Science.gov

Sample records for peptidase iv inhibition

  1. Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure

    PubMed Central

    Arruda-Junior, Daniel F.; Martins, Flavia L.; Dariolli, Rafael; Jensen, Leonardo; Antonio, Ednei L.; dos Santos, Leonardo; Tucci, Paulo J. F.; Girardi, Adriana C. C.

    2016-01-01

    Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for 4 weeks with vildagliptin (120 mg/kg/day) or vehicle by oral gavage. Echocardiography was performed before (pretreatment) and at the end of treatment (post-treatment) to evaluate cardiac function. The fractional area change (FAC) increased (34 ± 5 vs. 45 ± 3%, p < 0.05), and the isovolumic relaxation time decreased (33 ± 2 vs. 27 ± 1 ms; p < 0.05) in HF rats treated with vildagliptin (post-treatment vs. pretreatment). On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR) and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1) serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with

  2. Dipeptidyl Peptidase IV Inhibition Activates CREB and Improves Islet Vascularization through VEGF-A/VEGFR-2 Signaling Pathway

    PubMed Central

    Samikannu, Balaji; Chen, Chunguang; Lingwal, Neelam; Padmasekar, Manju; Engel, Felix B.; Linn, Thomas

    2013-01-01

    Substitution of pancreatic islets is a potential therapy to treat diabetes and it depends on reconstitution of islet’s capillary network. In this study, we addressed the question whether stabilization of Glucagon-Like-Peptide-1 (GLP-1) by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) increases β-cell mass by modulating vascularization. Mouse or porcine donor islets were implanted under kidney capsule of diabetic mice treated with DPP-IV inhibitor sitagliptin. Grafts were analyzed for insulin production, β-cell proliferation and vascularization. In addition, the effect of sitagliptin on sprouting and Vascular Endothelial Growth Factor (VEGF)-A expression was examined ex vivo. The cAMP response element-binding (CREB) and VEGF-A/ Vascular Endothelial Growth Factor Receptor (VEGFR)-2 signaling pathway leading to islet vascularization was explored. Sitagliptin increased mean insulin content of islet grafts and area of insulin-positive tissue as well as β-cell proliferation. Interestingly, sitagliptin treatment also markedly increased endothelial cell proliferation, microvessel density and blood flow. Finally, GLP-1 (7-36) stimulated sprouting and VEGF expression, which was significantly enhanced by sitagliptin- mediated inhibition of DPP-IV. Our in vivo data demonstrate that sitagliptin treatment phosphorylated CREB and induced islet vascularization through VEGF-A/VEGFR-2 signaling pathway. This study paves a new pathway for improvement of islet transplantation in treating diabetes mellitus. PMID:24349326

  3. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  4. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  5. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  6. Dipeptidyl peptidase IV inhibition prevents the formation and promotes the healing of indomethacin-induced intestinal ulcers in rats

    PubMed Central

    Inoue, Takuya; Higashiyama, Masaaki; Kaji, Izumi; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2014-01-01

    Backgrounds & Aims We studied the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) as a possible therapy for non-steroidal anti-inflammatory drug (NSAID)-induced intestinal ulcers. Luminal nutrients release endogenous GLP-2 from enteroendocrine L cells. Since GLP-2 is degraded by dipeptidyl peptidase IV (DPPIV), we hypothesized that DPPIV inhibition combined with luminal administration of nutrients potentiates the effects of endogenous GLP-2 on intestinal injury. Methods Intestinal injury was induced by indomethacin (10 mg/kg, sc) in fed rats. The long-acting DPPIV inhibitor K579 was intragastrically (ig) or intraperitoneally (ip) given before or after indomethacin treatment. L-alanine (L-Ala) and 5′-inosine monophosphate (IMP) were co-administered ig after the treatment. Results Indomethacin treatment induced intestinal ulcers which gradually healed after treatment. Pretreatment with ig or ip K579 given either at 1 mg/kg reduced total ulcer length, whereas K579 at 3 mg/kg had no effect. Exogenous GLP-2 also reduced intestinal ulcers. The preventive effect of K579 was dose-dependently inhibited by a GLP-2 receptor antagonist. Daily treatment with K579 (1 mg/kg), GLP-2, or L-Ala + IMP after indomethacin treatment reduced total ulcer length. Co-administration (ig) of K579 and L-Ala + IMP further accelerated intestinal ulcer healing. Conclusion DPPIV inhibition and exogenous GLP-2 prevented the formation and promoted the healing of indomethacin-induced intestinal ulcers, although high-dose DPPIV inhibition reversed the preventive effect. Umami receptor agonists also enhanced the healing effects of the DPPIV inhibitor. The combination of DPPIV inhibition and luminal nutrient-induced GLP-2 release may be a useful therapeutic tool for the treatment of NSAIDs-induced intestinal ulcers. PMID:24379150

  7. Dipeptidyl peptidase IV inhibitors and diabetes therapy.

    PubMed

    McIntosh, Christopher H S

    2008-01-01

    Current type 2 diabetes therapies are mainly targeted at stimulating pancreatic beta-cell secretion and reducing insulin resistance. A number of alternative therapies are currently being developed to take advantage of the actions of the incretin hormones Glucagon-Like Peptide-1 (GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP). These hormones are released from the small intestine in response to nutrient ingestion and stimulate insulin secretion in a glucose-dependent manner. One approach to potentiating their actions is based on inhibiting dipeptidyl peptidase IV (DPP IV), the major enzyme responsible for degrading the incretins in vivo. DPP IV exhibits characteristics that have allowed the development of specific orally administered inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes. A number of clinical trials have demonstrated that DPP IV inhibitors are effective in improving glucose disposal and reducing hemoglobin A1c levels in type 2 diabetic patients and one inhibitor, sitagliptin, is now in therapeutic use, with others likely to receive FDA approval in the near future. Studies aimed at elucidating the mode of action of the inhibitors are still ongoing. Both enhancement of insulin secretion and reduction in glucagon secretion, resulting from the blockade of incretin degradation, are believed to play important roles in DPP IV inhibitor action. Preclinical studies indicate that increased levels of incretins improve beta-cell secretory function and exert effects on beta-cell mitogenesis and survival that can preserve beta-cell mass. Roles for other hormones, neuropeptides and cytokines in DPP IV inhibitor-medicated responses are also possible.

  8. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling.

  9. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase.

    PubMed

    Yamane, Takuya; Kozuka, Miyuki; Konda, Daisuke; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2016-05-01

    Aronia berries have many potential effects on health. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. Recently, we have reported that aronia juice has an inhibitory effect on dipeptidyl peptidase (DPP IV) activity and that the DPP IV inhibitor in aronia juice was identified as cyanidin 3,5-diglucoside. In this study, we found that body weights and blood glucose levels were reduced in diabetes model KK-Ay mice given aronia juice. We also found that weights of white adipose tissues were reduced in KK-Ay mice given aronia juice. Furthermore, levels of DPP IV activity in the serum and liver from KK-Ay mice were lower than those in the serum and liver from C57BL/6JmsSlc mice. Interestingly, although levels of DPP IV activity were not changed in the serum and liver from aronia-juice-administered KK-Ay mice, levels of DPP IV activity were increased in those from aronia-juice-administered C57BL/6JmsSlc mice. Furthermore, α-glucosidase activity was inhibited in the upper region of the small intestine from aronia-juice-administered KK-Ay mice but not in the lower region. Inhibition of α-glucosidase activity in the upper portion of the small intestine induced a reduction of glucose-dependent insulinotropic polypeptide (GIP) level. The results suggest that DPP IV activity in diabetic mice is inhibited by aronia juice, that the GIP level in the upper region of the small intestine is reduced by inhibition of α-glucosidase activity and that weights of adipose tissues are reduced by aronia juice.

  10. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.

    PubMed

    Mojica, Luis; Chen, Karen; de Mejía, Elvira González

    2015-01-01

    The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health.

  11. Dipeptidyl peptidase IV inhibitors: a promising new therapeutic approach for the management of type 2 diabetes.

    PubMed

    Deacon, Carolyn F; Holst, Jens J

    2006-01-01

    Glucagon-like peptide-1 is an insulinotropic hormone with antidiabetic potential due to its spectrum of effects, which include glucose-dependent stimulation of insulin and inhibition of glucagon secretion, tropic effects on the pancreatic beta-cells, inhibition of gastric emptying and the reduction of appetite. Glucagon-like peptide-1 is, however, extremely rapidly inactivated by the serine peptidase, dipeptidyl peptidase IV, so that the native peptide is not useful clinically. A new approach to utilise the beneficial effects of glucagon-like peptide-1 in the treatment of type 2 diabetes has been the development of orally active dipeptidyl peptidase IV inhibitors. Preclinical studies have demonstrated that this approach is effective in enhancing endogenous levels of glucagon-like peptide-1, resulting in improved glucose tolerance in glucose-intolerant and diabetic animal models. In recent studies of 3-12 months duration in patients with type 2 diabetes, dipeptidyl peptidase IV inhibitors have proved efficacious, both as monotherapy and when given in combination with metformin. Fasting and postprandial glucose concentrations were reduced, leading to reductions in glycosylated haemoglobin levels, while beta-cell function was preserved. Current information suggests dipeptidyl peptidase IV inhibitors are body weight neutral and are well tolerated. A number of dipeptidyl peptidase IV inhibitors are now in the late stages of clinical development. These have different properties, in terms of their duration of action and anticipated dosing frequency, but data from protracted dosing studies is presently not available to allow comparison of their clinical efficacy.

  12. Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus.

    PubMed

    McIntosh, Christopher H S; Demuth, Hans-Ulrich; Kim, Su-Jin; Pospisilik, J Andrew; Pederson, Raymond A

    2006-01-01

    A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. DP IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 human diabetics. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion and important effects on beta-cell differentiation, mitogenesis and survival, by the incretins and other DP IV-sensitive peptides, can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetics.

  13. Dipeptidyl Peptidase IV Inhibition Does Not Adversely Affect Immune or Virological Status in HIV Infected Men And Women: A Pilot Safety Study

    PubMed Central

    Goodwin, Scott R.; Reeds, Dominic N.; Royal, Michael; Struthers, Heidi; Laciny, Erin

    2013-01-01

    Context: People infected with HIV have a higher risk for developing insulin resistance, diabetes, and cardiovascular disease than the general population. Dipeptidyl peptidase IV (DPP4) inhibitors are glucose-lowering medications with pleiotropic actions that may particularly benefit people with HIV, but the immune and virological safety of DPP4 inhibition in HIV is unknown. Objective: DPP4 inhibition will not reduce CD4+ T lymphocyte number or increase HIV viremia in HIV-positive adults. Design: This was a randomized, placebo-controlled, double-blind safety trial of sitagliptin in HIV-positive adults. Setting: The study was conducted at an academic medical center. Participants: Twenty nondiabetic HIV-positive men and women (9.8 ± 5.5 years of known HIV) taking antiretroviral therapy and with stable immune (625 ± 134 CD4+ T cells per microliter) and virological (<48 copies HIV RNA per milliliter) status. Intervention: The intervention included sitagliptin (100 mg/d) vs matching placebo for up to 24 weeks. Main Outcome Measures: CD4+ T cell number and plasma HIV RNA were measured every 4 weeks; fasting serum regulated upon activation normal T-cell expressed and secreted (RANTES), stromal derived factor (SDF)-1α, Soluble TNF receptor II, and oral glucose tolerance were measured at baseline, week 8, and the end of study. ANOVA was used for between-group comparisons; P < .05 was considered significant. Results: Compared with placebo, sitagliptin did not reduce CD4+ T cell count, plasma HIV RNA remained less than 48 copies/mL, RANTES and soluble TNF receptor II concentrations did not increase. SDF1α concentrations declined (P < .0002) in the sitagliptin group. The oral glucose tolerance levels improved in the sitagliptin group at week 8. Conclusions: Despite lowering SDF1α levels, sitagliptin did not adversely affect immune or virological status, or increase immune activation, but did improve glycemia in healthy, nondiabetic HIV-positive adults. These safety data

  14. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    SciTech Connect

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.

  15. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice.

    PubMed

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside.

  16. Selective fluorescence probes for dipeptidyl peptidase activity-fibroblast activation protein and dipeptidyl peptidase IV.

    PubMed

    Lai, Koon Siew; Ho, Nan-Hui; Cheng, Jonathan D; Tung, Ching-Hsuan

    2007-01-01

    Development of suitable tools to assess enzyme activity directly from their complex cellular environment has a dramatic impact on understanding the functional roles of proteins as well as on the discovery of new drugs. In this study, a novel fluorescence-based chemosensor strategy for the direct readout of dipeptidase activities within intact living cells is described. Selective activity-based probes were designed to sense two important type II transmembrane serine proteases, fibroblast activation protein (FAP) and dipeptidyl peptidase IV (DPP-IV). These serine proteases have been implicated in diverse cellular activities, including blood coagulation, digestion, immune responses, wound healing, tumor growth, tumor invasion, and metastasis. Here, we validated that Ac-GPGP-2SBPO and GPGP-2SBPO probes are excellent reporters of both proteolytic activities. Furthermore, the novel probes can differentiate between FAP and DPP-IV proteolytic activities in cellular assay. Potentially, this assay platform is immediately useful for novel drug discovery.

  17. Selective Fluorescence Probes for Dipeptidyl Peptidase Activity - Fibroblast Activation Protein and Dipeptidyl Peptidase IV

    PubMed Central

    Lai, Koon Siew; Ho, Nan-Hui; Cheng, Jonathan D.; Tung, Ching-Hsuan

    2008-01-01

    Development of suitable tools to assess enzyme activity directly from their complex cellular environment has a dramatic impact on understanding the functional roles of proteins as well as on the discovery of new drugs. In this study, a novel fluorescence-based chemosensor strategy for the direct readout of dipeptidase activities within intact living cells is described. Selective activity-based probes were designed to sense two important type II transmembrane serine proteases, Fibroblast activation protein (FAP) and Dipeptidyl peptidase IV (DPP-IV). These serine proteases have been implicated in diverse cellular activities, including blood coagulation, digestion, immune responses, wound healing, tumor growth, tumor invasion and metastasis. We here validated that Ac-GPGP-2SBPO and GPGP-2SBPO probes are excellent reporters of both proteolytic activities. Furthermore, the novel probes can differentiate between FAP and DPP-IV proteolytic activities in cellular assay. Potentially, this assay platform is immediately useful for novel drug discovery. PMID:17489551

  18. Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV.

    PubMed

    Lan, Vu Thi Tuyet; Ito, Keisuke; Ito, Sohei; Kawarasaki, Yasuaki

    2014-04-01

    Human dipeptidyl peptidase IV (hDPPIV, alternative name: CD26) inhibitors provide an effective strategy for the treatment of type 2 diabetes. Recently, our research group discovered a non substrate-mimic inhibitory dipeptide, Trp-Arg, by the systematic analysis of a dipeptide library. In the present study, a tripeptide library Trp-Arg-Xaa (where Xaa represents any amino acid) was analyzed to investigate the interactions of peptidergic inhibitors with hDPPIV. Trp-Arg-Glu showed the highest inhibitory effect toward hDPPIV (Ki=130 μM). All of the tested 19 Trp-Arg-Xaa tripeptides showed unique uncompetitive-type inhibition. The inhibition mechanism of Trp-Arg-Xaa is discussed based on the crystal structure of hDPPIV. The information obtained by this study suggests a novel concept for developing hDPPIV inhibitory peptides and drugs.

  19. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor.

    PubMed

    Lan, Vu Thi Tuyet; Ito, Keisuke; Ohno, Masumi; Motoyama, Takayasu; Ito, Sohei; Kawarasaki, Yasuaki

    2015-05-15

    Human dipeptidyl peptidase IV (hDPPIV) inhibitors provide an effective strategy for the treatment of type 2 diabetes. Because certain peptides are known to act as hDPPIV inhibitors, a dataset of possible peptides with their inhibition intensities will facilitate the development of functional food for type 2 diabetes. In this study, we examined a total of 337 dipeptides with respect to their hDPPIV inhibitory effects. Amino acid residues at N-termini dominated their inhibition intensities. Particularly highly inhibitory dipeptides discovered included the following novel dipeptides: Thr-His, Asn-His, Val-Leu, Met-Leu, and Met-Met. Using our dataset, prime candidates contributing to the hDPPIV inhibitory effect of soy protein hydrolyzates were successfully identified. Possible dietary proteins potentially able to produce particularly highly hDPPIV inhibitory peptides are also discussed on the basis of the dataset.

  20. Differential expression of dipeptidyl peptidase IV in human versus cynomolgus monkey skin eccrine sweat glands.

    PubMed

    Pantano, Serafino; Dubost, Valérie; Darribat, Katy; Couttet, Philippe; Grenet, Olivier; Busch, Steven; Moulin, Pierre

    2013-12-01

    Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression in human skin was described mainly in dermal fibroblasts and a subset of keratinocytes in the basal layer. Of importance in the perspective of preclinical experimentation, DPP4 distribution in skin of non-human primate species has not been documented. This report evidences unexpected differences between a set of human and cynomolgus monkey skin samples revealing a major expression of DPP4 in eccrine sweat glands of cynomolgus monkeys but not in humans. This represents a unique distinctive feature compared to the conserved expression of dipeptidyl peptidases 8 and 9 and potential relevant DPP4 substrates such as neuropeptide Y (NPY) and receptors (NPY-receptor 1 and Neurokinin receptor). Finally the observation that cathepsin D, an unrelated protease, shows the opposite expression compared to DPP4 (present in human but not in cynomolgus monkey eccrine sweat glands) could indicate that human eccrine sweat glands evolved a divergent protease repertoire compared to non-human primates. These unexpected differences in the eccrine sweat glands protease repertoire will need to be confirmed extending the analysis to a major number of donors but could imply possible biochemical divergences, reflecting the functional evolution of the glands and the control of their activity. Our findings also demonstrate that non-human primates studies aiming at understanding DPP4 function in skin biology are not readily translatable to human.

  1. Enzyme-Histochemistry Technique for Visualizing the Dipeptidyl-Peptidase IV (DPP-IV) Activity in the Liver Biliary Tree.

    PubMed

    Bertone, Vittorio; Tarantola, Eleonora; Freitas, Isabel

    2017-01-01

    Dipeptidyl-peptidase IV is an enzyme involved in a lot of biochemical processes, where it modifies a number of regulatory proteins by removing the terminal peptides by hydrolysis. Here we describe a histochemical method to demonstrate with accuracy and precision its in situ activity on cryostatic section of Wistar rat liver by means of a simultaneous azo-coupling method.

  2. Novel water-soluble prodrugs of acyclovir cleavable by the dipeptidyl-peptidase IV (DPP IV/CD26) enzyme.

    PubMed

    Diez-Torrubia, Alberto; Cabrera, Silvia; de Castro, Sonia; García-Aparicio, Carlos; Mulder, Gwenn; De Meester, Ingrid; Camarasa, María-José; Balzarini, Jan; Velázquez, Sonsoles

    2013-01-01

    We herein report for the first time the successful use of the dipeptidyl peptidase IV (DPPIV/CD26) prodrug approach to guanine derivatives such as the antiviral acyclovir (ACV). The solution- and solid-phase synthesis of the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of acyclovir are reported. The synthesis of the demanding tetrapeptide amide prodrug of ACV 3 was first established in solution and successfully transferred onto solid support by using Ellman's dihydropyran (DHP) resin. In contrast with the valyl ester prodrug (valacyclovir, VACV), the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of ACV proved fully stable in PBS. Both prodrugs converted to VACV (for 4) or ACV (for 3) upon exposure to purified DPPIV/CD26 or human or bovine serum. Vildagliptin, a potent inhibitor of DPPIV/CD26 efficiently inhibited the DPPIV/CD26-catalysed hydrolysis reaction. Both amide and ester prodrugs of ACV showed pronounced anti-herpetic activity in cell culture and significantly improved the water solubility in comparison with the parent drug.

  3. Identification and characterization of dipeptidyl peptidase IV enzyme activity in the American crocodile (Crocodylus acutus).

    PubMed

    Merchant, Mark; Mead, Stephanie; McAdon, Charles; McFatter, Justin; Wasilewski, Joe

    2010-07-01

    Serum from the American crocodile was assayed for dipeptidyl peptidase IV (DPP4) activity. We measured the DPP4-mediated hydrolysis of Ala-Pro-AFC. The generation of AFC was dependent on the titer of serum, with significant DPP4 activity (0.20 + or - 0.03 nmol product formed) measured using only 2 microL of crocodile serum, with maximum activity measured using 500 microL of serum. The hydrolysis of substrate was inhibited in a concentration-dependent manner by diprotin A, a specific inhibitor of DPP4 activity, indicating that this activity was due to the presence of DPP4. The crocodile serum DPP4 exhibited classical Michaelis-Menten kinetics, with K(m) and V(max) extrapolated, by double-reciprocal plot, to be 14.7 + or - 1.3 microM and 75.5 + or - 4.3 nmol/min, respectively. Crocodile DPP4 catalyzed the hydrolysis of Ala-Pro-AFC rapidly, with substantial activity measured within 5 min of the addition of substrate. After an initial rapid increase in activity, near maximal activity (7.43 + or - 0.24 nmol product formed) measured at 180 min. Crocodile serum DPP4 activity was temperature-dependent, with steadily increased activity from 5 to 40 degrees C.

  4. Reduced serum dipeptidyl peptidase-IV after metformin and pioglitazone treatments.

    PubMed

    Lenhard, James M; Croom, Dallas K; Minnick, Dana T

    2004-11-05

    Dipeptidyl peptidase-IV (DPP-IV) regulates metabolism by degrading incretins involved in nutritional regulation. Metformin and pioglitazone improve insulin sensitivity whereas glyburide promotes insulin secretion. Zucker diabetic rats were treated with these antidiabetic agents for 2 weeks and DPP-IV activity and expression were determined. Serum DPP-IV activity increased whereas tissue activity decreased as the rats aged. Treatment of rats with metformin, pioglitazone, and glyburide did not alter DPP-IV mRNA expression in liver or kidney. Metformin and pioglitazone significantly (P<0.05) reduced serum DPP-IV activity and glycosylated hemoglobin. Glyburide did not lower DPP-IV activity or glycosylated hemoglobin. Regression analysis showed serum DPP-IV activity correlated with glycosylated hemoglobin (r=0.92) and glucagon-like peptide-1 levels (r=-0.49). Metformin, pioglitazone, and glyburide had no effect on serum DPP-IV activity in vitro, indicating these are not competitive DPP-IV inhibitors. We propose the in vivo inhibitory effects observed with metformin and pioglitazone on serum DPP-IV activity results from reduced DPP-IV secretion.

  5. Development of a dual fluorogenic and chromogenic dipeptidyl peptidase IV substrate.

    PubMed

    Ho, Nan-Hui; Weissleder, Ralph; Tung, Ching-Hsuan

    2006-05-15

    A new far-red dual fluorogenic and chromogenic substrate, 5-glycylprolylglycylprolyl-9-di-3-sulfonyl-propylaminobenza[a]phenoxazonium perchlorate (GPGP-2SBPO), was developed for dipeptidyl peptidase IV (DPP-IV) sensing. The glycylprolylglycylprolyl tetrapeptide was chosen as the recognition sequence due to its stability under physiological conditions. In contrast, the truncated substrate, GP-2SBPO, containing only a glycylprolyl peptide, is unstable. Proteolysis of GPGP-2SBPO was assayed by monitoring the absorbance and fluorescence signals from the released fluorochrome, 2SBPO, at 625 and 670nm, respectively.

  6. Inhibition of dipeptidyl peptidase 8/9 impairs preadipocyte differentiation

    PubMed Central

    Han, Ruijun; Wang, Xinying; Bachovchin, William; Zukowska, Zofia; Osborn, John W.

    2015-01-01

    Adipocytes are the primary cells in adipose tissue, and adipocyte dysfunction causes lipodystrophy, obesity and diabetes. The dipeptidyl peptidase (DPP) 4 family includes four enzymes, DPP4, DPP8, DPP9 and fibroblast activation protein (FAP). DPP4 family inhibitors have been used for the treatment of type 2 diabetes patients, but their role in adipocyte formation are poorly understood. Here we demonstrate that the DPP8/9 selective inhibitor 1G244 blocks adipogenesis in preadipocyte 3T3-L1 and 3T3-F422A, while DPP4 and FAP inhibitors have no effect. In addition, knockdown of DPP8 or DPP9 significantly impairs adipocyte differentiation in preadipocytes. We further uncovered that blocking the expression or activities of DPP8 and DPP9 attenuates PPARγ2 induction during preadipocyte differentiation. Addition of PPARγ agonist thiazolidinediones (TZDs), or ectopic expression of PPARγ2, is able to rescue the adipogenic defect caused by DPP8/9 inhibition in preadipocytes. These results indicate the importance of DPP8 and DPP9 on adipogenesis. PMID:26242871

  7. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.

  8. Peptide array on cellulose support--a screening tool to identify peptides with dipeptidyl-peptidase IV inhibitory activity within the sequence of α-lactalbumin.

    PubMed

    Lacroix, Isabelle M E; Li-Chan, Eunice C Y

    2014-11-13

    The inhibition of the enzyme dipeptidyl-peptidase IV (DPP-IV) is an effective pharmacotherapeutic approach for the management of type 2 diabetes. Recent findings have suggested that dietary proteins, including bovine α-lactalbumin, could be precursors of peptides able to inhibit DPP-IV. However, information on the location of active peptide sequences within the proteins is far from being comprehensive. Moreover, the traditional approach to identify bioactive peptides from foods can be tedious and long. Therefore, the objective of this study was to use peptide arrays to screen α-lactalbumin-derived peptides for their interaction with DPP-IV. Deca-peptides spanning the entire α-lactalbumin sequence, with a frame shift of 1 amino acid between successive sequences, were synthesized on cellulose membranes using "SPOT" technology, and their binding to and inhibition of DPP-IV was studied. Among the 114 α-lactalbumin-derived decamers investigated, the peptides 60WCKDDQNPHS69 (αK(i) = 76 µM), 105LAHKALCSEK114 (K(i) = 217 µM) and 110LCSEKLDQWL119 (K(i) = 217 µM) were among the strongest DPP-IV inhibitors. While the SPOT- and traditionally-synthesized peptides showed consistent trends in DPP-IV inhibitory activity, the cellulose-bound peptides' binding behavior was not correlated to their ability to inhibit the enzyme. This research showed, for the first time, that peptide arrays are useful screening tools to identify DPP-IV inhibitory peptides from dietary proteins.

  9. Anti-α-glucosidase and Anti-dipeptidyl Peptidase-IV Activities of Extracts and Purified Compounds from Vitis thunbergii var. taiwaniana.

    PubMed

    Lin, Yin-Shiou; Chen, Chiy-Rong; Wu, Wei-Hau; Wen, Chi-Luan; Chang, Chi-I; Hou, Wen-Chi

    2015-07-22

    Ethanol extracts (Et) from the stem (S) and leaf (L) of Vitis thunbergii var. taiwaniana (VTT) were used to investigate yeast α-glucosidase and porcine kidney dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Both VTT-Et showed complete α-glucosidase inhibition at 0.1 mg/mL; VTT-S-Et and VTT-L-Et showed 26 and 11% DPP-IV inhibition, respectively, at 0.5 mg/mL. The VTT-Et interventions (20 and 50 mg/kg) resulted in improvements in impaired glucose tolerance of diet-induced obese rats. (+)-Hopeaphenol, (+)-vitisin A, and (-)-vitisin B were isolated from the ethyl acetate fractions of S-Et and showed yeast α-glucosidase inhibition (IC50 = 18.30, 1.22, and 1.02 μM) and porcine kidney DPP-IV inhibition (IC50 = 401, 90.75, and 15.3 μM) compared to acarbose (6.39 mM) and sitagliptin (47.35 nM), respectively. Both (+)-vitisin A and (-)-vitisin B showed mixed noncompetitive inhibition against yeast α-glucosidase and porcine kidney DPP-IV, respectively. These results proposed that VTT extracts might through inhibitions against α-glucosidase and DPP-IV improve the impaired glucose tolerance in diet-induced obese rats.

  10. Crystal structures of DPP-IV (CD26) from rat kidney exhibit flexible accommodation of peptidase-selective inhibitors.

    PubMed

    Longenecker, Kenton L; Stewart, Kent D; Madar, David J; Jakob, Clarissa G; Fry, Elizabeth H; Wilk, Sherwin; Lin, Chun W; Ballaron, Stephen J; Stashko, Michael A; Lubben, Thomas H; Yong, Hong; Pireh, Daisy; Pei, Zhonghua; Basha, Fatima; Wiedeman, Paul E; von Geldern, Thomas W; Trevillyan, James M; Stoll, Vincent S

    2006-06-20

    Dipeptidyl peptidase IV (DPP-IV) belongs to a family of serine peptidases, and due to its indirect regulatory role in plasma glucose modulation, DPP-IV has become an attractive pharmaceutical target for diabetes therapy. DPP-IV inactivates the glucagon-like peptide (GLP-1) and several other naturally produced bioactive peptides that contain preferentially a proline or alanine residue in the second amino acid sequence position by cleaving the N-terminal dipeptide. To elucidate the details of the active site for structure-based drug design, we crystallized a natural source preparation of DPP-IV isolated from rat kidney and determined its three-dimensional structure using X-ray diffraction techniques. With a high degree of similarity to structures of human DPP-IV, the active site architecture provides important details for the design of inhibitory compounds, and structures of inhibitor-protein complexes offer detailed insight into three-dimensional structure-activity relationships that include a conformational change of Tyr548. Such accommodation is exemplified by the response to chemical substitution on 2-cyanopyrrolidine inhibitors at the 5 position, which conveys inhibitory selectivity for DPP-IV over closely related homologues. A similar conformational change is also observed in the complex with an unrelated synthetic inhibitor containing a xanthine core that is also selective for DPP-IV. These results suggest the conformational flexibility of Tyr548 is unique among protein family members and may be utilized in drug design to achieve peptidase selectivity.

  11. Potential Role of Dipeptidyl Peptidase IV in the Pathophysiology of Heart Failure

    PubMed Central

    Salles, Thiago A.; dos Santos, Leonardo; Barauna, Valério G.; Girardi, Adriana C. C.

    2015-01-01

    Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water. PMID:25690036

  12. Molecular modeling and statistical analysis in the design of derivatives of human dipeptidyl peptidase IV.

    PubMed

    Pereira, Alison L E; Dos Santos, Gabriela B; Franco, Márcia S F; Federico, Leonardo B; da Silva, Carlos H T P; Santos, Cleydson B R

    2017-01-24

    Human dipeptidyl peptidase IV (hDDP-IV) has a considerable importance in inactivation of glucagon-like peptide-1, which is related to type 2 diabetes. One approach for the treatment is the development of small hDDP-IV inhibitors. In order to design better inhibitors, we analyzed 5-(aminomethyl)-6-(2,4-dichlrophenyl)-2-(3,5-dimethoxyphenyl)pyrimidin-4-amine and a set of 24 molecules found in the BindingDB web database for model designing. The analysis of their molecular properties allowed the design of a multiple linear regression model for activity prediction. Their docking analysis allowed visualization of the interactions between the pharmacophore regions and hDDP-IV. After both analyses were performed, we proposed a set of nine molecules in order to predict their activity. Four of them displayed promising activity, and thus, had their docking performed, as well as, the pharmacokinetic and toxicological study. Two compounds from the proposed set showed suitable pharmacokinetic and toxicological characteristics, and therefore, they were considered promising for future synthesis and in vitro studies.

  13. Alterations in plasma dipeptidyl peptidase IV enzyme activity in depression and schizophrenia: effects of antidepressants and antipsychotic drugs.

    PubMed

    Maes, M; De Meester, I; Scharpe, S; Desnyder, R; Ranjan, R; Meltzer, H Y

    1996-01-01

    Recently, our laboratory reported that the activity of dipeptidyl-peptidase IV (DPP IV) was significantly lower in the peripheral blood of major depressed patients than in normal controls. The present study examines plasma DPP IV activity in 43 major depressed and 13 schizophrenic subjects versus 21 normal controls and the effects of antidepressants and antipsychotic drugs on plasma DPP IV activity. DPP IV activity was significantly lower in major depressed subjects than in normal controls and schizophrenic subjects. There was a trend towards higher DPP IV activity in schizophrenic patients than in normal controls. There were no significant effects of antidepressants or neuroleptics on plasma DPP IV activity in depressed and schizophrenic patients, respectively. There were no significant relationships between plasma DPP IV activity and plasma cortisol or immune-inflammatory markers, such as serum interleukin-6 (IL-6) or soluble IL-2 receptor. A significant and positive correlation was found between plasma DPP IV and prolyl endopeptidase (PEP) enzyme activity in the study group as a whole and in schizophrenic subjects. The results support the hypothesis that lower and higher plasma DPP IV activities are trait markers of major depression and schizophrenia, respectively. It is concluded that alterations in the enzyme activity of peptidases, such as DPP IV and PEP, play a role in the pathophysiology of major depression and schizophrenia.

  14. Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs – An Ab Initio Fragment Molecular Orbital Study

    PubMed Central

    Arulmozhiraja, Sundaram; Matsuo, Naoya; Ishitsubo, Erika; Okazaki, Seiji; Shimano, Hitoshi

    2016-01-01

    Dipeptidyl peptidase IV (DPP-4) enzyme is responsible for the degradation of incretins that stimulates insulin secretion and hence inhibition of DPP-4 becomes an established approach for the treatment of type 2 diabetics. We studied the interaction between DPP-4 and its inhibitor drugs (sitagliptin 1, linagliptin 2, alogliptin 3, and teneligliptin 4) quantitatively by using fragment molecular orbital calculations at the RI-MP2/cc-pVDZ level to analyze the inhibitory activities of the drugs. Apart from having common interactions with key residues, inhibitors encompassing the DPP-4 active site extensively interact widely with the hydrophobic pocket by their hydrophobic inhibitor moieties. The cumulative hydrophobic interaction becomes stronger for these inhibitors and hence linagliptin and teneligliptin have larger interaction energies, and consequently higher inhibitory activities, than their alogliptin and sitagliptin counterparts. Though effective interaction for both 2 and 3 is at S2' subsite, 2 has a stronger binding to this subsite interacting with Trp629 and Tyr547 than 3 does. The presence of triazolopiperazine and piperazine moiety in 1 and 4, respectively, provides the interaction to the S2 extensive subsite; however, the latter’s superior inhibitory activity is not only due to a relatively tighter binding to the S2 extensive subsite, but also due to the interactions to the S1 subsite. The calculated hydrophobic interfragment interaction energies correlate well with the experimental binding affinities (KD) and inhibitory activities (IC50) of the DPP-4 inhibitors. PMID:27832184

  15. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities.

    PubMed

    Fontoura, Roberta; Daroit, Daniel J; Correa, Ana P F; Meira, Stela M M; Mosquera, Mauricio; Brandelli, Adriano

    2014-09-25

    The antioxidant and antihypertensive activities of feather hydrolysates obtained with the bacterium Chryseobacterium sp. kr6 were investigated. Keratin hydrolysates were produced with different concentrations of thermally denatured feathers (10-75 g l(-1)) and initial pH values (6.0-9.0). Soluble proteins accumulated in high amounts in media with 50 and 75 g l(-1) of feathers, reaching values of 18.5 and 22 mg ml(-1), respectively, after 48 hours of cultivation. In media with 50 g l(-1) of feathers, initial pH had minimal effect after 48 hours. Maximal protease production was observed after 24 hours of cultivation, and feather concentration and initial pH values showed no significant effect on enzyme yields at this time. Feather hydrolysates displayed in vitro antioxidant properties, and optimal antioxidant activities were observed in cultures with 50 g l(-1) feathers, at initial pH 8.0, after 48 hours growth at 30°C. Also, feather hydrolysates were demonstrated to inhibit the angiotesin I-converting enzyme by 65% and dipeptidyl peptidase-IV by 44%. The bioconversion of an abundant agroindustrial waste such as chicken feathers can be utilized as a strategy to obtain hydrolysates with antioxidant and antihypertensive activities. Feather hydrolysates might be employed as supplements in animal feed, and also as a potential source of bioactive molecules for feed, food and drug development.

  16. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

    SciTech Connect

    Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.; Parmee, Emma R.; Eiermann, George J.; Fisher, Michael H.; He, Huaibing; Leiting, Barbara; Lyons, Kathryn; Scapin, Giovanna; Patel, Sangita B.; Petrov, Aleksandr; Pryor, KellyAnn D.; Roy, Ranabir Sinha; Wu, Joseph K.; Zhang, Xiaoping; Wyvratt, Matthew J.; Zhang, Bei B.; Zhu, Lan; Thornberry, Nancy A.; Weber, Ann E.

    2008-06-30

    A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.

  17. Inhibition of DD-peptidases by a specific trifluoroketone: crystal structure of a complex with the Actinomadura R39 DD-peptidase.

    PubMed

    Dzhekieva, Liudmila; Adediran, S A; Herman, Raphael; Kerff, Frédéric; Duez, Colette; Charlier, Paulette; Sauvage, Eric; Pratt, R F

    2013-03-26

    Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.

  18. Obese patients have higher circulating protein levels of dipeptidyl peptidase IV.

    PubMed

    Stengel, Andreas; Goebel-Stengel, Miriam; Teuffel, Pauline; Hofmann, Tobias; Buße, Petra; Kobelt, Peter; Rose, Matthias; Klapp, Burghard F

    2014-11-01

    Dipeptidyl peptidase IV (DPPIV) is a protease with broad distribution involved in various homeostatic processes such as immune defense, psychoneuroendocrine functions and nutrition. While DPPIV protein levels were investigated in patients with hyporectic disorders, less is known under conditions of obesity. Therefore, we investigated DPPIV across a broad range of body mass index (BMI). Blood samples from hospitalized patients with normal weight (BMI 18.5-25 kg/m(2)), anorexia nervosa (BMI <17.5 kg/m(2)) and obesity (BMI 30-40, 40-50 and >50 kg/m(2), n = 15/group) were tested cross-sectionally and DPPIV concentration and total enzyme activity and the DPPIV targets, pancreatic polypeptide (PP) and glucagon-like peptide (GLP-1) were measured. DPPIV protein expression was detected in human plasma indicated by a strong band at the expected size of 110 kDa and another major band at 50 kDa, likely representing a fragment comprised of two heavy chains. Obese patients had higher DPPIV protein levels compared to normal weight and anorexics (+50%, p<0.05) resulting in a positive correlation with BMI (r = 0.34, p = 0.004). DPPIV serum activity was similar in all groups (p>0.05), while the concentration/activity ratio was higher in obese patients (p<0.05). Plasma PP levels were highest in anorexic patients (∼ 2-fold increase compared to other groups, p<0.05), whereas GLP-1 did not differ among groups (p<0.05). Taken together, circulating DPPIV protein levels depend on body weight with increased levels in obese resulting in an increased concentration/activity ratio. Since DPPIV deactivates food intake-inhibitory hormones like PP, an increased DPPIV concentration/activity ratio might contribute to reduced food intake-inhibitory signaling under conditions of obesity.

  19. Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy.

    PubMed

    Kelly, Thomas

    2005-01-01

    Fibroblast activation protein-alpha (FAP-alpha) and dipeptidyl peptidase IV (DPPIV) are serine proteases with post-prolyl peptidase activities that can modify tumor cell behavior. FAP-alpha and DPPIV can form heteromeric complexes with each other and may function coordinately to modulate the growth, differentiation, adhesion, and metastasis of tumor cells. This review is focused on FAP-alpha and summarizes a series of studies showing that elevated expression of FAP-alpha results in profound changes in growth and malignant behavior of tumor cells. Depending on the model system investigated, FAP-alpha expression causes dramatic promotion or suppression of tumor growth. In the case of tumor promotion, FAP-alpha expression can drive tumor growth by increasing angiogenesis and by decreasing the anti-tumor response of the immune system. In the case of tumor suppression, FAP-alpha can decrease tumorigenicity of mouse melanoma cells and restore contact inhibition and growth factor dependence even when it is catalytically inactive, implying that protein-protein interactions mediate these effects. Understanding how FAP-alpha activates cell signaling is critical to determining how FAP-alpha mediates growth promotion versus growth suppression in the different model systems and ultimately in human cancer patients. In particular, the roles of FAP-alpha protease activity and FAP-alpha complex formation with DPPIV and other surface molecules in activating cell signaling need to be elucidated since these represent potential targets for therapeutic intervention.

  20. Improvement of glycemic control in streptozotocin-induced diabetic rats by Atlantic salmon skin gelatin hydrolysate as the dipeptidyl-peptidase IV inhibitor.

    PubMed

    Hsieh, C H; Wang, T Y; Hung, C C; Chen, M C; Hsu, K C

    2015-06-01

    In our previous study, Atlantic salmon skin gelatin hydrolysed with flavourzyme possessed 42.5% dipeptidyl-peptidase (DPP)-IV inhibitory activity at a concentration of 5 mg mL(-1). The oral administration of the hydrolysate (FSGH) at a single dose of 300 mg per day in streptozotocin (STZ)-induced diabetic rats for 5 weeks was evaluated for its antidiabetic effect. During the 5-week experiment, body weight increased, and the food and water intake was reduced by FSGH in diabetic rats. The daily administration of FSGH for 5 weeks was effective for lowering the blood glucose levels of diabetic rats during an oral glucose tolerance test (OGTT). After the 5-week treatment, plasma DPP-IV activity was inhibited; the plasma activity of glucagon-like peptide-1 (GLP-1), insulin, and the insulin-to-glucagon ratio were increased by FSGH in diabetic rats. The results indicate that FSGH has the function of inhibiting GLP-1 degradation by DPP-IV, resulting in the enhancement of insulin secretion and improvement of glycemic control in STZ-induced diabetic rats.

  1. Dipeptidyl peptidase IV inhibitor lowers PPARγ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention

    PubMed Central

    Masuda, Takahiro; Fu, Yiling; Eguchi, Akiko; Czogalla, Jan; Rose, Michael A.; Kuczkowski, Alexander; Gerasimova, Maria; Feldstein, Ariel E.; Scadeng, Miriam

    2013-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) agonists like pioglitazone (PGZ) are effective antidiabetic drugs, but they induce fluid retention and body weight (BW) gain. Dipeptidyl peptidase IV (DPP IV) inhibitors are antidiabetic drugs that enhance renal Na+ and fluid excretion. Therefore, we examined whether the DPP IV inhibitor alogliptin (ALG) ameliorates PGZ-induced BW gain. Male Sv129 mice were treated with vehicle (repelleted diet), PGZ (220 mg/kg diet), ALG (300 mg/kg diet), or a combination of PGZ and ALG (PGZ + ALG) for 14 days. PGZ + ALG prevented the increase in BW observed with PGZ but did not attenuate the increase in body fluid content determined by bioimpedance spectroscopy (BIS). BIS revealed that ALG alone had no effect on fat mass (FM) but enhanced the FM-lowering effect of PGZ; MRI analysis confirmed the latter and showed reductions in visceral and inguinal subcutaneous (sc) white adipose tissue (WAT). ALG but not PGZ decreased food intake and plasma free fatty acid concentrations. Conversely, PGZ but not ALG increased mRNA expression of thermogenesis mediator uncoupling protein 1 in epididymal WAT. Adding ALG to PGZ treatment increased the abundance of multilocular cell islets in sc WAT, and PGZ + ALG increased the expression of brown-fat-like “beige” cell marker TMEM26 in sc WAT and interscapular brown adipose tissue and increased rectal temperature vs. vehicle. In summary, DPP IV inhibition did not attenuate PPARγ agonist-induced fluid retention but prevented BW gain by reducing FM. This involved ALG inhibition of food intake and was associated with food intake-independent synergistic effects of PPARγ agonism and DPP-IV inhibition on beige/brown fat cells and thermogenesis. PMID:24347054

  2. Dipeptidyl-peptidase IV (DPP IV/CD26)-activated prodrugs: a successful strategy for improving water solubility and oral bioavailability.

    PubMed

    Velázquez, Sonsoles; de Castro, Sonia; Diez-Torrubia, Alberto; Balzarini, Jan; Camarasa, María-José

    2015-01-01

    In the search of novel enzyme-based prodrug approaches to improve pharmacological properties of therapeutic drugs such as solubility and bioavailability, dipeptidyl-peptidase IV (DPP IV, also termed as CD26) enzyme activity provides a previously unexplored successful prodrug strategy. This review covers key aspects of the enzyme useful for the design of CD26-directed prodrugs. The proof-of-concept of this prodrug technology is provided for amine-containing agents by directly linking appropriate di- (or oligo)peptide moieties to a free amino group of a non-peptidic drug through an amide bond which is specifically hydrolized by DPP IV/CD26. Special emphasis is also made in discussing the design and synthesis of more elaborated tripartite prodrug systems, for further extension of the strategy to hydroxy-containing drugs. The application of this technology to improve water solubility and oral bioavailability of prominent examples of antiviral nucleosides is highlighted.

  3. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    SciTech Connect

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  4. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGES

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; ...

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  5. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    PubMed

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides.

  6. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin.

    PubMed

    Silveira, Silvana T; Martínez-Maqueda, Daniel; Recio, Isidra; Hernández-Ledesma, Blanca

    2013-11-15

    Dipeptidyl peptidase-IV (DPP-IV) is a serine protease involved in the degradation and inactivation of incretin hormones that act by stimulating glucose-dependent insulin secretion after meal ingestion. DPP-IV inhibitors have emerged as new and promising oral agents for the treatment of type 2 diabetes. The purpose of this study was to investigate the potential of β-lactoglobulin as natural source of DPP-IV inhibitory peptides. A whey protein concentrate rich in β-lactoglobulin was hydrolysed with trypsin and fractionated using a chromatographic separation at semipreparative scale. Two of the six collected fractions showed notable DPP-IV inhibitory activity. These fractions were analysed by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) to identify peptides responsible for the observed activity. The most potent fragment (IPAVF) corresponded to β-lactoglobulin f(78-82) which IC50 value was 44.7μM. The results suggest that peptides derived from β-lactoglobulin would be beneficial ingredients of foods against type 2 diabetes.

  7. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities.

    PubMed

    Neves, Adriana C; Harnedy, Pádraigín A; O'Keeffe, Martina B; FitzGerald, Richard J

    2017-03-01

    The pH shift method was utilised for the recovery of proteins from salmon trimmings (ST), yielding 93% (w/w) protein. ST protein (STP) hydrolysates were generated with different enzyme preparations. STP incubated with Corolase PP for 1h (STP-C1) had the most potent angiotensin converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory and oxygen radical absorbance capacity (ORAC) activities. Analysis of fractions of STP-C1 using UPLC-MS/MS identified sixteen peptides/amino acids. Tyr-Pro had the highest ACE inhibitory activity (ACE IC50=5.21±0.94μM). The highest DPP-IV inhibitory activity was found with the amino acid Tyr (DPP-IV IC50=75.15±0.84μM). Val-Pro had the highest ORAC activity (19.45±2.15μmol of TEg(-1)). To our knowledge, the peptides Gly-Pro-Ala-Val, Val-Cys, and Phe-Phe have not been previously identified to have the activities tested in this study. These results indicate that STP hydrolysates are potential sources of bioactive peptides.

  8. Neutrophil maturation rate determines the effects of dipeptidyl peptidase 1 inhibition on neutrophil serine protease activity

    PubMed Central

    Wikell, C; Clifton, S; Shearer, J; Benjamin, A; Peters, S A

    2016-01-01

    Background and Purpose Neutrophil serine proteases (NSPs) are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. The effects of neutrophil turnover rate on NSP activity following DPP1 inhibition was studied in a rat pharmacokinetic/pharmacodynamic model. Experimental Approach Rats were treated with a DPP1 inhibitor twice daily for up to 14 days; NSP activity was measured in onset or recovery studies, and an indirect response model was fitted to the data to estimate the turnover rate of the response. Key Results Maximum NSP inhibition was achieved after 8 days of treatment and a reduction of around 75% NSP activity was achieved at 75% in vitro DPP1 inhibition. Both the rate of inhibition and recovery of NSP activity were consistent with a neutrophil turnover rate of between 4–6 days. Using human neutrophil turnover rate, it is predicted that maximum NSP inhibition following DPP1 inhibition takes around 20 days in human. Conclusions and Implications Following inhibition of DPP1 in the rat, the NSP activity was determined by the amount of DPP1 inhibition and the turnover of neutrophils and is thus supportive of the role of neutrophil maturation in the activation of NSPs. Clinical trials to monitor the effect of a DPP1 inhibitor on NSPs should take into account the delay in maximal response on the one hand as well as the potential delay in a return to baseline NSP levels following cessation of treatment. PMID:27186823

  9. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter.

