Science.gov

Sample records for peptide alignment approach

  1. Protein Sequence Alignment Taking the Structure of Peptide Bond

    NASA Astrophysics Data System (ADS)

    Hara, Toshihide; Sato, Keiko; Ohya, Masanori

    2013-01-01

    In a previous paper1 we proposed a new method for performing pairwise alignment of protein sequences. The method, called MTRAP, achieves the highest performance compared with other alignment methods such as ClustalW22,3 on two benchmarks for alignment accuracy. In this paper, we introduce a new measure between two amino acids based on the formation of peptide bonds. The measure is implemented into MTRAP software to further improve alignment accuracy. Our alignment software is available at

  2. ReformAlign: improved multiple sequence alignments using a profile-based meta-alignment approach.

    PubMed

    Lyras, Dimitrios P; Metzler, Dirk

    2014-08-07

    Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments. We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in

  3. Biomimetic alignment of zinc oxide nanoparticles along a peptide nanofiber.

    PubMed

    Tomizaki, Kin-ya; Kubo, Seiya; Ahn, Soo-Ang; Satake, Masahiko; Imai, Takahito

    2012-09-18

    Zinc oxide (ZnO) has potential applications in solar cells, chemical sensors, and piezoelectronic and optoelectronic devices due to its attractive physical and chemical properties. Recently, a solution-phase method has been used to synthesize ZnO crystals with diverse (from simple to hierarchical) nanostructures that is simple, of low cost, and scalable. This method requires template molecules to control the morphology of the ZnO crystals. In this paper, we describe the design and synthesis of two short peptides (RU-003,Ac-AIEKAXEIA-NH(2); RU-027, EAHVMHKVAPRPGGGAIEKAXEIA-NH(2); X = l-2-naphthylalanine) and the characterization of their self-assembled nanostructures. We also report their potential for ZnO mineralization and the alignment of ZnO nanoparticles along peptide nanostructures at room temperature. Interestingly, nonapeptide RU-003 predominantly formed a straight fibrous structure and induced the nucleation of ZnO at its surface, leading to an alignment of ZnO nanoparticles along a peptide nanofiber. This novel method holds promise for the room-temperature fabrication of ZnO catalysts with increased specific surface area, ZnO-gated transistors, and ZnO-based nanomaterials for optical applications.

  4. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    PubMed Central

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  5. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    SciTech Connect

    Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.; Grama, Ananth

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  6. ARYANA: Aligning Reads by Yet Another Approach

    PubMed Central

    2014-01-01

    Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881

  7. ARYANA: Aligning Reads by Yet Another Approach.

    PubMed

    Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi

    2014-01-01

    Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.

  8. A Bayesian approach to the alignment of mass spectra

    PubMed Central

    Kong, Xiaoxiao; Reilly, Cavan

    2009-01-01

    Motivation: The need to align spectra to correct for mass-to-charge experimental variation is a problem that arises in mass spectrometry (MS). Most of the MS-based proteomic data analysis methods involve a two-step approach, identify peaks first and then do the alignment and statistical inference on these identified peaks only. However, the peak identification step relies on prior information on the proteins of interest or a peak detection model, which are subject to error. Also numerous additional features such as peak shape and peak width are lost in simple peak detection, and these are informative for correcting mass variation in the alignment step. Results: Here, we present a novel Bayesian approach to align the complete spectra. The approach is based on a parametric model which assumes that the spectrum and alignment function are Gaussian processes, but the alignment function is monotone. We show how to use the expectation–maximization algorithm to find the posterior mode of the set of alignment functions and the mean spectrum for a patient population. After alignment, we conduct tests while controlling for error attributable to multiple comparisons on the level of the peaks identified from the absolute mean spectra difference of two patient populations. Contact: cavanr@biostat.umn.edu PMID:19819887

  9. Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes.

    PubMed

    Hamley, Ian W; Burholt, Samuel; Hutchinson, Jessica; Castelletto, Valeria; da Silva, Emerson Rodrigo; Alves, Wendel; Gutfreund, Philipp; Porcar, Lionel; Dattani, Rajeev; Hermida-Merino, Daniel; Newby, Gemma; Reza, Mehedi; Ruokolainen, Janne; Stasiak, Joanna

    2017-01-09

    The bola-amphiphilic arginine-capped peptide RFL4RF self-assembles into nanotubes in aqueous solution. The nanostructure and rheology are probed by in situ simultaneous rheology/small-angle scattering experiments including rheo-SAXS, rheo-SANS, and rheo-GISANS (SAXS: small-angle X-ray scattering, SANS: small-angle neutron scattering, GISANS: grazing incidence small-angle neutron scattering). Nematic alignment of peptide nanotubes under shear is observed at sufficiently high shear rates under steady shear in either Couette or cone-and-plate geometry. The extent of alignment increases with shear rate. A shear plateau is observed in a flow curve measured in the Couette geometry, indicating the presence of shear banding above the shear rate at which significant orientation is observed (0.1-1 s(-1)). The orientation under shear is transient and is lost as soon as shear is stopped. GISANS shows that alignment at the surface of a cone-and-plate cell develops at sufficiently high shear rates, very similar to that observed in the bulk using the Couette geometry. A small isotope effect (comparing H2O/D2O solvents) is noted in the CD spectra indicating increased interpeptide hydrogen bonding in D2O, although this does not influence nanotube self-assembly. These results provide new insights into the controlled alignment of peptide nanotubes for future applications.

  10. Intermolecular packing and alignment in an ordered beta-hairpin antimicrobial peptide aggregate from 2D solid-state NMR.

    PubMed

    Tang, Ming; Waring, Alan J; Hong, Mei

    2005-10-12

    The aggregation and packing of a membrane-disruptive beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), in the solid state are investigated to understand its oligomerization and hydrogen-bonding propensity. Incubation of PG-1 in phosphate buffer saline produced well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR line widths, chemical shifts, and electron microscopy. Two-dimensional 13C and 1H spin diffusion experiments using C-terminus strand and N-terminus strand labeled peptides indicate that the beta-hairpin molecules in these ordered aggregates are oriented parallel to each other with like strands lining the intermolecular interface. In comparison, disordered and lyophilized peptide samples are randomly packed with both parallel and antiparallel alignments. The PG-1 aggregates show significant immobilization of the Phe ring near the beta-turn, further supporting the structural ordering. The intermolecular packing of PG-1 found in the solid state is consistent with its oligomerization in lipid bilayers. This solid-state aggregation approach may be useful for determining the quaternary structure of peptides in general and for gaining insights into the oligomerization of antimicrobial peptides in lipid bilayers in particular.

  11. MANGO: a new approach to multiple sequence alignment.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2007-01-01

    Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.

  12. Classroom EFL Writing: The Alignment-Oriented Approach

    ERIC Educational Resources Information Center

    Haiyan, Miao; Rilong, Liu

    2016-01-01

    This paper outlines the alignment-oriented approach in classroom EFL writing. Based on a review of the characteristics of the written language and comparison between the product-focused approach and the process-focused approach, the paper proposes a practical classroom procedure as to how to teach EFL writing. A follow-up empirical study is…

  13. Connectivity independent protein-structure alignment: a hierarchical approach

    PubMed Central

    Kolbeck, Bjoern; May, Patrick; Schmidt-Goenner, Tobias; Steinke, Thomas; Knapp, Ernst-Walter

    2006-01-01

    Background Protein-structure alignment is a fundamental tool to study protein function, evolution and model building. In the last decade several methods for structure alignment were introduced, but most of them ignore that structurally similar proteins can share the same spatial arrangement of secondary structure elements (SSE) but differ in the underlying polypeptide chain connectivity (non-sequential SSE connectivity). Results We perform protein-structure alignment using a two-level hierarchical approach implemented in the program GANGSTA. On the first level, pair contacts and relative orientations between SSEs (i.e. α-helices and β-strands) are maximized with a genetic algorithm (GA). On the second level residue pair contacts from the best SSE alignments are optimized. We have tested the method on visually optimized structure alignments of protein pairs (pairwise mode) and for database scans. For a given protein structure, our method is able to detect significant structural similarity of functionally important folds with non-sequential SSE connectivity. The performance for structure alignments with strictly sequential SSE connectivity is comparable to that of other structure alignment methods. Conclusion As demonstrated for several applications, GANGSTA finds meaningful protein-structure alignments independent of the SSE connectivity. GANGSTA is able to detect structural similarity of protein folds that are assigned to different superfamilies but nevertheless possess similar structures and perform related functions, even if these proteins differ in SSE connectivity. PMID:17118190

  14. Aligning Collaborative and Culturally Responsive Evaluation Approaches

    ERIC Educational Resources Information Center

    Askew, Karyl; Beverly, Monifa Green; Jay, Michelle L.

    2012-01-01

    The authors, three African-American women trained as collaborative evaluators, offer a comparative analysis of collaborative evaluation (O'Sullivan, 2004) and culturally responsive evaluation approaches (Frierson, Hood, & Hughes, 2002; Kirkhart & Hopson, 2010). Collaborative evaluation techniques immerse evaluators in the cultural milieu…

  15. A two-stage approach to automatic face alignment

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Ai, Haizhou; Huang, Gaofeng

    2003-09-01

    Face alignment is very important in face recognition, modeling and synthesis. Many approaches have been developed for this purpose, such as ASM, AAM, DAM and TC-ASM. After a brief review of all those methods, it is pointed out that these approaches all require a manual initialization to the positions of the landmarks and are very sensitive to it, and despite of all those devoted works the outline of a human face remains a difficult task to be localized precisely. In this paper, a two-stage method to achieve frontal face alignment fully automatically is introduced. The first stage is landmarks' initialization called coarse face alignment. In this stage, after a face is detected by an Adaboost cascade face detector, we use Simple Direct Appearance Model (SDAM) to locate a few key points of human face from the texture according which all the initial landmarks are setup as the coarse alignment. The second stage is fine face alignment that uses a variant of AAM method in which shape variation is predicted from texture reconstruction error together with an embedded ASM refinement for the outline landmarks of the face to achieve the fine alignment. Experiments on a face database of 500 people show that this method is very effective for practical applications.

  16. Comparing two approaches for aligning representations of anatomy

    PubMed Central

    Zhang, Songmao; Mork, Peter; Bodenreider, Olivier; Bernstein, Philip A.

    2007-01-01

    Objective To analyze the comparison, through their results, of two distinct approaches applied to aligning two representations of anatomy. Materials Both approaches use a combination of lexical and structural techniques. In addition, the first approach takes advantage of domain knowledge, while the second approach treats alignment as a special case of schema matching. The same versions of FMA and GALEN were aligned by each approach. 2199 concept matches were obtained by both approaches. Methods and results For matches identified by one approach only (337 and 336 respectively), we analyzed the reasons that caused the other approach to fail. Conclusions The first approach could be improved by addressing partial lexical matches and identifying matches based solely on structural similarity. The second approach may be improved by taking into account synonyms in FMA and identifying semantic mismatches. However, only 33% of the possible one-to-one matches among anatomical concepts were identified by the two approaches together. New directions need to be explored in order to handle more complex matches. PMID:17250997

  17. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    SciTech Connect

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  18. Efficient approach to correct read alignment for pseudogene abundance estimates

    PubMed Central

    Ju, Chelsea J.-T.; Zhao, Zhuangtian; Wang, Wei

    2017-01-01

    RNA-Sequencing has been the leading technology to quantify expression of thousands genes simultaneously. The data analysis of an RNA-Seq experiment starts from aligning short reads to the reference genome/transcriptome or reconstructed transcriptome. However, current aligners lack the sensitivity to distinguish reads that come from homologous regions of an genome. One group of these homologies is the paralog pseudogenes. Pseudogenes arise from duplication of a set of protein coding genes, and have been considered as degraded paralogs in the genome due to their lost of functionality. Recent studies have provided evidence to support their novel regulatory roles in biological processes. With the growing interests in quantifying the expression level of pseudogenes at different tissues or cell lines, it is critical to have a sensitive method that can correctly align ambiguous reads and accurately estimate the expression level among homologous genes. Previously in PseudoLasso, we proposed a linear regression approach to learn read alignment behaviors, and to leverage this knowledge for abundance estimation and alignment correction. In this paper, we extend the work of PseudoLasso by grouping the homologous genomic regions into different communities using a community detection algorithm, followed by building a linear regression model separately for each community. The results show that this approach is able to retain the same accuracy as PseudoLasso. By breaking the genome into smaller homologous communities, the running time is improved from quadratic growth to linear with respect to the number of genes. PMID:27429446

  19. Extracting multiple structural alignments from pairwise alignments: a comparison of a rigorous and a heuristic approach.

    PubMed

    Sandelin, Erik

    2005-04-01

    Multiple structural alignments (MSTAs) provide position-specific information on the sequence variability allowed by protein folds. This information can be exploited to better understand the evolution of proteins and the physical chemistry of polypeptide folding. Most MSTA methods rely on a pre-computed library of pairwise alignments. This library will in general contain conflicting residue equivalences not all of which can be realized in the final MSTA. Hence to build a consistent MSTA, these methods have to select a conflict-free subset of equivalences. Using a dataset with 327 families from SCOP 1.63 we compare the ability of two different methods to select an optimal conflict-free subset of equivalences. One is an implementation of Reinert et al.'s integer linear programming formulation (ILP) of the maximum weight trace problem (Reinert et al., 1997, Proc. 1st Ann. Int. Conf. Comput. Mol. Biol. (RECOMB-97), ACM Press, New York). This ILP formulation is a rigorous approach but its complexity is difficult to predict. The other method is T-Coffee (Notredame et al., 2000) which uses a heuristic enhancement of the equivalence weights which allow it to use the speed and simplicity of the progressive alignment approach while still incorporating information of all alignments in each step of building the MSTA. We find that although the ILP formulation consistently selects a more optimal set of conflict-free equivalences, the differences are small and the quality of the resulting MSTAs are essentially the same for both methods. Given its speed and predictable complexity, our results show that T-Coffee is an attractive alternative for producing high-quality MSTAs.

  20. Lanthanide Chelates as Bilayer Alignment Tools in NMR Studies of Membrane-Associated Peptides

    NASA Astrophysics Data System (ADS)

    Prosser, R. S.; Bryant, H.; Bryant, R. G.; Vold, Regitze R.

    1999-12-01

    Theequimolar complex, consisting of the lipid-like, amphiphilic chelating agent 1,11-bis[distearylamino]-diethylenetriamine pentaacetic acid (DTPA-18) and Tm3+, is shown by deuterium (2H) NMR to be useful in aligning bicelle-like model membranes, consisting of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC). As shown previously (1996, R. S. Prosser et al., J. Am. Chem. Soc. 118, 269-270), in the absence of chelate, the lanthanide ions bind loosely with the lipid phosphate groups and confer the membrane with a sufficient positive magnetic anisotropy to result in parallel alignment (i.e., average bilayer normal along the field). Apparently, DTPA-18 sequesters the lanthanide ions and inserts into the phospholipid bilayer in such a manner that bilayer morphology is preserved over a wide temperature range (35-70°C). The inherent paramagnetic shifts and line broadening effects are illustrated by 2H NMR spectra of the membrane binding peptide, Leu-enkephalin (Lenk-d2, Tyr-(Gly-d2)-Gly-Phe-Leu-OH), in the presence of varying concentrations of Tm3+, and upon addition of DTPA-18. Two conclusions could be drawn from this study: (1) The addition of Tm3+ to the bicelle system is consistent with a conformational change in the surface associated peptide, and this effect is shown to be reversed by addition of the chelate, and (2) The paramagnetic shifts are shown to be significantly reduced by addition of chelate.

  1. A peptide-spectrum scoring system based on ion alignment, intensity, and pair probabilities.

    PubMed

    Risk, Brian A; Edwards, Nathan J; Giddings, Morgan C

    2013-09-06

    Peppy, the proteogenomic/proteomic search software, employs a novel method for assessing the match quality between an MS/MS spectrum and a theorized peptide sequence. The scoring system uses three score factors calculated with binomial probabilities: the probability that a fragment ion will randomly align with a peptide ion, the probability that the aligning ions will be selected from subsets of the most intense peaks, and the probability that the intensities of fragment ions identified as y-ions are greater than those of their counterpart b-ions. The scores produced by the method act as global confidence scores, which facilitate the accurate comparison of results and the estimation of false discovery rates. Peppy has been integrated into the meta-search engine PepArML to produce meaningful comparisons with Mascot, MSGF+, OMSSA, X!Tandem, k-Score and s-Score. For two of the four data sets examined with the PepArML analysis, Peppy exceeded the accuracy performance of the other scoring systems. Peppy is available for download at http://geneffects.com/peppy .

  2. An Approach to Object Recognition: Aligning Pictorial Descriptions.

    DTIC Science & Technology

    1986-12-01

    PERFORMING 0RGANIZATION NAMIE ANDORS IS551. PROGRAM ELEMENT. PROJECT. TASK Artificial Inteligence Laboratory AREKA A WORK UNIT NUMBERS ( 545 Technology... ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 931 December, 1986 AN APPROACH TO OBJECT RECOGNITION: ALIGNING PICTORIAL DESCRIPTIONS Shimon Ullman...within the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Support for the A.I. Laboratory’s artificial intelligence

  3. Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

    PubMed Central

    Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2012-01-01

    Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is

  4. Phylo: a citizen science approach for improving multiple sequence alignment.

    PubMed

    Kawrykow, Alexander; Roumanis, Gary; Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2012-01-01

    Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. We introduce Phylo, a human-based computing framework applying "crowd sourcing" techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of "human-brain peta-flops" of computation that are spent every day playing games. Phylo is available at: http://phylo.cs.mcgill.ca.

  5. A novel approach to multiple sequence alignment using hadoop data grids.

    PubMed

    Sudha Sadasivam, G; Baktavatchalam, G

    2010-01-01

    Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.

  6. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods.

    PubMed

    Wang, Ping; Hu, Lele; Liu, Guiyou; Jiang, Nan; Chen, Xiaoyun; Xu, Jianyong; Zheng, Wen; Li, Li; Tan, Ming; Chen, Zugen; Song, Hui; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-04-13

    Antimicrobial peptides (AMPs) represent a class of natural peptides that form a part of the innate immune system, and this kind of 'nature's antibiotics' is quite promising for solving the problem of increasing antibiotic resistance. In view of this, it is highly desired to develop an effective computational method for accurately predicting novel AMPs because it can provide us with more candidates and useful insights for drug design. In this study, a new method for predicting AMPs was implemented by integrating the sequence alignment method and the feature selection method. It was observed that, the overall jackknife success rate by the new predictor on a newly constructed benchmark dataset was over 80.23%, and the Mathews correlation coefficient is 0.73, indicating a good prediction. Moreover, it is indicated by an in-depth feature analysis that the results are quite consistent with the previously known knowledge that some amino acids are preferential in AMPs and that these amino acids do play an important role for the antimicrobial activity. For the convenience of most experimental scientists who want to use the prediction method without the interest to follow the mathematical details, a user-friendly web-server is provided at http://amp.biosino.org/.

  7. Protein and Peptide Drug Delivery: Oral Approaches

    PubMed Central

    Shaji, Jessy; Patole, V.

    2008-01-01

    Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery. PMID:20046732

  8. Strategic approaches to optimizing peptide ADME properties.

    PubMed

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability.

  9. Computational approach for designing tumor homing peptides

    PubMed Central

    Sharma, Arun; Kapoor, Pallavi; Gautam, Ankur; Chaudhary, Kumardeep; Kumar, Rahul; Chauhan, Jagat Singh; Tyagi, Atul; Raghava, Gajendra P. S.

    2013-01-01

    Tumor homing peptides are small peptides that home specifically to tumor and tumor associated microenvironment i.e. tumor vasculature, after systemic delivery. Keeping in mind the huge therapeutic importance of these peptides, we have made an attempt to analyze and predict tumor homing peptides. It was observed that certain types of residues are preferred in tumor homing peptides. Therefore, we developed support vector machine based models for predicting tumor homing peptides using amino acid composition and binary profiles of peptides. Amino acid composition, dipeptide composition and binary profile-based models achieved a maximum accuracy of 86.56%, 82.03%, and 84.19% respectively. These methods have been implemented in a user-friendly web server, TumorHPD. We anticipate that this method will be helpful to design novel tumor homing peptides. TumorHPD web server is freely accessible at http://crdd.osdd.net/raghava/tumorhpd/. PMID:23558316

  10. Pin-Align: a new dynamic programming approach to align protein-protein interaction networks.

    PubMed

    Amir-Ghiasvand, Farid; Nowzari-Dalini, Abbas; Momenzadeh, Vida

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein interaction networks from IntAct, DIP, and the Stanford Network Database and the results are compared with other well-known algorithms. It is shown that Pin-Align has higher sensitivity and specificity in terms of KEGG Ortholog groups.

  11. A self-aligned approach to printed circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Frisbie, C. Daniel

    2016-09-01

    Printed electronics has a number of significant challenges, including spatial resolution, pattern registration, and printed circuit performance. In this talk, I will describe a multi-pronged approach to address these challenges that may bring roll-to-roll printed electronics closer to reality. To begin, I will show that innovations in materials allow the fabrication of printable, low voltage thin film transistors (TFTs), the key building blocks of flexible circuits, and that these can be incorporated into simple printed circuit demonstrations involving two dozen TFTs and an equivalent number of printed resistors and capacitors. The second half of the talk will describe a novel liquid-based fabrication approach that we term SCALE, or Self-Aligned Capillarity-Assisted Lithography for Electronics. The SCALE process employs a combination of digital printing and in-substrate capillary flow to produce self-aligned devices with feature sizes that are currently as small as 1 micron. The talk will finish with a discussion of the new opportunities in flexible microelectronics afforded by liquid-based processing.

  12. The cortex-based alignment approach to TMS coil positioning.

    PubMed

    Duecker, Felix; Frost, Martin A; de Graaf, Tom A; Graewe, Britta; Jacobs, Christianne; Goebel, Rainer; Sack, Alexander T

    2014-10-01

    TMS allows noninvasive manipulation of brain activity in healthy participants and patients. The effectiveness of TMS experiments critically depends on precise TMS coil positioning, which is best for most brain areas when a frameless stereotactic system is used to target activation foci based on individual fMRI data. From a purely scientific perspective, individual fMRI-guided TMS is thus the method of choice to ensure optimal TMS efficiency. Yet, from a more practical perspective, such individual functional data are not always available, and therefore alternative TMS coil positioning approaches are often applied, for example, based on functional group data reported in Talairach coordinates. We here propose a novel method for TMS coil positioning that is based on functional group data, yet only requires individual anatomical data. We used cortex-based alignment (CBA) to transform individual anatomical data to an atlas brain that includes probabilistic group maps of two functional regions (FEF and hMT+/V5). Then, these functional group maps were back-transformed to the individual brain anatomy, preserving functional-anatomical correspondence. As a proof of principle, the resulting CBA-based functional targets in individual brain space were compared with individual FEF and hMT+/V5 hotspots as conventionally localized with individual fMRI data and with targets based on Talairach coordinates as commonly done in TMS research in case only individual anatomical data are available. The CBA-based approach significantly improved localization of functional brain areas compared with traditional Talairach-based targeting. Given the widespread availability of CBA schemes and preexisting functional group data, the proposed procedure is easy to implement and at no additional measurement costs. However, the accuracy of individual fMRI-guided TMS remains unparalleled, and the CBA-based approach should only be the method of choice when individual functional data cannot be obtained or

  13. Manufacturing and alignment tolerance analysis through Montecarlo approach for PLATO

    NASA Astrophysics Data System (ADS)

    Magrin, Demetrio; Ragazzoni, Roberto; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Greggio, Davide; Gullieuszik, Marco; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Borsa, Francesco; Ghigo, Mauro; Spiga, Daniele; Bandy, Timothy; Brändli, Mathias; Benz, Willy; Bruno, Giordano; De Roche, Thierry; Piazza, Daniele; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Mogulsky, Valery; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike

    2016-07-01

    The project PLAnetary Transits and Oscillations of stars (PLATO) is one of the selected medium class (M class) missions in the framework of the ESA Cosmic Vision 2015-2025 program. The main scientific goal of PLATO is the discovery and study of extrasolar planetary systems by means of planetary transits detection. According to the current baseline, the scientific payload consists of 34 all refractive telescopes having small aperture (120mm) and wide field of view (diameter greater than 37 degrees) observing over 0.5-1 micron wavelength band. The telescopes are mounted on a common optical bench and are divided in four families of eight telescopes with an overlapping line-of-sight in order to maximize the science return. Remaining two telescopes will be dedicated to support on-board star-tracking system and will be specialized on two different photometric bands for science purposes. The performance requirement, adopted as merit function during the analysis, is specified as 90% enclosed energy contained in a square having size 2 pixels over the whole field of view with a depth of focus of +/-20 micron. Given the complexity of the system, we have followed a Montecarlo analysis approach for manufacturing and alignment tolerances. We will describe here the tolerance method and the preliminary results, speculating on the assumed risks and expected performances.

  14. Large aperture freeform VIS telescope with smart alignment approach

    NASA Astrophysics Data System (ADS)

    Beier, Matthias; Fuhlrott, Wilko; Hartung, Johannes; Holota, Wolfgang; Gebhardt, Andreas; Risse, Stefan

    2016-07-01

    The development of smart alignment and integration strategies for imaging mirror systems to be used within astronomical instrumentation are especially important with regard to the increasing impact of non-rotationally symmetric optics. In the present work, well-known assembly approaches preferentially applied in the course of infrared instrumentation are transferred to visible applications and are verified during the integration of an anamorphic imaging telescope breadboard. The four mirror imaging system is based on a modular concept using mechanically fixed arrangements of each two freeform surfaces, generated by servo assisted diamond machining and corrected using Magnetorheological Finishing as a figuring and smoothing step. Surface testing include optical CGH interferometry as well as tactile profilometry and is conducted with respect to diamond milled fiducials at the mirror bodies. A strict compliance of surface referencing during all significant fabrication steps allow for an easy integration and direct measurement of the system's wave aberration after initial assembly. The achievable imaging performance, as well as influences of the tight tolerance budget and mid-spatial frequency errors, are discussed and experimentally evaluated.

  15. Spliced alignment: A new approach to gene recognition

    SciTech Connect

    Gelfand, M.S.; Mironov, A.A.; Pevzner, P.A.

    1996-12-31

    Gene structure prediction is one of the most important problems in computational molecular biology. Previous attempts to solve this problem were based on statistics and artificial intelligence and, surprisingly enough, applications of theoretical computer science methods for gene recognition were almost unexplored. Recent advances in large-scale cDNA sequencing open a way towards a new combinatorial approach to gene recognition. This paper describes a spliced alignment algorithm and a software tool which explores all possible exon assemblies in polynomial time and finds the multi-exon structure with the best fit to a related protein. Unlike other existing methods, the algorithm successfully recognizes genes even in the case of short exons or exons with unusual codon usage; the authors also report correct assemblies for genes with more than 10 exons. On a test sample of human genes with known mammalian relatives the average correlation between the predicted and the actual genes was 99%, which is a very high accuracy as compared with other existing methods. The algorithm correctly reconstructed 87% of genes and the rare discrepancies between the predicted and real exon-intron structures were caused by either (i) extremely short (less than 5 amino acids) initial or terminal exons, or (ii) alternative splicing, or (iii) errors in database feature tables. 38 refs., 3 tabs.

  16. Recent developments in protein and peptide parenteral delivery approaches

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K

    2014-01-01

    Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration. PMID:24592957

  17. Projection approach to complexity reduction in tomographic alignment of extremely large telescopes.

    PubMed

    Piatrou, Piotr; Chanan, Gary

    2012-02-20

    We describe a complexity reduction approach intended to solve the tomographic alignment problem for the Thirty Meter Telescope by means of its alignment and phasing system (APS) with little loss of information. This approach is computationally efficient enough to perform detailed Monte-Carlo simulations of the APS on a standard PC. We present sample simulations to model error propagation through the system and to build a preliminary APS alignment error budget.

  18. Aligning graphs and finding substructures by a cavity approach

    NASA Astrophysics Data System (ADS)

    Bradde, S.; Braunstein, A.; Mahmoudi, H.; Tria, F.; Weigt, M.; Zecchina, R.

    2010-02-01

    We introduce a new distributed algorithm for aligning graphs or finding substructures within a given graph. It is based on the cavity method and is used to study the maximum-clique and the graph-alignment problems in random graphs. The algorithm allows to analyze large graphs and may find applications in fields such as computational biology. As a proof of concept we use our algorithm to align the similarity graphs of two interacting protein families involved in bacterial signal transduction, and to predict actually interacting protein partners between these families.

  19. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  20. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  1. Dark Field Technology - A Practical Approach To Local Alignment

    NASA Astrophysics Data System (ADS)

    Beaulieu, David R.; Hellebrekers, Paul P.

    1987-01-01

    A fully automated direct reticle reference alignment system for use in step and repeat camera systems is described. The technique, first outlined by Janus S. Wilczynski, ("Optical Step and Repeat Camera with Dark Field Alignment", J. Vac. Technol., 16(6), Nov./Dec. 1979), has been implemented on GCA Corporation's DSW Wafer Stepper. Results from various process levels covering the typical CMOS process have shown that better than ±0.2μm alignment accuracy can be obtained with minimal process sensitivity. The technique employs fixed illumination and microscope optics to achieve excellent registration stability and maintenance-free operation. Latent image techniques can be exploited for intra-field, grid and focus characterization.

  2. A Novel Approach to Multiple Sequence Alignment Using Multiobjective Evolutionary Algorithm Based on Decomposition.

    PubMed

    Zhu, Huazheng; He, Zhongshi; Jia, Yuanyuan

    2016-03-01

    Multiple sequence alignment (MSA) is a fundamental and key step for implementing other tasks in bioinformatics, such as phylogenetic analyses, identification of conserved motifs and domains, structure prediction, etc. Despite the fact that there are many methods to implement MSA, biologically perfect alignment approaches are not found hitherto. This paper proposes a novel idea to perform MSA, where MSA is treated as a multiobjective optimization problem. A famous multiobjective evolutionary algorithm framework based on decomposition is applied for solving MSA, named MOMSA. In the MOMSA algorithm, we develop a new population initialization method and a novel mutation operator. We compare the performance of MOMSA with several alignment methods based on evolutionary algorithms, including VDGA, GAPAM, and IMSA, and also with state-of-the-art progressive alignment approaches, such as MSAprobs, Probalign, MAFFT, Procons, Clustal omega, T-Coffee, Kalign2, MUSCLE, FSA, Dialign, PRANK, and CLUSTALW. These alignment algorithms are tested on benchmark datasets BAliBASE 2.0 and BAliBASE 3.0. Experimental results show that MOMSA can obtain the significantly better alignments than VDGA, GAPAM on the most of test cases by statistical analyses, produce better alignments than IMSA in terms of TC scores, and also indicate that MOMSA is comparable with the leading progressive alignment approaches in terms of quality of alignments.

  3. Early engineering approaches to improve peptide developability and manufacturability.

    PubMed

    Furman, Jennifer L; Chiu, Mark; Hunter, Michael J

    2015-01-01

    Downstream success in Pharmaceutical Development requires thoughtful molecule design early in the lifetime of any potential therapeutic. Most therapeutic monoclonal antibodies are quite similar with respect to their developability properties. However, the properties of therapeutic peptides tend to be as diverse as the molecules themselves. Analysis of the primary sequence reveals sites of potential adverse posttranslational modifications including asparagine deamidation, aspartic acid isomerization, methionine, tryptophan, and cysteine oxidation and, potentially, chemical and proteolytic degradation liabilities that can impact the developability and manufacturability of a potential therapeutic peptide. Assessing these liabilities, both biophysically and functionally, early in a molecule's lifetime can drive a more effective path forward in the drug discovery process. In addition to these potential liabilities, more complex peptides that contain multiple disulfide bonds can pose particular challenges with respect to production and manufacturability. Approaches to reducing the disulfide bond complexity of these peptides are often explored with mixed success. Proteolytic degradation is a major contributor to decreased half-life and efficacy. Addressing this aspect of peptide stability early in the discovery process increases downstream success. We will address aspects of peptide sequence analysis, molecule complexity, developability analysis, and manufacturing routes that drive the decision making processes during peptide therapeutic development.

  4. Impact of peptide micropatterning on endothelial cell actin remodeling for cell alignment under shear stress.

    PubMed

    Chollet, Céline; Bareille, Reine; Rémy, Murielle; Guignandon, Alain; Bordenave, Laurence; Laroche, Gaetan; Durrieu, Marie-Christine

    2012-12-01

    HSVEC behavior under physiological shear stress in vitro is investigated on PET surfaces micropatterned with both RGDS and WQPPRARI peptides. This technique allows (i) creating geometries on surface to guide cell orientation under shear stress and (ii) controlling surface chemical composition in order to modulate cell behavior. Under shear stress, endothelial cells adhere on patterned PET surfaces and present a more rapid orientation in flow direction in comparison to cells cultured on homogeneous surfaces. Micropatterned surfaces presenting a large surface area ratio of RGDS/WQPPRARI peptides induce fibrillar adhesion, while surfaces presenting an equal RGDS/WQPPRARI peptides surface area ratio preferentially induce focal adhesion.

  5. ACE-linked peptides: a convergent approach for peptide macrocyclization and labeling

    PubMed Central

    Assem, Naila; Ferreira, David J.; Wolan, Dennis W.

    2016-01-01

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. For example, significant efforts have been developed to stabilize α-helical structures, through tethering proximal side chains. While these approaches successfully mimic protein α-helices, the structural requirements of the tether typically prevent further synthetic modifications to the non-binding face of the helix. Here we demonstrate the utility of dichloroacetone (DCA) to enhance helical secondary structure when introduced between peptide nucleophiles, such as thiols, to yield an acetone (ACE)-linked bridge. In addition to stabilizing helical structures, the ketone moiety embedded into the linker can be modified using oxime ligation with diverse molecular tags. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of ACE-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that ACE-linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. PMID:26096515

  6. Charge transport in vertically aligned, self-assembled peptide nanotube junctions

    NASA Astrophysics Data System (ADS)

    Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit

    2012-01-01

    The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å-1, which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.

  7. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.

    PubMed

    Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit

    2012-01-21

    The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å(-1), which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.

  8. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach.

    PubMed

    Paskiabi, Farnoush Asghari; Mirzaei, Esmaeil; Amani, Amir; Shokrgozar, Mohammad Ali; Saber, Reza; Faridi-Majidi, Reza

    2015-11-01

    This paper proposes an artificial neural networks approach to finding the effects of electrospinning parameters on alignment of poly(ɛ-caprolactone)/poly(glycolic acid) blend nanofibers. Four electrospinning parameters, namely total polymer concentration, working distance, drum speed and applied voltage were considered as input and the standard deviation of the angles of nanofibers, introducing fibers alignments, as the output of the model. The results demonstrated that drum speed and applied voltage are two critical factors influencing nanofibers alignment, however their effect are entirely interdependent. Their effects also are not independent of other electrospinning parameters. In obtaining aligned electrospun nanofibers, the concentration and working distance can also be effective. In vitro cell culture study on random and aligned nanofibers showed directional growth of cells on aligned fibers.

  9. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach.

    PubMed

    Jüse, Ulrike; Arntzen, Magnus; Højrup, Peter; Fleckenstein, Burkhard; Sollid, Ludvig M

    2011-04-01

    Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount of HLA molecules, giving a selective force in the binding. The peptide libraries can be designed so that the sequence length, the alignment of binding registers, the numbers and composition of random positions are controlled, and also modified amino acids can be included. Selected library peptides bound to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We used two dodecamer and two decamer peptide libraries and HLA-DQ2.5 to test possibilities and limits of this method. The selected sequences which we identified in the fraction eluted from HLA-DQ2.5 showed a higher average of their predicted binding affinity values compared to the original peptide library. The eluted sequences fit very well with the previously described HLA-DQ2.5 peptide binding motif. This novel method, limited by library complexity and sensitivity of mass spectrometry, allows the analysis of several thousand synthetic sequences concomitantly in a simple water soluble format.

  10. CW Dipolar Broadening EPR Spectroscopy and Mechanically Aligned Bilayers Used to Measure Distance and Relative Orientation between Two TOAC Spin Labels on an Antimicrobial Peptide

    PubMed Central

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-01-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single-and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer. PMID:25462949

  11. CW dipolar broadening EPR spectroscopy and mechanically aligned bilayers used to measure distance and relative orientation between two TOAC spin labels on an antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-12-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.

  12. Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides

    PubMed Central

    Kim, Yun-Gon; Lone, Anna Mari; Nolte, Whitney M.; Saghatelian, Alan

    2012-01-01

    Peptide hormones and neuropeptides have important roles in physiology and therefore the regulation of these bioactive peptides is of great interest. In some cases proteolysis controls the concentrations and signaling of bioactive peptides, and the peptidases that mediate this biochemistry have proven to be extremely successful drug targets. Due to the lack of any general method to identify these peptidases, however, the role of proteolysis in the regulation of most neuropeptides and peptide hormones is unknown. This limitation prompted us to develop an advanced peptidomics-based strategy to identify the peptidases responsible for the proteolysis of significant bioactive peptides. The application of this approach to calcitonin gene-related peptide (CGRP), a neuropeptide associated with blood pressure and migraine, revealed the endogenous CGRP cleavage sites. This information was then used to biochemically purify the peptidase capable of proteolysis of CGRP at those cleavage sites, which led to the identification of insulin-degrading enzyme (IDE) as a candidate CGRP-degrading enzyme. CGRP had not been identified as an IDE substrate before and we tested the physiological relevance of this interaction by quantitative measurements of CGRP using IDE null (IDE−/−) mice. In the absence of IDE, full-length CGRP levels are elevated in vivo, confirming IDE as an endogenous CGRP-degrading enzyme. By linking CGRP and IDE, this strategy uncovers a previously unknown pathway for CGRP regulation and characterizes an additional role for IDE. More generally, this work suggests that this may be an effective general strategy for characterizing these pathways and peptidases moving forward. PMID:22586115

  13. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    NASA Astrophysics Data System (ADS)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  14. Natriuretic peptides: degradation, circulating forms, dosages and new therapeutic approaches.

    PubMed

    Favresse, Julien; Gruson, Damien

    2017-06-01

    Testing for natriuretic peptides (BNP, NT-proBNP or MR-proANP) is recommended by the European Society of Cardiology (ESC) since 2005 for the exclusion diagnosis of acute and chronic heart failure because of very high predictive values. Natriuretic peptides are produced by the heart in response to high transmural pressure and/or myocardial ischemia. These peptides circulate in blood of both healthy subjects and heart failure patients. Mass spectrometry methods allowed identifying a collection of circulating and degraded forms of BNP, NT-proBNP and proBNP. Glycosylated forms of NT-proBNP and proBNP have also been identified. Current immunoassays are lacking analytical specificity due to high cross-reactivities between circulating forms. Moreover, glycosylation has been found to interfere with the capacity of antibodies to bind correctly to analytes. These elements have been taken into account to propose strategies for the development of new standardized and improved immunoassays. More recently, the better understanding of the degradation pathways of natriuretic peptides allowed the raise of new therapeutic approaches for heart failure patients. All these elements are detailed in this review.

  15. Active or passive fiber-chip-alignment: approaches to efficient solutions

    NASA Astrophysics Data System (ADS)

    Böttger, Gunnar; Schröder, Henning; Jordan, Rafael

    2013-02-01

    High precision approaches for active and passive alignment and assembly on optoelectronic micro benches have been realized at Fraunhofer IZM for various material systems and different scales. The alignment and reliable mounting of optical subcomponents such as semiconductor laser and photo diodes, micro lenses and micro prisms require far higher mounting and alignment accuracies than for micro-electronic parts. When connecting from silicon photonics chip level to single mode optical fibers, even higher precisions are called for (typically < 100 nm). Alignment and assembly commonly are performed on specialized lab equipment which needs manual operation, consuming a lot of time, with less possibilities for automation. To introduce a higher degree of automatized production, like it has become standard in large volume electronics, one can choose either active or passive alignment processes - or possibly a combination of both. In this article we will present examples of micro-optic benches and optical interconnections that include alignment structures for passive alignment - where the accuracy lies in the components to be assembled, and mounting takes place on a less accurate machine ("fit into place"). But there is also a lot of progress on optical "pick, measure and place" machines that realize a flexible and fully automated active alignment using vision systems and activated components of less cost, with machine and process robustness for usability in industrial environments. As connecting elements, passive optical components like optical fibers are commonly used. These fragile and flexible elements pose additional challenges in secure picking, placing and fixing, at long lengths vs. small diameters. A very recent and specific approach to use more robust plastic optical fibers (POF) for very short and cost effective optical interconnects by means of wire bonding machines will be presented.

  16. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  17. Regeneration of the Cavernous Nerve by Sonic Hedgehog Using Aligned Peptide Amphiphile Nanofibers

    PubMed Central

    Angeloni, Nicholas L.; Bond, Christopher W.; Tang, Yi; Harrington, Daniel A.; Zhang, Shuming; Stupp, Samuel I.; McKenna, Kevin E.; Podlasek, Carol A.

    2010-01-01

    Efforts to regenerate the cavernous nerve (CN), which provides innervation to the penis, have been minimally successful, with little translation into improved clinical outcomes. We propose that, Sonic hedgehog (SHH), is critical to maintain CN integrity, and that SHH delivered to the CN by novel peptide amphiphile (PA) nanofibers, will promote CN regeneration, restore physiological function, and prevent penile morphology changes that result in erectile dysfunction (ED). We performed localization studies, inhibition of SHH signaling in the CN, and treatment of crushed CNs with SHH protein via linear PA gels, which are an innovative extended release method of delivery. Morphological, functional and molecular analysis revealed that SHH protein is essential to maintain CN architecture, and that SHH treatment promoted CN regeneration, suppressed penile apoptosis and caused a 58% improvement in erectile function in less than half the time reported in the literature. These studies show that SHH has substantial clinical application to regenerate the CN in prostatectomy and diabetic patients, that this methodology has broad application to regenerate any peripheral nerve that SHH is necessary for maintenance of its structure, and that this nanotechnology method of protein delivery may have wide spread application as an in vivo delivery tool in many organs. PMID:20971506

  18. Optical and x-ray alignment approaches for off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  19. RBT-L: a location based approach for solving the Multiple Sequence Alignment problem.

    PubMed

    Taheri, Javid; Zomaya, Albert Y

    2010-01-01

    This paper presents a novel approach to solve the Multiple Sequence Alignment (MSA) problem. The Rubber Band Technique: Location Base (RBT-L) introduced in this paper, is inspired by the elastic behaviour of a Rubber Band (RB) on a plate with poles. RBT-L is an iterative optimisation algorithm designed and implemented to find the optimal alignment for a set of input protein sequences. RBT-L is tested with one of the well-known benchmarks (BALiBASE 2.0) in this field. The obtained results show the superiority of the proposed technique even in the case of formidable sequences.

  20. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.

    2011-02-01

    The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

  1. Energy level alignment at hybridized organic-metal interfaces from a GW projection approach

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying

    Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.

  2. A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery

    PubMed Central

    Yen, Ian E. H.; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems. PMID:27559428

  3. Multivariate Analysis Approach to the Serum Peptide Profile of Morbidly Obese Patients

    PubMed Central

    Agostini, M.; Bedin, C.; Enzo, M.V.; Molin, L.; Traldi, P.; D'Angelo, E.; Maschietto, E.; Serraglia, R.; Ragazzi, E.; Prevedello, L.; Foletto, M.; Nitti, D.

    2013-01-01

    Background: Obesity is currently epidemic in many countries worldwide and is strongly related to diabetes and cardiovascular disease. Mass spectrometry, in particular matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) is currently used for detecting different pattern of expressed protein. This study investigated the differences in low molecular weight (LMW) peptide profiles between obese and normal-weight subjects in combination with multivariate statistical analysis. Materials: Serum samples of 60 obese patients and 10 healthy subjects were treated by cut-off membrane (30000 Da) to remove the most abundant proteins. The filtrates containing the LMW protein/peptides were analyzed by MALDI-TOF mass spectrometry. Dataset was elaborated to align and normalize the spectra. We performed cluster analysis and principal component analysis to detect some ionic species that could characterize and classify the subject groups. Results: We observed a down-expression of ionic species at m/z 655.94 and an over-expression of species at m/z 1518.78, 1536.77, 1537.78 and 1537.81 in obese patients. Furthermore we found some ionic species that can distinguish obese patients with diabetes from those with normal glucose level. Conclusion: Serum peptide profile of LMW associate with multivariate statistical approach was revealed as a promising tool to discriminate and characterize obese patients and it was able to stratify them in relation to comorbidity that usually are associated with this disease. Further research involving a larger sample will be required to validate these findings. PMID:23396294

  4. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins

    PubMed Central

    Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai HS.; Mitra, Ashim K

    2013-01-01

    Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1–2%). An ideal oral drug delivery system should be capable of a) maintaining the integrity of protein molecules until it reaches the site of absorption, b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules. PMID:23428883

  5. Approaches for enhancing oral bioavailability of peptides and proteins.

    PubMed

    Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai H S; Mitra, Ashim K

    2013-04-15

    Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.

  6. Peptidomic approaches to the identification and characterization of functional peptides in Hydra.

    PubMed

    Takahashi, Toshio; Fujisawa, Toshitaka

    2010-01-01

    Little is known about peptides that control developmental processes such as cell differentiation and pattern formation in metazoans. The cnidarian Hydra is one of the most basal metazoans and is a key model system for studying the peptides involved in these processes. We developed a novel peptidomic approach to the isolation and identification of functional signalling peptides from Hydra (the Hydra peptide project). First, peptides extracted from the tissue of Hydra magnipapillata are purified to homogeneity using high-performance liquid chromatography (HPLC). The isolated peptides are then tested for their ability to alter gene expression in Hydra using differential display-PCR (DD-PCR). If gene expression is altered, the peptide is considered as a putative signalling peptide and is subjected to amino acid sequencing. Following the sequencing, synthetic peptides are produced and compared to their native counterparts by HPLC and/or mass spectrometry (MS). The synthetic peptides, which are available in larger quantities than their native analogues, are then tested in a variety of biological assays in Hydra to determine their functions. Here we present our strategies and a systematic approach to the identification and characterization of novel signalling peptides in Hydra. We also describe our high-throughput reverse-phase nano-flow liquid chromatography matrix-assisted laser desorption ionization time-of-flight mass spectrometry (LC-MALDI-TOF-MS/MS) approach, which was proved to be a powerful tool in the discovery of novel signalling peptides.

