainly trypsin and hemoglobin-lytic, mainly chymotrypsin) of intestinal mucosa, chyme and intestinal microflora in four species of planktivorous (blue bream) and benthivorous (roach, crucian carp, perch) was investigated across a wide temperature range (0-70 °C) to identify adaptations to low temperature. At 0 °C, the relative activity of peptidases of intestinal mucosa (<13%) and usually intestinal microflora (5-12.6%) is considerably less than that of chyme peptidases (up to 40% of maximal activity). The level of peptidase relative activity in crucian carp intestinal microflora was 45% of maximal activity. The shape of t°-function curves of chyme peptidase also differs in fish from different biotopes. Fish from the littoral group are characterized by a higher degree of adaptation of chyme casein-lytic peptidases to functioning at low temperatures as compared to fish from the pelagic group. The role of intestinal microbiota and prey peptidases in digestive system adaptations of planktivorous and benthivorous fish to low temperatures is discussed.

  6. The dimeric transmembrane domain of prolyl dipeptidase DPP-IV contributes to its quaternary structure and enzymatic activities.

    PubMed

    Chung, Kuei-Min; Cheng, Jai-Hong; Suen, Ching-Shu; Huang, Chih-Hsiang; Tsai, Cheng-Han; Huang, Li-Hao; Chen, Yi-Rong; Wang, Andrew H-J; Jiaang, Weir-Torn; Hwang, Ming-Jing; Chen, Xin

    2010-09-01

    Dipeptidyl peptidase IV (DPP-IV) is a drug target in the treatment of human type II diabetes. It is a type II membrane protein with a single transmembrane domain (TMD) anchoring the extracellular catalytic domain to the membrane. DPP-IV is active as a dimer, with two dimer interacting surfaces located extracellularly. In this study, we demonstrate that the TM of DPP-IV promotes DPP-IV dimerization and rescues monomeric DPP-IV mutants into partial dimers, which is specific and irreplaceable by TMs of other type II membrane proteins. By bioluminescence resonance energy transfer (BRET) and peptide electrophoresis, we found that the TM domain of DPP-IV is dimerized in mammalian cells and in vitro. The TM dimer interaction is very stable, based on our results with TM site-directed mutagenesis. None of the mutations, including the introduction of two prolines, resulted in their complete disruption to monomers. However, these TM proline mutations result in a significant reduction of DPP-IV enzymatic activity, comparable to what is found with mutations near the active site. A systematic analysis of TM structures deposited in the Protein Data Bank showed that prolines in the TM generally produce much bigger kinking angles than occur in nonproline-containing TMs. Thus, the proline-dependent reduction in enzyme activity may result from propagated conformational changes from the TM to the extracellular active site. Our results demonstrate that TM dimerization and conformation contribute significantly to the structure and activity of DPP-IV. Optimal enzymatic activity of DPP-IV requires an optimal interaction of all three dimer interfaces, including its TM.

  7. Identification and partial characterization of the enzyme of omega: one of five putative DPP IV genes in Drosophila melanogaster

    PubMed Central

    Chihara, Carol J.; Song, Chunyan; LaMonte, Greg; Fetalvero, Kristina; Hinchman, Kristy; Phan, Helen; Pineda, Mario; Robinson, Kelly; Schneider, Gregory P.

    2005-01-01

    The omega (ome) gene product is a modifier of larval cuticle protein 5 and its alleles (and duplicates) in the third instar of Drosophila melanogaster. Using deletion mapping the locus mapped to 70F-71A on the left arm of chromosome 3. A homozygote null mutant (ome 1) shows a pleiotropic phenotype that affected the size, developmental time of the flies, and the fertility (or perhaps the behavior) of homozygous mutant males. The omega gene was verified as producing a dipeptidyl peptidase IV (DPPIV) by genetic analysis, substrate specificity and pH optimum. The identity of the gene was confirmed as CG32145 (cytology 70F4) in the Celera Database (Berkeley Drosophila Genome Project), which is consistent with its deletion map position. The genomic structure of the gene is described and the decrease in DPPIV activity in the mutant ome1 is shown to be due to the gene CG32145 (omega). The D. melanogaster omega DPPIV enzyme was partially purified and characterized. The exons of the ome1 mutant were sequenced and a base substitution mutation in exon 4 was identified that would yield a truncated protein caused by a stop codon. A preliminary study of the compartmentalization of the omega DPPIV enzyme in several organs is also reported. Abbreviations: DPPIV dipeptidyl peptidase IV LCP5 & LCP6 third instar larval cuticle proteins 5 & 6 ome & ome1 omega locus name (CG32145) and mutant allele in D. melanogaster pNA paranotroanilide PMID:17119608

  8. Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity.

    PubMed

    Tschantz, W R; Paetzel, M; Cao, G; Suciu, D; Inouye, M; Dalbey, R E

    1995-03-28

    Leader peptidase is a novel serine protease in Escherichia coli, which functions to cleave leader sequences from exported proteins. Its catalytic domain extends into the periplasmic space and is anchored to the membrane by two transmembrane segments located at the N-terminal end of the protein. At present, there is no information on the structure of the catalytic domain. Here, we report on the properties of a soluble form of leader peptidase (delta 2-75), and we compare its properties to those of the wild-type enzyme. We find that the truncated leader peptidase has a kcat of 3.0 S-1 and a Km of 32 microM with a pro-OmpA nuclease A substrate. In contrast to the wild-type enzyme (pI of 6.8), delta 2-75 is water-soluble and has an acidic isoelectric point of 5.6. We also show with delta 2-75 that the replacement of serine 90 and lysine 145 with alanine residues results in a 500-fold reduction in activity, providing further evidence that leader peptidase employs a catalytic serine/lysine dyad. Finally, we find that the catalysis of delta 2-75 is accelerated by the presence of the detergent Triton X-100, regardless if the substrate is pro-OmpA nuclease A or a peptide substrate. Triton X-100 is required for optimal activity of delta 2-75 at a level far below the critical micelle concentration. Moreover, we find that E. coli phospholipids stimulate the activity of delta 2-75, suggesting that phospholipids may play an important physiological role in the catalytic mechanism of leader peptidase. PMID:7696258

  9. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    SciTech Connect

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  10. PMD IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza

    2013-01-01

    The main activities carried out at the PMD (Politecnico di Milano DIIAR) IVS Analysis Center during 2012 are briefly higlighted, and future plans for 2013 are sketched out. We principally continued to process European VLBI sessions using different approaches to evaluate possible differences due to various processing choices. Then VLBI solutions were also compared to the GPS ones as well as the ones calculated at co-located sites. Concerning the observational aspect, several tests were performed to identify the most suitable method to achieve the highest possible accuracy in the determination of GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) satellite positions using the VLBI technique.

  11. Regulation of kallikrein-related peptidases in the skin - from physiology to diseases to therapeutic options.

    PubMed

    Fischer, J; Meyer-Hoffert, U

    2013-09-01

    Kallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases, which show a tissue-specific expression profile. This made them valuable tumour expression markers. It became evident that KLKs are involved in many physiological processes like semen liquefaction and skin desquamation. More recently, we have learnt that they are involved in many pathophysiological conditions and diseases making them promising target of therapeutic intervention. Therefore, regulation of KLKs raised the interest of numerous reports. Herein, we summarise the current knowledge on KLKs regulation with an emphasis on skin-relevant KLKs regulation processes. Regulation of KLKs takes place on the level of transcription, on protease activation and on protease inactivation. A variety of protease inhibitors has been described to interact with KLKs including the irreversible serine protease inhibitors (SERPINs) and the reversible serine protease inhibitors of Kazal-type (SPINKs). In an attempt to integrate current knowledge, we propose that KLK regulation has credentials as targets for therapeutic intervention.

  12. Population differences of aspartate aminotransferase and peptidase in the bay mussel Mytilus edulis.

    PubMed

    Johnson, G; Utter, F M

    1975-01-01

    This investigation has demonstrated considerable heterogeneity among populations and some heterogeneity within populations in the distribution of alleles at two variant loci of Mytilus edulis. Although the causes of this variation remain obscure, some speculations have been made on the basis of available data. A cline for aspartate aminotransferase (AAT) alleles has been observed on the Pacific Coast. An immigration model has been proposed to explain the atypical ecological and genetic characteristics of large mussels found on Amchitka Island, Alaska. Marked differences were found in the distribution of peptidase alleles among collections from Southern California, the North Pacific Ocean, and New Jersey. Deviations from random distribution of phenotypes observed in comparisons made between large and small mussels from the New Jersey collection may reflect selection operating on these loci in this population.

  13. Brush border peptidases and arylamidases in the experimental blind loop syndrome of the rat.

    PubMed

    Mazzacca, G; Musella, S; Andria, G; D'Agostino, L; Cimino, L; Budillon, G

    1977-10-01

    Peptidase and arylamidase activities were assessed in purified brush borders from jejunum of rats with surgically created blind loops. The blind loop segment and the jejunum proximal and distal to the blind loop were studied. Comparable jejunal segments from control rats were also studied. The blind loop syndrome was documented by presence of macrocytic anemia. Enzyme activities were determined on purified brush borders. In rats with the blind loop syndromes enzymatic activities hydrolizing sucrose, L-Leucyl-beta-naphthylamide, L-lysyl-beta-naphthylamide, alpha-L-glutamyl-beta-naphthylamide, L-phenylalanyl-alanine and L-leucyl-glycine were significantly reduced as compared to controls (P less than 0.001). After a short course of antibiotic therapy enzymatic activities returned to normal. Our findings suggest a reversible intestinal mucosa damage in the rat with blind loop syndrome.

  14. CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins

    PubMed Central

    Pei, Jimin; Lupardus, Patrick J; Garcia, K Christopher; Grishin, Nick V

    2009-01-01

    A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins. PMID:19309740

  15. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-22

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition.

  16. A Putative Bacterial ABC Transporter Circumvents the Essentiality of Signal Peptidase

    PubMed Central

    Morisaki, J. Hiroshi; Smith, Peter A.; Date, Shailesh V.; Kajihara, Kimberly K.; Truong, Chau Linda; Modrusan, Zora; Yan, Donghong; Kang, Jing; Xu, Min; Shah, Ishita M.; Mintzer, Robert; Kofoed, Eric M.; Cheung, Tommy K.; Arnott, David; Koehler, Michael F. T.; Heise, Christopher E.; Brown, Eric J.

    2016-01-01

    ABSTRACT The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro. These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB. Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo. PMID:27601569

  17. Surgical research IV.

    PubMed

    Toledo-Pereyra, Luis H

    2010-08-01

    Harvey W. Cushing (1869-1939) is the only surgeon represented in Surgical Research IV and one of the most accomplished American contributors to surgical research in general and to neurological and endocrine surgery research in particular. Other surgical research leaders of the 19th and 20th centuries who preceded Harvey Cushing have been introduced before. First, we highlighted the "importance of medical and surgical research" as the basic elements in the advancement of medicine and surgery could be considered as Surgical Research I. Second, in Surgical Research II, we presented William Beaumont, Samuel Gross, and William Halsted as the most important participants of the first wave of American surgical researchers. Next, in Surgical Research III, we considered surgeon researchers who moved ahead in the field of surgery with their research initiatives at the time, including John B. Murphy, the Mayo Brothers William J. and Charles H. Mayo, and George W. Crile. With Harvey Cushing, we enter an era of surgical research associated with neurosurgery and endocrine surgery as part of Surgical Research IV. PMID:20690841

  18. Division Iv: Stars

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher; D'Antona, Francesca; Spite, Monique; Asplund, Martin; Charbonnel, Corinne; Docobo, Jose Angel; Gray, Richard O.; Piskunov, Nikolai E.