    PubMed Central

    Böhm, S K; Gum, J R; Erickson, R H; Hicks, J W; Kim, Y S

    1995-01-01

    The dipeptidyl peptidase IV gene encodes a plasma-membrane exopeptidase that is highly expressed in small intestine, lung and kidney. In order to better understand the mechanisms responsible for this tissue-specific expression we cloned, sequenced and functionally characterized the 5'-flanking region of the human dipeptidyl peptidase IV gene. The first 500 bases of the 5'-flanking sequence constituted an unmethylated CpG island, contained several Sp1-binding sites and lacked a consensus TATA box, all characteristics of gene promoters lacking tissue-specific expression. RNase-protection analysis using both small intestinal and Caco2 cell RNA indicated that the dipeptidyl peptidase IV transcript was initiated from no fewer than six major and 12 minor start sites. The 5'-flanking sequence also exhibited functional promoter activity in transient transfection experiments. Here, various lengths of the sequence were cloned upstream of a luciferase gene and introduced into cultured cells using lipofectin. A region located between bases -150 and -109 relative to the start of translation was found to be important for high-level promoter activity in both Caco2 and HepG2 cells. Moreover, Caco2 cells and HepG2 cells, which express high levels of dipeptidyl peptidase IV activity, exhibited much higher normalized luciferase activity after transfection than did 3T3, Jurkat or COS-7 cells, which have low enzyme levels. Sodium butyrate was found to increase both enzyme activity and normalized luciferase in HepG2 cells. Thus the dipeptidyl peptidase IV promoter possesses the ability to initiate transcription in a tissue-specific fashion in spite of having the sequence characteristics of a housekeeping gene promoter. Images Figure 3 Figure 5 Figure 6 PMID:7487939

  10. Arrabidaea chica Hexanic Extract Induces Mitochondrion Damage and Peptidase Inhibition on Leishmania spp.

    PubMed Central

    Rodrigues, Igor A.; Azevedo, Mariana M. B.; Chaves, Francisco C. M.; Alviano, Celuta S.; Alviano, Daniela S.; Vermelho, Alane B.

    2014-01-01

    Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 μg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents. PMID:24818162

  11. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor.

    PubMed

    Tian, Lei; Gao, Jie; Hao, Jianqiang; Zhang, Yu; Yi, Huimin; O'Brien, Timothy D; Sorenson, Robert; Luo, Jian; Guo, Zhiguang

    2010-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) activity by NVP-DPP728, a DPP-IV inhibitor, improves the therapeutic efficacy of glucagon-like peptide-1 (GLP-1). CD26 is a membrane-associated glycoprotein with DPP-IV activity and is expressed on lymphocytes. We investigated the effect of NVP-DPP728 on reversing new-onset diabetes in nonobese diabetic (NOD) mice and modulating the inflammatory response and stimulating beta-cell regeneration. New-onset diabetic NOD mice were treated with NVP-DPP728 for 2, 4, and 6 wk. Blood glucose level was monitored. Regulatory T cells in thymus and secondary lymph nodes, TGF-beta1 and GLP-1 in plasma, and the insulin content in the pancreas were measured. Immunostaining for insulin and bromodeoxyuridine (BrdU) were performed. The correlation of beta-cell replication with inflammation was determined. In NVP-DPP728-treated NOD mice, diabetes could be reversed in 57, 74, and 73% of mice after 2, 4, and 6 wk treatment, respectively. Insulitis was reduced and the percentage of CD4(+)CD25(+)FoxP3(+) regulatory T cells was increased in treated NOD mice with remission. Plasma TGF-beta1 and GLP-1, the insulin content, and both insulin(+) and BrdU(+) beta-cells in pancreas were also significantly increased. No significant correlations were found between numbers of both insulin(+) and BrdU(+) beta-cells in islets and beta-cell area or islets with different insulitis score in NOD mice with remission of diabetes. In conclusion, NVP-DPP728 treatment can reverse new-onset diabetes in NOD mice by reducing insulitis, increasing CD4(+)CD25(+)FoxP3(+) regulatory T cells, and stimulating beta-cell replication. beta-Cell replication is not associated with the degree of inflammation in NVP-DPP728-treated NOD mice.

  12. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors

    PubMed Central

    Ran, Yong; Ladd, Gabriela Z.; Ceballos-Diaz, Carolina; Jung, Joo In; Greenbaum, Doron; Felsenstein, Kevin M.; Golde, Todd E.

    2015-01-01

    The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase. PMID:26046535

  13. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    PubMed

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence.

  14. Systematic analysis of a dipeptide library for inhibitor development using human dipeptidyl peptidase IV produced by a Saccharomyces cerevisiae expression system.

    PubMed

    Hikida, Aya; Ito, Keisuke; Motoyama, Takayasu; Kato, Ryuji; Kawarasaki, Yasuaki

    2013-01-25

    The inhibition of human dipeptidyl peptidase IV/CD26 (hDPPIV) is an accepted treatment for type 2 diabetes. In this study, an extracellular production system of hDPPIV using Saccharomyces cerevisiae was established to facilitate the screening of hDPPIV inhibitors. As dipeptides that mimic the hDPPIV substrate are candidate inhibitors of this protein, X-Ala or X-Pro dipeptides (in which X represents any amino acid) were tested systematically. Based on the results obtained in the first screening, a second screening was performed for Trp-X dipeptides. To elucidate the manner via which the physicochemical features at the P(1) and P(2) positions contributed to the hDPPIV inhibitory effect, correlations between the inhibitory activity of dipeptides and 13 amino acid indices were analyzed. The most effective inhibitory dipeptide was Trp-Pro (K(i)=0.04 mM). The mode of inhibition of hDPPIV by dipeptides was explained well by some amino acid indices and by the structure of the substrate-binding site of hDPPIV. The information obtained from the systematic analysis of a dipeptide library provides important clues for the development of hDPPIV targeting drugs and functional foods for type 2 diabetes.

  15. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    SciTech Connect

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  16. Hindbrain DPP-IV inhibition improves glycemic control and promotes negative energy balance.

    PubMed

    Mietlicki-Baase, Elizabeth G; McGrath, Lauren E; Koch-Laskowski, Kieran; Krawczyk, Joanna; Pham, Tram; Lhamo, Rinzin; Reiner, David J; Hayes, Matthew R

    2017-05-01

    The beneficial glycemic and food intake-suppressive effects of glucagon-like peptide-1 (GLP-1) have made this neuroendocrine system a leading target for pharmacological approaches to the treatment of diabetes and obesity. One strategy to increase the activity of endogenous GLP-1 is to prevent the rapid degradation of the hormone by the enzyme dipeptidyl peptidase-IV (DPP-IV). However, despite the expression of both DPP-IV and GLP-1 in the brain, and the clear importance of central GLP-1 receptor (GLP-1R) signaling for glycemic and energy balance control, the metabolic effects of central inhibition of DPP-IV activity are unclear. To test whether hindbrain DPP-IV inhibition suppresses blood glucose, feeding, and body weight gain, the effects of 4th intracerebroventricular (ICV) administration of the FDA-approved DPP-IV inhibitor sitagliptin were evaluated. Results indicate that hindbrain delivery of sitagliptin improves glycemic control in a GLP-1R-dependent manner, suggesting that this effect is due at least in part to increased endogenous brainstem GLP-1 activity after sitagliptin administration. Furthermore, 4th ICV injection of sitagliptin reduced 24h body weight gain and energy intake, with a selective suppression of high-fat diet, but not chow, intake. These data reveal a novel role for hindbrain GLP-1R activation in glycemic control and also demonstrate that DPP-IV inhibition in the caudal brainstem promotes negative energy balance.

  17. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): a key to the beneficial effects of guava in type II diabetes mellitus.

    PubMed

    Eidenberger, Thomas; Selg, Manuel; Krennhuber, Klaus

    2013-09-01

    Based on the traditional use in popular medicine, the effect of extracts from Psidium guajava L. leaves and of the main flavonol-glycoside components on dipeptidyl-peptidase IV (DP-IV), a key enzyme of blood glucose homoeostasis, has been investigated in-vitro. An ethanolic extract was prepared from dried, powdered leaves of guava and was found to contain seven main flavonol-glycosides, which were isolated by semipreparative HPLC and tested individually. The ethanolic guava leave extract was shown to exert a dose-dependent inhibition of DP-IV, with an IC50 of 380 μg/ml test assay solution. Also the individual flavonol-glycosides inhibited DP-IV dose-dependently, with variations of the effects by a factor of 10, and an overall effect accounting for 100% of that observed for the total guava extract. The recovery of individual flavonol-glycosides in CaCo-2 epithelial cells, a model of gastrointestinal tract absorption, amounted to 2.3-5.3% of the amount available for absorption over 60 min at 37°C.

  18. Isolation of dipeptidyl peptidase IV (DP 4) isoforms from porcine kidney by preparative isoelectric focusing to improve crystallization.

    PubMed

    Wagner, Leona; Wermann, Michael; Rosche, Fred; Rahfeld, Jens-Ulrich; Hoffmann, Torsten; Demuth, Hans-Ulrich

    2011-07-01

    Abstract In the present studies we resolved the post-translational microheterogeneity of purified porcine dipeptidyl peptidase IV (DP 4) from kidney cortex. Applying SDS-homogeneous DP 4 onto an analytical agarose isoelectric focusing (IEF) gel, pH 4-6, activity staining resulted in at least 17 isoforms between pH 4.8-6.0. These could be separated into fractions with only two to six isoforms by means of preparative liquid-phase IEF, using a Rotofor cell. Starting off with three parallel Rotofor runs under the same conditions at pH 5-6, the fractions were pooled according to the specific activity of DP 4, pH and analytical IEF profile, and further refractionated without any additional ampholytes. Since excessive dilution of ampholytes and proteins was kept to the minimum, a second refractionation step could be introduced, resulting in pH gradients between 0.022 and 0.028 pH increments per fraction. By performing two consecutive refractionation steps, the high resolution necessary for the separation of DP 4 isoforms could be achieved. This represents an alternative method if isolation of isoforms with similar pI's results in precipitation and denaturation in presence of a narrow pH range. Furthermore, it demonstrates that preparative IEF is a powerful tool to resolve post-translational microheterogeneity of a purified protein required for crystallization processing.

  19. Does estradiol have an impact on the dipeptidyl peptidase IV enzyme activity of the Prevotella intermedia group bacteria?

    PubMed

    Fteita, Dareen; Könönen, Eija; Gürsoy, Mervi; Söderling, Eva; Gürsoy, Ulvi Kahraman

    2015-12-01

    Initiation and development of pregnancy-associated gingivitis is seemingly related to the microbial shift towards specific gram-negative anaerobes in subgingival biofilms. It is known that Prevotella intermedia sensu lato is able to use estradiol as an alternative source of growth instead of vitamin K. The aim of the present study was to investigate the impact of estradiol on the bacterial dipeptidyl peptidase IV (DPPIV) enzyme activity in vitro as a virulent factor of the Prevotella intermedia group bacteria, namely P. intermedia, Prevotella nigrescens, Prevotella pallens, and Prevotella aurantiaca. In all experiments, 2 strains of each Prevotella species were used. Bacteria were incubated with the concentrations of 0, 30, 90, and 120 nmol/L of estradiol and were allowed to build biofilms at an air-solid interface. DPPIV activities of biofilms were measured kinetically during 20 min using a fluorometric assay. The enzyme activity was later related to the amount of protein produced by the same biofilm, reflecting the biofilm mass. Estradiol significantly increased DPPIV activities of the 8 Prevotella strains in a strain- and dose-dependent manner. In conclusion, our in vitro experiments indicate that estradiol regulates the DPPIV enzyme activity of P. intermedia, P. nigrescens, P. pallens, and P. aurantiaca strains differently. Our results may, at least partly, explain the role of estradiol to elicit a virulent state which contributes to the pathogenesis of pregnancy-related gingivitis.

  20. Identification of a Gene Involved in the Synthesis of a Dipeptidyl Peptidase IV Inhibitor in Aspergillus oryzae

    PubMed Central

    Tsuyama, Yoshihito; Hirata, Terukage; Shiraishi, Sumihiro; Sakamoto, Kazutoshi; Yamada, Osamu; Akita, Osamu; Shimoi, Hitoshi

    2012-01-01

    WYK-1 is a dipeptidyl peptidase IV inhibitor produced by Aspergillus oryzae strain AO-1. Because WYK-1 is an isoquinoline derivative consisting of three l-amino acids, we hypothesized that a nonribosomal peptide synthetase was involved in its biosynthesis. We identified 28 nonribosomal peptide synthetase genes in the sequenced genome of A. oryzae RIB40. These genes were also identified in AO-1. Among them, AO090001000009 (wykN) was specifically expressed under WYK-1-producing conditions in AO-1. Therefore, we constructed wykN gene disruptants of AO-1 after nonhomologous recombination was suppressed by RNA interference to promote homologous recombination. Our results demonstrated that the disruptants did not produce WYK-1. Furthermore, the expression patterns of 10 genes downstream of wykN were similar to the expression pattern of wykN under several conditions. Additionally, homology searches revealed that some of these genes were predicted to be involved in WYK-1 biosynthesis. Therefore, we propose that wykN and the 10 genes identified in this study constitute the WYK-1 biosynthetic gene cluster. PMID:22843525

  1. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition. PMID:27621658

  2. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme.

    PubMed

    Matteucci, E; Giampietro, O

    2009-01-01

    Dipeptidyl peptidase-4 (DPP4) or adenosine deaminase complexing protein 2 (ADCP 2) or T-cell activation antigen CD26 (EC 3.4.14.5.) is a serine exopeptidase belonging to the S9B protein family that cleaves X-proline dipeptides from the N-terminus of polypeptides, such as chemokines, neuropeptides, and peptide hormones. The enzyme is a type II transmembrane glycoprotein, expressed on the surface of many cell types, whose physiological functions are largely unknown. Protein dimerisation should be required for catalytic activity and glycosylation of the enzyme could impact on its physiological functions. The dimeric glycoprotein ADCP has been found linked to adenosine deaminase (ADA) whose relationship with lymphocyte maturation-differentiation is well-established. Since implicated in the regulation of the biological activity of hormones and chemokines, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, DPP4 inhibition offers a new potential therapeutic approach for type 2 diabetes mellitus, as monotherapy and adjunct therapy to other oral agents. The clinical use of presently available orally active inhibitors of DPP4, however, has been associated with side effects that have been in part attributed to the inhibition of related serine proteases, such as DPP8 and DPP9. Indeed, it is noteworthy that CD26 has a key role in immune regulation as a T cell activation molecule and in immune-mediated disorder. All-cause infections were increased after sitagliptin treatment. It is noteworthy that the effects of DPP4 inhibition on the immune system have not been extensively investigated. So far, only routine laboratory safety variables have been measured in published randomised controlled trials. The review summarises present knowledge in the field and suggests some potential directions of future research.

  3. The effects of a TGR5 agonist and a dipeptidyl peptidase IV inhibitor on dextran sulfate sodium-induced colitis in mice

    PubMed Central

    Sakanaka, Taisuke; Inoue, Takuya; Yorifuji, Naoki; Iguchi, Munetaka; Fujiwara, Kaori; Narabayashi, Ken; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kuramoto, Takanori; Ishida, Kumi; Abe, Yosuke; Takeuchi, Toshihisa; Umegaki, Eiji; Akiba, Yasutada; Kaunitz, Jonathan D.; Higuchi, Kazuhide

    2016-01-01

    Background and Aim Luminal nutrients stimulate enteroendocrine L cells to release gut hormones, including intestinotrophic glucagon-like peptide-2 (GLP-2). Because L cells express the bile acid receptor TGR5 and dipeptidyl peptidase-IV (DPPIV) rapidly degrades GLPs, we hypothesized that luminal TGR5 activation may attenuate intestinal injury via GLP-2 release, which is enhanced by DPPIV inhibition. Methods Intestinal injury was induced in mice by administration of dextran sulfate sodium (DSS) in drinking water (free access to water containing 5% DSS for 7 days). The selective TGR5 agonist betulinic acid (BTA) and the DPPIV inhibitor sitagliptin phosphate monohydrate (STG) were administered orally for 7 days. Male C57BL/6 mice (6–7 weeks old) were divided into five groups: normal control group, disease control group, BTA low group (drinking water containing 15 mg/L BTA), BTA high group (50 mg/L BTA), and BTA high + STG (3 mg/kg, i.g.) group. Results The selective TGR5 agonist BTA dose-dependently suppressed disease activity index and mRNA expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the colon. Nevertheless, STG administration had little additive effect on BTA-induced protection. Fibroblast activation protein mRNA expression, but not expression of other DPP family members, was increased in the colon of DSS-treated mice with increased mucosal DPPIV. Co-administration of the selective GLP-2 antagonist GLP-2 (3–33) reversed the effect of BTA. Conclusion The selective TGR5 agonist BTA ameliorated DSS-induced colitis in mice via the GLP-2 pathway with no effect of DPPIV inhibition, suggesting that other DPP enzymatic activity is involved in GLP-2 degradation. PMID:25827806

  4. Selective inhibition of dipeptidyl peptidase 4 by targeting a substrate-specific secondary binding site.

    PubMed

    Kühn-Wache, Kerstin; Bär, Joachim W; Hoffmann, Torsten; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich

    2011-03-01

    Dipeptidyl peptidase 4/CD26 (DP4) is a multifunctional serine protease liberating dipeptide from the N-terminus of (oligo)peptides which can modulate the activity of these peptides. The enzyme is involved in physiological processes such as blood glucose homeostasis and immune response. DP4 substrate specificity is characterized in detail using synthetic dipeptide derivatives. The specificity constant k(cat)/K(m) strongly depends on the amino acid in P₁-position for proline, alanine, glycine and serine with 5.0 x 10⁵ M⁻¹ s⁻¹, 1.8 x 10⁴ M⁻¹ s⁻¹, 3.6 x 10² M⁻¹ s⁻¹, 1.1 x 10² M⁻¹ s⁻¹, respectively. By contrast, kinetic investigation of larger peptide substrates yields a different pattern. The specific activity of DP4 for neuropeptide Y (NPY) cleavage comprising a proline in P₁-position is the same range as the k(cat)/K(m) values of NPY derivatives containing alanine or serine in P₁-position with 4 x 10⁵ M⁻¹ s⁻¹, 9.5 x 10⁵ M⁻¹ s⁻¹ and 2.1 x 10⁵ M⁻¹ s⁻¹, respectively. The proposed existence of an additional binding region outside the catalytic center is supported by measurements of peptide substrates with extended chain length. This 'secondary' binding site interaction depends on the amino acid sequence in P₄'-P₈'-position. Interactions with this binding site could be specifically blocked for substrates of the GRF/glucagon peptide family. By contrast, substrates not belonging to this peptide family and dipeptide derivative substrates that only bind to the catalytic center of DP4 were not inhibited. This more selective inhibition approach allows, for the first time, to distinguish between substrate families by substrate-discriminating inhibitors.

  5. Bis-Pyrano Prenyl Isoflavone Improves Glucose Homeostasis by Inhibiting Dipeptidyl Peptidase-4 in Hyperglycemic Rats.

    PubMed

    Altenhofen, Delsi; da Luz, Gabrielle; Frederico, Marisa Jádna Silva; Venzke, Dalila; Brich, Mayara; Vigil, Silvana; Fröde, Tania Silvia; Linares, Carlos Eduardo Blanco; Pizzolatti, Moacir Geraldo; Silva, Fátima Regina Mena Barreto

    2017-01-01

    Isoflavones widely distributed in plants prevent diabetes. This study investigated the in vivo and in vitro effect of 3',4'-dihydroxy-6″,6″,6″',6″'-tetramethylbis(pyrano[2″,3″:5,6::2″',3″':7,8]isoflavone (bis-pyrano prenyl isoflavone) on glucose homeostasis in hyperglycemic rats. The ethyl acetate fraction from aerial parts of Polygala molluginifolia that contain isoflavones was assayed on glucose tolerance, on in vitro maltase activity and on protein glycation. The isoflavone bis-pyrano prenyl isolated from this fraction was investigated on glucose homeostasis. The in vivo action of the isoflavone exhibits an anti-hyperglycemic effect by improving glucose tolerance, augmenting the liver glycogen, inhibiting maltase activity, and stimulating glucagon-like peptide-1 (GLP-1) and insulin secretion. The in vitro isoflavone inhibits dipeptidyl peptidase-4 (DPP-4) activity since the glucose tolerance was improved in the presence of the isoflavone as much as sitagliptin, an inhibitor of DPP-4. However, the co-incubation with isoflavone and sitagliptin exhibited an additive anti-hyperglycemic action. The isoflavone increased the GLP-1 faster than the positive hyperglycemic group, which shows that the intestine is a potential target. Thus, to clarify the main site of action in which isoflavone improves glucose balance, the in vitro mechanism of action of this compound was tested in intestine using calcium influx as a trigger for the signal pathways for GLP-1 secretion. The isoflavone stimulates calcium influx in intestine and its mechanism involves voltage-dependent calcium channels, phospholipase C, protein kinase C, and stored calcium contributing for GLP-1 secretion. In conclusion, the isoflavone regulates glycaemia by acting mainly in a serum target, the DPP-4 inhibitor. Furthermore, the long-term effect of isoflavone prevents protein glycation. J. Cell. Biochem. 118: 92-103, 2017. © 2016 Wiley Periodicals, Inc.

  6. Micro-Environmental Signature of The Interactions between Druggable Target Protein, Dipeptidyl Peptidase-IV, and Anti-Diabetic Drugs

    PubMed Central

    Chakraborty, Chiranjib; Mallick, Bidyut; Sharma, Ashish Ranjan; Sharma, Garima; Jagga, Supriya; Doss, C George Priya; Nam, Ju-Suk; Lee, Sang-Soo

    2017-01-01

    Objective Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). Materials and Methods During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals’+H-bond+desolvo energy (EVHD) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. Results Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. Conclusion Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines. PMID:28367418

  7. Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity.

    PubMed

    Karl, Tim; Hoffmann, Torsten; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    Dipeptidyl-peptidase IV (DPPIV/CD26) is involved in several physiological functions by cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY(3-36), which lacks affinity for the Y(1) but not for other NPY receptor subtypes. Among other effects, the NPY Y(1) receptor mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking endogenous DPPIV-like activity we found a reduced behavioral stress response, which might be due to a differential degradation of NPY. Here we tested this hypothesis and administered intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding motivation, decreased motor activity in the plus maze and social interaction test, and exerted anxiolytic-like effects. More important for the present hypothesis, NPY administration was found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects (increased social interaction time in the social interaction test) and sedative-like effects (decreased motor activity in the elevated plus maze). These data demonstrate for the first time a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-specificity of NPY, which may result from a differential degradation of NPY in this genetic model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated effects in the central nervous system are modulated by DPPIV-like enzymatic activity.

  8. Effects of Inhibiting Dipeptidyl Peptidase-4 (DPP4) in Cows with Subclinical Ketosis

    PubMed Central

    Schulz, Kirsten; Frahm, Jana; Kersten, Susanne; Meyer, Ulrich; Rehage, Jürgen; Piechotta, Marion; Meyerholz, Maria; Breves, Gerhard; Reiche, Dania; Sauerwein, Helga; Dänicke, Sven

    2015-01-01

    The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like

  9. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS.

    PubMed

    Zhang, Ying; Chen, Ran; Ma, Huiqin; Chen, Shangwu

    2015-10-14

    New dipeptidyl peptidase IV (DPP-IV)-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates were isolated and identified by two-dimensional silica thin-layer chromatography (2D-TLC) combined to nano LC-MS/MS. 2D-TLC with chloroform/methanol/25% ammonia (2:2:1) and n-butanol/acetic acid/water (4:1:1) as the first- and second-dimension eluents, respectively, in analytical and semipreparative scales, was set up and verified by reversed-phase high-performance liquid chromatography (RP-HPLC) to be feasible and efficient to separate the hydrolysates. Five new DPP-IV-inhibitory peptides, four relatively large oligopeptides (MHQPPQPL, SPTVMFPPQSVL, VMFPPQSVL, and INNQFLPYPY), and AWPQYL were identified, and INNQFLPYPY showed a notable IC50 value of 40.08 μM as an uncompetitive inhibitor. Interactive effects on DPP-IV inhibition were also observed among separated fractions and pure synthetic peptide mixtures with concentration-dependent activity. The study gives new insights into goat casein hydrolysates with identified DPP-IV-inhibitory peptides efficiently isolated by 2D-TLC, which provides a simple and cost-efficient separation process and is compatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification.

  10. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis.

    PubMed

    Wesley, Umadevi V; Hatcher, James F; Ayvaci, Emine R; Klemp, Abby; Dempsey, Robert J

    2016-08-15

    Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.

  11. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors.

    PubMed

    Nongonierma, Alice B; Mooney, Catherine; Shields, Denis C; FitzGerald, Richard J

    2014-07-01

    Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure-activity relationship modeling, rather than on docking, in computationally selecting peptides for screening.

  12. Pyrrolidine-constrained phenethylamines: The design of potent, selective, and pharmacologically efficacious dipeptidyl peptidase IV (DPP4) inhibitors from a lead-like screening hit.

    PubMed

    Backes, Bradley J; Longenecker, Kenton; Hamilton, Gregory L; Stewart, Kent; Lai, Chunqiu; Kopecka, Hana; von Geldern, Thomas W; Madar, David J; Pei, Zhonghua; Lubben, Thomas H; Zinker, Bradley A; Tian, Zhenping; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Black-Schaefer, Candace; Sham, Hing L; Trevillyan, James M

    2007-04-01

    A novel series of pyrrolidine-constrained phenethylamines were developed as dipeptidyl peptidase IV (DPP4) inhibitors for the treatment of type 2 diabetes. The cyclohexene ring of lead-like screening hit 5 was replaced with a pyrrolidine to enable parallel chemistry, and protein co-crystal structural data guided the optimization of N-substituents. Employing this strategy, a >400x improvement in potency over the initial hit was realized in rapid fashion. Optimized compounds are potent and selective inhibitors with excellent pharmacokinetic profiles. Compound 30 was efficacious in vivo, lowering blood glucose in ZDF rats that were allowed to feed freely on a mixed meal.

  13. Regulation of Chemokine Activity – A Focus on the Role of Dipeptidyl Peptidase IV/CD26

    PubMed Central

    Metzemaekers, Mieke; Van Damme, Jo; Mortier, Anneleen; Proost, Paul

    2016-01-01

    Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning

  14. The serine protease, dipeptidyl peptidase IV as a myokine: dietary protein and exercise mimetics as a stimulus for transcription and release.

    PubMed

    Neidert, Leslie E; Mobley, C Brooks; Kephart, Wesley C; Roberts, Michael D; Kluess, Heidi A

    2016-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme with numerous roles within the body, mostly related to regulating energy metabolism. DPP-IV is also a myokine, but the stimulus for its release is poorly understood. We investigated the transcription and release of DPP-IV from skeletal muscle in a three-part study using C2C12 myotube cultures, an acute rat exercise and postexercise feeding model, and human feeding or human exercise models. When myotubes were presented with leucine only, hydrolyzed whey protein, or chemicals that cause exercise-related signaling to occur in cell culture, all caused an increase in the mRNA expression of DPP-IV (1.63 to 18.56 fold change, P < 0.05), but only whey protein caused a significant increase in DPP-IV activity in the cell culture media. When rats were fed whey protein concentrate immediately following stimulated muscle contractions, DPP-IV mRNA in both the exercised and nonexercised gastrocnemius muscles significantly increased 2.5- to 3.7-fold (P < 0.05) 3-6 h following the exercise/feeding bout; of note exercise alone or postexercise leucine-only feeding had no significant effect. In humans, plasma and serum DPP-IV activities were not altered by the ingestion of whey protein up to 1 h post consumption, after a 10 min bout of vigorous running, or during the completion of three repeated lower body resistance exercise bouts. Our cell culture and rodent data suggest that whey protein increases DPP-IV mRNA expression and secretion from muscle cells. However, our human data suggest that DPP-IV is not elevated in the bloodstream following acute whey protein ingestion or exercise.

  15. NAAG peptidase inhibition in the periaqueductal gray and rostral ventromedial medulla reduces flinching in the formalin model of inflammation

    PubMed Central

    2012-01-01

    Background Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within the central pain pathway at which NAAG activation of its receptor mediates this effect. Results NAAG immunoreactivity was found in neurons in two brain regions that mediate nociceptive processing, the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM). Microinjection of the NAAG peptidase inhibitor ZJ43 into the PAG contralateral, but not ipsilateral, to the formalin injected footpad reduced the rapid and slow phases of the nociceptive response in a dose-dependent manner. ZJ43 injected into the RVM also reduced the rapid and slow phase of the response. The group II mGluR antagonist LY341495 blocked these effects of ZJ43 on the PAG and RVM. NAAG peptidase inhibition in the PAG and RVM did not affect the thermal withdrawal response in the hot plate test. Footpad inflammation also induced a significant increase in glutamate release in the PAG. Systemic injection of ZJ43 increased NAAG levels in the PAG and RVM and blocked the inflammation-induced increase in glutamate release in the PAG. Conclusion These data demonstrate a behavioral and neurochemical role for NAAG in the PAG and RVM in regulating the spinal motor response to inflammation and that NAAG peptidase inhibition has potential as an approach to treating inflammatory pain via either the ascending (PAG) and/or the descending pain pathways (PAG and RVM) that warrants further study. PMID:22971334

  16. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels.

    PubMed

    Fló, Martín; Margenat, Mariana; Pellizza, Leonardo; Graña, Martín; Durán, Rosario; Báez, Adriana; Salceda, Emilio; Soto, Enrique; Alvarez, Beatriz; Fernández, Cecilia

    2017-02-01

    We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold.

  17. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels

    PubMed Central

    Fló, Martín; Margenat, Mariana; Pellizza, Leonardo; Durán, Rosario; Salceda, Emilio; Alvarez, Beatriz

    2017-01-01

    We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold. PMID:28192542

  18. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  19. Origins of Yersinia pestis Sensitivity to the Arylomycin Antibiotics and the Inhibition of Type I Signal Peptidase

    PubMed Central

    Steed, Danielle B.; Liu, Jian; Wasbrough, Elizabeth; Miller, Lynda; Halasohoris, Stephanie; Miller, Jeremy; Somerville, Brandon; Hershfield, Jeremy R.

    2015-01-01

    Yersinia pestis is the etiologic agent of the plague. Reports of Y. pestis strains that are resistant to each of the currently approved first-line and prophylactic treatments point to the urgent need to develop novel antibiotics with activity against the pathogen. We previously reported that Y. pestis strain KIM6+, unlike most Enterobacteriaceae, is susceptible to the arylomycins, a novel class of natural-product lipopeptide antibiotics that inhibit signal peptidase I (SPase). In this study, we show that the arylomycin activity is conserved against a broad range of Y. pestis strains and confirm that it results from the inhibition of SPase. We next investigated the origins of this unique arylomycin sensitivity and found that it does not result from an increased affinity of the Y. pestis SPase for the antibiotic and that alterations to each component of the Y. pestis lipopolysaccharide—O antigen, core, and lipid A—make at most only a small contribution. Instead, the origins of the sensitivity can be traced to an increased dependence on SPase activity that results from high levels of protein secretion under physiological conditions. These results highlight the potential of targeting protein secretion in cases where there is a heavy reliance on this process and also have implications for the development of the arylomycins as an antibiotic with activity against Y. pestis and potentially other Gram-negative pathogens. PMID:25896690

  20. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    PubMed

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  1. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    PubMed

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-04

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM.

  2. Pyroglutamyl peptidase II inhibition enhances the analeptic effect of thyrotropin-releasing hormone in the rat medial septum.

    PubMed

    Lazcano, Ivan; Uribe, Rosa Maria; Martínez-Chávez, Erick; Vargas, Miguel Angel; Matziari, Magdalini; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2012-07-01

    Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH(2)) has multiple, but transient, homeostatic functions in the brain. It is hydrolyzed in vitro by pyroglutamyl peptidase II (PPII), a narrow specificity ectoenzyme with a preferential localization in the brain, but evidence that PPII controls TRH communication in the brain in vivo is scarce. We therefore studied in male Wistar rats the distribution of PPII mRNA in the septum and the consequence of PPII inhibition on the analeptic effect of TRH injected into the medial septum. Twelve to 14% of cell profiles expressed PPII mRNA in the medial septum-diagonal band of Broca; in this region the specific activity of PPII was relatively high. Twenty to 35% of PPII mRNA-labeled profiles were positive for TRH-receptor 1 (TRH-R1) mRNA. The intramedial septum injection of TRH reduced, in a dose-dependent manner, the duration of ethanol-induced loss of righting reflex (LORR). Injection of the PPII inhibitor pGlu-Asn-Pro-7-amido-4-methylcoumarin into the medial septum enhanced the effect of TRH. The injection of a phosphinic TRH analog, a higher-affinity inhibitor of PPII, diminished the duration of LORR by itself. In contrast, the intraseptal injection of pGlu-Asp-Pro-NH(2), a peptide that did not inhibit PPII activity, or an inhibitor of prolyl oligopeptidase did not change the duration of LORR. We conclude that in the medial septum PPII activity may limit TRH action, presumably by reducing the concentration of TRH in the extracellular fluid around cells coexpressing PPII and TRH-R1.

  3. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome

    PubMed Central

    Birnbaum, Yochai; Bajaj, Mandeep; Qian, Jinqiao; Ye, Yumei

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1) receptor activation delays the progression of diabetic nephropathy (DN) in rodents. The NOD-like receptor 3 (Nlrp3) inflammasome plays an important role in DN. Dipeptidyl peptidase-4 inhibitors (DPP4I) inhibit the degradation of endogenous GLP-1 and various other active substances. We assessed whether DPP4I attenuates diabetes-induced activation of the inflammasome and progression of DN in mice with type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Methods BTBR (T2DM), Akita (T1DM) and their matched non-diabetic control (wild-type (WT)) mice received 8-week treatment with Saxagliptin (Saxa) or vehicle. Results Kidney weight and kidney/body weight ratio increased in the BTBR and Akita mice compared to their WT mice. Saxa attenuated these changes in the BTBR, but not in the Akita mice and had no effect in the WT mice. Serum blood urea nitrogen and creatinine significantly increased in the BTBR and Akita mice. Saxa attenuated the increase in the BTBR and Akita mice. Saxa improved glycemic control in the BTBR mice, but had no effect on glucose levels in the Akita and WT mice. Serum C reactive protein, tumor necrosis factor α (TNFα), interleukin (IL)-1β, IL-6 and IL-18 were significantly higher in the BTBR and Akita mice than in the WT mice. Saxa attenuated the increase in the BTBR and Akita mice. Kidney and adipose protein levels of apoptosis-associated speck-like protein 1, NLRP3, TNFα and Caspase-1 were higher in the BTBR and Akita mice than in the WT mice. Saxa reduced the levels in both types of diabetic mice. Conclusions Saxa attenuated diabetes-induced activation of the inflammasome and progression of DN. As Saxa did not affect glucose levels in the Akita mice, these effects are independent of glucose lowering. PMID:27547413

  4. Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats

    PubMed Central

    Lim, Soo; Choi, Sung Hee; Shin, Hayley; Cho, Bong Jun; Park, Ho Seon; Ahn, Byung Yong; Kang, Seon Mee; Yoon, Ji Won; Jang, Hak Chul; Kim, Young-Bum; Park, Kyong Soo

    2012-01-01

    Background Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. Methods and Findings Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. Conclusions Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes. PMID:22493727

  5. Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV.

    PubMed

    Ustün-Aytekin, Ozlem; Gürhan, Ismet Deliloğlu; Ohura, Kayoko; Imai, Teruko; Ongen, Gaye

    2014-01-01

    Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL(-1)) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L(-1) h(-1)).

  6. Influence of candidate polymorphisms on the dipeptidyl peptidase IV and μ-opioid receptor genes expression in aspect of the β-casomorphin-7 modulation functions in autism.

    PubMed

    Cieślińska, Anna; Sienkiewicz-Szłapka, Edyta; Wasilewska, Jolanta; Fiedorowicz, Ewa; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Cieśliński, Tomasz; Bukało, Marta; Kostyra, Elżbieta

    2015-03-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with population prevalence of approximately 60-70 per 10,000. Data shows that both opioid system function enhancement and opiate administration can result in autistic-like symptoms. Cow milk opioid peptides, including β-casomorphin-7 (BCM7, Tyr-Pro-Phe-Pro-Gly-Pro-Ile), affect the μ-opioid receptor (MOR) and are subjected to degradation resulting from the proline dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) enzyme activity. The presence of MOR and DPPIV activity are crucial factors determining biological activity of BCM7 in the human body. Our study examined the effect of β-casomorphin-7 on the MOR and DPPIV genes expression according to specific point mutations in these genes. In addition, we investigated frequency of A118G SNP in the MOR gene and rs7608798 of the DPPIV (A/G) gene in healthy and autistic children. Our research indicated correlation in DPPIV gene expression under the influence of BCM7 and hydrolyzed milk between healthy and ASD-affected children with genotype GG (P<0.0001). We also observed increased MOR gene expression in healthy children with genotype AG at polymorphic site A118G under influence of BCM7 and hydrolyzed milk. The G allele frequency was 0.09 in MOR gene and 0.68 in the DPPIV gene. But our results suggest no association between presence of the alleles G and A at position rs7608798 in DPPIV gene nor alleles A and G at position A118G of the MOR and increased incidence of ASD. Our studies emphasize the compulsion for genetic analysis in correlation with genetic factors affecting development and enhancement of autism symptoms.

  7. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes.

    PubMed

    Tsuboi, Kentaro; Mizukami, Hiroki; Inaba, Wataru; Baba, Masayuki; Yagihashi, Soroku

    2015-11-25

    Incretin-related therapy was found to be beneficial for experimental diabetic neuropathy, but its mechanism is obscure. The purpose of this study is to explore the mechanism through which dipeptidyl peptidase IV inhibitor, vildagliptin (VG), influences neuropathy in diabetic rodents. To this end, non-obese type 2 diabetic Goto-Kakizaki rats (GK) and streptozotocin (STZ)-induced diabetic mice were treated with VG orally. Neuropathy was evaluated by nerve conduction velocity (NCV) in both GK and STZ-diabetic mice, whereas calcitonin-gene-related peptide (CGRP) expressions, neuronal cell size of dorsal root ganglion (DRG) and intraepidermal nerve fiber density (IENFD) were examined in GK. DRG from GK and STZ-diabetic mice served for analyses of GLP-1 and insulin signaling. As results, VG-treatment improved glucose intolerance and increased serum insulin and GLP-1 in GK accompanied by the amelioration of delayed NCV and neuronal atrophy, reduced CGRP expressions and IENFD. Diet restriction alone did not significantly influence these measures. Impaired GLP-1 signals such as CREB, PKB/Akt and S6RP in DRG of GK were restored in VG-treated group, but the effect was equivocal in diet-treated GK. Concurrently, decreased phosphorylation of insulin receptor substrate-2 (IRS2) in GK was corrected by VG-treatment. Consistent with the effect on GK, VG-treatment improved NCV in diabetic mice without influence on hyperglycemia. DRG of VG-treated diabetic mice were characterized by correction of GLP-1 signals and IRS2 phosphorylation without effects on insulin receptor-β expression. The results suggest close association of neuropathy development with impaired signaling of insulin and GLP-1 in diabetic rodents. This article is protected by copyright. All rights reserved.

  8. Inhibition of Streptococcus pneumoniae penicillin-binding protein 2x and Actinomadura R39 DD-peptidase activities by ceftaroline.

    PubMed

    Zervosen, Astrid; Zapun, André; Frère, Jean-Marie

    2013-01-01

    Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae penicillin-binding protein 2x (PBP2x) by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently high (k(2)/K = 12,600 M(-1) s(-1)) to explain the sensitivity of the penicillin-resistant strain to this new cephalosporin. Surprisingly, the Actinomadura R39 DD-peptidase is not very sensitive to ceftaroline.

  9. The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical.

    PubMed Central

    Halpin, C; Elderfield, P D; James, H E; Zimmermann, R; Dunbar, B; Robinson, C

    1989-01-01

    Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino-terminal targeting signals. Removal of the signals is carried out by specific, membrane-bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide. Images PMID:2684650

  10. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    PubMed

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  11. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  12. Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.

    PubMed

    Ramos, Márcio V; Pereira, Danielle A; Souza, Diego P; Silva, Maria-Lídia S; Alencar, Luciana M R; Sousa, Jeanlex S; Queiroz, Juliany-Fátima N; Freitas, Cleverson D T

    2015-01-01

    Studies investigating the resistance-susceptibility of crop insects to proteins found in latex fluids have been reported. However, latex-bearing plants also host insects. In this study, the gut proteolytic system of Pseudosphinx tetrio, which feeds on Plumeria rubra leaves, was characterized and further challenged against the latex proteolytic system of its own host plant and those of other latex-bearing plants. The gut proteolytic system of Danaus plexippus (monarch) and the latex proteolytic system of its host plant (Calotropis procera) were also studied. The latex proteins underwent extensive hydrolysis when mixed with the corresponding gut homogenates of the hosted insects. The gut homogenates partially digested the latex proteins of foreign plants. The fifth instar of D. plexippus that were fed diets containing foreign latex developed as well as those individuals who were fed diets containing latex proteins from their host plant. In vitro assays detected serine and cysteine peptidase inhibitors in both the gut homogenates and the latex fluids. Curiously, the peptidase inhibitors of caterpillars did not inhibit the latex peptidases of their host plants. However, the peptidase inhibitors of laticifer origin inhibited the proteolysis of gut homogenates. In vivo analyses of the peritrophic membrane proteins of D. plexippus demonstrate resistance against latex peptidases. Only discrete changes were observed when the peritrophic membrane was directly treated with purified latex peptidases in vitro. This study concludes that peptidase inhibitors are involved in the defensive systems of both caterpillars and their host plants. Although latex peptidase inhibitors inhibit gut peptidases (in vitro), the ability of gut peptidases to digest latex proteins (in vivo) regardless of their origin seems to be important in governing the resistance-susceptibility of caterpillars.

  13. Effect of dipeptidyl peptidase-4 inhibition on circadian blood pressure during the development of salt-dependent hypertension in rats.

    PubMed

    Sufiun, Abu; Rafiq, Kazi; Fujisawa, Yoshihide; Rahman, Asadur; Mori, Hirohito; Nakano, Daisuke; Kobori, Hiroyuki; Ohmori, Koji; Masaki, Tsutomu; Kohno, Masakazu; Nishiyama, Akira

    2015-04-01

    A growing body of evidence has indicated that dipeptidyl peptidase-4 (DPP-4) inhibitors have antihypertensive effects. Here, we aim to examine the effect of vildagliptin, a DPP-4-specific inhibitor, on blood pressure and its circadian-dipping pattern during the development of salt-dependent hypertension in Dahl salt-sensitive (DSS) rats. DSS rats were treated with a high-salt diet (8% NaCl) plus vehicle or vildagliptin (3 or 10 mg kg(-1) twice daily by oral gavage) for 7 days. Blood pressure was measured by the telemetry system. High-salt diet for 7 days significantly increased the mean arterial pressure (MAP), systolic blood pressure (SBP) and were also associated with an extreme dipping pattern of blood pressure in DSS rats. Treatment with vildagliptin dose-dependently decreased plasma DPP-4 activity, increased plasma glucagon-like peptide 1 (GLP-1) levels and attenuated the development of salt-induced hypertension. Furthermore, vildagliptin significantly increased urine sodium excretion and normalized the dipping pattern of blood pressure. In contrast, intracerebroventricular infusion of vildagliptin (50, 500 or 2500 μg) did not alter MAP and heart rate in DSS rats. These data suggest that salt-dependent hypertension initially develops with an extreme blood pressure dipping pattern. The DPP-4 inhibitor, vildagliptin, may elicit beneficial antihypertensive effects, including the improvement of abnormal circadian blood pressure pattern, by enhancing urinary sodium excretion.

  14. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy.

    PubMed

    Takashima, Satoru; Fujita, Hiroki; Fujishima, Hiromi; Shimizu, Tatsunori; Sato, Takehiro; Morii, Tsukasa; Tsukiyama, Katsushi; Narita, Takuma; Takahashi, Takamune; Drucker, Daniel J; Seino, Yutaka; Yamada, Yuichiro

    2016-10-01

    The role of stromal cell-derived factor-1 (SDF-1) in the pathogenesis of diabetic nephropathy and its modification by dipeptidyl peptidase-4 (DPP-4) inhibition are uncertain. Therefore, we studied this independent of glucagon-like peptide-1 receptor (GLP-1R) signaling using two Akita diabetic mouse models, the diabetic-resistant C57BL/6-Akita and diabetic-prone KK/Ta-Akita. Increased SDF-1 expression was found in glomerular podocytes and distal nephrons in the diabetic-prone mice, but not in kidneys from diabetic-resistant mice. The DPP-4 inhibitor linagliptin, but not the GLP-1R agonist liraglutide, further augmented renal SDF-1 expression in both Glp1r(+/+) and Glp1r(-/-) diabetic-prone mice. Along with upregulation of renal SDF-1 expression, the progression of albuminuria, glomerulosclerosis, periglomerular fibrosis, podocyte loss, and renal oxidative stress was suppressed in linagliptin-treated Glp1r(+/+) diabetic-prone mice. Linagliptin treatment increased urinary sodium excretion and attenuated the increase in glomerular filtration rate which reflects glomerular hypertension and hyperfiltration. In contrast, selective SDF-1 receptor blockade with AMD3100 reduced urinary sodium excretion and aggravated glomerular hypertension in the Glp1r(+/+) diabetic-prone mice. Thus, DPP-4 inhibition, independent of GLP-1R signaling, contributes to protection of the diabetic kidney through SDF-1-dependent antioxidative and antifibrotic effects and amelioration of adverse renal hemodynamics.

  15. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    SciTech Connect

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  16. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    PubMed

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  17. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis) and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims of this study were to characterize extracts from greenhouse grown or commercially purchased herbs for th...

  18. Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase.

    PubMed

    Marsili, Alessandro; Sanchez, Edith; Singru, Praful; Harney, John W; Zavacki, Ann Marie; Lechan, Ronald M; Larsen, P R

    2011-10-01

    Suppression of TSH release from the hypothyroid thyrotrophs is one of the most rapid effects of 3,3',5'-triiodothyronine (T(3)) or thyroxine (T(4)). It is initiated within an hour, precedes the decrease in TSHβ mRNA inhibition and is blocked by inhibitors of mRNA or protein synthesis. TSH elevation in primary hypothyroidism requires both the loss of feedback inhibition by thyroid hormone in the thyrotrophs and the positive effects of TRH. Another event in this feedback regulation may be the thyroid hormone-mediated induction of the TRH-inactivating pyroglutamyl peptidase II (PPII) in the hypothalamic tanycytes. This study compared the chronology of the acute effects of T(3) or T(4) on TSH suppression, TRH mRNA in the hypothalamic paraventricular nucleus (PVN), and the induction of tanycyte PPII. In wild-type mice, T(3) or T(4) caused a 50% decrease in serum TSH in hypothyroid mice by 5  h. There was no change in TRH mRNA in PVN over this interval, but there was a significant increase in PPII mRNA in the tanycytes. In mice with genetic inactivation of the type 2 iodothyronine deiodinase, T(3) decreased serum TSH and increased PPII mRNA levels, while T(4)-treatment was ineffective. We conclude that the rapid suppression of TSH in the hypothyroid mouse by T(3) occurs prior to a decrease in TRH mRNA though TRH inactivation may be occurring in the median eminence through the rapid induction of tanycyte PPII. The effect of T(4), but not T(3), requires the type 2 iodothyronine deiodinase.