  7. A data-mining approach for multiple structural alignment of proteins.

    PubMed

    Siu, Wing-Yan; Mamoulis, Nikos; Yiu, Siu-Ming; Chan, Ho-Leung

    2010-02-28

    Comparing the 3D structures of proteins is an important but computationally hard problem in bioinformatics. In this paper, we propose studying the problem when much less information or assumptions are available. We model the structural alignment of proteins as a combinatorial problem. In the problem, each protein is simply a set of points in the 3D space, without sequence order information, and the objective is to discover all large enough alignments for any subset of the input. We propose a data-mining approach for this problem. We first perform geometric hashing of the structures such that points with similar locations in the 3D space are hashed into the same bin in the hash table. The novelty is that we consider each bin as a coincidence group and mine for frequent patterns, which is a well-studied technique in data mining. We observe that these frequent patterns are already potentially large alignments. Then a simple heuristic is used to extend the alignments if possible. We implemented the algorithm and tested it using real protein structures. The results were compared with existing tools. They showed that the algorithm is capable of finding conserved substructures that do not preserve sequence order, especially those existing in protein interfaces. The algorithm can also identify conserved substructures of functionally similar structures within a mixture with dissimilar ones. The running time of the program was smaller or comparable to that of the existing tools.

  8. Metabarcoding of marine nematodes – evaluation of similarity scores used in alignment-based taxonomy assignment approach

    PubMed Central

    2016-01-01

    Abstract Background The diversity of organisms is being commonly accessed using metabarcoding of environmental samples. Reliable identification of barcodes is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task, including alignment-based approach that uses Basic Local Alignment Search Tool (BLAST) algorithm. This publication evaluates the variability of 5' end of 18S rRNA barcoding region as expressed by similarity scores (alignment score and identity score) produced by BLAST, and its impact on barcode identification to family-level taxonomic categories. New information In alignment-based taxonomy assignment approach, reliable identification of anonymous OTUs to supraspecific taxa depends on the correct application of similarity thresholds. Since various taxa show different level of genetic variation, practical application of alignment-based approach requires the determination and use of taxon-specific similarity thresholds. PMID:27932928

  9. A fully automated flow-based approach for accelerated peptide synthesis.

    PubMed

    Mijalis, Alexander J; Thomas, Dale A; Simon, Mark D; Adamo, Andrea; Beaumont, Ryan; Jensen, Klavs F; Pentelute, Bradley L

    2017-05-01

    Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.

  10. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  11. Toward a view-oriented approach for aligning RDF-based biomedical repositories.

    PubMed

    Anguita, A; García-Remesal, M; de la Iglesia, D; Graf, N; Maojo, V

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". The need for complementary access to multiple RDF databases has fostered new lines of research, but also entailed new challenges due to data representation disparities. While several approaches for RDF-based database integration have been proposed, those focused on schema alignment have become the most widely adopted. All state-of-the-art solutions for aligning RDF-based sources resort to a simple technique inherited from legacy relational database integration methods. This technique - known as element-to-element (e2e) mappings - is based on establishing 1:1 mappings between single primitive elements - e.g. concepts, attributes, relationships, etc. - belonging to the source and target schemas. However, due to the intrinsic nature of RDF - a representation language based on defining tuples < subject, predicate, object > -, one may find RDF elements whose semantics vary dramatically when combined into a view involving other RDF elements - i.e. they depend on their context. The latter cannot be adequately represented in the target schema by resorting to the traditional e2e approach. These approaches fail to properly address this issue without explicitly modifying the target ontology, thus lacking the required expressiveness for properly reflecting the intended semantics in the alignment information. To enhance existing RDF schema alignment techniques by providing a mechanism to properly represent elements with context-dependent semantics, thus enabling users to perform more expressive alignments, including scenarios that cannot be adequately addressed by the existing approaches. Instead of establishing 1:1 correspondences between single primitive elements of the schemas, we propose adopting a view-based approach. The latter is targeted at establishing mapping relationships between RDF subgraphs - that can be regarded as the

  12. Different approaches toward an automatic structural alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard; Mietzner, Thomas; Weber, Frank

    1994-12-01

    A relative comparison of the binding properties of different drug molecules requires their mutual superposition with respect to various alignment criteria. In order to validate the results of different alignment methods, the crystallographically observed binding geometries of ligands in the pocket of a common protein receptor have been used. The alignment function in the program SEAL that calculates the mutual superposition of molecules has been optimized with respect to these references. Across the reference data set, alignments could be produced that show mean rms deviations of approximately 1 Å compared to the experimental situation. For structures with obvious skeletal similarities a multiple-flexible fit, linking common pharmacophoric groups by virtual springs, has been incorporated into the molecular mechanics program MOMO. In order to combine conformational searching with comparative alignments, the optimized SEAL approach has been applied to sets of conformers generated by MIMUMBA, a program for conformational analysis. Multiple-flexible fits have been calculated for inhibitors of ergosterol biosynthesis. Sets of different thrombin and thermolysin inhibitors have been conformationally analyzed and subsequently aligned by a combined MIMUMBA/SEAL approach. Since for these examples crystallographic data on their mutual alignment are available, an objective assessment of the computed results could be performed. Among the generated conformers, one geometry could be selected for the thrombin and thermolysin inhibitors that approached reasonably well the experimentally observed alignment.

  13. The AAG's ALIGNED Toolkit: A Place-based Approach to Fostering Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Rodrigue, C. M.

    2012-12-01

    Where do we look to attract a more diverse group of students to academic programs in geography and the geosciences? What do we do once we find them? This presentation introduces the ALIGNED Toolkit developed by the Association of American Geographers, with funding from the NSF's Opportunities to Enhance Diversity in the Geosciences (OEDG) Program. ALIGNED (Addressing Locally-tailored Information Infrastructure and Geoscience Needs for Enhancing Diversity) seeks to align the needs of university departments and underrepresented students by drawing upon the intellectual wealth of geography and spatial science to provide better informed, knowledge-based action to enhance diversity in higher education and the geoscience workforce. The project seeks to inform and transform the ways in which departments and programs envision and realize their own goals to enhance diversity, promote inclusion, and broaden participation. We also seek to provide the data, information, knowledge, and best practices needed in order to enhance the recruitment and retention of underrepresented students. The ALIGNED Toolkit is currently in a beta release, available to 13 pilot departments and 50 testing departments of geography/geosciences. It consolidates a variety of data from departments, the U.S. Census Bureau, and the U.S. Department of Education's National Center for Education Statistics to provide interactive, GIS-based visualizations across multiple scales. It also incorporates a place-based, geographic perspective to support departments in their efforts to enhance diversity. A member of ALIGNED's senior personnel, who is also a representative of one of the pilot departments, will provide an overview and preview of the tool while sharing her department's experiences in progressing toward its diversity goals. A brief discussion on how geoscience departments might benefit from the ALIGNED approach and resources will follow. Undergraduate advisors, graduate program directors, department

  14. An efficient multi-resolution GA approach to dental image alignment

    NASA Astrophysics Data System (ADS)

    Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany

    2006-02-01

    Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.

  15. An approach to maintain orthodontic alignment of lower incisors without the use of retainers.

    PubMed

    Aasen, Tore Odd; Espeland, Lisen

    2005-06-01

    The purpose of this investigation was to examine the long-term stability of orthodontic alignment of lower incisors without the use of retainers. The study sample comprised 56 patients treated according to a protocol that included over-correction of rotated teeth at an early stage of treatment and systematic enamel reduction (stripping) of the approximal surfaces in the mandibular anterior region, both during treatment and follow-up. Care was also taken to maintain dental arch form and to avoid lateral expansion of the lower dental arch and proclination of the incisors. Dental study casts were obtained pre-treatment, at the end of treatment, and 3 years post-treatment. Alignment of the mandibular incisors was recorded using Little's irregularity index. The inter-canine distance and the sum of the mesio-distal widths of the mandibular incisors and canines were also measured. The total amount of enamel removed from the approximal surfaces of the lower anterior teeth ranged from 0.3 to 5.0 mm (mean 1.9 mm). The mean increase in irregularity index score of 0.6 from post-treatment to 3 years follow-up indicated good stability. In 45 per cent of the patients the change in score during this period was less than 0.5, indicating that the treatment approach presented may be considered an alternative strategy to placement of lower retainers to safeguard the stability of alignment of mandibular incisors.

  16. Propensity of Self-Assembled Leucine-Lysine Diblock Copolymeric α-Helical Peptides To Remain in Parallel and Antiparallel Alignments in Water.

    PubMed

    Sarkar, Sujit; Pandey, Prithvi Raj; Roy, Sudip

    2015-07-30

    Molecular dynamics simulation study of α-helical diblock copolypeptides preassembled in parallel and antiparallel alignments in water are presented. The assembled peptide lamellar structures were not disrupted even after performing three-step simulation protocols. Primarily hydrogen bonds between peptide are responsible for the stability. The analysis of the trajectory also suggests that water plays a significant role in favoring self-assembly. We have detected continuous hydrogen bonded network structure, which is further responsible for the stability of the lamellar structures. We have performed a detailed analysis of the hydrogen bonded network structure and its length. Further, free energy calculations revealed that the degree of stability for both lamellae are similar. The present study provides structural insight into the stability of self-assembled structures of block copolypeptides.

  17. The component alignment model: a new approach to health care information technology strategic planning.

    PubMed

    Martin, J B; Wilkins, A S; Stawski, S K

    1998-08-01

    The evolving health care environment demands that health care organizations fully utilize information technologies (ITs). The effective deployment of IT requires the development and implementation of a comprehensive IT strategic plan. A number of approaches to health care IT strategic planning exist, but they are outdated or incomplete. The component alignment model (CAM) introduced here recognizes the complexity of today's health care environment, emphasizing continuous assessment and realignment of seven basic components: external environment, emerging ITs, organizational infrastructure, mission, IT infrastructure, business strategy, and IT strategy. The article provides a framework by which health care organizations can develop an effective IT strategic planning process.

  18. Optimal patellar alignment with minimally invasive approaches in total knee arthroplasty after a minimum five year follow-up.

    PubMed

    Huang, Ai-Bing; Wang, Hai-Jun; Yu, Jia-Kuo; Yang, Bo; Ma, Dong; Zhang, Ji-Ying

    2016-03-01

    Patellofemoral syndrome is still a common complication after total knee arthroplasty (TKA). However, the effects of specific surgical approaches on patellar tracking and alignment remain incompletely understood. In this study, we compared patellar alignment in patients who underwent TKA via three different techniques. A total of 96 patients who completed a minimum follow-up of five years were involved in three groups: 30 patients were treated with the traditional medial parapatellar approach (MPP group), 35 patients were treated with the mini-medial parapatellar approach (MMP group) and 31 were treated with a quadriceps-sparing approach (QS group). Radiographic data for patellar alignment and clinical results were compared. Patellar tilt and patellar displacement at the final follow-up evaluation differed significantly among the three groups [P < 0.01, analysis of variance (ANOVA)]. The MMP and QS groups exhibited more proper patellar alignment than the MPP group. The clinical results did not differ significantly among the groups (P > 0.05, ANOVA). In addition, there were no correlations between postoperative patellar alignment and clinical scores. The results of this study indicate that TKA performed using minimally invasive approaches yields superior patellar alignment compared to the traditional MPP approach.

  19. Precursor-centric genome-mining approach for lasso peptide discovery

    PubMed Central

    Maksimov, Mikhail O.; Pelczer, István; Link, A. James

    2012-01-01

    Lasso peptides are a class of ribosomally synthesized posttranslationally modified natural products found in bacteria. Currently known lasso peptides have a diverse set of pharmacologically relevant activities, including inhibition of bacterial growth, receptor antagonism, and enzyme inhibition. The biosynthesis of lasso peptides is specified by a cluster of three genes encoding a precursor protein and two enzymes. Here we develop a unique genome-mining algorithm to identify lasso peptide gene clusters in prokaryotes. Our approach involves pattern matching to a small number of conserved amino acids in precursor proteins, and thus allows for a more global survey of lasso peptide gene clusters than does homology-based genome mining. Of more than 3,000 currently sequenced prokaryotic genomes, we found 76 organisms that are putative lasso peptide producers. These organisms span nine bacterial phyla and an archaeal phylum. To provide validation of the genome-mining method, we focused on a single lasso peptide predicted to be produced by the freshwater bacterium Asticcacaulis excentricus. Heterologous expression of an engineered, minimal gene cluster in Escherichia coli led to the production of a unique lasso peptide, astexin-1. At 23 aa, astexin-1 is the largest lasso peptide isolated to date. It is also highly polar, in contrast to many lasso peptides that are primarily hydrophobic. Astexin-1 has modest antimicrobial activity against its phylogenetic relative Caulobacter crescentus. The solution structure of astexin-1 was determined revealing a unique topology that is stabilized by hydrogen bonding between segments of the peptide. PMID:22949633

  20. Precursor-centric genome-mining approach for lasso peptide discovery.

    PubMed

    Maksimov, Mikhail O; Pelczer, István; Link, A James

    2012-09-18

    Lasso peptides are a class of ribosomally synthesized posttranslationally modified natural products found in bacteria. Currently known lasso peptides have a diverse set of pharmacologically relevant activities, including inhibition of bacterial growth, receptor antagonism, and enzyme inhibition. The biosynthesis of lasso peptides is specified by a cluster of three genes encoding a precursor protein and two enzymes. Here we develop a unique genome-mining algorithm to identify lasso peptide gene clusters in prokaryotes. Our approach involves pattern matching to a small number of conserved amino acids in precursor proteins, and thus allows for a more global survey of lasso peptide gene clusters than does homology-based genome mining. Of more than 3,000 currently sequenced prokaryotic genomes, we found 76 organisms that are putative lasso peptide producers. These organisms span nine bacterial phyla and an archaeal phylum. To provide validation of the genome-mining method, we focused on a single lasso peptide predicted to be produced by the freshwater bacterium Asticcacaulis excentricus. Heterologous expression of an engineered, minimal gene cluster in Escherichia coli led to the production of a unique lasso peptide, astexin-1. At 23 aa, astexin-1 is the largest lasso peptide isolated to date. It is also highly polar, in contrast to many lasso peptides that are primarily hydrophobic. Astexin-1 has modest antimicrobial activity against its phylogenetic relative Caulobacter crescentus. The solution structure of astexin-1 was determined revealing a unique topology that is stabilized by hydrogen bonding between segments of the peptide.

  1. Quality specifications for peptide drugs: a regulatory-pharmaceutical approach.

    PubMed

    Vergote, Valentijn; Burvenich, Christian; Van de Wiele, Christophe; De Spiegeleer, Bart

    2009-11-01

    Peptide drugs, as all types of pharmaceuticals, require adequate specifications (i.e. quality attributes, procedures and acceptance criteria) as part of their quality assurance to ensure the safety and efficacy of drug substances (i.e. active pharmaceutical ingredients) and drug products (i.e. finished pharmaceutical dosage forms). Compendial monographs are updated regularly to keep up with the most recent advances in peptide synthesis (e.g. reduced by-products) and analytical technology. Nevertheless, currently applied pharmacopoeial peptide specifications are barely harmonized yet (e.g. large differences between the European Pharmacopoeia and the United States Pharmacopeia), increasing the manufacturers' burden of performing analytical procedures in different ways, using different acceptance criteria. Additionally, the peptide monographs are not always consistent within a single pharmacopoeia. In this review, we highlight the main differences and similarities in compendial peptide specifications (including identification, purity and assay). Based on comparison, and together with additional information from peptide drug substance manufacturers and public evaluation reports on registration files of non-pharmacopoeial peptide drugs, a consistent monograph structure is proposed.

  2. Long timestep dynamics of peptides by the dynamics driver approach.

    PubMed

    Derreumaux, P; Schlick, T

    1995-04-01

    Previous experience with the Langevin/implicit-Euler scheme for dynamics ("LI") on model systems (butane, water) has shown that LI is numerically stable for timesteps in the 5-20 fs range but quenches high-frequency modes. To explore applications to polypeptides, we apply LI to model systems (several dipeptides, a tetrapeptide, and a 13-residue oligoalanine) and also develop a new dynamics driver approach ("DA"). The DA scheme, based on LI, addresses the important issue of proper sampling, which is unlikely to be solved by small-timestep integration methods or implicit methods with intrinsic damping at room temperature, such as LI. Equilibrium averages, time-dependent molecular properties, and sampling trends at room temperature are reported for both LI and DA dynamics simulations, which are then compared to those generated by a standard explicit discretization of the Langevin equation with a 1 fs timestep. We find that LI's quenching effects are severe on both the fast and slow (due to vibrational coupling) frequency modes of all-atom polypeptides and lead to more restricted dynamics at moderate timesteps (40 fs). The DA approach empirically counteracts these damping effects by adding random atomic perturbations to the coordinates at each step (before the minimization of a dynamics function). By restricting the energetic fluctuations and controlling the kinetic energy, we are able with a 60 fs timestep to generate continuous trajectories that sample more of the relevant conformational space and also reproduce reasonably Boltzmann statistics. Although the timescale for transition may be accelerated by the DA approach, the transitional information obtained for the alanine dipeptide and the tetrapeptide is consistent with that obtained by several other theoretical approaches that focus specifically on the determination of pathways. While the trajectory for oligoalanine by the explicit scheme over the nanosecond timeframe remains in the vicinity of the full alpha R

  3. Inhibition of the ferric uptake regulator by peptides derived from anti-FUR peptide aptamers: coupled theoretical and experimental approaches.

    PubMed

    Cissé, Cheickna; Mathieu, Sophie V; Abeih, Mohamed B Ould; Flanagan, Lindsey; Vitale, Sylvia; Catty, Patrice; Boturyn, Didier; Michaud-Soret, Isabelle; Crouzy, Serge

    2014-12-19

    The FUR protein (ferric uptake regulator) is an iron-dependent global transcriptional regulator. Specific to bacteria, FUR is an attractive antibacterial target since virulence is correlated to iron bioavailability. Recently, four anti-FUR peptide aptamers, composed of 13 amino acid variable loops inserted into a thioredoxinA scaffold, were identified, which were able to interact with Escherichia coli FUR (EcFUR), inhibit its binding to DNA and to decrease the virulence of pathogenic E. coli in a fly infection model. The first characterization of anti-FUR linear peptides (pF1 6 to 13 amino acids) derived from the variable part of the F1 anti-FUR peptide aptamer is described herein. Theoretical and experimental approaches, in original combination, were used to study interactions of these peptides with FUR in order to understand their mechanism of inhibition. After modeling EcFUR by homology, docking with Autodock was combined with molecular dynamics simulations in implicit solvent to take into account the flexibility of the partners. All calculations were cross-checked either with other programs or with experimental data. As a result, reliable structures of EcFUR and its complex with pF1 are given and an inhibition pocket formed by the groove between the two FUR subunits is proposed. The location of the pocket was validated through experimental mutation of key EcFUR residues at the site of proposed peptide interaction. Cyclisation of pF1, mimicking the peptide constraint in F1, improved inhibition. The details of the interactions between peptide and protein were analyzed and a mechanism of inhibition of these anti-FUR molecules is proposed.

  4. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments

    PubMed Central

    Robinson, Mark D; De Souza, David P; Keen, Woon Wai; Saunders, Eleanor C; McConville, Malcolm J; Speed, Terence P; Likić, Vladimir A

    2007-01-01

    Background Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. Results A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. Conclusion We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities

  5. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGES

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  6. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  7. First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-01

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101 ¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  8. Bioinformatic identification of plant peptides.

    PubMed

    Lease, Kevin A; Walker, John C

    2010-01-01

    Plant peptides play a number of important roles in defence, development and many other aspects of plant physiology. Identifying additional peptide sequences provides the starting point to investigate their function using molecular, genetic or biochemical techniques. Due to their small size, identifying peptide sequences may not succeed using the default bioinformatic approaches that work well for average-sized proteins. There are two general scenarios related to bioinformatic identification of peptides to be discussed in this paper. In the first scenario, one already has the sequence of a plant peptide and is trying to find more plant peptides with some sequence similarity to the starting peptide. To do this, the Basic Local Alignment Search Tool (BLAST) is employed, with the parameters adjusted to be more favourable for identifying potential peptide matches. A second scenario involves trying to identify plant peptides without using sequence similarity searches to known plant peptides. In this approach, features such as protein size and the presence of a cleavable amino-terminal signal peptide are used to screen annotated proteins. A variation of this method can be used to screen for unannotated peptides from genomic sequences. Bioinformatic resources related to Arabidopsis thaliana will be used to illustrate these approaches.

  9. Combinatorial approaches: A new tool to search for highly structured β-hairpin peptides

    PubMed Central

    Pastor, Maria Teresa; López de la Paz, Manuela; Lacroix, Emmanuel; Serrano, Luis; Pérez-Payá, Enrique

    2002-01-01

    Here we present a combinatorial approach to evolve a stable β-hairpin fold in a linear peptide. Starting with a de novo-designed linear peptide that shows a β-hairpin structure population of around 30%, we selected four positions to build up a combinatorial library of 204 sequences. Deconvolution of the library using circular dichroism reduced such a sequence complexity to 36 defined sequences. Circular dichroism and NMR of these peptides resulted in the identification of two linear 14-aa-long peptides that in plain buffered solutions showed a percentage of β-hairpin structure higher than 70%. Our results show how combinatorial approaches can be used to obtain highly structured peptide sequences that could be used as templates in which functionality can be introduced. PMID:11782528

  10. Peptide-Centric Approaches Provide an Alternative Perspective To Re-Examine Quantitative Proteomic Data.

    PubMed

    Ning, Zhibin; Zhang, Xu; Mayne, Janice; Figeys, Daniel

    2016-02-16

    Quantitative proteomics can provide rich information on changes in biological functions and processes. However, its accuracy is affected by the inherent information degeneration found in bottom-up proteomics. Therefore, the precise protein inference from identified peptides can be mistaken since an ad hoc rule is used for generating a list of protein groups that depends on both the sample type and the sampling depth. Herein, we propose an alternative approach for examining quantitative proteomic data which is peptide-centric instead of protein-centric. We discuss the feasibility of the peptide-centric approach which was tested on several quantitative proteomic data sets. We show that peptide-centric quantification has several advantages over protein level analysis: (1) it is more sensitive for sample segregation, (2) it avoids the issues associated with protein inference, and (3) it can retrieve significant peptides lost in protein-centric quantification for further downstream analysis.

  11. Bioactive marine peptides: nutraceutical value and novel approaches.

    PubMed

    Giri, Anupam; Ohshima, Toshiaki

    2012-01-01

    Marine organisms represent a valuable source of nutraceuticals and functional compounds. The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of novel active substances for the development of bioactive products. Recently, a great deal of interest has been expressed in marine-derived bioactive peptides because of their numerous beneficial health effects. Moreover, several studies have reported that marine bioactive peptides can be used as antihypertensive, antioxidative, anticoagulant, and antimicrobial components in functional foods or nutraceuticals and pharmaceuticals due to their therapeutic potential in the treatment or prevention of disease. In this chapter, we provide an overview of bioactive peptides derived from marine organisms as well as information about their biological properties and mechanisms of action with potential applications in different areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. PicXAA-R: Efficient structural alignment of multiple RNA sequences using a greedy approach

    PubMed Central

    2011-01-01

    Background Accurate and efficient structural alignment of non-coding RNAs (ncRNAs) has grasped more and more attentions as recent studies unveiled the significance of ncRNAs in living organisms. While the Sankoff style structural alignment algorithms cannot efficiently serve for multiple sequences, mostly progressive schemes are used to reduce the complexity. However, this idea tends to propagate the early stage errors throughout the entire process, thereby degrading the quality of the final alignment. For multiple protein sequence alignment, we have recently proposed PicXAA which constructs an accurate alignment in a non-progressive fashion. Results Here, we propose PicXAA-R as an extension to PicXAA for greedy structural alignment of ncRNAs. PicXAA-R efficiently grasps both folding information within each sequence and local similarities between sequences. It uses a set of probabilistic consistency transformations to improve the posterior base-pairing and base alignment probabilities using the information of all sequences in the alignment. Using a graph-based scheme, we greedily build up the structural alignment from sequence regions with high base-pairing and base alignment probabilities. Conclusions Several experiments on datasets with different characteristics confirm that PicXAA-R is one of the fastest algorithms for structural alignment of multiple RNAs and it consistently yields accurate alignment results, especially for datasets with locally similar sequences. PicXAA-R source code is freely available at: http://www.ece.tamu.edu/~bjyoon/picxaa/. PMID:21342569

  13. Predicting sequences and structures of MHC-binding peptides: a computational combinatorial approach

    NASA Astrophysics Data System (ADS)

    Zeng, Jun; Treutlein, Herbert R.; Rudy, George B.

    2001-06-01

    Peptides bound to MHC molecules on the surface of cells convey critical information about the cellular milieu to immune system T cells. Predicting which peptides can bind an MHC molecule, and understanding their modes of binding, are important in order to design better diagnostic and therapeutic agents for infectious and autoimmune diseases. Due to the difficulty of obtaining sufficient experimental binding data for each human MHC molecule, computational modeling of MHC peptide-binding properties is necessary. This paper describes a computational combinatorial design approach to the prediction of peptides that bind an MHC molecule of known X-ray crystallographic or NMR-determined structure. The procedure uses chemical fragments as models for amino acid residues and produces a set of sequences for peptides predicted to bind in the MHC peptide-binding groove. The probabilities for specific amino acids occurring at each position of the peptide are calculated based on these sequences, and these probabilities show a good agreement with amino acid distributions derived from a MHC-binding peptide database. The method also enables prediction of the three-dimensional structure of MHC-peptide complexes. Docking, linking, and optimization procedures were performed with the XPLOR program [1].

  14. A clustering approach to multireference alignment of single-particle projections in electron microscopy

    PubMed Central

    Sorzano, C.O.S.; Bilbao-Castro, J.R.; Shkolnisky, Y.; Alcorlo, M.; Melero, R.; Caffarena-Fernández, G.; Li, M.; Xu, G.; Marabini, R.; Carazo, J.M.

    2010-01-01

    Two-dimensional analysis of projections of single particles acquired by an electron microscope is a useful tool to help identifying the different kinds of projections present in a dataset and their different projection directions. Such analysis is also useful to distinguish between different kinds of particles or different particle conformations. In this paper we introduce a new algorithm for performing two-dimensional multireference alignment and classification that is based on a Hierarchical clustering approach using correntropy (instead of the more traditional correlation) and a modified criterion for the definition of the clusters specially suited for cases in which the Signal-to-Noise Ratio of the differences between classes is low. We show that our algorithm offers an improved sensitivity over current methods in use for distinguishing between different projection orientations and different particle conformations. This algorithm is publicly available through the software package Xmipp. PMID:20362059

  15. Combinatorial Approach for Large-scale Identification of Linked Peptides from Tandem Mass Spectrometry Spectra*

    PubMed Central

    Wang, Jian; Anania, Veronica G.; Knott, Jeff; Rush, John; Lill, Jennie R.; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  16. A Thiol-Ene Coupling Approach to Native Peptide Stapling and Macrocyclization.

    PubMed

    Wang, Yuanxiang; Chou, Danny Hung-Chieh

    2015-09-07

    We report the discovery of a peptide stapling and macrocyclization method using thiol-ene reactions between two cysteine residues and an α,ω-diene in high yields. This new approach enabled us to selectively modify cysteine residues in native, unprotected peptides with a variety of stapling modifications for helix stabilization or general macrocyclization. We synthesized stapled Axin mimetic analogues and demonstrated increased alpha helicity upon peptide stapling. We then synthesized stapled p53 mimetic analogues using pure hydrocarbon linkers and demonstrated their abilities to block the p53-MDM2 interaction and selectively kill p53 wild-type colorectal carcinoma HCT-116 cells but not p53 null cells. In summary, we demonstrated a robust and versatile peptide stapling method that could be potentially applied to both synthetic and expressed peptides.

  17. A combo-pore approach for the programmable extraction of peptides/proteins

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Zhou, Liang; Zhang, Jun; Lei, Chang; Yu, Chengzhong

    2014-04-01

    A novel combo-pore approach has been designed for the programmable purification, minimisation of sample complexity, enrichment and sensitive detection of peptides in biosamples. This approach has a superior performance to conventional protocols and commercial products.A novel combo-pore approach has been designed for the programmable purification, minimisation of sample complexity, enrichment and sensitive detection of peptides in biosamples. This approach has a superior performance to conventional protocols and commercial products. Electronic supplementary information (ESI) available: Experimental and supporting data. See DOI: 10.1039/c4nr00633j

  18. A new chemical approach to differentiate carboxy terminal peptide fragments in cyanogen bromide digests of proteins.

    PubMed

    Moerman, P P; Sergeant, K; Debyser, G; Devreese, B; Samyn, B

    2010-06-16

    We present a novel approach to perform C-terminal sequence analysis by discriminating the C-terminal peptide in a mass spectral analysis of a CNBr digest. During CNBr cleavage, all Met-Xxx peptide bonds are cleaved and the generated internal peptides all end with a homoserine lactone (hsl)-derivative. The partial opening of the hsl-derivatives, by using a slightly basic buffer solution, results in the formation of m/z doublets (Deltam=18 Da) for all internal peptides and allows to identify the C-terminal peptide which appears as a singlet in the mass spectra. Using two model proteins we demonstrate that this approach can be applied to study proteins purified in gel or in solution. The chemical opening of the hsl-derivative does not require any sample clean-up and therefore, the sensitivity of the C-terminal sequencing approach is increased significantly. Finally, the new protocol was applied to characterize the C-terminal sequence of two recombinant proteins. Tandem mass spectrometry by MALDI-TOF/TOF allowed to identify the sequence of the C-terminal peptides. This novel approach will allow to perform a proteome-wide study of C-terminal proteolytic processing events in a high-throughput fashion. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Denoising peptide tandem mass spectra for spectral libraries: a Bayesian approach.

    PubMed

    Shao, Wenguang; Lam, Henry

    2013-07-05

    With the rapid accumulation of data from shotgun proteomics experiments, it has become feasible to build comprehensive and high-quality spectral libraries of tandem mass spectra of peptides. A spectral library condenses experimental data into a retrievable format and can be used to aid peptide identification by spectral library searching. A key step in spectral library building is spectrum denoising, which is best accomplished by merging multiple replicates of the same peptide ion into a consensus spectrum. However, this approach cannot be applied to "singleton spectra," for which only one observed spectrum is available for the peptide ion. We developed a method, based on a Bayesian classifier, for denoising peptide tandem mass spectra. The classifier accounts for relationships between peaks, and can be trained on the fly from consensus spectra and immediately applied to denoise singleton spectra, without hard-coded knowledge about peptide fragmentation. A linear regression model was also trained to predict the number of useful "signal" peaks in a spectrum, thereby obviating the need for arbitrary thresholds for peak filtering. This Bayesian approach accumulates weak evidence systematically to boost the discrimination power between signal and noise peaks, and produces readily interpretable conditional probabilities that offer valuable insights into peptide fragmentation behaviors. By cross validation, spectra denoised by this method were shown to retain more signal peaks, and have higher spectral similarities to replicates, than those filtered by intensity only.

  20. Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach.

    PubMed

    Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano

    2017-04-04

    Peptides have gained increased interest as therapeutic agents during recent years. The high specificity and relatively low toxicity of peptide drugs derive from their extremely tight binding to their targets. Indeed, understanding the molecular mechanism of protein-peptide recognition has important implications in the fields of biology, medicine, and pharmaceutical sciences. Even if crystallography and nuclear magnetic resonance are offering valuable atomic insights into the assembling of the protein-peptide complexes, the mechanism of their recognition and binding events remains largely unclear. In this work we report, for the first time, the use of a supervised molecular dynamics approach to explore the possible protein-peptide binding pathways within a timescale reduced up to three orders of magnitude compared with classical molecular dynamics. The better and faster understating of the protein-peptide recognition pathways could be very beneficial in enlarging the applicability of peptide-based drug design approaches in several biotechnological and pharmaceutical fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. INDEX: Incremental depth extension approach for protein-protein interaction networks alignment.

    PubMed

    Mir, Abolfazl; Naghibzadeh, Mahmoud; Saadati, Nayyereh

    2017-08-30

    High-throughput methods have provided us with a large amount of data pertaining to protein-protein interaction networks. The alignment of these networks enables us to better understand biological systems. Given the fact that the alignment of networks is computationally intractable, it is important to introduce a more efficient and accurate algorithm which finds as large as possible similar areas among networks. This paper proposes a new algorithm named INDEX for the global alignment of protein-protein interaction networks. INDEX has multiple phases. First, it computes topological and biological scores of proteins and creates the initial alignment based on the proposed matching score strategy. Using networks topologies and aligned proteins, it then selects a set of high scoring proteins in each phase and extends new alignments around them until final alignment is obtained. Proposing a new alignment strategy, detailed consideration of matching scores, and growth of the alignment core has led INDEX to obtain a larger common connected subgraph with a much greater number of edges compared with previous methods. Regarding other measures such as edge correctness, symmetric substructure score, and runtime, the proposed algorithm performed considerably better than existing popular methods. Our results show that INDEX can be a promising method for identifying functionally conserved interactions. The INDEX executable file is available at https://github.com/a-mir/index/. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Developing a New Teaching Approach for the Chemical Bonding Concept Aligned with Current Scientific and Pedagogical Knowledge

    ERIC Educational Resources Information Center

    Nahum, Tami Levy; Mamlok-Naaman, Rachel; Hofstein, Avi; Krajcik, Joseph

    2007-01-01

    The traditional pedagogical approach for teaching chemical bonding is often overly simplistic and not aligned with the most up-to-date scientific models. As a result, high-school students around the world lack fundamental understanding of chemical bonding. In order to improve students' understanding of this concept, it was essential to propose a…

  3. Designing and Scaling Level-Specific Writing Tasks in Alignment with the CEFR: A Test-Centered Approach

    ERIC Educational Resources Information Center

    Harsch, Claudia; Rupp, Andre Alexander

    2011-01-01

    The "Common European Framework of Reference" (CEFR; Council of Europe, 2001) provides a competency model that is increasingly used as a point of reference to compare language examinations. Nevertheless, aligning examinations to the CEFR proficiency levels remains a challenge. In this article, we propose a new, level-centered approach to…

  4. Developing a New Teaching Approach for the Chemical Bonding Concept Aligned with Current Scientific and Pedagogical Knowledge

    ERIC Educational Resources Information Center

    Nahum, Tami Levy; Mamlok-Naaman, Rachel; Hofstein, Avi; Krajcik, Joseph

    2007-01-01

    The traditional pedagogical approach for teaching chemical bonding is often overly simplistic and not aligned with the most up-to-date scientific models. As a result, high-school students around the world lack fundamental understanding of chemical bonding. In order to improve students' understanding of this concept, it was essential to propose a…

  5. Whole genome phylogeny of Prochlorococcus marinus group of cyanobacteria: genome alignment and overlapping gene approach.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K; Rai, Anil

    2014-06-01

    Prochlorococcus is the smallest known oxygenic phototrophic marine cyanobacterium dominating the mid-latitude oceans. Physiologically and genetically distinct P. marinus isolates from many oceans in the world were assigned two different groups, a tightly clustered high-light (HL)-adapted and a divergent low-light (LL-) adapted clade. Phylogenetic analysis of this cyanobacterium on the basis of 16S rRNA and other conserved genes did not show consistency with its phenotypic behavior. We analyzed phylogeny of this genus on the basis of complete genome sequences through genome alignment, overlapping-gene content and gene-order approach. Phylogenetic tree of P. marinus obtained by comparing whole genome sequences in contrast to that based on 16S rRNA gene, corresponded well with the HL/LL ecotypic distinction of twelve strains and showed consistency with phenotypic classification of P. marinus. Evidence for the horizontal descent and acquisition of genes within and across the genus was observed. Many genes involved in metabolic functions were found to be conserved across these genomes and many were continuously gained by different strains as per their needs during the course of their evolution. Consistency in the physiological and genetic phylogeny based on whole genome sequence is established. These observations improve our understanding about the adaptation and diversification of these organisms under evolutionary pressure.

  6. IDENTIFICATION OF BEST INDICATORS OF PEPTIDE-SPECTRUM MATCH USING A PERMUTATION RESAMPLING APPROACH

    PubMed Central

    AKHTAR, MALIK N.; SOUTHEY, BRUCE R.; ANDRÉN, PER E.; SWEEDLER, JONATHAN V.; RODRIGUEZ-ZAS, SANDRA L.

    2014-01-01

    Various indicators of observed-theoretical spectrum matches were compared and the resulting statistical significance was characterized using permutation resampling. Novel decoy databases built by resampling the terminal positions of peptide sequences were evaluated to identify the conditions for accurate computation of peptide match significance levels. The methodology was tested on real and manually curated tandem mass spectra from peptides across a wide range of sizes. Spectra match indicators from complementary database search programs were profiled and optimal indicators were identified. The combination of the optimal indicator and permuted decoy databases improved the calculation of the peptide match significance compared to the approaches currently implemented in the database search programs that rely on distributional assumptions. Permutation tests using p-values obtained from software-dependent matching scores and E-values outperformed permutation tests using all other indicators. The higher overlap in matches between the database search programs when using end permutation compared to existing approaches confirm the superiority of the end permutation method to identify peptides. The combination of effective match indicators and the end permutation method is recommended for accurate detection of peptides. PMID:25362838

  7. A New Approach to the Oral Administration of Insulin and Other Peptide Drugs

    NASA Astrophysics Data System (ADS)

    Saffran, Murray; Sudesh Kumar, G.; Savariar, Celin; Burnham, Jeffrey C.; Williams, Frederick; Neckers, Douglas C.

    1986-09-01

    The oral administration of peptide drugs is well known to be precluded by their digestion in the stomach and small intestine. As a new approach to oral delivery, peptide drugs were coated with polymers cross-linked with azoaromatic groups to form an impervious film to protect orally administered drugs from digestion in the stomach and small intestine. When the azopolymer-coated drug reached the large intestine, the indigenous microflora reduced the azo bonds, broke the cross-links, and degraded the polymer film, thereby releasing the drug into the lumen of the colon for local action or for absorption. The ability of the azopolymer coating to protect and deliver orally administered peptide drugs was demonstrated in rats with the peptide hormones vasopressin and insulin.

  8. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples.

    PubMed

    Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A; Grunewald, Johan; Ytterberg, A Jimmy

    2016-09-01

    Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides.Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 10(6) bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10-15 × 10(6) cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls.In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 10(6) cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients

  9. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples *

    PubMed Central

    Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K.; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V.; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M.; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A.; Grunewald, Johan; Ytterberg, A. Jimmy

    2016-01-01

    Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides. Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 106 bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10–15 × 106 cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls. In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 106 cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients and

  10. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas.

    PubMed

    Sadanaga, N; Nagashima, H; Mashino, K; Tahara, K; Yamaguchi, H; Ohta, M; Fujie, T; Tanaka, F; Inoue, H; Takesako, K; Akiyoshi, T; Mori, M

    2001-08-01

    The MAGE gene is selectively expressed in cancer tissues such as melanoma or gastrointestinal carcinomas, whereas no expression is observed in normal tissues except testis. There are several reports of successful induction of HLA class I-restricted antitumor CTLs using MAGE peptides, and some clinical trials with these immunogenic peptides were reported as effective for some patients with malignant melanoma. However, there are no similar studies in gastrointestinal carcinomas, which are important neoplasms. Autologous dendritic cells (DCs) were generated ex vivo and were pulsed with MAGE-3 peptide, depending on the patient's HLA haplotype (HLA-A2 or A24). Patients were immunized with DC pulsed with MAGE-3 peptide every 3 weeks at four times. Twelve patients with advanced gastrointestinal carcinoma (six stomach, three esophagus, and three colon) were treated, and no toxic side effects were observed. Peptide-specific CTL responses after vaccination were observed in four of eight patients. Improvement in performance status was recognized in four patients. Tumor markers decreased in seven patients. In addition, minor tumor regressions evidenced by imaging studies were seen in three patients. These results suggested that DC vaccination with MAGE-3 peptide is a safe and promising approach in the treatment of gastrointestinal carcinomas.

  11. Three-dimensional quantitative structure-activity relationship for several bioactive peptides searched by a convex hull-comparative molecular field analysis approach.

    PubMed

    Lin, T H; Lin, J J

    2001-09-01

    Three-dimensional (3D) convex hulls are computed for theoretically generated structures of a group of 18 bioactive tachykinin peptides. The number of peptides treated as a training set is 14, whereas that treated as a test set is four. The frequency of atoms of the same atomic type lying at the vertices of all the hulls computed for all the structures in a structural set is counted. Vertex atoms with non-zero frequency counted are collected together as a set of commonly exposed groups. These commonly exposed atoms are then treated as a set of correspondences for aligning all the other 13 structures in a structural set against a common template, which is the structure of the most potent peptide in the set using the FIT module of the SYBYL 6.6 program. Each aligned structural set is then analyzed by the comparative molecular field analysis (CoMFA) module using the C.3 probe having a charge of +1.0. The corresponding cross-validated r2 values range from -0.99 to 0.57 for a number of 73 structural sets studied. The comparative molecular similarity indices analysis (CoMSIA) module within the SYBYL 6.6 package is also used to analyze some of these aligned structural sets. Although the CoMSIA results are in accord with those of CoMFA, it is also found that the CoMFA results of several structural sets can be improved somewhat for conformations of the structures in the sets that are adjusted by constraint energy minimization and then constraint molecular dynamics simulation runs using distance constraints derived from some commonly exposed groups determined for them. This result further implies that the convex hull-CoMFA is a feasible approach to screen the bioactive conformations for molecules of this class.

  12. Analysis of the proteolysis of bioactive peptides using a peptidomics approach

    PubMed Central

    Kim, Yun-Gon; Lone, Anna Mari; Saghatelian, Alan

    2014-01-01

    Identifying the peptidases that inactivate bioactive peptides (e.g. peptide hormones and neuropeptides) in mammals is an important unmet challenge. This protocol describes a recent approach that combines liquid chromatography-mass spectrometry peptidomics to identify endogenous cleavage sites of a bioactive peptide, the subsequent biochemical purification of a candidate peptidase based on these cleavage sites, and validation of the candidate peptidase’s role in the physiological regulation of the bioactive peptide by examining a peptidase knockout mouse. We highlight successful application of this protocol to discover that insulin-degrading enzyme (IDE) regulates physiological calcitonin gene-related peptide (CGRP) levels and detail the key stages and steps in this approach. This protocol requires 7 days of work; however, the total time for this protocol is highly variable because of its dependence on the availability of biological reagents, namely purified enzymes and knockout mice. The protocol is valuable because it expedites the characterization of mammalian peptidases, such as IDE, which in certain instances can be used to develop novel therapeutics. PMID:23949379

  13. Fuzzy Hidden Markov Models: a new approach in multiple sequence alignment.

    PubMed

    Collyda, Chrysa; Diplaris, Sotiris; Mitkas, Pericles A; Maglaveras, Nicos; Pappas, Costas

    2006-01-01

    This paper proposes a novel method for aligning multiple genomic or proteomic sequences using a fuzzyfied Hidden Markov Model (HMM). HMMs are known to provide compelling performance among multiple sequence alignment (MSA) algorithms, yet their stochastic nature does not help them cope with the existing dependence among the sequence elements. Fuzzy HMMs are a novel type of HMMs based on fuzzy sets and fuzzy integrals which generalizes the classical stochastic HMM, by relaxing its independence assumptions. In this paper, the fuzzy HMM model for MSA is mathematically defined. New fuzzy algorithms are described for building and training fuzzy HMMs, as well as for their use in aligning multiple sequences. Fuzzy HMMs can also increase the model capability of aligning multiple sequences mainly in terms of computation time. Modeling the multiple sequence alignment procedure with fuzzy HMMs can yield a robust and time-effective solution that can be widely used in bioinformatics in various applications, such as protein classification, phylogenetic analysis and gene prediction, among others.

  14. Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach

    PubMed Central

    Elemento, Olivier; Tavazoie, Saeed

    2005-01-01

    We describe a powerful new approach for discovering globally conserved regulatory elements between two genomes. The method is fast, simple and comprehensive, without requiring alignments. Its application to pairs of yeasts, worms, flies and mammals yields a large number of known and novel putative regulatory elements. Many of these are validated by independent biological observations, have spatial and/or orientation biases, are co-conserved with other elements and show surprising conservation across large phylogenetic distances. PMID:15693947

  15. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes.

    PubMed

    Ryu, Koungmin; Badmaev, Alexander; Wang, Chuan; Lin, Albert; Patil, Nishant; Gomez, Lewis; Kumar, Akshay; Mitra, Subhasish; Wong, H-S Philip; Zhou, Chongwu

    2009-01-01

    Massive aligned carbon nanotubes hold great potential but also face significant integration/assembly challenges for future beyond-silicon nanoelectronics. We report a wafer-scale processing of aligned nanotube devices and integrated circuits, including progress on essential technological components such as wafer-scale synthesis of aligned nanotubes, wafer-scale transfer of nanotubes to silicon wafers, metallic nanotube removal and chemical doping, and defect-tolerant integrated nanotube circuits. We have achieved synthesis of massive aligned nanotubes on complete 4 in. quartz and sapphire substrates, which were then transferred to 4 in. Si/SiO(2) wafers. CMOS analogous fabrication was performed to yield transistors and circuits with features down to 0.5 mum, with high current density approximately 20 muA/mum and good on/off ratios. In addition, chemical doping has been used to build fully integrated complementary inverter with a gain approximately 5, and a defect-tolerant design has been employed for NAND and NOR gates. This full-wafer approach could serve as a critical foundation for future integrated nanotube circuits.

  16. Oxidative α,ω-diyne coupling as an approach towards novel peptidic macrocycles.

    PubMed

    Verlinden, S; Geudens, N; Martins, J C; Tourwé, D; Ballet, S; Verniest, G

    2015-09-28

    The Glaser-Hay diyne coupling proved to be an efficient cyclisation approach towards diyne containing peptidic macrocycles. A variety of tetrapeptide-based macrocyclic 1,3-diynes were obtained from O-propargylated serine or tyrosine residues using Cu(OAc)2·H2O and NiCl2 under an O2-atmosphere. The effect of the linear 1,3-diyne on peptide conformations was studied by NMR and compared with a macrocycle bearing a saturated linker.

  17. Extending the coverage of spectral libraries: a neighbor-based approach to predicting intensities of peptide fragmentation spectra.

    PubMed

    Ji, Chao; Arnold, Randy J; Sokoloski, Kevin J; Hardy, Richard W; Tang, Haixu; Radivojac, Predrag

    2013-03-01

    Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well-studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor-based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K-nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20-60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.

  18. General Approach To Determine Disulfide Connectivity in Cysteine-Rich Peptides by Sequential Alkylation on Solid Phase and Mass Spectrometry.

    PubMed

    Albert, Anastasia; Eksteen, J Johannes; Isaksson, Johan; Sengee, Myagmarsuren; Hansen, Terkel; Vasskog, Terje

    2016-10-04

    Within the field of bioprospecting, disulfide-rich peptides are a promising group of compounds that has the potential to produce important leads for new pharmaceuticals. The disulfide bridges stabilize the tertiary structure of the peptides and often make them superior drug candidates to linear peptides. However, determination of disulfide connectivity in peptides with many disulfide bridges has proven to be laborious and general methods are lacking. This study presents a general approach for structure elucidation of disulfide-rich peptides. The method features sequential reduction and alkylation of a peptide on solid phase combined with sequencing of the fully alkylated peptide by tandem mass spectrometry. Subsequently, the disulfide connectivity is assigned on the basis of the determined alkylation pattern. The presented method is especially suitable for peptides that are prone to disulfide scrambling or are unstable in solution with partly reduced bridges. Additionally, the use of small amounts of peptide in the lowest nmol range makes the method ideal for structure elucidation of unknown peptides from the bioprospecting process. This study successfully demonstrates the new method for seven different peptides with two to four disulfide bridges. Two peptides with previous contradicting publications, μ-conotoxin KIIA and hepcidin-25, are included, and their disulfide connectivity is confirmed in accordance with the latest published results.