    2012-04-01

    This Division IV was started on a trial basis at the General Assembly in The Hague 1994 and was formally accepted at the Kyoto General Assembly in 1997. Its broad coverage of ``Stars'' is reflected in its relatively large number of Commissions and so of members (1266 in late 2011). Its kindred Division V, ``Variable Stars'', has the same history of its beginning. The thinking at the time was to achieve some kind of balance between the number of members in each of the 12 Divisions. Amid the current discussion of reorganizing the number of Divisions into a more compact form it seems advisable to make this numerical balance less of an issue than the rationalization of the scientific coverage of each Division, so providing more effective interaction within a particular field of astronomy. After all, every star is variable to a certain degree and such variability is becoming an ever more powerful tool to understand the characteristics of every kind of normal and peculiar star. So we may expect, after hearing the reactions of members, that in the restructuring a single Division will result from the current Divisions IV and V.

  19. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-06-13

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.

  20. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  1. Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts

    PubMed Central

    Van Beersel, Guillaume; Tihon, Eliane; Demine, Stéphane; Hamer, Isabelle; Jadot, Michel; Arnould, Thierry

    2012-01-01

    NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology. PMID:23249249

  2. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A “Me Too” or “the Special One” Antidiabetic Class?

    PubMed Central

    Godinho, Ricardo; Carvalho, Eugénia; Teixeira, Frederico

    2015-01-01

    Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the “incretin defect” seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications. PMID:26075286

  3. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    PubMed

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-01

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  4. 78 FR 2390 - CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Energy Regulatory Commission CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v. California Independent System Operator Corporation; Notice of Complaint Take notice... IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC and CSOLAR IV North, LLC...

  5. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  6. Proteolytic profiling and comparative analyses of active trypsin-like serine peptidases in preimaginal stages of Culex quinquefasciatus

    PubMed Central

    2012-01-01

    Background The mosquito Culex quinquefasciatu s, a widespread insect in tropical and sub-tropical regions of the world, is a vector of multiple arboviruses and parasites, and is considered an important risk to human and veterinary health. Proteolytic enzymes play crucial roles in the insect physiology including the modulation of embryonic development and food digestion. Therefore, these enzymes represent important targets for the development of new control strategies. This study presents zymographic characterization and comparative analysis of the proteolytic activity found in eggs, larval instars and pupae of Culex quinquefasciatus. Methods The proteolytic profiles of eggs, larvae and pupa of Cx. quinquefasciatus were characterized by SDS-PAGE co-polymerized with 0.1% gelatin, according to the pH, temperature and peptidase inhibitor sensitivity. In addition, the proteolytic activities were characterized in solution using 100 μM of the fluorogenic substrate Z-Phe-Arg-AMC. Results Comparison of the proteolytic profiles by substrate-SDS-PAGE from all preimaginal stages of the insect revealed qualitative and quantitative differences in the peptidase expression among eggs, larvae and pupae. Use of specific inhibitors revealed that the proteolytic activity from preimaginal stages is mostly due to trypsin-like serine peptidases that display optimal activity at alkaline pH. In-solution, proteolytic assays of the four larval instars using the fluorogenic substrate Z-Phe-Arg-AMC in the presence or absence of a trypsin-like serine peptidase inhibitor confirmed the results obtained by substrate-SDS-PAGE analysis. The trypsin-like serine peptidases of the four larval instars were functional over a wide range of temperatures, showing activities at 25°C and 65°C, with an optimal activity between 37°C and 50°C. Conclusion The combined use of zymography and in-solution assays, as performed in this study, allowed for a more detailed analysis of the repertoire of proteolytic

  7. dBASE IV basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    This is a user`s manual for dBASE IV. dBASE IV is a popular software application that can be used on your personal computer to help organize and maintain your database files. It is actually a set of tools with which you can create, organize, select and manipulate data in a simple yet effective manner. dBASE IV offers three methods of working with the product: (1) control center: (2) command line; and (3) programming.

  8. Confirmatory Factor Analysis of the WAIS-IV/WMS-IV

    ERIC Educational Resources Information Center

    Holdnack, James A.; Zhou, Xiaobin; Larrabee, Glenn J.; Millis, Scott R.; Salthouse, Timothy A.

    2011-01-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory…

  9. Improving IV-A/IV-D Interface. Trainer Guide.

    ERIC Educational Resources Information Center

    National Inst. for Child Support Enforcement, Chevy Chase, MD.

    Effective interface between the Aid to Families with Dependent Children (IV-A) and the Child Support Enforcement (IV-D) programs is a key factor in assisting families in becoming self-sufficient, reducing welfare expenditures, and enforcing parental responsibility to support their children. Consequently, overcoming the procedural, technological,…

  10. Improving IV-A/IV-D Interface. Handbook.

    ERIC Educational Resources Information Center

    National Inst. for Child Support Enforcement, Chevy Chase, MD.

    Effective interface between the Aid to Families with Dependent Children (IV-A) and the Child Support Enforcement (IV-D) programs is a key factor in assisting families in becoming self-sufficient, reducing welfare expenditures, and enforcing parental responsibility to support their children. Consequently, overcoming the procedural, technological,…

  11. Peptidase-1 expression in some organs of the salamander Pleurodeles waltl submitted to a 12-day space flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Rudolf, E.; Mitashov, V.; Dournon, C.

    In Pleurodeles, the peptidase-1 is a sex-linked enzyme encoded by two codominant genes (Pep-1A and Pep-1B) located on the Z and W sex chromosomes. The sexual genotype can be determined by the electrophoretic pattern of the peptidase from erythrocytes. A_AW_B genotypic females characterized by 3 electrophoretic bands AA, AB and BB were embarked on Cosmos 2229. The pattern in ovary, muscles and gut issued from the embarked or synchrone females displayed the 3 characteristic bands. In heart and kidney, the bands AA and BB were revealed, while the band BB appeared very fainly. The specific enzymatic activity in the same organs was compared. Except for the kidney, no statistical significant difference was observed between flight and synchrone samples. This enzyme can be efficiently used as sexual genotypic marker of Pleurodeles experimentally submitted to the effects of space environment.

  12. The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes

    PubMed Central

    Seo, Jung-Woo; Lee, Arah; Kim, Dong Jin; Kim, Yang-Gyun; Kim, Se-Yeun; Lee, Kyung Hye; Lim, Sung-Jig; Cheng, Xian Wu; Lee, Sang-Ho; Kim, Weon

    2016-01-01

    Objective Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes. Methods Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation. Results Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis. Conclusion Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. PMID:26959365

  13. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase.

    PubMed

    Ezaki, J; Takeda-Ezaki, M; Kominami, E

    2000-09-01

    The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.

  14. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats.

    PubMed

    Sakai, Mariko; Uchii, Masako; Myojo, Kensuke; Kitayama, Tetsuya; Kunori, Shunji

    2015-08-15

    Saxagliptin, a potent dipeptidyl peptidase-4 (DPP-4) inhibitor, is currently used to treat type 2 diabetes mellitus, and it has been reported to exhibit a slower rate of dissociation from DPP-4 compared with another DPP-4 inhibitor, sitagliptin. In this study, we compared the effects of saxagliptin and sitagliptin on hypertension-related renal injury and the plasma and renal DPP-4 activity levels in Dahl salt-sensitive hypertensive (Dahl-S) rats. The high-salt diet (8% NaCl) significantly increased the blood pressure and quantity of urinary albumin excretion and induced renal glomerular injury in the Dahl-S rats. Treatment with saxagliptin (14mg/kg/day via drinking water) for 4 weeks significantly suppressed the increase in urinary albumin excretion and tended to ameliorate glomerular injury without altering the blood glucose levels and systolic blood pressure. On the other hand, the administration of sitagliptin (140mg/kg/day via drinking water) did not affect urinary albumin excretion and glomerular injury in the Dahl-S rats. Meanwhile, the high-salt diet increased the renal DPP-4 activity but did not affect the plasma DPP-4 activity in the Dahl-S rats. Both saxagliptin and sitagliptin suppressed the plasma DPP-4 activity by 95% or more. Although the renal DPP-4 activity was also inhibited by both drugs, the inhibitory effect of saxagliptin was more potent than that of sitagliptin. These results indicate that saxagliptin has a potent renoprotective effect in the Dahl-S rats, independent of its glucose-lowering actions. The inhibition of the renal DPP-4 activity induced by saxagliptin may contribute to ameliorating renal injury in hypertension-related renal injury. PMID:25936515

  15. Structure and Mechanism of Cysteine Peptidase Gingipain K (Kgp), a Major Virulence Factor of Porphyromonas gingivalis in Periodontitis*

    PubMed Central

    de Diego, Iñaki; Veillard, Florian; Sztukowska, Maryta N.; Guevara, Tibisay; Potempa, Barbara; Pomowski, Anja; Huntington, James A.; Potempa, Jan; Gomis-Rüth, F. Xavier

    2014-01-01

    Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys477-His444-Asp388, rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates. PMID:25266723

  16. Plasma native and peptidase-derivable Met-enkephalin responses to restraint stress in rats. Adaptation to repeated restraint.

    PubMed Central

    Pierzchala, K; Van Loon, G R

    1990-01-01

    Met-enkephalin and related proenkephalin A-derived peptides circulate in plasma at picomolar concentration as free, native pentapeptide and at nanomolar concentration in cryptic forms. We have optimized conditions for measurement of immunoreactive Met-enkephalin in plasma and for generation by trypsin and carboxypeptidase B of much greater amounts of total peptidase-derivable Met-enkephalin in plasma of rats, dogs, and humans. Free Met-enkephalin (11 pM) is constituted by native pentapeptide and its sulfoxide. Characterization of plasma total Met-enkephalin derived by peptidic hydrolysis revealed a small amount (38 pM) of Met-enkephalin associated with peptides of molecular mass less than 30,000 D, and probably derived from proenkephalin A, but much larger amounts of Met-enkephalin associated with albumin (1.2 nM) and with a globulin-sized protein (2.8 nM). Thus, plasma protein precursors for peptidase-derivable Met-enkephalin differ structurally and chemically from proenkephalin A. Met-enkephalin generated from plasma by peptidic hydrolysis showed naloxone-reversible bioactivity comparable to synthetic Met-enkephalin. Prolonged exposure of adult, male rats to restraint stress produced biphasic plasma responses, with peaks occurring at 30 s and 30 min in both free native and total peptidase-derivable Met-enkephalin. Repeated daily exposure to this 30-min stress resulted in adaptive loss of responses of both forms to acute restraint. Initial plasma responses of Met-enkephalin paralleled those of epinephrine and norepinephrine, but subsequently showed divergence of response. In conclusion, Met-enkephalin circulates in several forms, some of which may be derived from proteins other than proenkephalin A, and plasma levels of both free native, and peptidase-derivable Met-enkephalin are modulated physiologically. PMID:2312729

  17. Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    PubMed Central

    Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.

    2008-01-01

    Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human

  18. Kinetics of the sulphite-inhibited browning of fructose.

    PubMed

    Swales, S; Wedzicha, B L

    1992-01-01

    Sulphite species, S(IV), inhibit the non-enzymic browning of fructose-amino acid mixtures. Inhibition of browning is accompanied by a loss of S(IV). The kinetics of the reaction of S(IV) in the system: fructose-glycine-S(IV) are described in detail; two distinct mechanisms have been identified. One involves only fructose in the rate determining step. The other requires fructose and both the glycine and S(IV). Some amines (e.g. taurine and ethanolamine) can markedly increase the rate of the S(IV)-independent step. Arginine and lysine are particularly effective for increasing the rate of reaction of S(IV) in the S(IV)-dependent reaction. PMID:1298652

  19. Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds.