  19. Astragaloside IV ameliorates allergic inflammation by inhibiting key initiating factors in the initial stage of sensitization

    PubMed Central

    Bao, Kai-fan; Yu, Xi; Wei, Xiao; Gui, Li-li; Liu, Hai-liang; Wang, Xiao-yu; Tao, Yu; Jiang, Guo-rong; Hong, Min

    2016-01-01

    To illuminate the anti-allergy mechanism of astragaloside IV (AS-IV), we assessed its effects in a murine model of allergic contact dermatitis (ACD). AS-IV administered in the sensitization phase, rather than in the elicitation phase, dramatically alleviated the symptoms of allergic inflammation. We hypothesized that AS-IV exerts its anti-allergy effects by regulating the production of key pro-allergic cytokines based on the fact that interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP) levels increase significantly in the initial stage of the sensitization phase. AS-IV administered in the initial stage of ACD inhibited TSLP and IL-33 expression and reduced the proportion of type-2 innate lymphoid cells (ILC2s). An in vitro study showed that the production of pro-allergic cytokines was significantly inhibited in AS-IV presenting HaCaT cells. We also verified that AS-IV administered only in the initial stage markedly alleviated inflammation, including ear swelling, Th2 cytokine expression, and histological changes. Taken together, these results suggest that AS-IV effectively ameliorates the progression of allergic inflammation by inhibiting key initiating factors, including TSLP and IL-33, and can be used to prevent and/or treat patients with ACD. Our data also suggest that these key pro-allergic cytokines are potential therapeutic targets for allergic diseases. PMID:27917896

  20. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    PubMed

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  1. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions.

    PubMed

    Malloy, Jaret L; Veldhuizen, Ruud A W; Thibodeaux, Brett A; O'Callaghan, Richard J; Wright, Jo Rae

    2005-02-01

    Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.

  2. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats.

    PubMed

    Akarte, Atul Sureshrao; Srinivasan, B P; Gandhi, Sonia; Sole, Sushant

    2012-09-29

    Inhibitors of dipeptidyl peptidase-4 (DPP-IV), a key regulator of the actions of incretin hormones, exert antihyperglycemic effects in type 2 diabetic patients. A major question concerns the potential ability of long term DPP-IV inhibition to have beneficial disease-modifying effects, specifically to attenuate loss of pancreatic β-cell mass due to oxidative stress induced inflammation. Here, we investigated the effects of a potent and selective DPP-4 inhibitor, an analog of vildagliptin (PKF-275-055), on glycemic control, pancreatic β-cell mass, genes and proteins expressions, tumor necrosis factor-alpha, and nitric oxide in an n2-STZ diabetic model of rat with defects in insulin sensitivity and secretion. To induce NIDDM, streptozotocin (STZ) 90 mg/kg was administered i.p. to a group of 2 days old pups. Diabetic rats were administered orally with vildagliptin analog PKF-275-055. Saline treated animals served as diabetic control. Significant and dose-dependent correction of postprandial hyperglycemia was observed in diabetic rats following 8 weeks of chronic therapy. Treatment with PKF-275-055 showed increased the number of insulin-positive β-cells in islets and improved the expressions of genes and proteins are responsible for insulin secretions. In addition, treatment of rats with PKF-275-055 significantly increased insulin content, glycogen content and total proteins content; and decreased the inflammatory markers i.e. nitric oxide and TNF-alpha. The present studies indicate that PKF-275-055 is a novel selective DPP-IV inhibitor having potential to reduce inflammation that might be a potential agent for type 2 diabetes.

  3. Potencies of phosphine peptide inhibitors of mammalian thimet oligopeptidase and neurolysin on two bacterial pz peptidases.

    PubMed

    Sugihara, Yusuke; Kawasaki, Akio; Tsujimoto, Yoshiyuki; Matsui, Hiroshi; Watanabe, Kunihiko

    2007-02-01

    Pz peptidases A and B, from a thermophile Geobacillus collagenovorans MO-1, recognize collagen-specific tripeptide units (Gly-Pro-Xaa). They share similarities in function but extremely low identities in primary sequence with mammalian thimet oligopeptidase (TOP) and neurolysin. Three phosphine peptide inhibitors that selectively inhibit TOP and neurolysin on two bacterial Pz peptidases were investigated. They showed potent inhibition of both Pz peptidases in a range from 10 to 100 nM.

  4. Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium(IV)-hydrazide complexes.

    PubMed

    Ashiq, Uzma; Jamal, Rifat Ara; Mahroof-Tahir, Mohammad; Maqsood, Zahida T; Khan, Khalid Mohammed; Omer, Iman; Choudhary, Muhammad Iqbal

    2009-12-01

    Spectroscopic, enzyme-inhibition, and free-radical scavenging properties of a series of hydrazide ligands and their vanadium(IV) complexes have been investigated. Analytical and spectral data indicate the presence of a dimeric unit with two oxovanadium(IV) ions (VO(2+)) coordinated with two hydrazide ligands along with two water molecules. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. Binding of the coordinating solvent such as DMSO is indicated at the 6th position of vanadium in the dimeric unit followed by conversion to a monomeric intermediate species, [VOL(DMSO)3]1+ (L = hydrazide ligand). The free hydrazide ligands are inactive against snake venom phosphodiesterase I (SVPD), whereas oxovanadium(IV) complexes of these ligands show varying degrees of inhibition and are found to be non-competitive inhibitors. The superoxide and nitric oxide radical scavenging properties have been determined. Hydrazide ligands are inactive against these free radicals, whereas their V(IV) complexes show varying degrees of inhibition. Structure-activity relationship studies indicate that the electronic and/or steric factors that change the geometry of the complexes play an important role in their inhibitory potential against SVPD and free radicals.

  5. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA-T2D™ trial.

    PubMed

    Groop, Per-Henrik; Cooper, Mark E; Perkovic, Vlado; Sharma, Kumar; Schernthaner, Guntram; Haneda, Masakazu; Hocher, Berthold; Gordat, Maud; Cescutti, Jessica; Woerle, Hans-Juergen; von Eynatten, Maximilian

    2015-11-01

    Efficacy, Safety & Modification of Albuminuria in Type 2 Diabetes Subjects with Renal Disease with LINAgliptin (MARLINA-T2D™), a multicentre, multinational, randomized, double-blind, placebo-controlled, parallel-group, phase 3b clinical trial, aims to further define the potential renal effects of dipeptidyl peptidase-4 inhibition beyond glycaemic control. A total of 350 eligible individuals with inadequately controlled type 2 diabetes and evidence of renal disease are planned to be randomized in a 1:1 ratio to receive either linagliptin 5 mg or placebo in addition to their stable glucose-lowering background therapy for 24 weeks. Two predefined main endpoints will be tested in a hierarchical manner: (1) change from baseline in glycated haemoglobin and (2) time-weighted average of percentage change from baseline in urinary albumin-to-creatinine ratio. Both endpoints are sufficiently powered to test for superiority versus placebo after 24 weeks with α = 0.05. MARLINA-T2D™ is the first of its class to prospectively explore both the glucose- and albuminuria-lowering potential of a dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes and evidence of renal disease.

  6. Mutations in the signal sequence of prepro-alpha-factor inhibit both translocation into the endoplasmic reticulum and processing by signal peptidase in yeast cells.

    PubMed Central

    Allison, D S; Young, E T

    1989-01-01

    The effects of five single-amino-acid substitution mutations within the signal sequence of yeast prepro-alpha-factor were tested in yeast cells. After short pulse-labelings, virtually all of the alpha-factor precursor proteins from a wild-type gene were glycosylated and processed by signal peptidase. In contrast, the signal sequence mutations resulted in the accumulation of mostly unglycosylated prepro-alpha-factor after a short labeling interval, indicating a defect in translocation of the protein into the endoplasmic reticulum. Confirming this interpretation, unglycosylated mutant prepro-alpha-factor in cell extracts was sensitive to proteinase K and therefore in a cytosolic location. The signal sequence mutations reduced the rate of translocation into the endoplasmic reticulum by as much as 25-fold or more. In at least one case, mutant prepro-alpha-factor molecules were translocated almost entirely posttranslationally. Four of the five mutations also reduced the rate of proteolytic processing by signal peptidase in vivo, even though the signal peptide alterations are not located near the cleavage site. This study demonstrates that a single-amino-acid substitution mutation within a eucaryotic signal peptide can affect both translocation and proteolytic processing in vivo and may indicate that the recognition sequences for translocation and processing overlap within the signal peptide. Images PMID:2513481

  7. Selective tracheal relaxation and phosphodiesterase-IV inhibition by xanthine derivatives.

    PubMed

    Miyamoto, K; Kurita, M; Ohmae, S; Sakai, R; Sanae, F; Takagi, K

    1994-05-17

    The effects of substitutions in the xanthine nucleus on tracheal relaxant activity, atrium chronotropic activity, adenosine A1 affinity, and inhibitory activities on cyclic AMP-phosphodiesterase isoenzymes in guinea pigs were studied. Substitution with a long alkyl chain at the N1-position of xanthine nucleus increased the tracheal relaxant activity without leading to positive chronotropic action, and long alkyl chains at the N3-position increased both activities. N7-substitutions with n-propyl and 2'-oxopropyl groups, such as in denbufylline, increased bronchoselectivity. N7-substitution decreased the adenosine A1 affinity, but substitution at either the N1- or N3-position increased it. The bronchorelaxant activity of xanthine derivatives was closely correlated with their inhibition of phosphodiesterase-IV, but not with their adenosine A1 affinity; the positive chronotropic effects were related to their inhibition of phosphodiesterase-III. This study confirms that the bronchorelaxation of xanthine derivatives is mediated by inhibition of the isoenzyme phosphodiesterase-IV. The results of structure-activity analysis suggest that substitutions at the N1- and N7-positions should be tried in the development of xanthine derivatives that are selective bronchodilators and phosphodiesterase-IV inhibitors.

  8. Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells.

    PubMed

    Preta, G; Marescotti, D; Fortini, C; Carcoforo, P; Castelli, C; Masucci, M; Gavioli, R

    2008-12-01

    Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.

  9. The Inhibition of Pb(IV) Oxide Formation in Chlorinated Water by Orthophosphate

    SciTech Connect

    Lytle, Darren A.; Schock, Michael R.; Scheckel, Kirk; EPA

    2009-10-05

    Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 C, pH 7.75-8.1, 3 mg Cl{sub 2}/L goal), Pb(IV) oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb{sub 5}(PO{sub 4}){sub 3}OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb{sub 5}(PO{sub 4}){sub 3}Cl, could not be ruled out. The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.

  10. The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.

    PubMed

    Lytle, Darren A; Schock, Michael R; Scheckel, Kirk

    2009-09-01

    Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 degrees C, pH 7.75-8.1, 3 mg Cl2/L goal), Pb(IV) oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb5(PO4)3OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb5(PO4)3Cl, could not be ruled out The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.

  11. A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly.

    PubMed

    Chung, In-Young; Jang, Hye-Jeong; Bae, Hee-Won; Cho, You-Hee

    2014-08-05

    Type IV pili (TFPs) are required for bacterial twitching motility and for phage infection in the opportunistic human pathogen Pseudomonas aeruginosa. Here we describe a phage-encoded protein, D3112 protein gp05 (hereafter referred to as Tip, representing twitching inhibitory protein), whose expression is necessary and sufficient to mediate the inhibition of twitching motility. Tip interacts with and blocks the activity of bacterial-encoded PilB, the TFP assembly/extension ATPase, at an internal 40-aa region unique to PilB. Tip expression results in the loss of surface piliation. Based on these observations and the fact that many P. aeruginosa phages require TFPs for infection, Tip-mediated twitching inhibition may represent a generalized strategy for superinfection exclusion. Moreover, because TFPs are required for full virulence, PilB may be an attractive target for the development of novel antiinfectives.

  12. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    PubMed Central

    Xu, Yuanzhong; Shu, Gang; Wang, Chunmei; Yang, Yongjie; Saito, Kenji; Xu, Pingwen; Hinton, Antentor Othrell; Yan, Xiaofeng; Yu, Likai; Wu, Qi; Tso, Patrick; Tong, Qingchun; Xu, Yong

    2015-01-01

    Background/Aims Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. Methods We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) and in neurons that express pro-opiomelanocortin (POMC). We then compared anorexigenic effects of apoA-IV in wild type mice and in mutant mice lacking melanocortin 4 receptors (MC4Rs, the receptors of AgRP and the POMC gene product). Finally, we examined expression of apoA-IV in mouse hypothalamus and quantified its protein levels at fed vs. fasted states. Results We demonstrate that apoA-IV inhibited the firing rate of AgRP/NPY neurons. The decreased firing was associated with hyperpolarized membrane potential and decreased miniature excitatory postsynaptic current. We further used c-fos immunoreactivity to show that intracerebroventricular (i.c.v.) injections of apoA-IV abolished the fasting-induced activation of AgRP/NPY neurons in mice. Further, we found that apoA-IV depolarized POMC neurons and increased their firing rate. In addition, genetic deletion of MC4Rs blocked anorexigenic effects of i.c.v. apoA-IV. Finally, we detected endogenous apoA-IV in multiple neural populations in mouse hypothalamus, including AgRP/NPY neurons, and food deprivation suppresses hypothalamic apoA-IV protein levels. Conclusion Our findings support a model where central apoA-IV inhibits AgRP/NPY neurons and activates POMC neurons to activate MC4Rs, which in turn suppresses food intake. PMID:26337236

  13. Peptidase E, a Peptidase Specific for N-Terminal Aspartic Dipeptides, Is a Serine Hydrolase

    PubMed Central

    Lassy, Rachel A. L.; Miller, Charles G.

    2000-01-01

    Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (104-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available. PMID:10762256

  14. Kinetic study of interaction between BRL 42715, beta-lactamases, and D-alanyl-D-alanine peptidases.

    PubMed Central

    Matagne, A; Ledent, P; Monnaie, D; Felici, A; Jamin, M; Raquet, X; Galleni, M; Klein, D; François, I; Frère, J M

    1995-01-01

    A detailed kinetic study of the interactions between BRL 42715, a beta-lactamase-inhibiting penem, and various beta-lactamases (EC 3.5.2.6) and D-alanyl-D-alanine peptidases (DD-peptidases, EC 3.4.16.4) is presented. The compound was a very efficient inactivator of all active-site serine beta-lactamases but was hydrolyzed by the class B, Zn(2+)-containing enzymes, with very different kcat values. Inactivation of the Streptomyces sp. strain R61 extracellular DD-peptidase was not observed, and the Actinomadura sp. strain R39 DD-peptidase exhibited a low level of sensitivity to the compound. PMID:7695311

  15. Cysteine peptidases and their inhibitors in Tetranychus urticae: a comparative genomic approach

    PubMed Central

    2012-01-01

    Background Cysteine peptidases in the two-spotted spider mite Tetranychus urticae are involved in essential physiological processes, including proteolytic digestion. Cystatins and thyropins are inhibitors of cysteine peptidases that modulate their activity, although their function in this species has yet to be investigated. Comparative genomic analyses are powerful tools to obtain advanced knowledge into the presence and evolution of both, peptidases and their inhibitors, and could aid to elucidate issues concerning the function of these proteins. Results We have performed a genomic comparative analysis of cysteine peptidases and their inhibitors in T. urticae and representative species of different arthropod taxonomic groups. The results indicate: i) clade-specific proliferations are common to C1A papain-like peptidases and for the I25B cystatin family of inhibitors, whereas the C1A inhibitors thyropins are evolutionarily more conserved among arthropod clades; ii) an unprecedented extensive expansion for C13 legumain-like peptidases is found in T. urticae; iii) a sequence-structure analysis of the spider mite cystatins suggests that diversification may be related to an expansion of their inhibitory range; and iv) an in silico transcriptomic analysis shows that most cathepsin B and L cysteine peptidases, legumains and several members of the cystatin family are expressed at a higher rate in T. urticae feeding stages than in embryos. Conclusion Comparative genomics has provided valuable insights on the spider mite cysteine peptidases and their inhibitors. Mite-specific proliferations of C1A and C13 peptidase and I25 cystatin families and their over-expression in feeding stages of mites fit with a putative role in mite’s feeding and could have a key role in its broad host feeding range. PMID:22784002

  16. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication.

    PubMed

    Muylaert, Isabella; Elias, Per

    2007-04-13

    Herpes simplex virus has a linear double-stranded DNA genome with directly repeated terminal sequences needed for cleavage and packaging of replicated DNA. In infected cells, linear genomes rapidly become endless. It is currently a matter of discussion whether the endless genomes are circles supporting rolling circle replication or arise by recombination of linear genomes forming concatemers. Here, we have examined the role of mammalian DNA ligases in the herpes simplex virus, type I (HSV-1) life cycle by employing RNA interference (RNAi) in human 1BR.3.N fibroblasts. We find that RNAi-mediated knockdown of DNA ligase IV and its co-factor XRCC4 causes a hundred-fold reduction of virus yield, a small plaque phenotype, and reduced DNA synthesis. The effect is specific because RNAi against DNA ligase I or DNA ligase III fail to reduce HSV-1 replication. Furthermore, RNAi against DNA ligase IV and XRCC4 does not affect replication of adenovirus. In addition, high multiplicity infections of HSV-1 in human DNA ligase IV-deficient cells reveal a pronounced delay of production of infectious virus. Finally, we demonstrate that formation of endless genomes is inhibited by RNAi-mediated depletion of DNA ligase IV and XRCC4. Our results suggests that DNA ligase IV/XRCC4 serves an important role in the replication cycle of herpes viruses and is likely to be required for the formation of the endless genomes early during productive infection.

  17. Astragaloside IV ameliorates acute pancreatitis in rats by inhibiting the activation of nuclear factor-κB

    PubMed Central

    QIU, LEI; YIN, GUOJIAN; CHENG, LI; FAN, YUTING; XIAO, WENQIN; YU, GE; XING, MIAO; JIA, RONGRONG; SUN, RUIQING; MA, XIUYING; HU, GUOYONG; WANG, XINGPENG; TANG, MAOCHUN; ZHAO, YAN

    2015-01-01

    This study aimed to investigate the effects of astragaloside IV (AS-IV; 3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosylcycloastragenol), which has been reported to have comprehensive pharmacological functions, on sodium taurocholate (NaTc)/L-arginine (L-Arg)-induced acute pancreatitis (AP) in rats in vivo and in rat pancreatic acinar cells in vitro. NaTc-induced experimental AP was induced in rats by injecting 4% NaTc (0.1 ml/100 g) in the retrograde direction of the biliopancreatic duct. L-Arg-induced experimental AP was induced in rats by 2 intraperitoneal injections of 20% L-arg (3 g/kg), with an interval of 1 h between the injections. The rats were pre-treated AS-IV (50 mg/kg) or the vehicle (DMSO) 2 h prior to the induction of AP. Enzyme-linked immunosorbent assay, H&E staining, myeloperoxidase (MPO) activity, reverse transcription-quantitative PCR, western blot analysis and immunohistochemistry were used to evaluate the effects of AS-IV on AP. The results revealed that treatment with AS-IV significantly reduced serum amylase and lipase levels, pancreatic pathological alterations, the secretion of pro-inflammatory cytokines, MPO activity, and the protein expression of nuclear factor-κB (NF-κB) in vivo. Moreover, pre-treatment with AS-IV significantly increased the expression levels of manganese superoxide dismutase and cuprum/zinc superoxide dismutase. In the in vitro experiment, treatment of the cells with AS-IV aslo reduced rat pancreatic acinar cell necrosis and nuclear NF-κB activity, and enhanced the protein expression of superoxide dismutase. In conclusion, this study indicates that the protective effects of AS-IV on experimental AP in rats may be closely related to the inhibition of NF-κB. In addition, our results indicate that AS-IV may exert potential antioxidant effects on AP. Therefore, AS-IV may be an effective therapeutic agent for AP. PMID:25604657

  18. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  19. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor

    SciTech Connect

    Ammirati, Mark J.; Andrews, Kim M.; Boyer, David D.; Brodeur, Anne M.; Danley, Dennis E.; Doran, Shawn D.; Hulin, Bernard; Liu, Shenping; McPherson, R. Kirk; Orena, Stephen J.; Parker, Janice C.; Polivkova, Jana; Qiu, Xiayang; Soglia, Carolyn B.; Treadway, Judith L.; VanVolkenburg, Maria A.; Wilder, Donald C.; Piotrowski, David W.; Pfizer

    2010-10-01

    A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC{sub 50} = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.

  20. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  1. The Inhibition Of Pb(IV) Oxide Formation In Chlorinated Water By Orthophosphate

    EPA Science Inventory

    Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the co...

  2. Overview of pepsin-like aspartic peptidases.

    PubMed

    Dunn, B M

    2001-11-01

    The aspartic peptidase family of enzymes has been implicated in a variety of disease states, from stomach ulcers, to breast cancer, and even Alzheimer's Disease. This unit describes the major characteristics of the aspartic peptidases, including mechanism of action, subcellular and tissue localization, and biological substrate specificity.

  3. Characterization of human and mouse peroxiredoxin IV: evidence for inhibition by Prx-IV of epidermal growth factor- and p53-induced reactive oxygen species.

    PubMed

    Wong, C M; Chun, A C; Kok, K H; Zhou, Y; Fung, P C; Kung, H F; Jeang, K T; Jin, D Y

    2000-01-01

    The aim of this study was to identify and characterize human and mouse Prx-IV. We identified mouse peroxiredoxin IV (Prx-IV) by virtue of sequence homology to its human ortholog previously called AOE372. Mouse Prx-IV conserves an amino-terminal presequence coding for signal peptide. The amino acid sequences of mature mouse and human Prx-IV share 97.5% identity. Phylogenetic analysis demonstrates that Prx-IV is more closely related to Prx-I/-II/-III than to Prx-V/-VI. Previously, we mapped the mouse Prx-IV gene to chromosome X by analyzing two sets of multiloci genetic crosses. Here we performed further comparative analysis of mouse and human Prx-IV genomic loci. Consistent with the mouse results, human Prx-IV gene localized to chromosome Xp22.135-136, in close proximity to SAT and DXS7178. A bacterial artificial chromosome (BAC) clone containing the complete human Prx-IV locus was identified. The size of 7 exons and the sequences of the splice junctions were confirmed by PCR analysis. We conclude that mouse Prx-IV is abundantly expressed in many tissues. However, we could not detect Prx-IV in the conditioned media of NIH-3T3 and Jurkat cells. Mouse Prx-IV was specifically found in the nucleus-excluded region of cultured mouse cells. Intracellularly, overexpression of mouse Prx-IV prevented the production of reactive oxygen species induced by epidermal growth factor or p53. Taken together, mouse Prx-IV is likely a cytoplasmic or organellar peroxiredoxin involved in intracellular redox signaling.

  4. Chemistry, urease inhibition, and phytotoxic studies of binuclear vanadium(IV) complexes.

    PubMed

    Ara, Rifat; Ashiq, Uzma; Mahroof-Tahir, Mohammad; Maqsood, Zahida Tasneem; Khan, Khalid Mohammed; Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal

    2007-01-01

    Vanadium plays an important role in biological systems and exhibits a variety of bioactivities. In an effort to uncover the chemistry and biochemistry of vanadium with nitrogen- and oxygen-containing ligands, we report herein the synthesis and spectroscopic characterization of vanadium(IV) complexes with hydrazide ligands. Substituents on these ligands exhibit systematic variations of electronic and steric factors. Elemental and spectral data indicate the presence of a dimeric unit with two vanadium(IV) ions coordinated with two hydrazide ligands along with two H(2)O molecules. The stability studies of these complexes over time in coordinating solvent, DMSO, indicates binding of the solvent molecules to give [V2O2L2(H2O)2(DMSO)2]2+ (L=hydrazide ligand) and then conversion of it to a monomeric intermediate species, [VOL(DMSO)3]1+. Hydrazide ligands are inactive against urease, whereas vanadium(IV) complexes of these ligands show significant inhibitory potential against this enzyme and are found to be non-competitive inhibitors. These complexes also show low phytotoxicity indicating their usefulness for soil ureases. Structure-activity relationship studies indicate that the steric and/or electronic effects that may change the geometry of the complexes play an important role in their inhibitory potential and phytotoxicity.

  5. Inhibiting albumin glycation attenuates dysregulation of VEGFR-1 and collagen IV subchain production and the development of renal insufficiency.

    PubMed

    Cohen, Margo P; Lautenslager, Gregory T; Hud, Elizabeth; Shea, Elizabeth; Wang, Amy; Chen, Sheldon; Shearman, Clyde W

    2007-02-01

    Glomerular cells in culture respond to albumin containing Amadori glucose adducts (the principal serum glycated protein), with activation of protein kinase C-beta(1), increased expression of transforming growth factor (TGF)-beta1, the TGF-beta type II signaling receptor, and the extracellular matrix proteins alpha(1)(IV) collagen and fibronectin and with decreased production of the podocyte protein nephrin. Decreasing the burden of glycated albumin in diabetic db/db mice significantly reduces glomerular overexpression of TGF-beta1 mRNA, restores glomerular nephrin immunofluorescence, and lessens proteinuria, mesangial expansion, renal extracellular matrix protein production, and increased glomerular vascular endothelial growth factor (VEGF) immunostaining. In the present study, db/db mice were treated with a small molecule, designated 23CPPA, that inhibits the nonenzymatic condensation of glucose with the albumin protein to evaluate whether increased glycated albumin influences the production of VEGF receptors (VEGFRs) and type IV collagen subchains and ameliorates the development of renal insufficiency. Renal levels of VEGF and VEGFR-1 proteins and serum creatinine concentrations were significantly higher and renal levels of alpha(3)(IV) collagen and nephrin proteins and endogenous creatinine clearance values were significantly lower in control diabetic than in age-matched nondiabetic (db/m) mice. These changes were significantly attenuated in db/db littermate mice treated from 9 to 18 wk of age with 23CPPA. The findings indicate that inhibiting excess nonenzymatic glycation of serum albumin improves renal molecular biology abnormalities and protects against the development of renal insufficiency in the db/db mouse.

  6. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.

    PubMed

    Santos, L O; Garcia-Gomes, A S; Catanho, M; Sodre, C L; Santos, A L S; Branquinha, M H; d'Avila-Levy, C M

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas' disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  7. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  8. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    PubMed

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    The present study aimed at developing a natural compound with anti-allergic effect and stability under latex glove manufacturing conditions and investigating whether its anti-allergic effect is maintained after its addition into the latex. The effects of nine natural compounds on growth of the RBL-2H3 cells and mouse primary spleen lymphocytes were determined using MTT assay. The compounds included glycyrrhizin, osthole, tetrandrine, tea polyphenol, catechin, arctigenin, oleanolic acid, baicalin and oxymatrine. An ELISA assay was used for the in vitro anti-type I/IV allergy screening; in this process β-hexosaminidase, histamine, and IL-4 released from RBL-2H3 cell lines and IFN-γ and IL-2 released from mouse primary spleen lymphocytes were taken as screening indices. The physical stability of eight natural compounds and the dissolubility of arctigenin, selected based on the in vitro pharnacodynamaic screening and the stability evaluation, were detected by HPLC. The in vivo pharmacodynamic confirmation of arctigenin and final latex product was evaluated with a passive cutaneous anaphylaxis (PCA) model and an allergen-specific skin response model. Nine natural compounds showed minor growth inhibition on RBL-2H3 cells and mouse primary spleen lymphocytes. Baicalin and arctigenin had the best anti-type I and IV allergic effects among the natural compounds based on the in vitro pharmacodynamic screening. Arctigenin and catechin had the best physical stability under different manufacturing conditions. Arctigenin was the selected for further evaluation and proven to have anti-type I and IV allergic effects in vivo in a dose-dependent manner. The final product of the arctigenin-containing latex glove had anti-type I and IV allergic effects in vivo which were mainly attributed to arctigenin as proved from the dissolubility results. Arctigenin showed anti-type I and IV allergic effects in vitro and in vivo, with a good stability under latex glove manufacturing conditions

  9. Evaluation and Comparison of the Inhibition Effect of Astragaloside IV and Aglycone Cycloastragenol on Various UDP-Glucuronosyltransferase (UGT) Isoforms.

    PubMed

    Ran, Ruixue; Zhang, Chunze; Li, Rongshan; Chen, Bowei; Zhang, Weihua; Zhao, Zhenying; Fu, Zhiwei; Du, Zuo; Du, Xiaolang; Yang, Xiaolong; Fang, Zhongze

    2016-11-29

    As one of the main active ingredients from Radix Astragali (RA), orally dosed astragaloside IV (AST) is easily transformed to sapogenin-cycloastragenol (CAG) by deglycosylation in the gastrointestinal tract. Because the potential adverse effects of AST and CAG remain unclear, the present study in this article was carried out to investigate the inhibition effects of AST and CAG on UDP-glucuronosyltransferases (UGTs) to explore potential clinical toxicity. An in vitro UGTs incubation mixture was employed to study the inhibition of AST and CAG towards UGT isoforms. Concentrations of 100 μM for each compound were used to initially screen the inhibitory efficiency. Deglycosylation of AST to CAG could strongly increase the inhibitory effects towards almost all of the tested UGT isoforms, with an IC50 of 0.84 μM and 11.28 μM for UGT1A8 and UGT2B7, respectively. Ulteriorly, the inhibition type and kinetics of CAG towards UGT1A8 and UGT2B7 were evaluated depending on the initial screening results. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that CAG competitively inhibited UGT1A8 and noncompetitively inhibited UGT2B7. From the second plot drawn with the slopes from the Lineweaver-Burk plot versus the concentrations of CAG, the inhibition constant (Ki) was calculated to be 0.034 μM and 20.98 μM for the inhibition of UGT1A8 and UGT2B7, respectively. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1 > [I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), it was successfully predicted here that an in vivo herb-drug interaction between AST/CAG and drugs mainly undergoing UGT1A8- or UGT2B7-catalyzed metabolism might occur when the plasma concentration of CAG is above 0.034 μM and 20.98 μM, respectively.

  10. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  11. Dipeptidyl peptidase 4 – an important digestive peptidase in Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae ...

  12. Kinetics of Extracellular Peptidases in Sediments of the White Oak River, NC, USA

    NASA Astrophysics Data System (ADS)

    Steen, A. D.; Kevorkian, R. T.; Alperin, M. J.; Lloyd, K. G.

    2013-12-01

    Recent molecular work has shed light on the mechanisms underlying organoheterotrophy in the marine subsurface, including production of extracellular peptidases by deeply-branching Archaea. Here we present measurements of the potential activity (Vmax) and half-saturation constants (Km) for six extracellular peptidase substrates in sediments from 0 to 83 cm deep in the White Oak River estuary, NC, USA. Potential activities at 83 cm were on average 12% of the values at the surface, but because surface Vmax values were several orders of magnitude greater than comparable values from surface seawater, the deep activities were still substantial. Km values did not display a clear trend with depth. Activities consistent with leucyl aminopeptidase were higher than any other extracellular peptidase, but there was no clear division in activities between endopeptidases (which cleave bonds in the interior of proteins) versus aminopeptidases (which cleave N-terminal amino acids). Competitive inhibition experiments will reveal the extent to which the activities we measured reflect the distinct enzymes. We will also present model-based estimates of organic carbon mineralization rates based on methane and sulfate profiles in order to assess the relative importance of extracellular peptidases as a means to acquire organic carbon in the subsurface. Saturation curves for 5 peptidase substrates at the surface and 83 cm in the White Oak River.

  13. Crystallization and preliminary X-ray crystallographic studies of Pz peptidase A from Geobacillus collagenovorans MO-1.

    PubMed

    Kawasaki, Akio; Nakano, Hiroaki; Tsujimoto, Yoshiyuki; Matsui, Hiroshi; Shimizu, Tetsuya; Nakatsu, Toru; Kato, Hiroaki; Watanabe, Kunihiko

    2007-02-01

    Pz peptidase A is an intracellular M3 metallopeptidase found in the thermophile Geobacillus collagenovorans MO-1 that recognizes collagen-specific tripeptide units (Gly-Pro-Xaa). Pz peptidase A shares common reactions with mammalian thimet oligopeptidase (TOP) and neurolysin, but has extremely low primary sequence identity to these enzymes. In this work, Pz peptidase A was cocrystallized with a phosphine peptide inhibitor (PPI) that selectively inhibits TOP and neurolysin. The crystals belong to space group P2(1), with unit-cell parameters a = 56.38, b = 194.15, c = 59.93 A, beta = 106.22 degrees . This is the first crystallographic study of an M3 family peptidase-PPI complex.

  14. Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium(IV) phthalocyanine compounds.

    PubMed

    Özel, Arzu; Barut, Burak; Demirbaş, Ümit; Biyiklioglu, Zekeriya

    2016-04-01

    The binding mode of water soluble peripherally tetra-substituted titanium(IV) phthalocyanine (Pc) compounds Pc1, Pc2 and Pc3 with calf thymus (CT) DNA was investigated by using UV-Vis spectroscopy and thermal denaturation studies in this work. The results of DNA binding constants (Kb) and the changes in the thermal denaturation profile of DNA with the addition of Pc compounds indicated that Pc1, Pc2 and Pc3 are able to bind to CT-DNA with different binding affinities. DNA photocleavage studies of Pc compounds were performed in the absence and presence of oxidizing agents such as hydrogen peroxide (H2O2), ascorbic acid (AA) and 2-mercaptoethanol (ME) using the agarose gel electrophoresis method at irradiation 650 nm. According to the results of electrophoresis studies, Pc1, Pc2 and Pc3 cleaved of supercoiled pBR322 DNA via photocleavage pathway. The Pc1, Pc2 and Pc3 compounds were examined for topoisomerase I inhibition by measuring the relaxation of supercoiled pBR322 DNA. The all of Pc compounds inhibited topoisomerase I at 20 μM concentration. A series of antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, superoxide radical scavenging (SOD) assay and metal chelating effect assay were performed for Pc1, Pc2 and Pc3 compounds. The results of antioxidant assays indicated that Pc1, Pc2 and Pc3 compounds have remarkable superoxide radical scavenging activities, moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating effect activities. All the experimental studies showed that Pc1, Pc2 and Pc3 compounds bind to CT-DNA via minor groove binding, cleave of supercoiled pBR322 DNA via photocleavage pathway, inhibit topoisomerase I and have remarkable superoxide radical scavenging activities. Thanks to these properties the Pc1, Pc2 and Pc3 compounds are suitable agents for photo dynamic therapy.

  15. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  16. [Influence of coordination compounds of germanium (IV) and stannum (IV) on activity of some microbial enzymes with glycolytic and proteolytic action].

    PubMed

    Varbanets', L D; Matseliukh, O V; Nidialkova, N A; Hudzenko, O V; Avdiiuk, K V; Shmatkova, N V; Seĭfullina, I Ĭ

    2014-01-01

    Influence of coordinative compounds of germanium (IV) and stanum (IV) (complexes of germanium (IV) with nicotinamide (Nad) [GeCl2(Nad)4]Cl2 (1) and complexes of stanum (IV) with 2-hydroxybenzoilhydrazone 4-dimetylaminobenzaldehide (2-OH-HBdb) [SnCl4(2-OH-Bdb-H)] (2), 3-hydroxy-2-naphtoilhydrazone 2-hydroxynaphtaldehide (3-OH-H2Lnf) [SnCl3(3-OH-HLnf)] (3) and izonicotinoilhydrazone 2-hydroxyibenzaldehide [SnCl3 (Is·H)] (4) on activity of peptidases 1 and 2 Bacillus thuringiensis, α-L-rhamnosidase Cryptococcus albidus, Eupenicillium erubescens and α-amylase Aspergillus flavus var. oryzae. Results testify that all studied compounds differ on their influence on activity of the enzymes tested: significantly don't change elastolytic activity of peptidases 1 and 2 B. thuringiensis, completely inhibit A. flavus var. oryzae amylase, activate or oppress of α-L-rhamnosidase C. albidus and E. erubescens. Considerable differences in compounds (3, 4) on activity observed in case of the last. It's possible that peculiarity of influence (1) in compare with (2-4) is connected with existence of different central atoms of complexants: germanium (IV) (1) and stanum (IV) (2-4). A certain analogy in oppression of C. albidus α-L-rhamnosidase by compounds (1) and (4) can explain with presence of a pyridinic ring at molecules of their ligands. The less activsty displayed compound (2) with coordinative knot {SnCl4ON}. Nature of compounds (3, 4) activity was absolutely different: essential increase of activity of C. albidus α-L-rhamnosidase and full oppression of E. erubescens α-L-rhamnosidase by compound (3), while the action of compound (4) was feed back. Taking into account identical coordination knot {SnCl3O2N} the major role in this case play change of a hydrazide fragment in molecules of their ligands.

  17. Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus

    PubMed Central

    2013-01-01

    Background Aedes albopictus, a ubiquitous mosquito, is one of the main vectors of dengue and yellow fever, representing an important threat to public health worldwide. Peptidases play key roles in processes such as digestion, oogenesis, and metamorphosis of insects. However, most of the information on the proteolytic enzymes of mosquitoes is derived from insects in the adult stages and is often directed towards the understanding of blood digestion. The aim of this study was to investigate the expression of active peptidases from the preimaginal stages of Ae. albopictus. Methods Ae. albopictus eggs, larvae, and pupae were analyzed using zymography with susbtrate-SDS-PAGE. The pH, temperature and peptidase inhibitor sensitivity was evaluated. In addition, the proteolytic activities of larval instars were assayed using the fluorogenic substrate Z-Phe-Arg-AMC. Results The proteolytic profile of the larval stage was composed of 8 bands ranging from 17 to 130 kDa. These enzymes displayed activity in a broad range of pH values, from 5.5 to 10.0. The enzymatic profile of the eggs was similar to that of the larvae, although the proteolytic bands of the eggs showed lower intensities. The pupal stage showed a complex proteolytic pattern, with at least 6 bands with apparent molecular masses ranging from 30 to 150 kDa and optimal activity at pH 7.5. Peptidases from larval instars were active from 10°C to 60°C, with optimal activity at temperatures between 37°C and 50°C. The proteolytic profile of both the larval and pupal stages was inhibited by phenyl-methyl sulfonyl-fluoride (PMSF) and Nα-Tosyl L-lysine chloromethyl ketone hydrochloride (TLCK), indicating that the main peptidases expressed during these developmental stages are trypsin-like serine peptidases. Conclusion The preimaginal stages of Ae. albopictus exhibited a complex profile of trypsin-like serine peptidase activities. A comparative analysis of the active peptidase profiles revealed differential expression

  18. Peptidase activity of beta-lactamases.

    PubMed Central

    Rhazi, N; Galleni, M; Page, M I; Frère, J M

    1999-01-01

    Although beta-lactamases have generally been considered as being devoid of peptidase activity, a low but significant hydrolysis of various N-acylated dipeptides was observed with representatives of each class of beta-lactamases. The kcat/Km values were below 0.1 M(-1). s(-1), but the enzyme rate enhancement factors were in the range 5000-20000 for the best substrates. Not unexpectedly, the best 'peptidase' was the class C beta-lactamase of Enterobacter cloacae P99, but, more surprisingly, the activity was always higher with the phenylacetyl- and benzoyl-d-Ala-d-Ala dipeptides than with the diacetyl- and alpha-acetyl-l-Lys-d-Ala-d-Ala tripeptides, which are the preferred substrates of the low-molecular-mass, soluble dd-peptidases. A comparison between the beta-lactamases and dd-peptidases showed that it might be as difficult for a dd-peptidase to open the beta-lactam ring as it is for the beta-lactamases to hydrolyse the peptides, an observation which can be explained by geometric and stereoelectronic considerations. PMID:10393100

  19. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  20. Aspartate-specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E.

    PubMed Central

    Carter, T H; Miller, C G

    1984-01-01

    The only dipeptide found to serve as a leucine source for a Salmonella strain lacking peptidases N, A, B, D, P, and Q was alpha-L-aspartyl-L-leucine. A peptidase (peptidase E) that specifically hydrolyzes Asp-X peptides was identified and partially purified from cell extracts. The enzyme (molecular weight, 35,000) is inactive toward dipeptides with N-terminal asparagine or glutamic acid. Mutants (pepE) lacking this enzyme were isolated by screening extracts for loss of the activity. Genetic mapping placed the pepE locus at 91.5 map units and established the gene order metA pepE zja-861::Tn5 malB. Duplications of the pepE locus showed a gene dosage effect on levels of peptidase E, suggesting that pepE is the structural gene for this enzyme. Mutations in pepE resulted in the loss of the ability to grow on Asp-Pro as a proline source but did not affect utilization of other dipeptides with N-terminal aspartic acid. Loss of peptidase E did not cause a detectable impairment in protein degradation. Two other peptidases present in cell extracts of mutants lacking peptidases N, A, B, D, P, Q, and E also hydrolyze many Asp-X dipeptides. Images PMID:6086568

  1. Divergent actions by inhibitors of DP IV and APN family enzymes on CD4+ Teff cell motility and functions.

    PubMed

    Biton, Aliza; Ansorge, Siegfried; Bank, Ute; Täger, Michael; Reinhold, Dirk; Brocke, Stefan

    2011-12-01

    Dipeptidyl peptidase IV (DP IV)/CD26 and aminopeptidase N (APN)/CD13 family enzymes control T cell functions. We have previously defined these peptidases as targets to treat autoimmune disease, but the underlying mechanism is unclear. Here, we determined the effect of enzymatic inhibitors on chemotaxis by CD4+ effector T (Teff) cells. Exposure of Teff cells to the inhibitor of DP IV activity, Lys[Z(NO2)]-pyrrolidide (LZNP) and the inhibitor of APN activity, actinonin has no effect on chemotaxis or unstimulated cell migration, even at high inhibitor concentrations. LZNP and actinonin also fail to suppress migration of unfractionated lymph node cells, excluding paracrine action through other leukocyte subsets. In contrast, inhibition of DP IV and APN activities selectively suppresses lymphocyte functions including proliferation and production of the T helper type (Th)1 cytokine IFN-γ, the Th17 cytokine IL-17, as well as TNF-α, and ameliorates autoimmunity in vivo. The present results combined with previous studies suggest that LZNP and actinonin do not prevent migration of pathogenic Teff cells into target tissues, but rather suppress disease through inhibitor induced release of TGF-β by T cells at the site of inflammation.

  2. Signal Peptidase Enzymology and Substrate Specificity Profiling.

    PubMed

    Dalbey, R E; Pei, D; Ekici, Ö D

    2017-01-01

    Signal peptidases are membrane proteases that play crucial roles in the protein transport pathway of bacteria. They cleave off the signal peptide from precursor proteins that are membrane inserted by the SecYEG or Tat translocons. Signal peptide cleavage releases the translocated protein from the inner membrane allowing the protein to be exported to the periplasm, outer membrane, or secreted into the medium. Signal peptidases are very important proteins to study. They are unique serine proteases with a Ser-Lys dyad, catalyze cleavage at the membrane surface, and are promising potential antibacterial drug targets. This chapter will focus on the isolation of signal peptidases and the preprotein substrates, as well as describe a peptide library approach for characterizing the substrate specificity.

  3. Leishmania metacaspase: an arginine-specific peptidase.

    PubMed

    Martin, Ricardo; Gonzalez, Iveth; Fasel, Nicolas

    2014-01-01

    The purpose of this chapter is to give insights into metacaspase of Leishmania protozoan parasites as arginine-specific cysteine peptidase. The physiological role of metacaspase in Leishmania is still a matter of debate, whereas its peptidase enzymatic activity has been well characterized. Among the different possible expression systems, metacaspase-deficient yeast cells (Δyca1) have been instrumental in studying the activity of Leishmania major metacaspase (LmjMCA). Here, we describe techniques for purification of LmjMCA and its activity measurement, providing a platform for further identification of LmjMCA substrates.

  4. The Crude Skin Secretion of the Pepper Frog Leptodactylus labyrinthicus Is Rich in Metallo and Serine Peptidases

    PubMed Central

    Libério, Michelle da Silva; Bastos, Izabela M. D.; Pires Júnior, Osmindo R.; Fontes, Wagner; Santana, Jaime M.; Castro, Mariana S.

    2014-01-01

    Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology. PMID:24906116

  5. NAAG peptidase inhibitors and deletion of NAAG peptidase gene enhance memory in novel object recognition test

    PubMed Central

    Janczura, Karolina J.; Olszewski, Rafal T.; Bzdega, Tomasz; Bacich, Dean J.; Heston, Warren D.; Neale, Joseph H.

    2012-01-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is inactivated by the extracellular enzyme glutamate carboxypeptidase II. Inhibitors of this enzyme reverse dizocilpine (MK-801)-induced impairment of short-term memory in the novel object recognition test. The objective of this study was to test the hypothesis that NAAG peptidase inhibition enhances the long-term (24 hr delay) memory of C57BL mice in this test. These mice and mice in which glutamate carboxypeptidase II had been knocked out were presented with two identical objects to explore for 10 minutes on day 1 and tested with one of these familiar objects and one novel object on day 2. Memory was assessed as the degree to which the mice recalled the familiar object and explored the novel object to a greater extent on day 2. Uninjected mice or mice injected with saline prior to the acquisition session on day 1 demonstrated a lack of memory of the acquisition experience by exploring the familiar and novel objects to the same extent on day 2. Mice treated with glutamate carboxypeptidase II inhibitors ZJ43 or 2-PMPA prior to the acquisition trial explored the novel object significantly more time than the familiar object on day 2. Consistent with these results, mice in which glutamate carboxypeptidase II had been knocked out distinguished the novel from the familiar object on day 2 while their heterozygous colony mates did not. Inhibition of glutamate carboxypeptidase II enhances recognition memory, a therapeutic action that might be useful in treatment of memory deficits related to age and neurological disorders. PMID:23200894

  6. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins.

    PubMed

    Barsun, Marina; Jajcanin, Nina; Vukelić, Bojana; Spoljarić, Jasminka; Abramić, Marija

    2007-03-01

    Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.

  7. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.

    PubMed

    Ekinci, Derya; Karagoz, Lutfi; Ekinci, Deniz; Senturk, Murat; Supuran, Claudiu T

    2013-04-01

    A series of flavonoids, such as quercetin, catechin, apigenin, luteolin, morin, were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA). The compounds were tested against four α-CA isozymes purified from human and bovine (hCA I, hCA II, bCA III, hCA IV) tissues. The four isozymes showed quite diverse inhibition profiles with these compounds. The flavonoids inhibited hCA I with K(I)-s in the range of 2.2-12.8 μM, hCA II with K(I)-s in the range of 0.74-6.2 μM, bCA III with K(I)-s in the range of 2.2-21.3 μM, and hCA IV with inhibition constants in the range of 4.4-15.7, with an esterase assay using 4-nitrophenyl acetate as substrate. Some simple phenols/sulfonamides were also investigated as standard inhibitors. The flavonoids incorporate phenol moieties which inhibit these CAs through a diverse, not yet determined inhibition mechanism, compared to classic inhibitors such as the sulfonamide/sulfamate ones.

  8. Tarantula Huwentoxin-IV Inhibits Neuronal Sodium Channels by Binding to Receptor Site 4 and Trapping the Domain II Voltage Sensor in the Closed Configuration*S⃞

    PubMed Central

    Xiao, Yucheng; Bingham, Jon-Paul; Zhu, Weiguo; Moczydlowski, Edward; Liang, Songping; Cummins, Theodore R.