  19. A combined NMR and computational approach to investigate peptide binding to a designed Armadillo repeat protein.

    PubMed

    Ewald, Christina; Christen, Martin T; Watson, Randall P; Mihajlovic, Maja; Zhou, Ting; Honegger, Annemarie; Plückthun, Andreas; Caflisch, Amedeo; Zerbe, Oliver

    2015-05-22

    The specific recognition of peptide sequences by proteins plays an important role both in biology and in diagnostic applications. Here we characterize the relatively weak binding of the peptide neurotensin (NT) to the previously developed Armadillo repeat protein VG_328 by a multidisciplinary approach based on solution NMR spectroscopy, mutational studies, and molecular dynamics (MD) simulations, totaling 20μs for all MD runs. We describe assignment challenges arising from the repetitive nature of the protein sequence, and we present novel approaches to address them. Partial assignments obtained for VG_328 in combination with chemical shift perturbations allowed us to identify the repeats not involved in binding. Their subsequent elimination resulted in a reduced-size binder with very similar affinity for NT, for which near-complete backbone assignments were achieved. A binding mode suggested by automatic docking and further validated by explicit solvent MD simulations is consistent with paramagnetic relaxation enhancement data collected using spin-labeled NT. Favorable intermolecular interactions are observed in the MD simulations for the residues that were previously shown to contribute to binding in an Ala scan of NT. We further characterized the role of residues within the N-cap for protein stability and peptide binding. Our multidisciplinary approach demonstrates that an initial low-resolution picture for a low-micromolar-peptide binder can be refined through the combination of NMR, protein design, docking, and MD simulations to establish its binding mode, even in the absence of crystallographic data, thereby providing valuable information for further design.

  20. Synthetic approaches to peptides containing the L-Gln-L-Val-D(S)-Dmt motif.

    PubMed

    Suaifan, Ghadeer A R Y; Arafat, Tawfiq; Threadgill, Michael D

    2007-05-15

    The pseudoprolines S-Dmo (5,5-dimethyl-4-oxaproline) and R-Dmt (5,5-dimethyl-4-thiaproline) have been used to study the effects of forcing a fully cis conformation in peptides. Synthesis of peptides containing these (which have the same configuration as L-Pro) is straightforward. However, synthesis of peptides containing S-Dmt is difficult, owing to the rapid cyclisation of L-Aaa-S-Dmt amides and esters to form the corresponding diketopiperazines (DKP); thus the intermediacy of L-Aaa-S-Dmt amides and esters must be avoided in the synthetic sequence. Peptides containing the L-Gln-L-Val-D(S)-Dmt motif are particularly difficult, owing to the insolubility of coupling partners containing Gln. Introduction of Gln as N-Boc-pyroglutamate overcame the latter difficulty and the dipeptide active ester BocPygValOC(6)F(5) coupled in good yield with S-DmtOH. BocPygVal-S- DmtNH(CH(2))(2)C(6)H(4)NO(2) was converted quantitatively to BocGlnVal-S-DmtNH(CH(2))(2)C(6)H(4)NO(2) with ammonia, demonstrating the utility of this approach. Two peptide derivatives (CbzSerLysLeuGlnVal-S-DmtNH(CH(2))(2)C(6)H(4)NO(2) and CbzSerSerLysLeuGlnVal-S- DmtNH(CH(2))(2)C(6)H(4)NO(2)) were assembled, using these new methods of coupling a dipeptide acid active ester with S-DmtOH and introduction of Gln as Pyg, followed by conventional peptide couplings. The presence of the Val caused these peptides to be cleaved very slowly by prostate-specific antigen (PSA) at Leu Gln, rather than the expected Gln Val.

  1. Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach.

    PubMed

    Gerberick, G Frank; Vassallo, Jeffrey D; Foertsch, Leslie M; Price, Brad B; Chaney, Joel G; Lepoittevin, Jean-Pierre

    2007-06-01

    In the interest of reducing animal use, in vitro alternatives for skin sensitization testing are under development. One unifying characteristic of chemical allergens is the requirement that they react with proteins for the effective induction of skin sensitization. The majority of chemical allergens are electrophilic and react with nucleophilic amino acids. To determine whether and to what extent reactivity correlates with skin sensitization potential, 82 chemicals comprising allergens of different potencies and nonallergenic chemicals were evaluated for their ability to react with reduced glutathione (GSH) or with two synthetic peptides containing either a single cysteine or lysine. Following a 15-min reaction time with GSH, or a 24-h reaction time with the two synthetic peptides, the samples were analyzed by high-performance liquid chromatography. UV detection was used to monitor the depletion of GSH or the peptides. The peptide reactivity data were compared with existing local lymph node assay data using recursive partitioning methodology to build a classification tree that allowed a ranking of reactivity as minimal, low, moderate, and high. Generally, nonallergens and weak allergens demonstrated minimal to low peptide reactivity, whereas moderate to extremely potent allergens displayed moderate to high peptide reactivity. Classifying minimal reactivity as nonsensitizers and low, moderate, and high reactivity as sensitizers, it was determined that a model based on cysteine and lysine gave a prediction accuracy of 89%. The results of these investigations reveal that measurement of peptide reactivity has considerable potential utility as a screening approach for skin sensitization testing, and thereby for reducing reliance on animal-based test methods.

  2. The Alignment of Global Management Strategies, International Communication Approaches, and Individual Rhetorical Choices.

    ERIC Educational Resources Information Center

    Leininger, Carol

    1997-01-01

    Suggests that thinking about international communication within a framework that aligns an organization's global management strategies with international communication practices enhances not only consulting practice but teaching as well. Describes the framework, and argues it introduces ways of thinking about global management strategies and their…

  3. Aligning Game Activity with Educational Goals: Following a Constrained Design Approach to Instructional Computer Games

    ERIC Educational Resources Information Center

    Shelton, Brett E.; Scoresby, Jon

    2011-01-01

    We discuss the design, creation and implementation of an instructional game for use in a high school poetry class following a commitment to an educational game design principle of "alignment". We studied groups of instructional designers and an interactive fiction computer game they built. The game was implemented in a 9th grade English classroom…

  4. Aligning Game Activity with Educational Goals: Following a Constrained Design Approach to Instructional Computer Games

    ERIC Educational Resources Information Center

    Shelton, Brett E.; Scoresby, Jon

    2011-01-01

    We discuss the design, creation and implementation of an instructional game for use in a high school poetry class following a commitment to an educational game design principle of "alignment". We studied groups of instructional designers and an interactive fiction computer game they built. The game was implemented in a 9th grade English classroom…

  5. The Alignment of Global Management Strategies, International Communication Approaches, and Individual Rhetorical Choices.

    ERIC Educational Resources Information Center

    Leininger, Carol

    1997-01-01

    Suggests that thinking about international communication within a framework that aligns an organization's global management strategies with international communication practices enhances not only consulting practice but teaching as well. Describes the framework, and argues it introduces ways of thinking about global management strategies and their…

  6. Exploring the Alzheimer amyloid-β peptide conformational ensemble: A review of molecular dynamics approaches.

    PubMed

    Tran, Linh; Ha-Duong, Tâp

    2015-07-01

    Alzheimer's disease is one of the most common dementia among elderly worldwide. There is no therapeutic drugs until now to treat effectively this disease. One main reason is due to the poorly understood mechanism of Aβ peptide aggregation, which plays a crucial role in the development of Alzheimer's disease. It remains challenging to experimentally or theoretically characterize the secondary and tertiary structures of the Aβ monomer because of its high flexibility and aggregation propensity, and its conformations that lead to the aggregation are not fully identified. In this review, we highlight various structural ensembles of Aβ peptide revealed and characterized by computational approaches in order to find converging structures of Aβ monomer. Understanding how Aβ peptide forms transiently stable structures prior to aggregation will contribute to the design of new therapeutic molecules against the Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules

    NASA Astrophysics Data System (ADS)

    Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao

    2017-07-01

    The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.

  8. A systematic approach for peptide characterization of B-cell receptor in chronic lymphocytic leukemia cells

    PubMed Central

    Díez, Paula; Ibarrola, Nieves; Dégano, Rosa M.; Lécrevisse, Quentin; Rodriguez-Caballero, Arancha; Criado, Ignacio; Nieto, Wendy G.; Góngora, Rafael; González, Marcos; Almeida, Julia; Orfao, Alberto; Fuentes, Manuel

    2017-01-01

    A wide variety of immunoglobulins (Ig) is produced by the immune system thanks to different mechanisms (V(D)J recombination, somatic hypermutation, and antigen selection). The profiling of Ig sequences (at both DNA and peptide levels) are of great relevance to developing targeted vaccines or treatments for specific diseases or infections. Thus, genomics and proteomics techniques (such as Next-Generation Sequencing (NGS) and mass spectrometry (MS)) have notably increased the knowledge in Ig sequencing and serum Ig peptide profiling in a high-throughput manner. However, the peptide characterization of membrane-bound Ig (e.g., B-cell receptors, BCR) is still a challenge mainly due to the poor recovery of mentioned Ig. Herein, we have evaluated three different sample processing methods for peptide sequencing of BCR belonging to chronic lymphocytic leukemia (CLL) B cells identifying up to 426 different peptide sequences (MS/MS data are available via ProteomeXchange with identifier PXD004466). Moreover, as a consequence of the results here obtained, recommended guidelines have been described for BCR-sequencing of B-CLL samples by MS approaches. For this purpose, an in–house algorithm has been designed and developed to compare the MS/MS results with those obtained by molecular biology in order to integrate both proteomics and genomics results and establish the steps to follow when sequencing membrane-bound Ig by MS/MS. PMID:28467808

  9. Bacteria-based in vivo peptide library screening using biopanning approach.

    PubMed

    Choi, Ji-Hyeon; Park, Sang-Hyun

    2011-10-01

    Traditionally, library screening has been performed to identify biologically active agents including small molecules or peptides that inhibit target proteins or molecules with therapeutic interests. Due to its chemical nature, library screening is usually performed under in vitro environments using purified proteins and molecules. However, active agents identified from in vitro screenings often fail to exhibit biological activities in cells. To overcome this inherent limitation, we have developed an in vivo peptide library screening system that allows for the identification of dissociative inhibitors of protein interactions of interest. The screening is based on the reconstitution of the cI repressor from bacteriophage lambda with high-density expression peptide library and is entirely performed in bacteria cells. Furthermore, to enhance the efficacy and sensitivity of the screening, a multiple-round biopanning approach was employed for amplification and enrichment of positive peptides. Overall, this in vivo screening should provide a fast and efficient tool for identification of biologically active peptide molecules against target protein assembly.

  10. Xilmass: A New Approach toward the Identification of Cross-Linked Peptides.

    PubMed

    Yılmaz, Şule; Drepper, Friedel; Hulstaert, Niels; Černič, Maša; Gevaert, Kris; Economou, Anastassios; Warscheid, Bettina; Martens, Lennart; Vandermarliere, Elien

    2016-10-18

    Chemical cross-linking coupled with mass spectrometry plays an important role in unravelling protein interactions, especially weak and transient ones. Moreover, cross-linking complements several structural determination approaches such as cryo-EM. Although several computational approaches are available for the annotation of spectra obtained from cross-linked peptides, there remains room for improvement. Here, we present Xilmass, a novel algorithm to identify cross-linked peptides that introduces two new concepts: (i) the cross-linked peptides are represented in the search database such that the cross-linking sites are explicitly encoded, and (ii) the scoring function derived from the Andromeda algorithm was adapted to score against a theoretical tandem mass spectrometry (MS/MS) spectrum that contains the peaks from all possible fragment ions of a cross-linked peptide pair. The performance of Xilmass was evaluated against the recently published Kojak and the popular pLink algorithms on a calmodulin-plectin complex data set, as well as three additional, published data sets. The results show that Xilmass typically had the highest number of identified distinct cross-linked sites and also the highest number of predicted cross-linked sites.

  11. A multi-state coarse grained modeling approach for an intrinsically disordered peptide.

    PubMed

    Ramezanghorbani, Farhad; Dalgicdir, Cahit; Sayar, Mehmet

    2017-09-07

    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LKα14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LKα14 is disordered in dilute solutions; however, it strictly adopts the α-helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an α-helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.

  12. A multi-state coarse grained modeling approach for an intrinsically disordered peptide

    NASA Astrophysics Data System (ADS)

    Ramezanghorbani, Farhad; Dalgicdir, Cahit; Sayar, Mehmet

    2017-09-01

    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LKα 14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LKα 14 is disordered in dilute solutions; however, it strictly adopts the α -helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an α -helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.

  13. A biomimetic approach for enhancing the in vivo half-life of peptides

    PubMed Central

    Penchala, Sravan C; Miller, Mark R; Pal, Arindom; Dong, Jin; Madadi, Nikhil R.; Xie, Jinghang; Joo, Hyun; Tsai, Jerry; Batoon, Patrick; Samoshin, Vyacheslav; Franz, Andreas; Cox, Trever; Miles, Jesse; Chan, William K; Park, Miki S; Alhamadsheh, Mamoun M

    2015-01-01

    The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy. PMID:26344696

  14. Towards large scale aligned carbon nanotube composites: an industrial safe-by-design and sustainable approach

    NASA Astrophysics Data System (ADS)

    Boulanger, P.; Belkadi, L.; Descarpentries, J.; Porterat, D.; Hibert, E.; Brouzes, A.; Mille, M.; Patel, S.; Pinault, M.; Reynaud, C.; Mayne-L'Hermite, M.; Decamps, J. M.

    2013-04-01

    We present the main results demonstrating the feasibility of high surface (> A4 format size) semi-industrial fabrication of composites embedding VACNT in organic matrices. The process of growing VACNT exhibits several advantages regarding safety issues: integrating de facto a safe collecting procedure on the substrate, avoiding additional preparation steps and simplifying handling and protection by impregnation into a matrix. The following steps of the overall process: VACNT carpet functionalization, alignment control and impregnation, can be processed on-line in a closed and safe continuous process and lead to dramatically reduced direct nanotube exposure for workers and users. This project opens the route to a continuous, roll-to-roll, safer, cost-effective and green industrial process to manufacture composites with controlled and aligned greener "black" carbon nanotubes.

  15. PRO_LIGAND: An approach to de novo molecular design. 4. Application to the design of peptides

    NASA Astrophysics Data System (ADS)

    Frenkel, David; Clark, David E.; Li, Jin; Murray, Christopher W.; Robson, Barry; Waszkowycz, Bohdan; Westhead, David R.

    1995-06-01

    In some instances, peptides can play an important role in the discovery of lead compounds. This paper describes the peptide design facility of the de novo drug design package, PRO_LIGAND. The package provides a unified framework for the design of peptides that are similar or complementary to a specified target. The approach uses single amino acid residues, selected from preconstructed libraries of different residues and conformations, and places them on top of predefined target interaction sites. This approach is a well-tested methodology for the design of organics but has not been used for peptides before. Peptides represent a difficulty because of their great conformational flexibility and a study of the advantages and disavantages of this simple approach is an important step in the development of design tools. After a description of our general approach, a more detailed discussion of its adaptation to peptides is given. The method is then applied to the design of peptide-based inhibitors to HIV-1 protease and the design of structural mimics of the surface region of lysozyme. The results are encouraging and point the way towards further development of interaction site-based approaches for peptide design.

  16. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics.

    PubMed

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-12-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro.

  17. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics

    PubMed Central

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-01-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579

  18. FTIR Studies of Collagen Model Peptides: Complementary Experimental and Simulation Approaches to Conformation and Unfolding

    PubMed Central

    Bryan, Michael A.; Brauner, Joseph W.; Anderle, Gloria; Flach, Carol R.; Brodsky, Barbara; Mendelsohn, Richard

    2008-01-01

    X-ray crystallography of collagen model peptides has provided high resolution structures of the basic triple-helical conformation and its water-mediated hydration network. Vibrational spectroscopy provides a useful bridge for transferring the structural information from x-ray diffraction to collagen in its native environment. The vibrational mode most useful for this purpose is the Amide I mode (mostly peptide bond C=O stretch) near 1650 cm−1. The current study refines and extends the range of utility of a novel simulation method that accurately predicts the IR Amide I spectral contour from the three dimensional structure of a protein or peptide. The approach is demonstrated through accurate simulation of the experimental Amide I contour in solution for both a standard triple-helix, (Pro-Pro-Gly)10, and a second peptide with a Gly → Ala substitution in the middle of the chain that models the effect of a mutation in the native collagen sequence. Monitoring the major Amide I peak as a function of temperature gives sharp thermal transitions for both peptides, similar to those obtained by circular dichroism spectroscopy, and the FTIR spectra of the unfolded states were compared with polyproline II. The simulation studies were extended to model early stages of thermal denaturation of (Pro-Pro-Gly)10. Dihedral angle changes suggested by molecular dynamics simulations were made in a stepwise fashion to generate peptide unwinding from each end, which emulates the effect of increasing temperature. Simulated bands from these new structures were then compared to the experimental bands obtained as temperature was increased. The similarity between the simulated and experimental IR spectra lends credence to the simulation method, and paves the way for a variety of applications. PMID:17550251

  19. MetaMHCpan, A Meta Approach for Pan-Specific MHC Peptide Binding Prediction.

    PubMed

    Xu, Yichang; Luo, Cheng; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info .

  20. Polyoxometalate clusters integrated into peptide chains and as inorganic amino acids: solution- and solid-phase approaches.

    PubMed

    Yvon, Carine; Surman, Andrew J; Hutin, Marie; Alex, Jennifer; Smith, Brian O; Long, De-Liang; Cronin, Leroy

    2014-03-24

    General synthetic methods for the grafting of peptide chains onto polyoxometalate clusters by the use of general activated precursors have been developed. Using a solution-phase approach, pre-synthesized peptides can be grafted to a metal oxide cluster to produce hybrids of unprecedented scale (up to 30 residues). An adapted solid-phase method allows the incorporation of these clusters, which may be regarded as novel hybrid unnatural amino acids, during the peptide synthesis itself. These methods may open the way for the automated synthesis of peptides and perhaps even proteins that contain "inorganic" amino acids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening.

    PubMed

    Pierri, Ciro Leonardo; Parisi, Giovanni; Porcelli, Vito

    2010-09-01

    The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein-ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.

  2. BigBWA: approaching the Burrows-Wheeler aligner to Big Data technologies.

    PubMed

    Abuín, José M; Pichel, Juan C; Pena, Tomás F; Amigo, Jorge

    2015-12-15

    BigBWA is a new tool that uses the Big Data technology Hadoop to boost the performance of the Burrows-Wheeler aligner (BWA). Important reductions in the execution times were observed when using this tool. In addition, BigBWA is fault tolerant and it does not require any modification of the original BWA source code. BigBWA is available at the project GitHub repository: https://github.com/citiususc/BigBWA. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. An R-matrix approach to electron-photon-molecule collisions: photoelectron angular distributions from aligned molecules

    NASA Astrophysics Data System (ADS)

    Harvey, Alex G.; Brambila, Danilo S.; Morales, Felipe; Smirnova, Olga

    2014-11-01

    We present a new extension of the UKRmol electron-molecule scattering code suite, which allows one to compute ab initio photoionization and photorecombination amplitudes for complex molecules, resolved both on the molecular alignment (orientation) and the emission angle and energy of the photoelectron. We illustrate our approach using CO2 as an example, and analyze the importance of multi-channel effects by performing our calculations at different, increasing levels of complexity. We benchmark our method by comparing the results of our calculations with experimental data and with theoretical calculations available in the literature.

  4. Transparent aligners: An invisible approach to correct mild skeletal class III malocclusion

    PubMed Central

    Yezdani, A. Arif

    2015-01-01

    This case report highlights the treatment of a mild skeletal class III malocclusion with an invisible thermoplastic retainer. A 15-year-old female patient presented with a mild skeletal class III malocclusion with a retrognathic maxilla, orthognathic mandible, a low mandibular plane angle with Angle's class III malocclusion with maxillary lateral incisors in anterior cross-bite with crowding of maxillary anteriors, imbricated and rotated mandibular incisors and deep bite. Accurate upper and lower impressions and a bite registration were taken with polyvinyl siloxane rubber base impression material. This was then sent to the lab for the processing of a series of ClearPath aligners. The ClearPath virtual set-up sent from the lab provided the treatment plan and interproximal reduction estimation complete with posttreatment results. This enabled the clinician to actively participate in the treatment plan and provide the necessary suggestions. The ClearPath three-dimensional aligner was found to have effectively corrected the anterior cross-bite and crowding of the maxillary anteriors. PMID:26015738

  5. A bioinformatics approach to identify patients with symptomatic peanut allergy using peptide microarray immunoassay.

    PubMed

    Lin, Jing; Bruni, Francesca M; Fu, Zhiyan; Maloney, Jennifer; Bardina, Ludmilla; Boner, Attilio L; Gimenez, Gustavo; Sampson, Hugh A

    2012-05-01

    Peanut allergy is relatively common, typically permanent, and often severe. Double-blind, placebo-controlled food challenge is considered the gold standard for the diagnosis of food allergy-related disorders. However, the complexity and potential of double-blind, placebo-controlled food challenge to cause life-threatening allergic reactions affects its clinical application. A laboratory test that could accurately diagnose symptomatic peanut allergy would greatly facilitate clinical practice. We sought to develop an allergy diagnostic method that could correctly predict symptomatic peanut allergy by using peptide microarray immunoassays and bioinformatic methods. Microarray immunoassays were performed by using the sera from 62 patients (31 with symptomatic peanut allergy and 31 who had outgrown their peanut allergy or were sensitized but were clinically tolerant to peanut). Specific IgE and IgG(4) binding to 419 overlapping peptides (15 mers, 3 offset) covering the amino acid sequences of Ara h 1, Ara h 2, and Ara h 3 were measured by using a peptide microarray immunoassay. Bioinformatic methods were applied for data analysis. Individuals with peanut allergy showed significantly greater IgE binding and broader epitope diversity than did peanut-tolerant individuals. No significant difference in IgG(4) binding was found between groups. By using machine learning methods, 4 peptide biomarkers were identified and prediction models that can predict the outcome of double-blind, placebo-controlled food challenges with high accuracy were developed by using a combination of the biomarkers. In this study, we developed a novel diagnostic approach that can predict peanut allergy with high accuracy by combining the results of a peptide microarray immunoassay and bioinformatic methods. Further studies are needed to validate the efficacy of this assay in clinical practice. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights

  6. Computational Amide I Spectroscopy for Refinement of Disordered Peptide Ensembles: Maximum Entropy and Related Approaches

    NASA Astrophysics Data System (ADS)

    Reppert, Michael; Tokmakoff, Andrei

    The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.

  7. Peptide Hydration Phenomena through a Combined Quantum Chemical and Bottom-Up Approach

    NASA Astrophysics Data System (ADS)

    Lanza, Giuseppe; Chiacchio, Maria Assunta

    2016-09-01

    The M06-2X, TPSS, and B3PW91 density functionals and the classical ab initio MP2 method were used to study microsolvation around the protonated trialanine, Ala3H+. All adopted electronic structure approaches show the formation of wires or compact ring clusters of water molecules strongly bonded to peptidic polar groups through hydrogen bonds with hydration energy ranging from - 93 to -66 kcal mol-1. Independently from the adopted electronic structure methods, explicit water molecules favor peptidic chain with the polyproline II (PPII) conformation, thus the electronic energy stability order of the four unfolded conformers follows the sequence: PPII-PPII > β-PPII ˜ PPII-β > β-β, while entropy favors the reversed order. The delicate balance of electronic energy (or enthalpy) and entropy modulated by the temperature accounts for the change in abundance of the PPII and β conformations experimentally observed. The proposed bottom-up approach has been developed following the energetically dominant polar groups of peptide and water dipoles interactions. The intrapeptide dipole decoupling, caused by the β → PPII transformation, and the consequent greater dipole coupling with water molecules provide a rational base to explain the energy gain due to the explicit water coordination to PPII residues.

  8. A novel approach for the chromatographic purification and peptide mass fingerprinting of urinary free light chains.

    PubMed

    Mali, Bhupesh C; Badgujar, Shamkant B; Shukla, Kunal K; Bhanushali, Paresh B

    2017-02-01

    We describe a chromatographic approach for the purification of urinary free light chains (FLCs) viz., lambda free light chains (λ-FLCs) and kappa free light chains (κ-FLCs). Isolated urinary FLCs were analyzed by SDS-PAGE, immunoblotting and mass spectrometry (MS). The relative molecular masses of λ-FLC and κ-FLC are 22,933.397 and 23,544.336Da respectively. Moreover, dimer forms of each FLC were also detected in mass spectrum which corresponds to 45,737.747 and 47,348.028Da respectively for λ-FLCs and κ-FLCs. Peptide mass fingerprint analysis of the purified λ-FLCs and κ-FLCs has yielded peptides that partially match with known light chain sequences viz., gi|218783338 and gi|48475432 respectively. The tryptic digestion profile of isolated FLCs infers the exclusive nature of them and they may be additive molecules in the dictionary of urinary proteins. This is the first report of characterization and validation of FLCs from large volume samples by peptide sequencing. This simple and cost-effective approach to purification of FLCs, together with the easy availability of urine samples make the large-scale production of FLCs possible, allowing exploration of various bioclinical as well as biodiagnostic applications.

  9. IBBOMSA: An Improved Biogeography-based Approach for Multiple Sequence Alignment

    PubMed Central

    Yadav, Rohit Kumar; Banka, Haider

    2016-01-01

    In bioinformatics, multiple sequence alignment (MSA) is an NP-hard problem. Hence, nature-inspired techniques can better approximate the solution. In the current study, a novel biogeography-based optimization (NBBO) is proposed to solve an MSA problem. The biogeography-based optimization (BBO) is a new paradigm for optimization. But, there exists some deficiencies in solving complicated problems such as low population diversity and slow convergence rate. NBBO is an enhanced version of BBO, in which, a new migration operation is proposed to overcome the limitations of BBO. The new migration adopts more information from other habitats, maintains population diversity, and preserves exploitation ability. In the performance analysis, the proposed and existing techniques such as VDGA, MOMSA, and GAPAM are tested on publicly available benchmark datasets (ie, Bali base). It has been observed that the proposed method shows the superiority/competitiveness with the existing techniques. PMID:27812276

  10. IBBOMSA: An Improved Biogeography-based Approach for Multiple Sequence Alignment.

    PubMed

    Yadav, Rohit Kumar; Banka, Haider

    2016-01-01

    In bioinformatics, multiple sequence alignment (MSA) is an NP-hard problem. Hence, nature-inspired techniques can better approximate the solution. In the current study, a novel biogeography-based optimization (NBBO) is proposed to solve an MSA problem. The biogeography-based optimization (BBO) is a new paradigm for optimization. But, there exists some deficiencies in solving complicated problems such as low population diversity and slow convergence rate. NBBO is an enhanced version of BBO, in which, a new migration operation is proposed to overcome the limitations of BBO. The new migration adopts more information from other habitats, maintains population diversity, and preserves exploitation ability. In the performance analysis, the proposed and existing techniques such as VDGA, MOMSA, and GAPAM are tested on publicly available benchmark datasets (ie, Bali base). It has been observed that the proposed method shows the superiority/competitiveness with the existing techniques.

  11. Combined Systems Approaches Reveal Highly Plastic Responses to Antimicrobial Peptide Challenge in Escherichia coli

    PubMed Central

    Kozlowska, Justyna; Vermeer, Louic S.; Rogers, Geraint B.; Rehnnuma, Nabila; Amos, Sarah-Beth T. A.; Koller, Garrit; McArthur, Michael; Bruce, Kenneth D.; Mason, A. James

    2014-01-01

    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies. PMID:24789011

  12. A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling.

    PubMed

    Spokoyny, Alexander M; Zou, Yekui; Ling, Jingjing J; Yu, Hongtao; Lin, Yu-Shan; Pentelute, Bradley L

    2013-04-24

    We report the discovery of a facile transformation between perfluoroaromatic molecules and a cysteine thiolate, which is arylated at room temperature. This new approach enabled us to selectively modify cysteine residues in unprotected peptides, providing access to variants containing rigid perfluoroaromatic staples. This stapling modification performed on a peptide sequence designed to bind the C-terminal domain of an HIV-1 capsid assembly polyprotein (C-CA) showed enhancement in binding, cell permeability, and proteolytic stability properties, as compared to the unstapled analog. Importantly, chemical stability of the formed staples allowed us to use this motif in the native chemical ligation-mediated synthesis of a small protein affibody that is capable of binding the human epidermal growth factor 2 receptor.

  13. Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli.

    PubMed

    Kozlowska, Justyna; Vermeer, Louic S; Rogers, Geraint B; Rehnnuma, Nabila; Amos, Sarah-Beth T A; Koller, Garrit; McArthur, Michael; Bruce, Kenneth D; Mason, A James

    2014-05-01

    Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for previous functional and biophysical studies.

  14. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence

    PubMed Central

    Novoseletsky, V. N.; Volyntseva, A. D.; Shaitan, K. V.; Kirpichnikov, M. P.; Feofanov, A. V.

    2016-01-01

    Modeling of the structure of voltage-gated potassium (KV) channels bound to peptide blockers aims to identify the key amino acid residues dictating affinity and provide insights into the toxin-channel interface. Computational approaches open up possibilities for in silico rational design of selective blockers, new molecular tools to study the cellular distribution and functional roles of potassium channels. It is anticipated that optimized blockers will advance the development of drugs that reduce over activation of potassium channels and attenuate the associated malfunction. Starting with an overview of the recent advances in computational simulation strategies to predict the bound state orientations of peptide pore blockers relative to KV-channels, we go on to review algorithms for the analysis of intermolecular interactions, and then take a look at the results of their application. PMID:27437138

  15. Identification and characterization of Aβ peptide interactors in Alzheimer’s disease by structural approaches

    PubMed Central

    Philibert, Keith D.; Marr, Robert A.; Norstrom, Eric M.; Glucksman, Marc J.

    2014-01-01

    Currently, there are very limited pharmaceutical interventions for Alzheimer’s disease (AD) to alleviate the amyloid burden implicated in the pathophysiology of the disease. Alzheimer’s disease is characterized immunohistologically by the accumulation of senile plaques in the brain with afflicted patients progressively losing short-term memory and, ultimately, cognition. Although significant improvements in clinical diagnosis and care for AD patients have been made, effective treatments for this devastating disease remain elusive. A key component of the amyloid burden of AD comes from accumulation of the amyloid-beta (Aβ) peptide which comes from processing of the amyloid precursor protein (APP) by enzymes termed secretases, leading to production of these toxic Aβ peptides of 40–42 amino acids. New therapeutic approaches for reducing Aβ are warranted after the most logical avenues of inhibiting secretase activity appear less than optimal in ameliorating the progression of AD.Novel therapeutics may be gleaned from proteomics biomarker initiatives to yield detailed molecular interactions of enzymes and their potential substrates. Explicating the APPome by deciphering protein complexes forming in cells is a complementary approach to unveil novel molecular interactions with the amyloidogenic peptide precursor to both understand the biology and develop potential upstream drug targets. Utilizing these strategies we have identified EC 3.4.24.15 (EP24.15), a zinc metalloprotease related to neprilysin (NEP), with the ability to catabolize Aβ 1–42 by examining first potential in silico docking and then verification by mass spectrometry. In addition, a hormone carrier protein, transthyreitin (TTR), was identified and with its abundance in cerebrospinal fluid (CSF), found to clear Aβ by inhibiting formation of oligomeric forms of Aβ peptide. The confluence of complementary strategies may allow new therapeutic avenues as well as biomarkers for AD that will aid in

  16. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    PubMed Central

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-01-01

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa. PMID:27104567

  17. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins.

    PubMed

    Verdes, Aida; Anand, Prachi; Gorson, Juliette; Jannetti, Stephen; Kelly, Patrick; Leffler, Abba; Simpson, Danny; Ramrattan, Girish; Holford, Mandë

    2016-04-19

    Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.

  18. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    PubMed Central

    Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813

  19. RNAMotifScanX: a graph alignment approach for RNA structural motif identification.

    PubMed

    Zhong, Cuncong; Zhang, Shaojie

    2015-03-01

    RNA structural motifs are recurrent three-dimensional (3D) components found in the RNA architecture. These RNA structural motifs play important structural or functional roles and usually exhibit highly conserved 3D geometries and base-interaction patterns. Analysis of the RNA 3D structures and elucidation of their molecular functions heavily rely on efficient and accurate identification of these motifs. However, efficient RNA structural motif search tools are lacking due to the high complexity of these motifs. In this work, we present RNAMotifScanX, a motif search tool based on a base-interaction graph alignment algorithm. This novel algorithm enables automatic identification of both partially and fully matched motif instances. RNAMotifScanX considers noncanonical base-pairing interactions, base-stacking interactions, and sequence conservation of the motifs, which leads to significantly improved sensitivity and specificity as compared with other state-of-the-art search tools. RNAMotifScanX also adopts a carefully designed branch-and-bound technique, which enables ultra-fast search of large kink-turn motifs against a 23S rRNA. The software package RNAMotifScanX is implemented using GNU C++, and is freely available from http://genome.ucf.edu/RNAMotifScanX. © 2015 Zhong and Zhang; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley

    2012-01-01

    A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.

  1. Aligning goals, assessments, and activities: an approach to teaching PCR and gel electrophoresis.

    PubMed

    Phillips, Allison R; Robertson, Amber L; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions.

  2. Approaches to identify endogenous peptides in the soil nematode Caenorhabditis elegans.

    PubMed

    Husson, Steven J; Clynen, Elke; Boonen, Kurt; Janssen, Tom; Lindemans, Marleen; Baggerman, Geert; Schoofs, Liliane

    2010-01-01

    The transparent soil nematode Caenorhabditis elegans can be considered an important model organism due to its ease of cultivation, suitability for high-throughput genetic screens, and extremely well-defined anatomy. C. elegans contains exactly 959 cells that are ordered in defined differentiated tissues. Although C. elegans only possesses 302 neurons, a large number of similarities among the neuropeptidergic signaling pathways can be observed with other metazoans. Neuropeptides are important messenger molecules that regulate a wide variety of physiological processes. These peptidergic signaling molecules can therefore be considered important drug targets or biomarkers. Neuropeptide signaling is in the nanomolar range, and biochemical elucidation of individual peptide sequences in the past without the genomic information was challenging. Since the rise of many genome-sequencing projects and the significant boost of mass spectrometry instrumentation, many hyphenated techniques can be used to explore the "peptidome" of individual species, organs, or even cell cultures. The peptidomic approach aims to identify endogenously present (neuro)peptides by using liquid chromatography and mass spectrometry in a high-throughput way. Here we outline the basic procedures for the maintenance of C. elegans nematodes and describe in detail the peptide extraction procedures. Two peptidomics strategies (off-line HPLC-MALDI-TOF MS and on-line 2D-nanoLC-Q-TOF MS/MS) and the necessary instrumentation are described.

  3. Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

    SciTech Connect

    Shuang Liu

    2012-10-24

    This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition of G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.

  4. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines.

    PubMed

    Nandy, Ashesh; Basak, Subhash C

    2016-05-04

    The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development.

  5. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines

    PubMed Central

    Nandy, Ashesh; Basak, Subhash C.

    2016-01-01

    The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development. PMID:27153063

  6. Immobilization of RGD peptide on HA coating through a chemical bonding approach.

    PubMed

    Yang, Chunli; Cheng, Kui; Weng, Wenjian; Yang, Chunyu

    2009-11-01

    In this work, Arg-Gly-Asp (RGD) sequence containing peptide was immobilized on hydroxyapatite (HA) coatings through a chemical bonding approach in two steps, surface modification with 3-aminopropyltriethoxysilane (APTES) and RGD immobilization. The results indicate that RGD has been successfully immobilized on HA coatings. Comparing with physical adsorption coatings, the chemically bonded RGD on the coatings shows much better anti-wash-out ability. Since RGD is able to recognize cell-membrane integrins on biointerfaces, the present method will be an effective way to favor interaction of cells with HA coatings.

  7. An Umpolung Approach for the Chemoselective Arylation of Selenocysteine in Unprotected Peptides

    PubMed Central

    2016-01-01

    Herein we report an umpolung strategy for the bioconjugation of selenocysteine in unprotected peptides. This mild and operationally simple approach takes advantage of the electrophilic character of an oxidized selenocysteine (Se–S bond) to react with a nucleophilic arylboronic acid to provide the arylated selenocysteine within hours. This reaction is amenable to a wide range of boronic acids with different biorelevant functional groups and is unique to selenocysteine. Experimental evidence indicates that under oxidative conditions the arylated derivatives are more stable than the corresponding alkylated selenocysteine. PMID:26225900

  8. Innovative scatterometry approach for self-aligned quadruple patterning (SAQP) process control

    NASA Astrophysics Data System (ADS)

    Gunay-Demirkol, Anil; Altamirano Sanchez, Efrain; Heraud, Stephane; Godny, Stephane; Charley, Anne-Laure; Leray, Philippe; Urenski, Ronen; Cohen, Oded; Turovets, Igor; Wolfling, Shay

    2016-03-01

    In this work, capabilities of scatterometry at various steps of the self-aligned quadruple patterning (SAQP) process flow for 7nm (N7) technology node are demonstrated including the pitch walk measurement on the final fin etch step. The scatterometry solutions for each step are verified using reference metrology and the capability to follow the planned process design-of-experiment (DOE) and the sensitivity to catch the small process variations are demonstrated. Pitch walk, which is pitch variation in the four line/space (L/S) populations, is one of the main process challenges for SAQP. Scatterometry, which is a versatile optical technique for critical dimensions (CD) and shape metrology, can find the direct measurement of pitch walk challenging because it is a very weak parameter. In this work, the pitch walk measurement is managed via scatterometry using an advanced technique of parallel interpretation of scatterometry pads with varying pitches. The three populations of trenches could be clearly distinguished with the scatterometry and the consistency with the reference data and with the process DOE are presented. In addition, the root cause of the within-wafer non-uniformity of fin CD is determined. The measurements were done on-site at IMEC as a part of the process development and control of the IMEC SAQP processes [1]. All in all, in this work it is demonstrated that scatterometry is capable of monitoring each process step of FEOL SAQP and it can measure three different space populations separately and extract pitch walk information at the final fin etch step.

  9. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction.

    PubMed

    Shen, Yimin; Maupetit, Julien; Derreumaux, Philippe; Tufféry, Pierre

    2014-10-14

    Peptides and mini proteins have many biological and biomedical implications, which motivates the development of accurate methods, suitable for large-scale experiments, to predict their experimental or native conformations solely from sequences. In this study, we report PEP-FOLD2, an improved coarse grained approach for peptide de novo structure prediction and compare it with PEP-FOLD1 and the state-of-the-art Rosetta program. Using a benchmark of 56 structurally diverse peptides with 25-52 amino acids and a total of 600 simulations for each system, PEP-FOLD2 generates higher quality models than PEP-FOLD1, and PEP-FOLD2 and Rosetta generate near-native or native models for 95% and 88% of the targets, respectively. In the situation where we do not have any experimental structures at hand, PEP-FOLD2 and Rosetta return a near-native or native conformation among the top five best scored models for 80% and 75% of the targets, respectively. While the PEP-FOLD2 prediction rate is better than the ROSETTA prediction rate by 5%, this improvement is non-negligible because PEP-FOLD2 explores a larger conformational space than ROSETTA and consists of a single coarse-grained phase. Our results indicate that if the coarse-grained PEP-FOLD2 method is approaching maturity, we are not at the end of the game of mini-protein structure prediction, but this opens new perspectives for large-scale in silico experiments.

  10. Chemically-Modified Peptides Targeting the PDZ Domain of GIPC as a Therapeutic Approach for Cancer

    PubMed Central

    Patra, Chitta Ranjan; Rupasinghe, Chamila N.; Dutta, Shamit K; Bhattacharya, Santanu; Wang, Enfeng; Spaller, Mark R.; Mukhopadhyay, Debabrata

    2012-01-01

    GIPC (GAIP-interacting protein, C terminus) represents a new target class for the discovery of chemotherapeutics. While many of the current generation of anticancer agents function by directly binding to intracellular kinases or cell surface receptors, the disruption of cytosolic protein-protein interactions mediated by non-enzymatic domains is an underdeveloped avenue for inhibiting cancer growth. One such example is the PDZ domain of GIPC. Previously we developed a molecular probe, the cell permeable octapeptide CR1023 (N-myristoyl-PSQSSSEA), which diminished proliferation of pancreatic cancer cells. We have expanded upon that discovery using a chemical modification approach, and here report a series of cell permeable, side chain-modified lipopeptides that target the GIPC PDZ domain in vitro and in vivo. These peptides exhibit significant activity against pancreatic and breast cancers, both in vitro and in animal models. CR1166 (N-myristoyl-PSQSK(εN-4-bromobenzoyl)SK(εN-4-bromobenzoyl)A), bearing two halogenated aromatic units on alternate side chains, was found to be the most active compound, with pronounced down-regulation of EGFR/1GF-1R expression. We hypothesize that these organic acid-modified residues extend the productive reach of the peptide beyond the canonical binding pocket, which defines the limit of accessibility for the native proteinogenic sequences that the PDZ domain has evolved to recognize. Cell permeability is achieved with N-terminal lipidation using myristate, rather than a larger CPP (cell-penetrating peptide) sequence. This, in conjunction with optimization of targeting through side chain modification, has yielded an approach that will allow the discovery and development of next-generation cellular probes for GIPC PDZ as well as other PDZ domains. PMID:22292614

  11. Chemically modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer.

    PubMed

    Patra, Chitta Ranjan; Rupasinghe, Chamila N; Dutta, Shamit K; Bhattacharya, Santanu; Wang, Enfeng; Spaller, Mark R; Mukhopadhyay, Debabrata

    2012-04-20

    GIPC (GAIP-interacting protein, C terminus) represents a new target class for the discovery of chemotherapeutics. While many of the current generation of anticancer agents function by directly binding to intracellular kinases or cell surface receptors, the disruption of cytosolic protein-protein interactions mediated by non-enzymatic domains is an underdeveloped avenue for inhibiting cancer growth. One such example is the PDZ domain of GIPC. Previously we developed a molecular probe, the cell-permeable octapeptide CR1023 (N-myristoyl-PSQSSSEA), which diminished proliferation of pancreatic cancer cells. We have expanded upon that discovery using a chemical modification approach and here report a series of cell-permeable, side chain-modified lipopeptides that target the GIPC PDZ domain in vitro and in vivo. These peptides exhibit significant activity against pancreatic and breast cancers, both in cellular and animal models. CR1166 (N-myristoyl-PSQSK(εN-4-bromobenzoyl)SK(εN-4-bromobenzoyl)A), bearing two halogenated aromatic units on alternate side chains, was found to be the most active compound, with pronounced down-regulation of EGFR/1GF-1R expression. We hypothesize that these organic acid-modified residues extend the productive reach of the peptide beyond the canonical binding pocket, which defines the limit of accessibility for the native proteinogenic sequences that the PDZ domain has evolved to recognize. Cell permeability is achieved with N-terminal lipidation using myristate, rather than a larger CPP (cell-penetrating peptide) sequence. This, in conjunction with optimization of targeting through side chain modification, has yielded an approach that will allow the discovery and development of next-generation cellular probes for GIPC PDZ as well as for other PDZ domains.

  12. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.

  13. Analysis of the distributed computing approach applied to the folding of a small beta peptide.

    PubMed

    Paci, Emanuele; Cavalli, Andrea; Vendruscolo, Michele; Caflisch, Amedeo

    2003-07-08

    In the recently proposed distributed computing approach to protein folding a very large number of short independent simulations is performed. Using this method, folding events on a time scale orders of magnitude shorter than the experimental one have been reported. However, it has also been observed that the folding process is not an elementary kinetic step and that the presence of initial lag phases can bias short simulations toward atypical pathways. We study here a 20-residue three-stranded antiparallel beta-sheet peptide whose equilibrium properties can be characterized by atomistic molecular dynamics simulations. We found that the folding rate of this peptide is estimated correctly by the distributed computing approach when trajectories > approximately 1/100 of the equilibrium folding time are considered. We also found that the fastest folding events occur through high-energy pathways, which are unlikely under equilibrium conditions. These very fast folding pathways do not relax within the equilibrium denatured state that is stabilized by the transient presence of both native and non-native interactions, and they are characterized by the nearly simultaneous formation of the two beta-hairpins and a very small number of non-native contacts.

  14. Structural re-alignment in an immunologic surface region of ricin A chain

    SciTech Connect

    Zemla, A T; Zhou, C E

    2007-07-24

    We compared structure alignments generated by several protein structure comparison programs to determine whether existing methods would satisfactorily align residues at a highly conserved position within an immunogenic loop in ribosome inactivating proteins (RIPs). Using default settings, structure alignments generated by several programs (CE, DaliLite, FATCAT, LGA, MAMMOTH, MATRAS, SHEBA, SSM) failed to align the respective conserved residues, although LGA reported correct residue-residue (R-R) correspondences when the beta-carbon (Cb) position was used as the point of reference in the alignment calculations. Further tests using variable points of reference indicated that points distal from the beta carbon along a vector connecting the alpha and beta carbons yielded rigid structural alignments in which residues known to be highly conserved in RIPs were reported as corresponding residues in structural comparisons between ricin A chain, abrin-A, and other RIPs. Results suggest that approaches to structure alignment employing alternate point representations corresponding to side chain position may yield structure alignments that are more consistent with observed conservation of functional surface residues than do standard alignment programs, which apply uniform criteria for alignment (i.e., alpha carbon (Ca) as point of reference) along the entirety of the peptide chain. We present the results of tests that suggest the utility of allowing user-specified points of reference in generating alternate structural alignments, and we present a web server for automatically generating such alignments.

  15. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-06-13

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  16. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-09-27

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  17. Aligning physical elements with persons' attitude: an approach using Rasch measurement theory

    NASA Astrophysics Data System (ADS)

    Camargo, F. R.; Henson, B.

    2013-09-01

    Affective engineering uses mathematical models to convert the information obtained from persons' attitude to physical elements into an ergonomic design. However, applications in the domain have not in many cases met measurement assumptions. This paper proposes a novel approach based on Rasch measurement theory to overcome the problem. The research demonstrates that if data fit the model, further variables can be added to a scale. An empirical study was designed to determine the range of compliance where consumers could obtain an impression of a moisturizer cream when touching some product containers. Persons, variables and stimulus objects were parameterised independently on a linear continuum. The results showed that a calibrated scale preserves comparability although incorporating further variables.

  18. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.