    PubMed

    Khaket, Tejinder Pal; Dhanda, Suman; Jodha, Druksakshi; Singh, Jasbir

    2015-12-01

    Dipeptidyl peptidases (DPPs) are potent exopeptidases, which possess central role in proteolysis. As compared to other members of DPP family, proline containing dipeptide hydrolysing activity of DPP-II (Dipeptidyl peptidase II) is unique as it hydrolyses imino group and plays a key role in protein metabolism. In present study, DPP-II was purified from germinated moong bean seeds using acid and ammonium sulphate precipitation followed by successive chromatographies on gel filtration (pH 7.4) and cation exchanger (pH 5.9). Native PAGE and in-situ gel assay confirmed the apparent homogeneity. Purified plant DPP-II is an oligomeric enzyme with molecular weight of 97.3kDa. Highest DPP-II activity was observed at pH 7.5 and 37°C, with stability in the range of neutral to alkaline pH. Substrate specificity showed consequent activity for proline containing dipeptide followed by Lys-Ala and other hydrophobic dipeptides, but none of the studied endopeptidase and monopeptidase substrate was hydrolysed. Catalytic characterization with modifier studies revealed the involvement of Ser and His residues in its catalytic mechanism. Its dipeptidyl peptidase activity for proline containing dipeptide supported its role in the bioactive peptide generation and food industry. Functional studies of DPP-II revealed the significant involvement of this glycoproteinous enzyme in protein mobilization during germination. Further studies on industrial applications exploring physiological role are in progress.

  20. Altered cardiac bradykinin metabolism in experimental diabetes caused by the variations of angiotensin-converting enzyme and other peptidases.

    PubMed

    Adam, Albert; Leclair, Patrick; Montpas, Nicolas; Koumbadinga, Gérémy Abdull; Bachelard, Hélène; Marceau, François

    2010-04-01

    The peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP) mediate most of the kinin catabolism in normal cardiac tissue and are the molecular targets of inhibitory drugs that favorably influence diabetic complications. We studied the variations of those kininases in the myocardium of rats in experimental diabetes. ACE and NEP activities were significantly decreased in heart membranes 4-8weeks post-streptozotocin (STZ) injection. However, insulin-dependent diabetes did not modify significantly bradykinin (BK) half-life (t(1/2)) while the effect of both ACE (enalaprilat) and ACE and NEP (omapatrilat) inhibitors on BK degradation progressively decreased, which may be explained by the upregulation of other unidentified metallopeptidase(s). In vivo insulin treatment restored the activities of both ACE and NEP. ACE and NEP activities were significantly higher in hearts of young Zucker rats than in those of Sprague-Dawley rats. BK t(1/2) and the effects of peptidase inhibitors on t(1/2) varied accordingly. It is concluded that kininase activities are subjected to large and opposite variations in rat cardiac tissue in type I and II diabetes models. A number of tissue or molecular factors may determine these variations, such as remodeling of cardiac tissue, ectoenzyme shedding to the extracellular fluid and the pathologic regulation of peptidase gene expression.

  1. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589

  2. Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds.

    PubMed

    Khaket, Tejinder Pal; Dhanda, Suman; Jodha, Druksakshi; Singh, Jasbir

    2015-12-01

    Dipeptidyl peptidases (DPPs) are potent exopeptidases, which possess central role in proteolysis. As compared to other members of DPP family, proline containing dipeptide hydrolysing activity of DPP-II (Dipeptidyl peptidase II) is unique as it hydrolyses imino group and plays a key role in protein metabolism. In present study, DPP-II was purified from germinated moong bean seeds using acid and ammonium sulphate precipitation followed by successive chromatographies on gel filtration (pH 7.4) and cation exchanger (pH 5.9). Native PAGE and in-situ gel assay confirmed the apparent homogeneity. Purified plant DPP-II is an oligomeric enzyme with molecular weight of 97.3kDa. Highest DPP-II activity was observed at pH 7.5 and 37°C, with stability in the range of neutral to alkaline pH. Substrate specificity showed consequent activity for proline containing dipeptide followed by Lys-Ala and other hydrophobic dipeptides, but none of the studied endopeptidase and monopeptidase substrate was hydrolysed. Catalytic characterization with modifier studies revealed the involvement of Ser and His residues in its catalytic mechanism. Its dipeptidyl peptidase activity for proline containing dipeptide supported its role in the bioactive peptide generation and food industry. Functional studies of DPP-II revealed the significant involvement of this glycoproteinous enzyme in protein mobilization during germination. Further studies on industrial applications exploring physiological role are in progress. PMID:26524724

  3. NATIONAL COASTAL CONDITION REPORT IV

    EPA Science Inventory

    The National Coastal Condition Report IV (NCCR IV) is the fourth in a series of environmental assessments of U.S. coastal waters and the Great Lakes. The report includes assessments of all the nation’s estuaries in the contiguous 48 states and Puerto Rico, south-eastern Alaska, ...

  4. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus.

    PubMed

    Wan, H; Winton, H L; Soeller, C; Taylor, G W; Gruenert, D C; Thompson, P J; Cannell, M B; Stewart, G A; Garrod, D R; Robinson, C

    2001-02-01

    There have been only a few studies of how allergens cross the airway epithelium to cause allergic sensitization. House dust mite fecal pellets (HDMFP) contain several proteolytic enzymes. Group 1 allergens are cysteine peptidases, whilst those of groups 3, 6 and 9 have catalytic sites indicative of enzymes that mechanistically behave as serine peptidases. We have previously shown that the group 1 allergen Der p 1 leads to cleavage of tight junctions (TJs), allowing allergen delivery to antigen presenting cells. In this study we determined whether HDMFP serine peptidases similarly compromise the airway epithelium by attacking TJs, desmosomes and adherens junctions. Experiments were performed in monolayers of MDCK, Calu-3 or 16HBE14o-epithelial cells. Cell junction morphology was examined by 2-photon molecular excitation microscopy and digital image analysis. Barrier function was measured as mannitol permeability. Cleavage of cell adhesion proteins was studied by immunoblotting and mass spectrometry. HDMFP serine peptidases led to a progressive cleavage of TJs and increased epithelial permeability. Desmosomal puncta became more concentrated. Cleavage of TJs involved proteolysis of the TJ proteins, occludin and ZO-1. This was associated with activation of intracellular proteolysis of ZO-1. In contrast to occludin, E-cadherin of adherens junctions was cleaved less extensively. Although Calu-3 and 16HBE14o-cells expressed tethered ligand receptors for serine peptidases, these were not responsible for transducing the changes in TJs. HDMFP serine peptidases cause cleavage of TJs. This study identifies a second general class of HDM peptidase capable of increasing epithelial permeability and thereby creating conditions that would favour transepithelial delivery of allergens.

  5. DPP-IV-resistant, long-acting oxyntomodulin derivatives.

    PubMed

    Santoprete, Alessia; Capitò, Elena; Carrington, Paul E; Pocai, Alessandro; Finotto, Marco; Langella, Annunziata; Ingallinella, Paolo; Zytko, Karolina; Bufali, Simone; Cianetti, Simona; Veneziano, Maria; Bonelli, Fabio; Zhu, Lan; Monteagudo, Edith; Marsh, Donald J; Sinharoy, Ranabir; Bianchi, Elisabetta; Pessi, Antonello

    2011-04-01

    Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon-like peptide 1 (GLP-1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose-dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37-amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP-1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment-associated nausea than GLP-1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half-life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP-IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP-IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258-2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists

  6. Putative functions of tissue kallikrein-related peptidases in vaginal fluid.

    PubMed

    Muytjens, Carla M J; Vasiliou, Stella K; Oikonomopoulou, Katerina; Prassas, Ioannis; Diamandis, Eleftherios P

    2016-10-01

    Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.

  7. Putative functions of tissue kallikrein-related peptidases in vaginal fluid.

    PubMed

    Muytjens, Carla M J; Vasiliou, Stella K; Oikonomopoulou, Katerina; Prassas, Ioannis; Diamandis, Eleftherios P

    2016-10-01

    Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy. PMID:27603220

  8. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis.

    PubMed

    Zhou, Shun-Fan; Sun, Le; Valdés, Ana Elisa; Engström, Peter; Song, Ze-Ting; Lu, Sun-Jie; Liu, Jian-Xiang

    2015-10-01

    Abscisic acid plays important roles in maintaining seed dormancy while gibberellins (GA) and other phytohormones antagonize ABA to promote germination. However, how ABA signaling is desensitized during the transition from dormancy to germination is still poorly understood. We functionally characterized the role of membrane-associated transcription factor peptidase, site-2 protease (S2P), in ABA signaling during seed germination in Arabidopsis. Genetic analysis showed that loss-of-function of S2P conferred high ABA sensitivity during seed germination, and expression of the activated form of membrane-associated transcription factor bZIP17, in which the transmembrane domain and endoplasmic reticulum (ER) lumen-facing C-terminus were deleted, in the S2P mutant rescued its ABA-sensitive phenotype. MYC and green fluorescent protein (GFP)-tagged bZIP17 were processed and translocated from the ER to the nucleus in response to ABA treatment. Furthermore, genes encoding negative regulators of ABA signaling, such as the transcription factor ATHB7 and its target genes HAB1, HAB2, HAI1 and AHG3, were up-regulated in seeds of the wild-type upon ABA treatment; this up-regulation was impaired in seeds of S2P mutants. Our results suggest that S2P desensitizes ABA signaling during seed germination through regulating the activation of the membrane-associated transcription factor bZIP17 and therefore controlling the expression level of genes encoding negative regulators of ABA signaling. PMID:25919792

  9. Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome.

    PubMed

    Meyerholz, David K; Lambertz, Allyn M; McCray, Paul B

    2016-01-01

    Dipeptidyl peptidase 4 (DPP4, CD26), a type II transmembrane ectopeptidase, is the receptor for the Middle Eastern respiratory syndrome coronavirus (MERS-CoV). MERS emerged in 2012 and has a high mortality associated with severe lung disease. A lack of autopsy studies from MERS fatalities has hindered understanding of MERS-CoV pathogenesis. We investigated the spatial and cellular localization of DPP4 to evaluate an association MERS clinical disease. DPP4 was rarely detected in the surface epithelium from nasal cavity to conducting airways with a slightly increased incidence in distal airways. DPP4 was also found in a subset of mononuclear leukocytes and in serous cells of submucosal glands. In the parenchyma, DPP4 was found principally in type I and II cells and alveolar macrophages and was also detected in vascular endothelium (eg, lymphatics) and pleural mesothelia. Patients with chronic lung disease, such as chronic obstructive pulmonary disease and cystic fibrosis, exhibited increased DPP4 immunostaining in alveolar epithelia (type I and II cells) and alveolar macrophages with similar trends in reactive mesothelia. This finding suggests that preexisting pulmonary disease could increase MERS-CoV receptor abundance and predispose individuals to MERS morbidity and mortality, which is consistent with current clinical observations. We speculate that the preferential spatial localization of DPP4 in alveolar regions may explain why MERS is characterized by lower respiratory tract disease.

  10. Dipeptidyl peptidase-4 expression in pancreatic tissue from patients with congenital hyperinsulinism.

    PubMed

    Rahman, Sofia A; Senniappan, Senthil; Sherif, Maha; Tahir, Sophia; Hussain, Khalid

    2015-01-01

    Congenital hyperinsulinism (CHI) is caused by unregulated insulin release and leads to hyperinsulinaemic-hypoglycaemia (HH). Glucagon like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY) and the enzyme; dipeptidyl peptidase-4 (DPP-4) all regulate appetite and glucose homeostasis. These proteins have been identified as possible contributors to HH but the mechanism remains poorly understood. We aimed to look at the expression pattern of pancreatic DPP-4 in children with focal and diffuse CHI (FCHI and DCHI, respectively). Using immunohistochemistry; we determined DPP-4 expression patterns in the pancreas of CHI patients. DPP-4 was found to be expressed in the pancreatic β, α and δ-cells in and around the focal area. However, it was predominantly co-localised with β-cells in the paediatric tissue samples. Additionally, proliferating β-cells expressed DPP-4 in DCHI, which was absent in the FCHI pancreas. Insulin was found to be present in the exocrine acini and duct cells of the DCHI pancreas suggestive of exocrine to endocrine transdifferentiation. Furthermore, 6 medically-unresponsive DCHI pancreatic samples showed an up-regulation of total pancreatic DPP-4 expression. In conclusion; the expression studies have shown DPP-4 to be altered in HH, however, further work is required to understand the underlying role for this enzyme.