    2008-01-01

    Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC50 ∼ 26 nm). Following application of 1 μm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by ∼300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion β-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration. PMID:18628201

  9. Salmonella typhimurium peptidase active on carnosine.

    PubMed Central

    Kirsh, M; Dembinski, D R; Hartman, P E; Miller, C G

    1978-01-01

    Wild-type Salmonella typhimurium can use carnosine (beta-alanyl-L-histidine) as a source of histidine, but carnosine utilization is blocked in particular mutants defective in the constitutive enzyme peptidase D, the product of the pepD gene. Biochemical evidence for assigning carnosinase activity to peptidase D (a broad-specificity dipeptidase) includes: (i) coelution of carnosinase and dipeptidase activity from diethylaminoethyl-cellulose and Bio-Gel P-300 columns; (ii) coelectrophoresis of carnosinase and dipeptidase on polyacrylamide gels; and (iii) inactivation of carnosinase and dipeptidase activities at identical rates at both 4 and 42 degrees C. Genetic evidence indicates that mutations leading to loss of carnosinase activity map at pepD. Several independent pepD mutants have been isolated by different selection procedures, and the patterns of peptide utilization of strains carrying various pepD alleles have been studied. Many pepD mutations lead to the production of partially active peptidase D enzymes with substrate specificities that differ strikingly from those of the wild-type enzyme. The growth yields of carnosinase-deficient strains growing in Difco nutrient broth indicate that carnosine is the major utilizable source of histidine in this medium. PMID:26655

  10. Carbonic Anhydrase Inhibitors. Part 551 Metal Complexes of 1,3,4-Thiadiazole-2-Sulfonamide Derivatives: In Vitro Inhibition Studies With Carbonic Anhydrase Isozymes I, II and IV

    PubMed Central

    Scozzafava, Andrea; Briganti, Fabrizio; Ilies, Marc A.; Jitianu, Andrei

    1998-01-01

    Coordination compounds of 5-chloroacetamido-1,3,4-thiadiazole-2-sulfonamide (Hcaz) with V(IV), Cr(lll), Fe(ll), Co(ll), Ni(ll) and Cu(ll) have been prepared and characterized by standard procedures (spectroscopic, magnetic, EPR, thermogravimetric and conductimetric measurements). Some of these compounds showed very good in vitro inhibitory properties against three physiologically relevant carbonic anhydrase (CA)isozymes, i.e., CA I, II, and IV. The differences between these isozymes in susceptibility to inhibition by these metal complexes is discussed in relationship to the characteristic features of their active sites, and is rationalized in terms useful for developing isozyme-specific CA inhibitors. PMID:18475829

  11. Implementation of GLP-1 based therapy of type 2 diabetes mellitus using DPP-IV inhibitors.

    PubMed

    Holst, Jens Juul

    2003-01-01

    GLP-1 is a peptide hormone from the intestinal mucosa. It is secreted in response to meal ingestion and normally functions in the so-called ileal brake i. e. inhibition of upper gastrointestinal motility and secretion when nutrients are present in the distal small intestine. It also induces satiety and promotes tissue deposition of ingested glucose by stimulating insulin secretion. Thus, it is an essential incretin hormone. In addition, the hormone has been demonstrated to promote insulin biosynthesis and insulin gene expression and to have trophic effects on the beta cells. The trophic effects include proliferation of existing beta cells, maturation of new cells from duct progenitor cells and inhibition of apoptosis. Furthermore glucagon secretion is inhibited. Because of these effects, the hormone effectively improves metabolism in patients with type 2 diabetes mellitus. However, continuous administration of the peptide is necessary because of an exceptionally rapid rate of degradation catalyzed the enzyme dipeptidyl peptidase IV. With inhibitors of this enzyme, it is possible to protect the endogenous hormone and thereby elevate both fasting and postprandial levels of the active hormone. This leads to enhanced insulin secretion and glucose turnover. But will DPP-IV inhibition enhance all effects of the endogenous peptide? The mode of action of GLP-1 is complex involving also interactions with sensory neurons and the central nervous system, where a DPP-IV mediated degradation does not seem to occur. Therefore, it is as yet uncertain wether DDP-IV inhibitors will affect gastrointestinal motility, appetite and food intake. Even the effects of GLP-1 effects on the pancreatic islets may be partly neurally mediated and therefore uninfluenced by DPP-IV inhibition.

  12. Inhibition of cytochrome P450 3A in rat liver by the Diorganotin (IV) compound di-n-Butyl-di-(4-chlorobenzo-hydroxamato)tin (IV) and Its Probable Mechanism.

    PubMed

    Zhang, Yunxia; Li, Yunlan; Li, Qingshan

    2012-09-12

    The specific aims of this study were to evaluate the inhibition effect on CYP3A of di-n-butyl-di-(4-chlorobenzohydroxamato)tin (IV) (DBDCT), a tin-based complex with high antitumor activity, and the probable mechanism(s) of this action. Adult male SD rats were treated separately with natural saline (NS), lipopolysaccharide (LPS, 5 mg/kg), DBDCT (1.25, 2.5 and 5.0 mg/kg) intraperitoneally for 2 days after induction of CYP3A with dexamethasone (DEX, 100 mg/kg) for 4 days. Western blot analysis and fluorescent quantitation PCR (FQ-PCR) were conducted to determine the changes in expression of CYP3A, PXR, CAR and RXR. The biological accumulation of DBDCT and total Sn were determined by high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS). CYP450 content and CYP3A activities were significantly inhibited (p < 0.05) in DBDCT-treated rats compared with the control group, as was the expression of CYP3A (p < 0.05) at both protein and mRNA levels. In DBDCT-treated groups, the expression of PXR protein and mRNA increased, while the expression of CAR decreased. The biological accumulation of DBDCT and Sn in rat livers treated with DBDCT was high. The accumulation of DBDCT and Sn due to the inhibition of CYP3A may be involved in the mechanism of toxicity of DBDCT in rat liver.

  13. Neutral Peptidases in the Stroma of Pea Chloroplasts 1

    PubMed Central

    Liu, Xiang-Qin; Jagendorf, André T.

    1986-01-01

    One endopeptidase (EP1) and at least three aminopeptidases (AP1, AP2, and AP3) were discovered in the stroma of chloroplasts isolated from pea seedlings (Pisum sativum L.), and purified over 100-fold. EP1 requires added Mg2+ or Ca2+ for activity, may have an additional tightly bound metal atom, and is inhibited by sulfhydryl reagents but not by serine residue-directed inhibitors. It is reversibly inhibited by dithiothreitol. Its specificity is for the bond between two adjacent Ala or Gly residues. Its molecular mass is 93 kilodaltons, estimated on a gel filtration column. Aminopeptidase activities were detected with the aid of different amino acyl-β-naphthylamides as substrates. They were resolved into at least three individual proteins by gel filtration and DEAE-cellulose chromatography, having apparent molecular masses of 269,000 (AP1), 84,000 (AP2), and 42,000 (AP3) daltons, respectively. Each has a unique specificity for substrates, with AP1 hydrolyzing only the Prolyl-β-naphthylamide. None of the APs require added divalent cations for activity, but the possibility of a tightly bound metal function was suggested in AP2 and AP3 (not AP1) from effects of inhibitors. A probable sulfhydryl residue function was indicated for all three, from inhibition by p-hydroxymercuribenzoate and Zn2+. All these peptidases had pH optima at 7.7. PMID:16664864

  14. Disease-Associated Neisseria meningitidis Isolates Inhibit Wound Repair in Respiratory Epithelial Cells in a Type IV Pilus-Independent Manner

    PubMed Central

    Ren, Xiaoyun

    2014-01-01

    Neisseria meningitidis is the causative agent of meningococcal disease. Onset of meningococcal disease can be extremely rapid and can kill within a matter of hours. However, although a much-feared pathogen, Neisseria meningitidis is frequently found in the nasopharyngeal mucosae of healthy carriers. The bacterial factors that distinguish disease- from carriage-associated meningococci are incompletely understood. Evidence suggesting that disruptions to the nasopharynx may increase the risk of acquiring meningococcal disease led us to evaluate the ability of disease- and carriage-associated meningococcal isolates to inhibit cell migration, using an in vitro assay for wound repair. We found that disease-associated isolates in our collection inhibited wound closure, while carriage-associated isolates were more variable, with many isolates not inhibiting wound repair at all. For isolates selected for further study, we found that actin morphology, such as presence of lamellipodia, correlated with cell migration. We demonstrated that multiple meningococcal virulence factors, including the type IV pili, are dispensable for inhibition of wound repair. Inhibition of wound repair was also shown to be an active process, i.e., requiring live bacteria undergoing active protein synthesis. PMID:25225250

  15. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods

    NASA Astrophysics Data System (ADS)

    Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio

    2014-02-01

    Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

  16. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae).

    PubMed

    Bruno, Mariela A; Pardo, Marcelo F; Caffini, Néstor O; López, Laura M I

    2003-02-01

    A new peptidase, named hieronymain I, was purified to homogeneity from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae) by acetone fractionation followed by cation exchange chromatography (FPLC) on CM-Sepharose FF. Homogeneity of the enzyme was confirmed by mass spectroscopy (MALDI-TOF), isoelectric focusing, and SDS-PAGE. Hieronymain is a basic peptidase (pI > 9.3) and its molecular mass was 24,066 Da. Maximum proteolytic activity on casein (>90% of maximum activity) was achieved at pH 8.5-9.5. The enzyme was completely inhibited by E-64 and iodoacetic acid and activated by the addition of cysteine; these results strongly suggest that the isolated protease should be included within the cysteine group. The N-terminal sequence of hieronymain (ALPESIDWRAKGAVTEVKRQDG) was compared with 25 plant cysteine proteases that showed more than 50% of identity.

  17. Structure based virtual screening of MDPI database: discovery of structurally diverse and novel DPP-IV inhibitors.

    PubMed

    Tanwar, Omprakash; Tanwar, Lalima; Shaquiquzzaman, Md; Alam, Md Mumtaz; Akhter, Mymoona

    2014-08-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) has been emerged as a promising approach for the treatment of type 2 diabetes (T2D). Structure based virtual screening (SBVS) of Molecular Diversity Preservation International (MDPI) database was performed using Glide and Gold against DPP-IV enzyme. Six promising hits were identified and tested for DPP-IV inhibition. Three compounds were found to be active at low micromolar concentration. The 3-(1-hydrazinyl-1-(phenylamino)ethyl)-4-hydroxy-1-methylquinolin-2(1H)-one (compound A) was found to be the most potent hit with an IC50 of 0.73 μM. These three compounds (A, B and D) were then assessed for their glucose lowering effects in glucose fed hyperglycemic female Wistar rats. The glucose lowering effects of compounds also confirms their potential as anti-diabetic agents. The present study demonstrates a successful utilization of in silico SBVS tools in identification of novel and potential DPP-IV inhibitor.

  18. Peptidase activities in the semen from the ductus deferens and uterus of the neotropical rattlesnake Crotalus durissus terrificus.

    PubMed

    Marinho, Camila Eduardo; Almeida Santos, Selma Maria; Yamasaki, Simone Cristina; Silveira, Paulo Flavio

    2009-07-01

    To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, intra- and inter-seasonal activity levels of acid (APA), basic (APB), puromycin-sensitive (APN-PS) and puromycin-insensitive neutral (APN-PI), cystyl (CAP), dipeptidyl-IV (DPPIV), type-1 pyroglutamyl (PAP-I) and prolyl-imino (PIP) aminopeptidases as well as prolyl endopeptidase (POP) were evaluated in soluble (SF) and/or membrane-bound (MF) fractions of semen collected from the ductus deferens of the male reproductive tract and from the posterior portion of the uterus. Seminal APB, PIP and POP were detected in SF, while other peptidases were detected in SF and MF. Only the convoluted posterior uterus in winter and autumn had semen. Relative to other examined peptidases, in general, APN-PI, APN-PS and APB activities were predominant in the semen from the uterus and throughout the year in the semen from the ductus deferens, suggesting their great relevance in the seminal physiology of C. d. terrificus. The levels of peptidase activities in the ductus deferens semen varied seasonally and were different from those of semen in the uterus, suggesting that their modulatory actions on susceptible peptides are integrated to the male reproductive cycle events and spermatozoa viability of this snake.

  19. Dipeptidyl peptidase 4 - An important digestive peptidase in Tenebrio molitor larvae.

    PubMed

    Tereshchenkova, Valeriia F; Goptar, Irina A; Kulemzina, Irina A; Zhuzhikov, Dmitry P; Serebryakova, Marina V; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2016-09-01

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.

  20. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    PubMed

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  1. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi.

    PubMed

    Sangenito, Leandro S; Gonçalves, Diego S; Seabra, Sergio H; d'Avila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2016-10-01

    There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease.

  2. Characterization of the peptidase activity of recombinant porcine pregnancy-associated glycoprotein-2.

    PubMed

    Telugu, Bhanu Prakash V L; Green, Jonathan A

    2008-12-01

    The pregnancy-associated glycoproteins (PAGs) belong to the aspartic peptidase family. They are expressed exclusively in trophoblasts of even-toed ungulates such as swine, cattle, sheep, etc. In pigs, two distinct PAG transcripts (and some variants) have been described. One of the transcripts, porcine PAG-1 (poPAG-1) may not be capable of acting as a peptidase. The second transcript, poPAG-2, possesses a conserved catalytic centre and has been predicted, but not shown, to have proteolytic activity. The thrust of this work was to test such a possibility. PoPAG-2 was expressed as a recombinant protein with an amino-terminal 'FLAG-tag' in a Baculoviral expression system. The expressed proteins were affinity purified by using an anti-FLAG antibody. The purified preparations were then analysed for proteolytic activity against a fluorescent substrate. Porcine PAG-2 had optimal proteolytic activity around pH 3.5. Against this substrate, it had a k(cat)/K(m) of 1.2 microM(-1) s(-1) and was inhibited by the aspartic peptidase inhibitor, pepstatin A, with a K(i) of 12.5 nM. Since the proteolytic activity of PAGs in the pig has now been established, the search for putative substrates to gain insight into the physiological role of PAGs will likely be the focus of future investigations.

  3. Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver.

    PubMed Central

    Sardana, M K; Kappas, A

    1987-01-01

    Tin(IV)-protoporphyrin (Sn-protoporphyrin) potently inhibits heme degradation to bile pigments in vitro and in vivo, a property that confers upon this synthetic compound the ability to suppress a variety of experimentally induced and naturally occurring forms of jaundice in animals and humans. Utilizing rat liver heme oxygenase purified to homogeneity together with appropriate immunoquantitation techniques, we have demonstrated that Sn-protoporphyrin possesses the additional property of potently inducing the synthesis of heme oxygenase protein in liver cells while, concurrently, completely inhibiting the activity of the newly formed enzyme. Substitution of tin for the central iron atom of heme thus leads to the formation of a synthetic heme analogue that regulates heme oxygenase by a dual mechanism, which involves competitive inhibition of the enzyme for the natural substrate heme and simultaneous enhancement of new enzyme synthesis. Cobaltic(III)-protoporphyrin (Co-protoporphyrin) also inhibits heme oxygenase activity in vitro, but unlike Sn-protoporphyrin it greatly enhances the activity of the enzyme in the whole animal. Co-protoporphyrin also acts as an in vivo inhibitor of heme oxygenase; however, its inducing effect on heme oxygenase synthesis is so pronounced as to prevail in vivo over its inhibitory effect on the enzyme. These studies show that certain synthetic heme analogues possess the ability to simultaneously inhibit as well as induce the enzyme heme oxygenase in liver. The net balance between these two actions, as reflected in the rate of heme oxidation activity in the whole animal, appears to be influenced by the nature of the central metal atom of the synthetic metalloporphyrin. Images PMID:3470805

  4. Nodulin 41, a novel late nodulin of common bean with peptidase activity

    PubMed Central

    2011-01-01

    Background The legume-rhizobium symbiosis requires the formation of root nodules, specialized organs where the nitrogen fixation process takes place. Nodule development is accompanied by the induction of specific plant genes, referred to as nodulin genes. Important roles in processes such as morphogenesis and metabolism have been assigned to nodulins during the legume-rhizobium symbiosis. Results Here we report the purification and biochemical characterization of a novel nodulin from common bean (Phaseolus vulgaris L.) root nodules. This protein, called nodulin 41 (PvNod41) was purified through affinity chromatography and was partially sequenced. A genomic clone was then isolated via PCR amplification. PvNod41 is an atypical aspartyl peptidase of the A1B subfamily with an optimal hydrolytic activity at pH 4.5. We demonstrate that PvNod41 has limited peptidase activity against casein and is partially inhibited by pepstatin A. A PvNod41-specific antiserum was used to assess the expression pattern of this protein in different plant organs and throughout root nodule development, revealing that PvNod41 is found only in bean root nodules and is confined to uninfected cells. Conclusions To date, only a small number of atypical aspartyl peptidases have been characterized in plants. Their particular spatial and temporal expression patterns along with their unique enzymatic properties imply a high degree of functional specialization. Indeed, PvNod41 is closely related to CDR1, an Arabidopsis thaliana extracellular aspartyl protease involved in defense against bacterial pathogens. PvNod41's biochemical properties and specific cell-type localization, in uninfected cells of the common bean root nodule, strongly suggest that this aspartyl peptidase has a key role in plant defense during the symbiotic interaction. PMID:21985276

  5. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1.

    PubMed

    Chen, Bin; Li, Ran; Yan, Ning; Chen, Gang; Qian, Wen; Jiang, Hui-Li; Ji, Chao; Bi, Zhi-Gang

    2015-05-01

    Exposure to ultraviolet (UV) light reduces levels of type I collagen in the dermis and results in human skin damage and premature skin aging (photoaging). This leads to a wrinkled appearance through the inhibition of transforming growth factor‑β (TGF‑β)/Smad signaling. UV irradiation increases type I collagen degradation through upregulating matrix metalloproteinase (MMP) expression. Astragaloside IV (AST) is one of the major active components extracted from Astragalus membranaceus. However, its multiple anti‑photoaging effects remain to be elucidated. In the present study, the effects of AST against collagen reduction in UV‑induced skin aging in human skin fibroblasts were investigated. The expression of type I procollagen (COL1), MMP‑1, TGF‑βRⅡ and Smad7 were determined using reverse transcription‑polymerase chain reaction, western blotting and ELISA, respectively. UV irradiation inhibits type I collagen production by suppressing the TGF‑β/Smad signaling pathway and increasing COL1 degradation by inducing MMP‑1 expression. Transforming growth factor‑β type II protein and COL1 mRNA decreased but MMP‑1 and Smad7 levels increased in the photoaging model group, which was reversed by topical application of AST. AST prevents collagen reduction from UV irradiation in photoaging skin by improving TGF‑β/Smad signaling suppression and inhibiting MMP‑1, thus AST may be a potential agent against skin photoaging.

  6. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  7. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    PubMed Central

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  8. NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia

    PubMed Central

    Olszewski, R T; Janczura, K J; Ball, S R; Madore, J C; Lavin, K M; Lee, J C-M; Lee, M J; Der, E K; Hark, T J; Farago, P R; Profaci, C P; Bzdega, T; Neale, J H

    2012-01-01

    The most widely validated animal models of the positive, negative and cognitive symptoms of schizophrenia involve administration of d-amphetamine or the open channel NMDA receptor blockers, dizocilpine (MK-801), phencyclidine (PCP) and ketamine. The drug ZJ43 potently inhibits glutamate carboxypeptidase II (GCPII), an enzyme that inactivates the peptide transmitter N-acetylaspartylglutamate (NAAG) and reduces positive and negative behaviors induced by PCP in several of these models. NAAG is an agonist at the metabotropic glutamate receptor 3 (mGluR3). Polymorphisms in this receptor have been associated with expression of schizophrenia. This study aimed to determine whether two different NAAG peptidase inhibitors are effective in dopamine models, whether their efficacy was eliminated in GCPII knockout mice and whether the efficacy of these inhibitors extended to MK-801-induced cognitive deficits as assessed using the novel object recognition test. ZJ43 blocked motor activation when given before or after d-amphetamine treatment. (R,S)-2-phosphono-methylpentanedioic acid (2-PMPA), another potent NAAG peptidase inhibitor, also reduced motor activation induced by PCP or d-amphetamine. 2-PMPA was not effective in GCPII knockout mice. ZJ43 and 2-PMPA also blocked MK-801-induced deficits in novel object recognition when given before, but not after, the acquisition trial. The group II mGluR antagonist LY341495 blocked the effects of NAAG peptidase inhibition in these studies. 2-PMPA was more potent than ZJ43 in a test of NAAG peptidase inhibition in vivo. By bridging the dopamine and glutamate theories of schizophrenia with two structurally different NAAG peptidase inhibitors and demonstrating their efficacy in blocking MK-801-induced memory deficits, these data advance the concept that NAAG peptidase inhibition represents a potentially novel antipsychotic therapy. PMID:22850437

  9. Identification and characterization of the metal ion-dependent L-alanoyl-D-glutamate peptidase encoded by bacteriophage T5.

    PubMed

    Mikoulinskaia, Galina V; Odinokova, Irina V; Zimin, Andrei A; Lysanskaya, Valentina Ya; Feofanov, Sergei A; Stepnaya, Olga A

    2009-12-01

    Although bacteriophage T5 is known to have lytic proteins for cell wall hydrolysis and phage progeny escape, their activities are still unknown. This is the first report on the cloning, expression and biochemical characterization of a bacteriophage T5 lytic hydrolase. The endolysin-encoding lys gene of virulent coliphage T5 was cloned in Escherichia coli cells, and an electrophoretically homogeneous product of this gene was obtained with a high yield (78% of total activity). The protein purified was shown to be an L-alanoyl-D-glutamate peptidase. The enzyme demonstrated maximal activity in diluted buffers (25-50 mM) at pH 8.5. The enzyme was strongly inhibited by EDTA and BAPTA, and fully reactivated by calcium/manganese chlorides. It was found that, along with E. coli peptidoglycan, peptidase of bacteriophage T5 can lyse peptidoglycans of other Gram-negative microorganisms (Pectobacterium carotovorum, Pseudomonas putida, Proteus vulgaris, and Proteus mirabilis). This endolysin is the first example of an L-alanoyl-D-glutamate peptidase in a virulent phage infecting Gram-negative bacteria. There are, however, a great many sequences in databases that are highly similar to that of bacteriophage T5 hydrolase, indicating a wide distribution of endolytic L-alanoyl-D-glutamate peptidases. The article discusses how an enzyme with such substrate specificity could be fixed in the process of evolution.

  10. Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients.

    PubMed

    Bopp, A; De Bona, K S; Bellé, L P; Moresco, R N; Moretto, M B

    2009-08-01

    Syzigium cumini (L.) Skeels from the Myrtaceae family is among the most common medicinal plants used to treat diabetes in Brazil. Leaves, fruits, and barks of S. cumini have been used for their hypoglycemic activity. Adenosine deaminase (ADA) is an important enzyme that plays a relevant role in purine and DNA metabolism, immune responses, and peptidase activity. ADA is suggested to be an important enzyme for modulating the bioactivity of insulin, but its clinical significance in diabetes mellitus (DM) has not yet been proven. In this study, we examined the effect of aqueous leaf extracts of S. cumini (L.) (ASC) on ADA activity of hyperglycemic subjects and the activity of total ADA, and its isoenzymes in serum and erythrocytes. The present study indicates that: (i) the ADA activity in hyperglycemic serum was higher than normoglycemic serum and ADA activity was higher when the blood glucose level was more elevated; (ii) ASC (60-1000 microg/mL) in vitro caused a concentration-dependent inhibition of total ADA activity and a decrease in the blood glucose level in serum; (iii) ADA1 and 2 were reduced both in erythrocytes and in hyperglycemic serum. These results suggest that the decrease of ADA activity provoked by ASC may contribute to control adenosine levels and the antioxidant defense system of red cells and could be related to the complex ADA/DPP-IV-CD26 and the properties of dipeptidyl peptidase IV (DPP-IV) inhibitors which serve as important regulators of blood glucose.

  11. Camel milk attenuates the biochemical and morphological features of diabetic nephropathy: inhibition of Smad1 and collagen type IV synthesis.

    PubMed

    Korish, Aida A; Abdel Gader, Abdel Galil; Korashy, Hesham M; Al-Drees, Abdul Majeed; Alhaider, Abdulqader A; Arafah, Maha M

    2015-03-05

    Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus (DM) that worsens its morbidity and mortality. There is evidence that camel milk (CM) improves the glycemic control in DM but its effect on the renal complications especially the DN remains unclear. Thus the current study aimed to characterize the effects of CM treatment on streptozotocin (STZ)-induced DN. Using STZ-induced diabetes, we investigated the effect of CM treatment on kidney function, proteinuria, renal Smad1, collagen type IV (Col4), blood glucose, insulin resistance (IR), lipid peroxidation, the antioxidant superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). In addition renal morphology was also examined. The current results showed that rats with untreated diabetes exhibited marked hyperglycemia, IR, high serum urea and creatinine levels, excessive proteinuria, increased renal Smad1 and Col4, glomerular expansion, and extracellular matrix deposition. There was also increased lipid peroxidation products, decreased antioxidant enzyme activity and GSH levels. Camel milk treatment decreased blood glucose, IR, and lipid peroxidation. Superoxide dismutase and CAT expression, CAT activity, and GSH levels were increased. The renoprotective effects of CM were demonstrated by the decreased serum urea and creatinine, proteinuria, Smad1, Col4, and preserved normal tubulo-glomerular morphology. In conclusion, beside its hypoglycemic action, CM attenuates the early changes of DN, decreased renal Smad1 and Col4. This could be attributed to a primary action on the glomerular mesangial cells, or secondarily to the hypoglycemic and antioxidant effects of CM. The protective effects of CM against DN support its use as an adjuvant anti-diabetes therapy.

  12. Icariin attenuates high glucose-induced type IV collagen and fibronectin accumulation in glomerular mesangial cells by inhibiting transforming growth factor-β production and signalling through G protein-coupled oestrogen receptor 1.

    PubMed

    Li, Yi-Chen; Ding, Xuan-Sheng; Li, Hui-Mei; Zhang, Cheng

    2013-09-01

    Icariin has been shown to attenuate diabetic nephropathy in rats by decreasing transforming growth factor-β (TGF-β) and type IV collagen expression, but its mode of action in glomerular mesangial cells is uncertain. The present study aimed to investigate the effect of icariin on excess mesangial type IV collagen and fibronectin accumulation induced by high glucose, and to determine the mechanism underlying its protective effects. Under high-glucose conditions, icariin diminished type IV collagen and fibronectin accumulation, as well as TGF-β production in human and rat mesangial cells. Mesangial cells treated with icariin after TGF-β1 exposure expressed less type IV collagen and fibronectin than those without icariin treatment, suggesting inhibition by icariin of TGF-β1 downstream pathways. On TGF-β1 stimulation, icariin inhibited TGF-β canonical Smad signalling and extracellular signal-regulated kinase (ERK)1/2 signalling by decreasing Smad2/3 and ERK1/2 phosphorylation in a dose-dependent manner. U0126, which blocked the ERK1/2 pathway, exerted an additive effect on the icariin suppression of type IV collagen and fibronectin expression, enhancing the beneficial effects of icariin. The G protein-coupled oestrogen receptor 1 (GPER) antagonist, G-15, abolished the icariin-induced inhibition of type IV collagen, and fibronectin overproduction and TGF-β signalling. Treatment of cells with fulvestrant, a downregulator of the oestrogen receptor, enhanced the action of icariin. In conclusion, icariin decreased type IV collagen and fibronectin accumulation induced by high glucose in mesangial cells by inhibiting TGF-β production, as well as Smad and ERK signalling in a GPER-dependent manner.

  13. Carbonic anhydrase inhibitors. Inhibition of isozymes I, II, IV, V, and IX with anions isosteric and isoelectronic with sulfate, nitrate, and carbonate.

    PubMed

    Innocenti, Alessio; Vullo, Daniela; Scozzafava, Andrea; Supuran, Claudiu T

    2005-02-01

    The inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes; the cytosolic hCA I and II, the membrane-bound hCA IV, the mitochondrial hCA V, and the tumor-associated, transmembrane hCA IX, with anions isosteric and isoelectronic with sulfate, nitrate, and carbonate; such as chlorate, perchlorate, bromate, iodate, periodate, silicate, bismuthate, vanadate, molybdate, and wolframate is reported. Apparently, the geometry of the inhibitor (tetrahedral or trigonal) does not influence its binding to the Zn(II) ion of the enzyme active site, but the nature of the central element is the most important factor influencing potency. Isozymes hCA I and II are best inhibited by chlorate, perchlorate, and silicate, together with the anions structurally related to sulfate, sulfamate, and sulfamidate, but sulfate itself is a weak inhibitor (inhibition constant of 74 mM against hCA I and 183 mM against hCA II). Molybdate is a very weak hCA I inhibitor (K(I) of 914 mM) but it interacts with hCA II (K(I) of 27.5mM). Isozyme IV is well inhibited by sulfate (K(I) of 9 mM), sulfamate, and sulfamidate (in the low micromolar range), but not by perchlorate (K(I) of 767 mM). The mitochondrial isozyme V has the lowest affinity for sulfate (K(I) of 680 mM) and carbonate (K(I) of 95 mM) among all the investigated isozymes, suggesting on one hand its possible participation in metabolon(s) with sulfate anion exchanger(s), and on the other hand an evolutionary adaptation to working at higher pH values (around 8.5 in mitochondria) where rather high amounts of carbonate in equilibrium with bicarbonate may be present. Metasilicate, isosteric to carbonate, is also about a 10 times weaker inhibitor of this isozyme as compared to other CAs investigated here (K(I) of 28.2 mM). Surprisingly, the tumor-associated isozyme IX is resistant to sulfate inhibition (K(I) of 154 mM) but has affinity in the low micromolar range for carbonate, sulfamate, and sulfamidate (K(I) in the range of 8

  14. Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase.

    PubMed

    Midorikawa, Takafumi; Endow, Joshua K; Dufour, Jeremy; Zhu, Jieping; Inoue, Kentaro

    2014-11-01

    Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol-disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N-terminal targeting signal, which is removed in the lumen by a membrane-bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at -3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non-reducing conditions than under reducing conditions on SDS-PAGE. These results underpin the notion that Plsp1 is a redox-dependent signal peptidase in the thylakoid lumen.

  15. Linagliptin: a novel methylxanthin based approved dipeptidyl peptidase-4 inhibitor.

    PubMed

    Agrawal, Ritesh; Jain, Pratima; Dikshit, S N

    2012-06-01

    Chemically, methylxanthine nucleus based Linagliptin (BI-1356, BI-1356-BS) is a dipeptidyl peptidase-IV inhibitor, which has been developed by Boehringer Ingelheim in association with Lilly for the treatment of Type-II Diabetes. Linagliptin was marketed by Lilly under the trade name Tradjenta and Trajenta. Linagliptin was approved as the once-daily dose by USFDA on 2 May 2011, for the treatment of Type-II Diabetes. Linagliptin 5mg once daily dose was approved based on a clinical trial program, which was conducted on approximately 4,000 adults with Type-II Diabetes. Linagliptin demonstrated statistically significant mean difference in HbA1c from placebo of up to 0.72 percent, when it was used monotherapically. In patients, who were not adequately controlled on metformin or metformin plus sulphonylurea, the addition of Linagliptin resulted in a statistically significant mean difference in HbA1c from placebo of -0.6 percent. Linagliptin was observed to produce significant reduction in fasting plasma glucose (FPG) compared to placebo, when used as a monotherapy in combination with metformin, sulfonylurea and/or pioglitazone. Linagliptin demonstrated significant reduction post-prandial glucose (PPG) levels in two hours as compared with placebo in monotherapy as well as in combination with metformin. In vitro assays also anticipated that Linagliptin is a potent DPPIV inhibitor as well as it exhibits good selectivity for DPP-IV as compared with other DPPs. The in-vivo studies also demonstrated same anticipation with respect to Linagliptin. Consequently, increasing the GLP-1 levels so far improved glucose tolerance in both healthy animals. X-ray crystallography anticipates that Linagliptin complexes with human DPPIV enzyme, e.g. butynyl substituent occupies the S1 hydrophobic pocket of the enzyme; the aminopiperidine substituent in the xanthine scaffold occupies the S2 subsite and its primary amine interacts with the key amino acid residues, which involves in the

  16. 1,10-phenanthroline inhibits the metallopeptidase secreted by Phialophora verrucosa and modulates its growth, morphology and differentiation.

    PubMed

    Granato, Marcela Queiroz; Massapust, Priscila de Araújo; Rozental, Sonia; Alviano, Celuta Sales; dos Santos, André Luis Souza; Kneipp, Lucimar Ferreira

    2015-04-01

    Phialophora verrucosa is one of the etiologic agents of chromoblastomycosis, a fungal infection that affects cutaneous and subcutaneous tissues. This disease is chronic, recurrent and difficult to treat. Several studies have shown that secreted peptidases by fungi are associated with important pathophysiological processes. Herein, we have identified and partially characterized the peptidase activity secreted by P. verrucosa conidial cells. Using human serum albumin as substrate, the best hydrolysis profile was detected at extreme acidic pH (3.0) and at 37 °C. The enzymatic activity was completely blocked by classical metallopeptidase inhibitors/chelating agents as 1,10-phenanthroline and EGTA. Zinc ions stimulated the metallo-type peptidase activity in a dose-dependent manner. Several proteinaceous substrates were cleaved, in different extension, by the P. verrucosa metallopeptidase activity, including immunoglobulin G, fibrinogen, collagen types I and IV, fibronectin, laminin and keratin; however, mucin and hemoglobin were not susceptible to proteolysis. As metallopeptidases participate in different cellular metabolic pathways in fungal cells, we also tested the influence of 1,10-phenanthroline and EGTA on P. verrucosa development. Contrarily to EGTA, 1,10-phenanthroline inhibited the fungal viability (MIC 0.8 µg/ml), showing fungistatic effect, and induced profound morphological alterations as visualized by transmission electron microscopy. In addition, 1,10-phenanthroline arrested the filamentation process in P. verrucosa. Our results corroborate the supposition that metallopeptidase inhibitors/chelating agents have potential to control crucial biological events in fungal agents of chromoblastomycosis.

  17. Synthesis and processing of Escherichia coli TEM-beta-lactamase and Bacillus licheniformis alpha-amylase in E. coli: the role of signal peptidase I.

    PubMed

    van Dijl, J M; Smith, H; Bron, S; Venema, G

    1988-09-01

    A mutant of Escherichia coli, in which signal peptidase I synthesis can be regulated, was constructed. The mutant was used to study the effects of signal peptidase I limitation on the synthesis and efficiency of processing of two proteins: the periplasmic E. coli TEM-beta-lactamase and Bacillus licheniformis alpha-amylase, which also accumulates in the periplasm of E. coli. Signal peptidase I limitation resulted in reduced rates of processing of pre-beta-lactamase and in strong inhibition of synthesis of alpha-amylase. The data suggest that beta-lactamase is processed post-translationally and that an intimate relationship exists between the synthesis and processing of alpha-amylase.

  18. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Songtawee, Napat; Monnor, Teerawat; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    This study represents the first large-scale study on the chemical space of inhibitors of dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from the geometrically optimized low-energy conformers of these compounds at the semiempirical AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular descriptors that accounted for the unique physicochemical properties inherently present in the active and inactive sets of compounds as defined by their respective half maximal inhibitory concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree analysis revealed the importance of molecular weight, total energy of a molecule, topological polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen bond donors, respectively. The prediction model was subjected to rigorous independent testing via three external sets. Scaffold and chemical fragment analysis was also performed on these active and inactive sets of compounds to shed light on the distinguishing features of the functional moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key interacting residues. The results of this study are anticipated to be useful in guiding the rational design of novel and robust DPP4 inhibitors for the treatment of diabetes. PMID:26309399

  19. Serpin peptidase inhibitor clade A member 1 is a biomarker of poor prognosis in gastric cancer

    PubMed Central

    Kwon, C H; Park, H J; Lee, J R; Kim, H K; Jeon, T Y; Jo, H-J; Kim, D H; Kim, G H; Park, D Y

    2014-01-01

    Background: In a previous study, we reported that serpin peptidase inhibitor clade A member 1 (serpinA1) is upregulated in Snail-overexpressing gastric cancer. Although serpinA1 has been studied in several types of cancer, little is known about its roles and mechanisms of action. In this study, we examined the role of serpinA1 in the migration and invasion of gastric cancers and determined its underlying mechanism. Methods: Expression levels were assessed by western blot analyses and real-time PCR. Snail binding to serpinA1 promoter was analysed by chromatin immunoprecipitation (ChIP) assays. The roles of serpinA1 were studied using cell invasion and migration assays. In addition, the clinicopathologic and prognostic significance of serpinA1 expression were validated in 400 gastric cancer patients using immunohistochemical analysis. Results: Overexpression of Snail resulted in upregulation of serpinA1 in gastric cancer cell lines, AGS and MKN45, whereas knockdown of Snail inhibited serpinA1 expression. Chromatin immunoprecipitation analysis showed that overexpression of Snail increased Snail recruitment to the serpinA1 promoter. Overexpression of serpinA1 increased the migration and invasion of gastric cancer cells, whereas knockdown of serpinA1 decreased invasion and migration. Moreover, serpinA1 increased mRNA levels and release of metalloproteinase-8 in gastric cancer cells. Serpin peptidase inhibitor clade A member 1 was observed in the cytoplasm of tumour cells and the stroma by immunohistochemistry. Enhanced serpinA1 expression was significantly associated with increased tumour size, advanced T stage, perineural invasion, lymphovascular invasion, lymph node metastases, and shorter overall survival. Conclusions: Serpin peptidase inhibitor clade A member 1 induces the invasion and migration of gastric cancer cells and its expression is associated with the progression of gastric cancer. These results may provide a potential target to prevent invasion and

  20. Plasmodia express two threonine-peptidase complexes during asexual development.

    PubMed

    Mordmüller, Benjamin; Fendel, Rolf; Kreidenweiss, Andrea; Gille, Christoph; Hurwitz, Robert; Metzger, Wolfram G; Kun, Jürgen F J; Lamkemeyer, Tobias; Nordheim, Alfred; Kremsner, Peter G

    2006-07-01

    Threonine-peptidases of the T1-family are multi-subunit complexes with broad substrate specificity. In eukaryotes, at least 14 genes encode subunits of the prototypic T1 threonine-peptidase, the proteasome. The proteasome determines the turnover of most proteins and thereby plays a fundamental role in diverse processes such as protein quality control, signal transduction, and cell cycle regulation. While eukaryotes and archaea possess a proteasome, bacteria generally express a second member of the T1-family, the proteasomal predecessor ClpQ/hslV that has a similar structure but is encoded by only one gene. The plasmodial genome is an exception because it encodes proteasomal subunits as well as a ClpQ/hslV-orthologe (Plasmodium falciparum-hslV; PfhslV). Structure, expression, and function of both types of peptidase-complex in P. falciparum are presently unknown. Our aim was to analyze both the coding sequences and derived proteins of both peptidase-complexes because highly specific and potent inhibitors can be designed against this class of enzymes. The proteasome was found expressed throughout the cell cycle, whereas PfhslV was detectable in schizonts and merozoites only. Treatment of P. falciparum with the threonine-peptidase inhibitor epoxomicin blocked two of three catalytically active proteasome subunits. This led to the accumulation of ubiquitinated proteins and, finally, to parasite death. In conclusion, we provide the first functional analysis of plasmodial threonine-peptidase-complexes and identify a lead compound for the development of a novel class of antimalarial drugs.

  1. Decoding the Anti-Trypanosoma cruzi Action of HIV Peptidase Inhibitors Using Epimastigotes as a Model

    PubMed Central

    Sangenito, Leandro S.; Menna-Barreto, Rubem F. S.; d′Avila-Levy, Claudia M.; Branquinha, Marta H.

    2014-01-01

    Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand

  2. A Pulmonary Perspective on GASPIDs: Granule-Associated Serine Peptidases of Immune Defense

    PubMed Central

    Caughey, George H.

    2008-01-01

    Airways are protected from pathogens by forces allied with innate and adaptive immunity. Recent investigations establish critical defensive roles for leukocyte and mast cell serine-class peptidases garrisoned in membrane-bound organelles-here termed Granule-Associated Serine Peptidases of Immune Defense, or GASPIDs. Some better characterized GASPIDs include neutrophil elastase and cathepsin G (which defend against bacteria), proteinase-3 (targeted by antineutrophil antibodies in Wegener’s vasculitis), mast cell β-tryptase and chymase (which promote allergic inflammation), granzymes A and B (which launch apoptosis pathways in infected host cells), and factor D (which activates complement’s alternative pathway). GASPIDs can defend against pathogens but can harm host cells in the process, and therefore become targets for pharmaceutical inhibition. They vary widely in specificity, yet are phylogenetically similar. Mammalian speciation supported a remarkable flowering of these enzymes as they co-evolved with specialized immune cells, including mast cells, basophils, eosinophils, cytolytic T-cells, natural killer cells, neutrophils, macrophages and dendritic cells. Many GASPIDs continue to evolve rapidly, providing some of the most conspicuous examples of divergent protein evolution. Consequently, students of GASPIDs are rewarded not only with insights into their roles in lung immune defense but also with clues to the origins of cellular specialization in vertebrate immunity. PMID:18516248

  3. Altered Activity and Expression of Cytosolic Peptidases in Colorectal Cancer

    PubMed Central

    Perez, Itxaro; Blanco, Lorena; Sanz, Begoña; Errarte, Peio; Ariz, Usue; Beitia, Maider; Fernández, Ainhoa; Loizate, Alberto; Candenas, M Luz; Pinto, Francisco M; Gil, Javier; López, José I.; Larrinaga, Gorka

    2015-01-01

    Background and Objective: The role of peptidases in carcinogenic processes and their potential usefulness as tumor markers in colorectal cancer (CRC) have been classically attributed to cell-surface enzymes. The objective of the present study was to analyze the activity and mRNA expression of three cytosolic peptidases in the CRC and to correlate the obtained results with classic histopathological parameters for tumor prognosis and survival. Methods: The activity and mRNA levels of puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB) and pyroglutamyl-peptidase I (PGI) were measured by fluorimetric and quantitative RT-PCR methods in colorectal mucosa and tumor tissues and plasma samples from CRC patients (n=81). Results: 1) PSA and APB activity was higher in adenomas and carcinomas than in the uninvolved mucosa. 2) mRNA levels of PSA and PGI was lower in tumors. 3) PGI activity in CRC tissue correlated negatively with histological grade, tumor size and 5-year overall suvival of CRC patients. 4) Higher plasmatic APB activity was independently associated with better 5-year overall survival. Conclusions: Data suggest that cytosolic peptidases may be involved in colorectal carcinogenesis and point to the determination of this enzymes as a valuable method in the determination of CRC prognosis. PMID:26078706

  4. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes.

    PubMed

    Appolaire, Alexandre; Colombo, Matteo; Basbous, Hind; Gabel, Frank; Girard, E; Franzetti, Bruno

    2016-03-01

    The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».

  5. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  6. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  7. The first crystal structure of the peptidase domain of the U32 peptidase family.

    PubMed

    Schacherl, Magdalena; Montada, Angelika A M; Brunstein, Elena; Baumann, Ulrich

    2015-12-01

    The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins from Helicobacter and Salmonella. The first crystal structure analysis of a U32 catalytic domain from Methanopyrus kandleri (gene mk0906) reveals a modified (βα)8 TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to a Strep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.

  8. Predicting DPP-IV inhibitors with machine learning approaches.

    PubMed

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-02-02

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  9. Predicting DPP-IV inhibitors with machine learning approaches

    NASA Astrophysics Data System (ADS)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-02-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  10. Role of dipeptidyl peptidase-4 inhibitors in new-onset diabetes after transplantation

    PubMed Central

    Lim, Sun Woo; Jin, Ji Zhe; Jin, Long; Jin, Jian; Li, Can

    2015-01-01

    Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 (DPP4) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of DPP4 inhibitors and discusses recent literature regarding management of NODAT. PMID:26552451

  11. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS.

  12. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence

    PubMed Central

    Clarke, Starlynn C.; Dumesic, Phillip A.; Homer, Christina M.; O’Donoghue, Anthony J.; La Greca, Florencia; Pallova, Lenka; Majer, Pavel; Madhani, Hiten D.; Craik, Charles S.

    2016-01-01

    The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their

  13. Cysteine Peptidases as Schistosomiasis Vaccines with Inbuilt Adjuvanticity

    PubMed Central

    El Ridi, Rashika; Tallima, Hatem; Selim, Sahar; Donnelly, Sheila; Cotton, Sophie; Gonzales Santana, Bibiana; Dalton, John P.

    2014-01-01

    Schistosomiasis is caused by several worm species of the genus Schistosoma and afflicts up to 600 million people in 74 tropical and sub-tropical countries in the developing world. Present disease control depends on treatment with the only available drug praziquantel. No vaccine exists despite the intense search for molecular candidates and adjuvant formulations over the last three decades. Cysteine peptidases such as papain and Der p 1 are well known environmental allergens that sensitize the immune system driving potent Th2-responses. Recently, we showed that the administration of active papain to mice induced significant protection (P<0.02, 50%) against an experimental challenge infection with Schistosoma mansoni. Since schistosomes express and secrete papain-like cysteine peptidases we reasoned that these could be employed as vaccines with inbuilt adjuvanticity to protect against these parasites. Here we demonstrate that sub-cutaneous injection of functionally active S. mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant (P<0.0001) protection (up to 73%) against an experimental challenge worm infection. Protection and reduction in worm egg burden were further increased (up to 83%) when the cysteine peptidases were combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP), without the need to add chemical adjuvants. These studies demonstrate the capacity of helminth cysteine peptidases to behave simultaneously as immunogens and adjuvants, and offer an innovative approach towards developing schistosomiasis vaccines PMID:24465551

  14. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

  15. Excretion of the dipeptidyl peptidase-4 inhibitor linagliptin in rats is primarily by biliary excretion and P-gp-mediated efflux.

    PubMed

    Fuchs, Holger; Runge, Frank; Held, Heinz-Dieter

    2012-04-11

    Linagliptin is a selective, competitive dipeptidyl peptidase-4 (DPP-4) inhibitor, recently approved in the USA, Japan and Europe for the treatment of type 2 diabetes. It has non-linear pharmacokinetics and, unlike other DPP-4 inhibitors, a largely non-renal excretion route. It was hypothesised that P-glycoprotein (P-gp)-mediated intestinal transport could influence linagliptin bioavailability, and might contribute to its elimination. Two studies evaluated the role of P-gp-mediated transport in the bioavailability and intestinal secretion of linagliptin in rats. In the bioavailability study, male Wistar rats received single oral doses of linagliptin, 1 or 15 mg/kg, plus either the P-gp inhibitor, zosuquidar trihydrochloride, or vehicle. For the intestinal secretion study, rats underwent bile duct cannulation, and urine, faeces, and bile were collected. At the end of the study, gut content was sampled. Inhibition of intestinal P-gp increased the bioavailability of orally administered linagliptin, indicating that this transport system plays a role in limiting the uptake of linagliptin from the intestine. This effect was dependent on linagliptin dose, and could play a role in its non-linear pharmacokinetics after oral dosing. Systemically available linagliptin was mainly excreted unchanged via bile (49% of i.v. dose), but some (12%) was also excreted directly into the gut independently of biliary excretion. Thus, direct excretion of linagliptin into the gut may be an alternative excretion route in the presence of liver and renal impairment. The primarily non-renal route of excretion is likely to be of benefit to patients with type 2 diabetes, who have a high prevalence of renal insufficiency.

  16. Extracellular peptidases of the cereal pathogen Fusarium graminearum

    PubMed Central

    Lowe, Rohan G. T.; McCorkelle, Owen; Bleackley, Mark; Collins, Christine; Faou, Pierre; Mathivanan, Suresh; Anderson, Marilyn

    2015-01-01

    The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases. PMID:26635820

  17. Extracellular peptidases of the cereal pathogen Fusarium graminearum.

    PubMed

    Lowe, Rohan G T; McCorkelle, Owen; Bleackley, Mark; Collins, Christine; Faou, Pierre; Mathivanan, Suresh; Anderson, Marilyn

    2015-01-01

    The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.

  18. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  19. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    PubMed Central

    Karlyshev, A.V.; Thacker, G.; Jones, M.A.; Clements, M.O.; Wren, B.W.

    2014-01-01

    According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection. PMID:24918062

  20. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    SciTech Connect

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  1. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  2. Carbonic Anhydrase Inhibitors. Part 461 Inhibition of Carbonic Anhydrase Isozymes I, II and IV With Trifluoromethylsulfonamide Derivatives and Their Zinc(II) and Copper(II) Complexes

    PubMed Central

    Mincione, Giovanna; Scozzafava, Andrea

    1997-01-01

    Reaction of aromatic/heterocyclic sulfonamides containing a free amino group with triflic anhydride afforded compounds possessing trifluoromethanesulfonamido moieties in their molecule. The Zn(II) and Cu(II) complexes of these new sulfonamides were prepared and characterized by standard procedures (elemental analysis, spectroscopic, magnetic, thermogravimetric and conductimetric measurements). The new derivatives showed good inhibitory activity against three isozymes of carbonic anhydrase (CA), i.e., CA I, II and IV. PMID:18475762

  3. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen.

    PubMed

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen.

  4. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen

    PubMed Central

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  5. Synthesis and Characterization of the Arylomycin Lipoglycopeptide Antibiotics and the Crystallographic Analysis of their Complex with Signal Peptidase

    PubMed Central

    Liu, Jian; Luo, Chuanyun; Smith, Peter A.; Chin, Jodie K.; Page, Malcolm G. P.; Paetzel, Mark; Romesberg, Floyd E.

    2011-01-01

    Glycosylation of natural products, including antibiotics, often plays an important role in determining their physical properties and their biological activity, and thus their potential as drug candidates. The arylomycin class of antibiotics inhibits bacterial type I signal peptidase and is comprised of three related series of natural products with a lipopeptide tail attached to a core macrocycle. Previously, we reported the total synthesis of several A series derivatives, which have unmodified core macrocycles, as well as B series derivatives, which have a nitrated macrocycle. We now report the synthesis and biological evaluation of lipoglycopeptide arylomycin variants whose macrocycles are glycosylated with a deoxy-α-mannose substituent, and also in some cases hydroxylated. The synthesis of the derivatives bearing each possible deoxy-α-mannose enantiomer allowed us to assign the absolute stereochemistry of the sugar in the natural product and also to show that while glycosylation does not alter antibacterial activity, it does appear to improve solubility. Crystallographic structural studies of a lipoglycopeptide arylomycin bound to its signal peptidase target reveal the molecular interactions that underlie inhibition and also that the mannose is directed away from the binding site into solvent which suggests that other modifications may be made at the same position to further increase solubility and thus reduce protein binding and possibly optimize the pharmacokinetics of the scaffold. PMID:21999324

  6. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase

    PubMed Central

    2016-01-01

    The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770

  7. Insecticidal effect of Canavalia ensiformis major urease on nymphs of the milkweed bug Oncopeltus fasciatus and characterization of digestive peptidases.