    PubMed Central

    Mattila, K; Kinder, R; Bechinger, B

    1999-01-01

    The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the first internal repeat of the rat brain II sodium channel was investigated in the presence of DPC micelles by multidimensional solution NMR spectroscopy and solid-state NMR spectroscopy on oriented phospholipid bilayers. Both the anisotropic chemical shift observed by proton-decoupled (15)N solid-state NMR spectroscopy and the attenuating effects of DOXYL-stearates on TOCSY crosspeak intensities of micelle-associated S4 indicate that the central alpha-helical portion of this peptide is oriented approximately parallel to the membrane surface. Simulated annealing and molecular dynamics calculations of the peptide in a biphasic tetrachloromethane-water environment indicate that the peptide alpha-helix extends over approximately 12 residues. A less regular structure further toward the C-terminus allows for the hydrophobic residues of this part of the peptide to be positioned in the tetrachloromethane environment. The implications for possible pore-forming mechanisms are discussed. PMID:10512830

  19. Modulation of fibril formation by a beta-sheet breaker peptide ligand: an electrochemical approach.

    PubMed

    Veloso, Anthony J; Kerman, Kagan

    2012-04-01

    The development of generic inhibitors in order to control the formation of amyloid fibrils and early oligomers is still an unmet medical need. Here, we demonstrate the applicability of electrochemical analysis for the detection of β-sheet breaker peptide ligands that act as excellent inhibitors of Alzheimer's disease (AD) amyloid-β (Aβ) fibrils and oligomers in vitro. As the case study, a well-defined β-sheet breaker pentapeptide (LPFFD, FibIII) was utilized with Aβ(1-42) peptides. Square wave voltammetry (SWV) measurements were confirmed with simultaneous fluorescence analysis of the same incubated Aβ samples using a well-known fluorescent marker of β-sheet formation, Thioflavin T (ThT). Significant changes in the electrochemical signals were observed for the interaction of the Aβ oligomers with FibIII at the early stages of aggregation. The electrochemical approach, in principle, allowed monitoring β-sheet breaker-Aβ interactions on the time scale of aggregation in a label-free and cost-effective format using screen-printed carbon strip (SPCS) electrodes. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Peptidomic approach identifies cruzioseptins, a new family of potent antimicrobial peptides in the splendid leaf frog, Cruziohyla calcarifer.

    PubMed

    Proaño-Bolaños, Carolina; Zhou, Mei; Wang, Lei; Coloma, Luis A; Chen, Tianbao; Shaw, Chris

    2016-09-02

    Phyllomedusine frogs are an extraordinary source of biologically active peptides. At least 8 families of antimicrobial peptides have been reported in this frog clade, the dermaseptins being the most diverse. By a peptidomic approach, integrating molecular cloning, Edman degradation sequencing and tandem mass spectrometry, a new family of antimicrobial peptides has been identified in Cruziohyla calcarifer. These 15 novel antimicrobial peptides of 20-32 residues in length are named cruzioseptins. They are characterized by having a unique shared N-terminal sequence GFLD- and the sequence motifs -VALGAVSK- or -GKAAL(N/G/S) (V/A)V- in the middle of the peptide. Cruzioseptins have a broad spectrum of antimicrobial activity and low haemolytic effect. The most potent cruzioseptin was CZS-1 that had a MIC of 3.77μM against the Gram positive bacterium, Staphylococcus aureus and the yeast Candida albicans. In contrast, CZS-1 was 3-fold less potent against the Gram negative bacterium, Escherichia coli (MIC 15.11μM). CZS-1 reached 100% haemolysis at 120.87μM. Skin secretions from unexplored species such as C. calcarifer continue to demonstrate the enormous molecular diversity hidden in the amphibian skin. Some of these novel peptides may provide lead structures for the development of a new class of antibiotics and antifungals of therapeutic use. Through the combination of molecular cloning, Edman degradation sequencing, tandem mass spectrometry and MALDI-TOF MS we have identified a new family of 15 antimicrobial peptides in the skin secretion of Cruziohyla calcarifer. The novel family is named "Cruzioseptins" and contains cationic amphipathic peptides of 20-32 residues. They have a broad range of antimicrobial activity that also includes effective antifungals with low haemolytic activity. Therefore, C. calcarifer has proven to be a rich source of novel peptides, which could become leading structures for the development of novel antibiotics and antifungals of clinical

  1. On the co-alignment of solar telescopes. A new approach to solar pointing

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2013-06-01

    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5" per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5" - 1.0" per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.

  2. Designing new surfactant peptides for binding to carbon nanotubes via computational approaches.

    PubMed

    Mansouri, Alireza; Mahnam, Karim

    2017-03-14

    The non-covalent interaction between single-walled carbon nanotube and surfactant peptides makes them soluble in biological media to be used in nano-medicine, drug delivery and gene therapy. Pervious study has shown that two important parameters in binding peptides into nanotubes are hydrophobic effect and the number of aromatic amino acids. Ten surfactant peptides with the length of eight residue, including Lys, Trp, Tyr, Phe and Val, were designed to investigate the important parameters in binding peptides to a (6, 6) carbon nanotube. 500ns MD simulation was performed for free surfactant peptides in water or near to a nanotube. Our results have indicated that the binding affinity of peptides to nanotube increases with the increase of aromatic residue content. Also, among aromatic residues, the peptides containing Trp residues have higher binding affinity to nanotube compared to the peptides with Phe or Tyr residue. Steric hindrance between bulky aromatic residues in peptide sequence has negative influence in binding peptide to nanotube, and in designing a surfactant peptide, the number and distance of aromatic residue and polarity of them should be taken into account. Our results also show that in docking peptides to nanotube, full-flexible docking leads to incorrect results.

  3. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry.

    PubMed

    Ji, Ji; Nie, Lei; Qiao, Liang; Li, Yixin; Guo, Liping; Liu, Baohong; Yang, Pengyuan; Girault, Hubert H

    2012-08-07

    A versatile microreactor protocol based on microfluidic droplets has been developed for on-line protein digestion. Proteins separated by liquid chromatography are fractionated in water-in-oil droplets and digested in sequence. The microfluidic reactor acts also as an electrospray ionization emitter for mass spectrometry analysis of the peptides produced in the individual droplets. Each droplet is an enzymatic micro-reaction unit with efficient proteolysis due to rapid mixing, enhanced mass transfer and automated handling. This droplet approach eliminates sample loss, cross-contamination, non-specific absorption and memory effect. A protein mixture was successfully identified using the droplet-based micro-reactor as interface between reverse phase liquid chromatography and mass spectrometry.

  4. Improving the Robustness of Local Network Alignment: Design and Extensive Assessment of a Markov Clustering-Based Approach.

    PubMed

    Mina, Marco; Guzzi, Pietro Hiram

    2014-01-01

    The analysis of protein behavior at the network level had been applied to elucidate the mechanisms of protein interaction that are similar in different species. Published network alignment algorithms proved to be able to recapitulate known conserved modules and protein complexes, and infer new conserved interactions confirmed by wet lab experiments. In the meantime, however, a plethora of continuously evolving protein-protein interaction (PPI) data sets have been developed, each featuring different levels of completeness and reliability. For instance, algorithms performance may vary significantly when changing the data set used in their assessment. Moreover, existing papers did not deeply investigate the robustness of alignment algorithms. For instance, some algorithms performances vary significantly when changing the data set used in their assessment. In this work, we design an extensive assessment of current algorithms discussing the robustness of the results on the basis of input networks. We also present AlignMCL, a local network alignment algorithm based on an improved model of alignment graph and Markov Clustering. AlignMCL performs better than other state-of-the-art local alignment algorithms over different updated data sets. In addition, AlignMCL features high levels of robustness, producing similar results regardless the selected data set.

  5. Comparison of 2d and 3d Approaches for the Alignment of Uav and LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Persad, R. A.; Armenakis, C.

    2017-08-01

    The automatic alignment of 3D point clouds acquired or generated from different sensors is a challenging problem. The objective of the alignment is to estimate the 3D similarity transformation parameters, including a global scale factor, 3 rotations and 3 translations. To do so, corresponding anchor features are required in both data sets. There are two main types of alignment: i) Coarse alignment and ii) Refined Alignment. Coarse alignment issues include lack of any prior knowledge of the respective coordinate systems for a source and target point cloud pair and the difficulty to extract and match corresponding control features (e.g., points, lines or planes) co-located on both point cloud pairs to be aligned. With the increasing use of UAVs, there is a need to automatically co-register their generated point cloud-based digital surface models with those from other data acquisition systems such as terrestrial or airborne lidar point clouds. This works presents a comparative study of two independent feature matching techniques for addressing 3D conformal point cloud alignment of UAV and lidar data in different 3D coordinate systems without any prior knowledge of the seven transformation parameters.

  6. Structure-based approach to improve a small-molecule inhibitor by the use of a competitive peptide ligand.

    PubMed

    Ono, Katsuki; Takeuchi, Koh; Ueda, Hiroshi; Morita, Yasuhiro; Tanimura, Ryuji; Shimada, Ichio; Takahashi, Hideo

    2014-03-03

    Structural information about the target-compound complex is invaluable in the early stage of drug discovery. In particular, it is important to know into which part of the initial compound additional interaction sites could be introduced to improve its affinity. Herein, we demonstrate that the affinity of a small-molecule inhibitor for its target protein could be successfully improved by the constructive introduction of the interaction mode of a competitive peptide. The strategy involved the discrimination of overlapping and non-overlapping peptide-compound pharmacophores by the use of a ligand-based NMR spectroscopic approach, INPHARMA. The obtained results enabled the design of a new compound with improved affinity for the platelet receptor glycoprotein VI (GPVI). The approach proposed herein efficiently combines the advantages of compounds and peptides for the development of higher-affinity druglike ligands.

  7. Peptide-based approaches to treat lupus and other autoimmune diseases.

    PubMed

    Schall, Nicolas; Page, Nicolas; Macri, Christophe; Chaloin, Olivier; Briand, Jean-Paul; Muller, Sylviane

    2012-09-01

    After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data.

    PubMed

    Leemans, A; Sijbers, J; De Backer, S; Vandervliet, E; Parizel, P

    2006-06-01

    In this paper an automatic multiscale feature-based rigid-body coregistration technique for diffusion tensor imaging (DTI) based on the local curvature kappa and torsion tau of the white matter (WM) fiber pathways is presented. As a similarity measure, the mean squared difference (MSD) of corresponding fiber pathways in (kappa, tau)-space is chosen. After the MSD is minimized along the arc length of the curve, principal component analysis is applied to calculate the transformation parameters. In addition, a scale-space representation of the space curves is incorporated, resulting in a multiscale robust coregistration technique. This fully automatic technique inherently allows one to apply region of interest (ROI) coregistration, and is adequate for performing both global and local transformations. Simulations were performed on synthetic DT data to evaluate the coregistration accuracy and precision. An in vivo coregistration example is presented and compared with a voxel-based coregistration approach, demonstrating the feasibility and advantages of the proposed technique to align DT data of the human brain.

  9. Spectral analysis of the line-width and line-edge roughness transfer during self-aligned double patterning approach

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Pargon, E.; Fouchier, M.; Grampeix, H.; Pradelles, J.; Darnon, M.; Pimenta-Barros, P.; Barnola, S.; Joubert, O.

    2015-03-01

    We report a 20 nm half-pitch self-aligned double patterning (SADPP) process based on a resist-core approach. Line/space 20/20 nm features in silicon are successfully obtained with CDvariation, LWR and LER of 0.7 nm, 2.4 nm and 2.3 nm respectively. The LWR and LER are characterized at each technological step of the process using a power spectral density fitting method, which allows a spectral analysis of the roughness and the determination of unbiased roughness values. Although the SADP concept generates two asymmetric populations of lines, the final LLWR and LER are similar. We show that this SADP process allows to decrease significantly the LWR and the LER of about 62% and 48% compared to the initial photoresist patterns. This study also demonstrates that SADP is a very powerful concept to decrease CD uniformity and LWR especially in its low-frequency components to reach sub-20 nm node requirements. However, LER low-frequency components are still high and remain a key issue tot address for an optimized integration.

  10. An efficient liquid chromatography-high resolution mass spectrometry approach for the optimization of the metabolic stability of therapeutic peptides.

    PubMed

    Esposito, Simone; Mele, Riccardo; Ingenito, Raffaele; Bianchi, Elisabetta; Bonelli, Fabio; Monteagudo, Edith; Orsatti, Laura

    2017-04-01

    antimicrobial peptides is described. This approach was developed for the evaluation of in vitro plasma metabolic stability studies of peptides, but it could also be applied to other in vitro metabolic stability models (e.g., whole blood, hepatocytes). Graphical Abstract Left: trend plot for omiganan and major metabolites. Right: stability plot for five antimicrobial peptidesafter incubation with mouse plasma.

  11. The Development and Application of a Quantitative Peptide Microarray Based Approach to Protein Interaction Domain Specificity Space*

    PubMed Central

    Engelmann, Brett W.; Kim, Yohan; Wang, Miaoyan; Peters, Bjoern; Rock, Ronald S.; Nash, Piers D.

    2014-01-01

    Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology. PMID:25135669

  12. Combinatorial peptide libraries as an alternative approach to the identification of ligands for tumor-reactive cytolytic T lymphocytes.

    PubMed

    Pinilla, C; Rubio-Godoy, V; Dutoit, V; Guillaume, P; Simon, R; Zhao, Y; Houghten, R A; Cerottini, J C; Romero, P; Valmori, D

    2001-07-01

    The recent identification of molecularly defined human tumor antigens recognized by autologous CTLs has opened new opportunities for the development of antigen-specific cancer vaccines. Despite extensive work, however, the number of CTL-defined tumor antigens that are suitable targets for generic vaccination of cancer patients is still limited, mostly because of the painstaking and lengthy nature of the procedures currently used for their identification. A novel approach is based on the combined use of combinatorial peptide libraries in positional scanning format (positional scanning synthetic combinatorial peptide libraries, PS-SCLs) and tumor-reactive CTL clones. To validate this approach, we herein analyzed in detail the recognition of PS-SCLs by Melan-A-specific CTL clones. Our results indicate that, at least for some clones, most of the amino acids composing the native antigenic peptide can be identified through the use of PS-SCLs. Interestingly, this analysis also allowed the identification of peptide analogues with increased antigenic activity as well as agonist peptides containing multiple amino-acid substitutions. In addition, biometrical analysis of the data generated by PS-SCL screening allowed the identification of the native ligand in a public database. Overall, these data demonstrate the successful use of PS-SCLs for the identification and optimization of tumor-associated CTL epitopes.

  13. Evaluation of peptide designing strategy against subunit reassociation in mucin 1: A steered molecular dynamics approach.

    PubMed

    Lesitha Jeeva Kumari, J; Jesu Jaya Sudan, R; Sudandiradoss, C

    2017-01-01

    Subunit reassociation in mucin 1, a breast cancer tumor marker, is reported as one of the critical factors for its cytoplasmic activation. Inhibition of its heterodimeric association would therefore result in loss of its function and alter disease progression. The present study aimed at evaluating peptide inhibitor designing strategies that may serve as antagonist against this receptor-ligand alliance. Several peptides and their derivatives were designed based on native residues, subunit interface, hydrogen bonding and secondary structure. Docking studies with the peptides were carried on the receptor subunit and their binding affinities were evaluated using steered molecular dynamics simulation and umbrella sampling. Our results showed that among all the different classes of peptides evaluated, the receptor based peptide showed the highest binding affinity. This result was concurrent with the experimental observation that the receptor-ligand alliance in mucin 1 is highly specific. Our results also show that peptide ligand against this subunit association is only stabilized through native residue inter-protein interaction irrespective of the peptide structure, peptide length and number of hydrogen bonds. Consistency in binding affinity, pull force and free energy barrier was observed with only the receptor derived peptides which resulted in favorable interprotein interactions at the interface. Several observations were made and discussed which will eventually lead to designing efficient peptide inhibitors against mucin 1 heterodimeric subunit reassociation.

  14. Reduction, alignment and visualisation of large diverse sequence families.

    PubMed

    Taylor, William R

    2016-08-02

    Current volumes of sequence data can lead to large numbers of hits identified on a search, typically in the range of 10s to 100s of thousands. It is often quite difficult to tell from these raw results whether the search has been a success or has picked-up sequences with little or no relationship to the query. The best approach to this problem is to cluster and align the resulting families, however, existing methods concentrate on fast clustering and either do not align the sequences or only perform a limited alignment. A method (MULSEL) is presented that combines fast peptide-based pre-sorting with a following cascade of mini-alignments, each of which are generated with a robust profile/profile method. From these mini-alignments, a representative sequence is selected, based on a variety of intrinsic and user-specified criteria that are combined to produce the sequence collection for the next cycle of alignment. For moderate sized sequence collections (10s of thousands) the method executes on a laptop computer within seconds or minutes. MULSEL bridges a gap between fast clustering methods and slower multiple sequence alignment methods and provides a seamless transition from one to the other. Furthermore, it presents the resulting reduced family in a graphical manner that makes it clear if family members have been misaligned or if there are sequences present that appear inconsistent.

  15. MP-Align: alignment of metabolic pathways

    PubMed Central

    2014-01-01

    Background Comparing the metabolic pathways of different species is useful for understanding metabolic functions and can help in studying diseases and engineering drugs. Several comparison techniques for metabolic pathways have been introduced in the literature as a first attempt in this direction. The approaches are based on some simplified representation of metabolic pathways and on a related definition of a similarity score (or distance measure) between two pathways. More recent comparative research focuses on alignment techniques that can identify similar parts between pathways. Results We propose a methodology for the pairwise comparison and alignment of metabolic pathways that aims at providing the largest conserved substructure of the pathways under consideration. The proposed methodology has been implemented in a tool called MP-Align, which has been used to perform several validation tests. The results showed that our similarity score makes it possible to discriminate between different domains and to reconstruct a meaningful phylogeny from metabolic data. The results further demonstrate that our alignment algorithm correctly identifies subpathways sharing a common biological function. Conclusion The results of the validation tests performed with MP-Align are encouraging. A comparison with another proposal in the literature showed that our alignment algorithm is particularly well-suited to finding the largest conserved subpathway of the pathways under examination. PMID:24886436

  16. Discovery and dimeric approach of novel Natriuretic Peptide Receptor A (NPR-A) agonists.

    PubMed

    Iwaki, Takehiko; Oyama, Yoshiaki; Tomoo, Toshiyuki; Tanaka, Taisaku; Okamura, Yoshihiko; Sugiyama, Masako; Yamaki, Akira; Furuya, Mayumi

    2017-03-15

    Novel agonists of the Natriuretic Peptide Receptor A (NPR-A) were obtained through random screening and subsequent structural modification of triazine derivatives. The key structural feature to improve in vitro activity was the dimerization of triazine monomer derivatives. The non peptide derivative 7c and 13a showed highly potent NPR-A agonistic activity in vitro and diuretic activity in vivo. These results implied that non-peptidic small molecules open the possibility of new therapy for congestive heart failure.

  17. xComb: a cross-linked peptide database approach to protein-protein interaction analysis.

    PubMed

    Panchaud, Alexandre; Singh, Pragya; Shaffer, Scott A; Goodlett, David R

    2010-05-07

    We developed an informatic method to identify tandem mass spectra composed of chemically cross-linked peptides from those of linear peptides and to assign sequence to each of the two unique peptide sequences. For a given set of proteins the key software tool, xComb, combs through all theoretically feasible cross-linked peptides to create a database consisting of a subset of all combinations represented as peptide FASTA files. The xComb library of select theoretical cross-linked peptides may then be used as a database that is examined by a standard proteomic search engine to match tandem mass spectral data sets to identify cross-linked peptides. The database search may be conducted against as many as 50 proteins with a number of common proteomic search engines, e.g. Phenyx, Sequest, OMSSA, Mascot and X!Tandem. By searching against a peptide library of linearized, cross-linked peptides, rather than a linearized protein library, search times are decreased and the process is decoupled from any specific search engine. A further benefit of decoupling from the search engine is that protein cross-linking studies may be conducted with readily available informatics tools for which scoring routines already exist within the proteomic community.

  18. Time-lapse atomic force microscopy observations of the morphology, growth rate, and spontaneous alignment of nanofibers containing a peptide-amphiphile from the hepatitis G virus (NS3 protein).

    PubMed

    Weroński, Konrad J; Cea, Pilar; Diez-Peréz, Ismael; Busquets, Maria Antonia; Prat, Josefina; Girona, Victoria

    2010-01-14

    Time-lapse atomic force microscopy is used in this contribution to directly watch the growth of nanofibers of a lipidated peptide on a mica surface. Specifically, the studied lipopeptide is the palmitoyl derivative of the fragment 505-514 of NS3 protein from the hepatitis G virus, abbreviated as Palmitoyl-NS3 (505-514). Data on the morphology, growth rate, and orientation of these peptide-amphiphile nanofibers have been obtained. From these data, it can be concluded that this synthetic lipopeptide forms two types of fiber-like aggregates: (i) half-spherical fibrous aggregates with lengths of hundreds of nanometers and (ii) spherical fibrous aggregates with lengths of several micrometers. In addition, when a fresh lipopeptide aqueous solution is deposited onto a mica surface, the aggregates spontaneously orient parallel to each other, yielding well-aligned nanofibers on large areas of the mica surface. A significant growth in both the length and the number of the fibers was observed during the first minutes after the solution deposition. Elongation of the fibrous aggregates from one end is more frequent, though elongation from both ends also occurs, with growth rates in the 4-5 nm/s range. The effects of dilution, mechanical perturbation, and pH on the aggregation behavior of Palmitoyl-NS3 (505-514) are also detailed in this paper.

  19. A novel approach to the design of inhibitors of human secreted phospholipase A2 based on native peptide inhibition.

    PubMed

    Church, W B; Inglis, A S; Tseng, A; Duell, R; Lei, P W; Bryant, K J; Scott, K F

    2001-08-31

    Human Type IIA secreted phospholipase A(2) (sPLA(2)-IIA) is an important modulator of cytokine-dependent inflammatory responses and a member of a growing superfamily of structurally related phospholipases. We have previously shown that sPLA(2)-IIA is inhibited by a pentapeptide sequence comprising residues 70-74 of the native sPLA(2)-IIA protein and that peptides derived from the equivalent region of different sPLA(2)-IIA species specifically inhibit the enzyme from which they are derived. We have now used an analogue screen of the human pentapeptide (70)FLSYK(74) in which side-chain residues were substituted, together with molecular docking approaches that modeled low-energy conformations of (70)FLSYK(74) bound to human sPLA(2)-IIA, to generate inhibitors with improved potency. Importantly, the modeling studies showed a close association between the NH(2) and COOH termini of the peptide, predicting significant enhancement of the potency of inhibition by cyclization. Cyclic compounds were synthesized and indeed showed 5-50-fold increased potency over the linear peptide in an Escherichia coli membrane assay. Furthermore, the potency of inhibition correlated with steady-state binding of the cyclic peptides to sPLA(2)-IIA as determined by surface plasmon resonance studies. Two potential peptide interaction sites were identified on sPLA(2)-IIA from the modeling studies, one in the NH(2)-terminal helix and the other in the beta-wing region, and in vitro association assays support the potential for interaction of the peptides with these sites. The inhibitors were effective at nanomolar concentrations in blocking sPLA(2)-IIA-mediated amplification of cytokine-induced prostaglandin synthesis in human rheumatoid synoviocytes in culture. These studies provide an example where native peptide sequences can be used for the development of potent and selective inhibitors of enzyme function.

  20. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics

    PubMed Central

    Pfeifer, Nico; Leinenbach, Andreas; Huber, Christian G; Kohlbacher, Oliver

    2007-01-01

    Background High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data. Results We introduce a new kernel function which can be applied in combination with support vector machines to a wide range of computational proteomics problems. We show the performance of this new approach by applying it to the prediction of peptide adsorption/elution behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention times are used to improve spectrum identifications by a p-value-based filtering approach. The approach was tested on a number of different datasets and shows excellent performance while requiring only very small training sets (about 40 peptides instead of thousands). Using the retention time predictor in our retention time filter improves the fraction of correctly identified peptide mass spectra significantly. Conclusion The proposed kernel function is well-suited for the prediction of chromatographic separation in computational proteomics and requires only a limited amount of training data. The performance of this new method is demonstrated by applying it to peptide retention time prediction in IP

  1. A new approach to quantification of mAb aggregates using peptide affinity probes

    PubMed Central

    Cheung, Crystal S. F.; Anderson, Kyle W.; Patel, Pooja M.; Cade, Keale L.; Phinney, Karen W.; Turko, Illarion V.

    2017-01-01

    Using mAbs as therapeutic molecules is complicated by the propensity of mAbs to aggregate at elevated concentrations, which can lead to a variety of adverse events in treatment. Here, we describe a proof-of-concept for new methodology to detect and quantify mAb aggregation. Assay development included using an aggregated mAb as bait for screening of phage display peptide library and identifying those peptides with random sequence which can recognize mAb aggregates. Once identified, the selected peptides can be used for developing quantitative methods to assess mAb aggregation. Results indicate that a peptide binding method coupled with mass spectrometric detection of bound peptide can quantify mAb aggregation and potentially be useful for monitoring aggregation propensity of therapeutic protein candidates. PMID:28186164

  2. A new approach to quantification of mAb aggregates using peptide affinity probes.

    PubMed

    Cheung, Crystal S F; Anderson, Kyle W; Patel, Pooja M; Cade, Keale L; Phinney, Karen W; Turko, Illarion V

    2017-02-10

    Using mAbs as therapeutic molecules is complicated by the propensity of mAbs to aggregate at elevated concentrations, which can lead to a variety of adverse events in treatment. Here, we describe a proof-of-concept for new methodology to detect and quantify mAb aggregation. Assay development included using an aggregated mAb as bait for screening of phage display peptide library and identifying those peptides with random sequence which can recognize mAb aggregates. Once identified, the selected peptides can be used for developing quantitative methods to assess mAb aggregation. Results indicate that a peptide binding method coupled with mass spectrometric detection of bound peptide can quantify mAb aggregation and potentially be useful for monitoring aggregation propensity of therapeutic protein candidates.

  3. Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques

    PubMed Central

    2010-01-01

    Background Protein kinases play crucial roles in cell growth, differentiation, and apoptosis. Abnormal function of protein kinases can lead to many serious diseases, such as cancer. Kinase inhibitors have potential for treatment of these diseases. However, current inhibitors interact with a broad variety of kinases and interfere with multiple vital cellular processes, which causes toxic effects. Bioinformatics approaches that can predict inhibitor-kinase interactions from the chemical properties of the inhibitors and the kinase macromolecules might aid in design of more selective therapeutic agents, that show better efficacy and lower toxicity. Results We applied proteochemometric modelling to correlate the properties of 317 wild-type and mutated kinases and 38 inhibitors (12,046 inhibitor-kinase combinations) to the respective combination's interaction dissociation constant (Kd). We compared six approaches for description of protein kinases and several linear and non-linear correlation methods. The best performing models encoded kinase sequences with amino acid physico-chemical z-scale descriptors and used support vector machines or partial least- squares projections to latent structures for the correlations. Modelling performance was estimated by double cross-validation. The best models showed high predictive ability; the squared correlation coefficient for new kinase-inhibitor pairs ranging P2 = 0.67-0.73; for new kinases it ranged P2kin = 0.65-0.70. Models could also separate interacting from non-interacting inhibitor-kinase pairs with high sensitivity and specificity; the areas under the ROC curves ranging AUC = 0.92-0.93. We also investigated the relationship between the number of protein kinases in the dataset and the modelling results. Using only 10% of all data still a valid model was obtained with P2 = 0.47, P2kin = 0.42 and AUC = 0.83. Conclusions Our results strongly support the applicability of proteochemometrics for kinome-wide interaction modelling

  4. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347–356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205–214), and isoform 1 of fibrinogen α chain precursor (FGA 588–624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  5. An approach to the site-selective diversification of apoptolidin A with peptide-based catalysts.

    PubMed

    Lewis, Chad A; Longcore, Kate E; Miller, Scott J; Wender, Paul A

    2009-10-01

    We report the application of peptide-based catalysts to the site-selective modification of apoptolidin A (1), an agent that displays remarkable selectivity for inducing apoptosis in E1A-transformed cell lines. Key to the approach was the development of an assay suitable for the screening of dozens of catalysts in parallel reactions that could be conducted using only microgram quantities of the starting material. Employing this assay, catalysts (e.g., 11 and ent-11) were identified that afforded unique product distributions, distinct from the product mixtures produced when a simple catalyst (N,N-dimethyl-4-aminopyridine (10)) was employed. Preparative reactions were then carried out with the preferred catalysts so that unique, homogeneous apoptolidin analogues could be isolated and characterized. From these studies, three new apoptolidin analogues were obtained (12-14), each differing from the other in either the location of acyl group substituents or the number of acetate groups appended to the natural product scaffold. Biological evaluation of the new apoptolidin analogues was then conducted using growth inhibition assays based on the H292 human lung carcinoma cell line. The new analogues exhibited activities comparable to apoptolidin A.

  6. Epidermal growth factor and growth hormone-releasing peptide-6: combined therapeutic approach in experimental stroke.

    PubMed

    García Del Barco-Herrera, Diana; Martínez, Nelvys Subirós; Coro-Antich, Rosa María; Machado, Jorge Martín; Alba, José Suárez; Salgueiro, Sandra Rodríguez; Acosta, Jorge Berlanga

    2013-01-01

    Stroke is the second cause of mortality worldwide, with a high incidence of disability in survivors. Promising candidate drugs have failed in stroke trials. Combined therapies are attractive strategies that simultaneously target different points of stroke pathophysiology. The aim of this work is to determine whether the combined effects of epidermal growth factor (EGF) and growth hormone-releasing peptide-6 (GHRP6) can attenuate clinical signs and pathology in an experimental stroke model. Brain global ischemia was generated in Mongolian gerbils by 15 minutes of carotid occlusion. After reperfusion, EGF, GHRP6 or EGF+GHRP6 were intraperitoneally administered. Clinical manifestations were monitored daily. Three days after reperfusion, animals were anesthetized and perfused with an ink solution. The anatomy of the Circle of Willis was characterized. Infarct volume and neuronal density were analyzed. EGF+GHRP6 co-administration reduced clinical manifestations and infarct volume and preserved neuronal density. No correlation was observed between the grade of anastomosis of the Circle of Willis and clinical manifestations in the animals receiving EGF+GHRP6, as opposed to the vehicle-treated gerbils. Co-treatment with EGF and GHRP6 affects both the clinical and pathological outcomes in a global brain ischemia model, suggesting a suitable therapeutic approach for the acute management of stroke.

  7. Maximizing Peptide Identification Events in Proteomic Workflows Using Data-Dependent Acquisition (DDA)*

    PubMed Central

    Bateman, Nicholas W.; Goulding, Scott P.; Shulman, Nicholas J.; Gadok, Avinash K.; Szumlinski, Karen K.; MacCoss, Michael J.; Wu, Christine C.

    2014-01-01

    Current analytical strategies for collecting proteomic data using data-dependent acquisition (DDA) are limited by the low analytical reproducibility of the method. Proteomic discovery efforts that exploit the benefits of DDA, such as providing peptide sequence information, but that enable improved analytical reproducibility, represent an ideal scenario for maximizing measureable peptide identifications in “shotgun”-type proteomic studies. Therefore, we propose an analytical workflow combining DDA with retention time aligned extracted ion chromatogram (XIC) areas obtained from high mass accuracy MS1 data acquired in parallel. We applied this workflow to the analyses of sample matrixes prepared from mouse blood plasma and brain tissues and observed increases in peptide detection of up to 30.5% due to the comparison of peptide MS1 XIC areas following retention time alignment of co-identified peptides. Furthermore, we show that the approach is quantitative using peptide standards diluted into a complex matrix. These data revealed that peptide MS1 XIC areas provide linear response of over three orders of magnitude down to low femtomole (fmol) levels. These findings argue that augmenting “shotgun” proteomic workflows with retention time alignment of peptide identifications and comparative analyses of corresponding peptide MS1 XIC areas improve the analytical performance of global proteomic discovery methods using DDA. PMID:23820513

  8. A structure-based approach to designing non-natural peptides that can activate anti-melanoma cytotoxic T cells.

    PubMed

    Ayyoub, M; Mazarguil, H; Monsarrat, B; Van den Eynde, B; Gairin, J E

    1999-04-09

    Tumor antigens presented by major histocompatibility complex (MHC) class I molecules and recognized by CD8(+) cytotoxic T lymphocytes (CTLs) may generate an efficient antitumor immune response after appropriate immunization. Antigenic peptides can be used in vivo to induce antitumor or antiviral immunity. The efficiency of naked peptides may be greatly limited by their degradation in the biological fluids. We present a rational, structure-based approach to design structurally modified, peptidase-resistant and biologically active analogues of human tumor antigen MAGE-1.A1. This approach is based on our understanding of the peptide interaction with the MHC and the T cell receptor and its precise degradation pathway. Knowledge of these mechanisms led to the design of a non-natural, minimally modified analogue of MAGE-1.A1, [Aib2, NMe-Ser8]MAGE-1.A1, which was highly peptidase-resistant and bound to MHC and activated MAGE-1.A1-specific anti-melanoma CTLs. Thus, we showed that it is possible to structurally modify peptide epitopes to obtain analogues that are still specifically recognized by CTLs. Such analogues may represent interesting leads for antitumor synthetic vaccines.

  9. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  10. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  11. Synthetic approach to tailored physical associations in peptide-polyurea/polyurethane hybrids.

    PubMed

    Matolyak, L E; Keum, J K; Van de Voorde, K M; Korley, L T J

    2017-09-01

    Nature has achieved diverse functionality via hierarchical organization driven by physical interactions such as hydrogen bonding. Synthetically, polymer-peptide hybrids have been utilized to achieve these architectural arrangements and obtain diverse mechanical properties, stimuli responsiveness, and bioactivity. Here, we explore the impact of peptide ordering and soft/hard phase interactions in PEG-based non-chain extended and chain extended peptidic polyurea (PU) and polyurea/polyurethane (PUU) hybrids towards tunable mechanics. Increasing the peptide content of poly(ε-carbobenzyloxy-l-lysine) (PZLY) revealed an increase in α-helical formation and modulation in amine/ether hydrogen bonding, suggesting enhanced intermolecular hydrogen bonding between peptide segments and soft/hard blocks. A balance of phase mixing and microphase segregation was observed depending on competitive hydrogen bonding and the hybrid architecture. This phase behaviour strongly modulated the mechanical response, particularly modulus and extensibility. We anticipate that this solid-state, synthetic framework will expand the reach of our peptide hybrids into biointerfacing materials, including scaffolds and responsive actuators via peptide selection.

  12. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicron devices and integrated circuits using aligned nanotubes

    NASA Astrophysics Data System (ADS)

    Ryu, Koungmin; Badmaev, Alexander; Wang, Chuan; Zhou, Chongwu

    2009-03-01

    Massive aligned carbon nanotubes hold great potential but also face significant integration / assembly challenge for future beyond-silicon nanoelectronics. We report our recent advance on full wafer-scale processing of massively aligned carbon nanotube arrays for high performance submicron channel transistors and integrated nanotube circuits, including the following essential components. 1) The massively highly aligned nanotubes were successfully grown on 4 inch quartz and sapphire wafers via meticulous temperature control, and then transferred onto Si/SiO2 wafers using our facile transfer printing method. 2) Wafer-scale device fabrication was performed on 4 inch Si/SiO2 wafer to yield submicron channel transistors and circuits with high on-current density ˜ 20 μA/μm and good on/off ratio. 3) Chemical doping methods were successfully demonstrated to get CMOS inverters with a gain ˜5. 4) Defect-tolerant circuit design for NAND and NOR was proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes.

  13. The use of synthetic peptides can be a misleading approach to generate vaccines against scorpion toxins.

    PubMed

    Calderon-Aranda, E S; Olamendi-Portugal, T; Possani, L D

    1995-09-01

    Seven peptides corresponding to the amino acid sequence of toxin 2 from the scorpion Centruroides noxius were chemically synthesized, purified and assayed in mice for their putative neutralizing properties against scorpion toxins. All the peptides were immunogenic and some produced neutralizing antibodies, as verified by injecting the antisera with toxin into naive animals. However, direct challenge of pre-immunized mice (with the longest synthetic peptides of 27 and 57 amino acid residues) revealed an unexpected sensitization phenomena: the animals did not resist injection of one LD50 of purified toxin 2 (5% survival), but pre-immunization of mice with native toxin protected 100% of the animals. These findings suggest that vaccine preparations with synthetic peptides corresponding to the amino acid sequence of certain toxins should be analyzed cautiously.

  14. A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands.

    PubMed

    Das, Samir; Nag, Arundhati; Liang, JingXin; Bunck, David N; Umeda, Aiko; Farrow, Blake; Coppock, Matthew B; Sarkes, Deborah A; Finch, Amethist S; Agnew, Heather D; Pitram, Suresh; Lai, Bert; Yu, Mary Beth; Museth, A Katrine; Deyle, Kaycie M; Lepe, Bianca; Rodriguez-Rivera, Frances P; McCarthy, Amy; Alvarez-Villalonga, Belen; Chen, Ann; Heath, John; Stratis-Cullum, Dimitra N; Heath, James R

    2015-11-02

    We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm Peptides

    PubMed Central

    Sharma, Arun; Gupta, Pooja; Kumar, Rakesh; Bhardwaj, Anshu

    2016-01-01

    Increasingly, biofilms are being recognised for their causative role in persistent infections (like cystic fibrosis, otitis media, diabetic foot ulcers) and nosocomial diseases (biofilm-infected vascular catheters, implants and prosthetics). Given the clinical relevance of biofilms and their recalcitrance to conventional antibiotics, it is imperative that alternative therapeutics are proactively sought. We have developed dPABBs, a web server that facilitates the prediction and design of anti-biofilm peptides. The six SVM and Weka models implemented on dPABBs were observed to identify anti-biofilm peptides on the basis of their whole amino acid composition, selected residue features and the positional preference of the residues (maximum accuracy, sensitivity, specificity and MCC of 95.24%, 92.50%, 97.73% and 0.91, respectively, on the training datasets). On the N-terminus, it was seen that either of the cationic polar residues, R and K, is present at all five positions in case of the anti-biofilm peptides, whereas in the QS peptides, the uncharged polar residue S is preponderant at the first (also anionic polar residues D, E), third and fifth positions. Positive predictions were also obtained for 29 FDA-approved peptide drugs and ten antimicrobial peptides in clinical development, indicating at their possible repurposing for anti-biofilm therapy. dPABBs is freely accessible on: http://ab-openlab.csir.res.in/abp/antibiofilm/. PMID:26912180

  16. Peptidyl Molecular Imaging Contrast Agents Using a New Solid Phase Peptide Synthesis Approach

    PubMed Central

    Yoo, Byunghee; Pagel, Mark D.

    2008-01-01

    A versatile method is disclosed for solid phase peptide synthesis (SPPS) of molecular imaging contrast agents. A DO3A moiety was derivatized to introduce a CBZ-protected amino group and then coupled to a polymeric support. CBZ cleavage with Et2AlCl/thioanisole was optimized for SPPS. Amino acids were then coupled to the aminoDOTA loaded resin using conventional step-wise Fmoc SPPS to create a product with DOTA coupled to the C-terminus of the peptide. In a second study, the DO3A moiety was coupled to a glycine-loaded polymeric support, and amino acids were then coupled to the amino-DOTA-peptide loaded resin using SPPS, to incorporate DOTA within the peptide sequence. The peptide-(Tm3+-DOTA) amide showed a PARAmagnetic Chemical Exchange Saturation Transfer (PARACEST) effect, which demonstrated the utility of this contrast agent for molecular imaging. These results demonstrate the advantages of exploiting SPPS methodologies through the development of unique DOTA derivatives to create peptide-based molecular imaging contrast agents. PMID:17330953

  17. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach.

    PubMed

    Zhou, Peng; Yang, Chao; Ren, Yanrong; Wang, Congcong; Tian, Feifei

    2013-12-01

    Peptides with antihypertensive potency have long been attractive to the medical and food communities. However, serving as food additives, rather than therapeutic agents, peptides should have a good taste. In the present study, we explore the intrinsic relationship between the angiotensin I-converting enzyme (ACE) inhibition and bitterness of short peptides in the framework of computational peptidology, attempting to find out the appropriate properties for functional food peptides with satisfactory bioactivities. As might be expected, quantitative structure-activity relationship modeling reveals a significant positive correlation between the ACE inhibition and bitterness of dipeptides, but this correlation is quite modest for tripeptides and, particularly, tetrapeptides. Moreover, quantum mechanics/molecular mechanics analysis of the structural basis and energetic profile involved in ACE-peptide complexes unravels that peptides of up to 4 amino acids long are sufficient to have efficient binding to ACE, and more additional residues do not bring with substantial enhance in their ACE-binding affinity and, thus, antihypertensive capability. All of above, it is coming together to suggest that the tripeptides and tetrapeptides could be considered as ideal candidates for seeking potential functional food additives with both high antihypertensive activity and low bitterness.

  18. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders.

    PubMed

    Shaw, Alisa E; Bamburg, James R

    2017-02-20

    Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.

  19. Gaussian process: a promising approach for the modeling and prediction of Peptide binding affinity to MHC proteins.

    PubMed

    Ren, Yanrong; Chen, Xiaolin; Feng, Ming; Wang, Qiang; Zhou, Peng

    2011-07-01

    On the basis of Bayesian probabilistic inference, Gaussian process (GP) is a powerful machine learning method for nonlinear classification and regression, but has only very limited applications in the new areas of computational vaccinology and immunoinformatics. In the current work, we present a paradigmatic study of using GP regression technique to quantitatively model and predict the binding affinities of over 7000 immunodominant peptide epitopes to six types of human major histocompatibility complex (MHC) proteins. In this procedure, the sequence patterns of diverse peptides are characterized quantitatively and the resulting variables are then correlated with the experimentally measured affinities between different MHC and their peptide ligands, by using a linearity- and nonlinearity-hybrid GP approach. We also make systematical comparisons between the GP and two sophisticated modeling methods as partial least square (PLS) regression and support vector machine (SVM) with respect to their fitting ability, predictive power and generalization capability. The results suggest that GP could be a new and effective tool for the modeling and prediction of MHC-peptide interactions and would be promising in the field of computer-aided vaccine design (CAVD).

  20. LocalAli: an evolutionary-based local alignment approach to identify functionally conserved modules in multiple networks.

    PubMed

    Hu, Jialu; Reinert, Knut

    2015-02-01

    Sequences and protein interaction data are of significance to understand the underlying molecular mechanism of organisms. Local network alignment is one of key systematic ways for predicting protein functions, identifying functional modules and understanding the phylogeny from these data. Most of currently existing tools, however, encounter their limitations, which are mainly concerned with scoring scheme, speed and scalability. Therefore, there are growing demands for sophisticated network evolution models and efficient local alignment algorithms. We developed a fast and scalable local network alignment tool called LocalAli for the identification of functionally conserved modules in multiple networks. In this algorithm, we firstly proposed a new framework to reconstruct the evolution history of conserved modules based on a maximum-parsimony evolutionary model. By relying on this model, LocalAli facilitates interpretation of resulting local alignments in terms of conserved modules, which have been evolved from a common ancestral module through a series of evolutionary events. A meta-heuristic method simulated annealing was used to search for the optimal or near-optimal inner nodes (i.e. ancestral modules) of the evolutionary tree. To evaluate the performance and the statistical significance, LocalAli were tested on 26 real datasets and 1040 randomly generated datasets. The results suggest that LocalAli outperforms all existing algorithms in terms of coverage, consistency and scalability, meanwhile retains a high precision in the identification of functionally coherent subnetworks. The source code and test datasets are freely available for download under the GNU GPL v3 license at https://code.google.com/p/localali/. jialu.hu@fu-berlin.de or knut.reinert@fu-berlin.de. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.

    PubMed Central

    Mehta, P. K.; Heringa, J.; Argos, P.

    1995-01-01

    To improve secondary structure predictions in protein sequences, the information residing in multiple sequence alignments of substituted but structurally related proteins is exploited. A database comprised of 70 protein families and a total of 2,500 sequences, some of which were aligned by tertiary structural superpositions, was used to calculate residue exchange weight matrices within alpha-helical, beta-strand, and coil substructures, respectively. Secondary structure predictions were made based on the observed residue substitutions in local regions of the multiple alignments and the largest possible associated exchange weights in each of the three matrix types. Comparison of the observed and predicted secondary structure on a per-residue basis yielded a mean accuracy of 72.2%. Individual alpha-helix, beta-strand, and coil states were respectively predicted at 66.7, and 75.8% correctness, representing a well-balanced three-state prediction. The accuracy level, verified by cross-validation through jack-knife tests on all protein families, dropped, on average, to only 70.9%, indicating the rigor of the prediction procedure. On the basis of robustness, conceptual clarity, accuracy, and executable efficiency, the method has considerable advantage, especially with its sole reliance on amino acid substitutions within structurally related proteins. PMID:8580842

  2. Combined Bioinformatic and Rational Design Approach To Develop Antimicrobial Peptides against Mycobacterium tuberculosis

    PubMed Central

    Pearson, C. Seth; Kloos, Zachary; Murray, Brian; Tabe, Ebot; Gupta, Monica; Kwak, Jun Ha; Karande, Pankaj

    2016-01-01

    Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of “database filtering” bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 μM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created. PMID:26902758

  3. A universal approach to eliminate antigenic properties of alpha-gliadin peptides in celiac disease.

    PubMed

    Mitea, Cristina; Salentijn, Elma M J; van Veelen, Peter; Goryunova, Svetlana V; van der Meer, Ingrid M; van den Broeck, Hetty C; Mujico, Jorge R; Montserrat, Veronica; Monserrat, Veronica; Gilissen, Luud J W J; Drijfhout, Jan Wouter; Dekking, Liesbeth; Koning, Frits; Smulders, Marinus J M

    2010-12-16

    Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients.

  4. Aligned Nanofibers for Regenerating Arteries, Nerves, and Muscles

    NASA Astrophysics Data System (ADS)

    McClendon, Mark Trosper

    annular gap containing PA solution with a rotating rod. Using the shear aligning properties of PA solutions this rotating surface in contact with the PA solution induced a high degree of alignment in the nanofibers which was subsequently locked in place by introducing gelating calcium ions. again say something about what this fabrication procedure entails Cells encapsulated within these tubes responded to the alignment by extending in the circumferential direction mimicking the same cellular alignment observed in native arteries. A similar design strategy was also used to align nanofibers within the core of biopolymer nerve conduits, and these scaffolds were implanted in a rat sciatic nerve model. Histological and behavioral observations confirmed that PA implants sustained regeneration rates comparable to autologous grafts and significantly better than empty biopolymer grafts. Furthermore, these nanofiber gels were used as a vehicle to deliver stem cells into muscle tissue. A specialized injector was designed to introduce aligned PA gels into mouse leg muscles in a 1cm long channel. Bioluminescence and histology showed that stem cell engraftment into myofibers was greatly enhanced when delivered by PA gels compared to saline solution. The final section of this thesis describes a new series of PA molecules designed to degrade upon exposure to UV lightstate here why is this of interest in the context of the work described in the thesis. This was done to understand the degradation behavior of PA nanofibers and provide a controlled approach to changing the rheological properties post gelation.The three PA molecules in this series contained the same peptide sequence V3A3E3, while varying the location of a nitrobenzyl UV-reactive group along the backbone of the molecule. This system allowed for a quick reaction that cleaves the molecule at the reactive nitrobenzyl site without introducing any other reactive molecules. While all three molecules produced nanofibers that remained

  5. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  6. Triple-helical peptides: an approach to collagen conformation, stability, and self-association.