  11. Deubiquitinating activity of Sdu1, a putative member of the PPPDE peptidase family, in Schizosaccharomyces pombe.

    PubMed

    Kim, Yunsik; Jo, Hannah; Lim, Chang-Jin

    2013-12-01

    The Schizosaccharomyces pombe sdu⁺ gene encoding a putative member of the PPPDE (Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes) superfamily was cloned into an Escherichia coli - yeast shuttle vector pRS316, resulting in the recombinant plasmid pYSTP. The determined nucleotide sequence carries 1207 bp, which would encode a protein of 201 amino acid residues. The S. pombe cells harboring pYSTP contained higher sdu1⁺ mRNA and deubiquitinating activity levels than the vector control cells, indicating that the sdu1⁺ gene is functioning. They exhibited a better growth in normal rich medium than the vector control cells. When shifted into the fresh medium containing hydrogen peroxide, menadione, or sodium nitroprusside, the S. pombe cells harboring pYSTP were able to grow reasonably well, while the growth of the vector control cells was arrested. The reactive oxygen species and total glutathione levels of the S. pombe cells harboring pYSTP were lower and higher than those of the vector control cells under the same stressful conditions, respectively. They exhibited a lower nitric oxide level than the vector control cells when subjected to sodium nitroprusside. Taken together, the sdu1⁺ gene encodes an actual protein having deubiquitinating activity and is involved in the response against oxidative and nitrosative stresses in S. pombe.

  12. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials.

    PubMed

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83-1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  13. Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome.

    PubMed

    Meyerholz, David K; Lambertz, Allyn M; McCray, Paul B

    2016-01-01

    Dipeptidyl peptidase 4 (DPP4, CD26), a type II transmembrane ectopeptidase, is the receptor for the Middle Eastern respiratory syndrome coronavirus (MERS-CoV). MERS emerged in 2012 and has a high mortality associated with severe lung disease. A lack of autopsy studies from MERS fatalities has hindered understanding of MERS-CoV pathogenesis. We investigated the spatial and cellular localization of DPP4 to evaluate an association MERS clinical disease. DPP4 was rarely detected in the surface epithelium from nasal cavity to conducting airways with a slightly increased incidence in distal airways. DPP4 was also found in a subset of mononuclear leukocytes and in serous cells of submucosal glands. In the parenchyma, DPP4 was found principally in type I and II cells and alveolar macrophages and was also detected in vascular endothelium (eg, lymphatics) and pleural mesothelia. Patients with chronic lung disease, such as chronic obstructive pulmonary disease and cystic fibrosis, exhibited increased DPP4 immunostaining in alveolar epithelia (type I and II cells) and alveolar macrophages with similar trends in reactive mesothelia. This finding suggests that preexisting pulmonary disease could increase MERS-CoV receptor abundance and predispose individuals to MERS morbidity and mortality, which is consistent with current clinical observations. We speculate that the preferential spatial localization of DPP4 in alveolar regions may explain why MERS is characterized by lower respiratory tract disease. PMID:26597880

  14. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed.

  15. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  16. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis

    PubMed Central

    Seo, Jae Ho; Rivadeneira, Dayana B.; Caino, M. Cecilia; Chae, Young Chan; Speicher, David W.; Vaira, Valentina; Bosari, Silvano; Rampini, Paolo; Kossenkov, Andrew V.; Languino, Lucia R.; Altieri, Dario C.

    2016-01-01

    Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating “stress” signals of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a “drugable” therapeutic target in cancer. PMID:27389535

  17. Prolyl oligopeptidase binds to GAP-43 and functions without its peptidase activity.

    PubMed

    Di Daniel, Elena; Glover, Colin P; Grot, Emma; Chan, Man K; Sanderson, Thirza H; White, Julia H; Ellis, Catherine L; Gallagher, Kathleen T; Uney, James; Thomas, Julia; Maycox, Peter R; Mudge, Anne W

    2009-07-01

    Inhibitors of the enzyme prolyl oligopeptidase (PO) improve performance in rodent learning and memory tasks. PO inhibitors are also implicated in the action of drugs used to treat bipolar disorder: they reverse the effects of three mood stabilizers on the dynamic behaviour of neuronal growth cones. PO cleaves prolyl bonds in short peptides, suggesting that neuropeptides might be its brain substrates. PO is located in the cytosol, however, where it would not contact neuropeptides. Here, we show that mice with a targeted PO null-mutation have altered growth cone dynamics. The wild-type phenotype is restored by PO cDNAs encoding either native or a catalytically-dead enzyme. In addition, we show that PO binds to the growth-associated protein GAP-43, which is a key regulator of synaptic plasticity. Taken together, our results show that peptidase activity is not required for PO function in neurons and suggest that PO instead acts by binding to cytosolic proteins that control growth cone and synaptic function.

  18. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials

    PubMed Central

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83–1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  19. Kallikrein-Related Peptidases in Prostate Cancer: From Molecular Function to Clinical Application

    PubMed Central

    Fuhrman-Luck, Ruth A.; Loessner, Daniela

    2014-01-01

    Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.

  20. Dipeptidyl peptidase-4 inhibitors and the ischemic heart: Additional benefits beyond glycemic control.

    PubMed

    Chattipakorn, Nipon; Apaijai, Nattayaporn; Chattipakorn, Siriporn C

    2016-01-01

    Obese-insulin resistance and type 2 diabetes mellitus (T2DM) have become global health problems, and they are both associated with a higher risk of ischemic heart disease. Although reperfusion therapy is the treatment to increase blood supply to the ischemic myocardium, this intervention potentially causes cardiac tissue damage and instigates arrhythmias, processes known as reperfusion injury. Dipeptidyl peptidase 4 (DPP-4) inhibitors are glycemic control drugs commonly used in T2DM patients. Growing evidence from basic and clinical studies demonstrates that a DPP-4 inhibitor could exert cardioprotection and improve left ventricular function by reducing oxidative stress, apoptosis, and increasing reperfusion injury salvage kinase (RISK) activity. However, recent reports also showed potentially adverse cardiac events due to the use of a DPP-4 inhibitor. To investigate this disparity, future large clinical trials are essential in verifying whether DPP-4 inhibitors are beneficial beyond their glycemic control particularly for the ischemic heart in obese-insulin resistant subjects and T2DM patients.

  1. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil.

    PubMed

    Lizama, Alejandro J; Andrade, Yessica; Colivoro, Patricio; Sarmiento, Jose; Matus, Carola E; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela; Figueroa, Carlos D

    2015-08-01

    The family of kallikrein-related peptidases (KLKs) has been identified in a variety of immunolabeled human tissue sections, but no previous study has experimentally confirmed their presence in the human neutrophil. We have investigated the expression and bioregulation of particular KLKs in the human neutrophil and, in addition, examined whether stimulation by a kinin B(1) receptor (B1R) agonist or fMet-Leu-Phe (fMLP) induces their secretion. Western blot analysis of neutrophil homogenates indicated that the MM of the KLKs ranged from 27 to 50 kDa. RT-PCR showed that blood neutrophils expressed only KLK1, KLK4, KLK10, KLK13, KLK14 and KLK15 mRNAs, whereas the non-differentiated HL-60 cells expressed most of them, with exception of KLK3 and KLK7. Nevertheless, mRNAs for KLK2, KLK5, KLK6 and KLK9 that were previously undetectable appeared after challenging with a mixture of cytokines. Both kinin B(1)R agonist and fMLP induced secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the culture medium in similar amounts, whereas the B(1)R agonist caused the release of lower amounts of KLK2, KLK4 and KLK5. When secreted, the differing proteolytic activity of KLKs provides the human neutrophil with a multifunctional enzymatic capacity supporting a new dimension for its role in human disorders of diverse etiology.

  2. Developmental study of tripeptidyl peptidase I activity in the mouse central nervous system and peripheral organs.

    PubMed

    Dimitrova, Mashenka; Deleva, Denislava; Pavlova, Velichka; Ivanov, Ivaylo

    2011-11-01

    Tripeptidyl peptidase I (TPPI) - a lysosomal serine protease - is encoded by the CLN2 gene, mutations that cause late-infantile neuronal ceroid lipofuscinosis (LINCL) connected with profound neuronal loss, severe clinical symptoms and early death at puberty. Developmental studies of TPPI activity levels and distribution have been done in the human and rat central nervous systems (CNS) and visceral organs. Similar studies have not been performed in mouse. In this paper, we follow up on the developmental changes in the enzyme activity and localization pattern in the CNS and visceral organs of mouse over the main periods of life - embryonic, neonate, suckling, infantile, juvenile, adult and aged - using biochemical assays and enzyme histochemistry. In the studied peripheral organs (liver, kidney, spleen, pancreas and lung) TPPI is present at birth but further its pattern is not consistent in different organs over different life periods. TPPI activity starts to be expressed in the brain at the 10th embryonic day but in most neuronal types it appears at the early infantile period, increases during infancy, reaches high activity levels in the juvenile period and is highest in adult and aged animals. Thus, in mice TPPI activity becomes crucial for the neuronal functions later in development (juvenile period) than in humans and does not decrease with aging. These results are essential as a basis for comparison between normal and pathological TPPI patterns in mice. They can be valuable in view of the use of animal models for studying LINCL and other neurodegenerative disorders.

  3. Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L

    PubMed Central

    Stypmann, Jörg; Gläser, Kerstin; Roth, Wera; Tobin, Desmond J.; Petermann, Ivonne; Matthias, Rainer; Mönnig, Gerold; Haverkamp, Wilhelm; Breithardt, Günter; Schmahl, Wolfgang; Peters, Christoph; Reinheckel, Thomas

    2002-01-01

    Dilated cardiomyopathy is a frequent cause of heart failure and is associated with high mortality. Progressive remodeling of the myocardium leads to increased dimensions of heart chambers. The role of intracellular proteolysis in the progressive remodeling that underlies dilated cardiomyopathy has not received much attention yet. Here, we report that the lysosomal cysteine peptidase cathepsin L (CTSL) is critical for cardiac morphology and function. One-year-old CTSL-deficient mice show significant ventricular and atrial enlargement that is associated with a comparatively small increase in relative heart weight. Interstitial fibrosis and pleomorphic nuclei were found in the myocardium of the knockout mice. By electron microscopy, CTSL-deficient cardiomyocytes contained multiple large and apparently fused lysosomes characterized by storage of electron-dense heterogeneous material. Accordingly, the assessment of left ventricular function by echocardiography revealed severely impaired myocardial contraction in the CTSL-deficient mice. In addition, echocardiographic and electrocardiographic findings to some degree point to left ventricular hypertrophy that most likely represents an adaptive response to cardiac impairment. The histomorphological and functional alterations of CTSL-deficient hearts result in valve insufficiencies. Furthermore, abnormal heart rhythms, like supraventricular tachycardia, ventricular extrasystoles, and first-degree atrioventricular block, were detected in the CTSL-deficient mice. PMID:11972068

  4. Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans.

    PubMed

    Gullón, Sonia; Palomino, Carmen; Navajas, Rosana; Paradela, Alberto; Mellado, Rafael P

    2012-08-31

    Deficiency in the translocase complex (SecG mutant strain) or in the major type I signal peptidase (SipY mutant strain) function in Streptomyces lividans resulted, as expected, in a drastic reduction of secretory protein production and in a bald phenotype. The transcriptional profiling of both strains showed that the expression of a set of genes involved in the morphological differentiation process was down regulated in both mutant strains (bldG, bldN and bldM), whereas bldA and bldH were only down-regulated in the SipY mutant strain. Consistently, low temperature scanning electron microscopy revealed that the disruption of sipY had a more noticeable effect in the growth/morphological aspect of the mycelium than that of secG, suggesting that in the sipY mutant, the blockage of the export process might have more severe consequences than in the secG mutant. In both cases, the likely degradation of the proteins that cannot be secreted might provide nutrients that might be responsible for the lack of induction of the bald cascade, which is thought to be triggered under conditions of nutritional limitation.

  5. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

    PubMed Central

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly

    2015-01-01

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442

  6. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment.