    PubMed

    Defferrari, Marina S; Demartini, Diogo R; Marcelino, Thiago B; Pinto, Paulo M; Carlini, Celia R

    2011-06-01

    Jackbean (Canavalia ensiformis) ureases are entomotoxic upon the release of internal peptides by insect's digestive enzymes. Here we studied the digestive peptidases of Oncopeltus fasciatus (milkweed bug) and its susceptibility to jackbean urease (JBU). O. fasciatus nymphs fed urease showed a mortality rate higher than 80% after two weeks. Homogenates of midguts dissected from fourth instars were used to perform proteolytic activity assays. The homogenates hydrolyzed JBU in vitro, yielding a fragment similar in size to known entomotoxic peptides. The major proteolytic activity at pH 4.0 upon protein substrates was blocked by specific inhibitors of aspartic and cysteine peptidases, but not significantly affected by inhibitors of metallopeptidases or serine peptidases. The optimal activity upon N-Cbz-Phe-Arg-MCA was at pH 5.0, with complete blockage by E-64 in all pH tested. Optimal activity upon Abz-AIAFFSRQ-EDDnp (a substrate for aspartic peptidases) was detected at pH 5.0, with partial inhibition by Pepstatin A in the pH range 2-8. Fluorogenic substrates corresponding to the N- and C-terminal regions flanking a known entomotoxic peptide within urease sequence were also tested. While the midgut homogenate did not hydrolyze the N-terminal peptide, it cleaved the C-terminal peptide maximally at pH 4.0-5.0, and this activity was inhibited by E-64 (10 μM). The midgut homogenate was submitted to ion-exchange chromatography followed by gel filtration. A 22 kDa active fraction was obtained, resolved in SDS-PAGE (12%), the corresponding band was in-gel digested by trypsin, the peptides were analyzed by mass spectrometry, retrieving a cathepsin L protein. The purified cathepsin L was shown to have at least two possible cleavage sites within the urease sequence, and might be able to release a known insecticidal peptide in a single or cascade event. The results suggest that susceptibility of O. fasciatus nymphs to jackbean urease is, like in other insect models, due mostly

  8. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cysteine peptidases are important in many biological processes. In this study, we describe the design, synthesis and use of selective peptide substrates for cysteine peptidases of the C1 papain family. The structure of the proposed substrates can be expressed by the general formula Glp-Xaa-Ala-Y, wh...

  9. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles

    PubMed Central

    Dvořák, Jan; Fajtová, Pavla; Ulrychová, Lenka; Leontovyč, Adrian; Rojo-Arreola, Liliana; Suzuki, Brian M.; Horn, Martin; Mareš, Michael; Craik, Charles S.; Caffrey, Conor R.; O’Donoghue, Anthony J.

    2015-01-01

    Schistosomiasis is one of a number of chronic helminth diseases of poverty that severely impact personal and societal well-being and productivity. Peptidases (proteases) are vital to successful parasitism, and can modulate host physiology and immunology. Interference of peptidase action by specific drugs or vaccines can be therapeutically beneficial. To date, research on peptidases in the schistosome parasite has focused on either the functional characterization of individual peptidases or their annotation as part of global genome or transcriptome studies. We were interested in functionally characterizing the complexity of peptidase activity operating at the host-parasite interface, therefore the excretory-secretory products of key developmental stages of Schistosoma mansoni that parasitize the human were examined. Using class specific peptidase inhibitors in combination with a multiplex substrate profiling assay, a number of unique activities derived from endo- and exo-peptidases were revealed in the excretory-secretory products of schistosomula (larval migratory worms), adults and eggs. The data highlight the complexity of the functional degradome for each developmental stage of this parasite and facilitate further enquiry to establish peptidase identity, physiological and immunological function, and utility as drug or vaccine candidates. PMID:26409899

  10. Localization of two post-proline cleaving peptidases in the midgut of Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in the midgut of Tenebrio molitor larvae with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activit...

  11. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles.

    PubMed

    Dvořák, Jan; Fajtová, Pavla; Ulrychová, Lenka; Leontovyč, Adrian; Rojo-Arreola, Liliana; Suzuki, Brian M; Horn, Martin; Mareš, Michael; Craik, Charles S; Caffrey, Conor R; O'Donoghue, Anthony J

    2016-03-01

    Schistosomiasis is one of a number of chronic helminth diseases of poverty that severely impact personal and societal well-being and productivity. Peptidases (proteases) are vital to successful parasitism, and can modulate host physiology and immunology. Interference of peptidase action by specific drugs or vaccines can be therapeutically beneficial. To date, research on peptidases in the schistosome parasite has focused on either the functional characterization of individual peptidases or their annotation as part of global genome or transcriptome studies. We were interested in functionally characterizing the complexity of peptidase activity operating at the host-parasite interface, therefore the excretory-secretory products of key developmental stages of Schistosoma mansoni that parasitize the human were examined. Using class specific peptidase inhibitors in combination with a multiplex substrate profiling assay, a number of unique activities derived from endo- and exo-peptidases were revealed in the excretory-secretory products of schistosomula (larval migratory worms), adults and eggs. The data highlight the complexity of the functional degradome for each developmental stage of this parasite and facilitate further enquiry to establish peptidase identity, physiological and immunological function, and utility as drug or vaccine candidates.

  12. Recognition of protein-linked glycans as a determinant of peptidase activity.

    PubMed

    Noach, Ilit; Ficko-Blean, Elizabeth; Pluvinage, Benjamin; Stuart, Christopher; Jenkins, Meredith L; Brochu, Denis; Buenbrazo, Nakita; Wakarchuk, Warren; Burke, John E; Gilbert, Michel; Boraston, Alisdair B

    2017-01-31

    The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.

  13. Acid peptidase activity released from in vitro produced porcine embryos: a candidate marker to predict developmental competence.

    PubMed

    Telugu, Bhanu Prakash V L; Spate, Lee; Prather, Randall S; Green, Jonathan A

    2009-04-01

    The ability to efficiently create high quality embryos, competent to produce normal viable offspring in vitro, facilitates diverse technological advancements in animal agriculture and assisted reproduction. Current methods for evaluation of embryos are predominantly based on morphological characteristics which are prone to potential bias of the scorer. Metabolic and genetic markers have also been explored for quality assessment, but they are cost prohibitive or require longer periods of time for evaluation. We hypothesized that secreted enzymes could provide another means of embryo quality assessment. In this report, we provide evidence that medium conditioned by porcine embryos often has proteolytic activity that operates in acidic conditions (acid peptidase activity or APA). The APA could be inhibited by pepstatin A, suggesting that the activity is derived from one or more aspartic peptidases. We also provide evidence that single embryos, incubated for as few as 24 hr, released enough APA that it was possible to measure it accurately at day 5 of culture. We also observed that such activity on day 6 could be positively correlated with advanced developmental stage and embryo quality. In addition, those embryos that were graded identically by morphological evaluations often differed in the amount of APA--with some being significantly higher than the experimental threshold value. Therefore, the APA of embryos might serve as an additional marker for evaluation of embryos.

  14. Astacin Family Metallopeptidases and Serine Peptidase Inhibitors in Spider Digestive Fluid

    PubMed Central

    Foradori, Matthew J.; Tillinghast, Edward K.; Smith, J. Stephen; Townley, Mark A.; Mooney, Robert E.

    2006-01-01

    Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (β subunits) from several vertebrates (47–52% and 50–60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa. PMID:16458560

  15. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  16. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer.

    PubMed

    Filippou, Panagiota S; Karagiannis, George S; Musrap, Natasha; Diamandis, Eleftherios P

    2016-08-01

    The kallikrein-related peptidases (KLKs) represent the largest family of serine proteases within the human genome and are expressed in various tissues. Although they regulate several important physiological functions, KLKs have also been implicated in numerous pathophysiological processes, including cancer. Growing evidence describing the deregulation of KLK expression and secretion, as well as activation in various malignancies, has uncovered their potential as mediators of cancer progression, biomarkers of disease and as candidate therapeutic targets. The diversity of signalling pathways and proteolytic cascades involving KLKs and their downstream targets appears to affect cancer biology through multiple mechanisms, including those related to the hallmarks of cancer. The aim of this review is to provide an update on the importance of KLK-driven molecular pathways in relation to cancer cell traits associated with the hallmarks of cancer and to highlight their potential in personalized therapeutics.

  17. Purification of microsomal signal peptidase as a complex.

    PubMed Central

    Evans, E A; Gilmore, R; Blobel, G

    1986-01-01

    We report here the purification to near homogeneity of signal peptidase from canine pancreatic microsomes. Purification was monitored using an improved post-translational assay. A 42-fold enrichment over starting membranes was achieved by selective solubilization in nonionic detergent/high-salt buffer followed by gradient sievorptive anion and cation exchange chromatography, hydroxylapatite chromatography, gel filtration, and sucrose gradient velocity sedimentation. When examined by NaDodSO4/PAGE, the purified enzyme consisted of a complex of six polypeptides with apparent molecular masses of 25, 23, 22, 21, 18, and 12 kDa. The 22- and 23-kDa subunits were shown to be glycoproteins based on their sensitivity to endoglycosidase H and their ability to bind concanavalin A. We suggest that only one subunit of this complex carries out signal peptide cleavage. The structural association of the other subunits in stoichiometric amounts may reflect their requirement in chain translocation across the microsomal membrane. Images PMID:3511473

  18. NAAG peptidase inhibitors and their potential for diagnosis and therapy.

    PubMed

    Zhou, Jia; Neale, Joseph H; Pomper, Martin G; Kozikowski, Alan P

    2005-12-01

    Modulation of N-acetyl-L-aspartyl-L-glutamate peptidase activity with small-molecule inhibitors holds promise for a wide variety of diseases that involve glutamatergic transmission, and has implications for the diagnosis and therapy of cancer. This new class of compounds, of which at least one has entered clinical trials and proven to be well tolerated, has demonstrated efficacy in experimental models of pain, schizophrenia, amyotrophic lateral sclerosis, traumatic brain injury and, when appropriately functionalized, can image prostate cancer. Further investigation of these promising drug candidates will be needed to bring them to the marketplace. The recent publication of the X-ray crystal structure for the enzymatic target of these compounds should facilitate the development of other new agents with enhanced activity that could improve both the diagnosis and treatment of neurological disorders.

  19. Crystal Structure of a Bacterial Signal Peptide Peptidase

    SciTech Connect

    Kim,A.; Oliver, D.; Paetzel, M.

    2008-01-01

    Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppAEC). SppAEC forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.

  20. Linagliptin: the newest dipeptidyl peptidase-4 inhibitor for type 2 diabetes mellitus.

    PubMed

    Aletti, Rachael; Cheng-Lai, Angela

    2012-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are some of the newest medications in our armamentarium for the management of type 2 diabetes mellitus. Through inhibition of the DPP-4 enzyme, these agents increase the amount of circulating incretin hormones, leading to an increase in insulin release and a suppression of glucagon secretion. Linagliptin is the third DPP-4 inhibitor approved by the Food and Drug Administration in the United States. It has been studied as monotherapy and as an adjunctive therapy to other oral agents in a dual or triple combination regimen. Linagliptin lowers glycosylated hemoglobin by about 0.4% when used as monotherapy and by about 0.5% to 1.1% when used in combination with other oral antihyperglycemic agents. Since linagliptin is mostly eliminated via the enterohepatic system (80%) and not to a significant extent through renal excretion, dosage adjustment is not necessary in patients with renal impairment. Linagliptin also has a favorable safety profile; nasopharyngitis is one of the more common observed side effects. Given its encouraging safety and efficacy profile, linagliptin is a good alternative to the other 2 agents in this class, especially for patients with renal impairment. This article provides a review of the pharmacologic and pharmacokinetic properties of linagliptin. The differences among the 3 available DPP-4 inhibitors will also be examined.

  1. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-15

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases.

  2. Purification and Characterization of an X-Prolyl-Dipeptidyl Peptidase from Lactobacillus sakei

    PubMed Central

    Sanz, Yolanda; Toldrá, Fidel

    2001-01-01

    An X-prolyl-dipeptidyl peptidase has been purified from Lactobacillus sakei by ammonium sulfate fractionation and five chromatographic steps, which included hydrophobic interaction, anion-exchange chromatography, and gel filtration chromatography. This procedure resulted in a recovery yield of 7% and an increase in specificity of 737-fold. The enzyme appeared to be a dimer with a subunit molecular mass of approximately 88 kDa. Optimal activity was shown at pH 7.5 and 55°C. The enzyme was inhibited by serine proteinase inhibitors and several divalent cations (Cu2+, Hg2+, and Zn2+). The enzyme almost exclusively hydrolyzed X-Pro from the N terminus of each peptide as well as fluorescent and colorimetric substrates; it also hydrolyzed X-Ala at the N terminus, albeit at lower rates. Km s for Gly-Pro- and Lys-Ala-7-amido-4-methylcoumarin were 29 and 88 μM, respectively; those for Gly-Pro- and Ala-Pro-p-nitroanilide were 192 and 50 μM, respectively. Among peptides, β-casomorphin 1-3 was hydrolyzed at the highest rates, while the relative hydrolysis of the other tested peptides was only 1 to 12%. The potential role of the purified enzyme in the proteolytic pathway by catalyzing the hydrolysis of peptide bonds involving proline is discussed. PMID:11282638

  3. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed Central

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-01

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases. PMID:9425109

  4. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    PubMed

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases.

  5. Hemoglobin digestion in Blood-Feeding Ticks: Mapping a Multi-Peptidase Pathway by Functional Proteomics

    PubMed Central

    Horn, Martin; Nussbaumerová, Martina; Šanda, Miloslav; Kovářová, Zuzana; Srba, Jindřich; Franta, Zdeněk; Sojka, Daniel; Bogyo, Matthew; Caffrey, Conor R.; Kopáček, Petr; Mareš, Michael

    2009-01-01

    SUMMARY Hemoglobin digestion is an essential process for blood-feeding parasites. Using chemical tools, we deconvoluted the intracellular hemoglobinolytic cascade in the tick Ixodes ricinus, a vector of Lyme disease and tick-borne encephalitis. In tick gut tissue, a network of peptidases was demonstrated through imaging with specific activity-based probes and activity profiling with peptidic substrates/inhibitors. This peptidase network is induced upon blood feeding and degrades hemoglobin at acidic pH. Selective inhibitors were applied to dissect the roles of the individual peptidases and determine the peptidase-specific cleavage map of the hemoglobin molecule. The degradation pathway is initiated by endopeptidases of aspartic and cysteine class (cathepsin D supported by cathepsin L and legumain) and continued by cysteine amino- and carboxy-dipeptidases (cathepsins C and B). The identified enzymes are potential targets to developing novel anti-tick vaccines. PMID:19875079

  6. An archaeal peptidase assembles into two different quaternary structures: A tetrahedron and a giant octahedron.

    PubMed

    Schoehn, Guy; Vellieux, Frédéric M D; Asunción Durá, M; Receveur-Bréchot, Véronique; Fabry, Céline M S; Ruigrok, Rob W H; Ebel, Christine; Roussel, Alain; Franzetti, Bruno

    2006-11-24

    Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids.

  7. H/sup +/-ATPase activity from storage tissue of Beta vulgaris. IV. N,N'-dicyclohexylcarbodiimide binding and inhibition of the plasma membrane H/sup +/-ATPase

    SciTech Connect

    Oleski, N.A.; Bennett, A.B.

    1987-03-01

    The molecular weight and isoelectric point of the plasma membrane H/sup +/-ATPase from red beet storage tissue were determined using N,N'-dicyclohexylcarbodiimide (DCCD) and a H/sup +/-ATPase antibody. When plasma membrane vesicles were incubated with 20 micromolar (/sup 14/C)-DCCD at 0/sup 0/C, a single 97,000 dalton protein was visualized on a fluorography of a sodium dodecyl sulfate polyacrylamide gel. A close correlation between (/sup 14/C)DCCD labeling of the 97,000 dalton protein and the extent of ATPase inhibition over a range of DCCD concentration suggests that this 97,000 dalton protein is a component of the plasma membrane H/sup +/-ATPase. An antibody raised against the plasma membrane H/sup +/-ATPase of Neurospora crassa cross-reacted with the 97,000 dalton DCCD-binding protein, further supporting the identity of this protein. Immunoblots of two-dimensional gels of red beet plasma membrane vesicles indicated the isoelectric point of the H/sup +/-ATPase to be 6.5.

  8. On-line tests of organic additives for the inhibition of the precipitation of silica from hypersaline geothermal brine IV. Final tests of candidate additives

    SciTech Connect

    Harrar, J.E.; Locke, F.E.; Otto, C.H. Jr.; Lorensen, L.E.; Frey, W.P.; Snell, E.O.

    1980-02-01

    The Lawrence Livermore Laboratory Brine Treatment Test System at Niland, Imperial Valley, California, has been used to evaluate a number of cationic polymers and surfactants as scale control agents. An initial group of compounds was narrowed to four on the basis of their activity as silica precipitation inhibitors. Three of these and certain combinations of compounds were then given a 40-h test to determine their effectiveness in retarding scales formed at 220, 125, and 90/sup 0/C. The best single compound was Corcat P-18 (Cordova Chemical Co. polyethylene imine, M.W. approx. = 1800). It had no effect on the scale at 220/sup 0/C, but it reduced the scales at 125 and 90/sup 0/C by factors of 4 and 18, respectively, and it also has activity as a corrosion inhibitor. Other promising compounds are PAE HCl (Dynapol poly(aminoethylene, HCl salt)), which also somewhat reduces the 220/sup 0/C scale; Ethoquad 18/25 (Armak methyl polyoxyethylene(15) octadecylammonium chloride); and Mirapol A-15 (a Miranol Chemical polydiquaternary compound). The best additive formulation for the brines of the Salton Sea Geothermal Field appears to be a mixture of one of these silica precipitation inhibitors with a small amount of hydrochloric acid and a phosphonate crystalline deposit inhibitor. Speculations are presented as to the mechanism of inhibition of silica precipitation and recommendations for further testing of these additives.

  9. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests.

    PubMed

    Goptar, I A; Semashko, T A; Danilenko, S A; Lysogorskaya, E N; Oksenoit, E S; Zhuzhikov, D P; Belozersky, M A; Dunaevsky, Y E; Oppert, B; Filippova, I Yu; Elpidina, E N

    2012-02-01

    The major storage proteins in cereals, prolamins, have an abundance of the amino acids glutamine and proline. Storage pests need specific digestive enzymes to efficiently hydrolyze these storage proteins. Therefore, post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored-product pest, Tenebrio molitor (yellow mealworm). Three distinct PGP activities were found in the anterior and posterior midgut using the highly-specific chromogenic peptide substrate N-benzyloxycarbonyl-L-Ala-L-Ala-L-Gln p-nitroanilide. PGP peptidases were characterized according to gel elution times, activity profiles in buffers of different pH, electrophoretic mobility under native conditions, and inhibitor sensitivity. The results indicate that PGP activity is due to cysteine and not serine chymotrypsin-like peptidases from the T. molitor larvae midgut. We propose that the evolutionary conservation of cysteine peptidases in the complement of digestive peptidases of tenebrionid stored-product beetles is due not only to the adaptation of insects to plants rich in serine peptidase inhibitors, but also to accommodate the need to efficiently cleave major dietary proteins rich in glutamine.

  10. Renoprotective effects of a dipeptidyl peptidase 4 inhibitor in a mouse model of progressive renal fibrosis.

    PubMed

    Uchida, Takahiro; Oda, Takashi; Matsubara, Hidehito; Watanabe, Atsushi; Takechi, Hanako; Oshima, Naoki; Sakurai, Yutaka; Kumagai, Hiroo

    2017-11-01

    Although the effects of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond their hypoglycemic action have been reported, whether these inhibitors have renoprotective effects in nondiabetic chronic kidney disease (CKD) is unclear. We examined the therapeutic effects of DPP-4 inhibition in mice with unilateral ureteral obstruction (UUO), a nondiabetic model of progressive renal fibrosis. After UUO surgery, mice were administered either the DPP-4 inhibitor alogliptin or a vehicle by oral gavage once a day for 10 days. Physiological parameters, degrees of renal fibrosis and inflammation, and molecules related to renal fibrosis and inflammation were then evaluated using sham-operated mice as controls. Positive area of α-smooth muscle actin was significantly smaller and expression of transforming growth factor β messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group. Renal total collagen content was also significantly lower in the alogliptin-treated group than in the vehicle-treated group. These results suggest that alogliptin exerted renoprotective antifibrotic effects. The positive area of F4/80 was significantly smaller and expression of CD68 messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group, suggesting an anti-inflammatory action by the DPP-4 inhibitor. Compared to the results for the vehicle-treated group, expression of markers for M1 macrophages tended to be lower in the alogliptin-treated group, and the relative expression of M2 macrophages tended to be higher. These data indicate the various protective effects of DPP-4 inhibition in nondiabetic mice with UUO. DPP-4 inhibitors may therefore be promising therapeutic choices even for nondiabetic CKD patients.

  11. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  12. Administration of a DPP-IV Inhibitor Enhances the Intestinal Adaptation in a Mouse Model of Short Bowel Syndrome

    PubMed Central

    Okawada, Manabu; Holst, Jens J.; Teitelbaum, Daniel H.

    2011-01-01

    Background Glucagon-like peptide-2(GLP-2) induces small intestine mucosal epithelial cell (EC) proliferation; and may have benefit for patients suffering from short bowel syndrome (SBS). However, GLP-2 is rapidly inactivated in vivo by dipeptidyl peptidase IV (DPPIV). Therefore, we hypothesized that selectively inhibiting DPPIV would prolong the circulating life of GLP-2 and lead to increased intestinal adaptation after development of SBS. Methods 8-week old C57BL/6J mice underwent a 50% proximal small bowel resection and were treated with either sitagliptin, a DPPIV-inhibitor (DPPIV-I), starting 1 day before surgery versus placebo. DPPIV-I efficacy was assessed 3 days after resection, including intestinal morphology, EC apoptosis and EC proliferation. Adaptive mechanisms were assessed with quantitative real-time PCR, and plasma bioactive GLP-2 was measured by radioimmunoassay. RESULT Body weight loss and peripheral blood glucose levels did not change compared to SBS controls. DPPIV-I treatment led to significant increases in villus height and crypt depth. DPPIV-I treatment did not significantly change EC apoptosis rates, but significantly increased crypt EC proliferation versus placebo-SBS controls. DPPIV-I treatment markedly increased mRNA expression of β-catenin and c-myc in ileal mucosa. Plasma GLP-2 levels significantly increased(~40.9%) in DPPIV-I-SBS mice. Conclusions DPPIV- I treatment increased SBS adaptation, and may potentially be useful for SBS patients. PMID:21719060

  13. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    PubMed Central

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  14. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.

    PubMed

    Deacon, C F; Lebovitz, H E

    2016-04-01

    Type 2 diabetes (T2DM) is a progressive disease, and pharmacotherapy with a single agent does not generally provide durable glycaemic control over the long term. Sulphonylurea (SU) drugs have a history stretching back over 60 years, and have traditionally been the mainstay choice as second-line agents to be added to metformin once glycaemic control with metformin monotherapy deteriorates; however, they are associated with undesirable side effects, including increased hypoglycaemia risk and weight gain. Dipeptidyl peptidase (DPP)-4 inhibitors are, by comparison, more recent, with the first compound being launched in 2006, but the class now globally encompasses at least 11 different compounds. DPP-4 inhibitors improve glycaemic control with similar efficacy to SUs, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse side effects, and have recently been shown not to increase cardiovascular risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms. The present article reviews these two classes of oral antidiabetic drugs (DPP-4 inhibitors and SUs), highlighting differences and similarities between members of the same class, as well as discussing the potential advantages and disadvantages of the two drug classes. While both classes have their merits, the choice of which to use depends on the characteristics of each individual patient; however, for the majority of patients, DPP-4 inhibitors are now the preferred choice.

  15. Bacterial type I signal peptidases as antibiotic targets.

    PubMed

    Smitha Rao, C V; Anné, Jozef

    2011-11-01

    Despite an alarming increase in morbidity and mortality caused by multidrug-resistant bacteria, the number of antibiotics available to efficiently combat them is dwindling. Consequently, there is a pressing need for new drugs, preferably with novel modes of action to avert the problem of cross-resistance. Several new targets have been proposed, including proteins essential in the protein secretion pathway such as the type I signal peptidase (SPase), indispensable for the release of the signal peptide during secretion of Sec- and Tat-dependent proteins. The type I SPase is considered to be an attractive target because it is essential, substantially different from the eukaryotic counterpart, and its active site is located at the outer leaflet of the cytoplasmic membrane, permitting relatively easy access to potential inhibitors. A few SPase inhibitors have already been identified, but their suitability as drugs is yet to be confirmed. An overview is given on the currently known SPase inhibitors, how they can give valuable information on the structural, biochemical and target validation aspects of the SPases, the approaches to identify them, and their future potential as drugs.

  16. DapE Can Function as an Aspartyl Peptidase in the Presence of Mn2+

    PubMed Central

    Broder, Daniel H.; Miller, Charles G.

    2003-01-01

    Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn2+. Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn2+-dependent peptidase is DapE (N-succinyl-l,l-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His6). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn2+-dependent aspartyl peptidase activity relative to the MPD dapE+ strain. In addition, purified DapE-His6 exhibited Mn2+-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn2+ in the high-affinity site and Mn2+ in the low-affinity site. PMID:12896993

  17. DapE can function as an aspartyl peptidase in the presence of Mn2+.

    PubMed

    Broder, Daniel H; Miller, Charles G

    2003-08-01

    Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn(2+). Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn(2+)-dependent peptidase is DapE (N-succinyl-L,L-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His(6)). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn(2+)-dependent aspartyl peptidase activity relative to the MPD dapE(+) strain. In addition, purified DapE-His(6) exhibited Mn(2+)-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn(2+) in the high-affinity site and Mn(2+) in the low-affinity site.

  18. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Glas, Rickard

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  19. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  20. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes.

    PubMed

    Costa, Danielle Cristina Machado; Vermelho, Alane Beatriz; Almeida, Catia Amancio; de Souza Dias, Edilma Paraguai; Cedrola, Sabrina Martins Lage; Arrigoni-Blank, Maria de Fátima; Blank, Arie Fitzgerald; Alviano, Celuta Sales; Alviano, Daniela Sales

    2014-02-01

    Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.

  1. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.

    PubMed

    Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-04-01

    The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics.

  2. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1*

    PubMed Central

    Endow, Joshua K.; Singhal, Rajneesh; Fernandez, Donna E.; Inoue, Kentaro

    2015-01-01

    Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1. PMID:26446787

  3. Hepatic Dipeptidyl Peptidase-4 Controls Pharmacokinetics of Vildagliptin In Vivo.

    PubMed

    Asakura, Mitsutoshi; Fukami, Tatsuki; Nakajima, Miki; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2017-02-01

    The main route of elimination of vildagliptin, which is an inhibitor of dipeptidyl peptidase-4 (DPP-4), in humans is cyano group hydrolysis to produce a carboxylic acid metabolite M20.7. Our in vitro study previously demonstrated that DPP-4 itself greatly contributed to the hydrolysis of vildagliptin in mouse, rat, and human livers. To investigate whether hepatic DPP-4 contributes to the hydrolysis of vildagliptin in vivo, in the present study, we conducted in vivo pharmacokinetics studies of vildagliptin in mice coadministered with vildagliptin and sitagliptin, which is another DPP-4 inhibitor, and also in streptozotocin (STZ)-induced diabetic mice. The area under the plasma concentration-time curve (AUC) value of M20.7 in mice coadministered with vildagliptin and sitagliptin was significantly lower than that in mice administered vildagliptin alone (P < 0.01). Although plasma DPP-4 expression level was increased 1.9-fold, hepatic DPP-4 activity was decreased in STZ-induced diabetic mice. The AUC values of M20.7 in STZ-induced diabetic mice were lower than those in control mice (P < 0.01). Additionally, the AUC values of M20.7 significantly positively correlated with hepatic DPP-4 activities in the individual mice (Rs = 0.943, P < 0.05). These findings indicated that DPP-4 greatly contributed to the hydrolysis of vildagliptin in vivo and that not plasma, but hepatic DPP-4 controlled pharmacokinetics of vildagliptin. Furthermore, enzyme assays of 23 individual human liver samples showed that there was a 3.6-fold interindividual variability in vildagliptin-hydrolyzing activities. Predetermination of the interindividual variability of hepatic vildagliptin-hydrolyzing activity might be useful for the prediction of blood vildagliptin concentrations in vivo.

  4. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the coleopteran-specific Cry3Aa toxin from Bacillus thuringiensis (Bt). Larvae digest protein initially with cysteine peptidases in the anterior midgut and further with serine peptidases in middle and poste...

  5. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  6. Peptidases Compartmentalized to the Ascaris suum Intestinal Lumen and Apical Intestinal Membrane

    PubMed Central

    Rosa, Bruce A.

    2015-01-01

    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine. PMID:25569475

  7. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion.

    PubMed

    Santos, André L S; d'Avila-Levy, Claudia M; Dias, Felipe A; Ribeiro, Rachel O; Pereira, Fernanda M; Elias, Camila G R; Souto-Padrón, Thaïs; Lopes, Angela H C S; Alviano, Celuta S; Branquinha, Marta H; Soares, Rosangela M A

    2006-01-01

    In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.

  8. Ovarian Cancer Stage IV

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IV Add to My Pictures View /Download : ... 1200x1335 View Download Large: 2400x2670 View Download Title: Ovarian Cancer Stage IV Description: Drawing of stage IV shows ...

  9. Accumulation of acyl-enzyme in DD-peptidase-catalysed reactions with analogues of peptide substrates.

    PubMed Central

    Jamin, M; Adam, M; Damblon, C; Christiaens, L; Frère, J M

    1991-01-01

    Thioester substrates can be used to study the hydrolysis and transfer reactions catalysed by beta-lactamases and DD-peptidases. With the latter enzymes, accumulation of the acyl-enzyme can be detected directly. The efficiency of various amines as acceptor substrates was in excellent agreement with previous results obtained with peptide substrates of the DD-peptidases. The results indicated the presence of a specific binding site for the acceptor substrates. Although most of the results agreed well with a simple partition model, more elaborate hypotheses will be needed to account for all the data presented. PMID:1747125

  10. The mechanism of action of DD-peptidases: the role of tyrosine-159 in the Streptomyces R61 DD-peptidase.

    PubMed Central

    Wilkin, J M; Jamin, M; Damblon, C; Zhao, G H; Joris, B; Duez, C; Frère, J M

    1993-01-01

    Tyrosine-159 of the Streptomyces R61 penicillin-sensitive DD-peptidase was replaced by serine or phenylalanine. The second mutation yielded a very poorly active protein whose rate of penicillin binding was also drastically decreased, except for the reactions with nitrocefin and methicillin. The consequences of the first mutation were more surprising, since a large proportion of the thiolesterase activity was retained, together with the penicillin-binding capacity. Conversely, the peptidase properties was severely affected. In both cases, a drastic decrease in the transferase activity was observed. The results are compared with those obtained by mutation of the corresponding residue in the class A beta-lactamase of Streptomyces albus G. PMID:8484734

  11. Diuretic and Natriuretic Effects of Dipeptidyl Peptidase-4 Inhibitor Teneligliptin: The Contribution of Glucagon-like Peptide-1.

    PubMed

    Moroi, Masao; Kubota, Tetsuya

    2015-08-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents; however, their mechanisms of action are different. GLP-1R and DPP-4 are also expressed in the renal proximal tubular brush border, where they regulate Na reabsorption. We investigated whether the DPP-4 inhibitor, teneligliptin, has diuretic and natriuretic effects and whether these are associated with the stimulation of the GLP-1R in rats. Oral administration of teneligliptin resulted in a reduction of plasma DPP-4 activity over 6 hours, as well as an induction of diuresis and natriuresis. Although teneligliptin did not change the increase in blood glucose levels by glucose loading, percentage of urine volume and Na/K ratio with teneligliptin to vehicle were augmented by glucose loading. Peak levels of plasma GLP-1 did not change after oral administration of teneligliptin when glucose was not loaded but increased at least 2-fold with glucose loading. Furthermore, the natriuretic effect of teneligliptin was inhibited by the GLP-1R antagonist, exendin9-39, whereas the diuresis was not affected. These results suggest that the mechanism of natriuresis was different from that of diuresis, and the natriuresis is associated with the stimulation of GLP-1R. There may be mechanistic differences in DPP-4 inhibition between diuresis and natriuresis.

  12. Insights into the Hypertensive Effects of Tityus serrulatus Scorpion Venom: Purification of an Angiotensin-Converting Enzyme-Like Peptidase

    PubMed Central

    Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Duzzi, Bruno; Iwai, Leo Kei; de Oliveira, Úrsula Castro; Junqueira de Azevedo, Inácio de Loiola Meirelles; Kodama, Roberto Tadashi; Portaro, Fernanda Vieira

    2016-01-01

    The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension. PMID:27886129

  13. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non‐small cell lung cancer (NSCLC)

    PubMed Central

    Tang, Zhiyuan; Li, Jun; Shen, Qin; Feng, Jian; Liu, Hua; Wang, Wei; Xu, Liqin; Shi, Guanglin; Ye, Xumei; Ge, Min

    2017-01-01

    Dipeptidyl peptidase 9 (DPP9) is encoded by DPP9, which belongs to the DPP4 gene family. Proteins encoded by these genes have unique peptidase and extra‐enzymatic functions that have been linked to various diseases including cancers. Here, we describe the expression pattern and biological function of DPP9 in non‐small‐cell lung cancer (NSCLC). The repression of DPP9 expression by small interfering RNA inhibited cell proliferation, migration, and invasion. Moreover, we explored the role of DPP9 in regulating epithelial‐mesenchymal transition (EMT). The epithelial markers E‐cadherin and MUC1 were significantly increased, while mesenchymal markers vimentin and S100A4 were markedly decreased in DPP9 knockdown cells. The downregulation of DPP9 in the NSCLC cells induced the expression of apoptosis‐associated proteins both in vitro and in vivo. We investigated the protein expression levels of DPP9 by tissue microarray immunohistochemical assay (TMA‐IHC) (n = 217). Further we found mRNA expression levels of DPP9 in 30 pairs of clinical NSCLC tissues were significantly lower than in the adjacent non‐cancerous tissues. Survival analysis showed that the overexpression of DPP9 was a significant independent factor for poor 5‐year overall survival in patients with NSCLC (p = 0.003). Taken together, DPP9 expression correlates with poor overall survival in NSCLC. PMID:27943262

  14. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  15. Chymotrypsin-like peptidases from Tribolium castaneum: A role in molting revealed by RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chymotrypsin-like peptidases (CTLPs) of insects are primarily secreted into the gut lumen where they act as digestive enzymes. We studied the gene family encoding CTLPs in the genome of the red flour beetle, Tribolium castaneum. Using an extended search pattern, we identified 14 TcCTLP genes that e...

  16. Association of circulating dipeptidyl-peptidase 4 levels with osteoporotic fracture in postmenopausal women.

    PubMed

    Kim, H; Baek, K H; Lee, S-Y; Ahn, S H; Lee, S H; Koh, J-M; Rhee, Y; Kim, C H; Kim, D-Y; Kang, M-I; Kim, B-J; Min, Y-K

    2017-03-01

    Postmenopausal women with osteoporotic fracture (OF) had higher plasma dipeptidyl-peptidase 4 (DPP4) levels than those without. Furthermore, higher plasma DPP4 levels were significantly associated with higher bone turnover and a higher prevalence of OF. These results indicated that DPP4 may be associated with OF by mediating bone turnover rate.

  17. Purification and biochemical characterization of an extracellular serine peptidase from Aspergillus terreus.

    PubMed

    Biaggio, Rafael Tage; Silva, Ronivaldo Rodrigues da; Rosa, Nathalia Gonsales da; Leite, Rodrigo Simões Ribeiro; Arantes, Eliane Candiani; Cabral, Tatiana Pereira de Freitas; Juliano, Maria A; Juliano, Luiz; Cabral, Hamilton

    2016-01-01

    Peptidases are important because they play a central role in pharmaceutical, food, environmental, and other industrial processes. A serine peptidase from Aspergillus terreus was isolated after two chromatography steps that showed a yield of 15.5%. Its molecular mass was determined to be 43 kD, by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This peptidase was active between pH 5.0 to 8.0 and had maximum activity at pH 7.0, at 45°C. When exposited with 1 M of urea, the enzyme maintained 100% activity and used azocasein as substrate. The N-terminal (first 15 residues) showed 33% identity with the serine peptidase of Aspergillus clavatus ES1. The kinetics assays showed that subsite S2 did not bind polar basic amino acids (His and Arg) nonpolar acidic amino acids (Asp and Glu). The subsite S1 showed higher catalytic efficiency than the S2 and S3 subsites.

  18. Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive DD-peptidases.

    PubMed Central

    Adam, M; Damblon, C; Plaitin, B; Christiaens, L; Frère, J M

    1990-01-01

    Various ester and thioester derivatives of hippuric acid have been prepared which were substrates of both beta-lactamases and DD-peptidases. The thioesters were more rapidly hydrolysed by nearly all the enzymes. Surprisingly, the enzymes acted rather efficiently on substrates which did not contain any chiral centre. PMID:2400398

  19. Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function

    PubMed Central

    Kantyka, Tomasz; Rawlings, Neil D.; Potempa, Jan

    2010-01-01

    In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment. PMID:20558234

  20. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  1. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin.

    PubMed

    Capuano, Annalisa; Sportiello, Liberata; Maiorino, Maria Ida; Rossi, Francesco; Giugliano, Dario; Esposito, Katherine

    2013-01-01

    Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as 'gliptins' (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%-0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their tolerability

  2. Identification of novel functional sequence variants in the gene for peptidase inhibitor 3

    PubMed Central

    Chowdhury, Mahboob A; Kuivaniemi, Helena; Romero, Roberto; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Tromp, Gerard

    2006-01-01

    Background Peptidase inhibitor 3 (PI3) inhibits neutrophil elastase and proteinase-3, and has a potential role in skin and lung diseases as well as in cancer. Genome-wide expression profiling of chorioamniotic membranes revealed decreased expression of PI3 in women with preterm premature rupture of membranes. To elucidate the molecular mechanisms contributing to the decreased expression in amniotic membranes, the PI3 gene was searched for sequence variations and the functional significance of the identified promoter variants was studied. Methods Single nucleotide polymorphisms (SNPs) were identified by direct sequencing of PCR products spanning a region from 1,173 bp upstream to 1,266 bp downstream of the translation start site. Fourteen SNPs were genotyped from 112 and nine SNPs from 24 unrelated individuals. Putative transcription factor binding sites as detected by in silico search were verified by electrophoretic mobility shift assay (EMSA) using nuclear extract from Hela and amnion cell nuclear extract. Deviation from Hardy-Weinberg equilibrium (HWE) was tested by χ2 goodness-of-fit test. Haplotypes were estimated using expectation maximization (EM) algorithm. Results Twenty-three sequence variations were identified by direct sequencing of polymerase chain reaction (PCR) products covering 2,439 nt of the PI3 gene (-1,173 nt of promoter sequences and all three exons). Analysis of 112 unrelated individuals showed that 20 variants had minor allele frequencies (MAF) ranging from 0.02 to 0.46 representing "true polymorphisms", while three had MAF ≤ 0.01. Eleven variants were in the promoter region; several putative transcription factor binding sites were found at these sites by database searches. Differential binding of transcription factors was demonstrated at two polymorphic sites by electrophoretic mobility shift assays, both in amniotic and HeLa cell nuclear extracts. Differential binding of the transcription factor GATA1 at -689C>G site was confirmed by a

  3. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy.

  4. Emerging roles of dipeptidyl peptidase 4 inhibitors: anti-inflammatory and immunomodulatory effect and its application in diabetes mellitus.

    PubMed

    Yang, Lin; Yuan, Jiao; Zhou, Zhiguang

    2014-12-01

    Dipeptidyl peptidase 4 (DPP4) inhibitors have been widely used in the treatment of type 2 diabetes mellitus. It is well known that DPP4 inhibitors exert their antidiabetes effects mainly by inhibiting the enzymatic degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. The anti-inflammatory effect of DPP4 inhibitors was proved by preclinical and clinical studies of type 2 diabetes and coronary artery disease. Preclinical data using DPP4 inhibitors-based therapies in studies of nonobese diabetic mice demonstrated additional effects, including immunomodulation, preserving beta-cell mass, promoting beta-cell regeneration and reversing newly diagnosed diabetes. Thus, these data show that DPP4 inhibitors may be effective for type 1 diabetes mellitus. However, their potential clinical benefits for type 1 diabetes remain to be evaluated. This paper will provide an overview of the progress of the anti-inflammatory and immunomodulatory effects of DPP4 inhibitors in treating both type 1 and type 2 diabetes.

  5. Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila.

    PubMed

    Isaac, R Elwyn; Johnson, Erik C; Audsley, Neil; Shirras, Alan D

    2007-12-01

    Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7-Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7-Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC(50,) 0.15 micromol l(-1)) and thiorphan (IC(50,) 1.2 micromol l(-1)). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.

  6. Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells

    PubMed Central

    Schneppenheim, Janna; Hüttl, Susann; Kruchen, Anne; Fluhrer, Regina; Müller, Ingo; Saftig, Paul; Schneppenheim, Reinhard; Martin, Christa L; Schröder, Bernd

    2015-01-01

    The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalysed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a−/− mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a−/− mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept. PMID:25035924

  7. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied protein digestion the tenebrionids Tenebrio molitor and Tribolium castaneum, pests of stored grains and grain products, to identify potential targets for biopesticide development. Tenebrionid larvae have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anter...

  8. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function

    PubMed Central

    Elpidina, Elena N.; Oppert, Brenda

    2016-01-01

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products. PMID:26819843

  9. Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes

    PubMed Central

    Stefanini, Ana Carolina B.; da Cunha, Bianca Rodrigues; Henrique, Tiago; Tajara, Eloiza H.

    2015-01-01

    Human kallikrein-related peptidases (KLKs) are a subgroup of serine proteases that participate in proteolytic pathways and control protein levels in normal physiology as well as in several pathological conditions. Their complex network of stimulatory and inhibitory interactions may induce inflammatory and immune responses and contribute to the neoplastic phenotype through the regulation of several cellular processes, such as proliferation, survival, migration, and invasion. This family of proteases, which includes one of the most useful cancer biomarkers, kallikrein-related peptidase 3 or PSA, also has a protective effect against cancer promoting apoptosis or counteracting angiogenesis and cell proliferation. Therefore, they represent attractive therapeutic targets and may have important applications in clinical oncology. Despite being intensively studied, many gaps in our knowledge on several molecular aspects of KLK functions still exist. This review aims to summarize recent data on their involvement in different processes related to health and disease, in particular those directly or indirectly linked to the neoplastic process. PMID:26783378

  10. Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases.

    PubMed Central

    Murphy, B P; Pratt, R F

    1988-01-01

    A thionocephalosporin is shown to be a much poorer substrate of representative serine beta-lactamases of class A (RTEM-2) and class C (Enterobacter cloacae P99) and a much poorer inhibitor of the Streptomyces R61 DD-peptidase than is the analogous oxo beta-lactam. These results provide kinetic evidence for the existence of a catalytic oxyanion hole in these enzymes. PMID:3066349

  11. Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases.

    PubMed

    Murphy, B P; Pratt, R F

    1988-12-01

    A thionocephalosporin is shown to be a much poorer substrate of representative serine beta-lactamases of class A (RTEM-2) and class C (Enterobacter cloacae P99) and a much poorer inhibitor of the Streptomyces R61 DD-peptidase than is the analogous oxo beta-lactam. These results provide kinetic evidence for the existence of a catalytic oxyanion hole in these enzymes.

  12. Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.

    2007-01-01

    Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.

  13. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation.

    PubMed

    Cicek, Figen Amber; Amber, Cicek Figen; Tokcaer-Keskin, Zeynep; Zeynep, Tokcaer-Keskin; Ozcinar, Evren; Evren, Ozcinar; Bozkus, Yosuf; Yusuf, Bozkus; Akcali, Kamil Can; Can, Akcali Kamil; Turan, Belma; Belma, Turan

    2014-08-01

    Metabolic syndrome (MetS) is a complex medical disorder characterized by insulin resistance, hypertension, and high risk of coronary disease and stroke. Microvascular rarefaction and endothelial dysfunction have also been linked with MetS, and recent evidence from clinical studies supports the efficacy of incretin-based antidiabetic therapies for vascular protection in diabetes. Previous studies pointed out the importance of dipeptidyl peptidase-4 (DPP-4) inhibition in endothelial cells due to getting protection against metabolic pathologies. We therefore aimed to investigate the acute effects of a DPP-4 inhibitor, sitagliptin, on vascular function in rats with high-sucrose diet-induced MetS. In order to elucidate the mechanisms implicated in the effects of DPP-4 inhibition, we tested the involvement of NO pathway and epigenetic regulation in the MetS. Acute use of sitagliptin protects the vascular function in the rats with MetS in part due to NO pathway via restoring the depressed aortic relaxation responses mediated by receptors. Application of sitagliptin enhanced the depressed phosphorylation levels of both the endothelial NO synthase and the apoptotic status of protein kinase B, known as Akt, in endothelium-intact thoracic aorta from rats with MetS. One-hour application of sitagliptin on aortic rings from rats with MetS also induced remarkable histon posttranslational modifications such as increased expression of H3K27Me3, but not of H3K27Me2, resulting in an accumulation of the H3K27Me3. Our findings suggest that, in addition to its well-known hypoglycemic action, sitagliptin may also have beneficial effects on hyperglycemia-induced vascular changes in an endotheium-dependent manner. These present results with sitagliptin aside from the glycaemic control, may demonstrate its important role in the treatment of patients with MetS.

  14. IV treatment at home

    MedlinePlus

    ... venous catheter - home; Port - home; PICC line - home; Infusion therapy - home; Home health care - IV treatment ... is given quickly, all at once. A slow infusion, which means the medicine is given slowly over ...

  15. Heterologous production of the stain solving peptidase PPP1 from Pleurotus pulmonarius.

    PubMed

    Leonhardt, Robin-Hagen; Krings, Ulrich; Berger, Ralf G; Linke, Diana

    2016-05-01

    A novel stain solving subtilisin-like peptidase (PPP1) was identified from the culture supernatant of the agaricomycete Pleurotus pulmonarius. It was purified to homogeneity using a sequence of preparative isoelectric focusing, anion exchange and size exclusion chromatography. Peptides were identified by ab initio sequencing (nLC-ESI-QTOF-MS/MS), characterizing the enzyme as a member of the subtilase family (EC 3.4.21.X). An expression system was established featuring the pPIC9K vector, an alternative Kozak sequence, the codon optimized gene ppp1 gene without the native signal sequence with C-terminal hexa-histidine tag, and Pichia pastoris GS115 as expression host. Intracellular active enzyme was obtained from cultivations in shake flasks and in a five liter bioreactor. With reaction optima of 40 °C and a pH > 8.5, considerable bleaching of pre-stained fabrics (blood, milk and India ink), and the possibility of larger-scale production, the heterologous enzyme is well suitable for detergent applications, especially at lower temperatures as part of a more energy- and cost-efficient washing process. Showing little sequence similarity to other subtilases, this unique peptidase is the first subtilisin-like peptidase from Basidiomycota, which has been functionally produced in Pichia pastoris.

  16. Substrate specificity of mitochondrial intermediate peptidase analysed by a support-bound peptide library

    PubMed Central

    Marcondes, M.F.M.; Alves, F.M.; Assis, D.M.; Hirata, I.Y.; Juliano, L.; Oliveira, V.; Juliano, M.A.