    PubMed

    Brodsky, Barbara; Thiagarajan, Geetha; Madhan, Balaraman; Kar, Karunakar

    2008-05-01

    Peptides have been an integral part of the collagen triple-helix structure story, and have continued to serve as useful models for biophysical studies and for establishing biologically important sequence-structure-function relationships. High resolution structures of triple-helical peptides have confirmed the basic Ramachandran triple-helix model and provided new insights into the hydration, hydrogen bonding, and sequence dependent helical parameters in collagen. The dependence of collagen triple-helix stability on the residues in its (Gly-X-Y)(n) repeating sequence has been investigated by measuring melting temperatures of host-guest peptides and an on-line collagen stability calculator is now available. Although the presence of Gly as every third residue is essential for an undistorted structure, interruptions in the repeating (Gly-X-Y)(n) amino acid sequence pattern are found in the triple-helical domains of all nonfibrillar collagens, and are likely to play a role in collagen binding and degradation. Peptide models indicate that small interruptions can be incorporated into a rod-like triple-helix with a highly localized effect, which perturbs hydrogen bonds and places the standard triple-helices on both ends out of register. In contrast to natural interruptions, missense mutations which replace one Gly in a triple-helix domain by a larger residue have pathological consequences, and studies on peptides containing such Gly substitutions clarify their effect on conformation, stability, and folding. Recent studies suggest peptides may also be useful in defining the basic principles of collagen self-association to the supramolecular structures found in tissues.

  7. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  8. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  9. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach.

    PubMed

    Mangold, Shane L; Grubbs, Robert H

    2015-08-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM.

  10. MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines

    PubMed Central

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I.; Marcotte, Edward M.

    2011-01-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for all possible PSMs and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for all detected proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652

  11. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    PubMed

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.

  12. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  13. A continuous peptide epitope reacting with pandemic influenza AH1N1 predicted by bioinformatic approaches.

    PubMed

    Carrillo-Vazquez, Jonathan P; Correa-Basurto, José; García-Machorro, Jazmin; Campos-Rodríguez, Rafael; Moreau, Violaine; Rosas-Trigueros, Jorge L; Reyes-López, Cesar A; Rojas-López, Marlon; Zamorano-Carrillo, Absalom

    2015-09-01

    Computational identification of potential epitopes with an immunogenic capacity challenges immunological research. Several methods show considerable success, and together with experimental studies, the efficiency of the algorithms to identify potential peptides with biological activity has improved. Herein, an epitope was designed by combining bioinformatics, docking, and molecular dynamics simulations. The hemagglutinin protein of the H1N1 influenza pandemic strain served as a template, owing to the interest of obtaining a scheme of immunization. Afterward, we performed enzyme-linked immunosorbent assay (ELISA) using the epitope to analyze if any antibodies in human sera before and after the influenza outbreak in 2009 recognize this peptide. Also, a plaque reduction neutralization test induced by virus-neutralizing antibodies and the IgG determination showed the biological activity of this computationally designed peptide. The results of the ELISAs demonstrated that the serum of both prepandemic and pandemic recognized the epitope. Moreover, the plaque reduction neutralization test evidenced the capacity of the designed peptide to neutralize influenza virus in Madin-Darby canine cells. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach

    PubMed Central

    Mangold, Shane L.

    2015-01-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM. PMID:26509000

  15. An Approach to Identifying the Effect of Technique Asymmetries on Body Alignment in Swimming Exemplified by a Case Study of a Breaststroke Swimmer

    PubMed Central

    Sanders, Ross H.; Fairweather, Malcolm M.; Alcock, Alison; McCabe, Carla B.

    2015-01-01

    Despite the importance of maintaining good alignment to minimize resistive drag in swimming there is a paucity of literature relating to the effect of technique asymmetries on rotations of the body about a vertical axis (yaw). The purpose of this paper was to present an approach to analyzing the effect of technique asymmetries on rotations in swimming, exemplifying the process with a case study of a breaststroke swimmer. The kinematics and angular kinetics of an elite female international breaststroke swimmer performing a ‘fatigue set’ of four 100m swims were derived from digitized three-dimensional video data using a 13 segment body model. Personalised anthropometric data required to quantify accurately segment and whole body centres of mass and segmental angular momentum were obtained by the elliptical zone method. Five episodes of torques producing yaw occurred in the stroke cycle sampled for each 100m swim of this swimmer. These torques were linked to bilateral differences in upper limb kinematics during 1) out-sweep; 2) in-sweep; 3) upper limb recovery; and lower limb kinematics during 4) Lower limb recovery and 5) the kick. It has been shown that by quantifying whole body torques, in conjunction with the kinematic movement patterns, the effect of technique asymmetries on body alignment can be assessed. Assessment of individual swimmers in this manner provides a solid foundation for planning interventions in strength, flexibility, and technique to improve alignment and performance. Key points A unique (not been attempted previously) study of yaw in breaststroke swimming that yields new knowledge of how technique and strength asymmetries affects body alignment. Establishes an approach to investigation of yaw in swimming using 3D videography and inverse dynamics. Exemplifies the approach with a case study. The case study illustrated the potential of the approach to enable detailed assessment of yaw and to explain how the yaw is produced in terms of the

  16. An approach to identifying the effect of technique asymmetries on body alignment in swimming exemplified by a case study of a breaststroke swimmer.

    PubMed

    Sanders, Ross H; Fairweather, Malcolm M; Alcock, Alison; McCabe, Carla B

    2015-06-01

    Despite the importance of maintaining good alignment to minimize resistive drag in swimming there is a paucity of literature relating to the effect of technique asymmetries on rotations of the body about a vertical axis (yaw). The purpose of this paper was to present an approach to analyzing the effect of technique asymmetries on rotations in swimming, exemplifying the process with a case study of a breaststroke swimmer. The kinematics and angular kinetics of an elite female international breaststroke swimmer performing a 'fatigue set' of four 100m swims were derived from digitized three-dimensional video data using a 13 segment body model. Personalised anthropometric data required to quantify accurately segment and whole body centres of mass and segmental angular momentum were obtained by the elliptical zone method. Five episodes of torques producing yaw occurred in the stroke cycle sampled for each 100m swim of this swimmer. These torques were linked to bilateral differences in upper limb kinematics during 1) out-sweep; 2) in-sweep; 3) upper limb recovery; and lower limb kinematics during 4) Lower limb recovery and 5) the kick. It has been shown that by quantifying whole body torques, in conjunction with the kinematic movement patterns, the effect of technique asymmetries on body alignment can be assessed. Assessment of individual swimmers in this manner provides a solid foundation for planning interventions in strength, flexibility, and technique to improve alignment and performance. Key pointsA unique (not been attempted previously) study of yaw in breaststroke swimming that yields new knowledge of how technique and strength asymmetries affects body alignment.Establishes an approach to investigation of yaw in swimming using 3D videography and inverse dynamics.Exemplifies the approach with a case study. The case study illustrated the potential of the approach to enable detailed assessment of yaw and to explain how the yaw is produced in terms of the asymmetries

  17. Characterization of Peptide Polymer Interactions in Poly(alkylcyanoacrylate) Nanoparticles: A Mass Spectrometric Approach.

    PubMed

    Kafka, Alexandra P; Kleffmann, Torsten; Rades, Thomas; McDowell, Arlene

    2010-07-01

    Drug/polymer interactions occur during in situ polymerization of poly(alkylcyanoacrylate) (PACA) formulations. We have used MALDI ionization coupled tandem time-of-flight (TOF) mass spectrometry as an accurate method to characterize covalent peptide/polymer interactions of PACA nanoparticles with the bioactives D-Lys6-GnRH, insulin, [Asn1-Val5]-angiotensin II, and fragments of insulin-like growth factor 1 (IGF-1 (1-3)) and human adrenocorticotropic hormone (h-ACTH, (18-39)) at the molecular level. Covalent interactions of peptide with alkylcyanoacrylate were identified for D-Lys6-GnRH, [Asn1-Val5]-angiotensin II and IGF-1 (1-3). D-Lys6-GnRH and [Asn1-Val5]-angiotensin II were modified at their histidine side chain within the peptide, whilst IGF-1 (1-3) was modified at the C-terminal glutamic acid residue. The more complex protein insulin was not modified despite the presence of 2 histidine residues. This might be explained by the engagement of histidine residues in the folding and sterical arrangement of insulin under polymerization conditions. As expected, h-ACTH (18-39) that does not contain histidine residues did not interfere in the polymerization process. Lowering the pH did not prevent the covalent association of PACA with D-Lys6-GnRH or IGF-1 (1-3). Conclusively, protein and peptide bioactives are potentially reactive towards alkylcyanoacrylate monomers via various mechanisms with limited interference of pH. Histidines and C-terminal glutamic acid residues have been identified as potential sites of interaction. The likelihood of their engagement in the polymerization process (initiators), however, seems dependent on their sterical availability. The reactivity of nucleophilic functional groups should always be considered and bioactives examined for their potential to covalently interfere with alkylcyanoacrylate monomers, especially when designing PACA delivery systems for protein and peptide biopharmaceuticals.

  18. Characterization of Peptide Polymer Interactions in Poly(alkylcyanoacrylate) Nanoparticles: A Mass Spectrometric Approach.

    PubMed

    Kafka, Alexandra P; Kleffmann, Torsten; Rades, Thomas; McDowell, Arlene

    2010-02-17

    Drug/polymer interactions occur during in situ polymerization of poly(alkylcyanoacrylate) (PACA) formulations. We have used MALDI ionization coupled tandem time-of-flight (TOF) mass spectrometry as an accurate method to characterize covalent peptide/polymer interactions of PACA nanoparticles with the bioactives D-Lys6-GnRH, insulin, [Asn1-Val5]-angiotensin II, and fragments of insulin-like growth factor 1 (IGF-1 (1-3)) and human adrenocorticotropic hormone (h-ACTH, (18-39)) at the molecular level. Covalent interactions of peptide with alkylcyanoacrylate were identified for D-Lys6-GnRH, [Asn1-Val5]-angiotensin II and IGF-1 (1-3). D-Lys6-GnRH and [Asn1-Val5]-angiotensin II were modified at their histidine side chain within the peptide, whilst IGF-1 (1-3) was modified at the C-terminal glutamic acid residue. The more complex protein insulin was not modified despite the presence of 2 histidine residues. This might be explained by the engagement of histidine residues in the folding and sterical arrangement of insulin under polymerization conditions. As expected, h-ACTH (18-39) that does not contain histidine residues did not interfere in the polymerisation process. Lowering the pH did not prevent the covalent association of PACA with D-Lys6-GnRH or IGF-1 (1-3). Conclusively, protein and peptide bioactives are potentially reactive towards alkylcyanoacrylate monomers via various mechanisms with limited interference of pH. Histidines and C-terminal glutamic acid residues have been identified as potential sites of interaction. The likelihood of their engagement in the polymerisation process (initiators), however, seems dependant on their sterical availability. The reactivity of nucleophilic functional groups should always be considered and bioactives examined for their potential to covalently interfere with alkylcyanoacrylate monomers, especially when designing PACA delivery systems for protein and peptide biopharmaceuticals.

  19. Alignment of Helical Membrane Protein Sequences Using AlignMe

    PubMed Central

    Khafizov, Kamil; Forrest, Lucy R.

    2013-01-01

    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set. PMID:23469223

  20. PINALOG: a novel approach to align protein interaction networks--implications for complex detection and function prediction.

    PubMed

    Phan, Hang T T; Sternberg, Michael J E

    2012-05-01

    Analysis of protein-protein interaction networks (PPINs) at the system level has become increasingly important in understanding biological processes. Comparison of the interactomes of different species not only provides a better understanding of species evolution but also helps with detecting conserved functional components and in function prediction. Method and Here we report a PPIN alignment method, called PINALOG, which combines information from protein sequence, function and network topology. Alignment of human and yeast PPINs reveals several conserved subnetworks between them that participate in similar biological processes, notably the proteasome and transcription related processes. PINALOG has been tested for its power in protein complex prediction as well as function prediction. Comparison with PSI-BLAST in predicting protein function in the twilight zone also shows that PINALOG is valuable in predicting protein function. The PINALOG web-server is freely available from http://www.sbg.bio.ic.ac.uk/~pinalog. The PINALOG program and associated data are available from the Download section of the web-server. m.sternberg@imperial.ac.uk Supplementary data are available at Bioinformatics online.

  1. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  2. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach

    PubMed Central

    Dalzini, Annalisa; Bergamini, Christian; Biondi, Barbara; De Zotti, Marta; Panighel, Giacomo; Fato, Romana; Peggion, Cristina; Bortolus, Marco; Maniero, Anna Lisa

    2016-01-01

    Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface. PMID:27039838

  3. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.

    PubMed

    Berlin, C; Kowalewski, D J; Schuster, H; Mirza, N; Walz, S; Handel, M; Schmid-Horch, B; Salih, H R; Kanz, L; Rammensee, H-G; Stevanović, S; Stickel, J S

    2015-03-01

    Identification of physiologically relevant peptide vaccine targets calls for the direct analysis of the entirety of naturally presented human leukocyte antigen (HLA) ligands, termed the HLA ligandome. In this study, we implemented this direct approach using immunoprecipitation and mass spectrometry to define acute myeloid leukemia (AML)-associated peptide vaccine targets. Mapping the HLA class I ligandomes of 15 AML patients and 35 healthy controls, more than 25 000 different naturally presented HLA ligands were identified. Target prioritization based on AML exclusivity and high presentation frequency in the AML cohort identified a panel of 132 LiTAAs (ligandome-derived tumor-associated antigens), and 341 corresponding HLA ligands (LiTAPs (ligandome-derived tumor-associated peptides)) represented subset independently in >20% of AML patients. Functional characterization of LiTAPs by interferon-γ ELISPOT (Enzyme-Linked ImmunoSpot) and intracellular cytokine staining confirmed AML-specific CD8(+) T-cell recognition. Of note, our platform identified HLA ligands representing several established AML-associated antigens (e.g. NPM1, MAGED1, PRTN3, MPO, WT1), but found 80% of them to be also represented in healthy control samples. Mapping of HLA class II ligandomes provided additional CD4(+) T-cell epitopes and potentially synergistic embedded HLA ligands, allowing for complementation of a multipeptide vaccine for the immunotherapy of AML.

  4. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  5. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.

    PubMed

    Calvete, Juan J; Fasoli, Elisa; Sanz, Libia; Boschetti, Egisto; Righetti, Pier Giorgio

    2009-06-01

    We report the proteomic characterization of the venom of the medically important North American western diamondback rattlesnake, Crotalus atrox, using two complementary approaches: snake venomics (to gain an insight of the overall venom proteome), and two solid-phase combinatorial peptide ligand libraries (CPLL), followed by 2D electrophoresis and mass spectrometric characterization of in-gel digested protein bands (to capture and "amplify" low-abundance proteins). The venomics approach revealed approximately 24 distinct proteins belonging to 2 major protein families (snake venom metalloproteinases, SVMP, and serine proteinases), which represent 69.5% of the total venom proteins, 4 medium abundance families (medium-size disintegrin, PLA(2), cysteine-rich secretory protein, and l-amino acid oxidase) amounting to 25.8% of the venom proteins, and 3 minor protein families (vasoactive peptides, endogenous inhibitor of SVMP, and C-type lectin-like). This toxin profile potentially explains the cytotoxic, myotoxic, hemotoxic, and hemorrhagic effects evoked by C. atrox envenomation. Further, our results showing that C. atrox exhibits a similar level of venom variation as Sistrurus miliarius points to a "diversity gain" scenario in the lineage leading to the Sistrurus catenatus taxa. On the other hand, the two combinatorial hexapeptide libraries captured distinct sets of proteins. Although the CPLL-treated samples did not retain a representative venom proteome, protein spots barely, or not at all, detectable in the whole venom were enriched in the two CPLL-treated samples. The amplified low copy number C. atrox venom proteins comprised a C-type lectin-like protein, several PLA(2) molecules, PIII-SVMP isoforms, glutaminyl cyclase isoforms, and a 2-cys peroxiredoxin highly conserved across the animal kingdom. Peroxiredoxin and glutaminyl cyclase may participate, respectively, in redox processes leading to the structural/functional diversification of toxins, and in the N

  6. A Cell-Based Approach for the Biosynthesis/Screening of Cyclic Peptide Libraries against Bacterial Toxins

    SciTech Connect

    Camarero, J A; Kimura, R; Woo, Y; Cantor, J; Steenblock, E

    2007-10-24

    Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor (LF) as proof of principle. Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an efficient screening process that can be carried out inside the cell.

  7. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules.

    PubMed

    Pandya, Mital; Rasmussen, Michael; Hansen, Andreas; Nielsen, Morten; Buus, Soren; Golde, William; Barlow, John

    2015-11-01

    Major histocompatibility complex (MHC) class Imolecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network-based predictions (NetMHCpan). The updated NetMHCpan server was used to predict BoLA-I binding peptides within the P1 structural polyprotein sequence of FMDV (strain A24 Cruzeiro) for Bo-LA-1*01901, BoLA-2*00801, BoLA-2*01201, and BoLA-4*02401. Peptide binding affinity and stability were determined for these BoLA-I molecules using the luminescent oxygen channeling immunoassay (LOCI) and scintillation proximity assay (SPA). The functional diversity of known BoLA alleles was predicted using theMHCcluster tool, and functional predictions for peptide motifs were compared to observed data from this and prior studies. The results of these analyses showed that BoLA alleles cluster into three distinct groups with the potential to define BBoLA supertypes.^ This streamlined approach identifies potential T cell epitopes from pathogens, such as FMDV, and provides insight into T cell immunity following infection or vaccination.

  8. Discovering isozyme-selective inhibitor scaffolds of human carbonic anhydrases using structural alignment and de novo drug design approaches.

    PubMed

    Xiang, Fu; Xiang, Jun; Fang, Yuanping; Zhang, Mingju; Li, Maoteng

    2014-02-01

    The development of isozyme-selective carbonic anhydrase inhibitors is currently still a great challenge. In the present study, protein-ligand complex structures were obtained by AutoDock Vina with SBR ((R)-N-(3-indol-1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide) as the only inhibitor docked into the binding pockets of human isozymes CA I, II, IV, VI, IX, XII, and XIII. To make the spatial structures of complexes comparable, the co-ordinates for CA domains were reassigned based on structural alignments. With preferred docking poses of SBR been reduced to seed structures, the LigBuilder was used to build up inhibitor molecules. The results suggested that sulfonamide derivatives with naphthalene, fluorene, and acridan as the scaffold structures can be the potential isozyme-selective CAIs, especially for isozymes CA II, IV, and IX. © 2013 John Wiley & Sons A/S.

  9. Magnetically Aligned Supramolecular Hydrogels

    PubMed Central

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-01-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  10. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region.

    PubMed

    Amin, Mohamadreza; Mansourian, Mercedeh; Koning, Gerben A; Badiee, Ali; Jaafari, Mahmoud Reza; ten Hagen, Timo L M

    2015-12-28

    Liposomes containing cytotoxic agents and targeted with Arg-Gly-Asp based peptides have frequently been used against αvβ3 integrin on tumor neovasculature. However, like many other ligand modified liposomes these preparations suffered from enhanced uptake by the reticulo endothelial system (RES) and off-targeted interaction with integrin receptors vastly expressed in normal organs causing poor biodistribution and toxic effects. Here we mainly focus on development of a RGD-modified liposomal delivery system to enhance both targeting selectivity and tumor uptake. First, sterically stabilized liposomal doxorubicin (SSLD) prepared and decorated with cRGDfK and RGDyC peptides differ in their physical properties. Stability assessments as well as in vitro and in vivo studies revealed that increasing the peptide hydrophobicity promotes the therapeutic efficacy of RGD-SSLD in a C-26 tumor model due to decreased recognition by RES and opsonization and limited off-targeted interactions. Then a novel N-methylated RGD peptide was designed and its capability in targeting integrin presenting cells was comprehensively assessed both in vitro and in vivo. RGDf[N-methyl]C promotes the liposome internalization by HUVEC via integrin mediated endocytosis. Intravital microscopy in window chamber bearing mice illustrated the capability of RGDf[N-methyl]C-liposomes in targeting both tumor vasculature and tumor cells in murine B16F0 and human BLM tumor models. Quantitative biodistribution in mice bearing B16F0 tumor revealed its high affinity to tumor with no considerable affinity to normal organs. Treatment by high dose of RGDf[N-methyl]C-SSLD was found more effective than non-targeted SSLD and no toxic side effect was observed. In conclusion, the RGDf[N-methyl]C-liposome was found promising in targeting tumor vasculature as well as other cells inside the tumor.

  11. Multiple sequence alignment with hierarchical clustering.

    PubMed Central

    Corpet, F

    1988-01-01

    An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, a hierarchical clustering of the sequences is performed using the matrix of the pairwise alignment scores. The closest sequences are aligned creating groups of aligned sequences. Then close groups are aligned until all sequences are aligned in one group. The pairwise alignments included in the multiple alignment form a new matrix that is used to produce a hierarchical clustering. If it is different from the first one, iteration of the process can be performed. The method is illustrated by an example: a global alignment of 39 sequences of cytochrome c. PMID:2849754

  12. Evaluation of the Therapeutic Properties of Mastoparan- and Sifuvirtide- Derivative Antimicrobial Peptides Using Chemical Structure-Function Relationship - in vivo and in silico Approaches.

    PubMed

    Avram, Speranta; Mernea, Maria; Borcan, Florin; Mihailescu, Dan

    2016-01-01

    Antimicrobial peptides, also called body defense peptides, are chemical structures widely distributed across the animal and vegetal kingdoms that have a fundamental role as part of the immune system. These peptides are used against a wide range of pathogens, such as Gram-negative and - positive bacteria, fungi and viruses, etc. Their action spectrum makes them important for the pharmaceutical industry, as they could represent templates for the design of new and more potent structures by using drug design and drug delivery systems. Here we present the antimicrobial activity against Bacillus subtilis (expressed as minimal inhibitory concentration values) for 33 mastoparan analogs and their new derivatives by quantitative structure-activity relationship method (2D, aligned and also non-aligned 3D-QSAR). We establish the contribution to antimicrobial activity of molecular descriptors like hydrophobicity, hydrogen bond donor and steric hindrance, correlated with contributions from the membrane environment (sodium, potassium, chloride ions). Also the studies of HIV-1 fusion inhibitor sifuvirtide and its analogs are presented in context of interaction with lipid structures during fusion and delivery of these drugs.

  13. A Comprehensive Approach to Clustering of Expressed Human Gene Sequence: The Sequence Tag Alignment and Consensus Knowledge Base

    PubMed Central

    Miller, Robert T.; Christoffels, Alan G.; Gopalakrishnan, Chella; Burke, John; Ptitsyn, Andrey A.; Broveak, Tania R.; Hide, Winston A.

    1999-01-01

    The expressed human genome is being sequenced and analyzed by disparate groups producing disparate data. The majority of the identified coding portion is in the form of expressed sequence tags (ESTs). The need to discover exonic representation and expression forms of full-length cDNAs for each human gene is frustrated by the partial and variable quality nature of this data delivery. A highly redundant human EST data set has been processed into integrated and unified expressed transcript indices that consist of hierarchically organized human transcript consensi reflecting gene expression forms and genetic polymorphism within an index class. The expression index and its intermediate outputs include cleaned transcript sequence, expression, and alignment information and a higher fidelity subset, SANIGENE. The STACK_PACK clustering system has been applied to dbEST release 121598 (GenBank version 110). Sixty-four percent of 1,313,103 Homo sapiens ESTs are condensed into 143,885 tissue level multiple sequence clusters; linking through clone-ID annotations produces 68,701 total assemblies, such that 81% of the original input set is captured in a STACK multiple sequence or linked cluster. Indexing of alignments by substituent EST accession allows browsing of the data structure and its cross-links to UniGene. STACK metaclusters consolidate a greater number of ESTs by a factor of 1.86 with respect to the corresponding UniGene build. Fidelity comparison with genome reference sequence AC004106 demonstrates consensus expression clusters that reflect significantly lower spurious repeat sequence content and capture alternate splicing within a whole body index cluster and three STACK v.2.3 tissue-level clusters. Statistics of a staggered release whole body index build of STACK v.2.0 are presented. PMID:10568754

  14. New approaches to improve a peptide vaccine against porcine Taenia solium cysticercosis.

    PubMed

    Sciutto, Edda; Fragoso, Gladis; Manoutcharian, Karen; Gevorkian, Goar; Rosas-Salgado, Gabriela; Hernández-Gonzalez, Marisela; Herrera-Estrella, Luis; Cabrera-Ponce, José; López-Casillas, Fernando; González-Bonilla, César; Santiago-Machuca, Araceli; Ruíz-Pérez, Fernando; Sánchez, Joaquín; Goldbaum, Fernando; Aluja, Aline; Larralde, Carlos

    2002-01-01

    Cysticercosis caused by Taenia solium frequently affects human health and rustic porciculture. Cysticerci may localize in the central nervous system of humans causing neurocysticercosis, a major health problem in undeveloped countries. Prevalence and intensity of this disease in pigs and humans are related to social factors (poor personal hygiene, low sanitary conditions, rustic rearing of pigs, open fecalism) and possibly to biological factors such as immunity, genetic background, and gender. The indispensable role of pigs as an obligatory intermediate host in the life cycle offers the possibility of interfering with transmission through vaccination of pigs. An effective vaccine based on three synthetic peptides against pig cysticercosis has been successfully developed and proved effective in experimental and field conditions. The well-defined peptides that constitute the cysticercosis vaccine offer the possibility to explore alternative forms of antigen production and delivery systems that may improve the cost/benefit of this and other vaccines. Encouraging results were obtained in attempts to produce large amounts of these peptides and increased its immunogenicity by expression in recombinant filamentous phage (M13), in transgenic plants (carrots and papaya), and associated to bacterial immunogenic carrier proteins.

  15. Signal-BNF: a Bayesian network fusing approach to predict signal peptides.

    PubMed

    Zheng, Zhi; Chen, Youying; Chen, Liping; Guo, Gongde; Fan, Yongxian; Kong, Xiangzeng

    2012-01-01

    A signal peptide is a short peptide chain that directs the transport of a protein and has become the crucial vehicle in finding new drugs or reprogramming cells for gene therapy. As the avalanche of new protein sequences generated in the postgenomic era, the challenge of identifying new signal sequences has become even more urgent and critical in biomedical engineering. In this paper, we propose a novel predictor called Signal-BNF to predict the N-terminal signal peptide as well as its cleavage site based on Bayesian reasoning network. Signal-BNF is formed by fusing the results of different Bayesian classifiers which used different feature datasets as its input through weighted voting system. Experiment results show that Signal-BNF is superior to the popular online predictors such as Signal-3L and PrediSi. Signal-BNF is featured by high prediction accuracy that may serve as a useful tool for further investigating many unclear details regarding the molecular mechanism of the zip code protein-sorting system in cells.

  16. Signal-BNF: A Bayesian Network Fusing Approach to Predict Signal Peptides

    PubMed Central

    Zheng, Zhi; Chen, Youying; Chen, Liping; Guo, Gongde; Fan, Yongxian; Kong, Xiangzeng

    2012-01-01

    A signal peptide is a short peptide chain that directs the transport of a protein and has become the crucial vehicle in finding new drugs or reprogramming cells for gene therapy. As the avalanche of new protein sequences generated in the postgenomic era, the challenge of identifying new signal sequences has become even more urgent and critical in biomedical engineering. In this paper, we propose a novel predictor called Signal-BNF to predict the N-terminal signal peptide as well as its cleavage site based on Bayesian reasoning network. Signal-BNF is formed by fusing the results of different Bayesian classifiers which used different feature datasets as its input through weighted voting system. Experiment results show that Signal-BNF is superior to the popular online predictors such as Signal-3L and PrediSi. Signal-BNF is featured by high prediction accuracy that may serve as a useful tool for further investigating many unclear details regarding the molecular mechanism of the zip code protein-sorting system in cells. PMID:23118510

  17. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches

    PubMed Central

    Velasco-Aguirre, Carolina; Morales, Francisco; Gallardo-Toledo, Eduardo; Guerrero, Simon; Giralt, Ernest; Araya, Eyleen; Kogan, Marcelo J

    2015-01-01

    An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood–brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed. PMID:26300639

  18. Copper binding to prion octarepeat peptides, a combined metal chelate affinity and immunochemical approaches.

    PubMed

    Todorova-Balvay, Daniela; Simon, Stéphanie; Créminon, Christophe; Grassi, Jacques; Srikrishnan, Thamarapu; Vijayalakshmi, Mookambeswaran A

    2005-04-15

    Based on the hypothetical proposal of Sulkowski [E. Sulkowski, FEBS Lett. 307 (2) (1992) 129] for the implication of transition metal ions in the structural changes/oligomerisation of normal cellular prion protein (PrPc) resulting in the pathological isoform (PrPsc), we focused our study on the octarepat domain of this protein which has been supposed to be the metal binding site. We have studied the copper binding to synthetic prion octarepeat peptides (PHGGGWGQ)n (n=1, 3, 6) using metal chelate and size-exclusion modes of chromatographies. This copper binding induces oligomerisation resulting in multiple aggregates. Moreover, heterogeneity of metal bound octarepeat oligomers by ESI-MS has been demonstrated. In addition, anti prion antibodies specific to the octarepeat region were used to discriminate between metal free and copper, nickel and zinc bound hexamer octarepeat peptide. Differential recognition of Cu(II) and Zn(II) bound complexes has been observed which signify differences in exposed epitopes of aggregated peptides.

  19. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies

    NASA Astrophysics Data System (ADS)

    Seo, Jongcheol; Hoffmann, Waldemar; Warnke, Stephan; Huang, Xing; Gewinner, Sandy; Schöllkopf, Wieland; Bowers, Michael T.; von Helden, Gert; Pagel, Kevin

    2017-01-01

    Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.

  20. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches.

    PubMed

    Velasco-Aguirre, Carolina; Morales, Francisco; Gallardo-Toledo, Eduardo; Guerrero, Simon; Giralt, Ernest; Araya, Eyleen; Kogan, Marcelo J

    2015-01-01

    An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood-brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed.

  1. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  2. An apolipoprotein A-I mimetic peptide designed with a reductionist approach stimulates reverse cholesterol transport and reduces atherosclerosis in mice.

    PubMed

    Ditiatkovski, Michael; D'Souza, Wilissa; Kesani, Rajitha; Chin-Dusting, Jaye; de Haan, Judy B; Remaley, Alan; Sviridov, Dmitri

    2013-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe(-/-) mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe(-/-) mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe(-/-) mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.

  3. Use of multiple peptides containing T cell epitopes is a feasible approach for peptide-based immunotherapy in Can f 1 allergy

    PubMed Central

    Immonen, Anu K; Taivainen, Antti H; Närvänen, Ale T O; Kinnunen, Tuure T; Saarelainen, Soili A; Rytkönen-Nissinen, Marja A; Virtanen, Tuomas I

    2007-01-01

    We have previously shown that the major dog allergen Can f 1 contains seven T cell epitope regions, none of which was preferentially recognized. To identify the immune characteristics of Can f 1 epitopes and to verify their suitability for peptide-based allergen immunotherapy, short-term T cell lines were generated with epitope-containing peptides from peripheral blood mononuclear cells of Can f 1 skinprick test-positive allergic and healthy control subjects. The lines were examined for their proliferative capacity and cytokine production upon stimulation with the allergen peptide, a homologous peptide from human tear lipocalin (TL) and Can f 1 and TL proteins. Can f 1 peptides induced proliferation of T cells and gave rise to T cell lines with comparable efficiencies. In particular, the T cell lines of allergic subjects induced with p33–48 and p107–122 favoured the production of interferon-γ and interleukin-10, respectively. A greater number of Can f 1-specific T cell lines were generated from allergic than from healthy individuals. Two p107–122-induced Can f 1-specific T cell lines also reacted to a homologous peptide of human TL. Our results suggest that several T cell epitope-containing peptides should be used in combination for specific immunotherapy in Can f 1 allergy. PMID:17233739

  4. Analysis of the Oryza sativa plasma membrane proteome using combined protein and peptide fractionation approaches in conjunction with mass spectrometry.

    PubMed

    Natera, Siria H A; Ford, Kristina L; Cassin, Andrew M; Patterson, John H; Newbigin, Edward J; Bacic, Antony

    2008-03-01

    To identify integral and peripheral plasma membrane (PM) proteins from Oryza sativa (rice), highly enriched PM fractions from rice suspension cultured cells were analyzed using two complementary approaches. The PM was enriched using aqueous two-phase partitioning and high pH carbonate washing to remove soluble, contaminating proteins and characterized using enzymatic and immunological analyses. Proteins from the carbonate-washed PM (WPM) were analyzed by either one-dimensional gel electrophoresis (1D-SDS-PAGE) followed by tryptic proteolysis or proteolysis followed by strong cation exchange liquid chromatography (LC) with subsequent analysis of the tryptic peptides by LC-MS/MS (termed Gel-LC-MS/MS and 2D-LC-MS/MS, respectively). Combining the results of these two approaches, 438 proteins were identified on the basis of two or more matching peptides, and a further 367 proteins were identified on the basis of single peptide matches after data analysis with two independent search algorithms. Of these 805 proteins, 350 were predicted to be PM or PM-associated proteins. Four hundred and twenty-five proteins (53%) were predicted to be integrally associated with a membrane, via either one or many (up to 16) transmembrane domains, a GPI-anchor, or membrane-spanning beta-barrels. Approximately 80% of the 805 identified proteins were assigned a predicted function, based on similarity to proteins of known function or the presence of functional domains. Proteins involved in PM-related activities such as signaling (21% of the 805 proteins), transporters and ATPases (14%), and cellular trafficking (8%), such as via vesicles involved in endo- and exocytosis, were identified. Proteins that are involved in cell wall biosynthesis were also identified (5%) and included three cellulose synthase (CESA) proteins, a cellulose synthase-like D (CSLD) protein, cellulases, and several callose synthases. Approximately 20% of the proteins identified in this study remained functionally

  5. Multiple sequence alignment based on profile alignment of intermediate sequences.

    PubMed

    Lu, Yue; Sze, Sing-Hoi

    2008-09-01

    Despite considerable efforts, it remains difficult to obtain accurate multiple sequence alignments. By using additional hits from database search of the input sequences, a few strategies have been proposed to significantly improve alignment accuracy, including the construction of profiles from the hits while performing profile alignment, the inclusion of high scoring hits into the input sequences, the use of intermediate sequence search to link distant homologs, and the use of secondary structure information. We develop an algorithm that integrates these strategies to further improve alignment accuracy by modifying the pair-Hidden Markov Model (HMM) approach in ProbCons to incorporate profiles of intermediate sequences from database search and utilize secondary structure predictions as in SPEM. We test our algorithm on a few sets of benchmark multiple alignments, including BAliBASE, HOMSTRAD, PREFAB, and SABmark, and show that it significantly outperforms MAFFT and ProbCons, which are among the best multiple alignment algorithms that do not utilize additional information, and SPEM, which is among the best multiple alignment algorithms that utilize additional hits from database search. The improvement in accuracy over SPEM can be as much as 5-10% when aligning divergent sequences. A software program that implements this approach (ISPAlign) is available at http://faculty.cs.tamu.edu/shsze/ispalign.

  6. A Novel Peptide Thrombopoietin Mimetic Designing and Optimization Using Computational Approach

    PubMed Central

    Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh

    2016-01-01

    Thrombopoietin receptor (TPOR) is a cytokine receptor protein present on the cell surface. The activation of TPOR by thrombopoietin (TPO) (a glycoprotein hormone) triggers an intracellular cascade of megakaryocytopoiesis for the formation of platelets. Recent studies on ex vivo megakaryocytopoiesis have evolved the possibilities of therapeutics uses. These findings have paved the way for the development of various TPO alternatives (recombinant TPO, peptide, and non-peptide TPO mimetics), which are useful in regenerative medicine. However, these alternatives possess various limitations such as induction of autoimmune effects, high production cost, low specificity, and hence activity. In the present study, a novel peptidic TPO mimetic was designed through computational studies by studying the binding sites of TPO and TMP to TPOR and analogs of known mimetics. Screening of combinatorial library was done through molecular docking using ClusPro. These studies indicated mimetic-9 as a significant molecule since it was found to have better binding score of −938.8 kcal/mol with seven hydrogen bonds and a high number of hydrophobic interactions, than known mimetic TMP with docking score of −798.4 kcal/mol and TMP dimer with docking score of −811.9 kcal/mol for TPOR. Mimetic9-TPOR complex was further assessed by the molecular dynamics simulation, and their complex was found to be stable with an RMSD value of 0.091 Å. While studying the parameters, mimetic-9 was found to have overall good physiochemical properties with positive grand average hydropathy (GRAVY) score and high instability index score and was found to be localized in the extracellular region. The designed mimetic-9 might prove to be a useful lead molecule for mimicking the role of TPO for in vitro platelet production with higher efficiency. PMID:27630985

  7. A novel multi-epitope peptide vaccine against cancer: an in silico approach.

    PubMed

    Nezafat, Navid; Ghasemi, Younes; Javadi, Gholamreza; Khoshnoud, Mohammad Javad; Omidinia, Eskandar

    2014-05-21

    Cancer immunotherapy has an outstanding position in cancer prevention and treatment. In this kind of therapy, the immune system is activated to eliminate cancerous cells. Multi-epitope peptide cancer vaccines are manifesting as the next generation of cancer immunotherapy. In the present study, we have implemented various strategies to design an efficient multi-epitope vaccine. CD8+ cytolytic T lymphocytes (CTLs) epitopes, which have a pivotal role in cellular immune responses, helper epitopes and adjuvant, are three crucial components of peptide vaccine. CTL epitopes were determined from two high immunogenic protein Wilms tumor-1 (WT1) and human papillomavirus (HPV) E7 by various servers, which apply different algorithms. CTL epitopes were linked together by AAY and HEYGAEALERAG motifs to enhance epitope presentation. Pan HLA DR-binding epitope (PADRE) peptide sequence and helper epitopes, which have defined from Tetanus toxin fragment C (TTFrC) by various servers, were used to induce CD4+ helper T lymphocytes (HTLs) responses. Additionally, helper epitopes were conjugated together via GPGPG motifs that stimulate HTL immunity. Heparin-Binding Hemagglutinin (HBHA), a novel TLR4 agonist was employed as an adjuvant to polarize CD4+ T cells toward T-helper 1 to induce strong CTL responses. Moreover, the EAAAK linker was introduced to N and C terminals of HBHA for efficient separation. 3D model of protein was generated and predicted B cell epitopes were determined from the surface of built structure. Our protein contains several linear and conformational B cell epitopes, which suggests the antibody triggering property of this novel vaccine. Hence, our final protein can be used for prophylactic or therapeutic usages, because it can potentially stimulate both cellular and humoral immune responses.

  8. A novel approach to infection imaging using a synthetic Tc-99m-labeled leukotactic peptide

    SciTech Connect

    Som, P.; Oster, Z.H.; Sharma, S. ||

    1996-05-01

    RMT1, a synthetic peptide binding to PMN and macrophage receptors was labeled with Tc-99m and investigated as a potential imaging agent for abscess and inflammation. Experimental abscesses were induced in rabbits and dogs by turpentine and E.coli injection. After injection of Tc-99m-RMT1 two and twelve day old abscesses were visualized within 20 min. In initial studies, a dose of 30 {mu}g of peptide/3 mCi was used. This amount was subsequently reduced to 1.5 {mu}g peptide with same amount of Tc-99m yielding similar imaging results. Technetium-99m-IgG and Tc-99m-MAG-3 were used as positive and negative controls, respectively. After injection of IgG abscesses were visualized but activity in blood was always higher than in abscess. When using Tc-99m RMT1 rapid abscess visualization and faster blood clearance was observed. The accumulation of RMT1 was monophasic, i.e., following the initial visualization, activity continued to build up continuously for 1{1/2} hr. Tc-99m-MAG3 accumulated initially in abscess, but activity washed out. In dogs, RMT1 blood clearance showed three components: a fast component with t{1/2}=1.9 min, 73%, intermediate t{1/2}=22 min, 24.5% and slow component, t{1/2}=115, 9.5% with 3 hours cumulative urine excretion of 40-51%. RMT1 appears to be more advantageous than currently available methods because of rapidity of imaging, simpler preparation before injection and will probably be less expensive and time consuming compared to labeled WBC. These results indicate that clinical experiments are warranted.

  9. Unifying expression scale for peptide hydrophobicity in proteomic reversed phase high-pressure liquid chromatography experiments.

    PubMed

    Grigoryan, Marine; Shamshurin, Dmitry; Spicer, Victor; Krokhin, Oleg V

    2013-11-19

    As an initial step in our efforts to unify the expression of peptide retention times in proteomic liquid chromatography-mass spectrometry (LC-MS) experiments, we aligned the chromatographic properties of a number of peptide retention standards against a collection of peptides commonly observed in proteomic experiments. The standard peptide mixtures and tryptic digests of samples of different origins were separated under the identical chromatographic condition most commonly employed in proteomics: 100 Å C18 sorbent with 0.1% formic acid as an ion-pairing modifier. Following our original approach (Krokhin, O. V.; Spicer, V. Anal. Chem. 2009, 81, 9522-9530) the retention characteristics of these standards and collection of tryptic peptides were mapped into hydrophobicity index (HI) or acetonitrile percentage units. This scale allows for direct visualization of the chromatographic outcome of LC-MS acquisitions, monitors the performance of the gradient LC system, and simplifies method development and interlaboratory data alignment. Wide adoption of this approach would significantly aid understanding the basic principles of gradient peptide RP-HPLC and solidify our collective efforts in acquiring confident peptide retention libraries, a key component in the development of targeted proteomic approaches.

  10. Transcription Factor Binding Probabilities in Orthologous Promoters: An Alignment-Free Approach to the Inference of Functional Regulatory Targets

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Clarke, Neil D.

    Using a physically principled method of scoring genomic sequences for the potential to be bound by transcription factors, we have developed an algorithm for assessing the conservation of predicted binding occupancy that does not rely on sequence alignment of promoters. The method, which we call ortholog-weighting, assesses the degree to which the predicted binding occupancy of a transcription factor in a reference gene is also predicted in the promoters of orthologous genes. The analysis was performed separately for over 100 different transcription factors in S. cerevisiae. Statistical significance was evaluated by simulation using permuted versions of the position weight matrices. Ortholog-weighting produced about twice as many significantly high scoring genes as were obtained from the S. cerevisiae genome alone. Gene Ontology analysis found a similar two-fold enrichment of genes. Both analyses suggest that ortholog-weighting improves the prediction of true regulatory targets. Interestingly, the method has only a marginal effect on the prediction of binding by chromatin immunoprecipitation (ChIP) assays. We suggest several possibilities for reconciling this result with the improved enrichment that we observe for functionally related promoters and for promoters that are under positive selection.

  11. Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting.

    PubMed

    Ye, Kai; Feenstra, K Anton; Heringa, Jaap; Ijzerman, Adriaan P; Marchiori, Elena

    2008-01-01

    Identification of residues that account for protein function specificity is crucial, not only for understanding the nature of functional specificity, but also for protein engineering experiments aimed at switching the specificity of an enzyme, regulator or transporter. Available algorithms generally use multiple sequence alignments to identify residue positions conserved within subfamilies but divergent in between. However, many biological examples show a much subtler picture than simple intra-group conservation versus inter-group divergence. We present multi-RELIEF, a novel approach for identifying specificity residues that is based on RELIEF, a state-of-the-art Machine-Learning technique for feature weighting. It estimates the expected 'local' functional specificity of residues from an alignment divided in multiple classes. Optionally, 3D structure information is exploited by increasing the weight of residues that have high-weight neighbors. Using ROC curves over a large body of experimental reference data, we show that (a) multi-RELIEF identifies specificity residues for the seven test sets used, (b) incorporating structural information improves prediction for specificity of interaction with small molecules and (c) comparison of multi-RELIEF with four other state-of-the-art algorithms indicates its robustness and best overall performance. A web-server implementation of multi-RELIEF is available at www.ibi.vu.nl/programs/multirelief. Matlab source code of the algorithm and data sets are available on request for academic use.

  12. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules.

    PubMed

    Marshall, David L; Hansen, Christopher S; Trevitt, Adam J; Oh, Han Bin; Blanksby, Stephen J

    2014-03-14

    Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl]benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation.

  13. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides.

    PubMed

    Chou, Kuo-Chen; Shen, Hong-Bin

    2007-06-08

    We have developed an automated method for predicting signal peptide sequences and their cleavage sites in eukaryotic and bacterial protein sequences. It is a 2-layer predictor: the 1st-layer prediction engine is to identify a query protein as secretory or non-secretory; if it is secretory, the process will be automatically continued with the 2nd-layer prediction engine to further identify the cleavage site of its signal peptide. The new predictor is called Signal-CF, where C stands for "coupling" and F for "fusion", meaning that Signal-CF is formed by incorporating the subsite coupling effects along a protein sequence and by fusing the results derived from many width-different scaled windows through a voting system. Signal-CF is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-CF is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-CF/ or http://202.120.37.186/bioinf/Signal-CF/.

  14. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  15. Identification of novel peptide hormones in the human proteome by hidden Markov model screening.

    PubMed

    Mirabeau, Olivier; Perlas, Emerald; Severini, Cinzia; Audero, Enrica; Gascuel, Olivier; Possenti, Roberta; Birney, Ewan; Rosenthal, Nadia; Gross, Cornelius

    2007-03-01

    Peptide hormones are small, processed, and secreted peptides that signal via membrane receptors and play critical roles in normal and pathological physiology. The search for novel peptide hormones has been hampered by their small size, low or restricted expression, and lack of sequence similarity. To overcome these difficulties, we developed a bioinformatics search tool based on the hidden Markov model formalism that uses several peptide hormone sequence features to estimate the likelihood that a protein contains a processed and secreted peptide of this class. Application of this tool to an alignment of mammalian proteomes ranked 90% of known peptide hormones among the top 300 proteins. An analysis of the top scoring hypothetical and poorly annotated human proteins identified two novel candidate peptide hormones. Biochemical analysis of the two candidates, which we called spexin and augurin, showed that both were localized to secretory granules in a transfected pancreatic cell line and were recovered from the cell supernatant. Spexin was expressed in the submucosal layer of the mouse esophagus and stomach, and a predicted peptide from the spexin precursor induced muscle contraction in a rat stomach explant assay. Augurin was specifically expressed in mouse endocrine tissues, including pituitary and adrenal gland, choroid plexus, and the atrio-ventricular node of the heart. Our findings demonstrate the utility of a bioinformatics approach to identify novel biologically active peptides. Peptide hormones and their receptors are important diagnostic and therapeutic targets, and our results suggest that spexin and augurin are novel peptide hormones likely to be involved in physiological homeostasis.