    PubMed

    Davis, T M E

    2014-10-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of blood glucose-lowering therapy with proven efficacy, tolerability and safety. Four of the five commercially available DPP-4 inhibitors are subject to significant renal clearance, and pharmacokinetic studies in people with renal impairment have led to lower recommended doses based on creatinine clearance in order to prevent drug accumulation. Data from these pharmacokinetic studies and from supratherapeutic doses in healthy individuals and people with uncomplicated diabetes during development suggest, however, that there is a wide therapeutic margin. This should protect against toxicity if people with renal impairment are inadvertently prescribed higher doses than recommended. Doses appropriate to renal function are associated with reductions in HbA1c that are equivalent to those observed in people with type 2 diabetes who do not have renal impairment. Recent large-scale cardiovascular safety trials of saxagliptin and alogliptin have identified heart failure as a potential concern and renal impairment may increase the risk of this complication. Although the incidence of pancreatitis does not appear to be significantly increased by DPP-4 inhibitor therapy, renal impairment is also an independent risk factor. Additional data from other ongoing DPP-4 inhibitor cardiovascular safety trials should provide a more precise assessment of the risks of these uncommon complications, including in people with renal impairment. PMID:24684351

  7. [Differentiation among cutaneous Leishmania species upon amplification of a sequence of dipeptidyl peptidase III encoding gene].

    PubMed

    Kbaier-Hachemi, H; Barhoumi, M; Chakroun, A S; Ben Fadhel, M; Guizani, I

    2008-01-01

    Leishmaniasis are a group of vector-born, parasitic diseases caused by protozoan of the Leishmania genus, that includes visceral or cutaneous forms. Cutaneous leishmaniasis (CL) refers to a group of diseases because of the variability of clinical manifestations, caused by a large number of Leishmania species. In Tunisia, three different forms of CL are encountered, having different causal agents L. infantum, L. major and L. tropica. For the purpose of this study, we assessed the potential of polymorphic sites in dipeptidyl peptidase III (DPP III) encoding gene to differentiate among Leishmania species encountered in Tunisia. A pair of forward and reverse primers amplifying a 664 bp DPP III sequence were designed in regions including 2 mutations in the forward primer and 1 in the reverse, and were used to amplify DNA from diverse species of Leishmania parasites including L. infantum, L. major, L. tropica, L. donovani, L. chagasi, L. arabica, L. aethiopica and L. tarentolae. Amplification was positive for all tested Leishmania species except for L. infantum, L. chagasi, L. archibaldi, L. donovani and L. tarentolae. In case of cutaneous Leishmania species encountered in Tunisia, amplification was positive for both L. tropica and L. major and negative in case of L. infantum. This ability to differentiate L. infantum from L. tropica/L. major constitutes a first step in the taxonomy of cutaneous species prevalent in Tunisia.

  8. Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis.

    PubMed

    Rahulan, Raji; Dhar, Kiran S; Madhavan Nampoothiri, K; Pandey, Ashok

    2011-09-01

    Studies were conducted on the production of leucine amino peptidase (LAP) by Streptomyces gedanensis to ascertain the performance of the process in shake flask, parallel fermenter and 5-L fermenter utilizing soy bean meal as the carbon source. Experiments were conducted to analyze the effects of aeration and agitation rate on cell growth and LAP production. The results unveiled that an agitation rate of 300 rpm, 50% dissolved oxygen (DO) upholding and 0.15 vvm strategies were the optimal for the enzyme production, yielding 22.72 ± 0.11 IU/mL LAP in parallel fermenter which was comparable to flask level (24.65 ± 0.12 IU/mL LAP) fermentation. Further scale-up, in 5-L fermenter showed 50% DO and 1 vvm aeration rate was the best, producing optimum and the production was 20.09 ± 0.06 IU/mL LAP. The information obtained could be useful to design a strategy to improve a large-scale bioreactor cultivation of cells and production of LAP. PMID:21733679

  9. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana

    PubMed Central

    Carrie, Chris; Venne, A. Saskia; Zahedi, René P.; Soll, Jürgen

    2015-01-01

    Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing. We identified 88 and seven putative substrates for Arabidopsis ICP55 and OCT1, respectively. It was determined that the Arabidopsis ICP55 contains an almost identical cleavage site to that of Icp55 from yeast. However, it can also remove a far greater range of amino acids. The OCT1 substrates from Arabidopsis displayed no consensus cleavage motif, and do not contain the classical –10R motif identified in other eukaryotes. Arabidopsis OCT1 can also cleave presequences independently, without the prior cleavage of MPP. It was concluded that while both OCT1 and ICP55 were probably acquired early on in the evolution of mitochondria, their substrate profiles and cleavage sites have either remained very similar or diverged completely. PMID:25732537

  10. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  11. An angiotensin-(1-7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme.

    PubMed

    Wilson, Bryan A; Cruz-Diaz, Nildris; Marshall, Allyson C; Pirro, Nancy T; Su, Yixin; Gwathmey, TanYa M; Rose, James C; Chappell, Mark C

    2015-03-15

    Angiotensin 1-7 [ANG-(1-7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1-7) to ANG-(1-4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313-323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1-7) to ANG-(1-4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min(-1)·mg(-1)) compared with the tubules (96 ± 12 fmol·min(-1)·mg(-1)) and cortex (107 ± 9 fmol·min(-1)·mg(-1)). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1-7) and its endogenous analog [Ala(1)]-ANG-(1-7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp(1)]-ANG II, ANG I, and ANG-(1-12). Although the ANG-(1-7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1-7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1-7) tone.

  12. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  13. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    PubMed

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  14. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  15. Fasting Enhances Pyroglutamyl Peptidase II Activity in Tanycytes of the Mediobasal Hypothalamus of Male Adult Rats.

    PubMed

    Lazcano, Iván; Cabral, Agustina; Uribe, Rosa María; Jaimes-Hoy, Lorraine; Perello, Mario; Joseph-Bravo, Patricia; Sánchez-Jaramillo, Edith; Charli, Jean-Louis

    2015-07-01

    Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of β2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN. PMID:25942072

  16. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  17. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  18. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP. PMID:24914961

  19. Fasting Enhances Pyroglutamyl Peptidase II Activity in Tanycytes of the Mediobasal Hypothalamus of Male Adult Rats.

    PubMed

    Lazcano, Iván; Cabral, Agustina; Uribe, Rosa María; Jaimes-Hoy, Lorraine; Perello, Mario; Joseph-Bravo, Patricia; Sánchez-Jaramillo, Edith; Charli, Jean-Louis

    2015-07-01

    Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of β2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN.

  20. Increased Plasma Dipeptidyl Peptidase-4 Activities in Patients with Coronary Artery Disease

    PubMed Central

    Yang, Guang; Li, Yuzi; Cui, Lan; Jiang, Haiying; Li, Xiang; Jin, Chunzi; Jin, Dehao; Zhao, Guangxian; Jin, Jiyong; Sun, Rui; Piao, Limei; Xu, Wenhu; Fang, Chenghu; Lei, Yanna; Yuan, Kuichang; Xuan, Chunhua; Ding, Dazi

    2016-01-01

    Dipeptidyl peptidase-4 (DPP4) is one of the most potent mammalian serine proteases participated in the pathogenesis of subclinical atherosclerosis. Here we investigated whether the plasma soluble form of DPP4 is associated with the prevalence of coronary artery disease (CAD) with and without diabetes mellitus (DM). A cross-sectional study was conducted of 496 aged 26–81 years with (n = 362) and without (n = 134) CAD. Plasma DPP4 activity, high sensitive C-reactive protein (hs-CRP), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein levels were measured. The coronary atherosclerotic plaques were evaluated by coronary angiography. The CAD patients with (n = 84) and without (n = 278) DM had significantly higher DPP4 levels (11.8 ± 3.1 vs. 6.9 ± 3.5 ng/mL, P<0.01) than the nonCAD subjects. The acute coronary syndrome patients (n = 299) had elevated DPP4 levels than those with stable angina patients (n = 83). CAD patients even without DM had increased plasma DPP4 activities as compared with nonCAD subjects (10.9 ± 4.9 vs. 6.4 ± 3.1, ng/L, P< 0.01). A linear regression analysis revealed that overall, the DPP4 levels were positively associated with LCL-C and hs-CRP levels as well as syntax scores. A multiple logistic regression analysis demonstrated that plasma DPP4 activity was independent predictor of CAD (odds ratio, 1.56; 95% CI, 1.19–1.73; P<0.01). Our study shows that increased DPP4 activity levels are associated with the presence of CAD and that the plasma DPP4 level serves as a novel biomarker for CAD even without DM. PMID:27654253

  1. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays.

    PubMed

    Karakosta, Theano D; Soosaipillai, Antoninus; Diamandis, Eleftherios P; Batruch, Ihor; Drabovich, Andrei P

    2016-09-01

    Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples

  2. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation.

    PubMed

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  3. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  4. Identification and Characterization of Prokaryotic Dipeptidyl-peptidase 5 from Porphyromonas gingivalis *

    PubMed Central

    Ohara-Nemoto, Yuko; Rouf, Shakh M. A.; Naito, Mariko; Yanase, Amie; Tetsuo, Fumi; Ono, Toshio; Kobayakawa, Takeshi; Shimoyama, Yu; Kimura, Shigenobu; Nakayama, Koji; Saiki, Keitarou; Konishi, Kiyoshi; Nemoto, Takayuki K.

    2014-01-01

    Porphyromonas gingivalis, a Gram-negative asaccharolytic anaerobe, is a major causative organism of chronic periodontitis. Because the bacterium utilizes amino acids as energy and carbon sources and incorporates them mainly as dipeptides, a wide variety of dipeptide production processes mediated by dipeptidyl-peptidases (DPPs) should be beneficial for the organism. In the present study, we identified the fourth P. gingivalis enzyme, DPP5. In a dpp4-7-11-disrupted P. gingivalis ATCC 33277, a DPP7-like activity still remained. PGN_0756 possessed an activity indistinguishable from that of the mutant, and was identified as a bacterial orthologue of fungal DPP5, because of its substrate specificity and 28.5% amino acid sequence identity with an Aspergillus fumigatus entity. P. gingivalis DPP5 was composed of 684 amino acids with a molecular mass of 77,453, and existed as a dimer while migrating at 66 kDa on SDS-PAGE. It preferred Ala and hydrophobic residues, had no activity toward Pro at the P1 position, and no preference for hydrophobic P2 residues, showed an optimal pH of 6.7 in the presence of NaCl, demonstrated Km and kcat/Km values for Lys-Ala-MCA of 688 μm and 11.02 μm−1 s−1, respectively, and was localized in the periplasm. DPP5 elaborately complemented DPP7 in liberation of dipeptides with hydrophobic P1 residues. Examinations of DPP- and gingipain gene-disrupted mutants indicated that DPP4, DPP5, DPP7, and DPP11 together with Arg- and Lys-gingipains cooperatively liberate most dipeptides from nutrient oligopeptides. This is the first study to report that DPP5 is expressed not only in eukaryotes, but also widely distributed in bacteria and archaea. PMID:24398682

  5. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP.

  6. Synthesis and biological evaluation of Germanium(IV)-polyphenol complexes as potential anti-cancer agents.

    PubMed

    Pi, Jiang; Zeng, Jing; Luo, Jian-Jun; Yang, Pei-Hui; Cai, Ji-Ye

    2013-05-15

    Germanium (Ge) is considered to play a key role in the pharmacological effects of some medicinal plants. Here, two new Ge(IV)-polyphenol complexes were synthesized and measured for their potential biological activities. The results indicated that these Ge(IV)-polyphenol complexes possessed great anti-oxidative activities, both showing stronger hydroxyl scavenging effects than their corresponding ligands. We also demonstrated the strong intercalating abilities of Ge(IV)-polyphenol complexes into calf thymus-DNA molecules. In addition, these two Ge(IV)-polyphenol complexes showed strong proliferative inhibition effect on HepG2 cancer cells. Moreover, the morphological changes in HepG2 cells induced by Ge(IV)-polyphenol complexes were detected by atomic force microscopy. All these results collectively suggested that Ge(IV)-polyphenol complexes could be served as promising pharmacologically active substances against cancer treatment.