    2015-01-01

    The substrate specificity of recombinant human mitochondrial intermediate peptidase (hMIP) using a synthetic support-bound FRET peptide library is presented. The collected fluorescent beads, which contained the hydrolysed peptides generated by hMIP, were sequenced by Edman degradation. The results showed that this peptidase presents a remarkable preference for polar uncharged residues at P1 and P1′ substrate positions: Ser = Gln > Thr at P1 and Ser > Thr at P1′. Non-polar residues were frequent at the substrate P3, P2, P2′ and P3′ positions. Analysis of the predicted MIP processing sites in imported mitochondrial matrix proteins shows these cleavages indeed occur between polar uncharged residues. Previous analysis of these processing sites indicated the importance of positions far from the MIP cleavage site, namely the presence of a hydrophobic residue (Phe or Leu) at P8 and a polar uncharged residue (Ser or Thr) at P5. To evaluate this, additional kinetic analyses were carried out, using fluorogenic substrates synthesized based on the processing sites attributed to MIP. The results described here underscore the importance of the P1 and P1′ substrate positions for the hydrolytic activity of hMIP. The information presented in this work will help in the design of new substrate-based inhibitors for this peptidase. PMID:26082885

  17. Peptidases released by necrotic cells control CD8+ T cell cross-priming

    PubMed Central

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P.; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O.; Citrin, Deborah E.; Korangy, Firouzeh; Greten, Tim F.

    2013-01-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells. PMID:24216478

  18. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera.

    PubMed

    Dias, Renata O; Via, Allegra; Brandão, Marcelo M; Tramontano, Anna; Silva-Filho, Marcio C

    2015-03-01

    Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic L-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.

  19. The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum

    PubMed Central

    Fujinaga, Masao; Cherney, Maia M.; Oyama, Hiroshi; Oda, Kohei; James, Michael N. G.

    2004-01-01

    The molecular structure of the pepstatin-insensitive carboxyl peptidase from Scytalidium lignicolum, formerly known as scytalidopepsin B, was solved by multiple isomorphous replacement phasing methods and refined to an R factor of 0.230 (Rfree = 0.246) at 2.1-Å resolution. In addition to the structure of the unbound peptidase, the structure of a product complex of cleaved angiotensin II bound in the active site of the enzyme was also determined. We propose the name scytalidocarboxyl peptidase B (SCP-B) for this enzyme. On the basis of conserved, catalytic residues identified at the active site, we suggest the name Eqolisin for the enzyme family. The previously uninvestigated SCP-B fold is that of a β-sandwich; each sheet has seven antiparallel strands. A tripeptide product, Ala-Ile-His, bound in the active site of SCP-B has allowed for identification of the catalytic residues and the residues in subsites S1, S2, and S3, which are important for substrate binding. The most likely hydrolytic mechanism involves nucleophilic attack of a general base (Glu-136)-activated water (OH-) on the si-face of the scissile peptide carbonylcarbon atom to form a tetrahedral intermediate. Electrophilic assistance and oxyanion stabilization is provided by the side-chain amide of Gln-53. Protonation of the leaving-group nitrogen is accomplished by the general acid function of the protonated carboxyl group of Glu-136. PMID:14993599

  20. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  1. Specificity studies on Kallikrein-related peptidase 7 (KLK7) and effects of osmolytes and glycosaminoglycans on its peptidase activity.

    PubMed

    Oliveira, Juliana R; Bertolin, Thiago C; Andrade, Douglas; Oliveira, Lilian C G; Kondo, Marcia Y; Santos, Jorge A N; Blaber, Michael; Juliano, Luiz; Severino, Beatrice; Caliendo, Giuseppe; Santagada, Vincenzo; Juliano, Maria A

    2015-01-01

    KLK7 substrate specificity was evaluated by families of fluorescence resonance energy transfer (FRET) peptides derived from Abz-KLFSSK-Q-EDDnp (Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-[2,4-dinitrophenyl] ethylenediamine), by one bead-one peptide FRET peptide library in PEGA resin, and by the FRET peptide libraries Abz-GXX-Z-XX-Q-EDDnp (Z and X are fixed and random natural amino acids, respectively). KLK7 hydrolyzed preferentially F, Y or M, and its S1' and S2' subsites showed selectivity for hydrophilic amino acids, particularly R and K. This set of specificities was confirmed by the efficient kininogenase activity of KLK7 on Abz-MISLM(↓)KRPPGFSPF(↓)RSSRI-NH2 ((↓)indicates cleavage), hydrolysis of somatostatin and substance P and inhibition by kallistatin. The peptide Abz-NLY(↓)RVE-Q-EDDnp is the best synthetic substrate so far described for KLK7 [kcat/Km=455 (mMs)(-1)] that was designed from the KLK7 substrate specificity analysis. It is noteworthy that the NLYRVE sequence is present in human semaphorin 6B. KLK7 is activated by GAGs, inhibited by neutral salts, and activated by high concentration of kosmotropic salt. Pyroglutamic acid inhibited KLK7 (Ki=33mM) and is present in skin moisturizing factor (124mM). The KLK7 specificity described here and elsewhere reflects its participation in patho-physiological events in skin, the gastrointestinal tract and central nervous system, where KLK7 is significantly expressed.

  2. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation

    PubMed Central

    Rawlings, Neil D.

    2016-01-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase. PMID

  3. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  4. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  5. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing

    PubMed Central

    Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  6. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    PubMed

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes.

  7. Expression, purification and crystallization of a membrane-associated, catalytically active type I signal peptidase from Staphylococcus aureus.

    PubMed

    Ting, Yi Tian; Batot, Gaëlle; Baker, Edward N; Young, Paul G

    2015-01-01

    Staphylococcus aureus infections are becoming increasingly difficult to treat as they rapidly develop resistance to existing antibiotics. Bacterial type I signal peptidases are membrane-associated, cell-surface serine proteases with a unique catalytic mechanism that differs from that of eukaryotic endoplasmic reticulum signal peptidases. They are thus potential antimicrobial targets. S. aureus has a catalytically active type I signal peptidase, SpsB, that is essential for cell viability. To elucidate its structure, the spsB gene from S. aureus Newman strain was cloned and overexpressed in Escherichia coli. After exploring many different protein-modification constructs, SpsB was expressed as a fusion protein with maltose-binding protein and crystallized by hanging-drop vapour diffusion. The crystals belonged to the monoclinic space group P2(1) and diffracted to 2.05 Å resolution. The crystal structure of SpsB is anticipated to provide structural insight into Gram-positive signal peptidases and to aid in the development of antibacterial agents that target type I signal peptidases.

  8. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome*

    PubMed Central

    Das, Debanu; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Coombs, Graham H.; Elsliger, Marc-André; Wilson, Ian A.

    2016-01-01

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms. PMID:26940874

  9. Crystal structure and activity studies of the C11 cysteine peptidase from Parabacteroides merdae in the human gut microbiome

    DOE PAGES

    McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; ...

    2016-03-03

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other familiesmore » in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.« less

  10. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choe, Mi Sun; Kim, Sung-Woo; Lee, In-Kyu

    2016-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. Methods Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. Results Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. Conclusion Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes. PMID:27098503

  11. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    PubMed Central

    Rhee, Su-jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  12. PLATO IV Accountancy Index.

    ERIC Educational Resources Information Center

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  13. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  14. The PLATO IV Architecture.

    ERIC Educational Resources Information Center

    Stifle, Jack

    The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…

  15. Little Jiffy, Mark IV

    ERIC Educational Resources Information Center

    Kaiser, Henry F.; Rice, John

    1974-01-01

    In this paper three changes and one new development for the method of exploratory factor analysis (a second generation Little Jiffy) developed by Kaiser are described. Following this short description a step-by-step computer algorithm of the revised method, dubbed Little Jiffy, Mark IV is presented. (MP)

  16. PNT1 Is a C11 Cysteine Peptidase Essential for Replication of the Trypanosome Kinetoplast*

    PubMed Central

    Das, Debanu; Myburgh, Elmarie; Wilkes, Jonathan; Brown, Elaine; Lemgruber, Leandro; Gould, Matthew K.; Burchmore, Richard J.; Coombs, Graham H.; Schnaufer, Achim

    2016-01-01

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast. PMID:26940875

  17. PNT1 is a C11 cysteine peptidase essential for replication of the Trypanosome Kinetoplast

    SciTech Connect

    Grewal, Jaspreet S.; McLuskey, Karen; Das, Debanu; Myburgh, Elmarie; Wilkes, Jonathan; Brown, Elaine; Lemgruber, Leandro; Gould, Matthew K.; Burchmore, Richard J.; Coombs, Graham H.; Schnaufer, Achim; Mottram, Jeremy C.

    2016-03-03

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. Furthermore, these data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.

  18. Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus.

    PubMed

    Hafeez, Zeeshan; Cakir-Kiefer, Céline; Girardet, Jean-Michel; Jardin, Julien; Perrin, Clarisse; Dary, Annie; Miclo, Laurent

    2013-11-01

    The trend to confer new functional properties to fermented dairy products by supplementation with bioactive peptides is growing in order to encounter the challenge of health-promoting foods. But these functional ingredients have not to be hydrolysed by proteases of bacteria used in the manufacture of these products. One of the two yoghurt bacteria, Streptococcus thermophilus, has long been considered as weakly proteolytic since its only cell wall-associated subtilisin-like protease, called PrtS, is not always present. Nevertheless, a recent study pointed out a possible peptidase activity in certain strains. In this present study, the stability of milk-derived bioactive peptides, e.g. the anxiolytic peptide, αs1-CN-(f91-97), in the presence of two different S. thermophilus strains with PrtS+ or PrtS− phenotype was studied. Both strains appeared to be capable of hydrolysing the αs1-CN-(f91-97) and other bioactive peptides by recurrent removal of N-terminal residues. The hydrolysis was neither due to intracellular peptidases nor to HtrA protease. Results obtained showed that the observed activity originates from the presence at the surface of both strains of an extracellular aminopeptidase activity. Moreover, a cell wall-associated X-prolyl dipeptidyl peptidase activity was also highlighted when β-casomorphin-7 was used as substrate. All of these findings suggest that, in order to use fermented milks as vector of bioactive peptides, the stability of these bioactive peptides in this kind of products implies to carefully characterize the potential action of the surface proteolytic enzymes of S. thermophilus.

  19. PNT1 is a C11 cysteine peptidase essential for replication of the Trypanosome Kinetoplast

    DOE PAGES

    Grewal, Jaspreet S.; McLuskey, Karen; Das, Debanu; ...

    2016-03-03

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrialmore » genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. Furthermore, these data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.« less

  20. Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus.

    PubMed

    Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J; O'Mahony, Jim; Fenton, Mark; McAuliffe, Olivia; Hill, Colin; Ross, R Paul; Coffey, Aidan

    2016-01-01

    Staphylococcus aureus is a major cause of infection in humans and animals, causing a wide variety of diseases, from local inflammations to fatal sepsis. The bacterium is commonly multi-drug resistant and thus many front-line antibiotics have been rendered ineffective for treating such infections. Research on murein/peptidoglycan hydrolases, derived from bacterial viruses (bacteriophages), has demonstrated that such proteins are attractive candidates for development as novel antibacterial agents for combatting Gram-positive pathogens. Here we review the research produced to-date on the bacteriophage-derived CHAPK murein peptidase. Initially, we sequenced and annotated the genome of anti-staphylococcal bacteriophage K and cloned the gene for the bacteriophage endolysin, a murein hydrolase which plays a role in cell killing during the bacteriophage life cycle. An highly active domain of the enzyme, a cysteine, histidine-dependent amido hydrolase/peptidase (CHAPK), was cloned, overexpressed in E. coli and purified. This CHAPK enzyme was demonstrated to rapidly lyse several strains of methicillin resistant S. aureus and both disrupted and prevented the formation of a staphylococcal biofilm. The staphylolytic activity of the peptidase was demonstrated in vivo using a mouse model, without adverse effects on the animals. The crystal structure of the enzyme was elucidated, revealing a calcium ion close to the active site. Site-directed mutagenesis indicated that this calcium ion is involved in the catalytic mechanism of the enzyme. The crystal structure of this enzyme is a valuable source of information for efficient engineering of this and similar CHAP-domain-containing proteins. Overall, the data collected to date on CHAPK has demonstrated its strong potential as a novel therapeutic candidate for treatment of staphylococcal infections and has provided us with insight into the fundamental enzymatic mechanisms of CHAP domain-containing peptidoglycan hydrolases.

  1. Metacaspase 2 of Trypanosoma brucei is a calcium-dependent cysteine peptidase active without processing.

    PubMed

    Moss, Catherine X; Westrop, Gareth D; Juliano, Luiz; Coombs, Graham H; Mottram, Jeremy C

    2007-12-11

    Metacaspases are cysteine peptidases that are distantly related to the caspases, for which proteolytic processing is central to their activation. Here, we show that recombinant metacaspase 2 (MCA2) from Trypanosoma brucei has arginine/lysine-specific, Ca(2+)-dependent proteolytic activity. Autocatalytic processing of MCA2 occurred after Lys55 and Lys268; however, this was shown not to be required for the enzyme to be proteolytically active. The necessity of Ca(2+), but not processing, for MCA2 enzymatic activity clearly distinguishes MCA2 from the caspases and would be consistent with different physiological roles.

  2. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    PubMed

    Rebollido-Rios, Rocio; Bandari, Shyam; Wilms, Christoph; Jakuschev, Stanislav; Vortkamp, Andrea; Grobe, Kay; Hoffmann, Daniel

    2014-07-01

    Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  3. Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319.

    PubMed

    Nahrstedt, H; Wittchen, K- D; Rachman, M A; Meinhardt, F

    2004-04-01

    The sipM gene of Bacillus megaterium encoding a type I signal peptidase (SPase) was isolated and structurally characterized. RNA analysis revealed a transcript size in accordance with a bicistronic operon comprising sipM and an adjacent open reading frame. Inactivation of sipM by targeted gene disruption could not be achieved, indicating its essential role for cell viability since there might be no other type I SPase of major importance present in B. megaterium. Plasmid-assisted amplification of the gene resulted in an increase in activity of the heterologous glucanase used as an extracellular reporter, suggesting a potential bottleneck for protein secretion within this species.

  4. FcR epsilon+ lymphocytes and regulation of the IgE antibody system. IV. Delineation of target cells and mechanisms of action of SFA and EFA in inhibiting in vitro induction of FcR epsilon expression.

    PubMed

    Marcelletti, J F; Katz, D H

    1984-12-01

    SFA and EFA are derived from distinct mouse T cell hybridomas secreting one or the other (but not both) factor, and although both are capable of inhibiting FcR epsilon expression by unfractionated spleen cells induced by monomeric IgE, neither was inhibitory for EIRT-induced FcR epsilon expression by T cells in the same cell population. This suggests that the final target cell for the inhibitory effects of SFA and EFA is the FcR epsilon+ B lymphocyte. T cells are required for both SFA- and EFA-mediated FcR epsilon inhibition, and more precisely, as shown in this study, SFA stimulates Lyt-1+ cells in the presence or absence of IgE to produce a suppressive effector molecule (SEM), and EFA together with IgE stimulates Lyt-2+ cells to produce an enhancing effector molecule (EEM), both of which can directly inhibit FcR epsilon expression by B cells. SFA and SEM can inhibit both IgE- and EIRB-induced FcR epsilon expression by B cells, indicating that SFA may act by blocking the EIRB-mediated expansion of the FcR epsilon+ B cell population. EFA and EEM, in contrast, can inhibit IgE-induced but not EIRB-induced FcR epsilon expression, indicating that EFA may act at some point before the release of EIR, perhaps involving those FcR epsilon+ B cells that respond to IgE and produce EIRB. Finally, although neither SFA and EFA display IgE binding properties, both SEM and EEM, in contrast, are IgE binding factors (IgE-BF) and may be homologous to the suppressive IgE binding factor and potentiating IgE binding factor described by other investigators. The possible interrelationships between these various cells and factors are discussed.

  5. Identification and characterization of peptidases secreted by quahog parasite unknown (QPX), the protistan parasite of hard clams.

    PubMed

    Rubin, Ewelina; Werneburg, Glenn T; Pales Espinosa, Emmanuelle; Thanassi, David G; Allam, Bassem

    2016-11-22

    Quahog parasite unknown (QPX) is a protistan parasite capable of causing deadly infections in the hard clam Mercenaria mercenaria, one of the most valuable shellfish species in the USA. QPX is an extracellular parasite found mostly in the connective tissue of clam mantle and, in more severe cases of infection, other clam organs. Histopathologic examinations revealed that QPX cells within clam tissues are typically surrounded by hollow areas that have been hypothesized to be, at least in part, a result of extracellular digestion of clam proteins by the parasite. We investigated peptidase activity in QPX extracellular secretions using sodium dodecyl sulfate-polyacrylamide gels containing gelatin as a co-polymerized substrate. Multiple peptidase activity bands of molecular weights ranging from 20 to 100 kDa were detected in QPX secretions derived from a variety of culture media. One major band of approximately 35 kDa was composed of subtilisin-like peptidases that were released by QPX cells in all studied media, suggesting that these are the most common peptidases used by QPX for nutrient acquisition. PCR quantification of mRNA encoding QPX subtilisins revealed that their expression changes with the protein substrate used in the culture media. A fast protein liquid chromatography (FPLC) was used to fractionate QPX extracellular secretions. An FPLC-fraction containing a subtilisin-type serine peptidase was able to digest clam plasma proteins, suggesting that this peptidase might be involved in the disease process, and making it a good candidate for further investigation as a possible virulence factor of the parasite.

  6. Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria.

    PubMed

    Das, Kumuda C

    2013-01-01

    High levels of oxygen (hyperoxia) are frequently used in critical care units and in conditions of respiratory insufficiencies in adults, as well as in infants. However, hyperoxia has been implicated in a number of pulmonary disorders including bronchopulmonary dysplasia (BPD) and adult respiratory distress syndrome (ARDS). Hyperoxia increases the generation of reactive oxygen species (ROS) in the mitochondria that could impair the function of the mitochondrial electron transport chain. We analyzed lung mitochondrial function in hyperoxia using the XF24 analyzer (extracellular flux) and optimized the assay for lung epithelial cells and mitochondria isolated from lungs of mice. Our data show that hyperoxia decreases basal oxygen consumption rate (OCR), spare respiratory capacity, maximal respiration and ATP turnover in MLE-12 cells. There was significant decrease in glycolytic capacity and glycolytic reserve in MLE-12 cells exposed to hyperoxia. Using mitochondria isolated from lungs of mice exposed to hyperoxia or normoxia we have shown that hyperoxia decreased the basal, state 3 and state3 μ (respiration in an uncoupled state) respirations. Further, using substrate or inhibitor of a specific complex we show that the OCR via complex I and II, but not complex IV was decreased, demonstrating that complexes I and II are specific targets of hyperoxia. Further, the activities of complex I (NADH dehydrogenase, NADH-DH) and complex II (succinate dehydrogenase, SDH) were decreased in hyperoxia, but the activity of complex IV (cytochrome oxidase, COX) remains unchanged. Taken together, our study show that hyperoxia impairs glycolytic and mitochondrial energy metabolism in in tact cells, as well as in lungs of mice by selectively inactivating components of electron transport system.

  7. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom

    PubMed Central

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M.; Neves-Ferreira, Ana G.C.; Sánchez, Elda E.; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2015-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542 Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5 nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1 nM). Aprotinin (2 nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05 nM) was inhibited by 67% following incubation with TP1 (0.1 nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2 nM) acts like aprotinin (0.4 nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed. PMID:26419785

  8. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  9. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    PubMed Central

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  10. Enhanced Design Alternative IV

    SciTech Connect

    N. E. Kramer

    1999-05-18

    This report evaluates Enhanced Design Alternative (EDA) IV as part of the second phase of the License Application Design Selection (LADS) effort. The EDA IV concept was compared to the VA reference design using criteria from the ''Design Input Request for LADS Phase II EDA Evaluations'' (CRWMS M&O 1999b) and (CRWMS M&O 1999f). Briefly, the EDA IV concept arranges the waste packages close together in an emplacement configuration known as ''line load''. Continuous pre-closure ventilation keeps the waste packages from exceeding the 350 C cladding and 200 C (4.3.13) drift wall temperature limits. This EDA concept keeps relatively high, uniform emplacement drift temperatures (post-closure) to drive water away from the repository and thus dry out the pillars between emplacement drifts. The waste package is shielded to permit human access to emplacement drifts and includes an integral filler inside the package to reduce the amount of water that can contact the waste form. Closure of the repository is desired 50 years after first waste is emplaced. Both backfill and a drip shields will be emplaced at closure to improve post-closure performance.

  11. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part IV. Is a new haem polymerisation inhibition test pertinent for the detection of antimalarial natural products?

    PubMed

    Baelmans, R; Deharo, E; Bourdy, G; Muñoz, V; Quenevo, C; Sauvain, M; Ginsburg, H

    2000-11-01

    The search for new antimalarial agents in plant crude extracts using traditional screening tests is time-consuming and expensive. New in vitro alternative techniques, based on specific metabolic or enzymatic process, have recently been developed to circumvent testing of antimalarial activity in parasite culture. The haem polymerisation inhibition test (HPIA) was proposed as a possible routine in vitro assay for the detection of antimalarial activity in natural products. A total of 178 plant extracts from the Pharmacopeia of the Bolivian ethnia Tacana, were screened for their ability to inhibit the polymerisation of haematin. Five extracts from Aloysia virgata (Ruíz & Pavón) A.L. Jussieu (Verbenaceae), Bixa orellana L. (Bixaceae), Caesalpinia pluviosa D.C. (Caesalpiniaceae), Mascagnia stannea (Griseb) Nied. (Malpighiaceae) and Trichilia pleenea (Adr. Jussieu) (Meliaceae) demonstrated more than 70% inhibition of haematin polymerisation at 2.5 mg/ml. The extracts were also tested for antimalarial activity in culture against F32 strain (chloroquine-sensitive) and D2 strain (chloroquine-resistant) of Plasmodium falciparum and in vivo against P. berghei. The extract from Caesalpinia pluviosa was the only one that showed activity in HPIA and in the classical test in culture. The accuracy and pertinence of HPIA, applied to natural products is discussed.

  12. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability.

    PubMed

    Ketnawa, Sunantha; Benjakul, Soottawat; Martínez-Alvarez, Oscar; Rawdkuen, Saroat

    2017-01-15

    The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations.

  13. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity

    PubMed Central

    Shiina, Yohei; Muto, Tomohiro; Zhang, Zhili; Baihaqie, Ahmad; Yoshizawa, Takamasa; Lee, Hye-in J.; Park, Eulsoon; Tsukiji, Shinya; Takimoto, Koichi

    2016-01-01

    Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K+ channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides. PMID:27198182

  14. Salt Taste Enhancing l-Arginyl Dipeptides from Casein and Lysozyme Released by Peptidases of Basidiomycota.

    PubMed

    Harth, Lisa; Krah, Ulrike; Linke, Diana; Dunkel, Andreas; Hofmann, Thomas; Berger, Ralf G

    2016-08-24

    Some l-arginyl dipeptides were recently identified as salt taste enhancers, thus opening the possibility to reduce dietary sodium uptake without compromising palatability. A screening of 15 basidiomycete fungi resulted in the identification of 5 species secreting a high peptidolytic activity (>3 kAU/mL; azocasein assay). PFP-LC-MS/MS and HILIC-MS/MS confirmed that l-arginyl dipeptides were liberated when casein or lysozyme served as substrate. Much higher yields of dipeptides (42-75 μmol/g substrate) were released from lysozyme than from casein. The lysozyme hydrolysate generated by the complex set of peptidases of Trametes versicolor showed the highest l-arginyl dipeptide yields and a significant salt taste enhancing effect in a model cheese matrix and in a curd cheese. With a broad spectrum of novel specific and nonspecific peptidases active in the slightly acidic pH range, T. versicolor might be a suitable enzyme source for low-salt dairy products.

  15. A sputnik IV saga

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.

    2009-12-01

    The Sputnik IV launch occurred on May 15, 1960. On May 19, an attempt to deorbit a 'space cabin' failed and the cabin went into a higher orbit. The orbit of the cabin was monitored and Moonwatch volunteer satellite tracking teams were alerted to watch for the vehicle demise. On September 5, 1962, several team members from Milwaukee, Wisconsin made observations starting at 4:49 a.m. of a fireball following the predicted orbit of Sputnik IV. Requests went out to report any objects found under the fireball path. An early morning police patrol in Manitowoc had noticed a metal object on a street and had moved it to the curb. Later the officers recovered the object and had it dropped off at the Milwaukee Journal. The Moonwarch team got the object and reported the situation to Moonwatch Headquarters at the Smithsonian Astrophysical Observatory. A team member flew to Cambridge with the object. It was a solid, 9.49 kg piece of steel with a slag-like layer attached to it. Subsequent analyses showed that it contained radioactive nuclei produced by cosmic ray exposure in space. The scientists at the Observatory quickly recognized that measurements of its induced radioactivity could serve as a calibration for similar measurements of recently fallen nickel-iron meteorites. Concurrently, the Observatory directorate informed government agencies that a fragment from Sputnik IV had been recovered. Coincidently, a debate in the UN Committee on Peaceful Uses of Outer Space involved the issue of liability for damage caused by falling satellite fragments. On September 12, the Observatory delivered the bulk of the fragment to the US Delegation to the UN. Two days later, the fragment was used by US Ambassador Francis Plimpton as an exhibit that the time had come to agree on liability for damage from satellite debris. He offered the Sputnik IV fragment to USSR Ambassador P.D. Morozov, who refused the offer. On October 23, Drs. Alla Massevitch and E.K. Federov of the USSR visited the

  16. Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase.

    PubMed

    Zhang, X P; Sjöling, S; Tanudji, M; Somogyi, L; Andreu, D; Eriksson, L E; Gräslund, A; Whelan, J; Glaser, E

    2001-09-01

    Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.

  17. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice.

    PubMed

    Chae, Yu-Na; Kim, Tae-Hyoung; Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  18. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut. We have descri...

  19. Novel hydrazine derivatives as selective DPP-IV inhibitors: findings from virtual screening and validation through molecular dynamics simulations.

    PubMed

    Tanwar, Omprakash; Deora, Girdhar Singh; Tanwar, Lalima; Kumar, Gautam; Janardhan, Sridhara; Alam, Mumtaz; Shaquiquzzaman; Akhter, Mymoona

    2014-04-01

    The present study demonstrates and validates the discovery of two novel hydrazine derivatives as selective dipeptidyl peptidase-IV (DPP-IV) inhibitors. Virtual screening (VS) of publicly available databases was performed using virtual screening workflow (VSW) of Schrödinger software against DPP-IV and the most promising hits were selected. Selectivity was further assessed by docking the hits against homology modeled structures of DPP8 and DPP9. Two novel hydrazine derivatives were selected for further studies based on their selectivity threshold. To assess their correct binding modes and stability of their complexes with enzyme, molecular dynamic (MD) simulation studies were performed against the DPP-IV protein and the results revealed that they had a better binding affinity towards DPP-IV as compared to DPP 8 and DPP 9. The binding poses were further validated by docking these ligands with different softwares (Glide and Gold). The proposed binding modes of hydrazines were found to be similar to sitagliptine and alogliptine. Thus, the study reveals the potential of hydrazine derivatives as highly selective DPP-IV inhibitors.

  20. PMD IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza

    2013-01-01

    The main activities carried out at the PMD (Politecnico di Milano DIIAR) IVS Analysis Center during 2012 are briefly higlighted, and future plans for 2013 are sketched out. We principally continued to process European VLBI sessions using different approaches to evaluate possible differences due to various processing choices. Then VLBI solutions were also compared to the GPS ones as well as the ones calculated at co-located sites. Concerning the observational aspect, several tests were performed to identify the most suitable method to achieve the highest possible accuracy in the determination of GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) satellite positions using the VLBI technique.

  1. Division Iv: Stars

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher; D'Antona, Francesca; Spite, Monique; Asplund, Martin; Charbonnel, Corinne; Docobo, Jose Angel; Gray, Richard O.; Piskunov, Nikolai E.

    2012-04-01

    This Division IV was started on a trial basis at the General Assembly in The Hague 1994 and was formally accepted at the Kyoto General Assembly in 1997. Its broad coverage of ``Stars'' is reflected in its relatively large number of Commissions and so of members (1266 in late 2011). Its kindred Division V, ``Variable Stars'', has the same history of its beginning. The thinking at the time was to achieve some kind of balance between the number of members in each of the 12 Divisions. Amid the current discussion of reorganizing the number of Divisions into a more compact form it seems advisable to make this numerical balance less of an issue than the rationalization of the scientific coverage of each Division, so providing more effective interaction within a particular field of astronomy. After all, every star is variable to a certain degree and such variability is becoming an ever more powerful tool to understand the characteristics of every kind of normal and peculiar star. So we may expect, after hearing the reactions of members, that in the restructuring a single Division will result from the current Divisions IV and V.

  2. 78 FR 2390 - CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Energy Regulatory Commission CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v. California Independent System Operator Corporation; Notice of Complaint Take notice... IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC and CSOLAR IV North, LLC...

  3. Low expression of angiotensinogen and dipeptidyl peptidase 1 in saliva of patients with proliferative verrucous leukoplakia

    PubMed Central

    Flores, Isadora Luana; Santos-Silva, Alan Roger; Coletta, Ricardo Della; Leme, Adriana Franco Paes; Lopes, Marcio Ajudarte

    2016-01-01

    AIM To elucidate the profile of the salivary proteome. METHODS Unstimulated whole mouth saliva was collected from 30 volunteers [15 proliferative verrucous leukoplakia (PVL) patients and 15 controls] and proteins were submitted for mass spectrometry-based proteomics using the discovery approach, followed by analyses of variance and logistic regression tests. RESULTS A total of two hundred and eighty-three proteins were confidently identified in saliva. By combining two low abundance proteins from the PVL group, angiotensinogen (AGT) and dipeptidyl peptidase 1 (DPP1), a model for group differentiation was built with a concordance index of 94.2%, identifying both proteins as potential etiologic biomarkers for PVL. CONCLUSION This study suggests that both AGT and DPP1 may be involved in developmental mechanisms of PVL. PMID:27900324

  4. The structure of human tripeptidyl peptidase II as determined by a hybrid approach.

    PubMed

    Schönegge, Anne-Marie; Villa, Elizabeth; Förster, Friedrich; Hegerl, Reiner; Peters, Jürgen; Baumeister, Wolfgang; Rockel, Beate

    2012-04-04

    Tripeptidyl-peptidase II (TPPII) is a high molecular mass (∼5 MDa) serine protease, which is thought to act downstream of the 26S proteasome, cleaving peptides released by the latter. Here, the structure of human TPPII (HsTPPII) has been determined to subnanometer resolution by cryoelectron microscopy and single-particle analysis. The complex is built from two strands forming a quasihelical structure harboring a complex system of inner cavities. HsTPPII particles exhibit some polymorphism resulting in complexes consisting of nine or of eight dimers per strand. To obtain deeper insights into the architecture and function of HsTPPII, we have created a pseudoatomic structure of the HsTPPII spindle using a comparative model of HsTPPII dimers and molecular dynamics flexible fitting. Analyses of the resulting hybrid structure of the HsTPPII holocomplex provide new insights into the mechanism of maturation and activation.

  5. Crystallization and preliminary X-ray crystallographic studies of dipeptidyl peptidase 11 from Porphyromonas gingivalis

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    Dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) preferentially cleaves substrate peptides with Asp and Glu at the P1 position [NH2–P2–P1(Asp/Glu)–P1′–P2′…]. For crystallographic studies, PgDPP11 was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data to 1.82 Å resolution were collected from an orthorhombic crystal form belonging to space group C2221, with unit-cell parameters a = 99.33, b = 103.60, c = 177.33 Å. Structural analysis by the multi-wavelength anomalous diffraction method is in progress. PMID:25664797

  6. Profiling of Cross-Functional Peptidases Regulated Circulating Peptides in BRCA1 Mutant Breast Cancer

    PubMed Central

    Fan, Jia; Tea, Muy-Kheng M.; Yang, Chuan; Ma, Li; Meng, Qing H.; Hu, Tony Y.; Singer, Christian F.; Ferrari, Mauro

    2016-01-01

    Women with inherited BRCA1 mutations are more likely to develop breast cancer (BC); however, not every carrier will progress to BC. The aim of this study was to identify and characterize circulating peptides that correlate with BC patients carrying BRCA1 mutations. Circulating peptides were enriched using our well-designed nanoporous silica thin films (NanoTraps) and profiled by mass spectrometry to identify among four clinical groups. To determine the corresponding proteolytic processes and their sites of activity, purified candidate peptidases and synthesized substrates were assayed to verify the processes predicted by the MERPOS database. Proteolytic processes were validated using patient serum samples. The peptides, KNG1K438-R457 and C 3fS1304-R1320, were identified as putative peptide candidates to differentiate BRCA1 mutant BC from sporadic BC and cancer-free BRCA1 mutant carriers. Kallikrein-2 (KLK2) is the major peptidase that cleaves KNG1K438-R457 from kininogen-1, and its expressions and activities were also found to be dependent on BRCA1 status. We further determined that KNG1K438-R457 is cleaved at its C-terminal arginine by carboxypeptidase N1 (CPN1). Increased KLK2 activity, with decreased CPN1 activity, results in the accumulation of KNG1K438-R457 in BRCA1-associated BC. Our work outlined a useful strategy for determining the peptide–petidase relationship and thus establishing a biological mechanism for changes in the peptidome in BRCA1-associated BC. PMID:27058005

  7. A Putative Bacterial ABC Transporter Circumvents the Essentiality of Signal Peptidase

    PubMed Central

    Morisaki, J. Hiroshi; Smith, Peter A.; Date, Shailesh V.; Kajihara, Kimberly K.; Truong, Chau Linda; Modrusan, Zora; Yan, Donghong; Kang, Jing; Xu, Min; Shah, Ishita M.; Mintzer, Robert; Kofoed, Eric M.; Cheung, Tommy K.; Arnott, David; Koehler, Michael F. T.; Heise, Christopher E.; Brown, Eric J.

    2016-01-01

    ABSTRACT The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro. These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB. Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo. PMID:27601569

  8. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-22

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition.

  9. The anti-inflammatory effect of neuropeptide Y (NPY) in rats is dependent on dipeptidyl peptidase 4 (DP4) activity and age.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava; Mitić, Katarina; Kustrimović, Natasa; Vujić, Vesna; Miletić, Tatjana; Kovacević-Jovanović, Vesna

    2008-12-01

    Neuropeptide Y (NPY)-induced modulation of the immune and inflammatory responses is regulated by tissue-specific expression of different receptor subtypes (Y1-Y6) and the activity of the enzyme dipeptidyl peptidase 4 (DP4, CD26) which terminates the action of NPY on Y1 receptor subtype. The present study investigated the age-dependent effect of NPY on inflammatory paw edema and macrophage nitric oxide production in Dark Agouti rats exhibiting a high-plasma DP4 activity, as acknowledged earlier. The results showed that NPY suppressed paw edema in adult and aged, but not in young rats. Furthermore, plasma DP4 activity decreased, while macrophage DP4 activity, as well as macrophage CD26 expression increased with aging. The use of NPY-related peptides and Y receptor-specific antagonists revealed that anti-inflammatory effect of NPY is mediated via Y1 and Y5 receptors. NPY-induced suppression of paw edema in young rats following inhibition of DP4 additionally emphasized the role for Y1 receptor in the anti-inflammatory action of NPY. In contrast to the in vivo situation, NPY stimulated macrophage nitric oxide production in vitro only in young rats, and this effect was mediated via Y1 and Y2 receptors. It can be concluded that age-dependant modulation of inflammatory reactions by NPY is determined by plasma, but not macrophage DP4 activity at different ages.

  10. The dipeptidyl peptidase-4 inhibitor teneligliptin improved endothelial dysfunction and insulin resistance in the SHR/NDmcr-cp rat model of metabolic syndrome.

    PubMed

    Nakagami, Hironori; Pang, Zhengda; Shimosato, Takashi; Moritani, Toshinori; Kurinami, Hitomi; Koriyama, Hiroshi; Tenma, Akiko; Shimamura, Munehisa; Morishita, Ryuichi

    2014-07-01

    Diabetes mellitus, hypertension and metabolic syndrome are major risk factors for the occurrence of cardiovascular events. In this study, we used spontaneous hypertensive rat (SHR)/NDmcr-cp (cp/cp) (SHRcp) rats as a model for metabolic syndrome to examine the effects of dipeptidyl peptidase (DPP)-4 inhibition on hypertension, glucose metabolism and endothelial dysfunction. First, we confirmed that SHRcp rats showed very severe obesity, hypertension and endothelial dysfunction phenotypes from 14 to 54 weeks of age. Next, we examined whether the DPP-4 inhibitor teneligliptin (10 mg kg(-1) per day per os for 12 weeks) could modify any of these phenotypes. Treatment with teneligliptin significantly improved hyperglycemia and insulin resistance, as evidenced by an oral glucose tolerance test and homeostasis model assessment for insulin resistance, respectively. Teneligliptin showed no effects on systolic blood pressure or heart rate. In regard to endothelial function, the vasodilator response to acetylcholine was significantly impaired in SHRcp rats when compared with WKY rats. Long-term treatment with teneligliptin significantly attenuated endothelial dysfunction through the upregulation of endothelium-derived nitric oxide synthase mRNA. These results demonstrate that long-term treatment with teneligliptin significantly improved endothelial dysfunction and glucose metabolism in a rat model of metabolic syndrome, suggesting that teneligliptin treatment might be beneficial for patients with hypertension and/or diabetes.

  11. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host

    PubMed Central

    de Oliveira, Simone Santiago Carvalho; Gonçalves, Diego de Souza; Garcia-Gomes, Aline dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D’Avila-Levy, Claudia Masini; dos Santos, André Luis Souza; Branquinha, Marta Helena

    2016-01-01

    A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites’ physiology. PMID:27925020

  12. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host.

    PubMed

    Oliveira, Simone Santiago Carvalho de; Gonçalves, Diego de Souza; Garcia-Gomes, Aline Dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D'Avila-Levy, Claudia Masini; Santos, André Luis Souza Dos; Branquinha, Marta Helena

    2017-01-01

    A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites' physiology.

  13. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    PubMed

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-08

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  14. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  15. dBASE IV basics

    SciTech Connect

    O`Connor, P.

    1994-09-01

    This is a user`s manual for dBASE IV. dBASE IV is a popular software application that can be used on your personal computer to help organize and maintain your database files. It is actually a set of tools with which you can create, organize, select and manipulate data in a simple yet effective manner. dBASE IV offers three methods of working with the product: (1) control center: (2) command line; and (3) programming.

  16. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent

    PubMed Central

    2010-01-01

    Background Cell-surface glycoproteins play critical roles in cell-to-cell recognition, signal transduction and regulation, thus being crucial in cell proliferation and cancer etiogenesis and development. DPP IV and NEP are ubiquitous glycopeptidases closely linked to tumor pathogenesis and development, and they are used as markers in some cancers. In the present study, the activity and protein and mRNA expression of these glycoproteins were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytomas (RO). Methods Peptidase activities were measured by conventional enzymatic assays with fluorogen-derived substrates. Gene expression was quantitatively determined by qRT-PCR and membrane-bound protein expression and distribution analysis was performed by specific immunostaining. Results The activity of both glycoproteins was sharply decreased in the three histological types of renal tumors. Protein and mRNA expression was strongly downregulated in tumors from distal nephron (ChRCC and RO). Moreover, soluble DPP IV activity positively correlated with the aggressiveness of CCRCCs (higher activities in high grade tumors). Conclusions These results support the pivotal role for DPP IV and NEP in the malignant transformation pathways and point to these peptidases as potential diagnostic markers. PMID:20459800

  17. Confirmatory Factor Analysis of the WAIS-IV/WMS-IV

    ERIC Educational Resources Information Center

    Holdnack, James A.; Zhou, Xiaobin; Larrabee, Glenn J.; Millis, Scott R.; Salthouse, Timothy A.

    2011-01-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory…

  18. Improving IV-A/IV-D Interface. Trainer Guide.

    ERIC Educational Resources Information Center

    National Inst. for Child Support Enforcement, Chevy Chase, MD.

    Effective interface between the Aid to Families with Dependent Children (IV-A) and the Child Support Enforcement (IV-D) programs is a key factor in assisting families in becoming self-sufficient, reducing welfare expenditures, and enforcing parental responsibility to support their children. Consequently, overcoming the procedural, technological,…

  19. Improving IV-A/IV-D Interface. Handbook.

    ERIC Educational Resources Information Center

    National Inst. for Child Support Enforcement, Chevy Chase, MD.

    Effective interface between the Aid to Families with Dependent Children (IV-A) and the Child Support Enforcement (IV-D) programs is a key factor in assisting families in becoming self-sufficient, reducing welfare expenditures, and enforcing parental responsibility to support their children. Consequently, overcoming the procedural, technological,…

  20. Characterization of a Grape Class IV Chitinase

    PubMed Central

    2015-01-01

    A chitinase was purified from Vitis vinifera Manzoni Bianco grape juice and characterized. On the basis of proteomic analysis of tryptic peptides, a significant match identified the enzyme as a type IV grape chitinase previously found in juices of other V. vinifera varieties. The optimal pH and temperature for activity toward colloidal chitin were found to be 6 and 30 °C, respectively. The enzyme was found to hydrolyze chitin and oligomers of N-acetylglucosamine, generating N,N′-diacetylchitobiose and N-acetylglucosamine as products, but was inactive toward N,N′-diacetylchitobiose. The enzyme exhibited both endo- and exochitinase activities. Because yeast contains a small amount of chitin in the cell wall, the possibility of growth inhibition was tested. At a concentration and pH expected in ripe grapes, no inhibition of wine yeast growth by the chitinase was observed. PMID:24845689

  1. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases

    PubMed Central

    Sojka, Daniel; Franta, Zdeněk; Horn, Martin; Hajdušek, Ondřej; Caffrey, Conor R; Mareš, Michael; Kopáček, Petr

    2008-01-01

    Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain), and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases. PMID:18348719

  2. Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by Aspergillus fischeri and Penicillium citrinum.

    PubMed

    Ida, Érika Lika; da Silva, Ronivaldo Rodrigues; de Oliveira, Tássio Brito; Souto, Tatiane Beltramini; Leite, Juliana Abigail; Rodrigues, André; Cabral, Hamilton

    2017-03-16

    Filamentous fungi secrete diverse peptidases with different biochemical properties, which is of considerable importance for application in various commercial sectors. In this study, we describe the isolation of two fungal species collected from the soil of decayed organic matter: Aspergillus fischeri and Penicillium citrinum. In a submerged bioprocess, we observed better peptidase production with the fungus P. citrinum, which reached a peak production at 168 h with 760 U/mL, in comparison with the fungus A. fischeri, which reached a peak production at 72 h with 460 U/mL. In both situations, the fermentative medium contained 0.5% crushed feathers as a source of nitrogen. On performing biochemical characterization, we detected two alkaline serine peptidases: The one secreted by P. citrinum had optimal activity at pH 7.0 and at 45°C, while the one secreted by A. fischeri had optimal activity in pH 6.5-8 and at 55-60°C. Metallic ions were effective in modulating these peptidases; in particular, Cu(2+) promoted negative modulation of both peptidases. The peptidases were stable and functional under conditions of nonionic surfactants, temperatures up to 45°C for 1 h, and incubation over a wide pH range. In addition, it was observed that both peptidases had the capacity to hydrolyze collagen and performed well in removing an egg protein stain when supplemented into a commercial powder detergent; this was especially true for the peptidase from P. citrinum.

  3. Synthesis and physical characterization of a P1 arginine combinatorial library, and its application to the determination of the substrate specificity of serine peptidases.

    PubMed

    Furlong, Stephen T; Mauger, Russell C; Strimpler, Anne M; Liu, Yi-Ping; Morris, Frank X; Edwards, Philip D

    2002-11-01

    Serine peptidases are a large, well-studied, and medically important class of peptidases. Despite the attention these enzymes have received, details concerning the substrate specificity of even some of the best known enzymes in this class are lacking. One approach to rapidly characterizing substrate specificity for peptidases is the use of positional scanning combinatorial substrate libraries. We recently synthesized such a library for enzymes with a preference for arginine at P1 and demonstrated the use of this library with thrombin (Edwards et al. Bioorg. Med. Chem. Lett. 2000, 10, 2291). In the present work, we extend these studies by demonstrating good agreement between the theroretical and measured content of portions of this library and by showing that the library permits rapid characterization of the substrate specificity of additional SA clan serine peptidases including factor Xa, tryptase, and trypsin. These results were consistent both with cleavage sites in natural substrates and cleavage of commercially available synthetic substrates. We also demonstrate that pH or salt concentration have a quantitative effect on the rate of cleavage of the pooled library substrates but that correct prediction of optimal substrates for the enzymes studied appeared to be independent of these parameters. These studies provide new substrate specificity data on an important class of peptidases and are the first to provide physical characterization of a peptidase substrate library.

  4. NATIONAL COASTAL CONDITION REPORT IV

    EPA Science Inventory

    The National Coastal Condition Report IV (NCCR IV) is the fourth in a series of environmental assessments of U.S. coastal waters and the Great Lakes. The report includes assessments of all the nation’s estuaries in the contiguous 48 states and Puerto Rico, south-eastern Alaska, ...

  5. Peptidase-1 expression in some organs of the salamander Pleurodeles waltl submitted to a 12-day space flight

    NASA Astrophysics Data System (ADS)

    Bautz, A.; Rudolf, E.; Mitashov, V.; Dournon, C.

    In Pleurodeles, the peptidase-1 is a sex-linked enzyme encoded by two codominant genes (Pep-1A and Pep-1B) located on the Z and W sex chromosomes. The sexual genotype can be determined by the electrophoretic pattern of the peptidase from erythrocytes. A_AW_B genotypic females characterized by 3 electrophoretic bands AA, AB and BB were embarked on Cosmos 2229. The pattern in ovary, muscles and gut issued from the embarked or synchrone females displayed the 3 characteristic bands. In heart and kidney, the bands AA and BB were revealed, while the band BB appeared very fainly. The specific enzymatic activity in the same organs was compared. Except for the kidney, no statistical significant difference was observed between flight and synchrone samples. This enzyme can be efficiently used as sexual genotypic marker of Pleurodeles experimentally submitted to the effects of space environment.

  6. Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    PubMed Central

    Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.

    2008-01-01

    Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human

  7. Plasma native and peptidase-derivable Met-enkephalin responses to restraint stress in rats. Adaptation to repeated restraint.

    PubMed Central

    Pierzchala, K; Van Loon, G R

    1990-01-01

    Met-enkephalin and related proenkephalin A-derived peptides circulate in plasma at picomolar concentration as free, native pentapeptide and at nanomolar concentration in cryptic forms. We have optimized conditions for measurement of immunoreactive Met-enkephalin in plasma and for generation by trypsin and carboxypeptidase B of much greater amounts of total peptidase-derivable Met-enkephalin in plasma of rats, dogs, and humans. Free Met-enkephalin (11 pM) is constituted by native pentapeptide and its sulfoxide. Characterization of plasma total Met-enkephalin derived by peptidic hydrolysis revealed a small amount (38 pM) of Met-enkephalin associated with peptides of molecular mass less than 30,000 D, and probably derived from proenkephalin A, but much larger amounts of Met-enkephalin associated with albumin (1.2 nM) and with a globulin-sized protein (2.8 nM). Thus, plasma protein precursors for peptidase-derivable Met-enkephalin differ structurally and chemically from proenkephalin A. Met-enkephalin generated from plasma by peptidic hydrolysis showed naloxone-reversible bioactivity comparable to synthetic Met-enkephalin. Prolonged exposure of adult, male rats to restraint stress produced biphasic plasma responses, with peaks occurring at 30 s and 30 min in both free native and total peptidase-derivable Met-enkephalin. Repeated daily exposure to this 30-min stress resulted in adaptive loss of responses of both forms to acute restraint. Initial plasma responses of Met-enkephalin paralleled those of epinephrine and norepinephrine, but subsequently showed divergence of response. In conclusion, Met-enkephalin circulates in several forms, some of which may be derived from proteins other than proenkephalin A, and plasma levels of both free native, and peptidase-derivable Met-enkephalin are modulated physiologically. PMID:2312729

  8. The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes

    PubMed Central

    Seo, Jung-Woo; Lee, Arah; Kim, Dong Jin; Kim, Yang-Gyun; Kim, Se-Yeun; Lee, Kyung Hye; Lim, Sung-Jig; Cheng, Xian Wu; Lee, Sang-Ho; Kim, Weon

    2016-01-01

    Objective Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes. Methods Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation. Results Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis. Conclusion Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. PMID:26959365

  9. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589

  10. Human Lysozyme Peptidase Resistance Is Perturbed by the Anionic Glycolipid Biosurfactant Rhamnolipid Produced by the Opportunistic Pathogen Pseudomonas aeruginosa.