  16. Affinity selection of histidine-containing peptides using metal chelate methacrylate monolithic disk for targeted LC-MS/MS approach in high-throughput proteomics.

    PubMed

    Prasanna, Rajasekar R; Sidhik, Sinash; Kamalanathan, Agamudi S; Bhagavatula, Krishna; Vijayalakshmi, Mookambeswaran A

    2014-04-01

    In recent years, bottom-up approach has become the popular method of choice for large scale analysis of complex proteome samples. Peptide fractionation determines the efficiency of the bottom-up method and often the resolving power of reverse phase liquid chromatography (RPLC) is insufficient for efficient protein identification in case of complex biological samples. To overcome the inherent limitation of proteomics associated with sample complexity, we evaluated fast flow metal chelate methacrylate monolithic system - CIM (Convective Interaction Media) disk chelated with Cu(II) for targeted affinity selection of histidine-containing peptides. Initially the Cu(II)-IMAC using CIM disk was evaluated using tryptic digest of protein mixtures of 8 model proteins and was found to be highly efficient in capturing His-containing peptides with high degree of specificity and selectivity. Further the efficiency of His-peptide enrichment using CIM-IMAC was also demonstrated using complex biological samples like total Escherichia coli cell lysate. The analysis of the Cu(II)-IMAC retained peptides from tryptic digests of model protein mixture and E. coli not only demonstrated a significant reduction in sample complexity but also subsequently enabled the identification of additional peptides. His-peptide enrichment also enabled the identification of low abundant proteins that were not detected in the analysis of total E. coli digest.

  17. An efficient method for multiple sequence alignment

    SciTech Connect

    Kim, J.; Pramanik, S.

    1994-12-31

    Multiple sequence alignment has been a useful method in the study of molecular evolution and sequence-structure relationships. This paper presents a new method for multiple sequence alignment based on simulated annealing technique. Dynamic programming has been widely used to find an optimal alignment. However, dynamic programming has several limitations to obtain optimal alignment. It requires long computation time and cannot apply certain types of cost functions. We describe detail mechanisms of simulated annealing for multiple sequence alignment problem. It is shown that simulated annealing can be an effective approach to overcome the limitations of dynamic programming in multiple sequence alignment problem.

  18. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels

  19. A Versatile Approach to Transform Low-Affinity Peptides into Protein Probes with Co-Translationally Expressed Chemical Cross-Linker1

    PubMed Central

    Umeda, Aiko; Thibodeaux, Gabrielle Nina; Moncivais, Kathryn; Jiang, Faqin; Zhang, Zhiwen Jonathan

    2010-01-01

    The potential usefulness of artificially selected peptides as probes to detect specific proteins has been proposed because of the ease and low cost of syntheses, manipulation and genetic expression. However, the affinities of these peptides to their target proteins are generally too low to be practical as diagnostic or bio-analytical reagents. One approach to this problem is to incorporate a redox-active amino acid 3,4-dihydroxy-L-phenylalanine (L-DOPA) which selectively forms a covalent linkage to the target protein. Such peptide-based probes can also be fused to tailored reporter proteins and easily expressed in bacterial cultures. As a demonstration, a candidate peptide TOP1 that weakly binds to the target protein, the SH3 domain of human Abl kinase, was fused to green fluorescent protein (GFP) and L-DOPA was site-specifically incorporated into the peptide region (TOP1-DOPA-GFP). TOP1-DOPA-GFP produced from E. coli was used in a Western blot-type experiment to show that the Abl SH3 domain can be detected in one step by observing the fluorescence. The molecular design presented in this work is significant in that the same approach could be used to transform many other protein-binding peptides with insufficient affinities into protein detection probes with a variety of fused reporter or therapeutic proteins. PMID:20510935

  20. Instability in progressive multiple sequence alignment algorithms.

    PubMed

    Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G

    2015-01-01

    Progressive alignment is the standard approach used to align large numbers of sequences. As with all heuristics, this involves a tradeoff between alignment accuracy and computation time. We examine this tradeoff and find that, because of a loss of information in the early steps of the approach, the alignments generated by the most common multiple sequence alignment programs are inherently unstable, and simply reversing the order of the sequences in the input file will cause a different alignment to be generated. Although this effect is more obvious with larger numbers of sequences, it can also be seen with data sets in the order of one hundred sequences. We also outline the means to determine the number of sequences in a data set beyond which the probability of instability will become more pronounced. This has major ramifications for both the designers of large-scale multiple sequence alignment algorithms, and for the users of these alignments.

  1. MRMPath and MRMutation, Facilitating Discovery of Mass Transitions for Proteotypic Peptides in Biological Pathways Using a Bioinformatics Approach

    PubMed Central

    Crasto, Chiquito; Narne, Chandrahas; Kawai, Mikako; Wilson, Landon; Barnes, Stephen

    2013-01-01

    Quantitative proteomics applications in mass spectrometry depend on the knowledge of the mass-to-charge ratio (m/z) values of proteotypic peptides for the proteins under study and their product ions. MRMPath and MRMutation, web-based bioinformatics software that are platform independent, facilitate the recovery of this information by biologists. MRMPath utilizes publicly available information related to biological pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. All the proteins involved in pathways of interest are recovered and processed in silico to extract information relevant to quantitative mass spectrometry analysis. Peptides may also be subjected to automated BLAST analysis to determine whether they are proteotypic. MRMutation catalogs and makes available, following processing, known (mutant) variants of proteins from the current UniProtKB database. All these results, available via the web from well-maintained, public databases, are written to an Excel spreadsheet, which the user can download and save. MRMPath and MRMutation can be freely accessed. As a system that seeks to allow two or more resources to interoperate, MRMPath represents an advance in bioinformatics tool development. As a practical matter, the MRMPath automated approach represents significant time savings to researchers. PMID:23424586

  2. A systematic approach to the preparation of 125I-labeled gastrointestinal regulatory peptides with high specific radioactivities.

    PubMed

    Burhol, P G; Jorde, R; Florholmen, J; Jenssen, T G; Vonen, B

    1985-05-01

    A systematic approach is outlined for the preparation of a whole series of immunoreactive 125I-labeled gastrointestinal regulatory peptides with high specific radioactivities. In our hands, the theoretically superior Iodo-gen method has no more to offer than the harsher chloramine-T method in the iodination of secretin, vasoactive intestinal polypeptide, gastric inhibitory polypeptide, and motilin; whereas the gentler Iodo-gen method has to be used to obtain fully immunoreactive cholecystokinin39 (CCK39) and Tyr1-somatostatin tracers. By applying the iodination mixtures on a Sephadex G-15 or a Sephadex G-10 column followed by an SP Sephadex C-25 column--being eluted under so-called 'finite adsorption equilibrium' between the peptides to be purified and the adsorbent--highly purified tracers are obtained with unusually high specific radioactivities. Stored at -20 degrees C in diluted aliquots of from 200 to 500 microliter, these tracers can be used for radioimmunoassay purposes without rechromatography for at least 60 days.

  3. Predicting peptide vaccine candidates against H1N1 influenza virus through theoretical approaches.

    PubMed

    Bello, Martiniano; Campos-Rodriguez, Rafael; Rojas-Hernandez, Saul; Contis-Montes de Oca, Arturo; Correa-Basurto, José

    2015-05-01

    Identification of potential epitopes that might activate the immune system has been facilitated by the employment of algorithms that use experimental data as templates. However, in order to prove the affinity and the map of interactions between the receptor (major histocompatibility complex, MHC, or T-cell receptor) and the potential epitope, further computational studies are required. Docking and molecular dynamics (MDs) simulations have been an effective source of generating structural information at molecular level in immunology. Herein, in order to provide a detailed understanding of the origins of epitope recognition and to select the best peptide candidate to develop an epitope-based vaccine, docking and MDs simulations in combination with MMGBSA free energy calculations and per-residue free energy decomposition were performed, taking as starting complexes those formed between four designed epitopes (P1-P4) from hemagglutinin (HA) of the H1N1 influenza virus and MHC-II anchored in POPC membrane. Our results revealed that the energetic contributions of individual amino acids within the pMHC-II complexes are mainly dictated by van der Waals interactions and the nonpolar part of solvation energy, whereas the electrostatic interactions corresponding to hydrogen bonds and salt bridges determine the binding specificity, being the most favorable interactions formed between p4 and MHC-II. Then, P1-P4 epitopes were synthesized and tested experimentally to compare theoretical and experimental results. Experimental results show that P4 elicited the highest strong humoral immune response to HA of the H1N1 and may induce antibodies that are cross-reactive to other influenza subtypes, suggesting that it could be a good candidate for the development of a peptide-based vaccine.

  4. Lutetium-177-labeled gastrin releasing peptide receptor binding analogs: a novel approach to radionuclide therapy.

    PubMed

    Panigone, S; Nunn, A D

    2006-12-01

    Optimization of therapy for individual patients remains a goal of clinical practice. Radionuclide imaging can identify those patients who may benefit from subsequent targeted therapy by providing regional information on the distribution of the target. An ideal situation may be when the imaging and the therapeutic compounds are the same agent. Two antibodies ([ [90Y]ibritumomab, [131I]tositumomab) are now approved for the systemic radiotherapy of non-Hodgkin's lymphoma. The main hurdle is to deliver higher absorbed doses to the more refractory solid tumors paying particular regard to the bone marrow toxicity. The low dose is thought to be a result of the large size of antibodies slowing delivery to the target. Peptides having high affinity to receptors expressed on cancer cells are a promising alternative. They are usually rapidly excreted from the body through renal and/or hepatobiliary excretion thus creating a prolonged accumulation of the radioactivity in the kidneys, which represents a recognized issue for systemic radiotherapy. The first radiopeptide developed was a somatostatin analogue, which led to a major breakthrough in the field. Beside the kidney issue, somatostatin use remains limited to few cancers that express receptors in sufficiently large quantities, mainly neuroendocrine tumors. The gastrin releasing peptide (GRP) receptor is an attractive target for development of new radiopeptides with diagnostic and therapeutic potential. This is based upon the functional expression of GRP receptors in several of the more prevalent cancers including prostate, breast, and small cell lung cancer. This review covers the efforts currently underway to develop new and clinically promising GRP-receptor specific molecules labeled with imageable and therapeutic radionuclides.

  5. New Approaches to Feline Diabetes Mellitus: Glucagon-like peptide-1 analogs.

    PubMed

    Gilor, Chen; Rudinsky, Adam J; Hall, Melanie J

    2016-09-01

    Incretin-based therapies are revolutionizing the field of human diabetes mellitus (DM) by replacing insulin therapy with safer and more convenient long-acting drugs. Incretin hormones (glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic peptide [GIP]) are secreted from the intestinal tract in response to the presence of food in the intestinal lumen. GLP-1 delays gastric emptying and increases satiety. In the pancreas, GLP-1 augments insulin secretion and suppresses glucagon secretion during hyperglycemia in a glucose-dependent manner. It also protects beta cells from oxidative and toxic injury and promotes expansion of beta cell mass. Clinical data have revealed that GLP-1 analog drugs are as effective as insulin in improving glycemic control while reducing body weight in people suffering from type 2 DM. Furthermore, the incidence of hypoglycemia is low with these drugs because of their glucose-dependent mechanism of action. Another significant advantage of these drugs is their duration of action. While insulin injections are administered at least once daily, long-acting GLP-1 analogs have been developed as once-a-week injections and could potentially be administered even less frequently than that in diabetic cats. This article reviews the physiology of incretin hormones, and the pharmacology and use of GLP-1 analogs, with emphasis on recent research in cats. Further therapies that are based on incretin hormones, such as DPP-4 inhibitors, are also briefly discussed, as are some other treatment modalities that are currently under investigation. © The Author(s) 2016.

  6. LPXRFa peptide system in the European sea bass: A molecular and immunohistochemical approach.

    PubMed

    Paullada-Salmerón, José A; Cowan, Mairi; Aliaga-Guerrero, María; Gómez, Ana; Zanuy, Silvia; Mañanos, Evaristo; Muñoz-Cueto, José A

    2016-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior.

  7. Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks*

    PubMed Central

    Bandeira, Nuno

    2016-01-01

    Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software. PMID:27609420

  8. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.

    PubMed

    Tu, Chengjian; Sheng, Quanhu; Li, Jun; Ma, Danjun; Shen, Xiaomeng; Wang, Xue; Shyr, Yu; Yi, Zhengping; Qu, Jun

    2015-11-06

    The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator

  9. Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase.

    PubMed

    Zhang, X P; Sjöling, S; Tanudji, M; Somogyi, L; Andreu, D; Eriksson, L E; Gräslund, A; Whelan, J; Glaser, E

    2001-09-01

    Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.

  10. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-07

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers.

  11. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    PubMed Central

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi

  12. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Monitoring and dynamic control of distance and tilt angle measurements in micro-alignment instrument using an imaging approach.

    PubMed

    Jeng, C C; Wu, C H; Li, C Z; Chen, J H

    2009-08-17

    An accurate and simple optical triangulation method is proposed for determining the distance and the tilt angle between the window and the SQUID sensor in a scanning SQUID microscope (SSM) system. The surface of window near the sensor plane is roughened with Alumina powder so that the incident and reflected traces of the laser beam passing the window surface become visible and can be measured precisely with a normal optical microscope. Using the proposed approach, the distance between the sensor and the sample can be reproducibly adjusted to 30 microm or less. This method can also be applied to photolithography apparatus to detect the relative positions of the mask and the wafer.

  14. BAYESIAN PROTEIN STRUCTURE ALIGNMENT1

    PubMed Central

    RODRIGUEZ, ABEL; SCHMIDLER, SCOTT C.

    2015-01-01

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key “gap” parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence–structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples. PMID:26925188

  15. Ligand and Structure-Based Approaches for the Identification of Peptide Deformylase Inhibitors as Antibacterial Drugs

    PubMed Central

    Gao, Jian; Liang, Li; Zhu, Yasheng; Qiu, Shengzhi; Wang, Tao; Zhang, Ling

    2016-01-01

    Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, which makes it an important antibacterial drug target. Given the importance of PDF inhibitors like actinonin in antibacterial drug discovery, several reported potent PDF inhibitors were used to develop pharmacophore models using the Galahad module of Sybyl 7.1 software. Generated pharmacophore models were composed of two donor atom centers, four acceptor atom centers and two hydrophobic groups. Model-1 was screened against the Zinc database and several compounds were retrieved as hits. Compounds with Qfit values of more than 60 were employed to perform a molecular docking study with the receptor Escherichia coli PDF, then compounds with docking score values of more than 6 were used to predict the in silico pharmacokinetic and toxicity risk via OSIRIS property explorer. Two known PDF inhibitors were also used to perform a molecular docking study with E. coli PDF as reference molecules. The results of the molecular docking study were validated by reproducing the crystal structure of actinonin. Molecular docking and in silico pharmacokinetic and toxicity prediction studies suggested that ZINC08740166 has a relatively high docking score of 7.44 and a drug score of 0.78. PMID:27428963

  16. Stellar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    Fortuitous stellar alignments can be fitted to structural orientations with relative ease by the unwary. Nonetheless, cautious approaches taking into account a broader range of cultural evidence, as well as paying due attention to potential methodological pitfalls, have been successful in identifying credible stellar alignments—and constructing plausible assessments of their cultural significance—in a variety of circumstances. These range from single instances of alignments upon particular asterisms where the corroborating historical or ethnographic evidence is strong to repeated instances of oriented structures with only limited independent cultural information but where systematic, data-driven approaches can be productive. In the majority of cases, the identification and interpretation of putative stellar alignments relates to groups of similar monuments or complex single sites and involves a balance between systematic studies of the alignments themselves, backed up by statistical analysis where appropriate, and the consideration of a range of contextual evidence, either derived from the archaeological record alone or from other relevant sources.

  17. A novel mass spectrometric approach to the analysis of hormonal peptides in extracts of mouse pancreatic islets.

    PubMed

    Ramström, Margareta; Hagman, Charlotte; Tsybin, Youri O; Markides, Karin E; Håkansson, Per; Salehi, Albert; Lundquist, Ingmar; Håkanson, Rolf; Bergquist, Jonas

    2003-08-01

    Liquid chromatography mass spectrometry (LC-MS) is a valuable tool in the analysis of proteins and peptides. The combination of LC-MS with different fragmentation methods provides sequence information on components in complex mixtures. In this work, on-line packed capillary LC electrospray ionization Fourier transform ion cyclotron resonance MS was combined with two complementary fragmentation techniques, i.e. nozzle-skimmer fragmentation and electron capture dissociation, for the determination of hormonal peptides in an acid ethanol extract of mouse pancreatic islets. The most abundant peptides, those derived from proinsulin and proglucagon, were identified by their masses and additional sequence-tag information established their identities. Interestingly, the experiments demonstrated the presence of truncated C-peptides, des-(25-29)-C-peptide and des-(27-31)-C-peptide. These novel findings clearly illustrate the potential usefulness of the described technique for on-line sequencing and characterization of peptides in tissue extracts.

  18. Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike Properties

    PubMed Central

    2010-01-01

    The interplay among commonly used physicochemical properties in drug design was examined and utilized to create a prospective design tool focused on the alignment of key druglike attributes. Using a set of six physicochemical parameters ((a) lipophilicity, calculated partition coefficient (ClogP); (b) calculated distribution coefficient at pH = 7.4 (ClogD); (c) molecular weight (MW); (d) topological polar surface area (TPSA); (e) number of hydrogen bond donors (HBD); (f) most basic center (pKa)), a druglikeness central nervous system multiparameter optimization (CNS MPO) algorithm was built and applied to a set of marketed CNS drugs (N = 119) and Pfizer CNS candidates (N = 108), as well as to a large diversity set of Pfizer proprietary compounds (N = 11 303). The novel CNS MPO algorithm showed that 74% of marketed CNS drugs displayed a high CNS MPO score (MPO desirability score ≥ 4, using a scale of 0−6), in comparison to 60% of the Pfizer CNS candidates. This analysis suggests that this algorithm could potentially be used to identify compounds with a higher probability of successfully testing hypotheses in the clinic. In addition, a relationship between an increasing CNS MPO score and alignment of key in vitro attributes of drug discovery (favorable permeability, P-glycoprotein (P-gp) efflux, metabolic stability, and safety) was seen in the marketed CNS drug set, the Pfizer candidate set, and the Pfizer proprietary diversity set. The CNS MPO scoring function offers advantages over hard cutoffs or utilization of single parameters to optimize structure−activity relationships (SAR) by expanding medicinal chemistry design space through a holistic assessment approach. Based on six physicochemical properties commonly used by medicinal chemists, the CNS MPO function may be used prospectively at the design stage to accelerate the identification of compounds with increased probability of success. PMID:22778837

  19. Mimicking nature: a novel peptide-based bio-inspired approach for solar energy conversion.

    PubMed

    Gatto, Emanuela; Quatela, Alessia; Caruso, Mario; Tagliaferro, Roberto; De Zotti, Marta; Formaggio, Fernando; Toniolo, Claudio; Di Carlo, Aldo; Venanzi, Mariano

    2014-01-13

    A bioinspired approach is applied to photoelectric conversion devices. A 3(10)-helical hexapeptide bearing a pyrene unit is immobilized on a gold-covered TiO2 surface. The device is integrated for the first time in a dye-sensitized solar cell, exhibiting stability after several measurements. The approach could have promising applications in the field of optoelectronics. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Communication About Sexuality in Advanced Illness Aligns With a Palliative Care Approach to Patient-Centered Care.

    PubMed

    Leung, Margaret W; Goldfarb, Shari; Dizon, Don S

    2016-02-01

    Treatment-related sexual complications are common in cancer patients although rarely discussed in the palliative care setting. Sexuality is an important survivorship issue and remains relevant even in the terminal setting. There are multiple barriers in dialoguing about intimacy and sexual functioning from the patient and provider perspectives. Palliative care providers, while not expected to be sexual health experts, can provide comprehensive patient-centered care by including sexual health as part of their evaluation. They can explore how sexual dysfunction can impair functioning and utilize an interdisciplinary approach to manage symptoms. Palliative care providers can help patients identify their goals of care and explore what anticipated sexual changes and treat-related side effects are tolerable and intolerable to the patient's quality of life. Principles on addressing sexuality in the palliative setting and practical ways of incorporating sexual history into the palliative care assessment are provided.

  1. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches.

    PubMed

    Negahdaripour, Manica; Eslami, Mahboobeh; Nezafat, Navid; Hajighahramani, Nasim; Ghoshoon, Mohammad Bagher; Shoolian, Eskandar; Dehshahri, Ali; Erfani, Nasrollah; Morowvat, Mohammad Hossein; Ghasemi, Younes

    2017-10-01

    Human papillomavirus (HPV)-caused cervical cancer is the fourth common female cancer globally. Despite availability of three effective vaccines in market, development of HPV prophylactic vaccines is still pursued due to affordability issues and type-restricted protection of the marketed vaccines. Investigational second generation prophylactic HPV vaccines are mostly exploiting epitopes from the virus minor capsid protein (L2), which despite many advantages suffer from low immunogenicity, a common problem of epitope vaccines. Adjuvants such as TLR agonists may overcome this drawback. In this study, different immunoinformatics and computational tools were employed to design a novel peptide vaccine for protection against cervical cancer. Two immunodominant epitope domains (amino acids 10-36 and 65-89) from the L2 protein of HPV 16 with potential to promote Th1, Th2, CTL, B-cell, and INF-gamma responses were selected. Flagellin, as a TLR5 agonist, a short synthetic TLR4 agonist, and two universal T-helper agonists (PADRE and TpD) were added to ensure strong induction of immune responses. Different segments were joined by proper linkers, and the physicochemical, structural, and immunological characteristics of the resultant construct were evaluated. Modeling, refinement, and validation were done to achieve a high quality 3D structure of the vaccine protein. Docking and molecular dynamics (MD) studies demonstrated an appropriate and stable interaction between the vaccine and TLR5 during the simulation period. Totally, a potential vaccine candidate with proper immunological and physicochemical properties was designed for HPV prophylaxis. The designed vaccine is expected to be capable of generating humoral and cellular responses, which are vital for protection against HPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS.

    PubMed

    Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2014-03-17

    At present, 30 compounds have been described in the venom of the honeybee, and 16 of them were confirmed by mass spectrometry. Previous studies typically combined 2-D PAGE with MALDI-TOF/TOF MS, a technology which now appears to lack sensitivity to detect additional venom compounds. Here, we report an in-depth study of the honeybee venom proteome using a combinatorial peptide ligand library sample pretreatment to enrich for minor components followed by shotgun LC-FT-ICR MS analysis. This strategy revealed an unexpectedly rich venom composition: in total 102 proteins and peptides were found, with 83 of them never described in bee venom samples before. Based on their predicted function and subcellular location, the proteins could be divided into two groups. A group of 33 putative toxins is proposed to contribute to venom activity by exerting toxic functions or by playing a role in social immunity. The other group, considered as venom trace molecules, appears to be secreted for their functions in the extracellular space, or is unintentionally secreted by the venom gland cells due to insufficient protein recycling or co-secretion with other compounds. In conclusion, our approach allowed to explore the hidden honeybee venom proteome and extended the list of potential venom allergens. This study dug deeper into the complex honeybee venom proteome than ever before by applying a highly performing sample pretreatment and mass spectrometric technology. We present putative biological functions for all identified compounds, largely extending our knowledge of the venom toxicity. In addition, this study offers a long list of potential new venom allergens. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Probabilistic Mixture Regression Models for Alignment of LC-MS Data

    PubMed Central

    Befekadu, Getachew K.; Tadesse, Mahlet G.; Tsai, Tsung-Heng; Ressom, Habtom W.

    2010-01-01

    A novel framework of a probabilistic mixture regression model (PMRM) is presented for alignment of liquid chromatography-mass spectrometry (LC-MS) data with respect to both retention time (RT) and mass-to-charge ratio (m/z). The expectation maximization algorithm is used to estimate the joint parameters of spline-based mixture regression models and prior transformation density models. The latter accounts for the variability in RT points, m/z values, and peak intensities. The applicability of PMRM for alignment of LC-MS data is demonstrated through three datasets. The performance of PMRM is compared with other alignment approaches including dynamic time warping, correlation optimized warping, and continuous profile model in terms of coefficient variation of replicate LC-MS runs and accuracy in detecting differentially abundant peptides/proteins. PMID:20837998

  4. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  5. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  6. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  7. Integration of Chemical, Genetic, and Bioinformatic Approaches Delineates Fungal Polyketide-Peptide Hybrid Biosynthesis.

    PubMed

    Yokoyama, Mamoru; Hirayama, Yuichiro; Yamamoto, Tsuyoshi; Kishimoto, Shinji; Tsunematsu, Yuta; Watanabe, Kenji

    2017-03-31

    To identify natural products and their associated biosynthetic genes from underutilized, difficult-to-manipulate microbes, chemical screening and bioinformatic analysis were employed to identify secondary metabolites and a potentially associated biosynthetic gene cluster. Subsequently, a heterologous expression system was used to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. This approach successfully identified the curvupallide and spirostaphylotrichin biosynthetic pathways in endophytic fungus Curvularia pallescens and the short-chain pyranonigrin biosynthetic pathway in Aspergillus niger.

  8. Multiple protein structure alignment.

    PubMed Central

    Taylor, W. R.; Flores, T. P.; Orengo, C. A.

    1994-01-01

    A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core. PMID:7849601

  9. Peptide signaling in Hydra.

    PubMed

    Fujisawa, Toshitaka; Hayakawa, Eisuke

    2012-01-01

    Peptides play a number of crucial roles as signaling molecules in metazoans. In order to elaborate a more complete picture of the roles played by peptides in a single organism, we launched the "Hydra Peptide Project". For this project, we used Hydra magnipapillata, a species belonging to Cnidaria, one of the most basal metazoan phyla, and using a peptidomic approach, we systematically identified a number of peptide signaling molecules, their encoding genes and their functions. In this article, we report the peptides isolated from Hydra and other cnidarians, as well as their synthesis, processing and release from the cells to the target. Possible peptide signaling pathways are overviewed and finally we discuss the evolution of the peptide signaling system.

  10. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages.

    PubMed

    Mora, Leticia; Escudero, Elizabeth; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-06

    Peptidomics is a necessary alternative in the analysis of naturally generated peptides in dry-fermented processing. The intense proteolysis occurred during the processing of dry-fermented sausages is due to the action of endopeptidases and exopeptidases from both, endogenous muscle origin and lactic acid bacteria (LAB) added in the starter. Sodium caseinate is frequently used as an additive in this type of products because of its emulsifying properties, and consequently influences the protein profile available during the proteolysis. In this study, a mass spectrometry approach has been used to determine the impact of added sodium caseinate in the final peptide profile as well as to analyse its possible influence in the presence of certain previously described casein-derived bioactive peptides.

  12. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.

    PubMed

    Su, Shih-Ping; McArthur, Jason D; Andrew Aquilina, J

    2010-07-01

    Low molecular weight (LMW) peptides, derived from the breakdown of the major eye lens proteins, the crystallins, accumulate in the human lens with age. These LMW peptides are associated with age-related lens opacity and cataract, with some shown to inhibit the chaperone activity of alpha-crystallin. However, the mechanism(s) giving rise to the production of these peptides, as well as their distribution within the lens, are not well understood. In this study, we have mapped the distribution of these crystallin-derived peptides present in human lenses of different ages using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Our data showed that most of these LMW peptides emerge in the lens at early middle-age, with peptides greater than 1778 Da in mass being confined to the water insoluble fractions, and to a lesser extent the water soluble fractions of older lenses. MALDI-IMS analyses showed that four peptides, derived from alphaA-, alphaB- and gammaS-crystallins, were confined to the lens nuclear fibre cells upon emergence during early middle-age, but were present in both the cortex and nucleus of old lenses. In contrast, another major peptide, derived from the C-terminal breakdown of betaA3-crystallin, was present in the cortical and nuclear regions of both young and old lenses. A comparison between age-matched cataractous and non-cataractous lenses showed no distinct differences in LMW peptide profiles, indicating that although cataract may be a potential consequence caused by the emergence of these peptides, it does not contribute directly to the peptide-generating process. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  13. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer

    PubMed Central

    Zhang, Qian; Jun, Se-Ran; Leuze, Michael; Ussery, David; Nookaew, Intawat

    2017-01-01

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral “tree of life”. However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses. PMID:28102365

  14. Strategy-aligned fuzzy approach for market segment evaluation and selection: a modular decision support system by dynamic network process (DNP)

    NASA Astrophysics Data System (ADS)

    Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah

    2013-05-01

    In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.

  15. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE PAGES

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael; ...

    2017-01-19

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  16. Novel isotopic N, N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach

    PubMed Central

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2014-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive due to the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using Mass Differential Tags for Relative and Absolute Quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N,N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective due to their synthetic simplicity, and have increased throughput compared to previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error) while the second enables standard curve creation and analyte quantification in one run (<8% error). PMID:25377360

  17. Novel isotopic N, N-Dimethyl Leucine (iDiLeu) Reagents Enable Absolute Quantification of Peptides and Proteins Using a Standard Curve Approach

    NASA Astrophysics Data System (ADS)

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2015-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N, N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).

  18. A Meccano set approach of joining trpzip a water soluble beta-hairpin peptide with a didehydrophenylalanine containing hydrophobic helical peptide.

    PubMed

    Chetal, P; Chauhan, V S; Sahal, D

    2005-05-01

    A 16 residues long, water soluble, monomeric beta-hairpin peptide 'trpzip', stabilized by tryptophan zipper has been linked via a tetraglycyl linker to a hydrophobic didehydrophenylalnine (DeltaF) containing helical octapeptide. Circular dichroism studies of this 28 residues long peptide, 'trpzipalpha' (Ac-GEWTWDDATKTWTWTE-GGGG-DeltaFALDeltaFALDeltaFA-NH(2)) in water have revealed the presence of both the beta-hairpin and the helical conformations. This is the first instance where a DeltaF containing peptide has been found to display a helical fold in water. The fluorescence emission wavelengths of tryptophan in Ac-G-W-G-NH(2), trpzip and trpzipalpha were 341.5, 332.8 and 332.6 nm, respectively. The fluorescence quantum yield of trpzip was 2.6-fold higher than trpzipalpha suggesting that proximal interactions between the beta-hairpin and the helix caused the quenching of tryptophan fluorescence in the former by the DeltaFs in the latter. The molar ellipticity of the far UV couplet characteristic of trpzip was reduced in trpzipalpha and the CD based thermal melting temperatures at 228 nm were 62 degrees C (trpzip) and 57 degrees C (trpzipalpha). A concentration-dependent variable temperature CD study in water showed that in trpzipalpha, increasing temperature is detrimental to the beta-hairpin, but it augments the helical motif, perhaps by intermolecular oligomerization. Our results show that in water, trpzipalpha exhibits long-range interactions between two different secondary structures. In contrast to trpzip, trpzipalpha has shown a greater tendency to oligomerize in water.

  19. Are Two Better Than One? A New Approach for Multidentate Grafting of Peptides to a Gold Substrate

    NASA Astrophysics Data System (ADS)

    Caruso, Mario; Gatto, Emanuela; Palleschi, Antonio; Scarselli, Manuela; De Crescenzi, Maurizio; Formaggio, Fernando; Longo, Edoardo; Toniolo, Claudio; Wright, Karen; Venanzi, Mariano

    2016-09-01

    Multidentate binding of two helical hexapeptides to a gold surface was obtained by introducing in the peptide chain a non ribosomial amino acid, i.e. the 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) residue, a Cα-tetrasubstituted α-amino acid bearing a heterocyclic side chain characterized by a disulfide group. The two peptides, mainly formed by strongly helicogenic Cα-tetrasubstituted α-amino acids, were both functionalized at the N-terminus by a ferrocenoyl (Fc) group, but differ in the number of Adt residues included in the peptide chain: the former (Fc6Adt2) contains two Adt residues at positions 1 and 4, while its analog (Fc6Adt1) contains a single Adt at position 4, since the Adt at position 1 is substituted by an α-amino isobutyric acid (Aib) residue. This peptide design allowed us to explore the different electrochemical properties and morphologies shown by the two peptide layers immobilized on a gold surface by two (Fc6Adt2) or a single (Fc6Adt1) bidentate linker, respectively. The electrochemical activity of the ferrocenoyl probe embedded in the peptide film was characterized by cyclic voltammetry, chronoamperometry and square wave voltammetry, while the binding and the morphology of the peptide layers were studied by X-ray photoelectron spectroscopy (XPS) and ultra high vacuum scanning tunneling microscopy (UHV-STM), respectively. Significant differences were observed in the electron transfer (ET) properties of the two peptides investigated, which emerge from the diverging morphology achieved by the peptide layers on the gold surface. It was found that while a standing-up configuration of the peptide layer, realized by a single bidentate linkage, maximizes the ET efficiency, a lying down configuration (two Adt linkages) allows for precise positioning of Fc in the proximity of a gold surface.

  20. Two Complementary Approaches for the Controlled Release of Biomolecules Immobilized via Coiled-Coil Interactions: Peptide Core Mutations and Multivalent Presentation.

    PubMed

    Murschel, Frederic; Fortier, Charles; Jolicoeur, Mario; Hodges, Robert S; De Crescenzo, Gregory

    2017-03-13

    We have developed a heterodimeric coiled-coil system based on two complementary peptides, namely (EVSALEK)5 and (KVSALKE)5, or E and K, for the attachment of E-tagged biomolecules onto K-decorated biomaterials. We here explore two approaches to control the strength and the stability of the E/K coiled-coil complex, and thus its potential for the controlled release of biomolecules. Those are Leucine-to-Alanine mutations in the K peptide (4 peptides with 0 to 3 mutations) and multivalent presentation of the E peptide (6 bio-objects from monomeric to dimeric and n-meric). Using E-tagged growth factors and nanoparticles as models, SPR-based assays performed under continuous flow indicated that the release rate was strongly affected by both approaches independently, and that the strength of the capture could be finely tuned over a wide range (apparent dissociation constant from 0.12 pM to 270 nM). Further release assays carried out in well-plates showed that the multivalent presentation only had a significant influence in this setup since the wells were not rinsed under continuous flow.

  1. Predicting protein-ligand and protein-peptide interfaces

    NASA Astrophysics Data System (ADS)

    Bertolazzi, Paola; Guerra, Concettina; Liuzzi, Giampaolo

    2014-06-01

    The paper deals with the identification of binding sites and concentrates on interactions involving small interfaces. In particular we focus our attention on two major interface types, namely protein-ligand and protein-peptide interfaces. As concerns protein-ligand binding site prediction, we classify the most interesting methods and approaches into four main categories: (a) shape-based methods, (b) alignment-based methods, (c) graph-theoretic approaches and (d) machine learning methods. Class (a) encompasses those methods which employ, in some way, geometric information about the protein surface. Methods falling into class (b) address the prediction problem as an alignment problem, i.e. finding protein-ligand atom pairs that occupy spatially equivalent positions. Graph theoretic approaches, class (c), are mainly based on the definition of a particular graph, known as the protein contact graph, and then apply some sophisticated methods from graph theory to discover subgraphs or score similarities for uncovering functional sites. The last class (d) contains those methods that are based on the learn-from-examples paradigm and that are able to take advantage of the large amount of data available on known protein-ligand pairs. As for protein-peptide interfaces, due to the often disordered nature of the regions involved in binding, shape similarity is no longer a determining factor. Then, in geometry-based methods, geometry is accounted for by providing the relative position of the atoms surrounding the peptide residues in known structures. Finally, also for protein-peptide interfaces, we present a classification of some successful machine learning methods. Indeed, they can be categorized in the way adopted to construct the learning examples. In particular, we envisage three main methods: distance functions, structure and potentials and structure alignment.

  2. Investigating the Release of a Hydrophobic Peptide from Matrices of Biodegradable Polymers: An Integrated Method Approach

    PubMed Central

    Gubskaya, Anna V.; Khan, I. John; Valenzuela, Loreto M.; Lisnyak, Yuriy V.; Kohn, Joachim

    2013-01-01

    The objectives of this work were: (1) to select suitable compositions of tyrosine-derived polycarbonates for controlled delivery of voclosporin, a potent drug candidate to treat ocular diseases, (2) to establish a structure-function relationship between key molecular characteristics of biodegradable polymer matrices and drug release kinetics, and (3) to identify factors contributing in the rate of drug release. For the first time, the experimental study of polymeric drug release was accompanied by a hierarchical sequence of three computational methods. First, suitable polymer compositions used in subsequent neural network modeling were determined by means of response surface methodology (RSM). Second, accurate artificial neural network (ANN) models were built to predict drug release profiles for fifteen polymers located outside the initial design space. Finally, thermodynamic properties and hydrogen-bonding patterns of model drug-polymer complexes were studied using molecular dynamics (MD) technique to elucidate a role of specific interactions in drug release mechanism. This research presents further development of methodological approaches to meet challenges in the design of polymeric drug delivery systems. PMID:24039300

  3. Automatic Word Alignment

    DTIC Science & Technology

    2014-02-18

    for each of the paired units includes forming a first alignment of units of the first language to units of the second language, and forming a second...alignment of units of the second language to units of the first language . The alignment parameters include a first set of parameters for forming an...alignment from the first language to the second language and a second set of parameters for forming an align­ ment from the second language to the

  4. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide.

    PubMed

    Chaudhari, Atul A; Ashmore, D'andrea; Nath, Subrata Deb; Kate, Kunal; Dennis, Vida; Singh, Shree R; Owen, Don R; Palazzo, Chris; Arnold, Robert D; Miller, Michael E; Pillai, Shreekumar R

    2016-07-13

    Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5

  5. Moving Away from the Reference Genome: Evaluating a Peptide Sequencing Tagging Approach for Single Amino Acid Polymorphism Identifications in the Genus Populus

    SciTech Connect

    Abraham, Paul E; Adams, Rachel M; Tuskan, Gerald A; Hettich, Robert {Bob} L

    2013-01-01

    The genetic diversity across natural populations of the model organism, Populus, is extensive, containing a single nucleotide polymorphism roughly every 200 base pairs. When deviations from the reference genome occur in coding regions, they can impact protein sequences. Rather than relying on a static reference database to profile protein expression, we employed a peptide sequence tagging (PST) approach capable of decoding the plasticity of the Populus proteome. Using shotgun proteomics data from two genotypes of P. trichocarpa, a tag-based approach enabled the detection of 6,653 unexpected sequence variants. Through manual validation, our study investigated how the most abundant chemical modification (methionine oxidation) could masquerade as a sequence variant (AlaSer) when few site-determining ions existed. In fact, precise localization of an oxidation site for peptides with more than one potential placement was indeterminate for 70% of the MS/MS spectra. We demonstrate that additional fragment ions made available by high energy collisional dissociation enhances the robustness of the peptide sequence tagging approach (81% of oxidation events could be exclusively localized to a methionine). We are confident that augmenting fragmentation processes for a PST approach will further improve the identification of single amino acid polymorphism in Populus and potentially other species as well.

  6. SAGA: sequence alignment by genetic algorithm.

    PubMed Central

    Notredame, C; Higgins, D G

    1996-01-01

    We describe a new approach to multiple sequence alignment using genetic algorithms and an associated software package called SAGA. The method involves evolving a population of alignments in a quasi evolutionary manner and gradually improving the fitness of the population as measured by an objective function which measures multiple alignment quality. SAGA uses an automatic scheduling scheme to control the usage of 22 different operators for combining alignments or mutating them between generations. When used to optimise the well known sums of pairs objective function, SAGA performs better than some of the widely used alternative packages. This is seen with respect to the ability to achieve an optimal solution and with regard to the accuracy of alignment by comparison with reference alignments based on sequences of known tertiary structure. The general attraction of the approach is the ability to optimise any objective function that one can invent. PMID:8628686

  7. Targeted Mass Spectrometric Approach for Biomarker Discovery and Validation with Nonglycosylated Tryptic Peptides from N-linked Glycoproteins in Human Plasma*

    PubMed Central

    Lee, Ju Yeon; Kim, Jin Young; Park, Gun Wook; Cheon, Mi Hee; Kwon, Kyung-Hoon; Ahn, Yeong Hee; Moon, Myeong Hee; Lee, Hyoung–Joo; Paik, Young Ki; Yoo, Jong Shin

    2011-01-01

    A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma

  8. A bioinformatics approach to identify natural autoantibodies from healthy blood donors' sera reactive with the HCV NS5A-derived peptide by immunoassay.

    PubMed

    Vasiljevic, Nada; Veljkovic, Nevena; Kosec, Tatjana; Ma, Xue-Zhong; Glisic, Sanja; Prljic, Jelena; Vujicic, Ana Djordjevic; Markovic, Ljiljana; Branch, Donald R

    2011-04-01

    Natural autoantibodies (NAbs) are continually produced throughout life and have an ability to recognize self and altered self, as well as foreign antigens, by recognizing cellular pattern recognition receptors. Sometimes NAb specificity demonstrates overlap between human and pathologic proteomes. This information can be useful in selecting target sequences for screening purposes. In this study we undertook a multi-step bioinformatics search to predict a virus-derived peptide that can be recognized by NAbs in sera of uninfected individuals. We selected protein hepatitis C virus (HCV) NS5A as a target sequence, motivated by the fact that the HCV proteome is characterized by extensive sequence similarities to the human proteome, and because screening for anti-HCV antibodies, including anti-NS5A, is important clinically, particularly in screening of potential blood donors. The virus-specific peptide P1, and the homologous human peptide derived from enzyme-inducible nitric oxide synthase (iNOS), P2, exhibiting not only simple homology, but also complementarities of physicochemical patterns, were synthesized and 80 HCV-negative and 50 HCV-positive blood donor sera were tested by ELISA. These peptides reacted similarly (p<0.001) with HCV-negative sera, and in several cases the measured reactivity was significantly above the cut-off value of commercial anti-HCV screening assays. In HCV-positive sera, the titers of antibodies reactive with analyzed HCV NS5A peptide were not significantly increased (p<0.001) compared to host peptide, the implications of which are unclear, but may be consistent with these antibodies being "naturally produced." Finally, we extended our bioinformatics analyses to the dataset of human self-binding sequences, and propose a general approach for the selection of specific diagnostic and screening antigens for use in immunoassays.

  9. New approach for development of sensitive and environmentally friendly immunoassay for mycotoxin fumonisin B(1) based on using peptide-MBP fusion protein as substitute for coating antigen.

    PubMed

    Xu, Yang; Chen, Bo; He, Qing-hua; Qiu, Yu-Lou; Liu, Xing; He, Zhen-yun; Xiong, Zheng-ping

    2014-08-19

    Here, on the basis of mimotope of small analytes, we demonstrated a new approach for development of sensitive and environmentally friendly immunoassay for toxic small analytes based on the peptide-MBP fusion protein. In this work, using mycotoxin fumonisin B1 (FB1) as a model hapten, phage displayed peptide (mimotope) that binds to the anti-FB1 antibody were selected by biopanning from a 12-mer peptide library. The DNA coding for the sequence of peptide was cloned into Escherichia coli ER2738 as a fusion protein with a maltose binding protein (MBP). The prepared peptide-MBP fusion protein are "clonable" homogeneous and FB1-free products and can be used as a coating antigen in the immunoassay. The half inhibition concentration of the quantitative immunoassay setup with fusion protein (F1-MBP and F15-MBP) was 2.15 ± 0.13 ng/mL and 1.26 ± 0.08 ng/mL, respectively. The fusion protein (F1-MBP) was also used to develop a qualitative Elispot assay with a cutoff level of 2.5 ng/mL, which was 10-fold more sensitive than that measured for chemically synthesized FB1-BSA conjugates based Elispot immunoassay. The peptide-MBP fusion protein not only can be prepared reproducibly as homogeneous and FB1-free products in a large-scale but also can contribute to the development of a highly sensitive immunoassay for analyzing FB1. Furthermore, the novel concept might provide potential applications to a general method for the immunoassay of various toxic small molecules.

  10. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  11. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  12. Side-chain conformational space analysis (SCSA): a multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities.

    PubMed

    Zhou, Peng; Chen, Xiang; Shang, Zhicai

    2009-03-01

    In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A 0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.

  13. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts.

    PubMed Central

    Bennett, K. L.; Kussmann, M.; Björk, P.; Godzwon, M.; Mikkelsen, M.; Sørensen, P.; Roepstorff, P.

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro with the thiol-cleavable cross-linker 3,3'-dithio-bis(succinimidylproprionate) (DTSSP), proteolytically digested with trypsin and analyzed by MALDI-MS peptide mapping. Comparison of the peptide maps obtained from digested cross-linked ParR dimers in the presence and absence of a thiol reagent strongly supported a "head-to-tail" arrangement of the monomers in the dimeric complex. Glycoprotein fusion constructs CD28-IgG and CD80-Fab were cross-linked in vitro by DTSSP, characterized by nonreducing SDS-PAGE, digested in situ with trypsin and analyzed by MALDI-MS peptide mapping (+/- thiol reagent). The data revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross-linking combined with differential MALDI-MS peptide mapping (+ thiol reagent) enabled localization of the interface region(s) of the complexes studied and clearly demonstrates the utility of such an approach to obtain structural information on interacting noncovalent complexes. PMID:10975572

  14. Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: a promising approach for the treatment of defective telomerase disorders.

    PubMed

    Egusquiaguirre, Susana P; Manguán-García, Cristina; Pintado-Berninches, Laura; Iarriccio, Laura; Carbajo, Daniel; Albericio, Fernando; Royo, Miriam; Pedraz, José Luís; Hernández, Rosa M; Perona, Rosario; Igartua, Manuela

    2015-04-01

    The aim of the present study was to develop a novel strategy to deliver intracellularly the peptide GSE24.2 for the treatment of Dyskeratosis congenita (DC) and other defective telomerase disorders. For this purpose, biodegradable polymeric nanoparticles using poly(lactic-co-glycolic acid) (PLGA NPs) or poly(lactic-co-glycolic acid)-poly ethylene glycol (PLGA-PEG NPs) attached to either polycations or cell-penetrating peptides (CPPs) were prepared in order to increase their cellular uptake. The particles exhibited an adequate size and zeta potential, with good peptide loading and a biphasic pattern obtained in the in vitro release assay, showing an initial burst release and a later sustained release. GSE24.2 structural integrity after encapsulation was assessed using SDS-PAGE, revealing an unaltered peptide after the NPs elaboration. According to the cytotoxicity results, cell viability was not affected by uncoated polymeric NPs, but the incorporation of surface modifiers slightly decreased the viability of cells. The intracellular uptake exhibited a remarkable improvement of the internalization, when the NPs were conjugated to the CPPs. Finally, the bioactivity, addressed by measuring DNA damage rescue and telomerase reactivation, showed that some formulations had the lowest cytotoxicity and highest biological activity. These results proved that GSE24.2-loaded NPs could be delivered to cells, and therefore, become an effective approach for the treatment of DC and other defective telomerase syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Strategies for active alignment of lenses

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Wilde, Chrisitan; Hahne, Felix; Lüerß, Bernd

    2015-10-01

    Today's optical systems require up-to-date assembly and joining technology. The trend of keeping dimensions as small as possible while maintaining or increasing optical imaging performance leaves little to no room for mechanical lens adjustment equipment that may remain in the final product. In this context active alignment of optical elements opens up possibilities for the fast and cost-economic manufacturing of lenses and lens assemblies with highest optical performance. Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.