  7. X-ray structure of isoaspartyl dipeptidase from E.coli: a dinuclear zinc peptidase evolved from amidohydrolases.

    PubMed

    Jozic, Daniela; Kaiser, Jens T; Huber, Robert; Bode, Wolfram; Maskos, Klaus

    2003-09-01

    L-aspartyl and L-asparaginyl residues in proteins spontaneously undergo intra-residue rearrangements forming isoaspartyl/beta-aspartyl residues linked through their side-chain beta-carboxyl group with the following amino acid. In order to avoid accumulation of isoaspartyl dipeptides left over from protein degradation, some bacteria have developed specialized isoaspartyl/beta-aspartyl zinc dipeptidases sequentially unrelated to other peptidases, which also poorly degrade alpha-aspartyl dipeptides. We have expressed and crystallized the 390 amino acid residue isoaspartyl dipeptidase (IadA) from E.coli, and have determined its crystal structure in the absence and presence of the phosphinic inhibitor Asp-Psi[PO(2)CH(2)]-LeuOH. This structure reveals an octameric particle of 422 symmetry, with each polypeptide chain organized in a (alphabeta)(8) TIM-like barrel catalytic domain attached to a U-shaped beta-sandwich domain. At the C termini of the beta-strands of the beta-barrel, the two catalytic zinc ions are surrounded by four His, a bridging carbamylated Lys and an Asp residue, which seems to act as a proton shuttle. A large beta-hairpin loop protruding from the (alphabeta)(8) barrel is disordered in the free peptidase, but forms a flap that stoppers the barrel entrance to the active center upon binding of the dipeptide mimic. This isoaspartyl dipeptidase shows strong topological homology with the alpha-subunit of the binickel-containing ureases, the dinuclear zinc dihydroorotases, hydantoinases and phosphotriesterases, and the mononuclear adenosine and cytosine deaminases, which all are catalyzing hydrolytic reactions at carbon or phosphorous centers. Thus, nature has adapted an existing fold with catalytic tools suitable for hydrolysis of amide bonds to the binding requirements of a peptidase.

  8. Role of Type IV Pilins in Persistence of Vibrio vulnificus in Crassostrea virginica Oysters▿

    PubMed Central

    Paranjpye, Rohinee N.; Johnson, Asta B.; Baxter, Anne E.; Strom, Mark S.

    2007-01-01

    Vibrio vulnificus is part of the natural estuarine microflora and accumulates in shellfish through filter feeding. It is responsible for the majority of seafood-associated fatalities in the United States mainly through consumption of raw oysters. Previously we have shown that a V. vulnificus mutant unable to express PilD, the type IV prepilin peptidase, does not express pili on the surface of the bacterium and is defective in adherence to human epithelial cells (R. N. Paranjpye, J. C. Lara, J. C. Pepe, C. M. Pepe, and M. S. Strom, Infect. Immun. 66:5659-5668, 1998). A mutant unable to express one of the type IV pilins, PilA, is also defective in adherence to epithelial cells as well as biofilm formation on abiotic surfaces (R. N. Paranjpye and M. S. Strom, Infect. Immun. 73:1411-1422, 2005). In this study we report that the loss of PilD or PilA significantly reduces the ability of V. vulnificus to persist in Crassostrea virginica over a 66-h interval, strongly suggesting that pili expressed by this bacterium play a role in colonization or persistence in oysters. PMID:17557854

  9. Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Raj, V. Stalin; Smits, Saskia L.; Provacia, Lisette B.; van den Brand, Judith M. A.; Wiersma, Lidewij; Ouwendijk, Werner J. D.; Bestebroer, Theo M.; Spronken, Monique I.; van Amerongen, Geert; Rottier, Peter J. M.; Fouchier, Ron A. M.; Bosch, Berend Jan; Osterhaus, Albert D.M.E.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection. PMID:24257613

  10. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus.

    PubMed

    Raj, V Stalin; Smits, Saskia L; Provacia, Lisette B; van den Brand, Judith M A; Wiersma, Lidewij; Ouwendijk, Werner J D; Bestebroer, Theo M; Spronken, Monique I; van Amerongen, Geert; Rottier, Peter J M; Fouchier, Ron A M; Bosch, Berend Jan; Osterhaus, Albert D M E; Haagmans, Bart L

    2014-02-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection. PMID:24257613

  11. Astragaloside IV ameliorates renal injury in db/db mice

    PubMed Central

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  12. Astragaloside IV ameliorates renal injury in db/db mice

    NASA Astrophysics Data System (ADS)

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-09-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways.

  13. Astragaloside IV ameliorates renal injury in db/db mice.

    PubMed

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  14. DNA gyrase, topoisomerase IV, and the 4-quinolones.

    PubMed Central

    Drlica, K; Zhao, X

    1997-01-01

    For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases. PMID:9293187

  15. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4.

    PubMed

    Vallon, Volker; Docherty, Neil G

    2014-09-01

    The tubular hypothesis of glomerular filtration and nephropathy in diabetes is a pathophysiological concept that assigns a critical role to the tubular system, including proximal tubular hyper-reabsorption and growth, which is relevant for early glomerular hyperfiltration and later chronic kidney disease. Here we focus on how harnessing the bioactivity of hormones released from the gut may ameliorate the early effects of diabetes on the kidney in part by attenuating proximal tubular hyper-reabsorption and growth. The endogenous tone of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) system and its pharmacological activation are nephroprotective in diabetes independent of changes in blood glucose. This is associated with suppression of increases in kidney weight and glomerular hyperfiltration, which may reflect, at least in part, its inhibitory effects on tubular hyper-reabsorption and growth. Inhibition of dipeptidyl peptidase 4 (DPP-4) is also nephroprotective independent of changes in blood glucose and involves GLP-1/GLP-1R-dependent and -independent mechanisms. The GLP-1R agonist exendin-4 induces natriuresis via activation of the GLP-1R. In contrast, DPP4 inhibition increases circulating GLP-1, but drives a GLP-1R-independent natriuretic response, implying a role for other DPP-4 substrates. The extent to which the intrarenal DPP-4/GLP-1 receptor system contributes to all these changes remains to be established, as does the direct impact of the system on renal inflammation. PMID:25085841

  16. Confirmatory factor analysis of the WAIS-IV/WMS-IV.

    PubMed

    Holdnack, James A; Xiaobin Zhou; Larrabee, Glenn J; Millis, Scott R; Salthouse, Timothy A

    2011-06-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory factor analysis was applied to the WAIS-IV/WMS-IV Adult battery (i.e., age 16-69 years) co-norming sample (n = 900) to test 13 measurement models. The results indicated that two models fit the data equally well. One model is a seven-factor solution without a hierarchical general ability factor: Verbal Comprehension, Perceptual Reasoning, Processing Speed, Auditory Working Memory, Visual Working Memory, Auditory Memory, and Visual Memory. The second model is a five-factor model composed of Verbal Comprehension, Perceptual Reasoning, Processing Speed, Working Memory, and Memory with a hierarchical general ability factor. Interpretative implications for each model are discussed.

  17. A Novel SUMO1-specific Interacting Motif in Dipeptidyl Peptidase 9 (DPP9) That Is Important for Enzymatic Regulation*

    PubMed Central

    Pilla, Esther; Möller, Ulrike; Sauer, Guido; Mattiroli, Francesca; Melchior, Frauke; Geiss-Friedlander, Ruth

    2012-01-01

    Sumoylation affects many cellular processes by regulating the interactions of modified targets with downstream effectors. Here we identified the cytosolic dipeptidyl peptidase 9 (DPP9) as a SUMO1 interacting protein. Surprisingly, DPP9 binds to SUMO1 independent of the well known SUMO interacting motif, but instead interacts with a loop involving Glu67 of SUMO1. Intriguingly, DPP9 selectively associates with SUMO1 and not SUMO2, due to a more positive charge in the SUMO1-loop. We mapped the SUMO-binding site of DPP9 to an extended arm structure, predicted to directly flank the substrate entry site. Importantly, whereas mutants in the SUMO1-binding arm are less active compared with wild-type DPP9, SUMO1 stimulates DPP9 activity. Consistent with this, silencing of SUMO1 leads to a reduced cytosolic prolyl-peptidase activity. Taken together, these results suggest that SUMO1, or more likely, a sumoylated protein, acts as an allosteric regulator of DPP9. PMID:23152501

  18. Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches.

    PubMed

    Wilson, Claire H; Zhang, Hui Emma; Gorrell, Mark D; Abbott, Catherine A

    2016-09-01

    The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation. PMID:27410463

  19. Metabolism of /sup 125/I-atrial natriuretic factor by vascular smooth muscle cells. Evidence for a peptidase that specifically removes the COOH-terminal tripeptide

    SciTech Connect

    Johnson, G.R.; Arik, L.; Foster, C.J.

    1989-07-15

    The addition of 200 pM monoiodinated human atrial natriuretic factor-(99-126) (125I-hANF) to cultured bovine aortic smooth muscle cells at 37/degree/C resulted in a rapid clearance from the medium (t1/2 approximately 7.5 min). Within 5 min, (125I)iodotyrosine126 (125I-Y), Arg125-(125I)iodotyrosine126 (125I-RY) and Phe124-Arg-(125)iodotyrosine126 (125I-FRY) appeared in the medium. The identities of these degradation products were confirmed by (1) retention time on high performance liquid chromatography (HPLC) relative to standards, (2) products generated by digestion with aminopeptidase M, and (3) the absence of the Met110. Preincubation of the cells with ammonium chloride or chloroquine resulted in a significant increase in the intracellular accumulation of radiolabel, indicative of endocytosis and rapid delivery of 125I-hANF to an acidic intracellular compartment (endosome and/or lysosome). Neither ammonium chloride, chloroquine, nor excess unlabeled hANF blocked the rapid appearance in the medium of 125I-RY or 125I-FRY. Bestatin inhibited the generation of 125I-RY, with a concomitant increase in 125I-FRY, suggesting that the 125I-RY is produced by aminopeptidase action on 125I-FRY. The endopeptidase 24.11 (enkephalinase) inhibitor, SCH 39370, did not inhibit the formation of 125I-FRY. These results provide evidence of a peptidase capable of specifically removing the COOH-terminal tripeptide from 125I-hANF. The COOH-terminal tripeptide, Phe124-Arg-Tyr126, was also isolated from cell digests of hANF by HPLC and its identity confirmed by amino acid analysis. Since it is generally believed that the COOH-terminal tripeptide is critical to many of atrial natriuretic factor-(99-126)'s bioactivities, this enzyme may be involved in the inactivation of atrial natriuretic factor-(99-126) in target tissues.

  20. Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5

    PubMed Central

    Denise, Hubert; Poot, Jacqueline; Jiménez, Maribel; Ambit, Audrey; Herrmann, Daland C; Vermeulen, Arno N; Coombs, Graham H; Mottram, Jeremy C

    2006-01-01

    Background Visceral leishmaniasis caused by members of the Leishmania donovani complex is often fatal in the absence of treatment. Research has been hampered by the lack of good laboratory models and tools for genetic manipulation. In this study, we have characterised a L. infantum line (JPCM5) that was isolated from a naturally infected dog and then cloned. We found that JPCM5 has attributes that make it an excellent laboratory model; different stages of the parasite life cycle can be studied in vitro, it is accessible to genetic manipulation and it has retained its virulence. Furthermore, the L. infantum JPCM5 genome has now been fully sequenced. Results We have further focused our studies on LiCPA, the L. infantum homologue to L. mexicana cysteine peptidase CPA. LiCPA was found to share a high percentage of amino acid identity with CPA proteins of other Leishmania species. Two independent LiCPA-deficient promastigote clones (ΔLicpa) were generated and their phenotype characterised. In contrast to L. mexicana CPA-deficient mutants, both clones of ΔLicpa were found to have significantly reduced virulence in vitro and in vivo. Re-expression of just one LiCPA allele (giving ΔLicpa::CPA) was sufficient to complement the reduced infectivity of both ΔLicpa mutants for human macrophages, which confirms the importance of LiCPA for L. infantum virulence. In contrast, in vivo experiments did not show any virulence recovery of the re-expressor clone ΔLicpaC1::CPA compared with the CPA-deficient mutant ΔLicpaC1. Conclusion The data suggest that CPA is not essential for replication of L. infantum promastigotes, but is important for the host-parasite interaction. Further studies will be necessary to elucidate the precise roles that LiCPA plays and why the re-expression of LiCPA in the ΔLicpa mutants complemented the gene deletion phenotype only in in vitro and not in in vivo infection of hamsters. PMID:17101050

  1. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    SciTech Connect

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  2. BJN Awards 2016: IV therapy.

    PubMed

    Rickard, Claire

    2016-07-28

    Claire Rickard Professor of Nursing, National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Nursing, Griffith University, was awarded second place in the BJN Awards 2016 for IV Therapy Nurse of the Year. Here she talks about the she has done to be recognised in this field. PMID:27467655

  3. Phase IV of Drug Development.

    PubMed

    Suvarna, Viraj

    2010-04-01

    Not all Phase IV studies are post-marketing surveillance (PMS) studies but every PMS study is a phase IV study. Phase IV is also an important phase of drug development. In particular, the real world effectiveness of a drug as evaluated in an observational, non-interventional trial in a naturalistic setting which complements the efficacy data that emanates from a pre-marketing randomized controlled trial (RCT). No matter how many patients are studied pre-marketing in a controlled environment, the true safety profile of a drug is characterized only by continuing safety surveillance through a spontaneous adverse event monitoring system and a post-marketing surveillance/non-interventional study. Prevalent practice patterns can generate leads that could result in further evaluation of a new indication via the RCT route or even a signal that may necessitate regulatory action (change in labeling, risk management/minimization action plan). Disease registries are another option as are the large simple hybrid trials. Surveillance of spontaneously reported adverse events continues as long as a product is marketed. And so Phase IV in that sense never ends.

  4. The PLATO IV Communications System.

    ERIC Educational Resources Information Center

    Sherwood, Bruce Arne; Stifle, Jack

    The PLATO IV computer-based educational system contains its own communications hardware and software for operating plasma-panel graphics terminals. Key echoing is performed by the central processing unit: every key pressed at a terminal passes through the entire system before anything appears on the terminal's screen. Each terminal is guaranteed…

  5. The PLATO IV Student Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    This report describes the remote computer terminal designed for student use in the PLATO IV computer-assisted instruction system. The terminal features a plasma display panel, self-contained character and line generators, and the ability to communicate over voice grade telephone circuits. Operating modes and control characters are described in…

  6. A low-grade increase of serum pancreatic exocrine enzyme levels by dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes.

    PubMed

    Tokuyama, Hirotake; Kawamura, Harukiyo; Fujimoto, Masaki; Kobayashi, Kazuki; Nieda, Mie; Okazawa, Tetsuya; Takemoto, Minoru; Shimada, Fumio

    2013-06-01

    A potential adverse effect of dipeptidyl peptidase-4 inhibitors (DPP-4i) on the pancreas remains controversial. We evaluated the DPP-4i effects on pancreatic amylase and lipase activity in patients with type 2 diabetes. These enzymes were slightly but significantly increased, suggesting DPP-4i cause a low-grade inflammatory change in the exocrine pancreas. PMID:23618553

  7. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion.

    PubMed

    Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando

    2016-04-01

    Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.

  8. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion.

    PubMed

    Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando

    2016-04-01

    Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen. PMID:26613762

  9. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358.

    PubMed Central

    de Groot, A; Heijnen, I; de Cock, H; Filloux, A; Tommassen, J

    1994-01-01

    In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits. Images PMID:7905475

  10. Facile Routes to Th(IV), U(IV), and Np(IV) Phosphites and Phosphates

    SciTech Connect

    Villa, Eric M.; Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-08-05

    Three actinide(IV) phosphites and a NpIV phosphate, AnIV(HPO₃)₂(H₂O)₂ (An = Th, U, Np) and Cs[Np(H1.5PO₄)(PO₄)]₂, respectively, were synthesized using mild hydrothermal conditions. The first three phases are isotypic and were obtained using similar reaction conditions. Cs[Np(H1.5PO₄)(PO₄)]₂ was synthesized using an analogous method to that of Np(HPO₃)₂(H₂O)₂. However, this fourth phase is quite different in comparison to the other phases in both composition and structure. The structure of Cs[Np(H1.5PO₄)(PO₄)]₂ is constructed from double layers of neptunium(IV) phosphate with caesium cations in the interlayer region. In contrast, An(HPO₃)₂(H₂O)₂ (An = Th, U, Np) form dense 3D networks. The actinide contraction is detected in variety of metrics obtained from single-crystal X-ray diffraction data. Changes in the oxidation state of the neptunium starting materials yield different products.

  11. Grassypeptolides As Natural Inhibitors of Dipeptidyl Peptidase 8 and T-Cell Activation

    PubMed Central

    Kwan, Jason C.; Liu, Yanxia; Ratnayake, Ranjala; Hatano, Ryo; Kuribara, Akiko; Morimoto, Chiko; Ohnuma, Kei; Paul, Valerie J.; Ye, Tao

    2014-01-01

    Natural products made by marine cyanobacteria are often highly modified peptides and depsipeptides that have the potential to act as inhibitors for proteases. In the interest of finding novel protease inhibition activity and selectivity grassypeptolide A (1) was screened against a panel of proteases and found to selectively inhibit DPP8 over DPP4. Grassypeptolides were also found to inhibit IL-2 production and proliferation in activated T-cells, consistent with a putative role of DPP8 in the immune system. These effects were also observed in Jurkat cells, and DPP activity in Jurkat cell cytosol was shown to be inhibited by grassypeptolides. In silico docking suggests two possible binding modes of grassypeptolides – both at the active site of DPP8 and at one of the entrances to the internal cavity. Collectively these results suggest that grassypeptolides may be useful tool compounds in the study of DPP8 function. PMID:24591193

  12. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment.

    PubMed

    Zhang, Dapeng; Aravind, L

    2012-10-15

    In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last common eukaryotic ancestor. Identification of these TGL and

  13. Host Species Restriction of Middle East Respiratory Syndrome Coronavirus through Its Receptor, Dipeptidyl Peptidase 4

    PubMed Central

    van Doremalen, Neeltje; Miazgowicz, Kerri L.; Milne-Price, Shauna; Bushmaker, Trenton; Robertson, Shelly; Scott, Dana; Kinne, Joerg; McLellan, Jason S.; Zhu, Jiang

    2014-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir. IMPORTANCE The ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 701 laboratory-confirmed cases to date, with 249 fatalities. Although bats and dromedary camels have been identified as potential MERS-CoV hosts, the virus has so far not been isolated from any species

  14. Biosynthesis of alpha2(IV) and alpha1(IV) chains of collagen IV and interactions with matrix metalloproteinase-9.

    PubMed

    Toth, M; Sado, Y; Ninomiya, Y; Fridman, R

    1999-07-01

    In vitro binding studies with latent matrix metalloproteinase-9 (pro-MMP-9) have revealed the existence of nondisulfide-bonded alpha2(IV) chains on the cell surface capable of forming a high-affinity complex with the enzyme. Here we investigated the biosynthesis and cellular distribution of alpha2(IV) and alpha1(IV) chains in breast epithelial (MCF10A and MDA-MB-231) and fibrosarcoma (HT1080) cells by pulse-chase analysis followed by immunoprecipitation with chain-specific monoclonal antibodies (mAb). These studies showed that whereas the alpha1(IV) chain remained in the intracellular compartment, nondisulfide-bonded alpha2(IV) chains were secreted into the media in a stable form. Consistently, only alpha2(IV) was detected on the cell surface by surface biotinylation or indirect immunofluorescence. In agreement with the pulse-chase analysis, media subjected to co-precipitation experiments with pro-MMP-9 or pro-MMP-9-affinity chromatography followed by immunoblotting with chain-specific mAbs resulted in the detection of alpha2(IV). A preferential secretion of nondisulfide-bonded alpha2(IV) chains was also observed in CHO-K1 cells transiently transfected with full-length mouse alpha2(IV) or alpha (IV) cDNAs. However, a complex of mouse alpha1(IV) with pro-MMP-9 was coprecipitated with exogenous enzyme from lysates of CHO-K1 cells transfected with mouse alpha1(IV), suggesting that under overexpression conditions the enzyme can also interact with the alpha1 (IV) chain. Collectively, these studies further demonstrate the interactions of pro-MMP-9 with collagen IV chains and a unique processing and targeting of nondisulfide-bonded alpha2(IV) chains that may play a role in the surface/matrix association of pro-MMP-9.

  15. Archaeal type IV pili and their involvement in biofilm formation

    PubMed Central

    Pohlschroder, Mechthild; Esquivel, Rianne N.

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation. PMID:25852657

  16. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo

    PubMed Central

    Pham, Christine T. N.; Ley, Timothy J.

    1999-01-01

    Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease that has been implicated in the processing of granzymes, which are neutral serine proteases exclusively expressed in the granules of activated cytotoxic lymphocytes. In this report, we show that cytotoxic lymphocytes derived from DPPI−/− mice contain normal amounts of granzymes A and B, but these molecules retain their prodipeptide domains and are inactive. Cytotoxic assays with DPPI−/− effector cells reveal severe defects in the induction of target cell apoptosis (as measured by [125I]UdR release) at both early and late time points; this defect is comparable to that detected in perforin−/− or granzyme A−/− × B−/− cytotoxic lymphocytes. DPPI therefore plays an essential role in the in vivo processing and activation of granzymes A and B, which are required for cytotoxic lymphocyte granule-mediated apoptosis. PMID:10411926

  17. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity*

    PubMed Central

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L.; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology. PMID:26582203

  18. Cleavage Activation of Human-adapted Influenza Virus Subtypes by Kallikrein-related Peptidases 5 and 12*

    PubMed Central

    Hamilton, Brian S.; Whittaker, Gary R.

    2013-01-01

    A critical step in the influenza virus replication cycle is the cleavage activation of the HA precursor. Cleavage activation of influenza HA enables fusion with the host endosome, allowing for release of the viral genome into the host cell. To date, studies have determined that HA activation is driven by trypsin-like host cell proteases, as well as yet to be identified bacterial proteases. Although the number of host proteases that can activate HA is growing, there is still uncertainty regarding which secreted proteases are able to support multicycle replication of influenza. In this study, we have determined that the kallikrein-related peptidases 5 and 12 are secreted from the human respiratory tract and have the ability to cleave and activate HA from the H1, H2, and H3 subtypes. Each peptidase appears to have a preference for particular influenza subtypes, with kallikrein 5 cleaving the H1 and H3 subtypes most efficiently and kallikrein 12 cleaving the H1 and H2 subtypes most efficiently. Cleavage analysis using HA cleavage site peptide mimics revealed that the amino acids neighboring the arginine cleavage site affect cleavage efficiency. Additionally, the thrombolytic zymogens plasminogen, urokinase, and plasma kallikrein have all been shown to cleave and activate influenza but are found circulating mainly as inactive precursors. Kallikrein 5 and kallikrein 12 were examined for their ability to activate the thrombolytic zymogens, and both resulted in activation of each zymogen, with kallikrein 12 being a more potent activator. Activation of the thrombolytic zymogens may therefore allow for both direct and indirect activation of the HA of human-adapted influenza viruses by kallikrein 5 and kallikrein 12. PMID:23612974

  19. The adsorption of plutonium IV and V on goethite

    NASA Astrophysics Data System (ADS)

    Sanchez, Arthur L.; Murray, James W.; Sibley, Thomas H.

    1985-11-01

    The adsorption of Pu(IV) and Pu(V) on goethite (αFeOOH) from NaNO 3 solution shows distinct differences related to the different hydrolytic character of these two oxidation states. Under similar solution conditions, the adsorption edge of the more strongly hydrolyzable Pu(IV) occurs in the pH range 3 to 5 while that for Pu(V) is at pH 5 to 7. The adsorption edge for Pu(V) shifts with time to lower pH values and this appears to be due to the reduction of Pu(V) to Pu(IV) in the presence of the goethite surface. These results suggest that redox transformations may be an important aspect of Pu adsorption chemistry and the resulting scavenging of Pu from natural waters. Increasing ionic strength (from 0.1 M to 3 M NaCl or NaNO 3 and 0.03 M to 0.3 M Na 2SO 4) did not influence Pu(IV) or Pu(V) adsorption. In the presence of dissolved organic carbon (DOC), Pu(V) reduction to Pu(IV) occurred in solution. Pu(IV) adsorption on goethite decreased by 30% in the presence of 240 ppm natural DOC found in Soap Lake, Washington waters. Increasing concentrations of carbonate ligands decreased Pu(IV) and Pu(V) adsorption on goethite, with an alkalinity of 1000 meq/l totally inhibiting adsorption. The Pu-goethite adsorption system provides the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. From the model calculations we determined equilibrium constants for the adsorption of Pu(IV) hydrolysis species. The model was then applied to Pu adsorption in carbonate media to see how the presence of CO 3-2 could influence the mobility of Pu. The decrease in adsorption appears to be due to formation of a Pu-CO 3 complex. Model calculations were used to predict what the adsorption curves would look like if Pu-CO 3 complexes formed.

  20. Hexachloroiridate IV as an Electron Acceptor for a Plasmalemma Redox System in Maize Roots 1

    PubMed Central

    Lüthen, Hartwig; Böttger, Michael

    1988-01-01

    Hexachloroiridate IV, a new artificial electron acceptor for the constitutive plant plasma membrane redox system has been investigated. It appeared not to permeate through biological membranes. Due to its higher redox potential, it is a more powerful electron acceptor than hexacyanoferrate III (ferricyanide) and even micromolar concentrations are rapidly reduced. Hexachloroiridate IV increased H+ efflux over a concentration range of 0.05 to 0.1 millimolar. Lower concentrations slightly inhibited proton extrusion. Calcium stimulated both proton and electron transfer rates. Like hexacyanoferrate III-reduction, irridate reduction was inhibited by auxin. PMID:16666029

  1. Episodic Inhibition

    ERIC Educational Resources Information Center

    Racsmany, Mihaly; Conway, Martin A.

    2006-01-01

    Six experiments examined the proposal that an item of long-term knowledge can be simultaneously inhibited and activated. In 2 directed forgetting experiments items to-be-forgotten were found to be inhibited in list-cued recall but activated in lexical decision tasks. In 3 retrieval practice experiments, unpracticed items from practiced categories…

  2. Test Review: Advanced Clinical Solutions for WAIS-IV and WMS-IV

    ERIC Educational Resources Information Center

    Chu, Yiting; Lai, Mark H. C.; Xu, Yining; Zhou, Yuanyuan

    2012-01-01

    The authors review the "Advanced Clinical Solutions for WAIS-IV and WMS-IV". The "Advanced Clinical Solutions (ACS) for the Wechsler Adult Intelligence Scale-Fourth Edition" (WAIS-IV; Wechsler, 2008) and the "Wechsler Memory Scale-Fourth Edition" (WMS-IV; Wechsler, 2009) was published by Pearson in 2009. It is a clinical tool for extending the…

  3. Stage IV-S neuroblastoma. Results with definitive therapy

    SciTech Connect

    Stokes, S.H.; Thomas, P.R.; Perez, C.A.; Vietti, T.J.

    1984-05-15

    The results of management of 14 patients with Stage IV-S neuroblastoma are reported. The treatment policy, although not consistent over this time span, in general used a combination of radiotherapy and chemotherapy or infrequently one modality alone. Twelve of 14 (86%) survived more than 6 years. One patient, with a solitary mediastinal primary tumor, died of rapidly progressive disease at three months. The other death occurred in a 4.5-year-old presenting with hepatomegaly at diagnosis followed by skeletal dissemination 2.5 years later. Thirteen of the patients were younger than 1 year of age. Of the 11 patients that received radiotherapy, 4 experienced mild asymptomatic scoliosis or kyphoscoliosis at 3 to 12 years after initial therapy. A review of the literature indicates that spontaneous regression in this tumor is very frequent; therefore, it is recommended that for the common presentation of massive hepatomegaly in an infant, close observation is warranted, unless life threatening complications occur. However, initial therapeutic intervention may be indicated in those patients with life threatening presentations. This data did not substantiate the necessity for complete surgical excision of the primary tumor, as has been suggested by others.

  4. Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter.

    PubMed

    Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad

    2016-03-01

    Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them. PMID:27087087

  5. Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter.

    PubMed

    Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad

    2016-03-01

    Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.

  6. Amidase activity in soils. IV. Effects of trace elements and pesticides

    SciTech Connect

    Frankenberger, W.T., Jr.; Tabatabai, M.A.

    1981-11-01

    Amidase was recently detected in soils, and this study was carried out to assess the effects of 21 trace elements, 12 herbicides, 2 fungicides, and 2 insecticides on the activity of this enzyme. Results showed that most of the trace elements and pesticides studied inhibited amidase activity in soils. The degree of inhibition varied among the soils used. When the trace elements were compared by using 5 ..mu..mol/g of soil, the average inhibition of amidase in three soils showed that Ag(I), Hg(I), As(III), and Se(IV) were the most effective inhibitors, but only Ag(I) and As(III) showed average inhibition > 50%. The least effective inhibitors (average inhibition < 3%) included Cu(I), Ba(II), Cu(II), Fe(II), Ni(II), Al(III), Fe(III), Ti(IV), V(IV), As(V), Mo(VI), and W(VI). Other elements that inhibited amidase activity in soils were Cd(II), Co(II), Mn(II), Pb(II), Sn(II), Zn(II), B(III), and Cr(III). Enzyme kinetic studies showed that As(III) was a competitive inhibitor of amidase, whereas Ag(I), Hg(II), and Se(IV) were noncompetitive inhibitors. When the pesticides studied were compared by using 10 ..mu..g of active ingredient per gram of soil, the average inhibition of amidase in three soils ranged from 2% with dinitroamine, EPTC plus R-25788, and captan to 10% with butylate. Other pesticides that inhibited amidase activity in soils were atrazine, naptalam, chloramben, dicamba, cyanazine, 2,4-D, alachlor, paraquat, trifluralin, maneb, diazinon, and malathion. The inhibition of amidase by diazinon, alachlor, and butylate followed noncompetitive kinetics.

  7. PREPARATION OF OXOPORPHINATOMANGANESE (IV) COMPLEX

    SciTech Connect

    Willner, I.; Otvos, J.; Calvin, M.

    1980-07-01

    Oxo-manganese-tetraphenylporphyrin (O=Mn{sup IV}-TPP) has been prepared by an oxygen-transfer reaction from iodosylbenzene to MnIITPP and characterized by its i.r. and field desorption mass spectra, which are identical to those of the product obtained by direct oxidation of Mn{sup III}(TPP) in an aqueous medium; it transfers oxygen to triphenylphosphine to produce triphenylphosphine oxide, and it is suggested that similar intermediates are important in oxygen activation by cytochrome P-450 as well as in the photosynthetic evolution of oxygen.

  8. Taming Tin(IV) Polyazides.

    PubMed

    Campbell, Rory; Davis, Martin F; Fazakerley, Mathew; Portius, Peter

    2015-12-14

    The first charge-neutral Lewis base adducts of tin(IV) tetraazide, [Sn(N3)4(bpy)], [Sn(N3)4(phen)] and [Sn(N3)4(py)2], and the salt bis{bis(triphenylphosphine)iminium} hexa(azido)stannate [(PPN)2Sn(N3)6] (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; py = pyridine; PPN = N(PPh3)2) have been prepared using covalent or ionic azide-transfer reagents and ligand-exchange reactions. The azides were isolated on the 0.3 to 1 g scale and characterized by IR and NMR spectroscopies, microanalytical and thermal methods and their molecular structures determined by single-crystal XRD. All complexes have a distorted octahedral Sn[N]6 coordination geometry and possess greater thermal stability than their Si and Ge homologues. The nitrogen content of the adducts of up to 44% exceed any Sn(IV) compound known hitherto. PMID:26767331

  9. IVS contribution to ITRF2014

    NASA Astrophysics Data System (ADS)

    Bachmann, Sabine; Thaller, Daniela; Roggenbuck, Ole; Lösler, Michael; Messerschmitt, Linda

    2016-07-01

    Every few years the International Terrestrial Reference System (ITRS) Center of the International Earth Rotation and Reference Systems Service (IERS) decides to generate a new version of the International Terrestrial Reference Frame (ITRF). For the upcoming ITRF2014 the official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) comprises 5796 combined sessions in SINEX file format from 1979.6 to 2015.0 containing 158 stations, overall. Nine AC contributions were included in the combination process, using five different software packages. Station coordinate time series of the combined solution show an overall repeatability of 3.3 mm for the north, 4.3 mm for the east and 7.5 mm for the height component over all stations. The minimum repeatabilities are 1.5 mm for north, 2.1 mm for east and 2.9 mm for height. One of the important differences between the IVS contribution to the ITRF2014 and the routine IVS combination is the omission of the correction for non-tidal atmospheric pressure loading (NTAL). Comparisons between the amplitudes of the annual signals derived by the VLBI observations and the annual signals from an NTAL model show that for some stations, NTAL has a high impact on station height variation. For other stations, the effect of NTAL is low. Occasionally other loading effects have a higher influence (e.g. continental water storage loading). External comparisons of the scale parameter between the VTRF2014 (a TRF based on combined VLBI solutions), DTRF2008 (DGFI-TUM realization of ITRS) and ITRF2008 revealed a significant difference in the scale. A scale difference of 0.11 ppb (i.e. 0.7 mm on the Earth's surface) has been detected between the VTRF2014 and the DTRF2008, and a scale difference of 0.44 ppb (i.e. 2.8 mm on the Earth's surface) between the VTRF2014 and ITRF2008. Internal comparisons between the EOP of the combined solution and the individual solutions from the AC contributions show a WRMS in X- and Y-Pole between

  10. Manganese inhibition of microbial iron reduction in anaerobic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1988-01-01

    Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)-containing anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(II) reduction was the terminal electron-accepting process removed all the pore-water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. Results demonstrate that preferential reduction of Mn(IV) by FE(III)-reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)-containing sediments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation. -Authors

  11. Optical and Infrared Interferometry IV

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev K.; Creech-Eakman, Michelle J.; Malbet, Fabien

    2014-08-01

    Optical and IR Interferometry IV at the SPIE 2014 symposium in Montreal had a strong and vibrant program. After initial fears about budget cuts and travel-funding constraints, the Program Committee had to work hard to accommodate as many quality submissions as possible. Innovative, creative and visionary work ensured that the field has progressed well, despite the bleak funding climate felt in the US, Europe and elsewhere. Montreal proved an excellent venue for this, the largest of Interferometry conferences and the only one that brings together practitioners from the world over. Let us summarize a few highlights to convey a glimpse of the excitement that is detailed in the rest of these Proceedings.

  12. Sequence analysis and molecular characterization of larval midgut cDNA transcripts encoding peptidases from the yellow mealworm, Tenebrio molitor L.

    PubMed

    Prabhakar, S; Chen, M-S; Elpidina, E N; Vinokurov, K S; Smith, C M; Marshall, J; Oppert, B

    2007-08-01

    Peptidase sequences were analysed in randomly picked clones from cDNA libraries of the anterior or posterior midgut or whole larvae of the yellow mealworm, Tenebrio molitor Linnaeus. Of a total of 1528 sequences, 92 encoded potential peptidases, from which 50 full-length cDNA sequences were obtained, including serine and cysteine proteinases and metallopeptidases. Serine proteinase transcripts were predominant in the posterior midgut, whereas transcripts encoding cysteine and metallopeptidases were mainly found in the anterior midgut. Alignments with other proteinases indicated that 40% of the serine proteinase sequences were serine proteinase homologues, and the