    PubMed

    Andersen, Kell K; Vad, Brian S; Scavenius, Carsten; Enghild, Jan J; Otzen, Daniel E

    2017-01-10

    Infection by the opportunistic pathogen Pseudomonas aeruginosa (PA) is accompanied by the secretion of virulence factors such as the secondary metabolite rhamnolipid (RL) as well as an array of bacterial enzymes, including the peptidase elastase. The human immune system tries to counter this via defensive proteins such as lysozyme (HLZ). HLZ targets the bacterial cell wall but may also have other antimicrobial activities. The enzyme contains four disulfide bonds and shows high thermodynamic stability and resistance to proteolytic attack. Here we show that RL promotes HLZ degradation by several unrelated peptidases, including the PA elastase and human peptidases. This occurs although RL does not by itself denature HLZ. Nevertheless, RL binds in a sufficiently high stoichiometry (8:1 RL:HLZ) to neutralize the highly cationic surface of HLZ. The initial cleavage sites agree well with the domain boundaries of HLZ. Thus, binding of RL to native HLZ may be sufficient to allow proteolytic attack at slightly exposed sites on the protein, leading to subsequent degradation. Furthermore, biofilms of RL-producing strains of PA are protected better against high concentrations of HLZ than RL-free PA strains are. We conclude that pathogen-produced RL may weaken host defenses by facilitating degradation of key host proteins.

  11. Identification and characterization of a cathepsin-L-like peptidase in Eimeria tenella.

    PubMed

    Liu, Renqiang; Ma, Xueting; Liu, Aijun; Zhang, Lei; Cai, Jianping; Wang, Ming

    2014-12-01

    Avian coccidiosis, caused by Eimeria spp., is one of the major parasitic diseases in birds. Cysteine protease is a major virulence factor in parasitic protozoa, and it may be a suitable chemotherapeutic target and vaccine candidate molecule. A 100 amino acid (aa.) partial sequence of cathepsin L, which is a cysteine protease, was reported by Katrib et al. (Ac. No. CDJ41293) (2012). A 219 aa. sequence was reported by Reid et al. (Ac. No. AFV92863) (2013). However, the open reading frame (ORF) was not reported. In this study, a full sequence of a cathepsin-L-like peptidase in Eimeria tenella (EtcatL) was obtained and its biochemical characterizations and expression profiles were analyzed across different stages of the parasite's life cycle. Results showed that the EtcatL gene encodes a protein 470 aa. in length, with 47 and 49% identity to Toxoplasma gondii and Eimeria acervulina. Considering the close phylogenetic relationship, TgcatL (PDB. ID 3F75) was selected for use as a template for homology modeling with quality factors of 90.9. Gelatin SDS-PAGE showed it to exert protease activity at ≈38 and ≈26 kDa. Further analysis showed the kinetic parameters of the recombinant peptidase to be K m  = 8.9 μM and V max = 5.7 RFU/s μM at pH 5.5 containing 10 mM dithiothreitol (DTT) in the reaction matrix, and the IC50 value of E64 was 65.32 ± 3.02 nM. The recombinant protein was active from 25 to 50 °C, with optimal activity at 42 °C. The RT-PCR and Western blot results showed it to be expressed mainly at the endogenous stages and the initial phase of the sporulation. The protective experiment showed that chickens immunized with 100 and 200 μg rEtcatL had reduction of weight loss values 48.7 and 57.9% those of infected controls, respectively. Their reduction of lesion scores (RLS) were 25.0 and 47.2% that of control chickens, and relative oocyst production (ROP) was 39.6 and 15.5% that of control chickens. These results indicate that the EtcatL can be

  12. The use of hexazonium-p-rosanilin in the histochemical demonstration of peptidases.

    PubMed

    Lojda, Z

    1975-09-29

    The suitability of hexazonium-p-rosanilin (HP) in the histochemical demonstration of peptidases was investigated. The detection was carried out in cold mictrotome sections adherent to slides or semipermeable membranes. Alanyl-1-naphthylamide, alanyl-2-naphthylamide, leucyl-2-naphthylamide, leucyl-4-methoxy-2-naphthylamide (all substrates in concentration of 0.4 mg/1 ml of citrate phosphate buffer pH 6.5), gamma-L-glutamyl-1-naphthylamide, gamma-L-glutamyl-2-naphthylamide (both substances in concentration of 0.24 mg/1 ml of acetate buffer pH 6.5) were used as the substrates. Results were compared with those obtained with Fast Blue B and Fast Garnet GBC. In comparison with Fast Blue B and Fast Garnet GBC HP is a faster coupler, furnishes azodyes which are stable, amorphous (even without lipid extractions from sections), more substantive and in the case of 1-naphthylamine almost insoluble in ordinary lipid solvents used for the dehydration and clearing of sections before mounting. The molecular extinction coefficient of azodyes furnished by HP is 1.5X higher for 1-naphthylamine than for 2-naphthylamine. It is higher than that of Fast Garnet GBC, however, lower than that of Fast Blue B. The inhibitory influence of individual diazonium salts on enzyme activity (activities) splitting leucyl-2-naphthylamide amounts to 36% (Fast Garnet GBC), 37% (Fast Blue B), 52% (HP, 0.03 ml/1 ml) and 63% (HP, 0.09 ml/1 ml) at pH 6.5. For gamma-glutamyl-transpeptidase the corresponding values are 50%, 59%, 62% and 67%. The higher inhibitory influence of HP is compensated by the possibility of its using in the technic of semipermeable membranes. HP improves greatly the localization of peptidases in cold microtome sections from which lipids were not extracted. The best results are furnished by 1-naphthylamine dervatives. In the case of 4-methoxy-2-naphthylamine derivatives the localization is very sharp, however, the azodye is less distinct than that of 2-naphthylamine. The localization as

  13. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    PubMed

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  14. DPP-IV-resistant, long-acting oxyntomodulin derivatives.

    PubMed

    Santoprete, Alessia; Capitò, Elena; Carrington, Paul E; Pocai, Alessandro; Finotto, Marco; Langella, Annunziata; Ingallinella, Paolo; Zytko, Karolina; Bufali, Simone; Cianetti, Simona; Veneziano, Maria; Bonelli, Fabio; Zhu, Lan; Monteagudo, Edith; Marsh, Donald J; Sinharoy, Ranabir; Bianchi, Elisabetta; Pessi, Antonello

    2011-04-01

    Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon-like peptide 1 (GLP-1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose-dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37-amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP-1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment-associated nausea than GLP-1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half-life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP-IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP-IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258-2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists

  15. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis

    PubMed Central

    Seo, Jae Ho; Rivadeneira, Dayana B.; Caino, M. Cecilia; Chae, Young Chan; Speicher, David W.; Vaira, Valentina; Bosari, Silvano; Rampini, Paolo; Kossenkov, Andrew V.; Languino, Lucia R.; Altieri, Dario C.

    2016-01-01

    Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB) in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating “stress” signals of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a “drugable” therapeutic target in cancer. PMID:27389535

  16. Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin.

    PubMed

    Bocheńska, Oliwia; Rąpała-Kozik, Maria; Wolak, Natalia; Braś, Grażyna; Kozik, Andrzej; Dubin, Adam; Aoki, Wataru; Ueda, Mitsuyoshi; Mak, Paweł

    2013-10-01

    Secreted aspartic peptidases (Saps) are a group of ten acidic hydrolases considered as key virulence factors of Candida albicans. These enzymes supply the fungus with nutrient amino acids as well as are able to degrade the selected host's proteins involved in the immune defense. Our previous studies showed that the human menstrual discharge is exceptionally rich in bactericidal hemoglobin (Hb) fragments - hemocidins. However, to date, the genesis of such peptides is unclear. The presented study demonstrates that the action of C. albicans isozymes Sap1-Sap6, Sap8 and Sap9, but not Sap7 and Sap10, toward human hemoglobin leads to limited proteolysis of this protein and generates a variety of antimicrobial hemocidins. We have identified these peptides and checked their activity against selected microorganisms representative for human vagina. We have also demonstrated that the process of Hb hydrolysis is most effective at pH 4.0, characteristic for vagina, and the liberated peptides showed pronounced killing activity toward Lactobacillus acidophilus, and to a lower degree, Escherichia coli. However, only a very weak activity toward Staphylococcus aureus and C. albicans was noticed. These findings provide interesting new insights into pathophysiology of human vaginal candidiasis and suggest that C. albicans may be able to compete with the other microorganisms of the same physiological niche using the microbicidal peptides generated from the host protein.

  17. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  18. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials

    PubMed Central

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83–1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  19. C-Peptide Levels Predict the Effectiveness of Dipeptidyl Peptidase-4 Inhibitor Therapy

    PubMed Central

    Demir, Sevin; Sargin, Mehmet

    2016-01-01

    Background. Our aim was to define the conditions that affect therapeutic success when dipeptidyl peptidase-4 (DPP-4) inhibitor is added to metformin monotherapy. Materials and Methods. We reviewed the medical records of 56 patients who had received DPP-4 inhibitor as an add-on to metformin monotherapy and evaluated their response in the first year of therapy. Fasting blood glucose (FBG), HbA1c, C-peptide, and weight of the patients were recorded at 3-month intervals during the first year of treatment. Results. Patients who added DPP-4 inhibitor to metformin monotherapy had significant weight loss (P = 0.004) and FBG and HbA1c levels were significantly lowered during the first 6 months (both P < 0.001). Baseline levels of C-peptide were predictive for success of the treatment (P = 0.02), even after correction for confounding factors, for example, age, gender, or BMI (P = 0.03). Duration of diabetes was not a predictor of response to treatment (P = 0.60). Conclusion. Our study demonstrates that in patients having inadequate glycemic control, the addition of a DPP-4 inhibitor as a second oral agent to metformin monotherapy provides better glycemic control, protects β-cell reserves, and does not cause weight gain. These effects depend on baseline C-peptide levels. PMID:27882332

  20. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    PubMed

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  1. Dipeptidyl peptidase-4 inhibitors as add-on therapy to insulin: rationale and evidences.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-08

    Type 2 diabetes mellitus being a progressive disease will eventually require insulin therapy. While insulin therapy is the ultimate option, many patients still fall short of target glycemic goals. This could, perhaps be due to the fear, unwillingness and practical barriers to insulin intensification. Hypoglycemia, oedema and weight gain is another limitation. Newer therapies with dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose co-transporter-2 (SGLT-2) inhibitors are exciting options as both classes do not cause hypoglycemia and are either weight neutral or cause weight loss. DPP-4 inhibitors are an appealing option as an add-on therapy to insulin especially in elderly and patients with renal impairment. Moreover, glucose-dependent insulinotropic polypeptide (GIP) mediated augmentation of glucagon by DPP-4 inhibitors could also protect against hypoglycemia. These collective properties make these class a potential add-on candidate to insulin therapy. This article will review the efficacy and safety of DPP-4 inhibitors as an add-on to insulin therapy.

  2. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

    PubMed Central

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly

    2015-01-01

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442

  3. Developmental study of tripeptidyl peptidase I activity in the mouse central nervous system and peripheral organs.

    PubMed

    Dimitrova, Mashenka; Deleva, Denislava; Pavlova, Velichka; Ivanov, Ivaylo

    2011-11-01

    Tripeptidyl peptidase I (TPPI) - a lysosomal serine protease - is encoded by the CLN2 gene, mutations that cause late-infantile neuronal ceroid lipofuscinosis (LINCL) connected with profound neuronal loss, severe clinical symptoms and early death at puberty. Developmental studies of TPPI activity levels and distribution have been done in the human and rat central nervous systems (CNS) and visceral organs. Similar studies have not been performed in mouse. In this paper, we follow up on the developmental changes in the enzyme activity and localization pattern in the CNS and visceral organs of mouse over the main periods of life - embryonic, neonate, suckling, infantile, juvenile, adult and aged - using biochemical assays and enzyme histochemistry. In the studied peripheral organs (liver, kidney, spleen, pancreas and lung) TPPI is present at birth but further its pattern is not consistent in different organs over different life periods. TPPI activity starts to be expressed in the brain at the 10th embryonic day but in most neuronal types it appears at the early infantile period, increases during infancy, reaches high activity levels in the juvenile period and is highest in adult and aged animals. Thus, in mice TPPI activity becomes crucial for the neuronal functions later in development (juvenile period) than in humans and does not decrease with aging. These results are essential as a basis for comparison between normal and pathological TPPI patterns in mice. They can be valuable in view of the use of animal models for studying LINCL and other neurodegenerative disorders.

  4. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed.

  5. Effect of temperature on the stability of various peptidases during peptide-enriched soy sauce fermentation.

    PubMed

    Nakahara, Takeharu; Yamaguchi, Hitomi; Uchida, Riichiro

    2012-03-01

    We previously developed a peptide-enriched soy sauce-like seasoning called Fermented Soybean Seasoning (FSS) with high-temperature fermentation, and we have reported the antihypertensive effects of FSS. Seryl-tyrosine (Ser-Tyr) and glycyl-tyrosine (Gly-Tyr) were identified from FSS as active constituents in the antihypertensive effects. They were found to be particularly enriched in FSS; more so than in regular soy sauce. In the present study, we clarified one of the mechanisms underlying the accumulation of these bioactive peptides during high temperature soy sauce brewing. Crude enzyme extracts were prepared from model soy sauce mash (moromi) fermented at various temperatures. Leucine aminopeptidase-I, II, and seryl-tyrosine hydrolytic activity were found to decrease in the moromi incubated at the fermentation temperature of FSS whereas almost no decrease was observed in that of regular soy sauce. The concentrations of ACE inhibitory peptides, Ser-Tyr and Gly-Tyr, in the moromi incubated at high temperature were revealed to be higher than those at low temperature through quantitative LC-MS/MS analysis. These results suggested that the peptidases responsible for degrading low molecular weight bioactive peptides were inactivated during the high temperature fermentation, thus, these peptides would be likely to remain in the high temperature fermentation.

  6. Ubiquitin-specific peptidase 48 regulates Mdm2 protein levels independent of its deubiquitinase activity

    PubMed Central

    Cetkovská, Kateřina; Šustová, Hana; Uldrijan, Stjepan

    2017-01-01

    The overexpression of Mdm2 has been linked to the loss of p53 tumour suppressor activity in several human cancers. Here, we present results suggesting that ubiquitin-specific peptidase 48 (USP48), a deubiquitinase that has been linked in previous reports to the NF-κB signaling pathway, is a novel Mdm2 binding partner that promotes Mdm2 stability and enhances Mdm2-mediated p53 ubiquitination and degradation. In contrast to other deubiquitinating enzymes (DUBs) that have been previously implicated in the regulation of Mdm2 protein stability, USP48 did not induce Mdm2 stabilization by significantly reducing Mdm2 ubiquitination levels. Moreover, two previously characterized USP48 mutants lacking deubiquitinase activity were also capable of efficiently stabilizing Mdm2, indicating that USP48 utilizes a non-canonical, deubiquitination-independent mechanism to promote Mdm2 oncoprotein stability. This study represents, to the best of our knowledge, the first report suggesting DUB-mediated target protein stabilization that is independent of its deubiquitinase activity. In addition, our results suggest that USP48 might represent a new mechanism of crosstalk between the NF-κB and p53 stress response pathways. PMID:28233861

  7. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility

    PubMed Central

    Price, Paul A.; Tanner, Houston R.; Dillon, Brett A.; Shabab, Mohammed; Walker, Graham C.; Griffitts, Joel S.

    2015-01-01

    Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes. PMID:26401024

  8. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes.

    PubMed

    Deacon, Carolyn F; Holst, Jens J

    2009-05-01

    Saxagliptin is a potent and selective reversible inhibitor of dipeptidyl peptidase-4, which is being developed for the treatment of type 2 diabetes. It is absorbed rapidly after oral administration and has a pharmacokinetic profile compatible with once daily dosing. Saxagliptin is metabolized in vivo to form an active metabolite, and both parent drug and metabolite are excreted primarily via the kidneys. Saxagliptin reduces the degradation of the incretin hormone glucagon-like peptide-1, thereby enhancing its actions, and is associated with improved beta-cell function and suppression of glucagon secretion. Clinical trials of up to 24 weeks duration have shown that saxagliptin improves glycemic control in monotherapy and provides additional efficacy when used in combination with other oral antidiabetic agents (metformin, sulfonylurea, thiazolidinedione). Both fasting and postprandial glucose concentrations are reduce leading to clinically meaningful reductions in glycated hemoglobin, and due to the glucose-dependency of its mechanism of action, there is a low risk of hypoglycemia. Saxagliptin is reported to be well tolerated with a side-effect profile similar to placebo. It has a neutral effect on body weight and dose adjustment because of age, gender, or hepatic impairment is not necessary. Saxagliptin is being co-developed by Bristol-Myers-Squibb (New York, NY, USA) and AstraZeneca (Cheshire, UK), and is currently undergoing regulatory review.

  9. Substrate Specificity of the Lanthipeptide Peptidase ElxP and the Oxidoreductase ElxO

    PubMed Central

    2015-01-01

    The final step in lanthipeptide biosynthesis involves the proteolytic removal of an N-terminal leader peptide. In the class I lanthipeptide epilancin 15X, this step is performed by the subtilisin-like serine peptidase ElxP. Bioinformatic, kinetic, and mass spectrometric analysis revealed that ElxP recognizes the stretch of amino acids DLNPQS located near the proteolytic cleavage site of its substrate, ElxA. When the ElxP recognition motif was inserted into the noncognate lanthipeptide precursor NisA, ElxP was able to proteolytically remove the leader peptide from NisA. Proteolytic removal of the leader peptide by ElxP during the biosynthesis of epilancin 15X exposes an N-terminal dehydroalanine on the core peptide of ElxA that hydrolyzes to a pyruvyl group. The short-chain dehydrogenase ElxO reduces the pyruvyl group to a lactyl moiety in the final step of epilancin 15X maturation. Using synthetic peptides, we also investigated the substrate specificity of ElxO and determined the 1.85 Å resolution X-ray crystal structure of the enzyme. PMID:24866416

  10. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil.

    PubMed

    Lizama, Alejandro J; Andrade, Yessica; Colivoro, Patricio; Sarmiento, Jose; Matus, Carola E; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela; Figueroa, Carlos D

    2015-08-01

    The family of kallikrein-related peptidases (KLKs) has been identified in a variety of immunolabeled human tissue sections, but no previous study has experimentally confirmed their presence in the human neutrophil. We have investigated the expression and bioregulation of particular KLKs in the human neutrophil and, in addition, examined whether stimulation by a kinin B(1) receptor (B1R) agonist or fMet-Leu-Phe (fMLP) induces their secretion. Western blot analysis of neutrophil homogenates indicated that the MM of the KLKs ranged from 27 to 50 kDa. RT-PCR showed that blood neutrophils expressed only KLK1, KLK4, KLK10, KLK13, KLK14 and KLK15 mRNAs, whereas the non-differentiated HL-60 cells expressed most of them, with exception of KLK3 and KLK7. Nevertheless, mRNAs for KLK2, KLK5, KLK6 and KLK9 that were previously undetectable appeared after challenging with a mixture of cytokines. Both kinin B(1)R agonist and fMLP induced secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the culture medium in similar amounts, whereas the B(1)R agonist caused the release of lower amounts of KLK2, KLK4 and KLK5. When secreted, the differing proteolytic activity of KLKs provides the human neutrophil with a multifunctional enzymatic capacity supporting a new dimension for its role in human disorders of diverse etiology.

  11. High resolution structure of an M23 peptidase with a substrate analogue

    PubMed Central

    Grabowska, Maja; Jagielska, Elzbieta; Czapinska, Honorata; Bochtler, Matthias; Sabala, Izabela

    2015-01-01

    LytM is a Staphylococcus aureus autolysin and a homologue of the S. simulans lysostaphin. Both enzymes are members of M23 metallopeptidase family (MEROPS) comprising primarily bacterial peptidoglycan hydrolases. LytM occurs naturally in a latent form, but can be activated by cleavage of an inhibitory N-terminal proregion. Here, we present a 1.45 Å crystal structure of LytM catalytic domain with a transition state analogue, tetraglycine phosphinate, bound in the active site. In the electron density, the active site of the peptidase, the phosphinate and the “diglycine” fragment on the P1′ side of the transition state analogue are very well defined. The density is much poorer or even absent for the P1 side of the ligand. The structure is consistent with the involvement of His260 and/or His291 in the activation of the water nucleophile and suggests a possible catalytic role for Tyr204, which we confirmed by mutagenesis. Possible mechanisms of catalysis and the structural basis of substrate specificity are discussed based on the structure analysis. PMID:26437833

  12. A Small Subset of Signal Peptidase Residues are Perturbed by Signal Peptide Binding

    PubMed Central

    Musial-Siwek, Monika; Yeagle, Philip L.; Kendall, Debra A.

    2008-01-01

    Perturbations of the chemical shifts of a small subset of residues in the catalytically active domain of Escherichia coli signal peptidase I (SPase I) upon binding signal peptide suggest the contact surface on the enzyme for the substrate. SPase I, an integral membrane protein, is vital to preprotein transport in prokaryotic and eukaryotic secretory systems; it binds and proteolyses the N-terminal signal peptide of the preprotein, permitting folding and localization of the mature protein. Employing isotopically labeled C-terminal E. coli SPase I Δ2–75 and an unlabeled soluble synthetic alkaline phosphatase signal peptide, SPase I Δ2–75 was titrated with the signal peptide and 2Δ 1H-15N hetero-nuclear single-quantum correlation nuclear magnetic resonance spectra revealed chemical shifts of specific enzyme residues sensitive to substrate binding. These residues were identified by 3D HNCACB, 3D CBCA(CO)NH, and 3D HN(CO) experiments. Residues Ile80, Glu82, Gln85, Ile86, Ser88, Gly89, Ser90, Met91, Leu95, Ile101, Gly109, Val132, Lys134, Asp142, Ile144, Lys145, and Thr234, alter conformation and are likely all in, or adjacent to, the substrate binding site. The remainder of the enzyme structure is unperturbed. Ramifications for conformational changes for substrate docking and catalysis are discussed. PMID:18637988

  13. Kallikrein-related peptidases in prostate, breast, and ovarian cancers: from pathobiology to clinical relevance.

    PubMed

    Avgeris, Margaritis; Mavridis, Konstantinos; Scorilas, Andreas

    2012-04-01

    Tissue kallikrein (KLK1) and kallikrein-related peptidases (KLK2-15) comprise a family of 15 highly conserved secreted serine proteases with similar structural characteristics and a wide spectrum of functional properties. Both gene expression and protein activity of KLKs are rigorously controlled at various levels via diverse mechanisms, including extensive steroid hormone regulation, to exert their broad physiological role. Nevertheless, deregulated expression, secretion, and function of KLK family members has been observed in several pathological conditions and, particularly, in endocrine-related human malignancies, including those of the prostate, breast, and ovary. The cancer-related abnormal activity of KLKs upon substrates such as growth factors, cell adhesion molecules, cell surface receptors, and extracellular matrix proteins facilitate both tumorigenesis and disease progression to the advanced stages. The well-documented relationship between KLK status and the clinical outcome of cancer patients has led to their identification as promising diagnostic, prognostic, and treatment response monitoring biomarkers for these complex disease entities. The main objective of this review is to summarize the existing knowledge concerning the role of KLKs in prostate, breast, and ovarian cancers and to highlight their continually evolving biomarker capabilities that can provide significant benefits for the management of cancer patients.

  14. Evaluation of human tissue kallikrein-related peptidases 6 and 10 expression in early gastroesophageal adenocarcinoma.

    PubMed

    Grin, Andrea; Samaan, Sara; Tripathi, Monika; Rotondo, Fabio; Kovacs, Kalman; Bassily, Mena N; Yousef, George M

    2015-04-01

    Kallikreins are a family of serine proteases that are linked to malignancy of different body organs with potential clinical utility as tumor markers. In this study, we investigated kallikrein-related peptidase 6 (KLK6) and KLK10 expression in early gastroesophageal junction adenocarcinoma and Barrett esophagus (BE) with and without dysplasia. Immunohistochemistry revealed significantly increased KLK6 expression in early invasive cancer compared with dysplastic (P = .009) and nondysplastic BE (P = .0002). There was a stepwise expression increase from metaplasia to dysplasia and invasive tumors. Significantly higher KLK10 was seen in dysplastic lesions compared with metaplasia but not between dysplastic lesions and invasive cancers. KLK6 staining intensity was increased at the invasive front (P = .006), suggesting its role in tumor invasiveness. Neither KLK6 nor KLK10 was significantly associated with other prognostic markers, including depth of invasion, indicating their potential as independent biomarkers. Our results should be interpreted with caution due to limited sample size. There was a significant correlation between KLK6 and KLK10 expression both at the invasive front and within the main tumor, indicating a collaborative effect. We then compared KLK6 and KLK10 messenger RNA expression between metaplastic and cancerous tissues in an independent data set of esophageal carcinoma from The Cancer Genome Atlas. KLK6 and KLK10 may be useful markers and potential therapeutic targets in gastroesophageal junction tumors.

  15. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    PubMed

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress.

  16. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency.

    PubMed

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly; Ehl, Stephan

    2015-01-29

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8(+) T-cells had a senescent CCR7-CD127(-)CD28(-)CD57(+) phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21(-) CD11c(+) phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias.

  17. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice

    PubMed Central

    Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  18. A novel multi-epitope vaccine based on Dipeptidyl Peptidase 4 prevents streptozotocin-induced diabetes by producing anti-DPP4 antibody and immunomodulatory effect in C57BL/6J mice.

    PubMed

    Li, Zhixin; Fang, Jinzhi; Jiao, Rui; Wei, Xiaomin; Ma, Yanjie; Liu, Xiaoran; Cheng, Peng; Li, Taiming

    2017-03-31

    Type 1 diabetes is a chronic organ-specific autoimmune disease in which selective destruction of insulin-producing β-cells leads to impaired glucose metabolism and its attendant complications. A series of Dipeptidyl peptidase 4 (DPP4) inhibitors have been developed and granted approval in the treatment of type 2 diabetes mellitus by inhibiting the enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). An increasing number of studies have shown the potential benefits of DPP4 inhibitors for type 1 diabetes. In this report, we describe a novel multi-epitope vaccine comprising a B cell epitope of DPP4, an anti-diabetic B cell epitope of Insulinoma antigen-2 (IA-2) and a Th2 epitope of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin (STZ) treated mice successfully induced specific anti-DPP4 antibody and increased serum GLP-1 level. Moreover, this antibody lasted for more than 7 weeks. Inoculation of this vaccine in C57BL/6J mice significantly reduced blood glucose level, improved glucose excursion and increased plasma insulin concentration. Consistent with a lower diabetic and insulitis incidence, induced splenic T cell proliferation and tolerance were observed. IFN-γ and IL-2 secretion reduced, but IL-10 and IL-4 increased significantly in the Dipeptidyl Peptidase 41-Insulinoma antigen-2(5)-P2-1 (D41-IP) treated mice compared to the Insulinoma antigen-2(5)-P2-1 (IA2(5)P2-1) and control group due to the potential immunomodulatory effect of the epitopes in the vaccine. Our results demonstrate that this multi-epitope vaccine may serve as a promising therapeutic approach against type 1 diabetes.

  19. Dipeptidyl peptidase IV-activated prodrugs of anti-varicella zoster virus bicyclic nucleoside analogues containing different self-cleavage spacer systems.

    PubMed

    Diez-Torrubia, Alberto; Cabrera, Silvia; De Meester, Ingrid; Camarasa, María-José; Balzarini, Jan; Velázquez, Sonsoles

    2012-09-01

    A new type of double prodrug of the antiviral family of bicyclic nucleoside analogues (BCNA) bearing cyclization self-cleavage spacers between the Val-Pro dipeptide sequence as well as the parent compound were synthesized and evaluated with regard to activation by the DPPIV/CD26 enzyme and for their stability in human and bovine serum. In buffer solution, carbamate and ester prodrugs were found to be chemically stable. Most prodrugs containing a dipeptidyl linker efficiently converted into the BCNA parent drug. In contrast, the Val-Pro alkyldiamino prodrugs converted predominantly into their alkyldiamino prodrug intermediates in the presence of CD26 and human serum. A marked increase in water solubility was observed for all prodrugs. In contrast to the parent compound, a tetrapeptide prodrug containing the Val-Val dipeptide as a self-cleavage spacer released substantial amounts of the BCNA parent drug at the basolateral side of Caco-2 cell cultures and exhibited 15- to 20-fold increased bioavailability in mice relative to the poorly bioavailable parent compound.

  20. An angiotensin-(1-7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme.

    PubMed

    Wilson, Bryan A; Cruz-Diaz, Nildris; Marshall, Allyson C; Pirro, Nancy T; Su, Yixin; Gwathmey, TanYa M; Rose, James C; Chappell, Mark C

    2015-03-15

    Angiotensin 1-7 [ANG-(1-7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1-7) to ANG-(1-4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313-323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1-7) to ANG-(1-4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min(-1)·mg(-1)) compared with the tubules (96 ± 12 fmol·min(-1)·mg(-1)) and cortex (107 ± 9 fmol·min(-1)·mg(-1)). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1-7) and its endogenous analog [Ala(1)]-ANG-(1-7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp(1)]-ANG II, ANG I, and ANG-(1-12). Although the ANG-(1-7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1-7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1-7) tone.

  1. An angiotensin-(1–7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme

    PubMed Central

    Wilson, Bryan A.; Cruz-Diaz, Nildris; Marshall, Allyson C.; Pirro, Nancy T.; Su, Yixin; Gwathmey, TanYa M.; Rose, James C.

    2015-01-01

    Angiotensin 1–7 [ANG-(1–7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1–7) to ANG-(1–4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313–323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1–7) to ANG-(1–4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min−1·mg−1) compared with the tubules (96 ± 12 fmol·min−1·mg−1) and cortex (107 ± 9 fmol·min−1·mg−1). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1–7) and its endogenous analog [Ala1]-ANG-(1–7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp1]-ANG II, ANG I, and ANG-(1–12). Although the ANG-(1–7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1–7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1–7) tone. PMID:25568136

  2. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model.

    PubMed

    Wang, Bo; Li, Bo

    2017-03-01

    The transepithelial transport routes of casein-derived peptides with different molecular weights (MWs) were investigated using a Caco-2 cell monolayer. The peptidase hydrolysis during transport was also studied. The results indicate that the paracellular route was the main pathway for F1 (1600-1300Da) and F2 (1000-500Da), and the bioavailabilities were 10.66% and 9.54%, respectively. Peptidase hydrolysis results reveal that brush-border peptidases (BBPs) as well as some other peptidases were responsible for peptide degradation in the paracellular route. The maximum hydrolysis rate of the former was 6.91 and 5.59μM Gly/min for the latter. However, PepT1 was involved in the transport of F3 (<500Da) and its bioavailability was 16.23%. BBPs were the main peptidases involved in the PepT1 transport and the maximum hydrolysis rate was 11.4μM Gly/min. Furthermore, we found that the amino acid sequence of di- and tripeptides might affect their bioavailabilities significantly.

  3. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis

    PubMed Central

    Dong, Hui; Dumenil, Jack; Lu, Fu-Hao; Na, Li; Vanhaeren, Hannes; Naumann, Christin; Klecker, Maria; Prior, Rachel; Smith, Caroline; McKenzie, Neil; Saalbach, Gerhard; Chen, Liangliang; Xia, Tian; Gonzalez, Nathalie; Seguela, Mathilde; Inzé, Dirk; Dissmeyer, Nico; Li, Yunhai; Bevan, Michael W.

    2017-01-01

    The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana. The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins. PMID:28167503

  4. Crystal structure and activity studies of the C11 cysteine peptidase from Parabacteroides merdae in the human gut microbiome

    SciTech Connect

    McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Coombs, Graham H.; Elsliger, Marc-André; Wilson, Ian A.; Mottram, Jeremy C.

    2016-03-03

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.

  5. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    PubMed

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  6. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications.

    PubMed

    Yamagishi, Sho-ichi; Fukami, Kei; Matsui, Takanori

    2015-01-13

    Advanced glycation end products (AGEs) consist of heterogenous group of macroprotein derivatives, which are formed by non-enzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids, and whose process has progressed at an accelerated rate under diabetes. Non-enzymatic glycation and cross-linking of protein alter its structural integrity and function, contributing to the aging of macromolecules. Furthermore, engagement of receptor for AGEs (RAGE) with AGEs elicits oxidative stress generation and subsequently evokes proliferative, inflammatory, and fibrotic reactions in a variety of cells. Indeed, accumulating evidence has suggested the active involvement of accumulation of AGEs in diabetes-associated disorders such as diabetic microangiopathy, atherosclerotic cardiovascular diseases, Alzheimer's disease and osteoporosis. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins, gut hormones secreted from the intestine in response to food intake, both of which augment glucose-induced insulin release, suppress glucagon secretion, and slow gastric emptying. Since GLP-1 and GIP are rapidly degraded and inactivated by dipeptidyl peptidase-4 (DPP-4), inhibition of DPP-4 and/or DPP-4-resistant GLP-1 analogues have been proposed as a potential target for the treatment of diabetes. Recently, DPP-4 has been shown to cleave multiple peptides, and blockade of DPP-4 could exert diverse biological actions in GLP-1- or GIP-independent manner. This article summarizes the crosstalk between AGEs-RAGE axis and DPP-4-incretin system in the development and progression of diabetes-associated disorders and its therapeutic intervention, especially focusing on diabetic vascular complications.

  7. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  8. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  9. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  10. Linagliptin: a novel dipeptidyl peptidase 4 inhibitor with a unique place in therapy.

    PubMed

    Barnett, Anthony H

    2011-06-01

    The dipeptidyl peptidase 4 (DPP-4) inhibitors comprise a promising new class of agent for the management of type 2 diabetes. They possess a range of physiological effects associated with improved glycemic control including stimulation of glucose-dependent insulin secretion and suppression of glucagon secretion, and lower blood glucose levels through different, but potentially complementary, mechanisms to standard oral therapies. Linagliptin is the latest DPP-4 inhibitor to complete pivotal phase 3 trials. The data show that linagliptin provides significant, clinically meaningful and sustained improvements in glycemic control, with an incidence of adverse events similar to placebo and an excellent tolerability profile. In addition, linagliptin has been shown to be weight neutral and, importantly, there was no increased risk of hypoglycemia attributed to linagliptin use in monotherapy or combination therapy with metformin or pioglitazone. A unique characteristic of linagliptin that differentiates it from other members of the class is its primarily nonrenal route of excretion. The linagliptin phase 3 program included several hundred patients with type 2 diabetes and different stages of renal disease and the data suggest that the drug would not need dose adjustment, regardless of the degree of renal impairment. There is a particular need for safe and effective therapeutic agents that can be used when renal function declines. Linagliptin has recently been approved by the US Food and Drug Administration and may find a place in therapy as a treatment option for the significant number of patients in whom metformin and the other DPP-4 inhibitors are either contraindicated or require dose adjustment because of moderate to severe renal impairment.

  11. Increased Plasma Dipeptidyl Peptidase-4 Activities in Patients with Coronary Artery Disease

    PubMed Central

    Yang, Guang; Li, Yuzi; Cui, Lan; Jiang, Haiying; Li, Xiang; Jin, Chunzi; Jin, Dehao; Zhao, Guangxian; Jin, Jiyong; Sun, Rui; Piao, Limei; Xu, Wenhu; Fang, Chenghu; Lei, Yanna; Yuan, Kuichang; Xuan, Chunhua; Ding, Dazi

    2016-01-01

    Dipeptidyl peptidase-4 (DPP4) is one of the most potent mammalian serine proteases participated in the pathogenesis of subclinical atherosclerosis. Here we investigated whether the plasma soluble form of DPP4 is associated with the prevalence of coronary artery disease (CAD) with and without diabetes mellitus (DM). A cross-sectional study was conducted of 496 aged 26–81 years with (n = 362) and without (n = 134) CAD. Plasma DPP4 activity, high sensitive C-reactive protein (hs-CRP), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein levels were measured. The coronary atherosclerotic plaques were evaluated by coronary angiography. The CAD patients with (n = 84) and without (n = 278) DM had significantly higher DPP4 levels (11.8 ± 3.1 vs. 6.9 ± 3.5 ng/mL, P<0.01) than the nonCAD subjects. The acute coronary syndrome patients (n = 299) had elevated DPP4 levels than those with stable angina patients (n = 83). CAD patients even without DM had increased plasma DPP4 activities as compared with nonCAD subjects (10.9 ± 4.9 vs. 6.4 ± 3.1, ng/L, P< 0.01). A linear regression analysis revealed that overall, the DPP4 levels were positively associated with LCL-C and hs-CRP levels as well as syntax scores. A multiple logistic regression analysis demonstrated that plasma DPP4 activity was independent predictor of CAD (odds ratio, 1.56; 95% CI, 1.19–1.73; P<0.01). Our study shows that increased DPP4 activity levels are associated with the presence of CAD and that the plasma DPP4 level serves as a novel biomarker for CAD even without DM. PMID:27654253

  12. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  13. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  14. Synthesis and biological evaluation of Germanium(IV)-polyphenol complexes as potential anti-cancer agents.

    PubMed

    Pi, Jiang; Zeng, Jing; Luo, Jian-Jun; Yang, Pei-Hui; Cai, Ji-Ye

    2013-05-15

    Germanium (Ge) is considered to play a key role in the pharmacological effects of some medicinal plants. Here, two new Ge(IV)-polyphenol complexes were synthesized and measured for their potential biological activities. The results indicated that these Ge(IV)-polyphenol complexes possessed great anti-oxidative activities, both showing stronger hydroxyl scavenging effects than their corresponding ligands. We also demonstrated the strong intercalating abilities of Ge(IV)-polyphenol complexes into calf thymus-DNA molecules. In addition, these two Ge(IV)-polyphenol complexes showed strong proliferative inhibition effect on HepG2 cancer cells. Moreover, the morphological changes in HepG2 cells induced by Ge(IV)-polyphenol complexes were detected by atomic force microscopy. All these results collectively suggested that Ge(IV)-polyphenol complexes could be served as promising pharmacologically active substances against cancer treatment.

  15. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases

    PubMed Central

    2015-01-01

    Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π–π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties. PMID:24803854

  16. Elevated fecal peptidase D at onset of colitis in Galphai2-/- mice, a mouse model of IBD

    PubMed Central

    Kruse, Robert; Sapnara, Maria; Halfvarson, Jonas; Hörnquist, Elisabeth Hultgren

    2017-01-01

    Background The identification of novel fecal biomarkers in inflammatory bowel disease (IBD) is hampered by the complexity of the human fecal proteome. On the other hand, in experimental mouse models there is probably less variation. We investigated the fecal protein content in mice to identify possible biomarkers and pathogenic mechanisms. Methods Fecal samples were collected at onset of inflammation in Galphai2-/- mice, a well-described spontaneous model of chronic colitis, and from healthy littermates. The fecal proteome was analyzed by two-dimensional electrophoresis and quantitative mass spectrometry and results were then validated in a new cohort of mice. Results As a potential top marker of disease, peptidase D was found at a higher ratio in Galphai2-/- mouse feces relative to controls (fold change 27; p = 0.019). Other proteins found to be enriched in Gαi2-/- mice were mainly pancreatic proteases, and proteins from plasma and blood cells. A tendency of increased calprotectin, subunit S100-A8, was also observed (fold change 21; p = 0.058). Proteases are potential activators of inflammation in the gastrointestinal tract through their interaction with the proteinase-activated receptor 2 (PAR2). Accordingly, the level of PAR2 was found to be elevated in both the colon and the pancreas of Galphai2-/- mice at different stages of disease. Conclusions These findings identify peptidase D, an ubiquitously expressed intracellular peptidase, as a potential novel marker of colitis. The elevated levels of fecal proteases may be involved in the pathogenesis of colitis and contribute to the clinical phenotype, possibly by activation of intestinal PAR2. PMID:28323866

  17. Confirmatory factor analysis of the WAIS-IV/WMS-IV.

    PubMed

    Holdnack, James A; Xiaobin Zhou; Larrabee, Glenn J; Millis, Scott R; Salthouse, Timothy A

    2011-06-01

    The Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV) and the Wechsler Memory Scale-fourth edition (WMS-IV) were co-developed to be used individually or as a combined battery of tests. The independent factor structure of each of the tests has been identified; however, the combined factor structure has yet to be determined. Confirmatory factor analysis was applied to the WAIS-IV/WMS-IV Adult battery (i.e., age 16-69 years) co-norming sample (n = 900) to test 13 measurement models. The results indicated that two models fit the data equally well. One model is a seven-factor solution without a hierarchical general ability factor: Verbal Comprehension, Perceptual Reasoning, Processing Speed, Auditory Working Memory, Visual Working Memory, Auditory Memory, and Visual Memory. The second model is a five-factor model composed of Verbal Comprehension, Perceptual Reasoning, Processing Speed, Working Memory, and Memory with a hierarchical general ability factor. Interpretative implications for each model are discussed.

  18. Contribution of alpha3(IV)alpha4(IV)alpha5(IV) Collagen IV to the Mechanical Properties of the Glomerular Basement Membrane

    NASA Astrophysics Data System (ADS)

    Gyoneva, Lazarina

    The glomerular basement membrane (GBM) is a vital part of the blood-urine filtration barrier in the kidneys. In healthy GBMs, the main tension-resisting component is alpha3(IV)alpha4(IV)alpha5(IV) type IV collagen, but in some diseases it is replaced by other collagen IV isoforms. As a result, the GBM becomes leaky and disorganized, ultimately resulting in kidney failure. Our goal is to understanding the biomechanical aspects of the alpha3(IV)alpha4(IV)alpha5(IV) chains and how their absence could be responsible for (1) the initial injury to the GBM and (2) progression to kidney failure. A combination of experiments and computational models were designed for that purpose. A model basement membrane was used to compare experimentally the distensibility of tissues with the alpha3(IV)alpha4(IV)alpha5(IV) chains present and missing. The experiments showed basement membranes containing alpha3(IV)alpha4(IV)alpha5(IV) chains were less distensible. It has been postulated that the higher level of lateral cross-linking (supercoiling) in the alpha3(IV)alpha4(IV)alpha5(IV) networks contributes additional strength/stability to basement membranes. In a computational model of supercoiled networks, we found that supercoiling greatly increased the stiffness of collagen IV networks but only minimally decreased the permeability, which is well suited for the needs of the GBM. It is also known that the alpha3(IV)alpha4(IV)alpha5(IV) networks are more protected from enzymatic degradation, and we explored their significance in GBM remodeling. Our simulations showed that the more protected network was needed to prevent the system from entering a dangerous feedback cycle due to autoregulation mechanisms in the kidneys. Overall, the work adds to the evidence of biomechanical differences between the alpha3(IV)alpha4(IV)alpha5(IV) networks and other collagen IV networks, points to supercoiling as the main source of biomechanical differences, discusses the suitability of alpha3(IV)alpha4(IV

  19. The MAX IV imaging concept.

    PubMed

    Matěj, Zdeněk; Mokso, Rajmund; Larsson, Krister; Hardion, Vincent; Spruce, Darren

    2017-01-01

    The MAX IV Laboratory is currently the synchrotron X-ray source with the beam of highest brilliance. Four imaging beamlines are in construction or in the project phase. Their common characteristic will be the high acquisition rates of phase-enhanced images. This high data flow will be managed at the local computing cluster jointly with the Swedish National Computing Infrastructure. A common image reconstruction and analysis platform is being designed to offer reliable quantification of the multidimensional images acquired at all the imaging beamlines at MAX IV.

  20. Astragaloside IV ameliorates renal injury in db/db mice

    PubMed Central

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  1. DNA gyrase, topoisomerase IV, and the 4-quinolones.

    PubMed Central

    Drlica, K; Zhao, X

    1997-01-01

    For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases. PMID:9293187

  2. Specific inhibition of endopeptidase 24.16 by dipeptides.

    PubMed

    Dauch, P; Vincent, J P; Checler, F

    1991-12-05

    The inhibitory effect of various dipeptides on the neurotensin-degrading metallopeptidase, endopeptidase 24.16, was examined. These dipeptides mimick the Pro10-Tyr11 bond of neurotensin that is hydrolyzed by endopeptidase 24.16. Among a series of Pro-Xaa dipeptides, the most potent inhibitory effect was elicited by Pro-Ile (Ki approximately 90 microM) with Pro-Ile greater than Pro-Met greater than Pro-Phe. All the Xaa-Tyr dipeptides were unable to inhibit endopeptidase 24.16. The effect of Pro-Ile on several purified peptidases was assessed by means of fluorigenic assays and HPLC analysis. A 5 mM concentration of Pro-Ile does not inhibit endopeptidase 24.11, endopeptidase 24.15, angiotensin-converting enzyme, proline endopeptidase, trypsin, leucine aminopeptidase, pyroglutamyl aminopeptidase I and carboxypeptidase B. The only enzyme that was affected by Pro-Ile was carboxypeptidase A, although it was with a 50-fold lower potency (Ki approximately 5 mM) than for endopeptidase 24.16. By means of fluorimetric substrates with a series of hydrolysing activities, we demonstrate that Pro-Ile can be used as a specific inhibitor of endopeptidase 24.16, even in a complex mixture of peptidase activities such as found in whole rat brain homogenate.

  3. Combined treatment with dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin and elemental diets reduced indomethacin-induced intestinal injury in rats via the increase of mucosal glucagon-like peptide-2 concentration

    PubMed Central

    Fujiwara, Kaori; Inoue, Takuya; Yorifuji, Naoki; Iguchi, Munetaka; Sakanaka, Taisuke; Narabayashi, Ken; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Ishida, Kumi; Abe, Yosuke; Masuda, Daisuke; Takeuchi, Toshihisa; Fukunishi, Shinya; Umegaki, Eiji; Akiba, Yasutada; Kaunitz, Jonathan D.; Higuchi, Kazuhide

    2015-01-01

    The gut incretin glucagon-like peptide-1 (GLP-1) and the intestinotropic hormone GLP-2 are released from enteroendocrine L cells in response to ingested nutrients. Treatment with an exogenous GLP-2 analogue increases intestinal villous mass and prevents intestinal injury. Since GLP-2 is rapidly degraded by dipeptidyl peptidase 4 (DPP4), DPP4 inhibition may be an effective treatment for intestinal ulcers. We measured mRNA expression and DPP enzymatic activity in intestinal segments. Mucosal DPP activity and GLP concentrations were measured after administration of the DPP4 inhibitor sitagliptin (STG). Small intestinal ulcers were induced by indomethacin (IM) injection. STG was given before IM treatment, or orally administered after IM treatment with or without an elemental diet (ED). DPP4 mRNA expression and enzymatic activity were high in the jejunum and ileum. STG dose-dependently suppressed ileal mucosal enzyme activity. Treatment with STG prior to IM reduced small intestinal ulcer scores. Combined treatment with STG and ED accelerated intestinal ulcer healing, accompanied by increased mucosal GLP-2 concentrations. The reduction of ulcers by ED and STG was reversed by co-administration of the GLP-2 receptor antagonist. DPP4 inhibition combined with luminal nutrients, which up-regulate mucosal concentrations of GLP-2, may be an effective therapy for the treatment of small intestinal ulcers. PMID:25759522

  4. A Novel SUMO1-specific Interacting Motif in Dipeptidyl Peptidase 9 (DPP9) That Is Important for Enzymatic Regulation*

    PubMed Central

    Pilla, Esther; Möller, Ulrike; Sauer, Guido; Mattiroli, Francesca; Melchior, Frauke; Geiss-Friedlander, Ruth

    2012-01-01

    Sumoylation affects many cellular processes by regulating the interactions of modified targets with downstream effectors. Here we identified the cytosolic dipeptidyl peptidase 9 (DPP9) as a SUMO1 interacting protein. Surprisingly, DPP9 binds to SUMO1 independent of the well known SUMO interacting motif, but instead interacts with a loop involving Glu67 of SUMO1. Intriguingly, DPP9 selectively associates with SUMO1 and not SUMO2, due to a more positive charge in the SUMO1-loop. We mapped the SUMO-binding site of DPP9 to an extended arm structure, predicted to directly flank the substrate entry site. Importantly, whereas mutants in the SUMO1-binding arm are less active compared with wild-type DPP9, SUMO1 stimulates DPP9 activity. Consistent with this, silencing of SUMO1 leads to a reduced cytosolic prolyl-peptidase activity. Taken together, these results suggest that SUMO1, or more likely, a sumoylated protein, acts as an allosteric regulator of DPP9. PMID:23152501

  5. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant.