  16. Alignment of, and phylogenetic inference from, random sequences: the susceptibility of alternative alignment methods to creating artifactual resolution and support.

    PubMed

    Simmons, Mark P; Müller, Kai F; Norton, Andrew P

    2010-12-01

    We used random sequences to determine which alignment methods are most susceptible to aligning sequences so as to create artifactual resolution and branch support in phylogenetic trees derived from those alignments. We compared four alignment methods (progressive pairwise alignment, simultaneous multiple alignment of sequence fragments, local pairwise alignment, and direct optimization) to determine which methods are most susceptible to creating false positives in phylogenetic trees. Implied alignments created using direct optimization provided more artifactual support than progressive pairwise alignment methods, which in turn generally provided more artifactual support than simultaneous and local alignment methods. Artifactual support derived from base pairs was generally reinforced by the incorporation of gap characters for progressive pairwise alignment, local pairwise alignment, and implied alignments. The amount of artifactual resolution and support was generally greater for simulated nucleotide sequences than for simulated amino acid sequences. In the context of direct optimization, the differences between static and dynamic approaches to calculating support were extreme, ranging from maximal to nearly minimal support. When applied to highly divergent sequences, it is important that dynamic, rather than static, characters be used whenever calculating branch support using direct optimization. In contrast to the tree-based approaches to alignment, simultaneous alignment of sequences using the similarity criterion generally does not create alignments that are biased in favor of any particular tree topology. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Achieving Organisational Change through Values Alignment

    ERIC Educational Resources Information Center

    Branson, Christopher M.

    2008-01-01

    Purpose: The purpose of this paper is to, first, establish the interdependency between the successful achievement of organisational change and the attainment of values alignment within an organisation's culture and then, second, to describe an effective means for attaining such values alignment. Design/methodology/approach: Literature from the…

  18. Achieving Organisational Change through Values Alignment

    ERIC Educational Resources Information Center

    Branson, Christopher M.

    2008-01-01

    Purpose: The purpose of this paper is to, first, establish the interdependency between the successful achievement of organisational change and the attainment of values alignment within an organisation's culture and then, second, to describe an effective means for attaining such values alignment. Design/methodology/approach: Literature from the…

  19. Heuristics for multiobjective multiple sequence alignment.

    PubMed

    Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B

    2016-07-15

    Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show

  20. A modification-specific peptide-based immunization approach using CRM197 carrier protein: Development of a selective vaccine against pyroglutamate Aβ peptides.

    PubMed

    Vingtdeux, Valérie; Zhao, Haitian; Chandakkar, Pallavi; Acker, Christopher M; Davies, Peter; Marambaud, Philippe

    2016-11-28

    Strategies aimed at reducing cerebral accumulation of the amyloid-β (Aβ) peptides have therapeutic potential in Alzheimer's disease (AD). Aβ immunization has proven to be effective at promoting Aβ clearance in animal models but adverse effects have hampered its clinical evaluation. The first anti-Aβ immunization clinical trial, which assessed a full-length Aβ1-42 vaccine, increased the risk of encephalitis most likely because of autoimmune pro-inflammatory T helper 1 (Th1) response against all forms of Aβ. Immunization against less abundant but potentially more pathologically relevant Aβ products, such as N-terminally-truncated pyroglutamate-3 Aβ (AβpE3), could provide efficacy and improve tolerability in Aβ immunotherapy. Here, we describe a selective vaccine against AβpE3, which uses the diphtheria toxin mutant CRM197 as carrier protein for epitope presentation. CRM197 is currently used in licensed vaccines and has demonstrated excellent immunogenicity and safety in humans. In mice, our AβpE3:CRM197 vaccine triggered the production of specific anti-AβpE3 antibodies that did not cross-react with Aβ1-42, non-cyclized AβE3, or N-terminally-truncated pyroglutamate-11 Aβ (AβpE11). AβpE3:CRM197 antiserum strongly labeled AβpE3 in insoluble protein extracts and decorated cortical amyloid plaques in human AD brains. Anti-AβpE3 antibodies were almost exclusively of the IgG1 isotype, suggesting an anti-inflammatory Th2 response bias to the AβpE3:CRM197 vaccine. To the best of our knowledge, this study shows for the first time that CRM197 has potential as a safe and suitable vaccine carrier for active and selective immunization against specific protein sequence modifications or conformations, such as AβpE3.

  1. A Modification-Specific Peptide-Based Immunization Approach Using CRM197 Carrier Protein: Development of a Selective Vaccine Against Pyroglutamate Aβ Peptides

    PubMed Central

    Vingtdeux, Valérie; Zhao, Haitian; Chandakkar, Pallavi; Acker, Christopher M; Davies, Peter; Marambaud, Philippe

    2016-01-01

    Strategies aimed at reducing cerebral accumulation of the amyloid-β (Aβ) peptides have therapeutic potential in Alzheimer’s disease (AD). Aβ immunization has proven to be effective at promoting Aβ clearance in animal models, but adverse effects have hampered its clinical evaluation. The first anti-Aβ immunization clinical trial, which assessed a full-length Aβ1-42 vaccine, showed an increased risk of encephalitis, most likely because of autoimmune proinflammatory T helper 1 (Th1) response against all forms of Aβ. Immunization against less abundant but potentially more pathologically relevant Aβ products, such as N-terminally truncated pyroglutamate-3 Aβ (AβpE3), could provide efficacy and improve tolerability in Aβ immunotherapy. Here, we describe a selective vaccine against AβpE3 that uses the diphtheria toxin mutant CRM197 as a carrier protein for epitope presentation. CRM197 is currently used in licensed vaccines and has demonstrated excellent immunogenicity and safety in humans. In mice, our AβpE3:CRM197 vaccine triggered the production of specific anti-AβpE3 antibodies that did not cross-react with Aβ1-42, non-cyclized AβE3 or N-terminally truncated pyroglutamate-11 Aβ (AβpE11). AβpE3:CRM197 antiserum strongly labeled AβpE3 in insoluble protein extracts and decorated cortical amyloid plaques in human AD brains. Anti-AβpE3 antibodies were almost exclusively of the IgG1 isotype, suggesting an antiinflammatory Th2 response bias to the AβpE3:CRM197 vaccine. To the best of our knowledge, this study shows for the first time that CRM197 has potential as a safe and suitable vaccine carrier for active and selective immunization against specific protein sequence modifications or conformations such as AβpE3. PMID:27900387

  2. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery.

    PubMed

    Chai, Zhilan; Hu, Xuefeng; Wei, Xiaoli; Zhan, Changyou; Lu, Linwei; Jiang, Kuan; Su, Bingxia; Ruan, Huitong; Ran, Danni; Fang, Ronnie H; Zhang, Liangfang; Lu, Weiyue

    2017-08-24

    The blood brain barrier separates the circulating blood from the extracellular fluid in the central nervous system and thus presents an essential obstacle to brain transport of therapeutics. Herein, we report on an effective brain-targeted drug delivery system that combines a robust red blood cell membrane-coated nanoparticle (RBCNP) with a unique neurotoxin-derived targeting moiety. The RBCNPs retain the complex biological functions of natural cell membranes while exhibiting physicochemical properties that are suitable for effective drug delivery. CDX peptide is derived from candoxin and shows high binding affinity with nicotinic acetylcholine receptors (nAChRs) expressed on the surface of brain endothelial cells. Through a facile yet robust approach, we successfully incorporate (D)CDX peptides onto the surface of RBCNPs without compromising the peptide's brain targeting ability. The resulting (D)CDX-RBCNPs show promising brain targeting efficiency both in vitro and in vivo. Using a glioma mouse model, we demonstrate that doxorubicin-loaded (D)CDX-RBCNPs have superior therapeutic efficacy and markedly reduced toxicity as compared to the nontargeted drug formulations. While RBCNPs are used as a model system to evaluate the surface modification approach, the reported method can be readily generalized to various types of cell membrane-derived nanocarriers for broad medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of the first potent and selective inhibitor of the zinc endopeptidase neurolysin using a systematic approach based on combinatorial chemistry of phosphinic peptides.

    PubMed

    Jirácek, J; Yiotakis, A; Vincent, B; Checler, F; Dive, V

    1996-08-09

    A new systematic approach, based on combinatorial chemistry of phosphinic peptides, is proposed for rapid development of highly potent and selective inhibitors of zinc metalloproteases. This strategy first evaluates the effects on the inhibitory potency and selectivity of the following parameters: 1) size of the phosphinic peptides, 2) position of the phosphinic bond in the sequence, and 3) the state (free or blocked) of the peptide extremities. After this selection step, the influence of the inhibitor sequence is analyzed in order to determine the identity of the residues that optimized both the potency and the selectivity. We demonstrate the efficiency of this novel approach in rapid identification of the first potent inhibitor of the mammalian zinc endopeptidase neurolysin(24-16), able to discriminate between this enzyme and the related zinc endopeptidase thimet oligopeptidase(24-15). The most potent and selective inhibitor developed in this study, Pro-LPhePsi(PO2CH2)Gly-Pro, displays a Ki value of 4 nM for 24-16 and is 2000 times less potent on 24-15. The specific recognition of such a free phosphinic tetrapeptide by 24-16, as well as the unique specificity of the 24-16 S2 and S2' subsites for proline, unveiled by this study, are discussed in terms of their possible significance for the function of this enzyme and its related zinc endopeptidase activities.

  4. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach.

    PubMed

    Rachkov, A; Minoura, N

    2000-08-11

    An artificial polymeric receptor prepared by the epitope approach of molecular imprinting was shown to recognize the peptide hormone, oxytocin, in aqueous media. The proposed approach is based on using (as a template) a compound, whose structure represents a small exposed fragment of a larger molecule (as an epitope represents an antigen). A HPLC study has demonstrated the important role of ionic interactions and the N-terminal amino group of oxytocin and oxytocin-related peptides in the process of their recognition by the molecularly imprinted polymer in the aqueous-rich media. However, the specificity of the process is considered to be defined by hydrophobic interactions and hydrogen bonding. Moreover, it was shown that the selectivity of the molecularly imprinted polymer can be attenuated by water content, ionic strength and pH of the chromatographic mobile phase: depending on these factors the template, Tyr-Pro-Leu-Gly-NH2, or, for example, oxytocin, a larger peptide, which possesses the same three amino-acid C-terminal parts of the structure, can be preferentially retained by the molecularly imprinted polymer.

  5. Polycyclic peptide therapeutics.

    PubMed

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A machine-learning approach reveals that alignment properties alone can accurately predict inference of lateral gene transfer from discordant phylogenies.

    PubMed

    Roettger, Mayo; Martin, William; Dagan, Tal

    2009-09-01

    Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred, 2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant tree topologies with up to 80% accuracy from alignment properties alone.

  7. Identification and characterization of an aβ oligomer precipitating peptide that may be useful to explore gene therapeutic approaches to Alzheimer disease.

    PubMed

    Funke, Susanne Aileen; Liu, Hongmei; Sehl, Torsten; Bartnik, Dirk; Brener, Oleksandr; Nagel-Steger, Luitgard; Wiesehan, Katja; Willbold, Dieter

    2012-04-01

    A key feature of Alzheimer disease (AD) is the pathologic self-association of the amyloid-β (Aβ) peptide, leading to the formation of diffusible toxic Aβ oligomers and extracellular amyloid plaques. Next to extracellular Aβ, intraneuronal Aβ has important pathological functions in AD. Agents that specifically interfere with the oligomerization processes either outside or inside of neurons are highly desired for the elucidation of the pathologic mechanisms of AD and might even pave the way for new AD gene therapeutic approaches. Here, we characterize the Aβ binding peptide L3 and its influence on Aβ oligomerization in vitro. Preliminary studies in cell culture demonstrate that stably expressed L3 reduces cell toxicity of externally added Aβ in neuroblastoma cells.

  8. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  9. Cyclic Opioid Peptides.

    PubMed

    Remesic, Michael; Lee, Yeon Sun; Hruby, Victor J

    2016-01-01

    For decades the opioid receptors have been an attractive therapeutic target for the treatment of pain. Since the first discovery of enkephalin, approximately a dozen endogenous opioid peptides have been known to produce opioid activity and analgesia, but their therapeutics have been limited mainly due to low blood brain barrier penetration and poor resistance to proteolytic degradation. One versatile approach to overcome these drawbacks is the cyclization of linear peptides to cyclic peptides with constrained topographical structure. Compared to their linear parents, cyclic analogs exhibit better metabolic stability, lower offtarget toxicity, and improved bioavailability. Extensive structure-activity relationship studies have uncovered promising compounds for the treatment of pain as well as further elucidate structural elements required for selective opioid receptor activity. The benefits that come with employing cyclization can be further enhanced through the generation of polycyclic derivatives. Opioid ligands generally have a short peptide chain and thus the realm of polycyclic peptides has yet to be explored. In this review, a brief history of designing ligands for the opioid receptors, including classic linear and cyclic ligands, is discussed along with recent approaches and successes of cyclic peptide ligands for the receptors. Various scaffolds and approaches to improve bioavailability are elaborated and concluded with a discourse towards polycyclic peptides.

  10. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  11. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    PubMed Central

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance. PMID:23519660

  12. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    SciTech Connect

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  13. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins.

    PubMed

    Koehbach, Johannes; Gruber, Christian W; Becker, Christian; Kreil, David P; Jilek, Alexander

    2016-05-06

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods.

  14. A bottom-up approach to build the hyperpolarizability of peptides and proteins from their amino acids.

    PubMed

    Duboisset, Julien; Deniset-Besseau, Ariane; Benichou, Emmanuel; Russier-Antoine, Isabelle; Lascoux, Noelle; Jonin, Christian; Hache, François; Schanne-Klein, Marie-Claire; Brevet, Pierre-François

    2013-08-29

    We experimentally demonstrate that some peptides and proteins lend themselves to an elementary analysis where their first hyperpolarizability can be decomposed into the coherent superposition of the first hyperpolarizability of their elementary units. We then show that those elementary units can be associated with the amino acids themselves in the case of nonaromatic amino acids and nonresonant second harmonic generation. As a case study, this work investigates the experimentally determined first hyperpolarizability of rat tail Type I collagen and compares it to that of the shorter peptide [(PPG)10]3, where P and G are the one-letter code for Proline and Glycine, respectively, and that of the triamino acid peptides PPG and GGG. An absolute value of (0.16 ± 0.01) × 10(-30) esu for the first hyperpolarizability of nonaromatic amino acids is then obtained by using the newly defined 0.087 × 10(-30) esu reference value for water. By using a collagen like model, the microscopic hyperpolarizability along the peptide bond can be evaluated at (0.7 ± 0.1) × 10(-30) esu.

  15. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins

    PubMed Central

    2016-01-01

    Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods. PMID:26985971

  16. Identification of novel peptide hormones in the human proteome by hidden Markov model screening

    PubMed Central

    Mirabeau, Olivier; Perlas, Emerald; Severini, Cinzia; Audero, Enrica; Gascuel, Olivier; Possenti, Roberta; Birney, Ewan; Rosenthal, Nadia; Gross, Cornelius

    2007-01-01

    Peptide hormones are small, processed, and secreted peptides that signal via membrane receptors and play critical roles in normal and pathological physiology. The search for novel peptide hormones has been hampered by their small size, low or restricted expression, and lack of sequence similarity. To overcome these difficulties, we developed a bioinformatics search tool based on the hidden Markov model formalism that uses several peptide hormone sequence features to estimate the likelihood that a protein contains a processed and secreted peptide of this class. Application of this tool to an alignment of mammalian proteomes ranked 90% of known peptide hormones among the top 300 proteins. An analysis of the top scoring hypothetical and poorly annotated human proteins identified two novel candidate peptide hormones. Biochemical analysis of the two candidates, which we called spexin and augurin, showed that both were localized to secretory granules in a transfected pancreatic cell line and were recovered from the cell supernatant. Spexin was expressed in the submucosal layer of the mouse esophagus and stomach, and a predicted peptide from the spexin precursor induced muscle contraction in a rat stomach explant assay. Augurin was specifically expressed in mouse endocrine tissues, including pituitary and adrenal gland, choroid plexus, and the atrio-ventricular node of the heart. Our findings demonstrate the utility of a bioinformatics approach to identify novel biologically active peptides. Peptide hormones and their receptors are important diagnostic and therapeutic targets, and our results suggest that spexin and augurin are novel peptide hormones likely to be involved in physiological homeostasis. PMID:17284679

  17. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction

    PubMed Central

    2013-01-01

    Background Computational methods for the prediction of Major Histocompatibility Complex (MHC) class II binding peptides play an important role in facilitating the understanding of immune recognition and the process of epitope discovery. To develop an effective computational method, we need to consider two important characteristics of the problem: (1) the length of binding peptides is highly flexible; and (2) MHC molecules are extremely polymorphic and for the vast majority of them there are no sufficient training data. Methods We develop a novel string kernel MHC2SK (MHC-II String Kernel) method to measure the similarities among peptides with variable lengths. By considering the distinct features of MHC-II peptide binding prediction problem, MHC2SK differs significantly from the recently developed kernel based method, GS (Generic String) kernel, in the way of computing similarities. Furthermore, we extend MHC2SK to MHC2SKpan for pan-specific MHC-II peptide binding prediction by leveraging the binding data of various MHC molecules. Results MHC2SK outperformed GS in allele specific prediction using a benchmark dataset, which demonstrates the effectiveness of MHC2SK. Furthermore, we evaluated the performance of MHC2SKpan using various benckmark data sets from several different perspectives: Leave-one-allele-out (LOO), 5-fold cross validation as well as independent data testing. MHC2SKpan has achieved comparable performance with NetMHCIIpan-2.0 and outperformed NetMHCIIpan-1.0, TEPITOPEpan and MultiRTA, being statistically significant. MHC2SKpan can be freely accessed at http://datamining-iip.fudan.edu.cn/service/MHC2SKpan/index.html. PMID:24564280

  18. DNAAlignEditor: DNA alignment editor tool

    PubMed Central

    Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D

    2008-01-01

    Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684

  19. A general approach to controlled alignment of filamentous supra-biomolecular assemblies into centimeter-scale highly-ordered patterns through nature-inspired magnetic guidance

    PubMed Central

    Cao, Binrui; Zhu, Ye; Wang, Lin

    2013-01-01

    We took the advantage of the capability of magnetic nanoparticles (MNPs) being aligned along a magnetic field and reproducibly generated large scale bio-nanofiber assemblies with the orientation of the constituent bio-nanofibers defined by the applied magnetic field. When decorated by MNPs, bio-nanofibers could be guided by the external magnetic field to become oriented either horizontally or vertically, forming single- and multi-orientation layered assemblies. PMID:24115320

  20. The GEM Detector projective alignment simulation system

    SciTech Connect

    Wuest, C.R.; Belser, F.C.; Holdener, F.R.; Roeben, M.D.; Paradiso, J.A.; Mitselmakher, G.; Ostapchuk, A.; Pier-Amory, J.

    1993-07-09

    Precision position knowledge (< 25 microns RMS) of the GEM Detector muon system at the Superconducting Super Collider Laboratory (SSCL) is an important physics requirement necessary to minimize sagitta error in detecting and tracking high energy muons that are deflected by the magnetic field within the GEM Detector. To validate the concept of the sagitta correction function determined by projective alignment of the muon detectors (Cathode Strip Chambers or CSCs), the basis of the proposed GEM alignment scheme, a facility, called the ``Alignment Test Stand`` (ATS), is being constructed. This system simulates the environment that the CSCs and chamber alignment systems are expected to experience in the GEM Detector, albeit without the 0.8 T magnetic field and radiation environment. The ATS experimental program will allow systematic study and characterization of the projective alignment approach, as well as general mechanical engineering of muon chamber mounting concepts, positioning systems and study of the mechanical behavior of the proposed 6 layer CSCs. The ATS will consist of a stable local coordinate system in which mock-ups of muon chambers (i.e., non-working mechanical analogs, representing the three superlayers of a selected barrel and endcap alignment tower) are implemented, together with a sufficient number of alignment monitors to overdetermine the sagitta correction function, providing a self-consistency check. This paper describes the approach to be used for the alignment of the GEM muon system, the design of the ATS, and the experiments to be conducted using the ATS.

  1. High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABERTOOTH

    PubMed Central

    2010-01-01

    Background Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins. Results We develop a sequence alignment method that combines the prediction of a structural profile based on the protein's sequence with the alignment of that profile using our recently published alignment tool SABERTOOTH. In particular, we predict the contact vector of protein structures using an artificial neural network based on position-specific scoring matrices generated by PSI-BLAST and align these predicted contact vectors. The resulting sequence alignments are assessed using two different tests: First, we assess the alignment quality by measuring the derived structural similarity for cases in which structures are available. In a second test, we quantify the ability of the significance score of the alignments to recognize structural and evolutionary relationships. As a benchmark we use a representative set of the SCOP (structural classification of proteins) database, with similarities ranging from closely related proteins at SCOP family level, to very distantly related proteins at SCOP fold level. Comparing these results with some prominent sequence alignment tools, we find that SABERTOOTH produces sequence alignments of better quality than those of Clustal W, T-Coffee, MUSCLE, and PSI-BLAST. HHpred, one of the most sophisticated and computationally expensive tools available, outperforms our alignment algorithm at family and superfamily levels

  2. Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.

    PubMed

    van der Asdonk, Pim; Keshavarz, Masoumeh; Christianen, Peter C M; Kouwer, Paul H J

    2016-08-21

    An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter.

  3. Peptide array-based characterization and design of ZnO-high affinity peptides.

    PubMed

    Okochi, Mina; Sugita, Tomoya; Furusawa, Seiji; Umetsu, Mitsuo; Adschiri, Tadafumi; Honda, Hiroyuki

    2010-08-15

    Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self-assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO-binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO-binding peptide, 125 spot-synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO-binding sites were found as 6-mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles.

  4. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš E-mail: zvlah@stanford.edu

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  5. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  6. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  7. Sensitive Technique For Detecting Alignment Of Seed Laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1994-01-01

    Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.

  8. Sensitive Technique For Detecting Alignment Of Seed Laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1994-01-01

    Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.

  9. Bayesian coestimation of phylogeny and sequence alignment.

    PubMed

    Lunter, Gerton; Miklós, István; Drummond, Alexei; Jensen, Jens Ledet; Hein, Jotun

    2005-04-01

    Two central problems in computational biology are the determination of the alignment and phylogeny of a set of biological sequences. The traditional approach to this problem is to first build a multiple alignment of these sequences, followed by a phylogenetic reconstruction step based on this multiple alignment. However, alignment and phylogenetic inference are fundamentally interdependent, and ignoring this fact leads to biased and overconfident estimations. Whether the main interest be in sequence alignment or phylogeny, a major goal of computational biology is the co-estimation of both. We developed a fully Bayesian Markov chain Monte Carlo method for coestimating phylogeny and sequence alignment, under the Thorne-Kishino-Felsenstein model of substitution and single nucleotide insertion-deletion (indel) events. In our earlier work, we introduced a novel and efficient algorithm, termed the "indel peeling algorithm", which includes indels as phylogenetically informative evolutionary events, and resembles Felsenstein's peeling algorithm for substitutions on a phylogenetic tree. For a fixed alignment, our extension analytically integrates out both substitution and indel events within a proper statistical model, without the need for data augmentation at internal tree nodes, allowing for efficient sampling of tree topologies and edge lengths. To additionally sample multiple alignments, we here introduce an efficient partial Metropolized independence sampler for alignments, and combine these two algorithms into a fully Bayesian co-estimation procedure for the alignment and phylogeny problem. Our approach results in estimates for the posterior distribution of evolutionary rate parameters, for the maximum a-posteriori (MAP) phylogenetic tree, and for the posterior decoding alignment. Estimates for the evolutionary tree and multiple alignment are augmented with confidence estimates for each node height and alignment column. Our results indicate that the patterns in

  10. Alignment-free phylogenetics and population genetics.

    PubMed

    Haubold, Bernhard

    2014-05-01

    Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on comparative data, today usually DNA sequences. These have become so plentiful that alignment-free sequence comparison is of growing importance in the race between scientists and sequencing machines. In phylogenetics, efficient distance computation is the major contribution of alignment-free methods. A distance measure should reflect the number of substitutions per site, which underlies classical alignment-based phylogeny reconstruction. Alignment-free distance measures are either based on word counts or on match lengths, and I apply examples of both approaches to simulated and real data to assess their accuracy and efficiency. While phylogeny reconstruction is based on the number of substitutions, in population genetics, the distribution of mutations along a sequence is also considered. This distribution can be explored by match lengths, thus opening the prospect of alignment-free population genomics.

  11. Calibration and Alignment.

    NASA Astrophysics Data System (ADS)

    Grassotti, Christopher; Iskenderian, Haig; Hoffman, Ross N.

    1999-06-01

    Discrepancies between estimates of rainfall from ground-based radar and satellite observing systems can be attributed to either calibration differences or to geolocation and sampling differences. These latter include differences due to radar or satellite misregistration, differences in observation times, or variations in instrument and retrieval algorithm sensitivities. A new methodology has been developed and tested for integrating radar- and satellite-based estimates of precipitation using a feature calibration and alignment (FCA) technique. The parameters describing the calibration and alignment are found using a variational approach, and are composed of displacement and amplitude adjustments to the satellite rainfall retrievals, which minimize the differences with respect to the radar data and satisfy additional smoothness and magnitude constraints. In this approach the amplitude component represents a calibration of the satellite estimate to the radar, whereas the displacement components correct temporal and/or geolocation differences between the radar and satellite data.The method has been tested on a number of cases of the NASA WetNet PIP-2 dataset. These data consist of coincident estimates of rainfall by ground-based radar and the DMSP SSM/I. Sensitivity tests were conducted to tune the parameters of the algorithm. Results indicate the effectiveness of the technique in minimizing the discrepancies between radar and satellite observations of rainfall for a variety of rainfall events ranging from midlatitude frontal precipitation to heavy convection associated with a tropical cyclone (Hurricane Andrew). A remaining issue to be resolved is the incorporation of knowledge about location dependencies in the errors of the radar and microwave estimates.Once the satellite data have been adjusted to match the radar observations, the two independent estimates (radar and adjusted SSM/I rain rates) may be blended to improve the overall depiction of the rainfall event

  12. Some Alignment Considerations for the Next Linear Collider

    SciTech Connect

    Ruland, R

    2004-06-08

    Next Linear Collider type accelerators require a new level of alignment quality. The relative alignment of these machines is to be maintained in an error envelope dimensioned in micrometers and for certain parts in nanometers. In the nanometer domain our terra firma cannot be considered monolithic but compares closer to jelly. Since conventional optical alignment methods cannot deal with the dynamics and cannot approach the level of accuracy, special alignment and monitoring techniques must be pursued.

  13. Robust Algorithm for Alignment of Liquid Chromatography-Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis Pipeline

    SciTech Connect

    Jaitly, Navdeep; Monroe, Matthew E.; Petyuk, Vladislav A.; Clauss, Therese RW; Adkins, Joshua N.; Smith, Richard D.

    2006-11-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative quantity. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate results from these techniques, variations in mass and elution time measurements between related analyses are corrected by using algorithms designed to align the various types of results: LC-MS/MS vs. LC-MS/MS, LC-MS vs. LC-MS/MS, and LC-MS vs. LC-MS. Described herein are new algorithms referred to collectively as Liquid Chromatography based Mass Spectrometric Warping and Alignment of Retention times of Peptides (LCMSWARP) which use a dynamic elution time warping approach similar to traditional algorithms that correct variation in elution time using piecewise linear functions. LCMSWARP is compared to a linear alignment algorithm that assumes a linear transformation of elution time between analyses. LCMSWARP also corrects for drift in mass measurement accuracies that are often seen in an LC-MS analysis due to factors such as analyzer drift. We also describe the alignment of LC-MS results and provide examples of alignment of analyses from different chromatographic systems to demonstrate more complex transformation functions.

  14. Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach

    SciTech Connect

    Carr, Steven A.; Abbateillo, Susan E.; Ackermann, Bradley L.; Borchers, Christoph H.; Domon, Bruno; Deutsch, Eric W.; Grant, Russel; Hoofnagle, Andrew N.; Huttenhain, Ruth; Koomen, John M.; Liebler, Daniel; Liu, Tao; MacLean, Brendan; Mani, DR; Mansfield, Elizabeth; Neubert, Hendrik; Paulovich, Amanda G.; Reiter, Lukas; Vitek, Olga; Aebersold, Ruedi; Anderson, Leigh N.; Bethem, Robert; Blonder, Josip; Boja, Emily; Botelho, Julianne; Boyne, Michael; Bradshaw, Ralph A.; Burlingame, Alma S.; Chan, Daniel W.; Keshishian, Hasmik; Kuhn, Eric; Kingsinger, Christopher R.; Lee, Jerry S.; Lee, Sang-Won; Moritz, Robert L.; Oses-Prieto, Juan; Rifai, Nader; Ritchie, James E.; Rodriguez, Henry; Srinivas, Pothur R.; Townsend, Reid; Van Eyk , Jennifer; Whiteley, Gordon; Wiita, Arun; Weintraub, Susan

    2014-01-14

    Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and

  15. Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach*

    PubMed Central

    Carr, Steven A.; Abbatiello, Susan E.; Ackermann, Bradley L.; Borchers, Christoph; Domon, Bruno; Deutsch, Eric W.; Grant, Russell P.; Hoofnagle, Andrew N.; Hüttenhain, Ruth; Koomen, John M.; Liebler, Daniel C.; Liu, Tao; MacLean, Brendan; Mani, DR; Mansfield, Elizabeth; Neubert, Hendrik; Paulovich, Amanda G.; Reiter, Lukas; Vitek, Olga; Aebersold, Ruedi; Anderson, Leigh; Bethem, Robert; Blonder, Josip; Boja, Emily; Botelho, Julianne; Boyne, Michael; Bradshaw, Ralph A.; Burlingame, Alma L.; Chan, Daniel; Keshishian, Hasmik; Kuhn, Eric; Kinsinger, Christopher; Lee, Jerry S.H.; Lee, Sang-Won; Moritz, Robert; Oses-Prieto, Juan; Rifai, Nader; Ritchie, James; Rodriguez, Henry; Srinivas, Pothur R.; Townsend, R. Reid; Van Eyk, Jennifer; Whiteley, Gordon; Wiita, Arun; Weintraub, Susan

    2014-01-01

    Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and

  16. Primary structure of the A chain of human complement-classical-pathway enzyme C1r. N-terminal sequences and alignment of autolytic fragments and CNBr-cleavage peptides.

    PubMed Central

    Gagnon, J; Arlaud, G J

    1985-01-01

    Activated human complement-classical-pathway enzyme C1r has previously been shown to undergo autolytic cleavages occurring in the A chain [Arlaud, Villiers, Chesne & Colomb (1980) Biochim. Biophys. Acta 616, 116-129]. Chemical analysis of the autolytic products confirms that the A chain undergoes two major cleavages, generating three fragments, which have now been isolated and characterized. The N-terminal alpha fragment (approx. 210 residues long) has a blocked N-terminus, as does the whole A chain, whereas N-terminal sequences of fragments beta and gamma (approx. 66 and 176 residues long respectively) do not, and their N-terminal sequences were determined. Fragments alpha, beta and gamma, which are not interconnected by disulphide bridges, are located in this order within C1r A chain. Fragment gamma is disulphide-linked to the B chain of C1r, which is C-terminal in the single polypeptide chain of precursor C1r. CNBr cleavage of C1r A chain yields seven major peptides, CN1b, CN4a, CN2a, CN1a, CN3, CN4b and CN2b, which were positioned in that order, on the basis of N-terminal sequences of the methionine-containing peptides generated from tryptic cleavage of the succinylated (3-carboxypropionylated) C1r A chain. About 60% of the sequence of C1r A chain (440-460 residues long) was determined, including the complete sequence of the C-terminal 95 residues. This region shows homology with the corresponding parts of plasminogen and chymotrypsinogen and, more surprisingly, with the alpha 1 chain of human haptoglobin 1-1, a serine proteinase homologue. PMID:2983658

  17. Barriers and strategies to align stakeholders in healthcare alliances.

    PubMed

    Herald, Larry R; Alexander, Jeffrey A; Beich, Jeff; Mittler, Jessica N; O'Hora, Jennifer L

    2012-09-01

    To identify barriers to stakeholder alignment and strategies used by 14 multi-stakeholder alliances participating in the Aligning Forces for Quality initiative to overcome these barriers. The study used a mixed method, comparative case study design. Alliances were categorized as more or less highly aligned based on an alignment index constructed from survey responses. Six alliances (top and bottom quartile) were selected for more in-depth qualitative analysis. Semi-structured interviews of key informants were used to identify factors that distinguished more highly aligned alliances from less highly aligned alliances. Market context was one of the most important factors differentiating alliances. More highly aligned alliances had more extensive histories of collaboration, established more credibility in the local community, and were more effective at balancing collaborative initiatives against competitive interests. More highly aligned alliances also took more active approaches to build consensus among stakeholders regarding alliance initiatives, and were able to successfully utilize small decision-making bodies to foster this consensus. In contrast, leadership credibility, leadership stability, and trust were important facilitators of alignment for all alliances, regardless of the level of alignment. These factors intersect and overlap in a multitude of ways to influence stakeholder alignment. Alignment in an alliance context is critical for leveraging the unique knowledge, skills, and abilities of stakeholders in ways that can build capacity to improve the health of the community in ways that cannot be achieved independently by stakeholders. The findings highlight the need for multifaceted approaches to promote stakeholder alignment.

  18. Algorithms for Automatic Alignment of Arrays

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Oliker, Leonid; Schreiber, Robert; Sheffler, Thomas J.

    1996-01-01

    Aggregate data objects (such as arrays) are distributed across the processor memories when compiling a data-parallel language for a distributed-memory machine. The mapping determines the amount of communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: an alignment that maps all the objects to an abstract template, followed by a distribution that maps the template to the processors. This paper describes algorithms for solving the various facets of the alignment problem: axis and stride alignment, static and mobile offset alignment, and replication labeling. We show that optimal axis and stride alignment is NP-complete for general program graphs, and give a heuristic method that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. We also show how local graph contractions can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. We show how to model the static offset alignment problem using linear programming, and we show that loop-dependent mobile offset alignment is sometimes necessary for optimum performance. We describe an algorithm with for determining mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself or can be used to improve performance. We describe an algorithm based on network flow that replicates objects so as to minimize the total amount of broadcast communication in replication.

  19. Multiple whole-genome alignments without a reference organism.

    PubMed

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-04-01

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and six Drosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families-perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  20. Multiple Whole Genome Alignments Without a Reference Organism

    SciTech Connect

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  1. Evolutionary Sequence Modeling for Discovery of Peptide Hormones

    PubMed Central

    Sonmez, Kemal; Zaveri, Naunihal T.; Kerman, Ilan A.; Burke, Sharon; Neal, Charles R.; Xie, Xinmin; Watson, Stanley J.; Toll, Lawrence

    2009-01-01

    There are currently a large number of “orphan” G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to

  2. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism.

    PubMed

    Wendt, Daniel J; Dvorak-Ewell, Melita; Bullens, Sherry; Lorget, Florence; Bell, Sean M; Peng, Jeff; Castillo, Sianna; Aoyagi-Scharber, Mika; O'Neill, Charles A; Krejci, Pavel; Wilcox, William R; Rimoin, David L; Bunting, Stuart

    2015-04-01

    Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in wild-type mice without observable changes in trabecular and cortical bone architecture. Moreover, significant growth plate widening that translated into accelerated bone growth, at hemodynamically tolerable doses, was observed in juvenile cynomolgus monkeys that had received daily subcutaneous administrations of BMN 111. BMN 111 was well tolerated and represents a promising new approach for treatment of patients with ACH.

  3. An Approach Towards Structure Based Antimicrobial Peptide Design For Use in Development of Transgenic Plants: A Strategy For Plant Disease Management.

    PubMed

    Ilyas, Humaira; Datta, Aritreyee; Bhunia, Anirban

    2017-01-16

    Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, aimed to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limits their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology.

  4. ORFEUS alignment concept

    NASA Astrophysics Data System (ADS)

    Graue, R.; Kampf, D.; Rippel, H.; Witte, G.

    1991-09-01

    The alignment concept of ORFEUS, a short-term scientific space payload scheduled for launching by the STS in January 1993, is discussed. ORFEUS comprises two alternatively operating spectrometers (Echelle and Rowland) implemented in a CFC telescope with a 4-m tube length and an aperture of 1000 mm. The lightweight primary mirror has a focal length of 2426 mm. In order to achieve the required spectrometric high telescope resolution in the UV range (40-125 nm), a sophisticated alignment concept was developed. The centering of the alignment diaphragm (diameter: 15 microns) in the focus of the primary mirror has to be provided in the vertical tube position by means of an autocollimation telescope. The spectrometers have to be integrated into the horizontal telescope aligned within a special antigravity device to reduce optical surface deformations and to ensure the optical performance of the primary. The alignment of all optical components is to be performed in the visible spectral range.

  5. Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays.

    PubMed

    Hoofnagle, Andrew N; Whiteaker, Jeffrey R; Carr, Steven A; Kuhn, Eric; Liu, Tao; Massoni, Sam A; Thomas, Stefani N; Townsend, R Reid; Zimmerman, Lisa J; Boja, Emily; Chen, Jing; Crimmins, Daniel L; Davies, Sherri R; Gao, Yuqian; Hiltke, Tara R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Meyer, Matthew R; Qian, Wei-Jun; Schoenherr, Regine M; Scott, Mitchell G; Shi, Tujin; Whiteley, Gordon R; Wrobel, John A; Wu, Chaochao; Ackermann, Brad L; Aebersold, Ruedi; Barnidge, David R; Bunk, David M; Clarke, Nigel; Fishman, Jordan B; Grant, Russ P; Kusebauch, Ulrike; Kushnir, Mark M; Lowenthal, Mark S; Moritz, Robert L; Neubert, Hendrik; Patterson, Scott D; Rockwood, Alan L; Rogers, John; Singh, Ravinder J; Van Eyk, Jennifer E; Wong, Steven H; Zhang, Shucha; Chan, Daniel W; Chen, Xian; Ellis, Matthew J; Liebler, Daniel C; Rodland, Karin D; Rodriguez, Henry; Smith, Richard D; Zhang, Zhen; Zhang, Hui; Paulovich, Amanda G

    2016-01-01

    For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care. © 2015 American Association for Clinical Chemistry.

  6. Cytoplasmic transduction peptide (CTP): New approach for the delivery of biomolecules into cytoplasm in vitro and in vivo

    SciTech Connect

    Kim, Daeyou; Jeon, Choonju; Kim, Jeong-Hwan; Kim, Mi-Seon; Yoon, Cheol-Hee; Choi, In-Soo; Kim, Sung-Hoon; Bae, Yong-Soo . E-mail: ysbae04@skku.edu

    2006-05-01

    The protein transduction domain (PTD) of HIV-1 TAT has been extensively documented with regard to its membrane transduction potential, as well as its efficient delivery of biomolecules in vivo. However, the majority of PTD and PTD-conjugated molecules translocate to the nucleus rather than to the cytoplasm after transduction, due to the functional nuclear localization sequence (NLS). Here, we report a cytoplasmic transduction peptide (CTP), which was deliberately designed to ensure the efficient cytoplasmic delivery of the CTP-fused biomolecules. In comparison with PTD, CTP and its fusion partners exhibited a clear preference for cytoplasmic localization, and also markedly enhanced membrane transduction potential. Unlike the mechanism underlying PTD-mediated transduction, CTP-mediated transduction occurs independently of the lipid raft-dependent macropinocytosis pathway. The CTP-conjugated Smac/DIABLO peptide (Smac-CTP) was also shown to be much more efficient than Smac-PTD in the blockage of the antiapoptotic properties of XIAP, suggesting that cytoplasmic functional molecules can be more efficiently targeted by CTP-mediated delivery. In in vivo trafficking studies, CTP-fused {beta}-gal exhibited unique organ tropisms to the liver and lymph nodes when systemically injected into mice, whereas PTD-{beta}-gal exhibited no such tropisms. Taken together, our findings implicate CTP as a novel delivery peptide appropriate for (i) molecular targeting to cytoplasmic compartments in vitro, (ii) the development of class I-associated CTL vaccines, and (iii) special drug delivery in vivo, without causing any untoward effects on nuclear genetic material.

  7. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach.

    PubMed

    Zhu, Xiaoxia; Barman, Arghya; Ozbil, Mehmet; Zhang, Tingting; Li, Shanghao; Prabhakar, Rajeev

    2012-02-01

    In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1-Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H(2)O and -OH) have been investigated. In addition, the effects of the substrate (L-leucine-p-nitroanilide → L-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1-Zn2 and Mg1-Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with L-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for L-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0-19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1-Zn2, Mg1-Zn2, and Mg1-Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.

  8. Comparison of marmoset and human FSH using synthetic peptides of the β-subunit L2 loop region and anti-peptide antibodies.

    PubMed

    Kutteyil, Susha S; Kulkarni, Bhalchandra J; Mojidra, Rahul; Joseph, Shaini; Pathak, Bhakti R; Mahale, Smita D

    2016-06-01

    Follicle stimulating hormone (FSH) is a glycoprotein hormone required for female and male gametogenesis in vertebrates. Common marmoset (Callithrix jacchus) is a New World primate monkey, used as animal model in biomedical research. Observations like, requirement of extremely high dose of human FSH in marmosets for superovulation compared to other primates and generation of antibodies in marmoset against human FSH after repeated superovulation cycles, point towards the possibility that FSH-FSH receptor (FSHR) interaction in marmosets might be different than in the humans. In this study we attempted to understand some of these structural differences using FSH peptides and anti-peptide antibody approach. Based on sequence alignment, in silico modeling and docking studies, L2 loop of FSH β-subunit (L2β) was found to be different between marmoset and human. Hence, peptides corresponding to region 32-50 of marmoset and human L2β loop were synthesized, purified and characterized. The peptides displayed dissimilarity in terms of molecular mass, predicted isoelectric point, predicted charge and in the ability to inhibit hormone-receptor interaction. Polyclonal antibodies generated against both the peptides were found to exhibit specific binding for the corresponding peptide and parent FSH in ELISA and Western blotting respectively and exhibited negligible reactivity to cross-species peptide and FSH in ELISA. The anti-peptide antibody against marmoset FSH was also able to detect native FSH in marmoset plasma samples and pituitary sections. In summary, the L2β loop of marmoset and human FSH has distinct receptor interaction ability and immunoreactivity indicating possibility of subtle conformational and biochemical differences between the two regions which may affect the FSH-FSHR interaction in these two primates. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Synthesis of peptide analogues using the multipin peptide synthesis method.

    PubMed

    Valerio, R M; Benstead, M; Bray, A M; Campbell, R A; Maeji, N J

    1991-08-15

    Modification of the multipin peptide synthesis method which allows the simultaneous synthesis of large numbers of different peptide analogues is described. Peptides were assembled on polyethylene pins derivatized with a 4-(beta-alanyloxymethyl)benzoate (beta-Ala-HMB) handle. For comparative purposes, peptides were also assembled on the diketopiperazine-forming handle N epsilon-(beta-alanyl)lysylprolyloxylactate. In model studies it was demonstrated that beta-Ala-HMB-linked peptides were cleaved from polyethylene pins with dilute sodium hydroxide or 4% methylamine/water to yield analogues with beta-Ala-free acid (beta-Ala-CO2H) and beta-Ala-methylamide (beta-Ala-CONHCH3), respectively. To assess the suitability of this approach for T-cell determinant analysis, analogues of a known T-cell determinant were synthesized with the various C-terminal endings. Peptides were characterized by amino acid analysis and fast atom bombardment-mass spectrometry. HPLC of the crude cleaved peptides indicated that 22 of the 24 peptides were greater than 95% pure. These crude peptide solutions were nontoxic in sensitive cell culture assays without further purification. All three cleavage procedures gave comparable activities in T-cell proliferation assays. These results demonstrate the potential of the multipin peptide synthesis method for the production of large numbers of different peptide analogues.

  10. Analytical approach for characterization of cadmium-induced thiol peptides--a case study using Chlamydomonas reinhardtii.

    PubMed

    Bräutigam, Anja; Schaumlöffel, Dirk; Krauss, Gerd-Joachim; Wesenberg, Dirk

    2009-11-01

    Phytochelatins (PC) were described earlier to play a role in metal detoxification in Chlamydomonas reinhardtii but were not clearly identified. The focus of this case study was to identify PC synthesized by C. reinhardtii exposed to Cd. Only low intracellular concentrations of cadmium (85 nmol g(-1) fresh weight) were sufficient to cause significant changes in thiol peptide pools. Thus, results showed a progressive decline of the glutathione content, accompanied by an induction of phytochelatins. Not only canonic phytochelatins but for the first time also the iso-phytochelatins CysPC(n) and PC(2)Ala were identified in this unicellular green alga using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Additionally, CysPC(n)desGly, PC(n)desGly, CysPC(n)Glu, and PC(2)Glu were found throughout MS analysis. Also, low abundant PCs could be detected due to the high sample preconcentration combined with little sample amounts (0.3 microL min(-1)) necessary for electrospray. Identified PCs had a maximum number of 5 gamma-glutamyl cysteine (gamma-GluCys) units. Thiol peptides of higher molecular masses suggesting PC(n) with n > 5 could be identified as intermolecular oxidation products of smaller PCs. Thiols may easily be oxidized. Therefore, PCs were reduced prior to MS analysis. Dithiothreitol and tris(2-carboxyethyl) phosphine were compared concerning their reduction effort.

  11. Synthesis of a non-heme template for attaching four peptides: an approach to artificial iron(II)-containing peroxidases.

    PubMed

    van den Heuvel, Marco; van den Berg, Tieme A; Kellogg, Richard M; Choma, Christin T; Feringa, Ben L

    2004-01-23

    We are developing all-synthetic model cofactor-protein complexes in order to define the parameters controlling non-natural cofactor activity. The long-term objective is to establish the theoretical and practical basis for designing novel enzymes. A non-heme pentadentate ligand (N4Py) is being developed as a template for the site-specific attachment of a designed four-helix bundle. Previously, we attached two unprotected peptides via CH(2)Cl handles to N4Py. In the presence of hydrogen peroxide, the iron(II) complex of this ligand (2a) generates an Fe(III)OOH intermediate (3a) that can oxidize a wide variety of organic compounds. Here, we describe the synthesis of 27, a N4Py derivative in which four three-carbon spacers have been introduced, and show that four copies of an unprotected, single-cysteine peptide can be coupled via a thioether linkage to the ligand. In addition, a divergent synthesis route to tetrabromide ligand 1b has also been developed, providing the opportunity to prepare alternative pentadentate ligands efficiently by four cross-coupling reactions on a single molecule. Also, two of the four bromides of 1b can be selectively addressed by magnesium-bromide exchange.