    PubMed

    Tanaka, H; Chinami, M; Mizushima, T; Ogasahara, K; Ota, M; Tsukihara, T; Yutani, K

    2001-07-01

    In order to elucidate the mechanism of the thermostability of proteins from hyperthermophiles, X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus (PfPCP), and its mutant protein with Ser substituted at Cys142 and Cys188 were determined at 2.2 and 2.7 A resolution, respectively. The obtained structures were compared with those previously reported for pyrrolidone carboxyl peptidases from a hyperthermophilie, Thermococcus litoralis (TlPCP), and from a mesophile, Bacillus amyloliquefaciens (BaPCP). The PfPCP structure is a tetramer of four identical subunits similar to that of the TlPCP and BaPCP. The largest structural changes among the three PCPs were detected in the C-terminal protrusion, which interacts with that of another subunit. A comparison of the three structures indicated that the high stability of PfPCP is caused by increases in hydrophobic interactions and hydrogen bonds, the formation of an intersubunit ion-pair network, and improvement to an ideal conformation. On the basis of the structures of the three proteins, it can be concluded that PfPCP does not have any special factors responsible for its extremely high stability and that the conformational structure of PfPCP is superior in its combination of positive and negative stabilizing factors compared with BaPCP.

  6. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    SciTech Connect

    Vuillemenot, Brian R.; Kennedy, Derek; Reed, Randall P.; Boyd, Robert B.; Butt, Mark T.; Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O'Neill, Charles A.

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  7. Temperature and salts effects on the peptidase activities of the recombinant metallooligopeptidases neurolysin and thimet oligopeptidase.

    PubMed

    Oliveira, Vitor; Gatti, Reynaldo; Rioli, Vanessa; Ferro, Emer S; Spisni, Alberto; Camargo, Antonio C M; Juliano, Maria A; Juliano, Luiz

    2002-09-01

    We report the recombinant neurolysin and thimet oligopeptidase (TOP) hydrolytic activities towards internally quenched fluorescent peptides derived from the peptide Abz-GGFLRRXQ-EDDnp (Abz, ortho-aminobenzoicacid; EDDnp, N-(2,4-dinitrophenyl) ethylenediamine), in which X was substituted by 11 different natural amino acids. Neurolysin hydrolyzed these peptides at R-R or at R-X bonds, and TOP hydrolyzed at R-R or L-R bonds, showing a preference to cleave at three or four amino acids from the C-terminal end. The kinetic parameters of hydrolysis and the variations of the cleavage sites were evaluated under different conditions of temperature and salt concentration. The relative amount of cleavage varied with the nature of the substitution at the X position as well as with temperature and NaCl concentration. TOP was activated by all assayed salts in the range 0.05-0.2 m for NaCl, KCl, NH4Cl and NaI, and 0.025-0.1 m for Na2SO4. Concentration higher than 0.2 N NH4Cl and NaI reduced TOP activity, while 0.5 N or higher concentration of NaCl, KCl and Na2SO4 increased TOP activity. Neurolysin was strongly activated by NaCl, KCl and Na2SO4, while NH4Cl and NaI have very modest effect. High positive values of enthalpy (DeltaH*) and entropy (DeltaS*) of activation were found together with an unusual temperature dependence upon the hydrolysis of the substrates. The effects of low temperature and high NaCl concentration on the hydrolytic activities of neurolysin and TOP do not seem to be a consequence of large secondary structure variation of the proteins, as indicated by the far-UV CD spectra. However, the modulation of the activities of the two oligopeptidases could be related to variations of conformation, in limited regions of the peptidases, enough to modify their activities.

  8. Facile Routes to Th(IV), U(IV), and Np(IV) Phosphites and Phosphates

    SciTech Connect

    Villa, Eric M.; Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-08-05

    Three actinide(IV) phosphites and a NpIV phosphate, AnIV(HPO₃)₂(H₂O)₂ (An = Th, U, Np) and Cs[Np(H1.5PO₄)(PO₄)]₂, respectively, were synthesized using mild hydrothermal conditions. The first three phases are isotypic and were obtained using similar reaction conditions. Cs[Np(H1.5PO₄)(PO₄)]₂ was synthesized using an analogous method to that of Np(HPO₃)₂(H₂O)₂. However, this fourth phase is quite different in comparison to the other phases in both composition and structure. The structure of Cs[Np(H1.5PO₄)(PO₄)]₂ is constructed from double layers of neptunium(IV) phosphate with caesium cations in the interlayer region. In contrast, An(HPO₃)₂(H₂O)₂ (An = Th, U, Np) form dense 3D networks. The actinide contraction is detected in variety of metrics obtained from single-crystal X-ray diffraction data. Changes in the oxidation state of the neptunium starting materials yield different products.

  9. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358.

    PubMed Central

    de Groot, A; Heijnen, I; de Cock, H; Filloux, A; Tommassen, J

    1994-01-01

    In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits. Images PMID:7905475

  10. Primary and predicted secondary structures of the Actinomadura R39 extracellular DD-peptidase, a penicillin-binding protein (PBP) related to the Escherichia coli PBP4.

    PubMed Central

    Granier, B; Duez, C; Lepage, S; Englebert, S; Dusart, J; Dideberg, O; Van Beeumen, J; Frère, J M; Ghuysen, J M

    1992-01-01

    As derived from gene cloning and sequencing, the 489-amino-acid DD-peptidase/penicillin-binding protein (PBP) produced by Actinomadura R39 has a primary structure very similar to that of the Escherichia coli PBP4 [Mottl, Terpstra & Keck (1991) FEMS Microbiol. Lett. 78, 213-220]. Hydrophobic-cluster analysis of the two proteins shows that, providing that a large 174-amino-acid stretch is excluded from the analysis, the bulk of the two polypeptide chains possesses homologues of the active-site motifs and secondary structures found in the class A beta-lactamase of Streptomyces albus G of known three-dimensional structure. The 174-amino-acid insert occurs at equivalent places in the two PBPs, between helices alpha 2 and alpha 3, away from the active site. Such an insert is unique among the penicilloyl serine transferases. It is proposed that the Actinomadura R39 PBP and E. coli PBP4 form a special class, class C, of low-Mr PBPs/DD-peptidases. A vector has been constructed and introduced by electrotransformation in the original Actinomadura R39 strain, allowing high-level expression and secretion of the DD-peptidase/PBP (250 mg.l-1). The gene encoding the desired protein is processed differently in Actinomadura R39 and Streptomyces lividans. Incorrect processing in Streptomyces lividans leads to a secreted protein which is inert in terms of DD-peptidase activity and penicillin-binding capacity. Images Fig. 5. PMID:1554361

  11. Different modes of vancomycin and D-alanyl-D-alanine peptidase binding to cell wall peptide and a possible role for the vancomycin resistance protein.

    PubMed Central

    Knox, J R; Pratt, R F

    1990-01-01

    A comparison was made of the binding modes of the bacterial cell wall precursor L-lysyl-D-alanyl-D-alanine to the glycopeptide antibiotic vancomycin and to the D-alanyl-D-alanine-cleaving peptidase of Streptomyces sp. strain R61, a model for cell wall-synthesizing enzymes whose X-ray three-dimensional structure is established. In each of the two pairings (vancomycin with peptide and DD-peptidase with peptide), polypeptide backbones were antiparallel, and the antibiotic or enzyme enveloped the peptide substrate from opposite sides. Hydrogen-bonding groups on the substrate which are involved with the DD-peptidase were shown to be different from the ones reported from nuclear magnetic resonance studies to be involved with vancomycin. Because of steric hindrance, the binding of either molecule to the substrate prevents the binding of the other molecule. Binding to the substrate by a D-alanyl-D-alanine-recognizing protein in a manner similar to that used by the DD-peptidase could explain recent observations of vancomycin resistance, in which a new membrane-associated protein has been detected. PMID:2386365

  12. 21 CFR 1308.14 - Schedule IV.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Schedule IV. 1308.14 Section 1308.14 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Schedules § 1308.14 Schedule IV. (a) Schedule IV shall consist of the drugs and other substances,...

  13. Archaeal type IV pili and their involvement in biofilm formation

    PubMed Central

    Pohlschroder, Mechthild; Esquivel, Rianne N.

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation. PMID:25852657

  14. Archaeal type IV pili and their involvement in biofilm formation.

    PubMed

    Pohlschroder, Mechthild; Esquivel, Rianne N

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  15. 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili

    PubMed Central

    Helaine, Sophie; Dyer, David H.; Nassif, Xavier; Pelicic, Vladimir; Forest, Katrina T.

    2007-01-01

    Type IV pili (Tfp) are widespread filamentous bacterial organelles that mediate multiple virulence-related phenotypes. They are composed mainly of pilin subunits, which are processed before filament assembly by dedicated prepilin peptidases. Other proteins processed by these peptidases, whose molecular nature and mode of action remain enigmatic, play critical roles in Tfp biology. We have performed a detailed structure/function analysis of one such protein, PilX from Neisseria meningitidis, which is crucial for formation of bacterial aggregates and adhesion to human cells. The x-ray crystal structure of PilX reveals the α/β roll fold shared by all pilins, and we show that this protein colocalizes with Tfp. These observations suggest that PilX is a minor, or low abundance, pilin that assembles within the filaments in a similar way to pilin. Deletion of a PilX distinctive structural element, which is predicted to be exposed on the filament surface, abolishes aggregation and adhesion. Our results support a model in which surface-exposed motifs in PilX subunits stabilize bacterial aggregates against the disruptive force of pilus retraction and illustrate how a minor pilus component can enhance the functional properties of pili of rather simple composition and structure. PMID:17893339

  16. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors.

    PubMed

    Hansotia, Tanya; Baggio, Laurie L; Delmeire, Dominique; Hinke, Simon A; Yamada, Yuichiro; Tsukiyama, Katsushi; Seino, Yutaka; Holst, Jens J; Schuit, Frans; Drucker, D J

    2004-05-01

    Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived incretins that potentiate glucose clearance following nutrient ingestion. Elimination of incretin receptor action in GIPR(-/-) or GLP-1R(-/-) mice produces only modest impairment in glucose homeostasis, perhaps due to compensatory upregulation of the remaining incretin. We have now studied glucose homeostasis in double incretin receptor knockout (DIRKO) mice. DIRKO mice exhibit normal body weight and fail to exhibit an improved glycemic response after exogenous administration of GIP or the GLP-1R agonist exendin-4. Plasma glucagon and the hypoglycemic response to exogenous insulin were normal in DIRKO mice. Glycemic excursion was abnormally increased and levels of glucose-stimulated insulin secretion were decreased following oral but not intraperitoneal glucose challenge in DIRKO compared with GIPR(-/-) or GLP-1R(-/-) mice. Similarly, glucose-stimulated insulin secretion and the response to forskolin were well preserved in perifused DIRKO islets. Although the dipeptidyl peptidase-IV (DPP-IV) inhibitors valine pyrrolidide (Val-Pyr) and SYR106124 lowered glucose and increased plasma insulin in wild-type and single incretin receptor knockout mice, the glucose-lowering actions of DPP-IV inhibitors were eliminated in DIRKO mice. These findings demonstrate that glucose-stimulated insulin secretion is maintained despite complete absence of both incretin receptors, and they delineate a critical role for incretin receptors as essential downstream targets for the acute glucoregulatory actions of DPP-IV inhibitors.

  17. The adsorption of plutonium IV and V on goethite

    NASA Astrophysics Data System (ADS)

    Sanchez, Arthur L.; Murray, James W.; Sibley, Thomas H.

    1985-11-01

    The adsorption of Pu(IV) and Pu(V) on goethite (αFeOOH) from NaNO 3 solution shows distinct differences related to the different hydrolytic character of these two oxidation states. Under similar solution conditions, the adsorption edge of the more strongly hydrolyzable Pu(IV) occurs in the pH range 3 to 5 while that for Pu(V) is at pH 5 to 7. The adsorption edge for Pu(V) shifts with time to lower pH values and this appears to be due to the reduction of Pu(V) to Pu(IV) in the presence of the goethite surface. These results suggest that redox transformations may be an important aspect of Pu adsorption chemistry and the resulting scavenging of Pu from natural waters. Increasing ionic strength (from 0.1 M to 3 M NaCl or NaNO 3 and 0.03 M to 0.3 M Na 2SO 4) did not influence Pu(IV) or Pu(V) adsorption. In the presence of dissolved organic carbon (DOC), Pu(V) reduction to Pu(IV) occurred in solution. Pu(IV) adsorption on goethite decreased by 30% in the presence of 240 ppm natural DOC found in Soap Lake, Washington waters. Increasing concentrations of carbonate ligands decreased Pu(IV) and Pu(V) adsorption on goethite, with an alkalinity of 1000 meq/l totally inhibiting adsorption. The Pu-goethite adsorption system provides the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. From the model calculations we determined equilibrium constants for the adsorption of Pu(IV) hydrolysis species. The model was then applied to Pu adsorption in carbonate media to see how the presence of CO 3-2 could influence the mobility of Pu. The decrease in adsorption appears to be due to formation of a Pu-CO 3 complex. Model calculations were used to predict what the adsorption curves would look like if Pu-CO 3 complexes formed.

  18. Entropy-driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III.

    PubMed

    Bezerra, Gustavo A; Dobrovetsky, Elena; Viertlmayr, Roland; Dong, Aiping; Binter, Alexandra; Abramic, Marija; Macheroux, Peter; Dhe-Paganon, Sirano; Gruber, Karl

    2012-04-24

    Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft ("entropy reservoir") as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies.

  19. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo

    PubMed Central

    Pham, Christine T. N.; Ley, Timothy J.

    1999-01-01

    Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease that has been implicated in the processing of granzymes, which are neutral serine proteases exclusively expressed in the granules of activated cytotoxic lymphocytes. In this report, we show that cytotoxic lymphocytes derived from DPPI−/− mice contain normal amounts of granzymes A and B, but these molecules retain their prodipeptide domains and are inactive. Cytotoxic assays with DPPI−/− effector cells reveal severe defects in the induction of target cell apoptosis (as measured by [125I]UdR release) at both early and late time points; this defect is comparable to that detected in perforin−/− or granzyme A−/− × B−/− cytotoxic lymphocytes. DPPI therefore plays an essential role in the in vivo processing and activation of granzymes A and B, which are required for cytotoxic lymphocyte granule-mediated apoptosis. PMID:10411926

  20. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation

    PubMed Central

    Voss, Matthias; Künzel, Ulrike; Higel, Fabian; Kuhn, Peer-Hendrik; Colombo, Alessio; Fukumori, Akio; Haug-Kröper, Martina; Klier, Bärbel; Grammer, Gudula; Seidl, Andreas; Schröder, Bernd; Obst, Reinhard; Steiner, Harald; Lichtenthaler, Stefan F; Haass, Christian; Fluhrer, Regina

    2014-01-01

    Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, β-1,3 N-acetylglucosaminyltransferase 1 and β-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes. PMID:25354954

  1. Entropy-driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III

    PubMed Central

    Bezerra, Gustavo A.; Dobrovetsky, Elena; Viertlmayr, Roland; Dong, Aiping; Binter, Alexandra; Abramić, Marija; Macheroux, Peter; Dhe-Paganon, Sirano; Gruber, Karl

    2012-01-01

    Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft (“entropy reservoir”) as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies. PMID:22493238

  2. Association study of ubiquitin-specific peptidase 46 (USP46) with bipolar disorder and schizophrenia in a Japanese population.

    PubMed

    Kushima, Itaru; Aleksic, Branko; Ito, Yoshihito; Nakamura, Yukako; Nakamura, Kazuhiko; Mori, Norio; Kikuchi, Mitsuru; Inada, Toshiya; Kunugi, Hiroshi; Nanko, Shinichiro; Kato, Tadafumi; Yoshikawa, Takeo; Ujike, Hiroshi; Suzuki, Michio; Iwata, Nakao; Ozaki, Norio

    2010-03-01

    Recently, ubiquitin-specific peptidase 46 (Usp46) has been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with 3-bp deletion in Usp46 exhibited loss of 'behavioral despair' under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. Considering the face and construct validity as an animal model for bipolar disorder, we explored an association of USP46 and bipolar disorder in a Japanese population. We also examined an association of USP46 and schizophrenia. We found nominal evidence for an association of rs12646800 and schizophrenia. This association was not significant after correction for multiple testing. No significant association was detected for bipolar disorder. In conclusion, our data argue against the presence of any strong genetic susceptibility factors for bipolar disorder or schizophrenia in the region USP46.

  3. Test Review: Advanced Clinical Solutions for WAIS-IV and WMS-IV

    ERIC Educational Resources Information Center

    Chu, Yiting; Lai, Mark H. C.; Xu, Yining; Zhou, Yuanyuan

    2012-01-01

    The authors review the "Advanced Clinical Solutions for WAIS-IV and WMS-IV". The "Advanced Clinical Solutions (ACS) for the Wechsler Adult Intelligence Scale-Fourth Edition" (WAIS-IV; Wechsler, 2008) and the "Wechsler Memory Scale-Fourth Edition" (WMS-IV; Wechsler, 2009) was published by Pearson in 2009. It is a…

  4. Oxovanadium(IV) silsesquioxane complexes.

    PubMed

    Ohde, Christian; Limberg, Christian; Stösser, Reinhard; Demeshko, Serhiy

    2010-03-01

    In the context of a potential modeling of reduced oxovanadium species occurring on the surfaces of silica-supported vanadia catalysts in the course of its turnover, the incompletely condensed silsesquioxane H(3)(c-pentyl)T(7) was reacted with Cl(4)V(THF)(2) (where THF = tetrahydrofuran) in the presence of triethylamine. Precipitation of 3 equiv of HNEt(3)Cl seemed to point to the clean formation of [((c-pentyl)T(7))(V(IV)Cl)] (1), which was supported by electron paramagnetic resonance studies performed for the resulting solutions, but further analytical and spectroscopic investigations showed that the processes occurring at that stage are more complex than that and even include the formation of [((c-pentyl)T(7))(V(V)O)](2) as a side product. Storage of a red-brown hexane solution of this product mixture reproducibly led to the precipitation of blue crystals belonging to the chloride-free compound [((c-pentyl)T(7))(2)(V(IV)=O)(3)(THF)(2)] (2), as revealed by single-crystal X-ray diffraction. Performing the same reaction in the presence of 2 equiv of pyridine leads to an analogous product, where the THF ligands are replaced by pyridine. Subsequent investigations showed that the terminal oxo ligands at the vanadium centers are, on the one hand, due to the presence of adventitious water; on the other hand, the [(c-pentyl)T(7)](3-) ligand also acted as a source of O(2-). The results of SQUID measurements performed for 2 can be interpreted in terms of a ferromagnetic coupling between the vanadyl units. Exposing 2 to a dioxygen atmosphere resulted in its immediate oxidation to yield the V(V) complex [((c-pentyl)T(7))(V(V)O)](2), which may model a fast reoxidation reaction of oxovanadium(IV) trimers on silica surfaces.

  5. Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose.

    PubMed

    Fowler, S J; Jose, S; Zhang, X; Deutzmann, R; Sarras, M P; Boot-Handford, R P

    2000-12-15

    Hydra vulgaris mesoglea is a primitive basement membrane that also exhibits some features of an interstitial matrix. We have characterized cDNAs that encode the full-length hydra alpha1(IV) chain. The 5169-base pair transcript encodes a protein of 1723 amino acids, including an interrupted 1455-residue collagenous domain and a 228-residue C-terminal noncollagenous domain. N-terminal sequence analyses of collagen IV peptides suggest the molecule is homotrimeric. Denatured hydra type IV collagen protein occurs as dimers and higher order aggregates held together by nonreducible cross-links. Hydra collagen IV exhibits no functional evidence for the presence of a 7 S domain. Type IV collagen is expressed by the ectoderm along the entire longitudinal axis of the animal but is most intense at the base of the tentacles at the site of battery cell transdifferentiation. Antisense studies show that inhibition of collagen IV translation causes a blockage in head regeneration, indicating its importance in normal hydra development. Exposure of adult hydra to 15 mm glucose resulted in up-regulation of type IV collagen mRNA levels within 48 h and significant thickening of the mesoglea within 14 days, suggesting that basement membrane thickening seen in diabetes may be, in evolutionary terms, an ancient glucose-mediated response.

  6. PREPARATION OF OXOPORPHINATOMANGANESE (IV) COMPLEX

    SciTech Connect

    Willner, I.; Otvos, J.; Calvin, M.

    1980-07-01

    Oxo-manganese-tetraphenylporphyrin (O=Mn{sup IV}-TPP) has been prepared by an oxygen-transfer reaction from iodosylbenzene to MnIITPP and characterized by its i.r. and field desorption mass spectra, which are identical to those of the product obtained by direct oxidation of Mn{sup III}(TPP) in an aqueous medium; it transfers oxygen to triphenylphosphine to produce triphenylphosphine oxide, and it is suggested that similar intermediates are important in oxygen activation by cytochrome P-450 as well as in the photosynthetic evolution of oxygen.

  7. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity.

    PubMed

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-08

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology.

  8. Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity.

    PubMed

    González, Iveth J; Desponds, Chantal; Schaff, Cédric; Mottram, Jeremy C; Fasel, Nicolas

    2007-02-01

    The human protozoan parasite Leishmania major has been shown to exhibit several morphological and biochemical features characteristic of a cell death program when differentiating into infectious stages and under a variety of stress conditions. Although some caspase-like peptidase activity has been reported in dying parasites, no caspase gene is present in the genome. However, a single metacaspase gene is present in L. major whose encoded protein harbors the predicted secondary structure and the catalytic dyad histidine/cysteine described for caspases and other metacaspases identified in plants and yeast. The Saccharomyces cerevisiae metacaspase YCA1 has been implicated in the death of aging cells, cells defective in some biological functions, and cells exposed to different environmental stresses. In this study, we describe the functional heterologous complementation of a S. cerevisiae yca1 null mutant with the L. major metacaspase (LmjMCA) in cell death induced by oxidative stress. We show that LmjMCA is involved in yeast cell death, similar to YCA1, and that this function depends on its catalytic activity. LmjMCA was found to be auto-processed as occurs for caspases, however LmjMCA did not exhibit any activity with caspase substrates. In contrast and similarly to Arabidopsis thaliana metacaspases, LmjMCA was active towards substrates with arginine in the P1 position, with the activity being abolished following H147A and C202A catalytic site mutations. These results suggest that metacaspases are members of a family of peptidases with a role in cell death conserved in evolution notwithstanding possible differences in their catalytic activity.

  9. Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics.

    PubMed

    Eklund, Sandra; Lindås, Ann-Christin; Hamnevik, Emil; Widersten, Mikael; Tomkinson, Birgitta

    2012-04-01

    Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (>4MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of k(cat)(app)/K(M) probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the K(M) and k(cat)(app) are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of k(cat)(app), possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.

  10. Use of dipeptidyl peptidase-4 inhibitors for the treatment of patients with type 2 diabetes mellitus and chronic kidney disease.

    PubMed

    Mikhail, Nasser

    2012-07-01

    Choices of antidiabetic agents for patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) are limited. Available data suggest that the use of dipeptidyl peptidase-4 (DPP-4) inhibitors may be safe in patients at various stages of renal insufficiency. However, except for linagliptin, dosage adjustment is necessary. The efficacy of DPP-4 inhibitors in patients with renal insufficiency is generally similar to that of the general population with T2DM, with reductions in mean glycated hemoglobin (HbA(1c)) levels of 0.7% to 1.0% compared with baseline, and 0.4% to 0.7% compared with placebo. The frequency of moderate hypoglycemia is 21% to 80% higher with DPP-4 inhibitors compared with placebo, but the frequency of severe hypoglycemia is similar to that with placebo. The use of DPP-4 inhibitors in patients with renal insufficiency is associated with a slight weight loss of < 1 kg. Dipeptidyl peptidase-4 inhibitors may be used as monotherapy in patients with CKD and HbA1c levels < 8.5% as an alternative to insulin, glipizide, or pioglitazone. They can also be used as add-on therapy to glipizide and/or pioglitazone in patients with HbA(1c) levels < 9%, but studies are needed to evaluate these combinations in patients with renal insufficiency. Long-term and large-scale clinical trials are underway to better determine the safety and efficacy of DPP-4 inhibitors in patients with T2DM with and without CKD.

  11. Pharmacological Properties of Riparin IV in Models of Pain and Inflammation.

    PubMed

    Nascimento, Olívia Azevêdo; Espírito-Santo, Renan Fernandes do; Opretzka, Luíza Carolina França; Barbosa-Filho, José Maria; Gutierrez, Stanley Juan Chavez; Villarreal, Cristiane Flora; Soares, Milena Botelho Pereira

    2016-12-21

    Riparins, natural alkaloids of the alkamide group, can be synthesized by simple methods, enhancing their potential application in pharmaceutical development. Here, the pharmacological properties of riparins were investigated in in vitro and in vivo assays of pain and inflammation in Swiss mice. Inflammatory mediators were measured by radioimmunoassay and Real-Time PCR. Riparins I, II, III and IV (1.56-100 mg/kg; ip) produced dose-related antinociceptive effects in the formalin test, exhibiting ED50 values of 22.93, 114.2, 31.05 and 6.63 mg/kg, respectively. Taking the greater potency as steering parameter, riparin IV was further investigated. Riparin IV did not produce antinociceptive effect on the tail flick, suggesting that its antinociception is not a centrally-mediated action. In fact, riparin IV (1.56-25 mg/kg) produced dose-related antinociceptive and antiedematogenic effects on the complete Freund's adjuvant (CFA)-induced paw inflammation in mice. During CFA-induced inflammation, riparin IV did not modulate either the production of cytokines, TNF-α and IL-10, or COX-2 mRNA expression. On the other hand, riparin IV decreased the PGE₂ levels in the inflamed paw. In in vitro assays, riparin IV did not exhibit suppressive activities in activated macrophages. These results indicate, for the first time, that riparin IV induces antinociceptive and anti-inflammatory effects, possibly through the inhibition of prostanoid production.

  12. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE PAGES

    Bone, Sharon E.; Dynes, James J.; Cliff, John; ...

    2017-01-24

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yet beenmore » developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  13. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans.

    PubMed

    Blech, Stefan; Ludwig-Schwellinger, Eva; Gräfe-Mody, Eva Ulrike; Withopf, Barbara; Wagner, Klaus

    2010-04-01

    The pharmacokinetics and metabolism of linagliptin (BI1356, 8-(3R-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione) were investigated in healthy volunteers. The 10- and 5-mg (14)C-labeled drug was administered orally or intravenously, respectively. Fecal excretion was the dominant excretion pathway with 84.7% (p.o.) and 58.2% (i.v.) of the dose. Renal excretion accounted for 5.4% (p.o.) and 30.8% (i.v.) of the dose. Unchanged linagliptin was the most abundant radioactive species in all matrices investigated. The exposure (area under the curve 0-24 h) to the parent compound in plasma accounted for 191 nM . h (p.o.) and 356 nM . h (i.v.), respectively. The main metabolite 7-but-2-ynyl-8-(3S-hydroxy-piperidin-1-yl)-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (CD1790) was observed with >10% of parent compound systemic exposure after oral administration. The metabolite was identified as S-3-hydroxypiperidinly derivative of linagliptin. Experiments that included stable-labeled isotope techniques indicated that CD1790 was formed by a two-step mechanism via the ketone 7-but-2-yn-1-yl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-8-(3-oxopiperidin-1-yl)-3,7-dihydro-1H-purine-2,6-dione (CD10604). The initial ketone formation was CYP3A4-dependent and rate-limiting for the overall reaction to CD1790. Aldo-keto reductases with minor contribution of carbonyl reductases were involved in the subsequent stereoselective reduction of CD10604 to CD1790. The antipodes of linagliptin and CD1790 were not observed with adequate enantioselective liquid chromatography-tandem mass spectrometry methods. Other minor metabolites were identified by mass spectrometry and NMR investigations. However, it was concluded that the metabolites of linagliptin only play a minor role in the overall disposition and elimination of linagliptin.

  14. Amidase activity in soils. IV. Effects of trace elements and pesticides

    SciTech Connect

    Frankenberger, W.T., Jr.; Tabatabai, M.A.

    1981-11-01

    Amidase was recently detected in soils, and this study was carried out to assess the effects of 21 trace elements, 12 herbicides, 2 fungicides, and 2 insecticides on the activity of this enzyme. Results showed that most of the trace elements and pesticides studied inhibited amidase activity in soils. The degree of inhibition varied among the soils used. When the trace elements were compared by using 5 ..mu..mol/g of soil, the average inhibition of amidase in three soils showed that Ag(I), Hg(I), As(III), and Se(IV) were the most effective inhibitors, but only Ag(I) and As(III) showed average inhibition > 50%. The least effective inhibitors (average inhibition < 3%) included Cu(I), Ba(II), Cu(II), Fe(II), Ni(II), Al(III), Fe(III), Ti(IV), V(IV), As(V), Mo(VI), and W(VI). Other elements that inhibited amidase activity in soils were Cd(II), Co(II), Mn(II), Pb(II), Sn(II), Zn(II), B(III), and Cr(III). Enzyme kinetic studies showed that As(III) was a competitive inhibitor of amidase, whereas Ag(I), Hg(II), and Se(IV) were noncompetitive inhibitors. When the pesticides studied were compared by using 10 ..mu..g of active ingredient per gram of soil, the average inhibition of amidase in three soils ranged from 2% with dinitroamine, EPTC plus R-25788, and captan to 10% with butylate. Other pesticides that inhibited amidase activity in soils were atrazine, naptalam, chloramben, dicamba, cyanazine, 2,4-D, alachlor, paraquat, trifluralin, maneb, diazinon, and malathion. The inhibition of amidase by diazinon, alachlor, and butylate followed noncompetitive kinetics.

  15. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology.

    PubMed

    Gurung, Ishwori; Berry, Jamie-Lee; Hall, Alexander M J; Pelicic, Vladimir

    2016-11-29

    Streptococcus sanguinis, a naturally competent opportunistic human pathogen, is a Gram-positive workhorse for genomics. It has recently emerged as a model for the study of type IV pili (Tfp)-exceptionally widespread and important prokaryotic filaments. To enhance genetic manipulation of Streptococcus sanguinis, we have developed a cloning-independent methodology, which uses a counterselectable marker and allows sophisticated markerless gene editing in situ We illustrate the utility of this methodology by answering several questions regarding Tfp biology by (i) deleting single or mutiple genes, (ii) altering specific bases in genes of interest, and (iii) engineering genes to encode proteins with appended affinity tags. We show that (i) the last six genes in the pil locus harbouring all the genes dedicated to Tfp biology play no role in piliation or Tfp-mediated motility, (ii) two highly conserved Asp residues are crucial for enzymatic activity of the prepilin peptidase PilD and (iii) that pilin subunits with a C-terminally appended hexa-histidine (6His) tag are still assembled into functional Tfp. The methodology for genetic manipulation we describe here should be broadly applicable.

  16. Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter.

    PubMed

    Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad

    2016-03-01

    Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.

  17. IVS contribution to ITRF2014

    NASA Astrophysics Data System (ADS)

    Bachmann, Sabine; Thaller, Daniela; Roggenbuck, Ole; Lösler, Michael; Messerschmitt, Linda

    2016-07-01

    Every few years the International Terrestrial Reference System (ITRS) Center of the International Earth Rotation and Reference Systems Service (IERS) decides to generate a new version of the International Terrestrial Reference Frame (ITRF). For the upcoming ITRF2014 the official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) comprises 5796 combined sessions in SINEX file format from 1979.6 to 2015.0 containing 158 stations, overall. Nine AC contributions were included in the combination process, using five different software packages. Station coordinate time series of the combined solution show an overall repeatability of 3.3 mm for the north, 4.3 mm for the east and 7.5 mm for the height component over all stations. The minimum repeatabilities are 1.5 mm for north, 2.1 mm for east and 2.9 mm for height. One of the important differences between the IVS contribution to the ITRF2014 and the routine IVS combination is the omission of the correction for non-tidal atmospheric pressure loading (NTAL). Comparisons between the amplitudes of the annual signals derived by the VLBI observations and the annual signals from an NTAL model show that for some stations, NTAL has a high impact on station height variation. For other stations, the effect of NTAL is low. Occasionally other loading effects have a higher influence (e.g. continental water storage loading). External comparisons of the scale parameter between the VTRF2014 (a TRF based on combined VLBI solutions), DTRF2008 (DGFI-TUM realization of ITRS) and ITRF2008 revealed a significant difference in the scale. A scale difference of 0.11 ppb (i.e. 0.7 mm on the Earth's surface) has been detected between the VTRF2014 and the DTRF2008, and a scale difference of 0.44 ppb (i.e. 2.8 mm on the Earth's surface) between the VTRF2014 and ITRF2008. Internal comparisons between the EOP of the combined solution and the individual solutions from the AC contributions show a WRMS in X- and Y-Pole between

  18. Optical and Infrared Interferometry IV

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev K.; Creech-Eakman, Michelle J.; Malbet, Fabien

    2014-08-01

    Optical and IR Interferometry IV at the SPIE 2014 symposium in Montreal had a strong and vibrant program. After initial fears about budget cuts and travel-funding constraints, the Program Committee had to work hard to accommodate as many quality submissions as possible. Innovative, creative and visionary work ensured that the field has progressed well, despite the bleak funding climate felt in the US, Europe and elsewhere. Montreal proved an excellent venue for this, the largest of Interferometry conferences and the only one that brings together practitioners from the world over. Let us summarize a few highlights to convey a glimpse of the excitement that is detailed in the rest of these Proceedings.

  19. Mechanism of Action of Prolyl Oligopeptidase (PREP) in Degenerative Brain Diseases: Has Peptidase Activity Only a Modulatory Role on the Interactions of PREP with Proteins?

    PubMed Central

    Männistö, Pekka T.; García-Horsman, J. Arturo

    2017-01-01

    In the aging brain, the correct balance of neural transmission and its regulation is of particular significance, and neuropeptides have a significant role. Prolyl oligopeptidase (PREP) is a protein highly expressed in brain, and evidence indicates that it is related to aging and in neurodegenration. Although PREP is regarded as a peptidase, the physiological substrates in the brain have not been defined, and after intense research, the molecular mechanisms where this protein is involved have not been defined. We propose that PREP functions as a regulator of other proteins though peptide gated direct interaction. We speculate that, at least in some processes where PREP has shown to be relevant, the peptidase activity is only a consequence of the interactions, and not the main physiological activity. PMID:28261087

  20. Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad.

    PubMed

    Aramini, James M; Rossi, Paolo; Huang, Yuanpeng J; Zhao, Li; Jiang, Mei; Maglaqui, Melissa; Xiao, Rong; Locke, Jessica; Nair, Rajesh; Rost, Burkhard; Acton, Thomas B; Inouye, Masayori; Montelione, Gaetano T

    2008-09-16

    Escherichia coli Spr is a membrane-anchored cell wall hydrolase. The solution NMR structure of the C-terminal NlpC/P60 domain of E. coli Spr described here reveals that the protein adopts a papain-like alpha+beta fold and identifies a substrate-binding cleft featuring several highly conserved residues. The active site features a novel Cys-His-His catalytic triad that appears to be a unique structural signature of this cysteine peptidase family. Moreover, the relative orientation of these catalytic residues is similar to that observed in the analogous Ser-His-His triad, a variant of the classic Ser-His-Asp charge relay system, suggesting the convergent evolution of a catalytic mechanism in quite distinct peptidase families.

  1. Evidence for Cleavage of the Metalloprotease Vsm from Vibrio splendidus Strain JZ6 by an M20 Peptidase (PepT-like Protein) at Low Temperature

    PubMed Central

    Liu, Rui; Qiu, Limei; Cheng, Qi; Zhang, Huan; Wang, Lingling; Song, Linsheng

    2016-01-01

    Metalloprotease Vsm is a major extracellular virulence factor of Vibrio splendidus. The toxicity of Vsm from V. splendidus strain JZ6 has been characterized, and production of this virulence factor proved to be temperature-regulated. The present study provides evidence that two forms (JZE1 and JZE2) of Vsm protein exist in extracellular products (ECPs) of strain JZ6, and a significant conversion of these two forms was detected by SDS-PAGE and immunoblotting analyses of samples obtained from cells grown at 4, 10, 16, 20, 24, and 28°C. Mass spectroscopy confirmed that JZE1 was composed only of the peptidase_M4 domain of Vsm, and JZE2 contained both the PepSY domain and the peptidase_M4 domain. An M20 peptidase T-like protein (PepTL) was screened from the transcriptome data of strain JZ6, which was considered as a crucial molecule to produce the active Vsm (JZE1) by cleavage of the propeptide. Similar to that of Vsm, PepTL mRNA accumulation was highest at 4°C (836.82-fold of that at 28°C), decreased with increasing of temperature and reached its lowest level at 28°C. Deletion of the gene encoding the PepTL resulted in a mutant strain that did not produce the JZE1 cleavage product. The peptidase activity of PepTL recombinant protein (rPepTL) was confirmed by cleaving the Vsm in ECPs with an in vitro degradation reaction. These results demonstrate that PepTL participates in activating Vsm in strain JZ6 by proteolytic cleavage at low temperature. PMID:27826294

  2. Sequence analysis and molecular characterization of larval midgut cDNA transcripts encoding peptidases from the yellow mealworm, Tenebrio molitor L.

    PubMed

    Prabhakar, S; Chen, M-S; Elpidina, E N; Vinokurov, K S; Smith, C M; Marshall, J; Oppert, B

    2007-08-01

    Peptidase sequences were analysed in randomly picked clones from cDNA libraries of the anterior or posterior midgut or whole larvae of the yellow mealworm, Tenebrio molitor Linnaeus. Of a total of 1528 sequences, 92 encoded potential peptidases, from which 50 full-length cDNA sequences were obtained, including serine and cysteine proteinases and metallopeptidases. Serine proteinase transcripts were predominant in the posterior midgut, whereas transcripts encoding cysteine and metallopeptidases were mainly found in the anterior midgut. Alignments with other proteinases indicated that 40% of the serine proteinase sequences were serine proteinase homologues, and the remaining ones were identified as either trypsin, chymotrypsin or other serine proteinases. Cysteine proteinase sequences included cathepsin B- and L-like proteinases, and metallopeptidase transcripts were similar to carboxypeptidase A. Northern blot analysis of representative sequences demonstrated the differential expression profile of selected transcripts across five developmental stages of Te. molitor. These sequences provide insights into peptidases in coleopteran insects as a basis to study the response of coleopteran larvae to external stimuli and to evaluate regulatory features of the response.

  3. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  4. Biochemical and milk-clotting properties and mapping of catalytic subsites of an extracellular aspartic peptidase from basidiomycete fungus Phanerochaete chrysosporium.

    PubMed

    da Silva, Ronivaldo Rodrigues; de Oliveira, Lilian Caroline Gonçalves; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rosa, Jose C; Cabral, Hamilton

    2017-06-15

    For a long time, proteolytic enzymes have been employed as key tools of industrial processes, especially in the dairy industry. In the present work, we used Phanerochaete chrysosporium for biochemical characterization and analysis of catalytic specificity of an aspartic peptidase. Our results revealed an aspartic peptidase with molecular mass ∼38kDa, maximal activity at pH 4.5 and 50°C, and stability above 80% in the pH range of 3-8 and temperature up to 55°C for 1h. In a milk-clotting assay, this peptidase showed maximal milk clotting activity at 60-65°C and maintenance of enzymatic activity above 80% in the presence of 20mM CaCl2. In a specificity assay, we observed stronger restriction of catalysis at the S1 subsite, with a preference for lysine, arginine, leucine, tyrosine, and phenylalanine residues. The restricted proteolysis and milk-clotting potential are attractive properties for the use in cheese production.

  5. Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi.

    PubMed

    Rahman, M Sayeedur; Simser, Jason A; Macaluso, Kevin R; Azad, Abdu F

    2003-08-01

    The type I signal peptidase lepB genes from Rickettsia rickettsii and Rickettsia typhi, the etiologic agents of Rocky Mountain spotted fever and murine typhus, respectively, were cloned and characterized. Sequence analysis of the cloned lepB genes from R. rickettsii and R. typhi shows open reading frames of 801 and 795 nucleotides, respectively. Alignment analysis of the deduced amino acid sequences reveals the presence of highly conserved motifs that are important for the catalytic activity of bacterial type I signal peptidase. Reverse transcription-PCR and Northern blot analysis demonstrated that the lepB gene of R. rickettsii is cotranscribed in a polycistronic message with the putative nuoF (encoding NADH dehydrogenase I chain F), secF (encoding protein export membrane protein), and rnc (encoding RNase III) genes in a secF-nuoF-lepB-rnc cluster. The cloned lepB genes from R. rickettsii and R. typhi have been demonstrated to possess signal peptidase I activity in Escherichia coli preprotein processing in vivo by complementation assay.

  6. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins.

    PubMed

    Cambra, Ines; Martinez, Manuel; Dáder, Beatriz; González-Melendi, Pablo; Gandullo, Jacinto; Santamaría, M Estrella; Diaz, Isabel

    2012-07-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described.

  7. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes.

    PubMed

    Li, Yanjiao; Shen, Yachen; Li, Min; Su, Dongming; Xu, Weifeng; Liang, Xiubin; Li, Rongshan

    2015-07-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

  8. Induction of Protective Immune Responses Against Schistosomiasis haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    PubMed Central

    Tallima, Hatem; Dalton, John P.; El Ridi, Rashika

    2015-01-01

    One of the major lessons we learned from the radiation-attenuated cercariae vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th)1-/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune response-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here, we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 μg active papain, 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium, led to highly significant (P < 0.005) reduction of >50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 μg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH) and 20 μg 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP) together with papain (20 μg/hamster), as adjuvant led to considerable (64%) protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1) and Fasciola hepatica cathepsin L1 (FhCL1) led to highly significant (P < 0.005) reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/rSG3PDH mixture and challenged with S. haematobium cercariae 3 weeks after the second immunization displayed highly significant (P < 0.005) reduction of 72% in challenge worm burden and no eggs in liver of 8–10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1- and type 2-related cytokines and antibody responses. PMID:25852696

  9. Crystal Structure of an Uncommon Cellulosome-Related Protein Module from Ruminococcus flavefaciens That Resembles Papain-Like Cysteine Peptidases

    PubMed Central

    Rozman Grinberg, Inna; Weiserman, Gloria; Shimon, Linda J. W.; Jindou, Sadanari; Borovok, Ilya; White, Bryan A.; Bayer, Edward A.; Lamed, Raphael; Frolow, Felix

    2013-01-01

    Background Ruminococcus flavefaciens is one of the predominant fiber-degrading bacteria found in the rumen of herbivores. Bioinformatic analysis of the recently sequenced genome indicated that this bacterium produces one of the most intricate cellulosome systems known to date. A distinct ORF, encoding for a multi-modular protein, RflaF_05439, was discovered during mining of the genome sequence. It is composed of two tandem modules of currently undefined function that share 45% identity and a C-terminal X-dockerin modular dyad. Gaining insight into the diversity, architecture and organization of different types of proteins in the cellulosome system is essential for broadening our understanding of a multi-enzyme complex, considered to be one of the most efficient systems for plant cell wall polysaccharide degradation in nature. Methodology/Principal Findings Following bioinformatic analysis, the second tandem module of RflaF_05439 was cloned and its selenium-labeled derivative was expressed and crystallized. The crystals belong to space group P21 with unit-cell parameters of a = 65.81, b = 60.61, c = 66.13 Å, β = 107.66° and contain two protein molecules in the asymmetric unit. The crystal structure was determined at 1.38-Å resolution by X-ray diffraction using the single-wavelength anomalous dispersion (SAD) method and was refined to Rfactor and Rfree of 0.127 and 0.152 respectively. The protein molecule mainly comprises a β-sheet flanked by short α-helixes, and a globular α-helical domain. The structure was found to be structurally similar to members of the NlpC/P60 superfamily of cysteine peptidases. Conclusions/Significance The 3D structure of the second repeat of the RflaF_05439 enabled us to propose a role for the currently undefined function of this protein. Its putative function as a cysteine peptidase is inferred from in silico structural homology studies. It is therefore apparent that cellulosomes integrate proteins with other

  10. Astragaloside IV protects new born rats from anesthesia-induced apoptosis in the developing brain

    PubMed Central

    Sun, Jian; Chen, Xiao-Ling; Zheng, Jin-Yu; Zhou, Jian-Wei; Ma, Zheng-Liang

    2016-01-01

    Exposure to general anesthesia may cause severe neurotoxicity in developing brain due to neuronal apoptosis. Astragaloside IV (AS IV) has antioxidant and antiapoptosis properties; however, its effects on anesthesia-induced neuroapoptosis have not been studied. In the present study, we determined whether AS IV pre-treatment is able to reduce isoflurane exposure-induced neuroapoptosis in rats. New born rats were pre-treated with AS IV or solvent by oral gavage for three days, then exposed to isoflurane. The results showed that pre-treatment of AS IV significantly inhibited isoflurane-induced neural apoptosis in the hippocampus of new born rats, and such protection was accompanied by reduced levels of caspase-3, nuclear factor-κB activation and phosphorylated c-Jun N-terminal kinase, extracellular signal-regulated kinase and increased levels of B-cell lymphoma-2, glycogen synthase kinase-3β, Klotho and phosphorylated protein kinase B. Furthermore, AS IV pre-treatment significantly alleviated isoflurane-induced oxidative stress and proinflammatory cytokine release in the rat hippocampus and serum. In summery, the results of the study demonstrated that AS IV is able to protect developing brain from anesthesia-induced neuroapoptosis via anti-oxidant and anti-inflammatory activities. PMID:27588101

  11. 24 CFR Appendixes I-Iv to Subpart B - Appendixes I-IV to Subpart B

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Appendixes I-IV to Subpart B I Appendixes I-IV to Subpart B Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN... Appendixes I-IV to Subpart B Appendix I—Annual Contributions Contract “Special Provisions for Turnkey...

  12. 24 CFR Appendixes I-Iv to Subpart B - Appendixes I-IV to Subpart B

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Appendixes I-IV to Subpart B I Appendixes I-IV to Subpart B Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN... Appendixes I-IV to Subpart B Appendix I—Annual Contributions Contract “Special Provisions for Turnkey...

  13. Metsahovi Radio Observatory - IVS Network Station

    NASA Technical Reports Server (NTRS)

    Uunila, Minttu; Zubko, Nataliya; Poutanen, Markku; Kallunki, Juha; Kallio, Ulla

    2013-01-01

    In 2012, Metsahovi Radio Observatory together with Finnish Geodetic Institute officially became an IVS Network Station. Eight IVS sessions were observed during the year. Two spacecraft tracking and one EVN X-band experiment were also performed. In 2012, the Metsahovi VLBI equipment was upgraded with a Digital Base Band Converter, a Mark 5B+, a FILA10G, and a FlexBuff.

  14. Improving Detection of IV Infiltrates in Neonates

    PubMed Central

    Driscoll, MD, Colleen; Langer, Melissa; Burke, Susan; El Metwally, MD, Dina

    2015-01-01

    Neonates and infants in the neonatal intensive care unit suffer significant morbidity when intravenous (IV) catheters infiltrate. The underreporting of adverse events through hospital voluntary reporting systems, such as ours, can complicate the monitoring of low incidence events, like IV infiltrates. Based on severe cases of IV infiltrates observed in our neonatal intensive care unit, we attempted to improve the detection of all infiltrates and reduce the incidence of Stage 4 infiltrates. We developed, and initiated the use of, an evidence-based guideline for the improved surveillance, prevention, and management of IV infiltrates, with corresponding educational interventions for faculty and staff. We instituted the use of a checklist for compliance with guidelines, and as a mechanism of surveillance. The baseline incidence rate of IV infiltrates, determined by the voluntary reporting system, was 5 per 1000 line days. Following initiation of the guidelines and checklist, the IV infiltrate rate increased to 9 per 1000 line days. In most months, the detection of IV infiltrates was improved by use of the checklist. During the post-intervention period the rate of Stage 4 infiltrates, as measured by usage of nitroglycerin ointment, was significantly reduced. In conclusion, the detection of IV infiltrates was improved following our quality improvement interventions. Further, use of an evidence-based guideline for managing infiltrates may reduce the most severe infiltrate injuries. PMID:2673438