  12. A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case

    PubMed Central

    Roth, Steffen; Fromm, Bastian; Gäde, Gerd; Predel, Reinhard

    2009-01-01

    Background Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed. Results Tandem mass spectrometry of neuropeptides from perisympathetic organs was used to obtain sequence data of CAPA peptides from single specimens; the data were analysed by Maximum Parsimony and Bayesian Interference. The resulting cladograms, taking 61 species into account, show a topology which is in general agreement with recent molecular and morphological phylogenetic analyses, including the recent phylogenetic arrangement placing termites within the cockroaches. When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably. Conclusion This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships. PMID:19257902

  13. Shuttle onboard IMU alignment methods

    NASA Technical Reports Server (NTRS)

    Henderson, D. M.

    1976-01-01

    The current approach to the shuttle IMU alignment is based solely on the Apollo Deterministic Method. This method is simple, fast, reliable and provides an accurate estimate for the present cluster to mean of 1,950 transformation matrix. If four or more star sightings are available, the application of least squares analysis can be utilized. The least squares method offers the next level of sophistication to the IMU alignment solution. The least squares method studied shows that a more accurate estimate for the misalignment angles is computed, and the IMU drift rates are a free by-product of the analysis. Core storage requirements are considerably more; estimated 20 to 30 times the core required for the Apollo Deterministic Method. The least squares method offers an intermediate solution utilizing as much data that is available without a complete statistical analysis as in Kalman filtering.

  14. The tree alignment problem.

    PubMed

    Varón, Andrés; Wheeler, Ward C

    2012-11-09

    The inference of homologies among DNA sequences, that is, positions in multiple genomes that share a common evolutionary origin, is a crucial, yet difficult task facing biologists. Its computational counterpart is known as the multiple sequence alignment problem. There are various criteria and methods available to perform multiple sequence alignments, and among these, the minimization of the overall cost of the alignment on a phylogenetic tree is known in combinatorial optimization as the Tree Alignment Problem. This problem typically occurs as a subproblem of the Generalized Tree Alignment Problem, which looks for the tree with the lowest alignment cost among all possible trees. This is equivalent to the Maximum Parsimony problem when the input sequences are not aligned, that is, when phylogeny and alignments are simultaneously inferred. For large data sets, a popular heuristic is Direct Optimization (DO). DO provides a good tradeoff between speed, scalability, and competitive scores, and is implemented in the computer program POY. All other (competitive) algorithms have greater time complexities compared to DO. Here, we introduce and present experiments a new algorithm Affine-DO to accommodate the indel (alignment gap) models commonly used in phylogenetic analysis of molecular sequence data. Affine-DO has the same time complexity as DO, but is correctly suited for the affine gap edit distance. We demonstrate its performance with more than 330,000 experimental tests. These experiments show that the solutions of Affine-DO are close to the lower bound inferred from a linear programming solution. Moreover, iterating over a solution produced using Affine-DO shows little improvement. Our results show that Affine-DO is likely producing near-optimal solutions, with approximations within 10% for sequences with small divergence, and within 30% for random sequences, for which Affine-DO produced the worst solutions. The Affine-DO algorithm has the necessary scalability and

  15. The tree alignment problem

    PubMed Central

    2012-01-01

    Background The inference of homologies among DNA sequences, that is, positions in multiple genomes that share a common evolutionary origin, is a crucial, yet difficult task facing biologists. Its computational counterpart is known as the multiple sequence alignment problem. There are various criteria and methods available to perform multiple sequence alignments, and among these, the minimization of the overall cost of the alignment on a phylogenetic tree is known in combinatorial optimization as the Tree Alignment Problem. This problem typically occurs as a subproblem of the Generalized Tree Alignment Problem, which looks for the tree with the lowest alignment cost among all possible trees. This is equivalent to the Maximum Parsimony problem when the input sequences are not aligned, that is, when phylogeny and alignments are simultaneously inferred. Results For large data sets, a popular heuristic is Direct Optimization (DO). DO provides a good tradeoff between speed, scalability, and competitive scores, and is implemented in the computer program POY. All other (competitive) algorithms have greater time complexities compared to DO. Here, we introduce and present experiments a new algorithm Affine-DO to accommodate the indel (alignment gap) models commonly used in phylogenetic analysis of molecular sequence data. Affine-DO has the same time complexity as DO, but is correctly suited for the affine gap edit distance. We demonstrate its performance with more than 330,000 experimental tests. These experiments show that the solutions of Affine-DO are close to the lower bound inferred from a linear programming solution. Moreover, iterating over a solution produced using Affine-DO shows little improvement. Conclusions Our results show that Affine-DO is likely producing near-optimal solutions, with approximations within 10% for sequences with small divergence, and within 30% for random sequences, for which Affine-DO produced the worst solutions. The Affine-DO algorithm has

  16. Modelling a Linker Mix‐and‐Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks

    PubMed Central

    Aziz, Alex; Collins, Angus W.; Crespo‐Otero, Rachel; Hernández, Norge C.; Rodriguez‐Albelo, L. Marleny; Ruiz‐Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Abstract Tuning the electronic structure of metal–organic frameworks is the key to extending their functionality to the photocatalytic conversion of absorbed gases. Herein we discuss how the band edge positions in zeolitic imidazolate frameworks (ZIFs) can be tuned by mixing different imidazole‐based linkers within the same structure. We present the band alignment for a number of known and hypothetical Zn‐based ZIFs with respect to the vacuum level. Structures with a single type of linker exhibit relatively wide band gaps; however, by mixing linkers of a low‐lying conduction edge with linkers of a high‐lying valence edge, we can predict materials with ideal band positions for visible‐light water splitting and CO2 reduction photocatalysis. By introducing copper in the tetrahedral position of the mixed‐linker ZIFs, it would be possible to increase both photo‐absorption and the electron–hole recombination times. PMID:27862763

  17. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse.

    PubMed

    Charbogne, Pauline; Kieffer, Brigitte L; Befort, Katia

    2014-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA

  18. 15 years of genetic approaches in vivo for addiction research: opioid receptor and peptide gene knockout in mouse models of drug abuse

    PubMed Central

    Charbogne, Pauline; Kieffer, Brigitte L.; Befort, Katia

    2013-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. PEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. PMID:24035914

  19. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein.

    PubMed

    Alam, Aftab; Ali, Shahnawaz; Ahamad, Shahzaib; Malik, Md Zubbair; Ishrat, Romana

    2016-12-01

    Zika virus (ZikV) has emerged as a potential threat to human health worldwide. A member of the Flaviviridae, ZikV is transmitted to humans by mosquitoes. It is related to other pathogenic vector-borne flaviviruses including dengue, West Nile and Japanese encephalitis viruses, but produces a comparatively mild disease in humans. As a result of its epidemic outbreak and the lack of potential medication, there is a need for improved vaccine/drugs. Computational techniques will provide further information about this virus. Comparative analysis of ZikV genomes should lead to the identification of the core characteristics that define a virus family, as well as its unique properties, while phylogenetic analysis will show the evolutionary relationships and provide clues about the protein's ancestry. Envelope glycoprotein of ZikV was obtained from a protein database and the most immunogenic epitope for T cells and B cells involved in cell-mediated immunity, whereas B cells are primarily responsible for humoral immunity. We mainly focused on MHC class I potential peptides. YRIMLSVHG, VLIFLSTAV and MMLELDPPF, GLDFSDLYY are the most potent peptides predicted as epitopes for CD4(+) and CD8(+) T cells, respectively, whereas MMLELDPPF and GLDFSDLYY had the highest pMHC-I immunogenicity score and these are further tested for interaction against the HLA molecules, using in silico docking techniques to verify the binding cleft epitope. However, this is an introductory approach to design an epitope-based peptide vaccine against ZikV; we hope that this model will be helpful in designing and predicting novel vaccine candidates. © 2016 John Wiley & Sons Ltd.

  20. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  1. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  2. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  3. Blasting and Zipping: Sequence Alignment and Mutual Information

    NASA Astrophysics Data System (ADS)

    Penner, Orion; Grassberger, Peter; Paczuski, Maya

    2009-03-01

    Alignment of biological sequences such as DNA, RNA or proteins is one of the most widely used tools in computational bioscience. While the accomplishments of sequence alignment algorithms are undeniable the fact remains that these algorithms are based upon heuristic scoring schemes. Therefore, these algorithms do not provide model independent and objective measures for how similar two (or more) sequences actually are. Although information theory provides such a similarity measure - the mutual information (MI) - numerous previous attempts to connect sequence alignment and information have not produced realistic estimates for the MI from a given alignment. We report on a simple and flexible approach to get robust estimates of MI from global alignments. The presented results may help establish MI as a reliable tool for evaluating the quality of global alignments, judging the relative merits of different alignment algorithms, and estimating the significance of specific alignments.

  4. A novel partial sequence alignment tool for finding large deletions.

    PubMed

    Aruk, Taner; Ustek, Duran; Kursun, Olcay

    2012-01-01

    Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method.

  5. Alignment of tactical tropo antennas

    NASA Astrophysics Data System (ADS)

    Bradley, Philip A.

    1986-07-01

    Alignment problems of parabolic reflector antennas for troposcatter radio communications are analyzed. Defects of previous alignment techniques are delineated and a new technique for automatic antenna alignment is presented.

  6. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: Amino acids substitution and conjugation to nanoparticles

    NASA Astrophysics Data System (ADS)

    Casciaro, Bruno; Cappiello, Floriana; Cacciafesta, Mauro; Mangoni, Maria Luisa

    2017-04-01

    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin esculentin-1a, named esculentin-1a(1-21)NH2, [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa, a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e. α-aminoisobutyric acid or D-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.

  7. Mechanistic insights into metal (Pd2+, Co2+, and Zn2+)-β-cyclodextrin catalyzed peptide hydrolysis: a QM/MM approach.

    PubMed

    Zhang, Tingting; Zhu, Xiaoxia; Prabhakar, Rajeev

    2014-04-17

    In this study, mechanistic insights into the hydrolysis of an extremely stable tertiary peptide bond (Ser-Pro) in the Ser-Pro-Phe sequence by an artificial enzyme, metal (Pd(2+), Co(2+), or Zn(2+))-β-cyclodextrin (CD) complex, have been provided. In particular, the exact reaction mechanism, the location of CD (number of -CH2 groups downstream from the metal center), conformation of CD (primary or secondary rim of CD facing the substrate), the number of CD (one or two), and the optimum metal ion (Pd(2+), Co(2+), or Zn(2+)) have been suggested using a state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM: B3LYP/Amber) approach. The QM/MM calculations suggest that the internal delivery mechanism is the most energetically feasible for the peptide hydrolysis. The inclusion of a CD ring at two CH2 groups downstream from the metal center can provide 3 × 10(5) times acceleration in the activity, while the replacement of Pd(2+) with Co(2+) enhances the rate activity another 3.7 × 10(4) times.

  8. Alignment of CEBAF cryomodules

    SciTech Connect

    Schneider, W.J.; Bisognano, J.J.; Fischer, J.

    1993-06-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, when completed, will house a 4 GeV recirculating accelerator. Each of the accelerator`s two linacs contains 160 superconducting radio frequency (SRF) 1497 MHz niobium cavities in 20 cryomodules. Alignments of the cavities within the cryomodule with respect to beam axis is critical to achieving the optimum accelerator performance. This paper discusses the rationale for the current specification on cavity mechanical alignment: 2 mrad (rms) applied to the 0.5 m active length cavities. We describe the tooling that was developed to achieve the tolerance at the time of cavity pair assembly, to preserve and integrate alignment during cryomodule assembly, and to translate alignment to appropriate installation in the beam line.

  9. Physiologic and weight-focused treatment strategies for managing type 2 diabetes mellitus: the metformin, glucagon-like peptide-1 receptor agonist, and insulin (MGI) approach.

    PubMed

    Nadeau, Daniel A

    2013-05-01

    The prevalence of type 2 diabetes mellitus (T2DM) is rising in association with an increase in obesity rates. Current treatment options for patients with T2DM include lifestyle modifications and numerous antidiabetic medications. Despite the availability of effective and well-tolerated treatments, many patients do not achieve recommended glycemic targets. Lack of efficacy is complicated by the wide range of available agents and little specificity in treatment guidelines, thus challenging clinicians to understand the relative benefits and risks of individual options for each patient. In this article, lifestyle intervention strategies and current antidiabetic agents are evaluated for their efficacy, safety, and weight-loss potential. Because of the heterogeneous and progressive nature of T2DM, physicians should advocate approaches that emphasize weight management, limit the risk of hypoglycemia and adverse events, and focus on the core pathophysiologic defects in patients with T2DM. A healthy, plant-based diet that is low in saturated fat and refined carbohydrates but high in whole grains, vegetables, legumes, and fruits, coupled with resistance and aerobic exercise regimens, are recommended for patients with T2DM. When necessary, drug intervention, described in this article as the MGI (metformin, glucagon-like peptide-1 receptor agonist, and insulin) approach, should begin with metformin and progress to the early addition of glucagon-like peptide-1 receptor agonists because of their weight loss potential and ability to target multiple pathophysiologic defects in patients with T2DM. For most patients, treatments that induce weight gain and hypoglycemia should be avoided. Long-acting insulin should be initiated if glycemic control is not achieved with metformin and glucagon-like peptide-1 receptor agonist combination therapy, focusing on long-acting insulin analogs that induce the least weight gain and have the lowest hypoglycemic risk. Ultimately, a patient

  10. [Hydrolysis of peptides by immobilized bacterial peptide hydrolases].

    PubMed

    Nekliudov, A D; Deniakina, E K

    2004-01-01

    The feasibility of hydrolysis of a mixture of peptides with an enzyme from the bacterium Xanthomonas rubrilineans, displaying a peptidase activity and immobilized on aluminum oxide, was studied. Kinetic schemes and equations allowing for approaching quantitative description of peptide hydrolysis in complex mixtures containing free amino acids and peptides were obtained. It was demonstrated that as a result of hydrolysis, the content of free amino acids in hydrolysates decreased 2.5- to 3-fold and the molecular weight of the constituent peptides, 2-fold.

  11. Bioactive Peptides

    PubMed Central

    Daliri, Eric Banan-Mwine; Oh, Deog H.; Lee, Byong H.

    2017-01-01

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development. PMID:28445415

  12. Bioactive Peptides.

    PubMed

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  13. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  14. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  15. Concepts for Biologically Active Peptides

    PubMed Central

    Kastin, Abba J.; Pan, Weihong

    2012-01-01

    Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act ‘up’ on the brain as well as ‘down’ on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide’s name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era. PMID:20726835

  16. Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer.

    PubMed

    Pluhackova, Kristyna; Wassenaar, Tsjerk A; Kirsch, Sonja; Böckmann, Rainer A

    2015-03-26

    A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.

  17. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...

  18. Alignment of University Information Technology Resources with the Malcolm Baldrige Results Criteria for Performance Excellence in Education: A Balanced Scorecard Approach

    ERIC Educational Resources Information Center

    Beard, Deborah F.; Humphrey, Roberta L.

    2014-01-01

    The authors suggest using a balanced scorecard (BSC) approach to evaluate information technology (IT) resources in higher education institutions. The BSC approach illustrated is based on the performance criteria of the Malcolm Baldrige National Quality Award in Education. This article suggests areas of potential impact of IT on BSC measures in…

  19. Alignment of University Information Technology Resources with the Malcolm Baldrige Results Criteria for Performance Excellence in Education: A Balanced Scorecard Approach

    ERIC Educational Resources Information Center

    Beard, Deborah F.; Humphrey, Roberta L.

    2014-01-01

    The authors suggest using a balanced scorecard (BSC) approach to evaluate information technology (IT) resources in higher education institutions. The BSC approach illustrated is based on the performance criteria of the Malcolm Baldrige National Quality Award in Education. This article suggests areas of potential impact of IT on BSC measures in…

  20. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  1. A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors

    PubMed Central

    Bécamel, Carine; Galéotti, Nathalie; Poncet, Joël; Jouin, Patrick; Dumuis, Aline; Bockaert, Joël

    2002-01-01

    There is accumulating evidence that membrane-bound receptors interact with many intracellular proteins. Multiprotein complexes associated with ionotropic receptors have been extensively characterized, but the identification of proteins interacting with G protein-coupled receptors (GPCRs) has so far only been achieved in a piecemeal fashion, focusing on one or two protein species. We describe a method based on peptide affinity chromatography, two-dimensional electrophoresis, mass spectrometry and immunoblotting to identify the components of multiprotein complexes interacting directly or indirectly with intracellular domains of GPCRs or, more generally, any other membrane-bound receptor. Using this global approach, we have characterized multiprotein complexes that bind to the carboxy-terminal tail of the 5-hydroxytryptamine type 2C receptor and are important for its subcellular localization in CNS cells (Bécamel et al., EMBO J., 21(10): 2332, 2002). PMID:12734563

  2. The combined use of computer-guided, minimally invasive, flapless corticotomy and clear aligners as a novel approach to moderate crowding: A case report

    PubMed Central

    Cassetta, Michele; Altieri, Federica; Pandolfi, Stefano; Giansanti, Matteo

    2017-01-01

    The aim of this case report was to describe an innovative orthodontic treatment method that combined surgical and orthodontic techniques. The novel method was used to achieve a positive result in a case of moderate crowding by employing a computer-guided piezocision procedure followed by the use of clear aligners. A 23-year-old woman had a malocclusion with moderate crowding. Her periodontal indices, oral health-related quality of life (OHRQoL), and treatment time were evaluated. The treatment included interproximal corticotomy cuts extending through the entire thickness of the cortical layer, without a full-thickness flap reflection. This was achieved with a three-dimensionally printed surgical guide using computer-aided design and computer-aided manufacturing. Orthodontic force was applied to the teeth immediately after surgery by using clear appliances for better control of tooth movement. The total treatment time was 8 months. The periodontal indices improved after crowding correction, but the oral health impact profile showed a slight deterioration of OHRQoL during the 3 days following surgery. At the 2-year retention follow-up, the stability of treatment was excellent. The reduction in surgical time and patient discomfort, increased periodontal safety and patient acceptability, and accurate control of orthodontic movement without the risk of losing anchorage may encourage the use of this combined technique in appropriate cases. PMID:28337422

  3. A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells.

    PubMed

    Kevin, M; Fou, Y H; Wong, A S W; Ho, G W

    2010-08-06

    A maskless method of employing polymer growth inhibitor layers is used to modulate the conflicting parameters of density and alignment of multi-junction nanowires via large-scale low temperature chemical route. This low temperature chemical route is shown to synthesize multi-junction nanostructures without compromising the crystal quality at the interfaces. The final morphology of optimized multi-junctions nanowire arrays can be demonstrated on various substrates due to substrate independence and low temperature processing. Here, we also fabricated devices based on density modulated multi-junction nanowires tuned to infiltrate nanoparticles. The fabrication of hierarchically structured nanowire/nanoparticles composites presents an advantageous structure, one that allows nanoparticles to provide large surface areas for dye adsorption, whilst the nanowires can enhance the light harvesting, electron transport rate, and also the mechanical properties of the films. This work can be of great scientific and commercial interest since the technique employed is of low temperature (<90 degrees C) and economical for large-scale solution processing, much valued in today's flexible display and photovoltaic industries.

  4. Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM).

    PubMed

    Nakao, Ryo; Abe, Takashi; Funayama, Shunsuke; Sugimoto, Chihiro

    2016-01-01

    Tsetse flies (Glossina spp.) are the primary vectors of trypanosomes, which can cause human and animal African trypanosomiasis in Sub-Saharan African countries. The objective of this study was to explore the genome of Glossina morsitans morsitans for evidence of horizontal gene transfer (HGT) from microorganisms. We employed an alignment-free clustering method, that is, batch learning self-organising map (BLSOM), in which sequence fragments are clustered based on the similarity of oligonucleotide frequencies independently of sequence homology. After an initial scan of HGT events using BLSOM, we identified 3.8% of the tsetse fly genome as HGT candidates. The predicted donors of these HGT candidates included known symbionts, such as Wolbachia, as well as bacteria that have not previously been associated with the tsetse fly. We detected HGT candidates from diverse bacteria such as Bacillus and Flavobacteria, suggesting a past association between these taxa. Functional annotation revealed that the HGT candidates encoded loci in various functional pathways, such as metabolic and antibiotic biosynthesis pathways. These findings provide a basis for understanding the coevolutionary history of the tsetse fly and its microbes and establish the effectiveness of BLSOM for the detection of HGT events.

  5. Were the first springtails semi-aquatic? A phylogenetic approach by means of 28S rDNA and optimization alignment.

    PubMed Central

    D'Haese, Cyrille A

    2002-01-01

    Emergence from an aquatic environment to the land is one of the major evolutionary transitions within the arthropods. It is often considered that the first hexapods, and in particular the first springtails, were semi-aquatic and this assumption drives evolutionary models towards particular conclusions. To address the question of the ecological origin of the springtails, phylogenetic analyses by optimization alignment were performed on D1 and D2 regions of the 28S rDNA for 55 collembolan exemplars and eight outgroups. Relationships among the orders Symphypleona, Entomobryomorpha and Poduromorpha are inferred. More specifically, a robust hypothesis is provided for the subfamilial relationships within the order Poduromorpha. Contrary to previous statements, the semi-aquatic species Podura aquatica is not basal or 'primitive', but well nested in the Poduromorpha. The analyses performed for the 24 different weighting schemes yielded the same conclusion: semi-aquatic ecology is not ancestral for the springtails. It is a derived condition that evolved independently several times. The adaptation for semi-aquatic life is better interpreted as a step towards independence from land, rather than indication of an aquatic origin. PMID:12061958

  6. Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM)

    PubMed Central

    Nakao, Ryo; Funayama, Shunsuke

    2016-01-01

    Tsetse flies (Glossina spp.) are the primary vectors of trypanosomes, which can cause human and animal African trypanosomiasis in Sub-Saharan African countries. The objective of this study was to explore the genome of Glossina morsitans morsitans for evidence of horizontal gene transfer (HGT) from microorganisms. We employed an alignment-free clustering method, that is, batch learning self-organising map (BLSOM), in which sequence fragments are clustered based on the similarity of oligonucleotide frequencies independently of sequence homology. After an initial scan of HGT events using BLSOM, we identified 3.8% of the tsetse fly genome as HGT candidates. The predicted donors of these HGT candidates included known symbionts, such as Wolbachia, as well as bacteria that have not previously been associated with the tsetse fly. We detected HGT candidates from diverse bacteria such as Bacillus and Flavobacteria, suggesting a past association between these taxa. Functional annotation revealed that the HGT candidates encoded loci in various functional pathways, such as metabolic and antibiotic biosynthesis pathways. These findings provide a basis for understanding the coevolutionary history of the tsetse fly and its microbes and establish the effectiveness of BLSOM for the detection of HGT events. PMID:28074180

  7. Were the first springtails semi-aquatic? A phylogenetic approach by means of 28S rDNA and optimization alignment.

    PubMed

    D'Haese, Cyrille A

    2002-06-07

    Emergence from an aquatic environment to the land is one of the major evolutionary transitions within the arthropods. It is often considered that the first hexapods, and in particular the first springtails, were semi-aquatic and this assumption drives evolutionary models towards particular conclusions. To address the question of the ecological origin of the springtails, phylogenetic analyses by optimization alignment were performed on D1 and D2 regions of the 28S rDNA for 55 collembolan exemplars and eight outgroups. Relationships among the orders Symphypleona, Entomobryomorpha and Poduromorpha are inferred. More specifically, a robust hypothesis is provided for the subfamilial relationships within the order Poduromorpha. Contrary to previous statements, the semi-aquatic species Podura aquatica is not basal or 'primitive', but well nested in the Poduromorpha. The analyses performed for the 24 different weighting schemes yielded the same conclusion: semi-aquatic ecology is not ancestral for the springtails. It is a derived condition that evolved independently several times. The adaptation for semi-aquatic life is better interpreted as a step towards independence from land, rather than indication of an aquatic origin.

  8. A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer.

    PubMed

    Gokoglan, Tugba Ceren; Soylemez, Saniye; Kesik, Melis; Dogru, Itir Bakis; Turel, Onur; Yuksel, Recep; Unalan, Husnu Emrah; Toppare, Levent

    2017-04-01

    A novel flexible glucose biosensor using vertically aligned carbon nanotubes (VACNT) and a conjugated polymer (CP) was fabricated. A scaffold based on VACNT grown on aluminum foil (VACNT-Al foil) with poly (9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl)-end capped with 2,5-diphenyl-1,2,4-oxadiazole (PFLO) was used as the immobilization matrix for the glucose biosensor. Glucose oxidase (GOx) was immobilized on a modified indium tin oxide (ITO) coated polyethylene terephthalate (PET) electrode surface. The biosensor response at a potential of -0.7V versus Ag wire was followed by the decrease in oxygen level as a result of enzymatic reaction. The biosensor exhibited a linear range between 0.02mM and 0.5mM glucose and kinetic parameters (KM(app), Imax, limit of detection (LOD) and sensitivity) were estimated as 0.193mM, 8.170μA, 7.035×10(-3)mM and 65.816μA/mMcm(2), respectively. Scanning electron microscopy (SEM) was used for surface characterization. The constructed biosensor was applied to determine the glucose content in several beverages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Peptides that influence membrane topology

    NASA Astrophysics Data System (ADS)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  10. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  11. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  12. Uniaxially aligned nanofibrous cylinders by electrospinning.

    PubMed

    Jana, Soumen; Cooper, Ashleigh; Ohuchi, Fumio; Zhang, Miqin

    2012-09-26

    Aligned nanofibers have drawn increasing interest for applications in biomedical engineering, electronics, and energy storage systems owing to the unique physicochemical properties provided by their anisotropy and high surface-to-volume ratio. Nevertheless, direct fabrication or assembly of aligned nanofibers into a 3-dimensional standalone construct with practically applicable dimensions presents an enormous challenge. We report a facile method to fabricate aligned nanofibrous cylinders, a widely used geometric form, by electrospinning aligned nanofibers across the gap between a pair of pin electrodes placed apart uniaxially. With this approach, cylindrical nanofibrous constructs of several millimeters in diameter and several centimeters in length can be readily produced. The versatility of the approach was demonstrated with several commonly used polymeric and ceramic materials, including polycaprolactone (PCL), chitosan/PCL, polyvinylidene fluoride, and titania. For a model application in tissue engineering, skeletal muscle cells were cultured on nanofibrous cylinders, which effectively produced highly aligned and densely populated myotubes along the nanofiber orientation, favorable for muscle tissue regeneration. With high structural integrity and stability, these can be directly integrated into devices or implanted in vivo as a standalone construct without the support of a substrate, thus increasing the portability, efficiency, and applicability of aligned nanofibers.

  13. Fair evaluation of global network aligners.

    PubMed

    Crawford, Joseph; Sun, Yihan; Milenković, Tijana

    2015-01-01

    Analogous to genomic sequence alignment, biological network alignment identifies conserved regions between networks of different species. Then, function can be transferred from well- to poorly-annotated species between aligned network regions. Network alignment typically encompasses two algorithmic components: node cost function (NCF), which measures similarities between nodes in different networks, and alignment strategy (AS), which uses these similarities to rapidly identify high-scoring alignments. Different methods use both different NCFs and different ASs. Thus, it is unclear whether the superiority of a method comes from its NCF, its AS, or both. We already showed on state-of-the-art methods, MI-GRAAL and IsoRankN, that combining NCF of one method and AS of another method can give a new superior method. Here, we evaluate MI-GRAAL against a newer approach, GHOST, by mixing-and-matching the methods' NCFs and ASs to potentially further improve alignment quality. While doing so, we approach important questions that have not been asked systematically thus far. First, we ask how much of the NCF information should come from protein sequence data compared to network topology data. Existing methods determine this parameter more-less arbitrarily, which could affect alignment quality. Second, when topological information is used in NCF, we ask how large the size of the neighborhoods of the compared nodes should be. Existing methods assume that the larger the neighborhood size, the better. Our findings are as follows. MI-GRAAL's NCF is superior to GHOST's NCF, while the performance of the methods' ASs is data-dependent. Thus, for data on which GHOST's AS is superior to MI-GRAAL's AS, the combination of MI-GRAAL's NCF and GHOST's AS represents a new superior method. Also, which amount of sequence information is used within NCF does not affect alignment quality, while the inclusion of topological information is crucial for producing good alignments. Finally, larger

  14. Aligning parallel arrays to reduce communication

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.; Schreiber, Robert; Gilbert, John R.; Chatterjee, Siddhartha

    1994-01-01

    Axis and stride alignment is an important optimization in compiling data-parallel programs for distributed-memory machines. We previously developed an optimal algorithm for aligning array expressions. Here, we examine alignment for more general program graphs. We show that optimal alignment is NP-complete in this setting, so we study heuristic methods. This paper makes two contributions. First, we show how local graph transformations can reduce the size of the problem significantly without changing the best solution. This allows more complex and effective heuristics to be used. Second, we give a heuristic that can explore the space of possible solutions in a number of ways. We show that some of these strategies can give better solutions than a simple greedy approach proposed earlier. Our algorithms have been implemented; we present experimental results showing their effect on the performance of some example programs running on the CM-5.

  15. A combined tryptic peptide and winged peptide internal standard approach for the determination of α-lactalbumin in dairy products by ultra high performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Lai, Shiyun; Zhang, Jingshun; Zhang, Yu; Chen, Qi; Huang, Baifen; Ren, Yiping

    2015-05-01

    A robust ultra high performance liquid chromatography with tandem mass spectrometry method at peptide level was established for measuring α-lactalbumin in various dairy products. An isotope-labeled winged peptide (VKKILDKVG*INYW*LAHKALCSEKL) with extra amino acids of the sequence of signature peptide concatenated at each end as the internal standard was spiked in samples to participate in the whole tryptic digestion process. The peptide VG*INYW*LAHK that resulted from the isotope-labeled winged peptide was used as the final isotopically labeled internal standard of the α-lactalbumin signature peptide (VGINYWLAHK) during the quantitative analysis. The contents of α-lactalbumin in samples were calculated based on the equimolar relationship between the α-lactalbumin protein and signature peptide. The optimized molar ratio of trypsin to protein (1:60) and enzymatic digestion time (5 h) could not only improve the digestion efficiency and reduce the cost, but also minimize the period of sample pretreatment. Considering the robustness of the current method using the isotopically labeled internal standard and acceptable measurement cost, its application may promote the development of nutrient investigation and quality control of α-lactalbumin in dairy products. This protein analysis method might provide a new reference strategy for food analysis and quantitative protein analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diffeomorphic functional brain surface alignment: Functional demons.

    PubMed

    Nenning, Karl-Heinz; Liu, Hesheng; Ghosh, Satrajit S; Sabuncu, Mert R; Schwartz, Ernst; Langs, Georg

    2017-08-01

    Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Erasing Errors due to Alignment Ambiguity When Estimating Positive Selection

    PubMed Central

    Redelings, Benjamin

    2014-01-01

    Current estimates of diversifying positive selection rely on first having an accurate multiple sequence alignment. Simulation studies have shown that under biologically plausible conditions, relying on a single estimate of the alignment from commonly used alignment software can lead to unacceptably high false-positive rates in detecting diversifying positive selection. We present a novel statistical method that eliminates excess false positives resulting from alignment error by jointly estimating the degree of positive selection and the alignment under an evolutionary model. Our model treats both substitutions and insertions/deletions as sequence changes on a tree and allows site heterogeneity in the substitution process. We conduct inference starting from unaligned sequence data by integrating over all alignments. This approach naturally accounts for ambiguous alignments without requiring ambiguously aligned sites to be identified and removed prior to analysis. We take a Bayesian approach and conduct inference using Markov chain Monte Carlo to integrate over all alignments on a fixed evolutionary tree topology. We introduce a Bayesian version of the branch-site test and assess the evidence for positive selection using Bayes factors. We compare two models of differing dimensionality using a simple alternative to reversible-jump methods. We also describe a more accurate method of estimating the Bayes factor using Rao-Blackwellization. We then show using simulated data that jointly estimating the alignment and the presence of positive selection solves the problem with excessive false positives from erroneous alignments and has nearly the same power to detect positive selection as when the true alignment is known. We also show that samples taken from the posterior alignment distribution using the software BAli-Phy have substantially lower alignment error compared with MUSCLE, MAFFT, PRANK, and FSA alignments. PMID:24866534

  18. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  19. PIPI: PTM-Invariant Peptide Identification Using Coding Method.

    PubMed

    Yu, Fengchao; Li, Ning; Yu, Weichuan

    2016-12-02

    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and Protein

  20. Peptide fingerprinting of the neurotoxic fractions isolated from the secretions of sea anemones Stichodactyla helianthus and Bunodosoma granulifera. New members of the APETx-like family identified by a 454 pyrosequencing approach.

    PubMed

    Rodríguez, Armando Alexei; Cassoli, Juliana Silva; Sa, Fei; Dong, Zhi Qiang; de Freitas, José Carlos; Pimenta, Adriano M C; de Lima, Maria Elena; Konno, Katsuhiro; Lee, Simon Ming Yuen; Garateix, Anoland; Zaharenko, André J

    2012-03-01

    Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2kDa, which represent the smallest peptide toxins found in sea anemones. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Align-m--a new algorithm for multiple alignment of highly divergent sequences.

    PubMed

    Van Walle, Ivo; Lasters, Ignace; Wyns, Lode

    2004-06-12

    Multiple alignment of highly divergent sequences is a challenging problem for which available programs tend to show poor performance. Generally, this is due to a scoring function that does not describe biological reality accurately enough or a heuristic that cannot explore solution space efficiently enough. In this respect, we present a new program, Align-m, that uses a non-progressive local approach to guide a global alignment. Two large test sets were used that represent the entire SCOP classification and cover sequence similarities between 0 and 50% identity. Performance was compared with the publicly available algorithms ClustalW, T-Coffee and DiAlign. In general, Align-m has comparable or slightly higher accuracy in terms of correctly aligned residues, especially for distantly related sequences. Importantly, it aligns much fewer residues incorrectly, with average differences of over 15% compared with some of the other algorithms. Align-m and the test sets are available at http://bioinformatics.vub.ac.be

  2. Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints

    PubMed Central

    Dowell, Robin D; Eddy, Sean R

    2006-01-01

    Background We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm. Results We use probabilistic models (pair stochastic context-free grammars, pairSCFGs) as a unifying framework for scoring pairwise alignment and folding. A constrained version of the pairSCFG structural alignment algorithm was developed which assumes knowledge of a few confidently aligned positions (pins). These pins are selected based on the posterior probabilities of a probabilistic pairwise sequence alignment. Conclusion Pairwise RNA structural alignment improves on structure prediction accuracy relative to single sequence folding. Constraining on alignment is a straightforward method of reducing the runtime and memory requirements of the algorithm. Five practical implementations of the pairwise Sankoff algorithm – this work (Consan), David Mathews' Dynalign, Ian Holmes' Stemloc, Ivo Hofacker's PMcomp, and Jan Gorodkin's FOLDALIGN – have comparable overall performance with different strengths and weaknesses. PMID:16952317

  3. A simple method to control over-alignment in the MAFFT multiple sequence alignment program.

    PubMed

    Katoh, Kazutaka; Standley, Daron M

    2016-07-01

    We present a new feature of the MAFFT multiple alignment program for suppressing over-alignment (aligning unrelated segments). Conventional MAFFT is highly sensitive in aligning conserved regions in remote homologs, but the risk of over-alignment is recently becoming greater, as low-quality or noisy sequences are increasing in protein sequence databases, due, for example, to sequencing errors and difficulty in gene prediction. The proposed method utilizes a variable scoring matrix for different pairs of sequences (or groups) in a single multiple sequence alignment, based on the global similarity of each pair. This method significantly increases the correctly gapped sites in real examples and in simulations under various conditions. Regarding sensitivity, the effect of the proposed method is slightly negative in real protein-based benchmarks, and mostly neutral in simulation-based benchmarks. This approach is based on natural biological reasoning and should be compatible with many methods based on dynamic programming for multiple sequence alignment. The new feature is available in MAFFT versions 7.263 and higher. http://mafft.cbrc.jp/alignment/software/ katoh@ifrec.osaka-u.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. Peptide identification

    DOEpatents

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  5. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  6. Multiple Sequence Alignment.

    PubMed

    Bawono, Punto; Dijkstra, Maurits; Pirovano, Walter; Feenstra, Anton; Abeln, Sanne; Heringa, Jaap

    2017-01-01

    The increasing importance of Next Generation Sequencing (NGS) techniques has highlighted the key role of multiple sequence alignment (MSA) in comparative structure and function analysis of biological sequences. MSA often leads to fundamental biological insight into sequence-structure-function relationships of nucleotide or protein sequence families. Significant advances have been achieved in this field, and many useful tools have been developed for constructing alignments, although many biological and methodological issues are still open. This chapter first provides some background information and considerations associated with MSA techniques, concentrating on the alignment of protein sequences. Then, a practical overview of currently available methods and a description of their specific advantages and limitations are given, to serve as a helpful guide or starting point for researchers who aim to construct a reliable MSA.

  7. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  8. Whole-genome alignment.

    PubMed

    Dewey, Colin N

    2012-01-01

    Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level between two or more genomes. It combines aspects of both colinear sequence alignment and gene orthology prediction, and is typically more challenging to address than either of these tasks due to the size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been developed for its solution because WGAs are valuable for genome-wide analyses, such as phylogenetic inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and significance of WGA and present an overview of the methods that address it. We also examine the problem of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in order to make the most effective use of our rapidly growing databases of whole genomes.

  9. Mango: multiple alignment with N gapped oligos.

    PubMed

    Zhang, Zefeng; Lin, Hao; Li, Ming

    2008-06-01

    Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.

  10. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  11. RHIC survey and alignment

    SciTech Connect

    Karl, F.X.; Anderson, R.R.; Goldman, M.A.; Hemmer, F.M.; Kazmark, D. Jr.; Mroczkowski, T.T.; Roecklien, J.C.

    1993-07-01

    The Relativistic Heavy Ion Collider consists of two interlaced plane rings, a pair of mirror-symmetric beam injection arcs, a spatially curved beam transfer line from the Alternating Gradient Synchrotron, and a collection of precisely positioned and aligned magnets, on appropriately positioned support stands, threaded on those arcs. RHIC geometry is defined by six beam crossing points exactly in a plane, lying precising at the vertices of a regular hexagon of specified size position and orientation of this hexagon are defined geodetically. Survey control and alignment procedures, currently in use to construct RHIC, are described.

  12. Protein interactions between the C-terminus of Aβ-peptide and phospholipase A2--a structure biology based approach to identify novel Alzheimer's therapeutics.

    PubMed

    Mirza, Zeenat; Pillai, Vikram G; Kamal, Mohammad A

    2014-01-01

    Amyloid β (Aβ) polypeptide plays a key role in determining the state of protein aggregation in Alzheimer's disease. The hydrophobic C-terminal part of the Aβ peptide is critical in triggering the transformation from α-helical to β- sheet structure. We hypothesized that phospholipase A2 (PLA2) may inhibit the aggregation of Aβ peptide by interacting with the peptide and keeping the two peptide chains apart. In order to examine the nature of interactions between PLA2 and Aβ peptide, we prepared and crystallized complex of Naja naja sagittifera PLA2 with the C-terminal hepta-peptide Val-Gly-Gly-Val-Val-Ile-Ala. The X-ray intensity data were collected to 2.04 A resolution and the structure was determined by molecular replacement and refined to the crystallographic R factor of 0.186. The structural analysis revealed that the peptide binds to PLA2 at the hydrophobic substrate binding cavity forming at least eight hydrogen bonds and approximately a two dozen Van der Waals interactions. The number and nature of interactions indicate that the affinity between PLA2 and the hepta-peptide is greater than the affinity between two Aβ peptide chains. Therefore, PLA2 is proposed as a probable ligand to prevent the aggregation of Aβ peptides.

  13. Peptide conjugated chitosan foam as a novel approach for capture-purification and rapid detection of hapten--example of ochratoxin A.

    PubMed

    Soleri, R; Demey, H; Tria, S A; Guiseppi-Elie, A; Hassine, A Ibn Had; Gonzalez, C; Bazin, I

    2015-05-15

    A novel bioassay for the detection and monitoring of Ochratoxin A (OTA), a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi, has been developed and applied for the screening of red wine. Here we report the immobilization and orientation of NOF4, a synthetic peptide, onto 3-D porous chitosan supports using a N-terminal histidine tag to allow binding to M(++) ions that were previously adsorbed onto the high surface area biopolymer. Three divalent cations (M(++)=Zn(++), Co(++), Ni(++)) were evaluated and were found to adsorb via a Langmuir model and to have binding capacities in the order Zn(++)>Co(++)>Ni(++). Following Zn(++) saturation and washing, C-terminus vs. the N-terminus His-tagged NOF4 was evaluated. At 1000 µg L(-1) OTA the N-terminus immobilization was more efficient (2.5 times) in the capture of OTA. HRP labeled OTA was added to the antigen solutions (standards or samples) and together competitively incubated on biospecific chitosan foam. The chemiluminescence substrate luminol was then added and after 5 min of enzymatic reaction, light emission signals (λmax=425 nm) were analyzed. Calibration curves of %B/B0 vs. OTA concentration in PBS showed that half-inhibition occurred at 1.17 µg L(-1), allowing a range of discrimination of 0.25 and 25 µg L(-1). In red wine, the minimum concentration of OTA that the system can detect was 0.5 µg L(-1) and could detect up to 5 µg L(-1). Assay validation was performed against immunoaffinity column (IAC) tandem reversed-phase high pressure liquid chromatography with fluorescence detection (HPLC-FLD) and provided quite good agreement. The association of chitosan foam and specific peptide represents a new approach with potential for both purification-concentration and detection of small molecules. In the future this assay will be implemented in a solid-sate bioelectronic format.

  14. Fast and sensitive multiple alignment of large genomic sequences

    PubMed Central

    Brudno, Michael; Chapman, Michael; Göttgens, Berthold; Batzoglou, Serafim; Morgenstern, Burkhard

    2003-01-01

    Background Genomic sequence alignment is a powerful method for genome analysis and annotation, as alignments are routinely used to identify functional sites such as genes or regulatory elements. With a growing number of partially or completely sequenced genomes, multiple alignment is playing an increasingly important role in these studies. In recent years, various tools for pair-wise and multiple genomic alignment have been proposed. Some of them are extremely fast, but often efficiency is achieved at the expense of sensitivity. One way of combining speed and sensitivity is to use an anchored-alignment approach. In a first step, a fast search program identifies a chain of strong local sequence similarities. In a second step, regions between these anchor points are aligned using a slower but more accurate method. Results Herein, we present CHAOS, a novel algorithm for rapid identification of chains of local pair-wise sequence similarities. Local alignments calculated by CHAOS are used as anchor points to improve the running time of DIALIGN, a slow but sensitive multiple-alignment tool. We show that this way, the running time of DIALIGN can be reduced by more than 95% for BAC-sized and longer sequences, without affecting the quality of the resulting alignments. We apply our approach to a set of five genomic sequences around the stem-cell-leukemia (SCL) gene and demonstrate that exons and small regulatory elements can be identified by our multiple-alignment procedure. Conclusion We conclude that the novel CHAOS local alignment tool is an effective way to significantly speed up global alignment tools such as DIALIGN without reducing the alignment quality. We likewise demonstrate that the DIALIGN/CHAOS combination is able to accurately align short regulatory sequences in distant orthologues. PMID:14693042

  15. DALIX: optimal DALI protein structure alignment.

    PubMed

    Wohlers, Inken; Andonov, Rumen; Klau, Gunnar W

    2013-01-01

    We present a mathematical model and exact algorithm for optimally aligning protein structures using the DALI scoring model. This scoring model is based on comparing the interresidue distance matrices of proteins and is used in the popular DALI software tool, a heuristic method for protein structure alignment. Our model and algorithm extend an integer linear programming approach that has been previously applied for the related, but simpler, contact map overlap problem. To this end, we introduce a novel type of constraint that handles negative score values and relax it in a Lagrangian fashion. The new algorithm, which we call DALIX, is applicable to any distance matrix-based scoring scheme. We also review options that allow to consider fewer pairs of interresidue distances explicitly because their large number hinders the optimization process. Using four known data sets of varying structural similarity, we compute many provably score-optimal DALI alignments. This allowed, for the first time, to evaluate the DALI heuristic in sound mathematical terms. The results indicate that DALI usually computes optimal or close to optimal alignments. However, we detect a subset of small proteins for which DALI fails to generate any significant alignment, although such alignments do exist.

  16. Identifying subset errors in multiple sequence alignments.

    PubMed

    Roy, Aparna; Taddese, Bruck; Vohra, Shabana; Thimmaraju, Phani K; Illingworth, Christopher J R; Simpson, Lisa M; Mukherjee, Keya; Reynolds, Christopher A; Chintapalli, Sree V

    2014-01-01

    Multiple sequence alignment (MSA) accuracy is important, but there is no widely accepted method of judging the accuracy that different alignment algorithms give. We present a simple approach to detecting two types of error, namely block shifts and the misplacement of residues within a gap. Given a MSA, subsets of very similar sequences are generated through the use of a redundancy filter, typically using a 70-90% sequence identity cut-off. Subsets thus produced are typically small and degenerate, and errors can be easily detected even by manual examination. The errors, albeit minor, are inevitably associated with gaps in the alignment, and so the procedure is particularly relevant to homology modelling of protein loop regions. The usefulness of the approach is illustrated in the context of the universal but little known [K/R]KLH motif that occurs in intracellular loop 1 of G protein coupled receptors (GPCR); other issues relevant to GPCR modelling are also discussed.

  17. A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways.

    PubMed

    Ayuso, Angel; Clark, Desmond; González, Ignacio; Salazar, Oscar; Anderson, Annaliesa; Genilloud, Olga

    2005-06-01

    The actinomycetes traditionally represent one of the most important sources for the discovery of new metabolites with biological activity; and many of these are described as being produced by polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We present a strain characterization system based on the metabolic potential of microbial strains by targeting these biosynthetic genes. After an initial evaluation of the existing bias derived from the PCR detection in a well defined biosynthetic systems, we developed a new fingerprinting approach based on the restriction analysis of these PKS and NRPS amplified sequences. This method was applied to study the distribution of PKS and NRPS biosynthetic systems in a collection of wild-type actinomycetes isolated from tropical soil samples that were evaluated for the production of antimicrobial activities. We discuss the application of this tool as an alternative characterization approach for actinomycetes and we comment on the relationship observed between the presence of PKS-I, PKS-II and NRPS sequences and the antimicrobial activities observed in some of the microbial groups tested.

  18. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  19. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  20. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly re