Science.gov

Sample records for peptide binding specificity

  1. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  2. Specific binding sites for muramyl peptides on murine macrophages

    SciTech Connect

    Silverman, D.H.S.; Krueger, J.M.; Karnovsky, M.L.

    1986-03-15

    Two radiolabeled (/sup 125/I) muramyl peptide derivatives of high specific activity were prepared: a tripeptide with an iodinated C-terminal tyrosine methyl ester (Ligand I), and a muramyl tripeptide with a C-terminal lysine derivatized with Bolton-Hunter reagent (Ligand II). These were used to characterize binding of muramyl peptides to monolayers of murine macrophages. Saturable high-affinity binding to resident, caseinate-elicited, and Listeria-activated peritoneal cells was observed with both radioligands. Binding affinities varied with the state of activation of the macrophages, and K/sub D/ values ranged from 48 +/- 33 pM (for resident macrophages, Ligand I) to 1020 +/- 90 pM (for activated macrophages, Ligand II). Specific binding sites were also found on a macrophage-derived cell line. The ability of several unlabeled muramyl peptides to compete with Ligands I and II for their binding sites was tested. Competition was stereospecific and correlated with known biological activities of these compounds (i.e., immunoadjuvanticity, pyrogenicity, and somnogenicity). The sites identified here for Ligands I and II may mediate some of the effects that muramyl peptides have previously been demonstrated to have on macrophages.

  3. Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library.

    PubMed

    Choi, Ji Young; Lee, Sang Hyoung; Park, Chan Young; Heo, Won Do; Kim, Jong Cheol; Kim, Min Chul; Chung, Woo Sik; Moon, Byeong Cheol; Cheong, Yong Hwa; Kim, Cha Young; Yoo, Jae Hyuk; Koo, Ja Choon; Ok, Hyun Mi; Chi, Seung-Wook; Ryu, Seong-Eon; Lee, Sang Yeol; Lim, Chae Oh; Cho, Moo Je

    2002-06-14

    Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.

  4. [Expression of prostate stem cell antigen (PSCA) and selection of its specific binding peptide].

    PubMed

    Hou, Li-Hua; Du, Yong; Zhang, Xiao-Peng; An, Xiao-Ping; Chen, Wei

    2004-09-01

    Prostate stem cell antigen (PSCA), a homologue of the Ly-6/Thy-1 family of cell surface antigen, is expressed by a majority of human prostate cancers and is a promising target for prostate cancer immunotherapy. To obtain the specific peptide binding with PSCA for targeted immunotherapy, PSCA gene was obtained by RT-PCR from human prostate cancer cell line DU145 and the transcated PSCA (tPSCA) gene was cloned into vector pQE30 for soluble expression in E. coli. The identity of recombinant tPSCA was confirmed through ELISA and western blot by use of anti-PSCA monoclonal antibody. Then the 12-peptide phage display library was screened with the purified tPSCA protein for its specific binding peptide through 3 rounds panning. For identifying the peptide's specificity, the peptide was coupled with EGFP (enhanced green fluorecent protein) by recombinant DNA technology and the recombinant coupled protein was termed 11-EGFP. The binding specificity with tPSCA of 11-EGFP was further confirmed by ELISA and competitive inhibition experiment. Flow cytometry demonstrated its binding specificity with cell line DU145. In conclusion, a 12-amino-acid peptide which could bind with PSCA specifically was found and it may be a potential tool for targeted immunotherapy of prostate carcinoma. PMID:15973992

  5. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  6. T-cell hybridoma specific for a cytochrome c peptide: specific antigen binding and interleukin 2 production.

    PubMed Central

    Carel, S; Bron, C; Corradin, G

    1983-01-01

    T-cell hybridomas were obtained after fusion of BW 5147 thymoma and long-term cultured T cells specific for cytochrome c peptide 66-80 derivatized with a 2,4-dinitroaminophenyl (DNAP) group. The resulting hybridomas were selected for their capacity to specifically bind to soluble radiolabeled peptide antigen. One T-cell hybrid was positive for antigen binding. This hybrid T cell exhibits surface phenotypic markers of the parent antigen-specific T cells. The binding could be inhibited either by an excess of unlabeled homologous antigen or by cytochrome c peptide 11-25 derivatized with a 2-nitrophenylsulfenyl group. Several other peptide antigens tested failed to inhibit binding of the radioactive peptide. This suggests that a specific amino acid sequence, modified by a DNAP group, is the antigenic structure recognized by the putative T-cell receptor. In addition, direct interaction of DNAP-66-80 peptide with the hybridoma cell line induced production of the T-cell growth factor interleukin 2. Furthermore, supernatants derived from syngeneic macrophages pulsed with the relevant peptide also induced the antigen-specific hybridoma to produce interleukin 2. Images PMID:6192442

  7. Zinc specifically stimulates the selective binding of a peptide analog of bindin to sulfated fucans.

    PubMed

    DeAngelis, P L; Glabe, C G

    1990-01-01

    A synthetic nonapeptide (Leu-Arg-His-Leu-Arg-His-His-Ser-Asn) derived from the sequence of the sea urchin sperm adhesive protein, bindin, has been shown to bind sulfated fucans in high ionic strength (seawater) conditions. The binding is enhanced by approximately 100-fold in the presence of zinc ions, and no other transition metal tested demonstrates any enhancement. Bindin isolated from sperm contains zinc ion at roughly equimolar concentrations. In the presence of Zn++, the synthetic nonapeptide binds to eggs and inhibits fertilization with a half-maximal effective concentration of 300 microM. The polysaccharide binding selectivity of the peptide/Zn++ complex is similar to bindin but less stringent. Although the order of effectiveness of the inhibitory polysaccharides is the same for bindin and the synthetic peptide, polysaccharides that are only weak inhibitors of fucan binding to bindin show greater effectiveness against the peptide. The effect of chemical modification, pH, and amino acid substitution on the binding properties of the peptide suggest that arginine guanido moieties interact with the sulfated fucans, while histidine groups chelate zinc ions. Although the mechanism of zinc-specific stimulation of fucan binding is not yet clear, one potential explanation is that zinc may stabilize a peptide secondary structure that has a high affinity for fucans.

  8. Specific bindings of glycine peptides of distinctly different chain length on dynamic papain surfaces

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2011-06-01

    We investigated the specific bindings of peptides of 1-10 glycine residues (1-10GLY) on dynamic papain surfaces via molecular dynamics and docking simulations. Although the binding specificities of 1-5GLY on papain fluctuated little with time, the binding specificities of 6-10GLY on papain considerably fluctuated with time. Some residues had a significant impact on bindings of 6-10GLY to sites near active center of papain, and some of their residues were specific for each 6GLY, 8GLY, and 10GLY. Modification of these specific residues should allow for control of binding specificity of 6GLY, 8GLY, and 10GLY to the active center.

  9. Peptide binding landscapes: Specificity and homophilicity across sequence space in a lattice model

    NASA Astrophysics Data System (ADS)

    Jeon, Joohyun; Shell, M. Scott

    2016-10-01

    Peptide aggregation frequently involves sequences with strong homophilic binding character, i.e., sequences that self-assemble with like species in a crowded cellular environment, in the face of a multitude of other peptides or proteins as potential heterophilic binding partners. What kinds of sequences display a strong tendency towards homophilic binding and self-assembly, and what are the origins of this behavior? Here, we consider how sequence specificity in oligomerization processes plays out in a simple two-dimensional (2D) lattice statistical-thermodynamic peptide model that permits exhaustive examination of the entire sequence and configurational landscapes. We find that sequences with strong self-specificities have either alternating hydrophobic and hydrophilic residues or short patches of hydrophobic residues, both which minimize intramolecular hydrophobic interactions in part due to the constraints of the 2D lattice. We also find that these specificities are highly sensitive to entropic and free energetic features of the unbound conformational state, such that direct binding interaction energies alone do not capture the complete behavior. These results suggest that the ability of particular peptide sequences to self-assemble and aggregate in a many-protein environment reflects a precise balance of direct binding interactions and behavior in the unbound (monomeric) state.

  10. Specific RNA binding by amino-terminal peptides of alfalfa mosaic virus coat protein.

    PubMed Central

    Baer, M L; Houser, F; Loesch-Fries, L S; Gehrke, L

    1994-01-01

    Specific RNA-protein interactions and ribonucleoprotein complexes are essential for many biological processes, but our understanding of how ribonucleoprotein particles form and accomplish their biological functions is rudimentary. This paper describes the interaction of alfalfa mosaic virus (A1MV) coat protein or peptides with viral RNA. A1MV coat protein is necessary both for virus particle formation and for the initiation of replication of the three genomic RNAs. We have examined protein determinants required for specific RNA binding and analyzed potential structural changes elicited by complex formation. The results indicate that the amino-terminus of the viral coat protein, which lacks primary sequence homology with recognized RNA binding motifs, is both necessary and sufficient for binding to RNA. Circular dichroism spectra and electrophoretic mobility shift experiments suggest that the RNA conformation is altered when amino-terminal coat protein peptides bind to the viral RNA. The peptide--RNA interaction is functionally significant because the peptides will substitute for A1MV coat protein in initiating RNA replication. The apparent conformational change that accompanies RNA--peptide complex formation may generate a structure which, unlike the viral RNA alone, can be recognized by the viral replicase. Images PMID:8313916

  11. P. falciparum: merozoite surface protein-8 peptides bind specifically to human erythrocytes.

    PubMed

    Puentes, Alvaro; García, Javier; Ocampo, Marisol; Rodríguez, Luis; Vera, Ricardo; Curtidor, Hernando; López, Ramsés; Suarez, Jorge; Valbuena, John; Vanegas, Magnolia; Guzman, Fanny; Tovar, Diana; Patarroyo, Manuel E

    2003-07-01

    This work determined Plasmodium falciparum merozoite surface protein-8 (MSP-8) regions specifically binding to membrane surface receptors on human erythrocytes. Five high activity binding peptides (HABPs), whose binding to erythrocytes became saturable and sensitive on being treated with neuraminidase and chymotrypsin were identified from the MSP-8 protein. Those amino acids directly involved in interaction with erythrocytes were also determined for each one of the HABPs. Some of them specifically recognized 28, 46, and 73 kDa erythrocyte membrane proteins. Some HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by up to 98%, suggesting the MSP-8 protein's possible role in the invasion process.

  12. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  13. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    PubMed

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloid-β peptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  14. Conversion of scFv peptide-binding specificity for crystal chaperone development

    SciTech Connect

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2012-02-07

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 {angstrom} resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a {approx}52 {angstrom} channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries.

  15. Sporozoite and liver stage antigen Plasmodium falciparum peptides bind specifically to human hepatocytes.

    PubMed

    Puentes, Alvaro; García, Javier; Vera, Ricardo; López, Ramsés; Suarez, Jorge; Rodríguez, Luis; Curtidor, Hernando; Ocampo, Marisol; Tovar, Diana; Forero, Martha; Bermudez, Adriana; Cortes, Jimena; Urquiza, Mauricio; Patarroyo, Manuel E

    2004-03-12

    Sporozoite and Liver Stage Antigen (SALSA) sequence synthetic peptides were used in HepG2 cell binding assays to identify regions involved in parasite invasion. SALSA 20608 ( 21IWASEKKDEKEASEQGEESHY40) and 20611 ( 64KKDDGTDKVQEKVLEKSPKY83) peptides were determined as having high binding activity in HepG2 cell assays, some of them were located in immunogenic regions. Immune-fluorescence antibody test with 24276 (20608 peptide analogue, CGIWSSMKMDEKMAAMQGEESHCG) showed sporozoite and merozoite reactivity. This data suggests SALSA high activity binding peptides' (HABPs) possible role in hepatic cell invasion and merozoite invasion of erythrocytes.

  16. Differential receptor binding characteristics of consecutive phenylalanines in micro-opioid specific peptide ligand endomorphin-2.

    PubMed

    Honda, Takeshi; Shirasu, Naoto; Isozaki, Kaname; Kawano, Michiaki; Shigehiro, Daiki; Chuman, Yoshiro; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki

    2007-06-01

    Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses. PMID:17395470

  17. Design of protein-interaction specificity affords selective bZIP-binding peptides

    PubMed Central

    Grigoryan, Gevorg; Reinke, Aaron W.; Keating, Amy E.

    2009-01-01

    Interaction specificity is a required feature of biological networks and a necessary characteristic of protein or small-molecule reagents and therapeutics. The ability to alter or inhibit protein interactions selectively would advance basic and applied molecular science. Assessing or modelling interaction specificity requires treating multiple competing complexes, which presents computational and experimental challenges. Here we present a computational framework for designing protein interaction specificity and use it to identify specific peptide partners for human bZIP transcription factors. Protein microarrays were used to characterize designed, synthetic ligands for all but one of 20 bZIP families. The bZIP proteins share strong sequence and structural similarities and thus are challenging targets to bind specifically. Yet many of the designs, including examples that bind the oncoproteins cJun, cFos and cMaf, were selective for their targets over all 19 other families. Collectively, the designs exhibit a wide range of novel interaction profiles, demonstrating that human bZIPs have only sparsely sampled the possible interaction space accessible to them. Our computational method provides a way to systematically analyze tradeoffs between stability and specificity and is suitable for use with many types of structure-scoring functions; thus it may prove broadly useful as a tool for protein design. PMID:19370028

  18. Peptide specificity of protein prenyltransferases is determined mainly by reactivity rather than binding affinity.

    PubMed

    Hartman, Heather L; Hicks, Katherine A; Fierke, Carol A

    2005-11-22

    Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase I) catalyze the attachment of lipid groups from farnesyl diphosphate and geranylgeranyl diphosphate, respectively, to a cysteine near the C-terminus of protein substrates. FTase and GGTase I modify several important signaling and regulatory proteins with C-terminal CaaX sequences ("C" refers to the cysteine residue that becomes prenylated, "a" refers to any aliphatic amino acid, and "X" refers to any amino acid). In the CaaX paradigm, the C-terminal X-residue of the protein/peptide confers specificity for FTase or GGTase I. However, some proteins, such as K-Ras, RhoB, and TC21, are substrates for both FTase and GGTase I. Here we demonstrate that the C-terminal amino acid affects the binding affinity of K-Ras4B-derived hexapeptides (TKCVIX) to FTase and GGTase I modestly. In contrast, reactivity, as indicated by transient and steady-state kinetics, varies significantly and correlates with hydrophobicity, volume, and structure of the C-terminal amino acid. The reactivity of FTase decreases as the hydrophobicity of the C-terminal amino acid increases whereas the reactivity of GGTase I increases with the hydrophobicity of the X-group. Therefore, the hydrophobicity, as well as the structure of the X-group, determines whether peptides are specific for farnesylation, geranylgeranylation, or dual prenylation.

  19. Mutations in the substrate binding site of human heat-shock protein 70 indicate specific interaction with HLA-DR outside the peptide binding groove.

    PubMed

    Rohrer, Karin M; Haug, Markus; Schwörer, Daniela; Kalbacher, Hubert; Holzer, Ursula

    2014-06-01

    Heat-shock protein 70 (Hsp70)-peptide complexes are involved in MHC class I- and II-restricted antigen presentation, enabling enhanced activation of T cells. As shown previously, mammalian cytosolic Hsp70 (Hsc70) molecules interact specifically with HLA-DR molecules. This interaction might be of significance as Hsp70 molecules could transfer bound antigenic peptides in a ternary complex into the binding groove of HLA-DR molecules. The present study provides new insights into the distinct interaction of Hsp70 with HLA-DR molecules. Using a quantitative binding assay, it could be demonstrated that a point mutation of amino acids alanine 406 and valine 438 in the substrate binding pocket led to reduced peptide binding compared with the wild-type Hsp70 whereas HLA-DR binding remains unaffected. The removal of the C-terminal lid neither altered the substrate binding capacity nor the Hsp70 binding characteristics to HLA-DR. A truncated variant lacking the nucleotide binding domain showed no binding interactions with HLA-DR. Furthermore, the truncated ATPase subunit of constitutively expressed Hsc70 revealed similar binding affinities to HLA-DR compared with the complete Hsc70. Hence, it can be assumed that the Hsp70-HLA-DR interaction takes place outside the peptide binding groove and is attributed to the ATPase domain of HSP70 molecules. The Hsp70-chaperoned peptides might thereby be directly transferred into the binding groove of HLA-DR, so enabling enhanced presentation of the peptide on antigen-presenting cells and leading to an improved proliferation of responding T cells as shown previously.

  20. Specific DNA binding to a major histocompatibility complex enhancer sequence by a synthetic 57-residue double zinc finger peptide from a human enhancer binding protein.

    PubMed

    Sakaguchi, K; Appella, E; Omichinski, J G; Clore, G M; Gronenborn, A M

    1991-04-15

    Two 57-residue peptides containing one pair of "zinc fingers" from a human enhancer binding protein were prepared by solid-phase peptide synthesis. One peptide (MBP-DF) contained the native sequence, while the second peptide ([Abu11]MBP-DF) has an alpha-aminobutyric acid residue substituted for a nonconserved cysteine residue at position 11. The peptides were characterized by several chemical and physical methods, and their DNA binding properties were evaluated using gel retardation experiments. Spectroscopic studies demonstrated that addition of metal ions such as zinc and cobalt resulted in specific conformational changes in both peptides, indicating that cysteine-11 does not appear to be involved in metal chelation. One-dimensional 1H NMR studies indicate that a stable folded structure is formed upon addition of zinc, and the chemical shift pattern is consistent with that previously observed for one constituent single finger (Omichinski, J., Clore, G. M., Appella, E., Sakaguchi, K., and Gronenborn, A. M. (1990) Biochemistry 29, 9324-9334). Gel retardation experiments demonstrate that the peptides are capable of interacting with a 15-mer oligonucleotide comprising a portion of the major histocompatibility complex enhancer sequence and that the interaction is zinc-dependent. The dissociation constant for the [Abu11]MBP-DF peptide is 1.4 x 10(-7) M with maximal binding occurring at a zinc-to-peptide ratio of 2 to 1. The binding specificity observed with respect to related enhancer sequences exhibits the same relative order as noted previously for the whole protein. Studies with point mutants of the major histocompatibility complex enhancer binding sequence indicate that the last GC base pair in a four-guanine stretch plays a pivotal role in the interaction between the peptide and DNA. PMID:2016331

  1. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin.

    PubMed

    Lyons, Susan A; O'Neal, Jeffrey; Sontheimer, Harald

    2002-08-01

    Highly migratory neuroectodermal cells share a common embryonic origin with cells of the central nervous system (CNS). They include enteric, parasympathetic, sympathoadrenal, and sensory neurons of the peripheral nervous system, Schwann cells, melanocytes, endocrine cells, and cells forming connective tissue of the face and neck. Because of their common embryologic origin, these cells and the tumors that derive from them can share genetic and antigenic phenotypes with gliomas, tumors derived from CNS glia. We recently discovered that chlorotoxin (ClTx), a 4-kD peptide purified from Leiurus quinquestriatus scorpion, is a highly specific marker for glioma cells in biopsy tissues (Soroceanu et al. Cancer Res 58:4871-4879, 1998) that can target tumors in animal models. We report on the specificity of ClTx as a marker for tumors of neuroectodermal origin that include peripheral neuroectodermal tumors (PNET) and gliomas. Specifically, we histochemically stained frozen and paraffin tissue sections of human biopsy tissues from 262 patients with a synthetically manufactured and biologically active ClTx bearing an N-terminal biotin. The vast majority (74 of 79) of primary human brain tumors investigated showed abundant binding of ClTx with greater than 90% ClTx-positive cells in each section. By comparison, 32 biopsies of uninvolved brain used for comparison were largely ClTx-negative, with only a few isolated reactive astrocytes showing some ClTx binding. However, as with gliomas, the vast majority of PNETs examined showed specific ClTx binding (31 of 34). These include medulloblastomas (4 of 4), neuroblastomas (6 of 7), ganglioneuromas (4 of 4), melanomas (7 of 7), adrenal pheochromocytomas (5 of 6), primitive PNET (1), small cell lung carcinoma (2 of 3), and Ewing's sarcoma (2 of 2). Under identical staining conditions, normal tissues from brain, skin, kidney, and lung were consistently negative for ClTx. These results suggest that chlorotoxin is a reliable and specific

  2. HLA mismatches and hematopoietic cell transplantation: structural simulations assess the impact of changes in peptide binding specificity on transplant outcome

    PubMed Central

    Yanover, Chen; Petersdorf, Effie W.; Malkki, Mari; Gooley, Ted; Spellman, Stephen; Velardi, Andrea; Bardy, Peter; Madrigal, Alejandro; Bignon, Jean-Denis; Bradley, Philip

    2013-01-01

    The success of hematopoietic cell transplantation from an unrelated donor depends in part on the degree of Human Histocompatibility Leukocyte Antigen (HLA) matching between donor and patient. We present a structure-based analysis of HLA mismatching, focusing on individual amino acid mismatches and their effect on peptide binding specificity. Using molecular modeling simulations of HLA-peptide interactions, we find evidence that amino acid mismatches predicted to perturb peptide binding specificity are associated with higher risk of mortality in a large and diverse dataset of patient-donor pairs assembled by the International Histocompatibility Working Group in Hematopoietic Cell Transplantation consortium. This analysis may represent a first step toward sequence-based prediction of relative risk for HLA allele mismatches. PMID:24482668

  3. Prediction of Surface and pH-Specific Binding of Peptides to Metal and Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Lin, Tzu-Jen; Emami, Fateme Sadat; Ramezani-Dakhel, Hadi; Naik, Rajesh; Knecht, Marc; Perry, Carole C.; Huang, Yu

    2015-03-01

    The mechanism of specific peptide adsorption onto metallic and oxidic nanostructures has been elucidated in atomic resolution using novel force fields and surface models in comparison to measurements. As an example, variations in peptide adsorption on Pd and Pt nanoparticles depending on shape, size, and location of peptides on specific bounding facets are explained. Accurate computational predictions of reaction rates in C-C coupling reactions using particle models derived from HE-XRD and PDF data illustrate the utility of computational methods for the rational design of new catalysts. On oxidic nanoparticles such as silica and apatites, it is revealed how changes in pH lead to similarity scores of attracted peptides lower than 20%, supported by appropriate model surfaces and data from adsorption isotherms. The results demonstrate how new computational methods can support the design of nanoparticle carriers for drug release and the understanding of calcification mechanisms in the human body.

  4. Humanization of a phosphothreonine peptide-specific chicken antibody by combinatorial library optimization of the phosphoepitope-binding motif.

    PubMed

    Baek, Du-San; Kim, Yong-Sung

    2015-07-31

    Detection of protein phosphorylation at a specific residue has been achieved by using antibodies, which have usually been raised by animal immunization. However, there have been no reports of the humanization of phosphospecific non-human antibodies. Here, we report the humanization of a chicken pT231 antibody specific to a tau protein-derived peptide carrying the phosphorylated threonine at residue 231 (pT231 peptide) as a model for better understanding the phosphoepitope recognition mechanism. In the chicken antibody, the phosphate group of the pT231-peptide antigen is exclusively recognized by complementarity determining region 2 of the heavy chain variable domain (VH-CDR2). Simple grafting of six CDRs of the chicken antibody into a homologous human framework (FR) template resulted in the complete loss of pT231-peptide binding. Using a yeast surface-displayed combinatorial library with permutations of 11 FR residues potentially affecting CDR loop conformations, we identified 5 critical FR residues. The back mutation of these residues to the corresponding chicken residues completely recovered the pT231-peptide binding affinity and specificity of the humanized antibody. Importantly, the back mutation of the FR 76 residue of VH (H76) (Asn to Ser) was critical in preserving the pT231-binding motif conformation via allosteric regulation of ArgH71, which closely interacts with ThrH52 and SerH52a residues on VH-CDR2 to induce the unique phosphate-binding bowl-like conformation. Our humanization approach of CDR grafting plus permutations of FR residues by combinatorial library screening can be applied to other animal antibodies containing unique binding motifs on CDRs specific to posttranslationally modified epitopes. PMID:26036575

  5. Sequence-specific, nanomolar peptide binding via cucurbit[8]uril-induced folding and inclusion of neighboring side chains.

    PubMed

    Smith, Lauren C; Leach, David G; Blaylock, Brittney E; Ali, Omar A; Urbach, Adam R

    2015-03-18

    This paper describes the molecular recognition of the tripeptide Tyr-Leu-Ala by the synthetic receptor cucurbit[8]uril (Q8) in aqueous buffer with nanomolar affinity and exceptional specificity. This combination of characteristics, which also applies to antibodies, is desirable for applications in biochemistry and biotechnology but has eluded supramolecular chemists for decades. Building on prior knowledge that Q8 binds to peptides with N-terminal aromatic residues, a library screen of 105 peptides was designed to test the effects of residues adjacent to N-terminal Trp, Phe, or Tyr. The screen used tetramethylbenzobis(imidazolium) (MBBI) as a fluorescent indicator and resulted in the unexpected discovery that MBBI can serve not only as a turn-off sensor via the simultaneous inclusion of a Trp residue but also as a turn-on sensor via the competitive displacement of MBBI upon binding of Phe- or Tyr-terminated peptides. The unusual fluorescence response of the Tyr series prompted further investigation by (1)H NMR spectroscopy, electrospray ionization mass spectrometry, and isothermal titration calorimetry. From these studies, a novel binding motif was discovered in which only 1 equiv of peptide binds to Q8, and the side chains of both the N-terminal Tyr residue and its immediate neighbor bind within the Q8 cavity. For the peptide Tyr-Leu-Ala, the equilibrium dissociation constant value is 7.2 nM, whereas that of its sequence isomer Tyr-Ala-Leu is 34 μM. The high stability, recyclability, and low cost of Q8 combined with the straightforward incorporation of Tyr-Leu-Ala into recombinant proteins should make this system attractive for the development of biological applications.

  6. Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography.

    PubMed

    Tachibana, Kouichi; Nakamura, Sachiko; Wang, Han; Iwasaki, Hiroko; Tachibana, Kahori; Maebara, Kanako; Cheng, Lamei; Hirabayashi, J; Narimatsu, H

    2006-01-01

    Jacalin, a lectin from the jackfruit Artocarpus integrifolia, has been known as a valuable tool for specific capturing of O-glycoproteins such as mucins and IgA1. Though its sugar-binding preference for T/Tn-antigens is well established, its detailed specificity has not been elucidated. In this study, we prepared a series of mucin-type glycopeptides using human glycosyltransferases, that is, ST6GalNAc1, Core1Gal-T1 and -T2, beta3Gn-T6, and Core2GnT1, and investigated their binding to immobilized Jacalin by frontal affinity chromatography (FAC). As a result, consistent with the previous observation, Jacalin showed high affinity for T-antigen (Core1) and Tn-antigen (alpha N-acetylgalactosamine)-attached peptides. Furthermore, we here show as novel findings that (1) Jacalin also showed significant affinity for Core3 and sialyl-T (ST)-attached peptides, but (2) Jacalin could not bind to Core2, Core6, and sialyl-Tn (STn)-attached peptides. The results were also confirmed by FAC using p-nitrophenyl (pNP)-derivatized saccharides. In conclusion, Jacalin binds to a GalNAcalpha1-peptide, in which C6-OH of alphaGalNAc is free (i.e., Core1, Tn, Core3, and ST), whereas it cannot recognize a GalNAcalpha1-peptide with a substitution at the C6 position (i.e., Core2, Core6, and STn). These findings provide useful information when applying jacalin for functional analysis of mucin-type glycoproteins and glycopeptides.

  7. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. PMID:24447175

  8. Identification of Plasmodium falciparum RhopH3 protein peptides that specifically bind to erythrocytes and inhibit merozoite invasion

    PubMed Central

    Pinzón, Carlos Giovanni; Curtidor, Hernando; Reyes, Claudia; Méndez, David; Patarroyo, Manuel Elkin

    2008-01-01

    The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite–erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having α-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 μM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion. PMID:18593818

  9. MetaMHCpan, A Meta Approach for Pan-Specific MHC Peptide Binding Prediction.

    PubMed

    Xu, Yichang; Luo, Cheng; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info . PMID:27076335

  10. Immunoprecipitation and characterization of a binding protein specific for the peptide, intestinal trefoil factor.

    PubMed

    Chinery, R; Cox, H M

    1995-01-01

    Recombinant rat intestinal trefoil factor (rITF) and human spasmolytic polypeptide (hSP) were irreversibly cross-linked to specific binding sites in solubilized rat intestinal epithelial membranes and human adenocarcinoma cells. Analysis of the immunoprecipitates by immunoblotting identified a cross-linked protein complex of approximately 45 kDa, which under reducing conditions appeared as a approximately 28-kDa band and the latter displayed ligand-stimulated phosphorylation of a tyrosine, but not a threonine or serine, residue in the binding complex. [125I]rITF was used to localize binding sites by autoradiography of frozen sections from rat gastrointestinal tissues. A high density of specific [125I]rITF binding sites was present within gastric, colonic, and jejunal mucosal glands. Unlabeled hSP partially inhibited [125I]rITF binding at a concentration of 1 microM when compared with the same concentration of unlabeled rITF. These studies support earlier observations for the existence of trefoil binding sites in the gastrointestinal tract and further suggest that hSP has affinity for the mucosal rITF binding site.

  11. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  12. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGESBeta

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  13. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  14. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  15. Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition.

    PubMed

    Kaur, Hardeep; Datt, Manish; Ekka, Mary Krishna; Mittal, Monica; Singh, Appu Kumar; Kumaran, Sangaralingam

    2011-02-01

    Dug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p-peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p-peptide interaction. Dug1p exists as dimer and the stoichiometry of peptide-Dug1p complex is 2:1 indicating each monomer in the dimer binds to one peptide. Thermodynamic studies indicate that the free energy change for Dug1p-peptide complex formation is similar (▵G(bind) ∼ -7.0 kcal/mol) for a variety of peptides of different composition and length (22 peptides). Three-dimensional model of Dug1p is constructed and docking of peptides to the modeled structure suggests that hydrogen bonding to active site residues (E172, E171, and D137) lock the N-terminal of the peptide into the binding site. Dug1p recognizes peptides in a metal independent manner and peptide binding is not sensitive to salts (dlogK/dlog[salt] ∼ 0) over a range of [NaCl] (0.02-0.5 M), [ZnCl(2)], and [MnCl(2)] (0-0.5 mM). Our results indicate that promiscuity in peptide binding results from the locking of peptide N-terminus into the active site. These observations were supported by our competitive inhibition activity assays. Dug1p activity towards Cys-Gly peptide is significantly reduced (∼ 70%) in the presence of Glu-Cys-Gly. Therefore, Dug1p can recognize a variety of oligopeptides, but has evolved with post-binding screening potential to hydrolyze Cys-Gly peptides selectively.

  16. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules, which are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating cytotoxic lymphocytes (CTLs). The polymorp...

  17. Identification of CRISP2 from human sperm as PSP94-binding protein and generation of CRISP2-specific anti-peptide antibodies.

    PubMed

    Anklesaria, Jenifer H; Kulkarni, Bhalchandra J; Pathak, Bhakti R; Mahale, Smita D

    2016-06-01

    Cysteine-rich secretory proteins (CRISPs) are mainly found in the mammalian male reproductive tract and reported to be involved at different stages of fertilization. CRISPs have been shown to interact with prostate secretory protein of 94 amino acids (PSP94) from diverse sources, and the binding of these evolutionarily conserved proteins across species is proposed to be of functional significance. Of the three mammalian CRISPs, PSP94-CRISP3 interaction is well characterized, and specific binding sites have been identified; whereas, CRISP2 has been shown to interact with PSP94 in vitro. Interestingly, human CRISP3 and CRISP2 proteins are closely related showing 71.4% identity. In this study, we identified CRISP2 as a potential binding protein of PSP94 from human sperm. Further, we generated antisera capable of specifically detecting CRISP2 and not CRISP3. In this direction, specific peptides corresponding to the least conserved ion channel regulatory region were synthesized, and polyclonal antibodies were generated against the peptide in rabbits. The binding characteristics of the anti-CRISP2 peptide antibody were evaluated using competitive ELISA. Immunoblotting experiments also confirmed that the peptide was able to generate antibodies capable of detecting the mature CRISP2 protein present in human sperm lysate. Furthermore, this anti-CRISP2 peptide antibody also detected the presence of native CRISP2 on sperm.Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27161017

  18. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference.

    PubMed

    Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern

    2016-02-15

    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. PMID:26783342

  19. Modulation of cluster incorporation specificity in a de novo iron-sulfur cluster binding peptide.

    PubMed

    Sommer, Dayn Joseph; Roy, Anindya; Astashkin, Andrei; Ghirlanda, Giovanna

    2015-07-01

    iron-sulfur cluster binding proteins perform an astounding variety of functions, and represent one of the most abundant classes of metalloproteins. Most often, they constitute pairs or chains and act as electron transfer modules either within complex redox enzymes or within small diffusible proteins. We have previously described the design of a three-helix bundle that can bind two clusters within its hydrophobic core. Here, we use single-point mutations to exchange one of the Cys ligands coordinating the cluster to either Leu or Ser. We show that the mutants modulate the redox potential of the clusters and stabilize the [3Fe-4S] form over the [4Fe-4S] form, supporting the use of model iron-sulfur cluster proteins as modules in the design of complex redox enzymes.

  20. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    SciTech Connect

    Ghalebani, Leila; Wahlstroem, Anna; Danielsson, Jens; Waermlaender, Sebastian K.T.S.; Graeslund, Astrid

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  1. Substance P antagonist also inhibits specific binding and mitogenic effects of vasopressin and bombesin-related peptides in Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Rozengurt, E.

    1986-05-29

    While vasopressin and peptides of the bombesin family bind to different receptors in quiescent Swiss 3T3 cells, the antagonist (D-Arg/sup 1/,D-Pro/sup 2/,D-Trp/sup 7,9/,Leu/sup 11/) substance P blocks the specific binding of both (/sup 3/H) vasopressin and /sup 125/I-gastrin-releasing peptide to these cells. In addition, the antagonist inhibits the mobilization of Ca/sup 2 +/ and induction of DNA synthesis by vasopressin. These results indicate that (D-Arg/sup 1/,D-Pro,D-Trp/sup 7,9/,Leu/sup 11/) substance P has the ability to interact with the receptors for three structurally unrelated peptide hormones.

  2. A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex.

    PubMed

    Omichinski, J G; Trainor, C; Evans, T; Gronenborn, A M; Clore, G M; Felsenfeld, G

    1993-03-01

    Sequence-specific DNA binding has been demonstrated for a synthetic peptide comprising only one of the two "finger"-like domains of the erythroid transcription factor GATA-1 (also termed Eryf-1, NF-E1, or GF-1). Quantitative analysis of gel-retardation assays yields a specific association constant of 1.2 x 10(8) M, compared with values of about 10(9) M for the full-length natural GATA-1 protein. By the use of peptides of various lengths, it was possible to delineate the smallest region necessary for specific binding. A single C-terminal finger of the double-finger motif is necessary but not sufficient for sequence-specific interaction. Basic amino acids located C-terminal to the finger (some more than 20 amino acids away) are also essential for tight binding. In addition to demonstrating that zinc is important for the formation of an active binding complex, we show that other ions, notably Fe2+, can fulfill this role. Our results make it clear that the GATA-1 metal binding motif is quite distinct from that found in the steroid hormone family and that GATA-1 is a member of a separate class of DNA binding proteins. PMID:8446581

  3. Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4.

    PubMed Central

    Houser-Scott, F; Baer, M L; Liem, K F; Cai, J M; Gehrke, L

    1994-01-01

    The specific binding of alfalfa mosaic virus coat protein to viral RNA requires determinants in the 3' untranslated region (UTR). Coat protein and peptide binding sites in the 3' UTR of alfalfa mosaic virus RNA 4 have been analyzed by hydroxyl radical footprinting, deletion mapping, and site-directed mutagenesis experiments. The 3' UTR has several stable hairpins that are flanked by single-stranded (A/U)UGC sequences. Hydroxyl radical footprinting data show that five sites in the 3' UTR of alfalfa mosaic virus RNA 4 are protected by coat protein, and four of the five protected regions contain AUGC or UUGC. Electrophoretic mobility band shift results suggest four coat protein binding sites in the 3' UTR. A 3'-terminal 39-nucleotide RNA fragment containing four AUGC repeats bound coat protein and coat protein peptides with high affinity; however, coat protein bound poorly to antisense 3' UTR transcripts and poly(AUGC)10. Site-directed mutagenesis of AUGC865-868 resulted in a loss of coat protein binding and peptide binding by the RNA fragment. Alignment of alfalfa mosaic RNA sequences with those from several closely related ilarviruses demonstrates that AUGC865-868 is perfectly conserved; moreover, the RNAs are predicted to form similar 3'-terminal secondary structures. The data strongly suggest that alfalfa mosaic virus coat protein and ilavirus coat proteins recognize invariant AUGC sequences in the context of conserved structural elements. Images PMID:8139004

  4. Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components.

    PubMed

    Sánchez, Mateo I; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2014-09-01

    At specific DNA sites, nickel(II) salts promote the assembly of designed components, namely a bis(histidine)-modified peptide that is derived from a bZIP transcription factor and a bis(benzamidine) unit that is equipped with a bipyridine. This programmed supramolecular system with emergent properties reproduces some key characteristics of naturally occurring DNA-binding proteins, such as bivalence, selectivity, responsiveness to external agents, and reversibility.

  5. Bovine serum albumin as a universal suppressor of non-specific peptide binding in vials prior to nano-chromatography coupled mass-spectrometry analysis.

    PubMed

    Kovalchuk, Sergey I; Anikanov, Nikolay A; Ivanova, Olga M; Ziganshin, Rustam H; Govorun, Vadim M

    2015-09-17

    Non-specific binding (NSB) is a well-known problem for any application that deals with ultralow analyte quantities. The modern nano-flow chromatography coupled tandem mass-spectrometry (nanoLC-MS/MS) works with the lowest conceivable analyte concentrations. However, while the NSB problem is widely accepted and investigated for metabolomics and single-peptide medicine-related assays, its impact is not studied for complex peptide mixtures in proteomic applications. In this work peptide NSB to a common plastic autosampler vial was studied for a model mixture of 46 synthetic peptides. A significant NSB level was demonstrated for total peptide concentrations of up to 1 mg mL(-1). Different agents were tried for NSB suppression and compatibility with nanoLC-MS/MS analysis: a chaotropic agent, an amino acid mixture, a peptide mixture and a protein solution. The first two were inefficacious. The peptide matrix blocked NSB, however, it also led to analyte ionization suppression in nanoLC-MS/MS. The protein solution (0.1% BSA) efficiently eliminated NSB, while a trap-elute nanoHPLC configuration together with a small-pore reverse-phased sorbent effectively and quantitatively extracted the model peptides and depleted protein material from the sample. Higher protein concentration partially impeded peptide extraction. Thus, the 0.1% BSA solution might be regarded as an effective non-interfering blockader of NSB for sample resuspension and storage in an autosampler prior to LC-MS/MS analysis. PMID:26398423

  6. Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity.

    PubMed

    Chen, Lili; Reyes-Vargas, Eduardo; Dai, Hu; Escobar, Hernando; Rudd, Brant; Fairbanks, Jared; Ho, Alexander; Cusick, Mathew F; Kumánovics, Attila; Delgado, Julio; He, Xiao; Jensen, Peter E

    2014-08-01

    The mouse MHC class Ib gene H2-T11 is 95% identical at the DNA level to H2-T23, which encodes Qa-1, one of the most studied MHC class Ib molecules. H2-T11 mRNA was observed to be expressed widely in tissues of C57BL/6 mice, with the highest levels in thymus. To circumvent the availability of a specific mAb, cells were transduced with cDNA encoding T11 with a substituted α3 domain. Hybrid T11D3 protein was expressed at high levels similar to control T23D3 molecules on the surface of both TAP(+) and TAP(-) cells. Soluble T11D3 was generated by folding in vitro with Qa-1 determinant modifier, the dominant peptide presented by Qa-1. The circular dichroism spectrum of this protein was similar to that of other MHC class I molecules, and it was observed to bind labeled Qa-1 determinant modifier peptide with rapid kinetics. By contrast to the Qa-1 control, T11 tetramers did not react with cells expressing CD94/NKG2A, supporting the conclusion that T11 cannot replace Qa-1 as a ligand for NK cell inhibitory receptors. T11 also failed to substitute for Qa-1 in the presentation of insulin to a Qa-1-restricted T cell hybridoma. Despite divergent function, T11 was observed to share peptide-loading specificity with Qa-1. Direct analysis by tandem mass spectrometry of peptides eluted from T11D3 and T23D3 isolated from Hela cells demonstrated a diversity of peptides with a clear motif that was shared between the two molecules. Thus, T11 is a paralog of T23 encoding an MHC class Ib molecule that shares peptide-binding specificity with Qa-1 but differs in function. PMID:24958902

  7. Peptide Binding for Bio-Based Nanomaterials.

    PubMed

    Bedford, N M; Munro, C J; Knecht, M R

    2016-01-01

    Peptide-based strategies represent transformative approaches to fabricate functional inorganic materials under sustainable conditions by modeling the methods exploited in biology. In general, peptides with inorganic affinity and specificity have been isolated from organisms and through biocombinatorial selection techniques (ie, phage and cell surface display). These peptides recognize and bind the inorganic surface through a series of noncovalent interactions, driven by both enthalpic and entropic contributions, wherein the biomolecules wrap the metallic nanoparticle structure. Through these interactions, modification of the inorganic surface can be accessed to drive the incorporation of significantly disordered surface metal atoms, which have been found to be highly catalytically active for a variety of chemical transformations. We have employed synthetic, site-directed mutagenesis studies to reveal localized binding effects of the peptide at the metallic nanoparticle structure to begin to identify the biological basis of control over biomimetic nanoparticle catalytic activity. The protocols described herein were used to fabricate and characterize peptide-capped nanoparticles in atomic resolution to identify peptide sequence effects on the surface structure of the materials, which can then be directly correlated to the catalytic activity to identify structure/function relationships. PMID:27586350

  8. The structure of the antigen-binding groove of major histocompatibility complex class I molecules determines specific selection of self-peptides.

    PubMed Central

    van Bleek, G M; Nathenson, S G

    1991-01-01

    We have examined the effect of diversity in the antigen-binding groove of the Kb, Db, Kbm1, and Kbm8 major histocompatibility complex (MHC) class I molecules on the set of self-peptides they present on the cell surface, by using a procedure we recently developed in our laboratory to isolate endogenously processed peptides bound to MHC class I molecules. We found that such naturally processed peptides are 7-10 amino acids long. A major motif of tyrosine and phenylalanine residues at positions three and five was found for peptides binding to Kb. The availability of Kb mutant molecules Kbm1 and Kbm8, each with localized clustered changes in the antigen-binding cleft, allowed us to probe the effect of such small alterations on peptide selection. We found that such changes in different regions in the antigen-binding groove exert an absolute effect by changing subsets of self-peptides bound to these MHC molecules. In the Kbm1 mutant, the binding of the characteristic major set of Kb-associated peptides with tyrosine at position three or both positions three and five is abrogated, although this MHC molecule still binds peptides with tyrosine at position seven; the latter peptides also bind to Kb. Kbm8 shares the major Tyr-3, Tyr-5 peptide set that binds to Kb but does not bind the peptides with tyrosine at position seven. Thus differences in binding selectivity in Kbm1 and Kbm8 appear to be the major determinant for the observed alterations in in vivo immune responses. PMID:1763019

  9. Synthesis and structure-activity relationships of a novel series of non-peptide angiotensin II receptor binding inhibitors specific for the AT2 subtype.

    PubMed

    Blankley, C J; Hodges, J C; Klutchko, S R; Himmelsbach, R J; Chucholowski, A; Connolly, C J; Neergaard, S J; Van Nieuwenhze, M S; Sebastian, A; Quin, J

    1991-11-01

    Structure-activity relationships are reported for a novel class of 4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid derivatives that displace 125I-labeled angiotensin II from a specific subset of angiotensin II (Ang II) binding sites in rat adrenal preparations. This binding site is not the Ang II receptor mediating vascular contraction or aldosterone release, but, rather, is one whose function has not yet been fully elucidated. It has been identified in a number of tissues and has a similar affinity for Ang II and its peptide analogues as does the vascular receptor. The non-peptide compounds reported here are uniquely specific in displacing Ang II at this binding site and are inactive in antagonizing Ang II at the vascular receptor or in pharmacological assays measuring vascular effects. PD 123,319 (79), one of the most potent compounds, has an IC50 of 34 nM. Certain of these compounds may have utility in the definition and study of Ang II receptor subtypes.

  10. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides

    NASA Astrophysics Data System (ADS)

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-01

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  11. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides.

    PubMed

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-15

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 10(11) dots cm(-2) and 1.2 × 10(12) dots cm(-2), respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  12. Structure of the Mouse Sex Peptide Pheromone ESP1 Reveals a Molecular Basis for Specific Binding to the Class C G-protein-coupled Vomeronasal Receptor*

    PubMed Central

    Yoshinaga, Sosuke; Sato, Toru; Hirakane, Makoto; Esaki, Kaori; Hamaguchi, Takashi; Haga-Yamanaka, Sachiko; Tsunoda, Mai; Kimoto, Hiroko; Shimada, Ichio; Touhara, Kazushige; Terasawa, Hiroaki

    2013-01-01

    Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs. PMID:23576433

  13. Roles of the species-specific subdomain and the N-terminal peptide of Toxoplasma gondii ferredoxin-NADP+ reductase in ferredoxin binding.

    PubMed

    Pandini, Vittorio; Caprini, Gianluca; Tedeschi, Gabriella; Seeber, Frank; Zanetti, Giuliana; Aliverti, Alessandro

    2006-03-21

    The plant-type ferredoxin/ferredoxin-NADP(+) reductase (Fd/FNR) redox system found in parasites of the phylum Apicomplexa has been proposed as a target for novel drugs used against life-threatening diseases such as malaria and toxoplasmosis. Like many proteins from these protists, apicomplexan FNRs are characterized by the presence of unique peptide insertions of variable length and yet unknown function. Since three-dimensional data are not available for any of the parasite FNRs, we used limited proteolysis to carry out an extensive study of the conformation of Toxoplasma gondii FNR. This led to identification of 11 peptide bonds susceptible to the action of four different proteases. Cleavage sites are clustered in four regions of the enzyme, which include two of its three species-specific insertions. Such regions are thus predicted to form flexible surface loops. The protein substrate Fd protected FNR against cleavage both at its N-terminal peptide and at its largest sequence insertion (28 residues). Deletion by protein engineering of the species-specific subdomain containing the latter insertion resulted in an enzyme form that, although catalytically active, displayed a 10-fold decreased affinity for Fd. In contrast, removal of the first 15 residues of the enzyme unexpectedly enhanced its interaction with Fd. Thus, two flexible polypeptide regions of T. gondii FNR are involved in Fd interaction but have opposite roles in modulating the binding affinity for the protein ligand. In this respect, T. gondii FNR differs from plant FNRs, where the N-terminal peptide contributes to the stabilization of their complex with Fd.

  14. Identification of Chondrocyte-Binding Peptides by Phage Display

    PubMed Central

    Cheung, Crystal S.F.; Lui, Julian C.; Baron, Jeffrey

    2016-01-01

    As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders. PMID:23440926

  15. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  16. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  17. Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases.

    PubMed

    Klecker, Maria; Dissmeyer, Nico

    2016-01-01

    The automated SPOT (synthetic peptide arrays on membrane support technique) synthesis technology has entrenched as a rapid and robust method to generate peptide libraries on cellulose membrane supports. The synthesis method is based on conventional Fmoc chemistry building up peptides with free N-terminal amino acids starting at their cellulose-coupled C-termini. Several hundreds of peptide sequences can be assembled with this technique on one membrane comprising a strong binding potential due to high local peptide concentrations. Peptide orientation on SPOT membranes qualifies this array type for assaying substrate specificities of N-recognins, the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Pioneer studies described binding capability of mammalian and yeast enzymes depending on a peptide's N-terminus. SPOT arrays have been successfully used to describe substrate specificity of N-recognins which are the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Here, we describe the implementation of SPOT binding assays with focus on the identification of N-recognin substrates, applicable also for plant NERD enzymes. PMID:27424747

  18. Thermodynamics of peptide inhibitor binding to HIV-1 gp41.

    PubMed

    Cole, J L; Garsky, V M

    2001-05-15

    The gp41 subunit of the human immunodeficiency virus type 1 envelope glycoprotein mediates fusion of the cellular and viral membranes. The gp41 ectodomain is a trimer of alpha-helical hairpins, where N-terminal helices form a parallel three-stranded coiled-coil core and C-terminal helices pack around the core. A deep hydrophobic pocket on the N-terminal core represents an attractive target for antiviral therapeutics. We have employed a soluble derivative of the gp41 core ectodomain and small cyclic disulfide D-peptide inhibitors to define the stoichiometry, affinity, and thermodynamics of ligand binding to this pocket using isothermal titration calorimetry. These inhibitors bind with micromolar affinity to the pocket with the expected stoichiometry of three peptides per gp41 core trimer. There are no cooperative interactions among the three binding sites. Linear eight- or nine-residue D-peptides derived from the pocket-binding domain of the cyclic molecules also bind specifically. A negative heat capacity change is observed and is consistent with burial of hydrophobic surface upon binding. Contrary to expectations for a reaction dominated by the classical hydrophobic effect, peptide binding is enthalpically driven and is opposed by an unfavorable negative entropy change. The calorimetry data support models whereby dominant negative inhibitors bind to a transiently exposed surface on the prefusion intermediate state of gp41 and disrupt subsequent resolution to the fusion-active six-stranded hairpin conformation.

  19. Engineering short peptide sequences for uranyl binding.

    PubMed

    Lebrun, Colette; Starck, Matthieu; Gathu, Vicky; Chenavier, Yves; Delangle, Pascale

    2014-12-01

    Peptides are interesting tools to rationalize uranyl-protein interactions, which are relevant to uranium toxicity in vivo. Structured cyclic peptide scaffolds were chosen as promising candidates to coordinate uranyl thanks to four amino acid side chains pre-oriented towards the dioxo cation equatorial plane. The binding of uranyl by a series of decapeptides has been investigated with complementary analytical and spectroscopic methods to determine the key parameters for the formation of stable uranyl-peptide complexes. The molar ellipticity of the uranyl complex at 195 nm is directly correlated to its stability, which demonstrates that the β-sheet structure is optimal for high stability in the peptide series. Cyclodecapeptides with four glutamate residues exhibit the highest affinities for uranyl with log KC =8.0-8.4 and, therefore, appear as good starting points for the design of high-affinity uranyl-chelating peptides. PMID:25324194

  20. Biopanning of endotoxin-specific phage displayed peptides.

    PubMed

    Thomas, Celestine J; Sharma, Shilpi; Kumar, Gyanendra; Visweswariah, Sandhya S; Surolia, Avadhesha

    2003-07-18

    Systemic bacterial infections frequently lead to a plethora of symptoms termed "endotoxic shock" or "sepsis." Characterized by hypotension, coagulation abnormalities, and multiple organ failure, treatment of sepsis still remains mostly supportive. Of the various experimental therapeutic interventional strategies, neutralization of endotoxin by peptides or proteins is becoming popular recently. Hence, design of endotoxin binding peptides is gaining currency as their structural complexity and mode of recognition of endotoxin precludes mounting of resistance against them by the susceptible bacteria by genetic recombination, mutation, etc. Earlier work from our laboratory had shown that the amphiphilic cationic peptides are good ligands for endotoxin binding. In this study, we report the results of studies with the 12 selected lipid A binding phage displayed peptides by biopanning of a repertoire of a random pentadecapeptide library displayed on the filamentous M-13 phage. A comparison of the sequences revealed no consensus sequence between the 12 selected peptides suggesting that the lipid A binding motif is not sequence specific which is in accord with the sequence variation seen with the naturally occurring anti-microbial and/or endotoxin binding peptides. Thus, the flexibility of the peptides coupled with their plasticity in recognizing the lipid A moiety, explains their tight binding to endotoxin. At a structural level, asymmetric distribution of the charged polar residues on one face of the helix and non-polar residues on the opposite face appears to correlate with their activity.

  1. Calcium Carbonate Formation by Genetically Engineered Inorganic Binding Peptides

    NASA Astrophysics Data System (ADS)

    Gresswell, Carolyn Gayle

    Understanding how organisms are capable of forming (synthesize, crystallize, and organize) solid minerals into complex architectures has been a fundamental question of biomimetic materials chemistry and biomineralization for decades. This study utilizes short peptides selected using a cell surface display library for the specific polymorphs of calcium carbonate, i.e., aragonite and calcite, to identify two sets of sequences which can then be used to examine their effects in the formation, crystal structure, morphology of the CaCO3 minerals. A procedure of counter selection, along with fluorescence microscopy (FM) characterization, was adapted to insure that the sequences on the cells were specific to their respective substrate, i.e., aragonite or calcite. From the resulting two sets of sequences selected, five distinct strong binders were identified with a variety of biochemical characteristics and synthesized for further study. Protein derived peptides, using the known sequences of the proteins that are associated with calcite or aragonite, were also designed using a bioinformatics-based similarity analysis of the two sets of binders. In particular, an aragonite binding protein segment, AP7, a protein found in nacre, was chosen for this design and the resulting effects of the designed peptides and the AP7 were examined. Specifically, the binding affinities of the selected and the protein derived peptides off the cells were then tested using FM; these studies resulted in different binding characteristics of the synthesized and cellular bound peptides. Two of the peptides that displayed strong binding on the cells bound to neither of the CaCO 3 substrates and both the high and low similarity protein-derived peptides bound to both polymorphs. However, two of the peptides were found to only bind to their respective polymorph showing; these results are significant in that with this study it is demonstrated that the designed peptides based on experimental library

  2. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  3. Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification.

    PubMed

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-12-14

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1-A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (K(d) = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (K(d) = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination.

  4. Secondary structure propensity and chirality of the amyloidophilic peptide p5 and its analogues impacts ligand binding - In vitro characterization

    DOE PAGESBeta

    Wall, Jonathan S.; Williams, Angela; Wooliver, Craig; Martin, Emily B.; Cheng, Xiaolin; Heidel, R. Eric; Kennel, Stephen J.

    2016-08-11

    Here, polybasic helical peptides, such as peptide p5, bind human amyloid extracts and synthetic amyloid fibrils. When radio labeled, peptide p5 has been shown to specifically bind amyloid in vivo thereby allowing imaging of the disease. Structural requirements for heparin and amyloid binding have been studied using analogues of p5 that modify helicity and chirality.

  5. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  6. Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy.

    PubMed

    Rothenstein, Dirk; Claasen, Birgit; Omiecienski, Beatrice; Lammel, Patricia; Bill, Joachim

    2012-08-01

    Inorganic-binding peptides are in the focus of research fields such as materials science, nanotechnology, and biotechnology. Applications concern surface functionalization by the specific coupling to inorganic target substrates, the binding of soluble molecules for sensing applications, or biomineralization approaches for the controlled formation of inorganic materials. The specific molecular recognition of inorganic surfaces by peptides is of major importance for such applications. Zinc oxide (ZnO) is an important semiconductor material which is applied in various devices. In this study the molecular fundamentals for a ZnO-binding epitope was determined. 12-mer peptides, which specifically bind to the zinc- or/and the oxygen-terminated sides of single-crystalline ZnO (0001) and (000-1) substrates, were selected from a random peptide library using the phage display technique. For two ZnO-binding peptides the mandatory amino acid residues, which are of crucial importance for the specific binding were determined with a label-free nuclear magnetic resonance (NMR) approach. NMR spectroscopy allows the identification of pH dependent interaction sites on the atomic level of 12-mer peptides and ZnO nanoparticles. Here, ionic and polar interaction forces were determined. For the oxygen-terminated side the consensus peptide-binding sequence (HSXXH) was predicted in silico and confirmed by the NMR approach. PMID:22720657

  7. High-throughput engineering and analysis of peptide binding to class II MHC.

    PubMed

    Jiang, Wei; Boder, Eric T

    2010-07-27

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity.

  8. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization

    PubMed Central

    Ting, Yi Tian; Harris, Paul W. R.; Batot, Gaelle; Brimble, Margaret A.; Baker, Edward N.; Young, Paul G.

    2016-01-01

    Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase–substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB–peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB–peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival. PMID:26870377

  9. Inhibitory effect of midkine-binding peptide on tumor proliferation and migration

    PubMed Central

    Huang, Hui-Lian; Shen, Jian-Fen; Min, Li-Shan; Ping, Jin-Liang; Lu, Yong-Liang; Dai, Li-Cheng

    2015-01-01

    Background: To investigate the inhibitory effect of midkine-binding peptides on human umbilical vein endothelial cells (HUVECs) proliferation and angiogenesis of xenograft tumor. Methods: The midkine-binding peptides were panned by Ph.D.-7™ Phage Display Peptide Library Kit, and the specific binding activities of positive clones to target protein were examined by phage ELISA. The effect of midkine-binding peptides on proliferation of HUVECs was confirmed by MTT test. The xenograft tumor model was formed in BALB/c mice with the murine hepatocarcinoma cells H22 (H22). Microvessel density (MVD) was analyzed by immunohistochemistry of factor VIII staining. Results: Midkine-binding peptides have the inhibitory effects on tumor angiogenesis, a proliferation assay using human umbilical vein endothelial cells (HUVECs) indicated that particular midkine-binding peptides significantly inhibited the proliferation of the HUVECs. Midkine-binding peptides were also observed to efficiently suppress angiogenesis induced by murine hepatocarcinoma H22 cells in BALB/c nude mice. Conclusion: The midkine-binding peptides can inhibit solid tumor growth by retarding the formation of new blood vessels. The results indicate that midkine-binding peptides may represent potent anti-angiogenesis agents in vivo. PMID:26191241

  10. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  11. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  12. The structural basis for function in diamond-like carbon binding peptides.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Linder, Markus B

    2014-07-29

    The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity. More significantly, rearrangements in the sequence indicated that the binding is a complex recognition event that is dependent on the overall structure of the peptide. The work demonstrates the unique properties of peptides for creating functionality at interfaces via noncovalent binding for potential applications in, for example, nanomaterials, biomedical materials, and sensors. PMID:25007096

  13. Both major and minor peptide-binding pockets in HLA-A2 influence the presentation of influenza virus matrix peptide to cytotoxic T lymphocytes.

    PubMed

    Teng, J M; Hogan, K T

    1994-04-01

    Most of the polymorphic residues in class I MHC molecules are concentrated in the alpha 1- and alpha 2-domains with their side chains pointing towards the antigen peptide site. Previous crystal structure analysis revealed six pockets inside the peptide-binding groove and the "extra" electron density in some of the pockets indicated that the pockets are involved in direct peptide binding. In order to investigate the functional role of individual positions from each pocket in antigen presentation, 37 HLA-A2 variants with single amino acid substitution in the peptide-binding groove were generated and used to analyse the specificity of influenza A virus matrix peptide-specific, HLA-A2-restricted CTL. The ability to present peptide by each variant was studied in detail by peptide titration, cold target inhibition, time course and limiting dilution analysis. The direct effect on peptide binding by these substitutions was determined by cell surface class I MHC molecule reconstitution analysis. The results demonstrated that each of the six peptide binding pockets plays a role in T cell recognition. Substitutions introduced into pocket F had less effect on CTL recognition than substitutions introduced in other pockets. With the exception of Tyr substitution for Phe9, single amino acid substitutions in the peptide-binding groove had only minor effects on peptide binding. Therefore, the impact of the substitutions in altering the epitopes recognized by CTL seems to be mediated through an alteration in the conformation of the bound peptide.

  14. Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide.

    PubMed

    Wright, Louise B; Walsh, Tiffany R

    2013-04-01

    Harnessing the properties of biomolecules, such as peptides, adsorbed on inorganic surfaces is of interest to many cross-disciplinary areas of science, ranging from biomineralisation to nanomedicine. Key to advancing research in this area is determination of the peptide conformation(s) in its adsorbed state, at the aqueous interface. Molecular simulation is one such approach for accomplishing this goal. In this respect, use of temperature-based replica-exchange molecular dynamics (T-REMD) can yield enhanced sampling of the interfacial conformations, but does so at great computational expense, chiefly because of the need to include an explicit representation of water at the interface. Here, we investigate a number of more economical variations on REMD, chiefly those based on Replica Exchange with Solvent Tempering (REST), using the aqueous quartz-binding peptide S1-(100) α-quartz interfacial system as a benchmark. We also incorporate additional implementation details specifically targeted at improving sampling of biomolecules at interfaces. We find the REST-based variants yield configurational sampling of the peptide-surface system comparable with T-REMD, at a fraction of the computational time and resource. Our findings also deliver novel insights into the binding behaviour of the S1 peptide at the quartz (100) surface that are consistent with available experimental data.

  15. Crystal Structures of Beryllium Fluoride-Free and Beryllium Fluoride-Bound CheY in Complex with the Conserved C-Terminal Peptide of CheZ Reveal Dual Binding Modes Specific to CheY Conformation

    SciTech Connect

    Guhaniyogi,J.; Robinson, V.; Stock, A.

    2006-01-01

    Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ{sub C}), an indispensable structural component of the functional CheZ protein. To understand how the CheZ{sub C} helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ{sub 200-214}) at resolutions ranging from 2.0 Angstroms to 2.3 Angstroms. These structures provide a detailed view of the CheZC peptide interaction both in the presence and absence of the phosphoryl analog, BeF{sub 3}{sup -}. Our studies reveal that two different modes of binding the CheZ{sub 200-214} peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ{sub C} helix binds to a 'meta-active' conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.

  16. Crystal Structures of Beryllium Fluoride-Free and Beryllium Fluoride-Bound CheY in Complex with the Conserved C-Terminal Peptide of CheZ Reveal Dual Binding Modes Specific to CheY Conformation

    PubMed Central

    Guhaniyogi, Jayita; Robinson, Victoria L.; Stock, Ann M.

    2013-01-01

    Summary Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The latter involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZC), an indispensable structural component of the functional CheZ protein. To understand how the CheZC helix, representing less than 1% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ200-214) at resolutions ranging from 2.0 Å to 2.3 Å. These structures provide a detailed view of the CheZC peptide interaction both in the presence and absence of the phosphoryl analog, BeF3−. Our studies reveal that two different modes of binding the CheZ200-214 peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZC helix binds to a “meta-active” conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains. PMID:16674976

  17. Computational modeling of peptide-aptamer binding.

    PubMed

    Rhinehardt, Kristen L; Mohan, Ram V; Srinivas, Goundla

    2015-01-01

    Evolution is the progressive process that holds each living creature in its grasp. From strands of DNA evolution shapes life with response to our ever-changing environment and time. It is the continued study of this most primitive process that has led to the advancement of modern biology. The success and failure in the reading, processing, replication, and expression of genetic code and its resulting biomolecules keep the delicate balance of life. Investigations into these fundamental processes continue to make headlines as science continues to explore smaller scale interactions with increasing complexity. New applications and advanced understanding of DNA, RNA, peptides, and proteins are pushing technology and science forward and together. Today the addition of computers and advances in science has led to the fields of computational biology and chemistry. Through these computational advances it is now possible not only to quantify the end results but also visualize, analyze, and fully understand mechanisms by gaining deeper insights. The biomolecular motion that exists governing the physical and chemical phenomena can now be analyzed with the advent of computational modeling. Ever-increasing computational power combined with efficient algorithms and components are further expanding the fidelity and scope of such modeling and simulations. This chapter discusses computational methods that apply biological processes, in particular computational modeling of peptide-aptamer binding.

  18. Identification of five different Patr class I molecules that bind HLA supertype peptides and definition of their peptide binding motifs.

    PubMed

    McKinney, D M; Erickson, A L; Walker, C M; Thimme, R; Chisari, F V; Sidney, J; Sette, A

    2000-10-15

    We have sequenced the Pan troglodytes class I (Patr) molecules from three common chimpanzees and expressed them as single molecules in a class I-deficient cell line. These lines were utilized to obtain purified class I molecules to define the peptide binding motifs associated with five different Patr molecules. Based on these experiments, as well as analysis of the predicted structure of the B and F polymorphic MHC pockets, we classified five Patr molecules (Patr-A*0101, Patr-B*0901, Patr-B*0701, Patr-A*0602, and Patr-B*1301) within previously defined supertype specificities associated with HLA class I molecules (HLA-A3, -B7, -A1, and -A24 supertypes). The overlap in the binding repertoire between specific HLA and Patr class I molecules was in the range of 33 to 92%, depending on the particular Patr molecule as assessed by the binding of HIV-, hepatitis B virus-, and hepatitis C virus-derived epitopes. Finally, live cell binding assays of nine chimpanzee-derived B cell lines demonstrated that HLA supertype peptides bound to Patr class I molecules with frequencies in the 20-50% range. PMID:11035079

  19. Contextual Specificity in Peptide-Mediated Protein Interactions

    PubMed Central

    Stein, Amelie; Aloy, Patrick

    2008-01-01

    Most biological processes are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. Although sufficient to ensure binding, these linear motifs alone are usually too short to achieve the high specificity observed, and additional contacts are often encoded in the residues surrounding the motif (i.e. the context). Here, we systematically identified all instances of peptide-mediated protein interactions of known three-dimensional structure and used them to investigate the individual contribution of motif and context to the global binding energy. We found that, on average, the context is responsible for roughly 20% of the binding and plays a crucial role in determining interaction specificity, by either improving the affinity with the native partner or impeding non-native interactions. We also studied and quantified the topological and energetic variability of interaction interfaces, finding a much higher heterogeneity in the context residues than in the consensus binding motifs. Our analysis partially reveals the molecular mechanisms responsible for the dynamic nature of peptide-mediated interactions, and suggests a global evolutionary mechanism to maximise the binding specificity. Finally, we investigated the viability of non-native interactions and highlight cases of potential cross-reaction that might compensate for individual protein failure and establish backup circuits to increase the robustness of cell networks. PMID:18596940

  20. Glucagon-like peptide-1 binding to rat hepatic membranes.

    PubMed

    Villanueva-Peñacarrillo, M L; Delgado, E; Trapote, M A; Alcántara, A; Clemente, F; Luque, M A; Perea, A; Valverde, I

    1995-07-01

    We have found [125I]glucagon-like peptide (GLP)-1(7-36)amide specific binding activity in rat liver and isolated hepatocyte plasma membranes, with an M(r) of approximately 63,000, estimated by cross-linking and SDS-PAGE. The specific binding was time- and membrane protein concentration-dependent, and equally displaced by unlabelled GLP-1(7-36)amide and by GLP-1(1-36)amide, achieving its ID50 at 3 x 10(-9) M of the peptides. GLP-1(7-36)amide did not modify the basal or the glucagon (10(-8) M)-stimulated adenylate cyclase in the hepatocyte plasma membranes. These data, together with our previous findings of a potent glycogenic effect of GLP-1(7-36)amide in isolated rat hepatocytes, led us to postulate that the insulin-like effects of this peptide on glucose liver metabolism could be mediated by a type of receptor probably different from that described for GLP-1 in pancreatic B-cells or, alternatively, by the same receptor which, in this tissue as well as in muscle, uses a different transduction system.

  1. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system.

  2. Structure-based Design of Peptides with High Affinity and Specificity to HER2 Positive Tumors

    PubMed Central

    Geng, Lingling; Wang, Zihua; Yang, Xiaoliang; Li, Dan; Lian, Wenxi; Xiang, Zhichu; Wang, Weizhi; Bu, Xiangli; Lai, Wenjia; Hu, Zhiyuan; Fang, Qiaojun

    2015-01-01

    To identify peptides with high affinity and specificity against human epidermal growth factor receptor 2 (HER2), a series of peptides were designed based on the structure of HER2 and its Z(HER2:342) affibody. By using a combination protocol of molecular dynamics modeling, MM/GBSA binding free energy calculations, and binding free energy decomposition analysis, two novel peptides with 27 residues, pep27 and pep27-24M, were successfully obtained. Immunocytochemistry and flow cytometry analysis verified that both peptides can specifically bind to the extracellular domain of HER2 protein at cellular level. The Surface Plasmon Resonance imaging (SPRi) analysis showed that dissociation constants (KD) of these two peptides were around 300 nmol/L. Furthermore, fluorescence imaging of peptides against nude mice xenografted with SKBR3 cells indicated that both peptides have strong affinity and high specificity to HER2 positive tumors. PMID:26284145

  3. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined.

  4. Binding studies of antimicrobial peptides to Escherichia coli cells.

    PubMed

    Avitabile, Concetta; D'Andrea, Luca D; Saviano, Michele; Olivieri, Michele; Cimmino, Amelia; Romanelli, Alessandra

    2016-09-01

    Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined. PMID:27450805

  5. High-throughput identification of putative receptors for cancer-binding peptides using biopanning and microarray analysis

    PubMed Central

    Ferraro, Daniel J; Bhave, Sandeep R; Kotipatruni, Rama P; Hunn, Jeremy C; Wildman, Scott A; Hong, Charles; Dadey, David Y. A.; Muhoro, Lincoln K.; Jaboin, Jerry J; Thotala, Dinesh; Hallahan, Dennis E

    2013-01-01

    Phage-display peptide biopanning has been successfully used to identify cancer-targeting peptides in multiple models. For cancer-binding peptides, identification of the peptide receptor is necessary to demonstrate mechanism of action and to further optimize specificity and target binding. The process of receptor identification can be slow and some peptides may turn out to bind ubiquitous proteins not suitable for further drug development. In this report, we describe a high-throughput method for screening a large number of peptides in parallel to identify peptide receptors, which we have termed “reverse biopanning,” which can then be selected for further development based on their peptide receptor. To demonstrate this method, we screened a library of 39 peptides previously identified in our laboratory to bind specifically cancers after irradiation. The reverse biopanning process identified 2 peptides, RKFLMTTRYSRV and KTAKKNVFFCSV, as candidate ligands for the protein tax interacting protein 1 (TIP-1), a protein previously identified in our laboratory to be expressed in the cell surface in tumors and upregulated after exposure to ionizing radiation. We used computational modeling as the initial method for rapid validation of peptide-TIP-1 binding. Pseudo-binding energies were calculated to be −360.645 kcal/mol, −487.239 kcal/mol, and −595.328 kcal/mol for HVGGSSV, TTRYSRV, and NVFFCSV respectively, suggesting that the peptides would have at least similar, if not stronger, binding to TIP-1 compared to the known TIP-1 binding peptide HVGGSSV. We validated peptide in vitro via electrophoretic mobility shift assay, which showed strong binding of RKFLMTTRYSRV and the truncated form TTRYSRV. This method allows for the identification of many peptide receptors and subsequent selection of peptides for further drug development based on the peptide receptor. PMID:23147990

  6. Evolution of domain–peptide interactions to coadapt specificity and affinity to functional diversity

    PubMed Central

    Kelil, Abdellali; Levy, Emmanuel D.; Michnick, Stephen W.

    2016-01-01

    Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain–peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain–peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain–peptide interactions. Thus, domain–peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved. PMID:27317745

  7. Engineering of the function of diamond-like carbon binding peptides through structural design.

    PubMed

    Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B

    2015-02-01

    The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.

  8. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  9. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity.

    PubMed

    Hansen, Simon; Tremmel, Dirk; Madhurantakam, Chaithanya; Reichen, Christian; Mittl, Peer R E; Plückthun, Andreas

    2016-03-16

    Natural armadillo repeat proteins (nArmRP) like importin-α or β-catenin bind their target peptides such that each repeat interacts with a dipeptide unit within the stretched target peptide. However, this modularity is imperfect and also restricted to short peptide stretches of usually four to six consecutive amino acids. Here we report the development and characterization of a regularized and truly modular peptide-specific binding protein, based on designed armadillo repeat proteins (dArmRP), binding to peptides of alternating lysine and arginine residues (KR)n. dArmRP were obtained from nArmRP through cycles of extensive protein engineering, which rendered them more uniform. This regularity is reflected in the consistent binding of dArmRP to (KR)-peptides, where affinities depend on the lengths of target peptides and the number of internal repeats in a very systematic manner, thus confirming the modularity of the interaction. This exponential dependency between affinity and recognition length suggests that each module adds a constant increment of binding energy to sequence-specific recognition. This relationship was confirmed by comprehensive mutagenesis studies that also reveal the importance of individual peptide side chains. The 1.83 Å resolution crystal structure of a dArmRP with five identical internal repeats in complex with the cognate (KR)5 peptide proves a modular binding mode, where each dipeptide is recognized by one internal repeat. The confirmation of this true modularity over longer peptide stretches lays the ground for the design of binders with different specificities and tailored affinities by the assembly of dipeptide-specific modules based on armadillo repeats. PMID:26878586

  10. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  11. Streptavidin-binding peptides and uses thereof

    NASA Technical Reports Server (NTRS)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2005-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  12. Vav Regulates Peptide-specific Apoptosis in Thymocytes

    PubMed Central

    Kong, Young-Yun; Fischer, Klaus-Dieter; Bachmann, Martin F.; Mariathasan, Sanjeev; Kozieradzki, Ivona; Nghiem, Mai P.; Bouchard, Dennis; Bernstein, Alan; Ohashi, Pamela S.; Penninger, Josef M.

    1998-01-01

    The protooncogene Vav functions as a GDP/GTP exchange factor (GEF) for Rho-like small GTPases involved in cytoskeletal reorganization and cytokine production in T cells. Gene-targeted mice lacking Vav have a severe defect in positive and negative selection of T cell antigen receptor transgenic thymocytes in vivo, and vav−/− thymocytes are completely resistant to peptide-specific and anti-CD3/anti-CD28–mediated apoptosis. Vav acts upstream of mitochondrial pore opening and caspase activation. Biochemically, Vav regulates peptide-specific Ca2+ mobilization and actin polymerization. Peptide-specific cell death was blocked both by cytochalasin D inhibition of actin polymerization and by inhibition of protein kinase C (PKC). Activation of PKC with phorbol ester restored peptide-specific apoptosis in vav−/− thymocytes. Vav was found to bind constitutively to PKC-θ in thymocytes. Our results indicate that peptide-triggered thymocyte apoptosis is mediated via Vav activation, changes in the actin cytoskeleton, and subsequent activation of a PKC isoform. PMID:9841924

  13. Peptide binding to HLA-DR1: a peptide with most residues substituted to alanine retains MHC binding.

    PubMed Central

    Jardetzky, T S; Gorga, J C; Busch, R; Rothbard, J; Strominger, J L; Wiley, D C

    1990-01-01

    Major histocompatibility complex (MHC) glycoproteins play an important role in the development of an effective immune response. An important MHC function is the ability to bind and present 'processed antigens' (peptides) to T cells. We show here that the purified human class II MHC molecule, HLA-DR1, binds peptides that have been shown to be immunogenic in vivo. Detergent-solubilized HLA-DR1 and a papain-cleaved form of the protein lacking the transmembrane and intracellular regions have similar peptide binding properties. A total of 39 single substitutions were made throughout an HLA-DR1 restricted hemagglutinin epitope and the results determine one amino acid in this peptide which is crucial to binding. Based on this analysis, a synthetic peptide was designed containing two residues from the original hemagglutinin epitope embedded in a chain of polyalanine. This peptide binds to HLA-DR1, indicating that the majority of peptide side chains are not required for high affinity peptide binding. Images Fig. 3. PMID:2189723

  14. Identification of peptides that selectively bind to myoglobin by biopanning of phage displayed-peptide library.

    PubMed

    Padmanaban, Guruprasath; Park, Hyekyung; Choi, Ji Suk; Cho, Yong-Woo; Kang, Woong Chol; Moon, Chan-Il; Kim, In-San; Lee, Byung-Heon

    2014-10-10

    Biopanning of phage displayed-peptide library was performed against myoglobin, a marker for the early assessment of acute myocardial infarction (AMI), to identify peptides that selectively bind to myoglobin. Using myoglobin-conjugated magnetic beads, phages that bound to myoglobin were collected and amplified for the next round of screening. A 148-fold enrichment of phage titer was observed after five rounds of screening relative to the first round. After phage binding ELISA, three phage clones were selected (3R1, 3R7 and 3R10) and the inserted peptides were chemically synthesized. The analysis of binding affinity showed that the 3R7 (CPSTLGASC) peptide had higher binding affinity (Kd=57 nM) than did the 3R1 (CNLSSSWIC) and 3R10 (CVPRLSAPC) peptide (Kd=125 nM and 293 nM, respectively). Cross binding activity to other proteins, such as bovine serum albumin, troponin I, and creatine kinase-MB, was minimal. In a peptide-antibody sandwich ELISA, the selected peptides efficiently captured myoglobin. Moreover, the concentrations of myoglobin in serum samples measured by a peptide-peptide sandwich assay were comparable to those measured by a commercial antibody-based kit. These results indicate that the identified peptides can be used for the detection of myoglobin and may be a cost effective alternative to antibodies.

  15. PepComposer: computational design of peptides binding to a given protein surface.

    PubMed

    Obarska-Kosinska, Agnieszka; Iacoangeli, Alfredo; Lepore, Rosalba; Tramontano, Anna

    2016-07-01

    There is a wide interest in designing peptides able to bind to a specific region of a protein with the aim of interfering with a known interaction or as starting point for the design of inhibitors. Here we describe PepComposer, a new pipeline for the computational design of peptides binding to a given protein surface. PepComposer only requires the target protein structure and an approximate definition of the binding site as input. We first retrieve a set of peptide backbone scaffolds from monomeric proteins that harbor the same backbone arrangement as the binding site of the protein of interest. Next, we design optimal sequences for the identified peptide scaffolds. The method is fully automatic and available as a web server at http://biocomputing.it/pepcomposer/webserver. PMID:27131789

  16. PepComposer: computational design of peptides binding to a given protein surface

    PubMed Central

    Obarska-Kosinska, Agnieszka; Iacoangeli, Alfredo; Lepore, Rosalba; Tramontano, Anna

    2016-01-01

    There is a wide interest in designing peptides able to bind to a specific region of a protein with the aim of interfering with a known interaction or as starting point for the design of inhibitors. Here we describe PepComposer, a new pipeline for the computational design of peptides binding to a given protein surface. PepComposer only requires the target protein structure and an approximate definition of the binding site as input. We first retrieve a set of peptide backbone scaffolds from monomeric proteins that harbor the same backbone arrangement as the binding site of the protein of interest. Next, we design optimal sequences for the identified peptide scaffolds. The method is fully automatic and available as a web server at http://biocomputing.it/pepcomposer/webserver. PMID:27131789

  17. Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity

    PubMed Central

    Tregaskes, Clive A.; Harrison, Michael; Sowa, Anna K.; van Hateren, Andy; Hunt, Lawrence G.; Vainio, Olli; Kaufman, Jim

    2016-01-01

    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek’s disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC). PMID:26699458

  18. Metal binding to the HIV nucleocapsid peptide.

    PubMed

    McLendon, G; Hull, H; Larkin, K; Chang, W

    1999-04-01

    Co(II) and Zn(II) binding constants have been measured for binding to the HIV-1 nucleocapsid N-terminal metal binding domain (residues 1-18), using competition titration methods and monitoring Co(II) binding by visible absorbance spectroscopy. Enthalpies for binding were directly measured by isothermal titration colorimetry. The results are compared with recent studies of related systems, including a study of Zn(II) binding by the full length protein.

  19. Identification of high-affinity VEGFR3-binding peptides through a phage-displayed random peptide library

    PubMed Central

    Wu, Yan; Li, Cai-Yun

    2015-01-01

    Objective Vascular endothelial growth factor (VEGF) interaction with its receptor, VEGFR-3/Flt-4, regulates lymphangiogenesis. VEGFR-3/Flt-4 expression in cancer cells has been correlated with clinical stage, lymph node metastasis, and lymphatic invasion. The objective of this study is to identify a VEGFR-3/Flt-4-interacting peptide that could be used to inhibit VEGFR-3 for ovarian cancer therapy. Methods The extracellular fragment of recombinant human VEGFR-3/Flt-4 (rhVEGFR-3/Flt-4) fused with coat protein pIII was screened against a phage-displayed random peptide library. Using affinity enrichment and enzyme-linked immunosorbent assay (ELISA) screening, positive clones of phages were amplified. Three phage clones were selected after four rounds of biopanning, and the specific binding of the peptides to rhVEGFR-3 was detected by ELISA and compared with that of VEGF-D. Immunohistochemistry and immunofluorescence analyses of ovarian cancer tissue sections was undertaken to demonstrate the specificity of the peptides. Results After four rounds of biopanning, ELISA confirmed the specificity of the enriched bound phage clones for rhVEGFR-3. Sequencing and translation identified three different peptides. Non-competitive ELISA revealed that peptides I, II, and III had binding affinities for VEGFR-3 with Kaff (affinity constant) of 16.4±8.6 µg/mL (n=3), 9.2±2.1 µg/mL (n=3), and 174.8±31.1 µg/mL (n=3), respectively. In ovarian carcinoma tissue sections, peptide III (WHWLPNLRHYAS), which had the greatest binding affinity, also co-localized with VEGFR-3 in endothelial cells lining lymphatic vessels; its labeling of ovarian tumors in vivo was also confirmed. Conclusion These finding showed that peptide III has high specificity and activity and, therefore, may represent a potential therapeutic approach to target VEGF-VEGFR-3 signaling for the treatment or diagnosis of ovarian cancer. PMID:26197772

  20. Discovery of 12-mer peptides that bind to wood lignin.

    PubMed

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  1. Discovery of 12-mer peptides that bind to wood lignin

    PubMed Central

    Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi

    2016-01-01

    Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196

  2. Binding of Synthetic LKEKK Peptide to Human T-Lymphocytes.

    PubMed

    Navolotskaya, E V; Zinchenko, D V; Zolotarev, Y A; Kolobov, A A; Lipkin, V M

    2016-08-01

    The synthetic peptide LKEKK corresponding to sequence 16-20 of human thymosin-α1 and 131-135 of human interferon-α2 was labeled with tritium to specific activity 28 Ci/mol. The [3H]LKEKK bound with high affinity (Kd = 3.7 ± 0.3 nM) to donor blood T-lymphocytes. Treatment of cells with trypsin or proteinase K did not abolish [3H]LKEKK binding, suggesting the non-protein nature of the peptide receptor. The binding was inhibited by thymosin-α1, interferon-α2, and cholera toxin B subunit (Ki = 2.0 ± 0.3, 2.2 ± 0.2, and 3.6 ± 0.3 nM, respectively). Using [3H]LKEKK, we demonstrated the existence of a non-protein receptor common for thymosin-α1, interferon-α2, and cholera toxin B-subunit on donor blood T-lymphocytes. PMID:27677554

  3. EDB Fibronectin Specific Peptide for Prostate Cancer Targeting.

    PubMed

    Han, Zheng; Zhou, Zhuxian; Shi, Xiaoyue; Wang, Junpeng; Wu, Xiaohui; Sun, Da; Chen, Yinghua; Zhu, Hui; Magi-Galluzzi, Cristina; Lu, Zheng-Rong

    2015-05-20

    Extradomain-B fibronectin (EDB-FN), one of the oncofetal fibronectin (onfFN) isoforms, is a high-molecular-weight glycoprotein that mediates cell adhesion and migration. The expression of EDB-FN is associated with a number of cancer-related biological processes such as tumorigenesis, angiogenesis, and epithelial-to-mesenchymal transition (EMT). Here, we report the development of a small peptide specific to EDB-FN for targeting prostate cancer. A cyclic nonapeptide, CTVRTSADC (ZD2), was identified using peptide phage display. A ZD2-Cy5 conjugate was synthesized to accomplish molecular imaging of prostate cancer in vitro and in vivo. ZD2-Cy5 demonstrated effective binding to up-regulated EDB-FN secreted by TGF-β-induced PC3 cancer cells following EMT. Following intravenous injections, the targeted fluorescent probe specifically bound to and delineated PC3-GFP prostate tumors in nude mice bearing the tumor xenografts. ZD2-Cy5 also showed stronger binding to human prostate tumor specimens with a higher Gleason score (GS9) compared to those with a lower score (GS 7), with no binding in benign prostatic hyperplasia (BPH). Thus, the ZD2 peptide is a promising strategy for molecular imaging and targeted therapy of prostate cancer.

  4. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    SciTech Connect

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  5. In-silico and in-vitro elucidation of BH3 binding specificity towards Bcl-2

    PubMed Central

    London, Nir; Gullá, Stefano; Keating, Amy E.; Schueler-Furman, Ora

    2013-01-01

    Interactions between Bcl-2 like proteins and BH3 domains play a key role in the regulation of apoptosis. Despite the overall structural similarity of their interaction with helical BH3 domains, Bcl-2 like proteins exhibit an intricate spectrum of binding specificities whose underlying basis is not well understood. Here, we characterize these interactions using Rosetta FlexPepBind, a protocol for the prediction of peptide binding specificity that evaluates the binding potential of different peptides based on structural models of the corresponding peptide-receptor complexes. For two prominent players, Bcl-xL and Mcl-1, we obtain good agreement with a large set of experimental SPOT array measurements and recapitulate the binding specificity of peptides derived by yeast display in a previous study. We extend our approach to a third member of this family, Bcl-2: we test our blind prediction of the binding of 180 BIM-derived peptides with a corresponding experimental SPOT array. Both prediction and experiment reveal a Bcl-2 binding specificity pattern that resembles that of Bcl-xL. Finally, we extend this application to accurately predict the specificity pattern of additional human BH3-only derived peptides. This study characterizes the distinct patterns of binding specificity of BH3-only derived peptides for the Bcl-2 like proteins Bcl-xL, Mcl-1 and Bcl-2, and provides insight into the structural basis of determinants of specificity. PMID:22702834

  6. Based on HLA-DR beta1* allele binding specificities, striking differences in distance and TCR Contacting Residue Orientation can be observed in modified protection-inducing malarial synthetic peptides.

    PubMed

    Patarroyo, M E; Cifuentes, G; Salazar, L M; Espejo, F; Alba, M P; Bermúdez, A

    2005-01-01

    An anti-malarial vaccine is urgently needed, especially against P. falciparum which causes 2 to 3 million deaths each year, mostly in Sub-Saharan African children. This vaccine should contain molecules from the parasite's different developmental stages due to the parasite's remarkable complexity and genetic variability. The first approach using synthetic peptides from different parasite stage molecules (the SPf66 malaria vaccine) conferred limited protective efficacy in Aotus monkeys and in large field-trials carried out in different parts of the world SPf66 contains red blood cell (RBC) binding merozoite peptides for which immune responses against them are genetically controlled by HLA-DR region. Therefore, a systematic search of conserved high activity binding peptides (HABP) was undertaken aimed at using them as immunogens. However, these peptides were poorly immunogenic and had poor protection-inducing capacity against experimental challenge with a P. falciparum strain highly infective for Aotus monkeys an experimental model with an immune system quite similar to humans. Modifications were thus made to key residues to render them immunogenic and protection-inducing. These native and modified HABPs' three-dimensional structure was determined by (1)H-NMR studies and their ability in forming stable Major Histocompatibility Class II - peptide (MHCII-peptide) complexes was correlated with their ability to bind in vitro to purified HLA-DR beta1* molecules. Our experimental data suggests a correlation between modified HABPs' three-dimensional structure, HLA-DR beta1* binding preferences and their protection-inducing capacity in monkeys. Furthermore, the data presented here indicates that a synthetic peptide vaccine's three-dimensional structural features dictate both HLA-DR beta1* allele binding preference (imposing genetic restriction on the immune response) and on these vaccines' protection-inducing value. Basic knowledge of a parasite's functionally active peptides

  7. Characterization of binding specificities of Bovine Leucocyte class I molecules: Impacts for rational epitope discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The binding of peptides to classical major histocompatibility complex (MHC) class-I proteins is the single most selective step in antigen presentation. However, the peptide binding specificity of cattle MHC (bovine leucocyte antigen, BoLA) class I (BoLA-I) molecules remains poorly characterized. Her...

  8. Structure-based optimization of GRP78-binding peptides that enhances efficacy in cancer imaging and therapy.

    PubMed

    Wang, Sheng-Hung; Lee, Andy Chi-Lung; Chen, I-Ju; Chang, Nai-Chuan; Wu, Han-Chung; Yu, Hui-Ming; Chang, Ya-Jen; Lee, Te-Wei; Yu, Jyh-Cherng; Yu, Alice L; Yu, John

    2016-07-01

    It is more challenging to design peptide drugs than small molecules through molecular docking and in silico analysis. Here, we developed a structure-based approach with various computational and analytical techniques to optimize cancer-targeting peptides for molecular imaging and therapy. We first utilized a peptide-binding protein database to identify GRP78, a specific cancer cell-surface marker, as a target protein for the lead, L-peptide. Subsequently, we used homologous modeling and molecular docking to identify a peptide-binding domain within GRP78 and optimized a series of peptides with a new protein-ligand scoring program, HotLig. Binding of these peptides to GRP78 was confirmed using an oriented immobilization technique for the Biacore system. We further examined the ability of the peptides to target cancer cells through in vitro binding studies with cell lines and clinical cancer specimens, and in vivo tumor imaging and targeted chemotherapeutic studies. MicroSPECT/CT imaging revealed significantly greater uptake of (188)Re-liposomes linked to these peptides as compared with non-targeting (188)Re-liposomes. Conjugation with these peptides also significantly increased the therapeutic efficacy of Lipo-Dox. Notably, peptide-conjugated Lipo-Dox significantly reduced stem-cell subpopulation in xenografts of breast cancer. The structure-based optimization strategy for peptides described here may be useful for developing peptide drugs for cancer imaging and therapy. PMID:27088408

  9. Adding energy minimization strategy to peptide-design algorithm enables better search for RNA-binding peptides: Redesigned λ N peptide binds boxB RNA.

    PubMed

    Xiao, Xingqing; Hung, Michelle E; Leonard, Joshua N; Hall, Carol K

    2016-10-15

    Our previously developed peptide-design algorithm was improved by adding an energy minimization strategy which allows the amino acid sidechains to move in a broad configuration space during sequence evolution. In this work, the new algorithm was used to generate a library of 21-mer peptides which could substitute for λ N peptide in binding to boxB RNA. Six potential peptides were obtained from the algorithm, all of which exhibited good binding capability with boxB RNA. Atomistic molecular dynamics simulations were then conducted to examine the ability of the λ N peptide and three best evolved peptides, viz. Pept01, Pept26, and Pept28, to bind to boxB RNA. Simulation results demonstrated that our evolved peptides are better at binding to boxB RNA than the λ N peptide. Sequence searches using the old (without energy minimization strategy) and new (with energy minimization strategy) algorithms confirm that the new algorithm is more effective at finding good RNA-binding peptides than the old algorithm. © 2016 Wiley Periodicals, Inc.

  10. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    PubMed Central

    Xu, Ying; Sette, Alessandro; Bourne, Philip E.; Lund, Ole; Ponomarenko, Julia; Nielsen, Morten; Peters, Bjoern

    2010-01-01

    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results. PMID:20174654

  11. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays

    PubMed Central

    Justesen, Sune; Harndahl, Mikkel; Lamberth, Kasper; Nielsen, Lise-Lotte B; Buus, Søren

    2009-01-01

    Background Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. Results We generated α and β MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the β chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both α and β chains are polymorphic, illustrating the advantages of producing the two chains separately. Conclusion We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools. PMID:19416502

  12. Biological effect of varying peptide binding affinity to the BoLA-DRB3*2703 allele

    PubMed Central

    2003-01-01

    MHC class I and II molecules are immunoregulatory cell surface glycoproteins, which selectively bind to and present antigenic peptides to T-lymphocytes. Murine and human studies show that variable peptide binding affinity to MHC II molecules influences Th1/Th2 responses by inducing distinctive cytokine expression. To examine the biological effects of peptide binding affinity to bovine MHC (BoLA), various self peptides (BoLA-DQ and fibrinogen fragments) and non-self peptides from ovalbumin (OVA), as well as VP2 and VP4 peptides from foot and mouth disease virus (FMD-V) were used to (1) determine binding affinities to the BoLA-DRB3*2703 allele, previously associated with mastitis susceptibility and (2) determine whether peptide binding affinity influences T-lymphocyte function. Peptide binding affinity was determined by a competitive assay using high affinity biotinylated self-peptide incubated with purified BoLA-DRB3*2703 in the presence of various concentrations of competing peptides. The concentrations of non-self peptide required to inhibit self-peptide binding by 50% (IC50) were variable, ranging from 26.92 to > 320 μM. Peptide-specific T-lymphocyte function was determined by measuring DNA synthesis, cell division, and IFN-γ production in cultures of mononuclear cells from a BoLA-DRB3*2703 homozygous cow. When compared to non-stimulated control cultures, differences in lymphocyte function were observed for all of the assessed parameters; however, peptide-binding affinity did not always account for the observed differences in lymphocyte function. PMID:12927080

  13. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  14. H-2Dd exploits a four residue peptide binding motif

    PubMed Central

    1993-01-01

    We have characterized the amino acid sequences of over 20 endogenous peptides bound by a soluble analog of H-2Dd, H-2Dds. Synthetic analogs corresponding to self, viral, tumor, or motif peptides were then tested for their ability to bind to H-2Dd by serologic epitope induction assays using both purified soluble protein and cell surface H-2Dd. The dominant primary sequence motif included glycine at position 2, proline at position 3, and a hydrophobic COOH terminus: leucine, isoleucine, or phenylalanine at position 9 or 10. Ancillary support for high affinity binding was contributed by a positively charged residue at position 5. Three-dimensional computer models of H-2Dds/peptide complexes, based on the crystallographic structure of the human HLA-B27/peptide complex, showed that the basic residue at position 5 was in position to form a salt bridge with aspartic acid at position 156, a polymorphic residue of the H-2Dd heavy (H) chain. Analysis of 28 such models, including 17 based on nonamer self-peptides, revealed considerable variation in the structure of the major histocompatibility complex (MHC) surrounding peptide residue 1, depending on the size and charge of the side chain. Interactions between the side chains of peptide residues 5 and 7, and 6 and 8 commonly occurred. Those peptide positions with limited sequence variability and least solvent accessibility may satisfy structural requirements for high affinity binding of the peptide to the MHC class I H chain, whereas the highly variable positions of the peptide (such as positions 4, 6, and 8) may contribute more to the T cell epitopes. PMID:8245770

  15. Identification of Soft Matter Binding Peptide Ligands Using Phage Display.

    PubMed

    Günay, Kemal Arda; Klok, Harm-Anton

    2015-10-21

    Phage display is a powerful tool for the selection of highly affine, short peptide ligands. While originally primarily used for the identification of ligands to proteins, the scope of this technique has significantly expanded over the past two decades. Phage display nowadays is also increasingly applied to identify ligands that selectively bind with high affinity to a broad range of other substrates including natural and biological polymers as well as a variety of low-molecular-weight organic molecules. Such peptides are of interest for various reasons. The ability to selectively and with high affinity bind to the substrate of interest allows the conjugation or immobilization of, e.g., nanoparticles or biomolecules, or generally, facilitates interactions at materials interfaces. On the other hand, presentation of peptide ligands that selectively bind to low-molecular-weight organic materials is of interest for the development of sensor surfaces. The aim of this article is to highlight the opportunities provided by phage display for the identification of peptide ligands that bind to synthetic or natural polymer substrates or to small organic molecules. The article will first provide an overview of the different peptide ligands that have been identified by phage display that bind to these "soft matter" targets. The second part of the article will discuss the different characterization techniques that allow the determination of the affinity of the identified ligands to the respective substrates. PMID:26275106

  16. Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels.

    PubMed

    Roberts, Justine J; Elder, Robert M; Neumann, Alexander J; Jayaraman, Arthi; Bryant, Stephanie J

    2014-04-14

    This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide-hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration. PMID:24597474

  17. Screening of Pre-miRNA-155 Binding Peptides for Apoptosis Inducing Activity Using Peptide Microarrays.

    PubMed

    Pai, Jaeyoung; Hyun, Soonsil; Hyun, Ji Young; Park, Seong-Hyun; Kim, Won-Je; Bae, Sung-Hun; Kim, Nak-Kyoon; Yu, Jaehoon; Shin, Injae

    2016-01-27

    MicroRNA-155, one of the most potent miRNAs that suppress apoptosis in human cancer, is overexpressed in numerous cancers, and it displays oncogenic activity. Peptide microarrays, constructed by immobilizing 185 peptides containing the C-terminal hydrazide onto epoxide-derivatized glass slides, were employed to evaluate peptide binding properties of pre-miRNA-155 and to identify its binding peptides. Two peptides, which were identified based on the results of peptide microarray and in vitro Dicer inhibition studies, were found to inhibit generation of mature miRNA-155 catalyzed by Dicer and to enhance expression of miRNA-155 target genes in cells. In addition, the results of cell experiments indicate that peptide inhibitors promote apoptotic cell death via a caspase-dependent pathway. Finally, observations made in NMR and molecular modeling studies suggest that a peptide inhibitor preferentially binds to the upper bulge and apical stem-loop region of pre-miRNA-155, thereby suppressing Dicer-mediated miRNA-155 processing. PMID:26771315

  18. Identification of IgE binding to Api g 1-derived peptides.

    PubMed

    Ruppel, Elvira; Aÿ, Bernhard; Boisguerin, Prisca; Dölle, Sabine; Worm, Margitta; Volkmer, Rudolf

    2010-11-01

    Celery is a frequent cause of food allergy in pollen-sensitized patients and can induce severe allergic reactions. Clinical symptoms cannot be predicted by skin prick tests (SPTs) or by determining allergen-specific immunoglobulin E (IgE). Our aim was to identify specific IgE binding peptides by using an array technique. For our study, the sera of 21 patients with positive double-blind, placebo-controlled food challenge (DBPCFC) to celery, as well as the sera of 17 healthy patients were used. Additionally, all patients underwent skin tests along with determinations of specific IgE binding. The major allergen of celery Api g 1.0101 (Apium graveolens) was synthesized as an array of overlapping peptides and probed with the patients' sera. We developed an improved immunoassay protocol by investigating peptide lengths, peptide densities, incubation parameters, and readout systems, which could influence IgE binding. Sera of celery-allergic patients showed binding to three distinct regions of Api g 1.0101. The region including amino acids 100 to 126 of Api g 1.0101 is the most important region for IgE binding. This region caused a fivefold higher binding of IgE from the sera of celery-allergic patients compared to those of healthy individuals. In particular, one peptide (VLVPTADGGSIC) was recognized by all sera of celery-allergic patients. In contrast, no binding to this peptide was detected in sera of the healthy controls. Our improved assay strategy allows us to distinguish between celery-allergic and healthy individuals, but needs to be explored in a larger cohort of well-defined patients.

  19. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R.; Song, Jie; Lee, Seung-Wuk

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  20. Fluorine substitutions in an antigenic peptide selectively modulate T-cell receptor binding in a minimally perturbing manner

    SciTech Connect

    Piepenbrink, Kurt H.; Borbulevych, Oleg Y.; Sommese, Ruth F.; Clemens, John; Armstrong, Kathryn M.; Desmond, Clare; Do, Priscilla; Baker, Brian M.

    2010-08-17

    TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide - MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.

  1. Antimicrobial peptides bind more strongly to membrane pores

    PubMed Central

    Mihajlovic, Maja

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize bacterial membranes. Understanding their mechanism of action might help design better antibiotics. Using an implicit membrane model, modified to include pores of different shapes, we show that four AMPs (alamethicin, melittin, a magainin analogue, MG-H2, and piscidin 1) bind more strongly to membrane pores, consistent with the idea that they stabilize them. The effective energy of alamethicin in cylindrical pores is similar to that in toroidal pores, whereas the effective energy of the other three peptides is lower in toroidal pores. Only alamethicin intercalates into the membrane core; MG-H2, melittin and piscidin are located exclusively at the hydrophobic/hydrophilic interface. In toroidal pores, the latter three peptides often bind at the edge of the pore, and are in an oblique orientation. The calculated binding energies of the peptides are correlated with their hemolytic activities. We hypothesize that one distinguishing feature of AMPs may be the fact that they are imperfectly amphipathic which allows them to bind more strongly to toroidal pores. An initial test on a melittin-based mutant seems to support this hypothesis. PMID:20188066

  2. Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    PubMed Central

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies. PMID:26791954

  3. Canine malignant melanoma alpha-3 integrin binding peptides

    PubMed Central

    Aina, Olulanu H.; Maeda, Yoshiko; Harrison, Matthew; Zwingenberger, Allison L.; Walker, Naomi J.; Lam, Kit S.; Kent, Michael S.

    2014-01-01

    There is a need to develop novel targeted imaging and therapeutic agents that can aid in early diagnosis, detection of metastasis and treatment of melanoma. Alpha-3 integrin is overexpressed in 82% of metastatic melanomas in humans and may be a potential target for peptide ligands carrying therapeutic agents. Five melanoma cell lines were generated from canine primary oral and metastatic canine tumors, grown in mice, and validated with melanoma markers Melan A, S-100, Micropthalmia transcription factor (MITF), Tyrosinase, and MART-1. The melanoma cell lines were tested for binding affinity to previously published alpha-3 integrin-binding peptides containing the cdGXGXXc motif. Fluorescent conjugates of the alpha-3 integrin binding OA02 peptide were used to quantify receptor affinity in the cell lines, a specimen of canine primary oral melanoma, and melanoma xenografts. Alpha-3 integrin was expressed by all 5 canine melanoma cell lines. Four of the 5 lines as well as the primary canine tumor showed affinity to alpha-3 integrin binding peptides with the cdGXGXXc motif. Optical imaging of canine melanoma xenografts in nude mice indicates rapid, strong uptake of the optical tracer in the tumor with an average persistence of approximately 48 hours. Ex vivo images showed high tumor-to-background ratio, with tumor signals more than twice that of the kidney and other vital organs. We propose that integrin alpha-3 integrin binding ligands could potentially become useful probes for imaging and delivery of cytotoxic agents for the treatment of melanoma. PMID:21722969

  4. Selection of ceramic fluorapatite-binding peptides from a phage display combinatorial peptide library: optimum affinity tags for fluorapatite chromatography.

    PubMed

    Islam, Tuhidul; Bibi, Noor Shad; Vennapusa, Rami Reddy; Fernandez-Lahore, Marcelo

    2013-08-01

    Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA-specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N-terminal sequence was found in two selected peptides: F4-2 (KPRSMLH) and F5-4 (KPRSVSG). The peptide F5-4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5-4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage-derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins.

  5. Interaction of Hyaluronan Binding Peptides with Glycosaminoglycans in Poly(ethylene glycol) Hydrogels

    PubMed Central

    2015-01-01

    This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide–hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration. PMID:24597474

  6. Isolation of peptides from phage-displayed random peptide libraries that interact with the talin-binding domain of vinculin.

    PubMed Central

    Adey, N B; Kay, B K

    1997-01-01

    Peptides isolated from combinatorial libraries typically interact with, and thus help to characterize, biologically relevant binding domains of target proteins. To characterize the binding domains of the focal adhesion protein vinculin, vinculin-binding peptides were isolated from two phage-displayed random peptide libraries. Altogether, five non-similar vinculin-binding peptides were identified. Despite the lack of obvious sequence similarity between the peptides, binding and competition studies indicated that all five interact with the talin-binding domain of vinculin and do not disrupt the binding of alpha-actinin or paxillin to vinculin. The identified peptides and talin bind to vinculin in a comparable manner; both bind to immobilized vinculin, but neither binds to soluble vinculin unless the C-terminus of vinculin has been deleted. An analysis of amino acid variants of one of the peptides has revealed three non-contiguous motifs that also occur in the region of talin previously demonstrated to bind vinculin. Amino acid substitutions within a 127-residue segment of talin capable of binding vinculin confirmed the importance of two of the motifs and suggest that residues critical for binding are within a 16-residue region. This study demonstrates that the vinculin-binding peptides interact with vinculin in a biologically relevant manner and represent an excellent tool for further study of the biochemistry of vinculin. PMID:9182713

  7. SPARC is a source of copper-binding peptides that stimulate angiogenesis.

    PubMed

    Lane, T F; Iruela-Arispe, M L; Johnson, R S; Sage, E H

    1994-05-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113-130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  8. SPARC is a source of copper-binding peptides that stimulate angiogenesis

    PubMed Central

    1994-01-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo. PMID:7514608

  9. Selection of peptides binding to metallic borides by screening M13 phage display libraries

    PubMed Central

    2014-01-01

    Background Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. Results In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. Conclusions This study is, to our knowledge, the first to identify peptides that

  10. Biochemical Identification of a Linear Cholesterol-Binding Domain within Alzheimer’s β Amyloid Peptide

    PubMed Central

    2012-01-01

    Alzheimer’s β-amyloid (Aβ) peptides can self-organize into amyloid pores that may induce acute neurotoxic effects in brain cells. Membrane cholesterol, which regulates Aβ production and oligomerization, plays a key role in this process. Although several data suggested that cholesterol could bind to Aβ peptides, the molecular mechanisms underlying cholesterol/Aβ interactions are mostly unknown. On the basis of docking studies, we identified the linear fragment 22–35 of Aβ as a potential cholesterol-binding domain. This domain consists of an atypical concatenation of polar/apolar amino acid residues that was not previously found in cholesterol-binding motifs. Using the Langmuir film balance technique, we showed that synthetic peptides Aβ17–40 and Aβ22–35, but not Aβ1–16, could efficiently penetrate into cholesterol monolayers. The interaction between Aβ22–35 and cholesterol was fully saturable and lipid-specific. Single-point mutations of Val-24 and Lys-28 in Aβ22–35 prevented cholesterol binding, whereas mutations at residues 29, 33, and 34 had little to no effect. These data were consistent with the in silico identification of Val-24 and Lys-28 as critical residues for cholesterol binding. We conclude that the linear fragment 22–35 of Aβ is a functional cholesterol-binding domain that could promote the insertion of β-amyloid peptides or amyloid pore formation in cholesterol-rich membrane domains. PMID:23509984

  11. Generation of high-performance binding proteins for peptide motifs by affinity clamping

    PubMed Central

    Koide, Shohei; Huang, Jin

    2013-01-01

    We describe concepts and methodologies for generating “Affinity Clamps”, a new class of recombinant binding proteins that achieve high affinity and high specificity toward short peptide motifs of biological importance, which is a major challenge in protein engineering. The Affinity Clamping concept exploits the potential of nonhomologous recombination of protein domains in generating large changes in protein function and the inherent binding affinity and specificity of the so-called modular interaction domains toward short peptide motifs. Affinity Clamping creates a clamshell architecture that clamps onto a target peptide. The design processes involve (i) choosing a starting modular interaction domain appropriate for the target and applying structure-guided modifications, (ii) attaching a second domain, termed “enhancer domain” and (iii) optimizing the peptide-binding site located between the domains by directed evolution. The two connected domains work synergistically to achieve high levels of affinity and specificity that are unattainable with either domain alone. Because of the simple and modular architecture, affinity clamps are particularly well suited as building blocks for designing more complex functionalities. Affinity Clamping represents a major advance in protein design that is broadly applicable to the recognition of peptide motifs. PMID:23422435

  12. Site-specific, covalent incorporation of Tus, a DNA-binding protein, on ionic-complementary self-assembling peptide hydrogels using transpeptidase Sortase A as a conjugation tool† †Dedicated to the memory of Joachim H. G. Steinke. ‡ ‡Electronic supplementary information (ESI) available: Further experimental data. See DOI: 10.1039/c3sm00131hClick here for additional data file.

    PubMed Central

    Piluso, Susanna; Cassell, Heather C.; Gibbons, Jonathan L.; Waller, Thomas E.; Plant, Nick J.; Miller, Aline F.

    2013-01-01

    The site-specific conjugation of DNA-binding protein (Tus) to self-assembling peptide FEFEFKFKK was demonstrated. Rheology studies and TEM of the corresponding hydrogels (including PNIPAAm-containing systems) showed no significant variation in properties and hydrogel morphology compared to FEFEFKFKK. Critically, we demonstrate that Tus is accessible within the gel network displaying DNA-binding properties. PMID:23847687

  13. Site-specific, covalent incorporation of Tus, a DNA-binding protein, on ionic-complementary self-assembling peptide hydrogels using transpeptidase Sortase A as a conjugation tool†Dedicated to the memory of Joachim H. G. Steinke.‡Electronic supplementary information (ESI) available: Further experimental data. See DOI: 10.1039/c3sm00131hClick here for additional data file.

    PubMed

    Piluso, Susanna; Cassell, Heather C; Gibbons, Jonathan L; Waller, Thomas E; Plant, Nick J; Miller, Aline F; Cavalli, Gabriel

    2013-08-01

    The site-specific conjugation of DNA-binding protein (Tus) to self-assembling peptide FEFEFKFKK was demonstrated. Rheology studies and TEM of the corresponding hydrogels (including PNIPAAm-containing systems) showed no significant variation in properties and hydrogel morphology compared to FEFEFKFKK. Critically, we demonstrate that Tus is accessible within the gel network displaying DNA-binding properties. PMID:23847687

  14. Fe(2+) binding on amyloid β-peptide promotes aggregation.

    PubMed

    Boopathi, Subramaniam; Kolandaivel, Ponmalai

    2016-09-01

    The metal ions Zn(2+) , Cu(2+) , and Fe(2+) play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06-2X/6-311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1-42 -Zn(2+) , Aβ1-42 -Cu(2+) , and Aβ1-42 -Fe(2+) systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N-terminal. The present investigation, the Aβ1-42 -Zn(2+) system possess three turn conformations separated by coil structure. Zn(2+) binding caused the loss of the helical structure of N-terminal residues which transformed into the S-shaped conformation. Zn(2+) has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu(2+) binds with peptide, β sheet formation is observed at the N-terminal residues of the peptide. Fe(2+) binding is to promote the formation of Glu22-Lys28 salt-bridge which stabilized the turn conformation in the Phe19-Gly25 residues, subsequently β sheets were observed at His13-Lys18 and Gly29-Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe(2+) binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe(2+) promotes the oligomerization by enhancing the peptide-peptide interaction. Proteins 2016; 84:1257-1274. © 2016 Wiley Periodicals, Inc. PMID:27214008

  15. Fe(2+) binding on amyloid β-peptide promotes aggregation.

    PubMed

    Boopathi, Subramaniam; Kolandaivel, Ponmalai

    2016-09-01

    The metal ions Zn(2+) , Cu(2+) , and Fe(2+) play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06-2X/6-311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1-42 -Zn(2+) , Aβ1-42 -Cu(2+) , and Aβ1-42 -Fe(2+) systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N-terminal. The present investigation, the Aβ1-42 -Zn(2+) system possess three turn conformations separated by coil structure. Zn(2+) binding caused the loss of the helical structure of N-terminal residues which transformed into the S-shaped conformation. Zn(2+) has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu(2+) binds with peptide, β sheet formation is observed at the N-terminal residues of the peptide. Fe(2+) binding is to promote the formation of Glu22-Lys28 salt-bridge which stabilized the turn conformation in the Phe19-Gly25 residues, subsequently β sheets were observed at His13-Lys18 and Gly29-Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe(2+) binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe(2+) promotes the oligomerization by enhancing the peptide-peptide interaction. Proteins 2016; 84:1257-1274. © 2016 Wiley Periodicals, Inc.

  16. Discovery and application of peptides that bind to proteins and solid state inorganic materials

    NASA Astrophysics Data System (ADS)

    Stearns, Linda A.

    A series of three projects was undertaken on the theme of peptide-based molecular recognition. In the first project, a messenger RNA (mRNA) display selection was carried out against the II-VI semiconductors zinc sulfide (ZnS), zinc selenide (ZnSe), and cadmium sulfide (CdS). Sequence analysis of 18-mer semiconductor-binding peptides (SBPs) following four rounds of selection indicated that the amino acid sequences were enriched in polar residues compared to the naive library, suggesting that hydrogen-bonding interactions are a dominant mode of interaction between the SBPs and their cognate inorganic surfaces. Select peptides were expressed as fusions of the green fluorescent protein (GFP) to visualize their recognition of semiconductor crystals. Interpretation of the results was complicated by a high fluorescence background that was observed with certain control GFP fusions. Additional experiments, including cross-specificity binding assays, are needed to characterize the peptides that were isolated in this selection. A second project described the practical application of a known inorganic-binding and nucleating peptide. Peptide A3, which was previously isolated by phage display, was chemically conjugated to a short DNA strand using the heterobifunctional linker succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (SMCC). The resulting peptide-DNA conjugate was hybridized to ten complementary single-stranded capture probes extending outward from the surface of an origami DNA nanotube. A gold precursor solution was added to initiate nucleation and growth of gold nanoparticles at the site of the peptide. Transmission electron microscopy (TEM) was used to visualize the gold nanoparticle-decorated nanostructures. This approach holds immense promise for organizing compositionally-diverse materials at the nanoscale. In a third project, a novel non-iterative approach to mRNA display called covalent capture was demonstrated. Using human transferrin as a target

  17. [76Br]BMK-152, a non-peptide analogue, with high affinity and low non-specific binding for the Corticotropin-Releasing Factor Type 1 Receptor (CRF1 receptor)

    PubMed Central

    Jagoda, Elaine M.; Lang, Lixin; McCullough, Karen; Contoreggi, Carlo; Kim, B. Moon; Ma, Ying; Rice, Kenner C.; Szajek, Lawrence P; Eckelman, William C.; Kiesewetter, Dale O.

    2013-01-01

    Corticotropin-releasing factor (CRF), a neuropeptide, regulates endocrine and autonomic responses to stress through G-protein coupled receptors, CRF1 or CRF2. A PET ligand able to monitor changes in CRF1 receptor occupancy in vivo would aid in understanding the pathophysiology of stress related diseases as well as in the clinical development of non-peptide antagonists with therapeutic value. We have radiolabeled the CRF1 receptor ligand, BMK-152 ([8-(4-bromo-2,6-dimethoxyphenyl)-2,7-dimethylpyrazolo[1,5-α][1,3,5]triazin-4-yl]-N,N-bis-(2-methoxyethyl)amine; ClogP= 2.6), at both the 3 and 4 position with [76Br]. Using in vitro autoradiography saturation studies the 4-[76Br]BMK-152 exhibited high affinity binding to both rat (Kd = 0.23 ± 0.07 nM; n=3) and monkey frontal cortex (Kd = 0.31 ± 0.08 nM; n=3) consistent with CRF1 receptor regional distribution whereas with the 3-[76Br]BMK-152, the Kd's could not be determined due to high non-specific binding. In vitro autoradiography competition studies using [125I]Tyr0-o-CRF confirmed that 3-Br-BMK-152 (Ki = 24.4 ± 4.9 nM; n=3) had lower affinity (70 fold) than 4-Br-BMK-152 (Ki = 0.35 ± 0.07 nM; n=3) in monkey frontal cortex and similiar studies using [125I]Sauvagine confirmed CRF1 receptor selectivity. In vivo studies with P-glycoprotein (PGP) knockout mice (KO) and their wildtype littermates (WT) showed that the brain uptake of 3-[76Br]BMK/4-[76Br]BMK was increased < 2 fold in KO vs WT indicating that 3-[76Br]BMK-152/4-[76Br]BMK was not a Pgp substrate. Rat brain uptakes of 4-[76Br] BMK-152 from ex vivo autoradiography studies showed regional localization consistent with known published CRF1 receptor distribution and potential as a PET ligand for in vivo imaging of CRF1 receptors. PMID:21308801

  18. Binding Interactions of Bacterial Lipopolysaccharide and the Cationic Amphiphilic Peptides Polymyxin B and WLBU2

    PubMed Central

    Ryder, Matthew P.; Wu, Xiangming; McKelvey, GregR.; McGuire, Joseph; Schilke, Karl F.

    2014-01-01

    Passage of blood through a sorbent device for removal of bacteria and endotoxin by specific binding with immobilized, membrane-active, bactericidal peptides holds promise for treating severe blood infections. Peptide insertion in the target membrane and rapid/strong binding is desirable, while membrane disruption and release of degradation products to the circulating blood is not. Here we describe interactions between bacterial endotoxin (lipopolysaccharide, LPS) and the membrane-active, bactericidal peptides WLBU2 and polymyxin B (PmB). Analysis of the interfacial behavior of mixtures of LPS and peptide using air-water interfacial tensiometry and optical waveguide lightmode spectroscopy strongly suggests insertion of intact LPS vesicles by the peptide WLBU2 without vesicle destabilization. In contrast, dynamic light scattering (DLS) studies show that LPS vesicles appear to undergo peptide-induced destabilization in the presence of PmB. Circular dichroism spectra further confirm that WLBU2, which shows disordered structure in aqueous solution and substantially helical structure in membrane-mimetic environments, is stably located within the LPS membrane in peptide-vesicle mixtures. We therefore expect that presentation of WLBU2 at an interface, if tethered in a fashion which preserves its mobility and solvent accessibility, will enable the capture of bacteria and endotoxin without promoting reintroduction of endotoxin to the circulating blood, thus minimizing adverse clinical outcomes. On the other hand, our results suggest no such favorable outcome of LPS interactions with polymyxin B. PMID:24905681

  19. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development.

  20. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. PMID:27491034

  1. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.

    PubMed

    Seker, Urartu Ozgur Safak; Wilson, Brandon; Kulp, John L; Evans, John S; Tamerler, Candan; Sarikaya, Mehmet

    2014-07-14

    l-GBP does not fold in the presence of TFE, 3l-GBP1 adopted two types of secondary structure (β-strand, α-helix) and that peptide's binding to the solid is enhanced by the presence of low percentages of TFE solvent. Not only do these kinetics and thermodynamics results provide adsorption behavior and binding of genetically engineered peptides for inorganics (GEPI), but they could also provide considerable insights into fundamental understanding peptide molecular recognition and their selective specificity for the solids. Moreover, comprehensive work described herein suggests that multiple repeat forms of the solid binding peptides possess a conformational component that can be exploited to further tailor affinity and binding of a given sequence to a solid material followed by ordered assembly as a convenient tool in future practical applications.

  2. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.

    PubMed

    Seker, Urartu Ozgur Safak; Wilson, Brandon; Kulp, John L; Evans, John S; Tamerler, Candan; Sarikaya, Mehmet

    2014-07-14

    l-GBP does not fold in the presence of TFE, 3l-GBP1 adopted two types of secondary structure (β-strand, α-helix) and that peptide's binding to the solid is enhanced by the presence of low percentages of TFE solvent. Not only do these kinetics and thermodynamics results provide adsorption behavior and binding of genetically engineered peptides for inorganics (GEPI), but they could also provide considerable insights into fundamental understanding peptide molecular recognition and their selective specificity for the solids. Moreover, comprehensive work described herein suggests that multiple repeat forms of the solid binding peptides possess a conformational component that can be exploited to further tailor affinity and binding of a given sequence to a solid material followed by ordered assembly as a convenient tool in future practical applications. PMID:24892212

  3. Tumor-Specific Peptide, Selected from a Phage Peptide Library, Enhances Antitumor Activity of Lactaptin

    PubMed Central

    Makartsova, Anna A.; Fomin, Alexandr S.; Nushtaeva, Anna A.; Koval, Olga A.

    2016-01-01

    A recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, induces apoptosis in cultured tumor cells. The tumor suppression efficacy of RL2 was shown against mouse hepatoma-1 cells and MDA-MB-231 human breast adenocarcinoma cells. The RL2-based therapeutic drug lactaptin is distributed evenly throughout the organism, which reduces its antitumor efficacy. In the current study, we obtained a genetic construct that allows production of the recombinant fusion protein T3-RL2, consisting of RL2 and T3 peptide (YTYDPWLIFPAN), in E. coli cells. T3 peptide was selected from a phage peptide library as a result of two screenings: in vitro using MDA-MB-231 cell culture and in vivo using a mouse xenograft model of breast cancer MDA-MB-231. It was shown that the displayed peptide T3 provides binding and internalization of phage particles by MDA-MB-231 cells and their specific accumulation in MDA-MB-231 tumor tissue. In addition, based on the nucleotide sequences coding RL2 and the known tumor-targeting peptide iRGD, we obtained genetic constructs that provide synthesis of fusion proteins RL2-iRGD and RL-iRGD-His. We studied the cytotoxic activity of fusion proteins T3-RL2, RL2-iRGD and RL-iRGD-His in vitro using MDA-MB-231 and MCF-7 human adenocarcinoma cells. The in vitro results showed that the fusion proteins inhibit proliferation of both cell cultures, and their cytotoxic activity is higher than that of RL2. In vivo experiments on the study of the antitumor efficacy of the obtained fusion proteins demonstrated that T3-RL2 protein significantly inhibits MDA-MB-231 tumor growth in a xenograft model compared with RL2, while the antitumor effect of RL2-iRGD and RL-iRGD-His proteins is comparable to the effect of RL2. PMID:27513518

  4. Tumor-Specific Peptide, Selected from a Phage Peptide Library, Enhances Antitumor Activity of Lactaptin.

    PubMed

    Nemudraya, Anna A; Makartsova, Anna A; Fomin, Alexandr S; Nushtaeva, Anna A; Koval, Olga A; Richter, Vladimir A; Kuligina, Elena V

    2016-01-01

    A recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, induces apoptosis in cultured tumor cells. The tumor suppression efficacy of RL2 was shown against mouse hepatoma-1 cells and MDA-MB-231 human breast adenocarcinoma cells. The RL2-based therapeutic drug lactaptin is distributed evenly throughout the organism, which reduces its antitumor efficacy. In the current study, we obtained a genetic construct that allows production of the recombinant fusion protein T3-RL2, consisting of RL2 and T3 peptide (YTYDPWLIFPAN), in E. coli cells. T3 peptide was selected from a phage peptide library as a result of two screenings: in vitro using MDA-MB-231 cell culture and in vivo using a mouse xenograft model of breast cancer MDA-MB-231. It was shown that the displayed peptide T3 provides binding and internalization of phage particles by MDA-MB-231 cells and their specific accumulation in MDA-MB-231 tumor tissue. In addition, based on the nucleotide sequences coding RL2 and the known tumor-targeting peptide iRGD, we obtained genetic constructs that provide synthesis of fusion proteins RL2-iRGD and RL-iRGD-His. We studied the cytotoxic activity of fusion proteins T3-RL2, RL2-iRGD and RL-iRGD-His in vitro using MDA-MB-231 and MCF-7 human adenocarcinoma cells. The in vitro results showed that the fusion proteins inhibit proliferation of both cell cultures, and their cytotoxic activity is higher than that of RL2. In vivo experiments on the study of the antitumor efficacy of the obtained fusion proteins demonstrated that T3-RL2 protein significantly inhibits MDA-MB-231 tumor growth in a xenograft model compared with RL2, while the antitumor effect of RL2-iRGD and RL-iRGD-His proteins is comparable to the effect of RL2. PMID:27513518

  5. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion.

    PubMed

    Hirst, Daniel J; Lee, Tzong-Hsien; Kulkarni, Ketav; Wilce, Jacqueline A; Aguilar, Marie-Isabel

    2016-08-01

    We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions. PMID:27163492

  6. Identification of peptides that bind hepatitis C virus envelope protein E2 and inhibit viral cellular entry from a phage-display peptide library.

    PubMed

    Lü, Xin; Yao, Min; Zhang, Jian-Min; Yang, Jing; Lei, Ying-Feng; Huang, Xiao-Jun; Jia, Zhan-Sheng; Ma, Li; Lan, Hai-Yun; Xu, Zhi-Kai; Yin, Wen

    2014-05-01

    Hepatitis C virus (HCV) envelope protein E2 is required for the entry of HCV into cells. Viral envelope proteins interact with cell receptors in a multistep process, which may be a promising target for the development of novel antiviral agents. In this study, a heptapeptide M13 phage-display library was screened for peptides that bind specifically to prokaryotically expressed, purified truncated HCV envelope protein E2. ELISA assay was used to quantify the binding of the peptides to HCV E2 protein. Flow cytometry, quantitative reverse-transcription PCR and western blotting were used to investigate the inhibition effect of one peptide on HCV infection in hepatoma cells (Huh7.5) in vitro. Four peptides capable of binding specifically to HCV E2 protein were obtained after three rounds of biopanning. Peptide C18 (WPWHNHR), with the highest affinity for binding HCV E2 protein, was synthesized. The results showed that peptide C18 inhibited the viral infectivity of both HCV pseudotype particles (HCVpp) harboring HCV envelope glycoproteins and cell-culture produced HCV (HCVcc). Thus, this study demonstrated that peptide C18 is a potential candidate for anti-HCV therapy as a novel viral entry inhibitor.

  7. Coupled Folding and Specific Binding: Fishing for Amphiphilicity

    PubMed Central

    Jain, Vikas P.; Tu, Raymond S.

    2011-01-01

    Proteins are uniquely capable of identifying targets with unparalleled selectivity, but, in addition to the precision of the binding phenomenon, nature has the ability to find its targets exceptionally quickly. Transcription factors for instance can bind to a specific sequence of nucleic acids from a soup of similar, but not identical DNA strands, on a timescale of seconds. This is only possible with the enhanced kinetics provided for by a natively disordered structure, where protein folding and binding are cooperative processes. The secondary structures of many proteins are disordered under physiological conditions. Subsequently, the disordered structures fold into ordered structures only when they bind to their specific targets. Induced folding of the protein has two key biological advantages. First, flexible unstructured domains can result in an intrinsic plasticity that allows them to accommodate targets of various size and shape. And, second, the dynamics of this folding process can result in enhanced binding kinetics. Several groups have hypothesized the acceleration of binding kinetics is due to induced folding where a “fly-casting” effect has been shown to break the diffusion-limited rate of binding. This review describes experimental results in rationally designed peptide systems where the folding is coupled to amphiphilicity and biomolecular activity. PMID:21673899

  8. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c

  9. Specific binding of atrial natriuretic factor in brain microvessels

    SciTech Connect

    Chabrier, P.E.; Roubert, P.; Braquet, P.

    1987-04-01

    Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. The authors examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using /sup 125/I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity and with a binding capacity of 58 fmol/mg of protein. The binding of /sup 125/I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function.

  10. Identification and Tumour-Binding Properties of a Peptide with High Affinity to the Disialoganglioside GD2

    PubMed Central

    Müller, Jan; Reichel, Robin; Vogt, Sebastian; Müller, Stefan P.; Sauerwein, Wolfgang; Brandau, Wolfgang; Eggert, Angelika

    2016-01-01

    Neuroectodermal tumours are characterized by aberrant processing of disialogangliosides concomitant with high expression of GD2 or GD3 on cell surfaces. Antibodies targeting GD2 are already in clinical use for therapy of neuroblastoma, a solid tumour of early childhood. Here, we set out to identify peptides with high affinity to human disialoganglioside GD2. To this end, we performed a combined in vivo and in vitro screen using a recombinant phage displayed peptide library. We isolated a phage displaying the peptide sequence WHWRLPS that specifically binds to the human disialoganglioside GD2. Binding specificity was confirmed by mutational scanning and by comparative analyses using structurally related disialogangliosides. In vivo, significant enrichment of phage binding to xenografts of human neuroblastoma cells in mice was observed. Tumour-specific phage accumulation could be blocked by intravenous coinjection of the corresponding peptide. Comparative pharmacokinetic analyses revealed higher specific accumulation of 68Ga-labelled GD2-binding peptide compared to 111In-labelled peptide in xenografts of human neuroblastoma. In contrast to 124I-MIBG, which is currently evaluated as a neuroblastoma marker in PET/CT, 68Ga-labelled GD2-specific peptide spared the thyroid but was enriched in the kidneys, which could be partially blocked by infusion of amino acids.In summary, we here report on a novel tumour-homing peptide that specifically binds to the disialoganglioside GD2, accumulates in xenografts of neuroblastoma cells in mice and bears the potential for tumour detection using PET/CT. Thus, this peptide may serve as a new scaffold for diagnosing GD2-positive tumours of neuroectodermal origin. PMID:27716771

  11. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    PubMed

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.

  12. On the mechanism of targeting of phage fusion protein-modified nanocarriers: only the binding peptide sequence matters.

    PubMed

    Wang, Tao; Kulkarni, Nikita; D'Souza, Gerard G M; Petrenko, Valery A; Torchilin, Vladimir P

    2011-10-01

    The integration of pharmaceutical nanocarriers with phage display techniques is emerging as a new paradigm for targeted cancer nanomedicines. We explored the direct use of landscape phage fusion proteins for the self-assembly of phage-derived binding peptides to liposomes for cancer cell targeting. The primary purpose of this study was to elucidate the targeting mechanism with a particular emphasis on the relative contributions of the two motifs that make up the landscape phage fusion protein (a binding peptide and the phage pVIII coat protein) to the targeting efficiency. Using transmission electron microscopy and dynamic light scattering, we confirmed the formation of phage-liposomes. Using FACS analysis, fluorescence microscopy, and fluorescence photospectrometry, we found that liposomes modified with MCF-7-specific phage fusion proteins (MCF-7 binding peptide, DMPGTVLP, fused to the phage PVIII coat protein) provided a strong and specific association with target MCF-7 cancer cells but not with cocultured, nontarget cells including C166-GFP and NIH3T3. The substitution for the binding peptide fused to phage pVIII coat protein abolished the targeting specificity. The addition of free binding peptide, DMPGTVLP, competitively inhibited the interaction of MCF-7-specific phage-liposomes with target MCF-7 cells but showed no reduction of MCF-7-associated plain liposomes. The proteolysis of the binding peptide reduced MCF-7 cell-associated phage-liposomes in a proteinase K (PK) concentration-dependent manner with no effect on the binding of plain liposomes to MCF-7 cells. Overall, only the binding peptide motif was involved in the targeting specificity of phage-liposomes. The presence of phage pVIII coat protein did not interfere with the targeting efficiency. PMID:21675738

  13. On the mechanism of targeting of phage fusion protein-modified nanocarriers: only the binding peptide sequence matters

    PubMed Central

    Wang, Tao; Kulkarni, Nikita; D’Souza, Gerard G.M.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2011-01-01

    The integration of pharmaceutical nanocarriers with phage display techniques is emerging as a new paradigm for targeted cancer nanomedicines. We explored the direct use of landscape phage fusion proteins for the self-assembly of phage-derived binding peptides to liposomes for cancer cell targeting. The primary purpose of this study was to elucidate the targeting mechanism with a particular emphasis on the relative contributions of the two motifs that make up the landscape phage fusion protein (a binding peptide and the phage pVIII coat protein) to the targeting efficiency. Using transmission electron microscopy and dynamic light scattering, we confirmed the formation of phage-liposomes. Using FACS analysis, fluorescence microscopy, and fluorescence photospectrometry, we found that liposomes modified with MCF-7-specific phage fusion proteins (MCF-7 binding peptide, DMPGTVLP, fused to the phage PVIII coat protein) provided a strong and specific association with target MCF-7 cancer cells but not with co-cultured, non-target cells including C166-GFP and NIH3T3. The substitution for the binding peptide fused to phage pVIII coat protein abolished the targeting specificity. The addition of free binding peptide, DMPGTVLP, competitively inhibited the interaction of MCF-7-specific phage-liposomes with target MCF-7 cells but showed no reduction of MCF-7-associated plain liposomes. The proteolysis of the binding peptide reduced MCF-7 cell-associated phage-liposomes in a proteinase K (PK) concentration-dependent manner with no effect on the binding of plain liposomes to MCF-7 cells. Overall, only the binding peptide motif was involved in the targeting specificity of phage-liposomes. The presence of phage pVIII coat protein did not interfere with the targeting efficiency. PMID:21675738

  14. Rapid discovery of peptide capture candidates with demonstrated specificity for structurally similar toxins

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Hurley, Margaret M.; Coppock, Matthew B.; Farrell, Mikella E.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    Peptides have emerged as viable alternatives to antibodies for molecular-based sensing due to their similarity in recognition ability despite their relative structural simplicity. Various methods for peptide capture reagent discovery exist, including phage display, yeast display, and bacterial display. One of the primary advantages of peptide discovery by bacterial display technology is the speed to candidate peptide capture agent, due to both rapid growth of bacteria and direct utilization of the sorted cells displaying each individual peptide for the subsequent round of biopanning. We have previously isolated peptide affinity reagents towards protective antigen of Bacillus anthracis using a commercially available automated magnetic sorting platform with improved enrichment as compared to manual magnetic sorting. In this work, we focus on adapting our automated biopanning method to a more challenging sort, to demonstrate the specificity possible with peptide capture agents. This was achieved using non-toxic, recombinant variants of ricin and abrin, RiVax and abrax, respectively, which are structurally similar Type II ribosomal inactivating proteins with significant sequence homology. After only two rounds of biopanning, enrichment of peptide capture candidates binding abrax but not RiVax was achieved as demonstrated by Fluorescence Activated Cell Sorting (FACS) studies. Further sorting optimization included negative sorting against RiVax, proper selection of autoMACS programs for specific sorting rounds, and using freshly made buffer and freshly thawed protein target for each round of biopanning for continued enrichment over all four rounds. Most of the resulting candidates from biopanning for abrax binding peptides were able to bind abrax but not RiVax, demonstrating that short peptide sequences can be highly specific even at this early discovery stage.

  15. Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells.

    PubMed

    García, Javier E; Puentes, Alvaro; Curtidor, Hernando; Vera, Ricardo; Rodriguez, Luis; Valbuena, John; López, Ramses; Ocampo, Marisol; Cortés, Jimena; Vanegas, Magnolia; Rosas, Jaiver; Reyes, Claudia; Patarroyo, Manuel E

    2005-07-01

    Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.

  16. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus.

    PubMed

    Ooi, Diana Jia Miin; Dzulkurnain, Adriya; Othman, Rofina Yasmin; Lim, Saw Hoon; Harikrishna, Jennifer Ann

    2006-09-01

    A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.

  17. Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides

    PubMed Central

    Kotrba, Pavel; Dolečková, Lucie; de Lorenzo, Víctor; Ruml, Tomas

    1999-01-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal. PMID:10049868

  18. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides

    PubMed Central

    Kang, Juanjuan; Ru, Beibei; Zhou, Peng

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  19. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides.

    PubMed

    He, Bifang; Kang, Juanjuan; Ru, Beibei; Ding, Hui; Zhou, Peng; Huang, Jian

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community. PMID:27610387

  20. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides

    PubMed Central

    Kang, Juanjuan; Ru, Beibei; Zhou, Peng

    2016-01-01

    Streptavidin is sometimes used as the intended target to screen phage-displayed combinatorial peptide libraries for streptavidin-binding peptides (SBPs). More often in the biopanning system, however, streptavidin is just a commonly used anchoring molecule that can efficiently capture the biotinylated target. In this case, SBPs creeping into the biopanning results are not desired binders but target-unrelated peptides (TUP). Taking them as intended binders may mislead subsequent studies. Therefore, it is important to find if a peptide is likely to be an SBP when streptavidin is either the intended target or just the anchoring molecule. In this paper, we describe an SVM-based ensemble predictor called SABinder. It is the first predictor for SBP. The model was built with the feature of optimized dipeptide composition. It was observed that 89.20% (MCC = 0.78; AUC = 0.93; permutation test, p < 0.001) of peptides were correctly classified. As a web server, SABinder is freely accessible. The tool provides a highly efficient way to exclude potential SBP when they are TUP or to facilitate identification of possibly new SBP when they are the desired binders. In either case, it will be helpful and can benefit related scientific community.

  1. Engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing.

    PubMed

    McLaughlin, Megan E; Sidhu, Sachdev S

    2013-01-01

    Protein interaction networks depend in part on the specific recognition of unstructured peptides by folded domains. Understanding how members of a domain family use a similar fold to recognize different peptide sequences selectively is a fundamental question. One way to advance our understanding of peptide recognition is to apply an existing model of peptide recognition for a particular domain toward engineering synthetic domain variants with desired properties. Successes, failures, and unintended outcomes can help refine the model and can illuminate more general principles of peptide recognition. Using the PDZ domain fold as an example, we describe methods for (1) structure-based combinatorial library design and directed evolution of domain variants and (2) specificity profiling of large repertoires of synthetic variants using multiplexed deep sequencing. Peptide-binding preferences for hundreds of variants can be decoded in parallel, enabling comparisons between different library designs and selection pressures. The tremendous depth of coverage of the binding peptide profiles also permits robust computational analysis. This approach to studying peptide recognition can be applied to other domains and to a variety of structural and functional models by tailoring the combinatorial library design and selection pressures accordingly.

  2. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    PubMed

    Memczak, Henry; Lauster, Daniel; Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F; Stöcklein, Walter F M

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  3. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding

    PubMed Central

    Kar, Parimal; Di Lella, Santiago; Volkmer, Rudolf; Knecht, Volker; Herrmann, Andreas; Ehrentreich-Förster, Eva; Bier, Frank F.; Stöcklein, Walter F. M.

    2016-01-01

    Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing. PMID:27415624

  4. A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA.

    PubMed Central

    Rippmann, F; Taylor, W R; Rothbard, J B; Green, N M

    1991-01-01

    The sequences of the peptide binding domains of 33 70 kd heat shock proteins (hsp70) have been aligned and a consensus secondary structure has been deduced. Individual members showed no significant deviation from the consensus, which showed a beta 4 alpha motif repeated twice, followed by two further helices and a terminus rich in Pro and Gly. The repeated motif could be aligned with the secondary structure of the functionally equivalent peptide binding domain of human leucocyte antigen (HLA) class I maintaining equivalent residues in structurally important positions in the two families and a model was built based on this alignment. The interaction of this domain with the ATP domain is considered. The overall model is shown to be consistent with the properties of products of chymotryptic cleavage. PMID:2022182

  5. Zooming into the binding groove of HLA molecules: which positions and which substitutions change peptide binding most?

    PubMed

    van Deutekom, Hanneke W M; Keşmir, Can

    2015-08-01

    Human leukocyte antigen (HLA) genes are the most polymorphic genes in the human genome. Almost all polymorphic residues are located in the peptide-binding groove, resulting in different peptide-binding preferences. Whether a single amino acid change can alter the peptide-binding repertoire of an HLA molecule has never been shown. To experimentally quantify the contribution of a single amino acid change to the peptide repertoire of even a single HLA molecule requires an immense number of HLA peptide-binding measurements. Therefore, we used an in silico method to study the effect of single mutations on the peptide repertoires. We predicted the peptide-binding repertoire of a large set of HLA molecules and used the overlap of the peptide-binding repertoires of each pair of HLA molecules that differ on a single position to measure how much single substitutions change the peptide binding. We found that the effect of a single substitution in the peptide-binding groove depends on the substituted position and the amino acids involved. The positions that alter peptide binding most are the most polymorphic ones, while those that are hardly variable among HLA molecules have the lowest effect on the peptide repertoire. Although expected, the relationship between functional divergence and polymorphism of HLA molecules has never been shown before. Additionally, we show that a single substitution in HLA-B molecules has more effect on the peptide-binding repertoire compared to that in HLA-A molecules. This provides an (alternative) explanation for the larger polymorphism of HLA-B molecules compared to HLA-A molecules.

  6. Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides

    PubMed Central

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe

    2012-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628

  7. A Red Cy3-Based Biarsenical Fluorescent Probe Targeted to a Complementary Binding Peptide

    SciTech Connect

    Cao, Haishi; Xiong, Yijia; Wang, Ting; Chen, Baowei; Squier, Thomas C.; Mayer, M. Uljana

    2007-07-24

    We have synthesized a red biarsenical fluorescent probe, AsCy3, with good photostability, low pH sensitivity, high absorbance and good quantum yield. It is directed specifically to a small tetracysteine peptide binding motif Cy3TAG (CysCysLysAlaGluAlaAlaCysCys) in the presence of other tetracysteine tags. This new probe provides a FRET partner to biarsenical dye FlAsH, making this discovery an important step toward a whole toolkit of colored probes directed to different small peptide motifs.

  8. Inorganic binding peptides designed by phage display techniques for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Wei

    Biomacromolecules play an important role in the control of hard tissue structure and function via specific molecular recognition interactions between proteins of the matrix and inorganic species of the biomineral phase. During the construction of the tissue, biomacromolecules are usually folded into a certain comformation, analogous to a "lock" for fitting with other proteins or smaller molecules as a "key". Currently, the rational design of molecular recognition in biomacro-molecules is still hard to accomplish because the protein conformation is too complex to precisely predict based on the existing conformational information of proteins found in biological systems. In the past two decades, the combinatorial approach (e.g. phage display techniques) has been used to select short binding peptides with molecular recognition to an inorganic target material without a prior knowledge of the amino acid sequence required for the specific binding. The technique has been referred to as "biopanning" because bacteriophages are used to "screen" for peptides that exhibit strong binding to a target material of interest. In this study, two diverse applications were chosen to demonstrate the utility of the biopanning approach. In one project, phage display techniques were used to pan for Indium Zinc Oxide (InZnO) binding peptides to serve as linkers between transducer devices and biosensing elements for demonstration of the feasibility of reversibly electro-activated biosensors. The amorphous InZnO, with its homogeneous surface, led to three consensus peptide sequences, AGFPNSTHSSNL, SHAPDSTWFALF, and TNSSSQFVVAIP. In addition, it was demonstrated that some selected phage clones of the InZnO binding peptides were able to be released from the InZnO surface after applying a voltage of 1400 mV on an electro-activated releasing device. In the second project, phage display techniques were used to select phage clones that bind specifically to francolite mineral in order to achieve

  9. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    PubMed

    Sprenger, K G; Pfaendtner, Jim

    2016-06-01

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution

  10. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and. alpha. -bungarotoxin

    SciTech Connect

    Conti-Tronconi, B.M.; Tang, Fen; Diethelm, B.M.; Spencer, S.R. ); Reinhardt-Maelicke, S.; Maelicke, A. )

    1990-07-03

    Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) {alpha} subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, the authors used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind {alpha}-bungarotoxin ({alpha}-BTX) and several {alpha}-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the {alpha}-subunit, and bind to AChR in a mutually exclusive fashion with {alpha}-BTX. The binding of WF5 and W2 to Torpedo AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. Peptides {alpha}181-200 and {alpha}55-74 both inhibited binding of {sup 125}I-{alpha}-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound {alpha}-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR {alpha} subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region.

  11. Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans.

    PubMed

    Marchalonis, J J; Adelman, M K; Robey, I F; Schluter, S F; Edmundson, A B

    2001-01-01

    This review considers definitions of the specificity of antibodies including the development of recent concepts of recognition polyspecificity and epitope promiscuity. Using sets of homologous and unrelated peptides derived from the sequences of immunoglobulin and T cell receptor chains we offer operational definitions of cross-reactivity by investigating correlations of either identities in amino acid sequence, or in hydrophobicity/hydrophilicity profiles with degree of binding in enzyme-linked immunosorbent assays. Polyreactivity, or polyspecificity, are terms used to denote binding of a monoclonal antibody or purified antibody preparation to large complex molecules that are structurally unrelated, such as thyroglobulin and DNA. As a first approximation, there is a linear correlation between degree of sequence identity or hydrophobicity/hydrophilicity and antigenic cross-binding. However, catastrophic interchanges of amino acids can occur where changing of one amino acid out of 16 in a synthetic peptide essentially eliminates binding to certain antibodies. An operational definition of epitope promiscuity for peptides is the case where two peptides show little or no identity in amino acid sequence but bind strongly to the same antibody as shown by either direct binding or competitive inhibition. Analysis of antibodies of humans and sharks, the two most divergent species in evolution to express antibodies and the combinatorial immune response, indicates that the capacity for both exquisite specificity and epitope recognition promiscuity are essential conserved features of individual vertebrate antibodies.

  12. Species-Specific Peptide Ligands for the Detection of Bacillus anthracis Spores

    PubMed Central

    Williams, David D.; Benedek, Orsolya; Turnbough, Charles L.

    2003-01-01

    Currently available detectors for spores of Bacillus anthracis, the causative agent of anthrax, are inadequate for frontline use and general monitoring. There is a critical need for simple, rugged, and inexpensive detectors capable of accurate and direct identification of B. anthracis spores. Necessary components in such detectors are stable ligands that bind tightly and specifically to target spores. By screening a phage display peptide library, we identified a family of peptides, with the consensus sequence TYPXPXR, that bind selectively to B. anthracis spores. We extended this work by identifying a peptide variant, ATYPLPIR, with enhanced ability to bind to B. anthracis spores and an additional peptide, SLLPGLP, that preferentially binds to spores of species phylogenetically similar to, but distinct from, B. anthracis. These two peptides were used in tandem in simple assays to rapidly and unambiguously identify B. anthracis spores. We envision that these peptides can be used as sensors in economical and portable B. anthracis spore detectors that are essentially free of false-positive signals due to other environmental Bacillus spores. PMID:14532093

  13. General approach for characterizing in vitro selected peptides with protein binding affinity.

    PubMed

    Larsen, Andrew C; Gillig, Annabelle; Shah, Pankti; Sau, Sujay P; Fenton, Kathryn E; Chaput, John C

    2014-08-01

    In vitro selection technologies are important tools for identifying high affinity peptides to proteins of broad medical and biological interest. However, the technological advances that have made it possible to generate long lists of candidate peptides have far outpaced our ability to characterize the binding properties of individual peptides. Here, we describe a low cost strategy to rapidly synthesize, purify, screen, and characterize peptides for high binding affinity. Peptides are assayed in a 96-well dot blot apparatus using membranes that enable partitioning of bound and unbound peptide-protein complexes. We have validated the binding affinity constants produced by this method using known peptide ligands and applied this process to discover five new peptides with nanomolar affinity to human α-thrombin. Given the need for new analytical tools that can accelerate peptide discovery and characterization, we feel that this approach would be useful to a wide range of technologies that utilize high affinity peptides.

  14. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    SciTech Connect

    Martin, Emily B.; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J.; Wall, Jonathan S.

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  15. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.

    PubMed

    Insaidoo, Francis K; Zajicek, Jaroslav; Baker, Brian M

    2009-10-20

    T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism.

  16. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.

    PubMed

    Insaidoo, Francis K; Zajicek, Jaroslav; Baker, Brian M

    2009-10-20

    T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism. PMID:19772349

  17. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  18. Lock and Key Binding of the HOX YPWM Peptide to the PBX Homeodomain

    SciTech Connect

    Sprules, Tara; Green, N.; Featherstone, M.; Gehring, Kalle

    2003-01-10

    HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.

  19. Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces.

    PubMed

    Hakami, Abdulrahim R; Ball, Jonathan K; Tarr, Alexander W

    2015-09-01

    Phage-displayed random peptide libraries are widely used for identifying peptide interactions with proteins and other substrates. Selection of peptide ligands involves iterative rounds of affinity enrichment. The binding properties of the selected phage clones are routinely tested using immunoassay after propagation to high titre in a bacterial host and precipitation using polyethylene glycol (PEG) and high salt concentration. These immunoassays can suffer from low sensitivity and high background signals. Polysorbate 20 (Tween(®) 20) is a non-ionic detergent commonly used in immunoassay washing buffers to reduce non-specific binding, and is also used as a blocking reagent. We have observed that Tween 20 enhances non-specific M13 library phage binding in a peptide-independent manner. Other non-ionic detergents were also found to promote significant, dose-dependent non-specific phage binding in ELISA. This effect was not observed for assays using phage concentrated by ultracentrifugation, suggesting that interactions occur between detergents and the PEG-precipitated phage, irrespective of the displayed peptide motif. This artefact may impact on successful affinity selection of peptides from phage-display libraries. We propose alternative methods for screening phage libraries for identifying binding interactions with target ligands.

  20. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts.

    PubMed

    Martin, Emily B; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J; Wall, Jonathan S

    2013-06-21

    In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.

  1. Iron-binding properties of sugar cane yeast peptides.

    PubMed

    de la Hoz, Lucia; Ponezi, Alexandre N; Milani, Raquel F; Nunes da Silva, Vera S; Sonia de Souza, A; Bertoldo-Pacheco, Maria Teresa

    2014-01-01

    The extract of sugar-cane yeast (Saccharomyces cerevisiae) was enzymatically hydrolysed by Alcalase, Protex or Viscozyme. Hydrolysates were fractionated using a membrane ultrafiltration system and peptides smaller than 5kDa were evaluated for iron chelating ability through measurements of iron solubility, binding capacity and dialyzability. Iron-chelating peptides were isolated using immobilized metal affinity chromatography (IMAC). They showed higher content of His, Lys, and Arg than the original hydrolysates. In spite of poor iron solubility, hydrolysates of Viscozyme provided higher iron dialyzability than those of other enzymes. This means that more chelates of iron or complexes were formed and these kept the iron stable during simulated gastro-intestinal digestion in vitro, improving its dialyzability.

  2. Biosynthetic regulation of phytochelatins, heavy metal-binding peptides.

    PubMed

    Hirata, Kazumasa; Tsuji, Naoki; Miyamoto, Kazuhisa

    2005-12-01

    Phytochelatins (PCs) are heavy metal-binding peptides that play important roles in the detoxification of toxic heavy metals and the regulation of intracellular concentrations of essential metals in eukaryotes, including higher plants, fungi, and microalgae. Recently, PC synthase genes in higher plants and fission yeast have been identified and characterized, enabling molecular biological studies to unravel the mechanisms underlying PC synthesis. Moreover, recent routine database searches have unexpectedly identified genes that are similar to plant PC synthase genes in the genomes of worms and some prokaryotes. In this review, we introduce these recent advances in our understanding of the molecular mechanisms for PC biosynthesis and functions in order to supply basic information about the unique and attractive peptides applicable to various fields.

  3. Zinc(II) binds to the neuroprotective peptide humanin.

    PubMed

    Armas, Ambar; Sonois, Vanessa; Mothes, Emmanuelle; Mazarguil, Honoré; Faller, Peter

    2006-10-01

    The abnormal accumulation of the peptide amyloid-beta in the form of senile (or amyloid) plaques is one of the hallmarks of Alzheimer's disease (AD). Zinc ions have been implicated in AD and plaques formation. Recently, the peptide humanin has been discovered. Humanin showed neuroprotective activity against amyloid-beta insults. Here the question investigated is if humanin could interact directly with Zn(II). It is shown that Zn(II) and its substitutes Cd(II)/Co(II) bind to humanin via a thiolate bond from the side chain of the single cysteine at position 8. The low intensity of the d-d bands of Co(II)-humanin indicated an octahedral coordination geometry. Titration experiments suggest that Zn(II) binds to humanin with an apparent affinity in the low muM range. This apparent Zn-binding affinity is in the same order as for amyloid-beta and glutathione and could thus be of physiological relevance.

  4. Enterovirus-Specific Anti-peptide Antibodies.

    PubMed

    Poh, Chit Laa; Kirk, Katherine; Chua, Hui Na; Grollo, Lara

    2015-01-01

    Enterovirus 71 (EV-71) is the main causative agent of hand, foot, and mouth disease (HFMD) which is generally regarded as a mild childhood disease. In recent years, EV71 has emerged as a significant pathogen capable of causing high mortalities and severe neurological complications in large outbreaks in Asia. A formalin-inactivated EV71 whole virus vaccine has completed phase III trial in China but is currently unavailable clinically. The high cost of manufacturing and supply problems may limit practical implementations in developing countries. Synthetic peptides representing the native primary structure of the viral immunogen which is able to elicit neutralizing antibodies can be made readily and is cost effective. However, it is necessary to conjugate short synthetic peptides to carrier proteins to enhance their immunogenicity. This review describes the production of cross-neutralizing anti-peptide antibodies in response to immunization with synthetic peptides selected from in silico analysis, generation of B-cell epitopes of EV71 conjugated to a promiscuous T-cell epitope from Poliovirus, and evaluation of the neutralizing activities of the anti-peptide antibodies. Besides neutralizing EV71 in vitro, the neutralizing antibodies were cross-reactive against several Enteroviruses including CVA16, CVB4, CVB6, and ECHO13.

  5. Design of Cyclic Peptides That Bind Protein Surfaces with Antibody-Like Affinity

    PubMed Central

    Millward, Steven W.; Fiacco, Stephen; Austin, Ryan J.; Roberts, Richard W.

    2012-01-01

    There is a pressing need for new molecular tools to target protein surfaces with high affinity and specificity. Here, we describe cyclic messenger RNA display with a trillion-member covalent peptide macrocycle library. Using this library, we have designed a number of high-affinity, redox-insensitive, cyclic peptides that target the signaling protein Gαi1. In addition to cyclization, our library construction took advantage of an expanded genetic code, utilizing nonsense suppression to insert N-methylphenylalanine as a 21st amino acid. The designed macrocycles exhibit several intriguing features. First, the core motif seen in all of the selected variants is the same and shares an identical context with respect to the macrocyclic scaffold, consistent with the idea that selection simultaneously optimizes both the cyclization chemistry and the structural placement of the binding epitope. Second, detailed characterization of one molecule, cyclic Gαi binding peptide (cycGiBP), demonstrates substantially enhanced proteolytic stability relative to that of the parent linear molecule. Third and perhaps most important, the cycGiBP peptide binds the target with very high affinity (Ki ≈ 2.1 nM), similar to those of many of the best monoclonal antibodies and higher than that of the βγ heterodimer, an endogenous Gαi1 ligand. Overall the work provides a general route to design novel, low-molecular-weight, high-affinity ligands that target protein surfaces. PMID:17894440

  6. Design of cyclic peptides that bind protein surfaces with antibody-like affinity.

    PubMed

    Millward, Steven W; Fiacco, Stephen; Austin, Ryan J; Roberts, Richard W

    2007-09-21

    There is a pressing need for new molecular tools to target protein surfaces with high affinity and specificity. Here, we describe cyclic messenger RNA display with a trillion-member covalent peptide macrocycle library. Using this library, we have designed a number of high-affinity, redox-insensitive, cyclic peptides that target the signaling protein G alpha i1. In addition to cyclization, our library construction took advantage of an expanded genetic code, utilizing nonsense suppression to insert N-methylphenylalanine as a 21st amino acid. The designed macrocycles exhibit several intriguing features. First, the core motif seen in all of the selected variants is the same and shares an identical context with respect to the macrocyclic scaffold, consistent with the idea that selection simultaneously optimizes both the cyclization chemistry and the structural placement of the binding epitope. Second, detailed characterization of one molecule, cyclic G alpha i binding peptide (cycGiBP), demonstrates substantially enhanced proteolytic stability relative to that of the parent linear molecule. Third and perhaps most important, the cycGiBP peptide binds the target with very high affinity ( K i approximately 2.1 nM), similar to those of many of the best monoclonal antibodies and higher than that of the betagamma heterodimer, an endogenous G alpha i1 ligand. Overall the work provides a general route to design novel, low-molecular-weight, high-affinity ligands that target protein surfaces.

  7. ARSENITE BINDING TO SYNTHETIC PEPTIDES: THE EFFECT OF INCREASING LENGTH BETWEEN TWO CYSTEINES

    EPA Science Inventory

    Binding of trivalent arsenicals to peptides and proteins can alter peptide/protein structure and enzyme function and thereby contribute to arsenic toxicity and carcinogenicity. We utilized radioactive 73As- labeled arsenite and vacuum filtration methodology to determine the bindi...

  8. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance.

    PubMed

    Wang, Yibing; Yu, Yong; Zhang, Liting; Qin, Peng; Wang, Ping

    2015-01-01

    Affinity binding peptides were examined for surface fabrication of synthetic polymeric materials. Peptides possessing strong binding affinities toward polyurethane (PU) were discovered via biopanning of M13 phage peptide library. The apparent binding constant (K(app)) was as high as 2.68 × 10(9) M(-1) with surface peptide density exceeded 1.8 μg/cm(2). Structural analysis showed that the ideal peptide had a high content (75%) of H-donor amino acid residues, and that intensified hydrogen bond interaction was the key driving force for the highly stable binding of peptides on PU. PU treated with such affinity peptides promises applications as low-fouling materials, as peptides increased its wettability and substantially reduced protein adsorption and cell adhesion. These results demonstrated a facile but highly efficient one-step strategy for surface property modification of polymeric materials for biotechnological applications. PMID:25732121

  9. Specific Ion Binding at Phospholipid Membrane Surfaces.

    PubMed

    Yang, Jing; Calero, Carles; Bonomi, Massimiliano; Martí, Jordi

    2015-09-01

    Metal cations are ubiquitous components in biological environments and play an important role in regulating cellular functions and membrane properties. By applying metadynamics simulations, we have performed systematic free energy calculations of Na(+), K(+), Ca(2+), and Mg(2+) bound to phospholipid membrane surfaces for the first time. The free energy landscapes unveil specific binding behaviors of metal cations on phospholipid membranes. Na(+) and K(+) are more likely to stay in the aqueous solution and can bind easily to a few lipid oxygens by overcoming low free energy barriers. Ca(2+) is most stable when it is bound to four lipid oxygens of the membrane rather than being hydrated in the aqueous solution. Mg(2+) is tightly hydrated, and it shows hardly any loss of a hydration water or binding directly to the membrane. When bound to the membrane, the cations' most favorable total coordination numbers with water and lipid oxygens are the same as their corresponding hydration numbers in aqueous solution, indicating a competition between ion binding to water and lipids. The binding specificity of metal cations on membranes is highly correlated with the hydration free energy and the size of the hydration shell.

  10. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL.

    PubMed

    Dutta, Sanjib; Gullá, Stefano; Chen, T Scott; Fire, Emiko; Grant, Robert A; Keating, Amy E

    2010-05-21

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the alpha-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques--yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis--to elucidate specificity determinants for binding to Bcl-x(L)versus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-x(L) selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-x(L), Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-x(L)-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-x(L) binders. PMID:20363230

  11. Determinants of BH3 binding specificity for Mcl-1 vs. Bcl-xL

    PubMed Central

    Dutta, Sanjib; Gullá, Stefano; Chen, T. Scott; Fire, Emiko; Grant, Robert A.; Keating, Amy E.

    2010-01-01

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Pro-survival members of the family interact with pro-apoptotic BH3-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the alpha-helical BH3 region of the pro-apoptotic proteins to a conserved hydrophobic groove on the pro-survival proteins. Native BH3-only proteins exhibit selectivity in binding pro-survival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work we used two complementary techniques, yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis, to elucidate specificity determinants for binding to Bcl-xL vs. Mcl-1, two prominent pro-survival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively, or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1 selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w and Bfl-1, whereas Bcl-xL selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 vs. Bcl-xL binders. PMID:20363230

  12. Determinants of BH3 Binding Specificity for Mcl-1 versus Bcl-x[subscript L

    SciTech Connect

    Dutta, Sanjib; Gullá, Stefano; Chen, T. Scott; Fire, Emiko; Grant, Robert A.; Keating, Amy E.

    2010-06-25

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the {alpha}-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques - yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis - to elucidate specificity determinants for binding to Bcl-x{sub L} versus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-x{sub L} selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-x{sub L}, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-x{sub L}-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-x{sub L} binders.

  13. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma.

    PubMed

    Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.

  14. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma

    PubMed Central

    Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9–20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients. PMID:26536470

  15. Identification of Four-Jointed Box 1 (FJX1)-Specific Peptides for Immunotherapy of Nasopharyngeal Carcinoma.

    PubMed

    Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients. PMID:26536470

  16. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin

    PubMed Central

    Wafer, Lucas N; Tzul, Franco O; Pandharipande, Pranav P; McCallum, Scott A; Makhatadze, George I

    2014-01-01

    Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins. PMID:24947426

  17. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining

    PubMed Central

    2013-01-01

    Background MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. Results The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. Conclusions Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths. PMID:23368521

  18. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  19. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  20. Hydrazide Reactive Peptide Tags for Site-Specific Protein Labeling

    PubMed Central

    Eldridge, Glenn M.; Weiss, Gregory A.

    2011-01-01

    New site-specific protein labeling (SSPL) reactions for targeting specific, short peptides could be useful for the real time detection of proteins inside of living cells. One SSPL approach matches bioorthogonal reagents with complementary peptides. Here, hydrazide reactive peptides were selected from phage-displayed libraries using reaction-based selections. Selection conditions included washes of varying pH and treatment with NaCNBH3 in order to specifically select reactive carbonyl containing peptides. Selected peptides were fused to T4 lysozyme or synthesized on filter paper for colorimetric assays of the peptide-hydrazide interaction. A peptide-lysozyme protein fusion demonstrated specific, covalent labeling by the Hydrazide Reactive (HyRe) peptides in crude bacterial cell lysates, sufficient for the specific detection of an over-expressed protein fusion. Chemical synthesis of a short HyRe tag variant and subsequent reaction with two structurally distinct hydrazide probes produced covalent adducts observable by MALDI-TOF MS and MS/MS. Rather than isolating reactive carbonyl-containing peptides, we observed reaction with the N–terminal His of HyRe tag 114, amino acid sequence HKSNHSSKNRE, which attacks the hydrazide carbonyl at neutral pH. However, at the pH used during selection wash steps (<6.0), an alternative imine-containing product is formed that can be reduced with sodium cyanoborohydride. MSMS further reveals that this low pH product forms an adduct on Ser6. Further optimization of the novel bimolecular reaction described here could provide a useful tool for in vivo protein labeling and bioconjugate synthesis. The reported selection and screening methods could be widely applicable to the identification of peptides capable of other site-specific protein labeling reactions with bioorthogonal reagents. PMID:21905743

  1. Substrate specificity of allelic variants of the TAP peptide transporter.

    PubMed

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant. PMID:7895166

  2. Substrate specificity of allelic variants of the TAP peptide transporter.

    PubMed

    Heemels, M T; Ploegh, H L

    1994-12-01

    The transporter associated with antigen processing (TAP) translocates peptides from the cytosol into the lumen of the endoplasmic reticulum (ER). An important determinant for the specificity of translocation is the identity of the C-terminal residue of the peptide substrate. In the rat, a suitable C terminus is necessary but not always sufficient for a peptide to be selected for translocation. Here we show that sequence constraints within a peptide of optimal length (9 residues) may interfere with transport; that the transporter selectively translocates shorter derivatives of a 16-mer peptide rather than the 16-mer itself; and that the transporter cimb allele, which is most selective in the C termini it will tolerate, is more relaxed in peptide length preference than is the clma variant.

  3. Binding of formyl peptides to Walker 256 carcinosarcoma cells and the chemotactic response of these cells

    SciTech Connect

    Rayner, D.C.; Orr, F.W.; Shiu, R.P.

    1985-05-01

    N-Formylmethionylleucylphenylalanine (fMLP) induces chemotaxis in leukocytes, the response being mediated by peptide binding to a receptor on the plasma membrane. In tumor cells, this peptide has been reported to induce cellular swelling and chemotaxis in vitro and to enhance the localization of circulating tumor cells in vivo. In the Boyden chamber, the authors evaluated the migratory responses of Walker carcinosarcoma 256 cells to varying concentrations of fMLP. Sigmoidal dose-response curves were obtained with the dose of chemotactic factor that elicits a half-maximal chemotactic response of 5.0 +/- 2.5 X 10(-8) M. Checkerboard analysis indicated that these responses were dependent upon a concentration gradient of fMLP with increases in migration of circa 2 to 2.5 times that of random movement. To examine the binding of fMLP, the tumor cells were incubated with 5 X 10(-9) M fML-(/sup 3/H)P in Hanks balanced salt solution. Specific binding (0.5 to 1% of total radioligand, to whole cells inhibited by 5 X 10(-6) M fMLP) approached equilibrium after 4 to 6 h at 4 degrees C and after 6 to 10 h at 22 degrees C. Autoradiographic studies demonstrated heterogeneous binding of the peptide by tumor cells and also showed its intracellular localization. In homogenates of Walker cells prepared in 0.1 M Tris HCl, pH 7.4, with 10 mM MgCl2 and bovine serum albumin (1 mg/ml), specific binding of approximately 0.5% of total fML-(/sup 3/H)P reached equilibrium after 60 min at 4 degrees C. In whole cells and homogenates, binding was reversible by addition of unlabeled fMLP.

  4. Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis.

    PubMed

    Shao, Hongwei; Lin, Yanmei; Wang, Teng; Ou, Yusheng; Shen, Han; Tao, Changli; Wu, Fenglin; Zhang, Wenfeng; Bo, Huaben; Wang, Hui; Huang, Shulin

    2015-07-10

    Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells. PMID:25890221

  5. Trastuzumab-binding peptide display by Tobacco mosaic virus

    SciTech Connect

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.; Kosorukov, Vyacheslav S.; Sheval, Eugene V.; Gleba, Yuri Y.; Dorokhov, Yuri L.

    2010-11-10

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.

  6. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer

    NASA Astrophysics Data System (ADS)

    Sanghvi, Archit B.; Miller, Kiley P.-H.; Belcher, Angela M.; Schmidt, Christine E.

    2005-06-01

    The goal in biomaterial surface modification is to retain a material's bulk properties while modifying only its surface to possess desired recognition and specificity. Here we develop a unique strategy for surface functionalization of an electrically conductive polymer, chlorine-doped polypyrrole (PPyCl), which has been widely researched for various electronic and biomedical applications. An M13 bacteriophage library was used to screen 109 different 12-mer peptide inserts against PPyCl. A binding phage (ϕT59) was isolated, and its binding stability and specificity to PPyCl was assessed using fluorescence microscopy and titer count analysis. The relative binding strength and mechanism of the corresponding 12-mer peptide and its variants was studied using atomic force microscopy and fluorescamine assays. Further, the T59 peptide was joined to a cell adhesive sequence and used to promote cell attachment on PPyCl. This strategy can be extended to immobilize a variety of molecules to PPyCl for numerous applications. In addition, phage display can be applied to other polymers to develop bioactive materials without altering their bulk properties.

  7. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  8. Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica.

    PubMed

    Singh, Pratik Raj; Bárcena-Uribarri, Iván; Modi, Niraj; Kleinekathöfer, Ulrich; Benz, Roland; Winterhalter, Mathias; Mahendran, Kozhinjampara R

    2012-12-21

    We investigated translocation of cationic peptides through nanochannels derived from the Gram-positive bacterium Nocardia farcinica at the single-molecule level. The two subunits NfpA and NfpB form a hetero-oligomeric cation selective channel. On the basis of amino acid comparison we performed homology modeling and obtained a channel structurally related to MspA of Mycobacterium smegmatis. The quantitative single-molecule measurements provide an insight into transport processes of solutes through nanochannels. High-resolution ion conductance measurements in the presence of peptides of different charge and length revealed the kinetics of peptide binding. The observed asymmetry in peptide binding kinetics indicated a unidirectional channel insertion in the lipid bilayer. In the case of cationic peptides, the external voltage acts as a driving force that promotes the interaction of the peptide with the channel surface. At low voltage, the peptide just binds to the channel, whereas at higher voltage, the force is strong enough to pull the peptide across the channel. This allows distinguishing quantitatively between peptide binding and translocation through the channel. PMID:23121560

  9. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA

    SciTech Connect

    Elton, T.S.; Dion, L.D.; Bost, K.L.; Oparil, S.; Blalock, J.E.

    1988-04-01

    The authors have generated a monospecific antibody to a synthetic peptide encoded by an RNA complementary to the mRNA for angiotensin II (AII) and determined whether this antibody recognizes the AII receptor. They demonstrate that the antibody competes specifically with /sup 125/I-labeled AII for the same binding site on rat adrenal membranes. Furthermore, they show this antibody inhibits the secretion of aldosterone from cultured rat adrenal cells, suggesting that the antibody recognizes the biologically relevant AII receptor. Finally, they demonstrate that antibody to the complementary peptide can be used to immunoaffinity-purify a protein of M/sub r/ 66,000 that specifically binds radiolabeled AII.

  10. The recognition specificity of the CHD1 chromodomain with modified histone H3 peptides.

    PubMed

    Stein, Richard S L; Wang, Wei

    2011-02-25

    Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of chromodomain helicase DNA-binding protein 1 complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and the individual residues within the protein and peptides were computed with molecular mechanics-generalized Born surface area. The simulation results agree well with experimental data and identify several chromodomain helicase DNA-binding protein 1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes (generally interacting hydrophobically), and a second class of residues that bind only to particular H3 modifications (generally interacting electrostatically). Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis. PMID:21195088

  11. Discovery of pan-VEGF inhibitory peptides directed to the extracellular ligand-binding domains of the VEGF receptors

    PubMed Central

    Michaloski, Jussara S.; Redondo, Alexandre R.; Magalhães, Leila S.; Cambui, Caio C.; Giordano, Ricardo J.

    2016-01-01

    Receptor tyrosine kinases (RTKs) are key molecules in numerous cellular processes, the inhibitors of which play an important role in the clinic. Among them are the vascular endothelial growth factor (VEGF) family members and their receptors (VEGFR), which are essential in the formation of new blood vessels by angiogenesis. Anti-VEGF therapy has already shown promising results in oncology and ophthalmology, but one of the challenges in the field is the design of specific small-molecule inhibitors for these receptors. We show the identification and characterization of small 6-mer peptides that target the extracellular ligand-binding domain of all three VEGF receptors. These peptides specifically prevent the binding of VEGF family members to all three receptors and downstream signaling but do not affect other angiogenic RTKs and their ligands. One of the selected peptides was also very effective at preventing pathological angiogenesis in a mouse model of retinopathy, normalizing the vasculature to levels similar to those of a normal developing retina. Collectively, our results suggest that these peptides are pan-VEGF inhibitors directed at a common binding pocket shared by all three VEGFRs. These peptides and the druggable binding site they target might be important for the development of novel and selective small-molecule, extracellular ligand-binding inhibitors of RTKs (eTKIs) for angiogenic-dependent diseases.

  12. Surface Plasmon Resonance Binding Kinetics of Alzheimer’s Disease Amyloid β Peptide Capturing- and Plaque Binding- Monoclonal Antibodies†

    PubMed Central

    Ramakrishnan, Muthu; Kandimalla, Karunya K.; Wengenack, Thomas M.; Howell, Kyle G.; Poduslo, Joseph F.

    2009-01-01

    Several different monoclonal antibodies (mAbs) have been actively developed in the field of Alzheimer’s disease (AD) for basic science and clinical applications; however, the binding kinetics of many of the mAbs with the β-amyloid peptides (Aβ) are poorly understood. A panel of mAbs with different Aβ recognition sites, including our plaque binding antibody (IgG4.1), a peptide capturing antibody (11A50), and two classical mAbs (6E10 and 4G8) used for immunohistochemistry, were chosen to characterize their binding kinetics to monomeric and fibrillar forms of Aβ40 using surface plasmon resonance and their amyloid plaque binding ability in AD mouse brain sections using immunohistochemistry. The plaque binding antibody (IgG4.1) with epitope specificity of Aβ(2-10) showed a weaker affinity (512 nM) to monomeric Aβ40 but higher affinity (1.5 nM) to Aβ40 fibrils and labeled dense core plaques better than 6E10 by immunohistochemistry. The peptide capturing antibody (11A50) showed preferential affinity (32.5 nM) to monomeric Aβ40, but did not bind to Aβ40 fibrils, whereas antibodies 6E10 and 4G8 had moderate affinity to monomeric Aβ40 (22.3 and 30.1 nM, respectively). 4G8, which labels diffuse plaques better than 6E10, had a higher association rate constant than 6E10 but showed similar association and dissociation kinetics compared to 11A50. Enzymatic digestion of IgG4.1 to the F(ab’)24.1 fragments or their polyamine-modified derivatives that enhance blood brain barrier permeability did not affect the kinetic properties of the antigen binding site. These differences in kinetic binding to monomeric and fibrillar Aβ among various antibodies could be utilized to distinguish mAbs that might be useful for immunotherapy or amyloid plaque imaging versus those that could be utilized for bioanalytical techniques. PMID:19775170

  13. Novel peptide ligand with high binding capacity for antibody purification.

    PubMed

    Lund, Line Naomi; Gustavsson, Per-Erik; Michael, Roice; Lindgren, Johan; Nørskov-Lauritsen, Leif; Lund, Martin; Houen, Gunnar; Staby, Arne; St Hilaire, Phaedria M

    2012-02-17

    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1M NaOH. Here, we present a novel synthetic peptide ligand for purification of human IgG. Immobilized on WorkBeads, an agarose-based base matrix from Bio-Works, the ligand has a dynamic binding capacity of up to 48 mg/mL and purifies IgG from harvest cell culture fluid with purities and recovery of >93%. The binding affinity is ∼10⁵ M⁻¹ and the interaction is favorable and entropy-driven with an enthalpy penalty. Our results show that the binding of the Fc fragment of IgG is mediated by hydrophobic interactions and that elution at low pH is most likely due to electrostatic repulsion. Furthermore, we have separated aggregated IgG from non-aggregated IgG, indicating that the ligand could be used both as a primary purification step of IgG as well as a subsequent polishing step.

  14. Determination of the Substrate Specificity of Protein Kinases with Peptide Micro- and Macroarrays.

    PubMed

    Lai, Shenshen; Winkler, Dirk F H; Zhang, Hong; Pelech, Steven

    2016-01-01

    Elucidation of the key determinants for the phosphorylation site specificities of protein kinases facilitates identification of their physiological substrates, and serves to better define their critical roles in the signaling networks that underlie a multitude of cellular activities. Albeit with some apparent limitations, such as the lack of contextual information for secondary substrate-binding sites, the synthetic peptide-based approach has been adopted widely for the kinase specificity profiling studies, especially when they are used in an array format, which permits the screening of large numbers of potential peptide substrates in parallel. In this chapter, we present detailed protocols for determining protein kinase substrate specificity using an approach that involves both peptide microarrays and macroarrays. In particular, SPOT synthesis on macroarrays can be used to follow up on in silico predictions of protein kinase substrate specificity with predictive algorithms. PMID:26501911

  15. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.

    PubMed

    Rasmussen, Michael; Fenoy, Emilio; Harndahl, Mikkel; Kristensen, Anne Bregnballe; Nielsen, Ida Kallehauge; Nielsen, Morten; Buus, Søren

    2016-08-15

    Binding of peptides to MHC class I (MHC-I) molecules is the most selective event in the processing and presentation of Ags to CTL, and insights into the mechanisms that govern peptide-MHC-I binding should facilitate our understanding of CTL biology. Peptide-MHC-I interactions have traditionally been quantified by the strength of the interaction, that is, the binding affinity, yet it has been shown that the stability of the peptide-MHC-I complex is a better correlate of immunogenicity compared with binding affinity. In this study, we have experimentally analyzed peptide-MHC-I complex stability of a large panel of human MHC-I allotypes and generated a body of data sufficient to develop a neural network-based pan-specific predictor of peptide-MHC-I complex stability. Integrating the neural network predictors of peptide-MHC-I complex stability with state-of-the-art predictors of peptide-MHC-I binding is shown to significantly improve the prediction of CTL epitopes. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCstabpan. PMID:27402703

  16. Screening and identification of a specific peptide for targeting hypoxic hepatoma cells.

    PubMed

    Liu, Yiming; Xia, Xiangwen; Wang, Yong; Li, Xin; Zhou, Guofeng; Liang, Huiming; Feng, Gansheng; Zheng, Chuansheng

    2016-08-01

    The biological behaviors of residual hepatoma cells after transarterial embolization therapy, which exist in a hypoxic or even anaerobic tumor microenvironment, differ from the tumor cells under normoxic conditions. This study aimed to use a phage display peptide library for in vivo and in vitro screening to obtain a peptide which could specifically bind to hypoxic hepatoma cells, allowing further targeted diagnosis and treatment for liver cancer. In this study, hypoxic hepatoma cells HepG2 (targeted cells), and normal liver cells HL-7702 (control cells), were utilized to perform three rounds of in vitro screening using a phage-displayed 7-mer peptide library. In addition, hypoxic HepG2 were subcutaneously injected into nude mice to establish a hepatocarcinoma model, followed by performing three rounds of in vivo screening on the phages identified from the in vitro screening. The products from the screening were further identified using ELISA and immunofluorescence staining on cells and tissues. The results indicated that the P11 positive clone had the highest binding effect with hypoxic hepatoma cells. The sequence of the exogenous insert fragment of P11 positive clone was obtained by sequencing: GSTSFSK. The binding assay indicated that GSTSFSK could specifically bind to hypoxic hepatoma cells and hepatocarcinoma tissues. This 7-mer peptide has the potential to be developed as an useful molecular to the targeting diagnosis and treatment of residual hepatoma cells after transarterial chemoembolization. PMID:27381416

  17. Oxidation Protection in Metal-Binding Peptide Motif and Its Application to Antibody for Site-Selective Conjugation

    PubMed Central

    Chung, Hye-Shin; Lee, Sunbae; Park, Soon Jae

    2016-01-01

    Here, we demonstrate that a metal ion binding motif could serve as an efficient and robust tool for site-specific conjugation strategy. Cysteine-containing metal binding motifs were constructed as single repeat or tandem repeat peptides and their metal binding characteristics were investigated. The tandem repeats of the Cysteine-Glycine-Histidine (CGH) metal ion binding motif exhibited concerted binding to Co(II) ions, suggesting that conformational transition of peptide was triggered by the sequential metal ion binding. Evaluation of the free thiol content after reduction by reducing reagent showed that metal-ion binding elicited strong retardation of cysteine oxidation in the order of Zn(II)>Ni(II)>Co(II). The CGH metal ion binding motif was then introduced to the C-terminus of antibody heavy chain and the metal ion-dependent characteristics of oxidation kinetics were investigated. As in the case of peptides, CGH-motif-introduced antibody exhibited strong dependence on metal ion binding to protect against oxidation. Zn(II)-saturated antibody with tandem repeat of CGH motif retains the cysteine reactivity as long as 22 hour even with saturating O2 condition. Metal-ion dependent fluorophore labeling clearly indicated that metal binding motifs could be employed as an efficient tool for site-specific conjugation. Whereas Trastuzumab without a metal ion binding site exhibited site-nonspecific dye conjugation, Zn(II) ion binding to antibody with a tandem repeat of CGH motif showed that fluorophores were site-specifically conjugated to the heavy chain of antibody. We believe that this strong metal ion dependence on oxidation protection and the resulting site-selective conjugation could be exploited further to develop a highly site-specific conjugation strategy for proteins that contain multiple intrinsic cysteine residues, including monoclonal antibodies. PMID:27420328

  18. Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide

    PubMed Central

    Ye, Xiaoli; Zhou, Ming; He, Yonggang; Wan, Yanmin; Bai, Weiya; Tao, Shuai; Ren, Yanqin; Zhang, Xinxin; Xu, Jianqing; Liu, Jing; Zhang, Junqi; Hu, Kanghong; Xie, Youhua

    2016-01-01

    Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors. PMID:27384014

  19. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  20. Activation of epitope-specific memory cytotoxic T lymphocyte responses by synthetic peptides.

    PubMed

    Reali, E; Guerrini, R; Giori, B; Borghi, M; Marastoni, M; Tomatis, R; Traniello, S; Masucci, M G; Gavioli, R

    1996-08-01

    Cytotoxic T lymphocytes (CTL) recognize antigens as short peptides selected for presentation by their ability to bind to MHC class I molecules. Polyclonal Epstein-Barr virus (EBV)-specific memory CTL responses, reactivated from blood lymphocytes of HLA-A11-positive individuals by stimulation with the autologous EBV-transformed lymphoblastoid cell line (LCL), are often dominated by reactivites directed to the peptide epitope IVTDFSVIK (IVT), corresponding to amino acids 416-424 of EBV nuclear antigen-4 (EBNA4). We now report the selective activation of IVT-specific CTL by stimulation of lymphocytes with the corresponding synthetic peptide. A more than 10-fold increase in frequency of CTL clones with this specificity (from 8% to 96%) was obtained when the peptide was presented by HLA-A11-transfected T2 cells (T2/A11). Titration of synthetic peptide in cytotoxic assay demonstrated that clones activated under these conditions are as efficient as clones activated by conventional LCL stimulations. Induction of memory CTL responses required low surface density of MHC: peptide complexes, since reactivation was achieved by stimulation with T2/A11 cells pulsed with concentrations of peptide that are suboptimal for induction of target cell lysis. This protocol of activation revealed the presence of IVT-specific CTL precursors in a donor that failed to mount an IVT-specific response upon stimulation with the autologous B95.8 virus-transformed LCL. The results suggest that stimulation with synthetic peptide epitopes can be efficiently used for induction of memory CTL responses, and may be particularly helpful for the selective expansion of subdominant CTL specificities.

  1. GTP-binding peptide of beta-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins

    SciTech Connect

    Linse, K.; Mandelkow, E.M.

    1988-10-15

    The binding site of the guanine moiety of GTP on beta-tubulin was located within the peptide consisting of residues 63-77, AILVDLEPGTMDSVR. The result was obtained using direct photoaffinity labeling, peptide sequencing, and limited proteolysis. Peptides were identified by end-labeling with a monoclonal antibody against beta-tubulin whose epitope was located between 3 and 4 kDa from the C terminus. The sequence of the GTP-binding site is consistent with predictions from other GTP-binding proteins such as elongation factor Tu or ras p21.

  2. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc.

  3. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    PubMed Central

    Hsiao, Ku-chuan; Brissette, Renee E; Wang, Pinger; Fletcher, Paul W; Rodriguez, Vanessa; Lennick, Michael; Blume, Arthur J; Goldstein, Neil I

    2003-01-01

    Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs) which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75) into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity. PMID:12646066

  4. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature

    NASA Astrophysics Data System (ADS)

    Essler, Markus; Ruoslahti, Erkki

    2002-02-01

    In vivo phage display identifies peptides that selectively home to the vasculature of individual organs, tissues, and tumors. Here we report the identification of a cyclic nonapeptide, CPGPEGAGC, which homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. The homing of the phage is inhibited by its cognate synthetic peptide. Phage localization in tissue sections showed that the breast-homing phage binds to the blood vessels in the breast, but not in other tissues. The phage also bound to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Expression cloning with a phage-displayed cDNA library yielded a phage that specifically bound to the breast-homing peptide. The cDNA insert was homologous to a fragment of aminopeptidase P. The homing peptide bound aminopeptidase P from malignant breast tissue in affinity chromatography. Antibodies against aminopeptidase P inhibited the in vitro binding of the phage-displayed cDNA to the peptide and the in vivo homing of phage carrying the peptide. These results indicate that aminopeptidase P is the receptor for the breast-homing peptide. This peptide may be useful in designing drugs for the prevention and treatment of breast cancer.

  5. Exploiting anthracene photodimerization within peptides: light induced sequence-selective DNA binding.

    PubMed

    Bullen, Gemma A; Tucker, James H R; Peacock, Anna F A

    2015-05-11

    The unprecedented use of anthracene photodimerization within a protein or peptide system is explored through its incorporation into a DNA-binding peptide, derived from the GCN4 transcription factor. This study demonstrates an effective and dynamic interplay between a photoreaction and a peptide-DNA assembly, with each process able to exert control over the other.

  6. Sequence motifs of human her-2 protooncogene important for Peptide binding to hla-A2.

    PubMed

    Fisk, B; Chesak, B; Ioannides, M; Wharton, J; Ioannides, C

    1994-07-01

    Tumor progression and metastasis are often associated with overexpression of specific cellular proteins. In 1991, we introduced a hypothesis that epitopes of nonmutated overexpressed proteins can be targets of a specific cellular immune response against tumor mediated by T cells (Mol Carcinogen 6: 77-81, 1992) and that, when T cell epitopes are present, distinction between tumor immunity/autoimmunity and unresponsiveness can be predicated on the protein concentration as a limiting factor of epitope supply. In support of this hypothesis, we demonstrated that CTL from patients with ovarian tumors which overexpress HER-2 proto-oncogene can recognize both autologous tumor and synthetic analogs of a specific epitope from HER-2, which was identified based on the convergence of all criteria for selection of HLA-A2 associated epitopes recognized by T cells. In this study, we identified all epitopes in HER-2 containing nonapeptides with HLA-A2 anchors. Of these, analysis of potential amphiphilic sites identified both sequences and specific mutations that positively affected the reactivity of conformationally dependent HLA-A2 specific mAb which served as an indication of HER-2 peptide binding. We also report the in vitro induction of cellular responses to these peptides by PBMC from healthy HLA-A2+ volunteers as an indication of their ability to stimulate/ restimulate pre-existing T cell responses to HER-2. The peptides induced proliferative responses in one of four donors tested and CTL responses (one of three peptides tested in two of three donors). This strategy may allow selection of immunogenic HER-2 peptides and elucidation of mechanisms operating in induction of tolerance to defined epitopes on self-proteins. PMID:21559557

  7. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.

    PubMed

    Szunyogh, Dániel; Gyurcsik, Béla; Larsen, Flemming H; Stachura, Monika; Thulstrup, Peter W; Hemmingsen, Lars; Jancsó, Attila

    2015-07-28

    Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.

  8. Photoresponsive peptide azobenzene conjugates that specifically interact with platinum surfaces

    NASA Astrophysics Data System (ADS)

    Dinçer, S.; Tamerler, C.; Sarıkaya, M.; Pişkin, E.

    2008-05-01

    The aim of this study is to prepare photoresponsive peptide-azobenzene compounds which interacts with platinum surfaces specifically, in order to create smart surfaces for further novel applications in design of smart biosensors and array platforms. Here, a water-soluble azobenzene molecule, 4-hydroxyazo benzene,4-sulfonic acid was synthesized by diazo coupling reaction. A platinum-specific peptide, originally selected by a phage display technique was chemically synthesized/purchased, and conjugated with the azobenzene compound activated with carbonyldiimidazole. Both azobenzene and its conjugate were characterized (including photoresponsive properties) by FTIR, NMR, and UV-spectrophotometer. The yield of conjugation reaction estimated by ninhydrin assay was about 65%. Peptide incorporation did not restrict the light-sensitivity of azobenzene. Adsorption of both the peptide and its azobenzene conjugate was followed by Quartz Crystal Microbalance (QCM) system. The kinetic evaluations exhibited that both molecules interact platinum surfaces, quite rapidly and strongly.

  9. Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity.

    PubMed

    Hur, Jeonghwan; Ghosh, Ambarnil; Kim, Kabsun; Ta, Hai Minh; Kim, Hyunju; Kim, Nacksung; Hwang, Hye-Yeon; Kim, Kyeong Kyu

    2016-04-30

    The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

  10. Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

    PubMed Central

    Hur, Jeonghwan; Ghosh, Ambarnil; Kim, Kabsun; Ta, Hai Minh; Kim, Hyunju; Kim, Nacksung; Hwang, Hye-Yeon; Kim, Kyeong Kyu

    2016-01-01

    The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function. PMID:26923188

  11. Computational analysis of binding free energies between peptides and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Liu, G. R.; Li, Z. R.; Lu, C.

    2006-07-01

    Coating carbon nanotubes (CNTs) with peptides can solubilize the nanotubes in water solvent. To explore the utilization of CNTs in solvent and the affinities of CNTs for different peptides, binding free energies of peptides to single-walled carbon nanotubes (SWCNTs) are calculated and analyzed. The interactions between different peptides and SWCNTs are simulated using molecular dynamics (MD) methods. The binding free energies of peptides onto the outer-surface of the SWCNTs are then estimated based on thermodynamics theory. The estimated results of binding free energies are qualitatively comparable to binding affinities observed in experiments. Furthermore, the conformations of the binding peptides, as well as the energetic contributions to total binding free energies are analyzed to reveal the physical mechanisms of the interactions, which would be difficult to observe using experimental approaches. The van der Waals interaction is found to play a key role in binding of peptides to SWCNTs. Other effects such as hydrophobicity and aromatic rings of peptides are also examined. The findings of this study provide better understanding of the binding strength between proteins and CNTs, and therefore have potential applications in both scientific research and in industry for controlling CNT self-assembly, designing bio-functionalized CNTs as biosensors, and drug and gene delivery devices.

  12. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates.

    PubMed

    Mosquera, Jesús; Sánchez, Mateo I; Valero, Julián; de Mendoza, Javier; Vázquez, M Eugenio; Mascareñas, José L

    2015-03-21

    Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract. In addition to stabilizing the complex with the target DNA, the oligoguanidinium unit also endows the conjugate with cell internalization properties.

  13. Investigating the Structural Variability and Binding Modes of the Glioma Targeting NFL-TBS.40-63 Peptide on Tubulin.

    PubMed

    Laurin, Yoann; Savarin, Philippe; Robert, Charles H; Takahashi, Masayuki; Eyer, Joel; Prevost, Chantal; Sacquin-Mora, Sophie

    2015-06-16

    NFL-TBS.40-63 is a 24 amino acid peptide corresponding to the tubulin-binding site located on the light neurofilament subunit, which selectively enters glioblastoma cells, where it disrupts their microtubule network and inhibits their proliferation. We investigated its structural variability and binding modes on a tubulin heterodimer using a combination of NMR experiments, docking, and molecular dynamics (MD) simulations. Our results show that, while lacking a stable structure, the peptide preferentially binds on a specific single site located near the β-tubulin C-terminal end, thus giving us precious hints regarding the mechanism of action of the NFL-TBS.40-63 peptide's antimitotic activity at the molecular level.

  14. NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat.

    PubMed Central

    Mujeeb, A; Bishop, K; Peterlin, B M; Turck, C; Parslow, T G; James, T L

    1994-01-01

    The Tat protein of human immunodeficiency virus type 1 enhances transcription by binding to a specific RNA element on nascent viral transcripts. Binding is mediated by a 10-amino acid basic domain that is rich in arginines and lysines. Here we report the three-dimensional peptide backbone structure of a biologically active 25-mer peptide that contains the human immunodeficiency virus type 1 Tat basic domain linked to the core regulatory domain of another lentiviral Tat--i.e., that from equine infectious anemia virus. Circular dichroism and two-dimensional proton NMR studies of this hybrid peptide indicate that the Tat basic domain forms a stable alpha-helix, whereas the adjacent regulatory sequence is mostly in extended form. These findings suggest that the tendency to form stable alpha-helices may be a common property of arginine- and lysine-rich RNA-binding domains. Images PMID:8058789

  15. Identification of Novel HLA-A2-Restricted Human Immunodeficiency Virus Type 1-Specific Cytotoxic T-Lymphocyte Epitopes Predicted by the HLA-A2 Supertype Peptide-Binding Motif

    PubMed Central

    Altfeld, Marcus A.; Livingston, Brian; Reshamwala, Neha; Nguyen, Phuong T.; Addo, Marylyn M.; Shea, Amy; Newman, Mark; Fikes, John; Sidney, John; Wentworth, Peggy; Chesnut, Robert; Eldridge, Robert L.; Rosenberg, Eric S.; Robbins, Gregory K.; Brander, Christian; Sax, Paul E.; Boswell, Steve; Flynn, Theresa; Buchbinder, Susan; Goulder, Philip J. R.; Walker, Bruce D.; Sette, Alessandro; Kalams, Spyros A.

    2001-01-01

    Virus-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of human immunodeficiency virus type 1 (HIV-1) infection and will play an important part in therapeutic and prophylactic HIV-1 vaccines. The identification of virus-specific epitopes that are efficiently recognized by CTL is the first step in the development of future vaccines. Here we describe the immunological characterization of a number of novel HIV-1-specific, HLA-A2-restricted CTL epitopes that share a high degree of conservation within HIV-1 and a strong binding to different alleles of the HLA-A2 superfamily. These novel epitopes include the first reported CTL epitope in the Vpr protein. Two of the novel epitopes were immunodominant among the HLA-A2-restricted CTL responses of individuals with acute and chronic HIV-1 infection. The novel CTL epitopes identified here should be included in future vaccines designed to induce HIV-1-specific CTL responses restricted by the HLA-A2 superfamily and will be important to assess in immunogenicity studies in infected persons and in uninfected recipients of candidate HIV-1 vaccines. PMID:11152503

  16. Characterization of Seven New Polystyrene Plates Binding Peptides from a Phage-Displayed Random 12-Peptide Library.

    PubMed

    Hu, Yun-Fei; Gao, Xiao-Chen; Xu, Tian-Qi; Dun, Zhao; Yu, Xing-Long

    2016-01-01

    A random 12-peptide library was screened against Erysipelothrix rhusiopthiae and porcine circovirus 2 recombinant Cap protein and the selected peptides were used for detecting the corresponding pathogens quickly and effectively. To our surprise, seven peptides, P1 (WHWNAP WWNGVY), P2 (FHWTWQFPYTST), P3 (GAMHLPWHMGTL), P4 (HWNIWWQHHPSP), P5 (HFFKWHTRTNDQ), P6 (HFFRWHPSAHLG) and P7 (HFAYWWNGVRGP) with the characteristics of polystyrene plate (PS) binding target-unrelated peptides (TUPs), were selected from the library. It has been found that P2 and P4 shared common motif of plastic binding peptide, moreover, P2, P3, P5 and P7 have been isolated repeatedly in other research groups using different targets. Then, the seven peptide phage clones were identified as the PS binding TUP phages by phage-ELISA and elution titration, particularly, P1 and P2 showed strong PS binding affinity which can not be inhibited by usual blocking buffers. In addition, all of the phages were not propagation-related TUP, but P3 showed the similar propagation rate with M13KE (vector phage). We also found that the seven PS-TUPs are rich in W, H, F, P and G, particularly, both W and H are contained in all PS-TUPs. It deduced that they may play a potential role in peptide binding to plastic. Although it is difficult to eliminate the TUP phages in phage display completely, these PS-TUPs can be used to exclude the false positive peptides rapidly and effectively and help us to obtain truly interesting peptides more accurately. PMID:26980286

  17. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.

    PubMed

    Arouri, Ahmad; Dathe, Margitta; Blume, Alfred

    2013-01-01

    The role and importance of the conformation of antimicrobial peptides for their binding and incorporation into lipid membranes as well as for their bioactivity are still not well understood. In this paper, we studied the interaction between four cationic alpha-helical KLA peptides, which differ primarily in their helical propensity, and the anionic gel-state lipid DPPG (1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol). Of particular interest was the influence of the peptide conformation and membrane surface properties on the electrostatic binding process. Dynamic light scattering (DSL) showed that generally the KLA peptides possess high aggregation power but modest solubilization power. Circular dichroism spectroscopy (CD) spectra revealed that the KLA peptides with the low helical propensity tend to form beta-structures at low lipid/peptide ratios. Differential scanning calorimetry (DSC) thermograms showed that the helical KLA peptides stabilize the DPPG bilayer, whereas the beta-structured peptides induce pronounced membrane perturbations. Isothermal titration calorimetry (ITC) isotherms showed that the helical KLA peptides bind more efficiently to DPPG vesicles than the beta-structured KLA peptides, and that the binding affinity of the peptides is proportional to the peptide helical propensity and membrane negative surface charge. The stoichiometry values (N) deduced from the ITC isotherms suggest that the helical KLA peptides have a higher capacity to translocate the DPPG lipid bilayer. The new data presented in this study demonstrate the flexibility of KLA peptides in adopting various conformations in response to the surrounding and also how the peptide structuring controls the mode of peptide-membrane interaction.

  18. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.

    PubMed

    Arouri, Ahmad; Dathe, Margitta; Blume, Alfred

    2013-01-01

    The role and importance of the conformation of antimicrobial peptides for their binding and incorporation into lipid membranes as well as for their bioactivity are still not well understood. In this paper, we studied the interaction between four cationic alpha-helical KLA peptides, which differ primarily in their helical propensity, and the anionic gel-state lipid DPPG (1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol). Of particular interest was the influence of the peptide conformation and membrane surface properties on the electrostatic binding process. Dynamic light scattering (DSL) showed that generally the KLA peptides possess high aggregation power but modest solubilization power. Circular dichroism spectroscopy (CD) spectra revealed that the KLA peptides with the low helical propensity tend to form beta-structures at low lipid/peptide ratios. Differential scanning calorimetry (DSC) thermograms showed that the helical KLA peptides stabilize the DPPG bilayer, whereas the beta-structured peptides induce pronounced membrane perturbations. Isothermal titration calorimetry (ITC) isotherms showed that the helical KLA peptides bind more efficiently to DPPG vesicles than the beta-structured KLA peptides, and that the binding affinity of the peptides is proportional to the peptide helical propensity and membrane negative surface charge. The stoichiometry values (N) deduced from the ITC isotherms suggest that the helical KLA peptides have a higher capacity to translocate the DPPG lipid bilayer. The new data presented in this study demonstrate the flexibility of KLA peptides in adopting various conformations in response to the surrounding and also how the peptide structuring controls the mode of peptide-membrane interaction. PMID:23792704

  19. Engineered Cystine-Knot Peptides That Bind αvβ3 Integrin With Antibody-Like Affinities

    PubMed Central

    Silverman, Adam P.; Levin, Aron M.; Lahti, Jennifer L.; Cochran, Jennifer R.

    2010-01-01

    The αvβ3 integrin receptor is an important cancer target due to its overexpression on many solid tumors and the tumor neovasculature, and its role in metastasis and angiogenesis. We used a truncated form of the Agouti-related protein (AgRP), a 4 kDa cystine-knot peptide with four disulfide bonds and four solvent-exposed loops, as a scaffold for engineering peptides that bound to αvβ3 integrins with high affinity and specificity. A yeast-displayed cystine-knot peptide library was generated by substituting a 6-amino acid loop of AgRP with a 9-amino acid loop containing the Arg-Gly-Asp (RGD) integrin recognition motif and randomized flanking residues. Mutant cystine-knot peptides were screened in a high-throughput manner by fluorescence-activated cell sorting (FACS) to identify clones with high affinity to detergent-solubilized αvβ3 integrin receptor. Select integrin-binding peptides were expressed recombinantly in Pichia pastoris and were tested for their ability to bind to human cancer cells expressing various integrin receptors. These studies showed that the engineered AgRP peptides bound to cells expressing αvβ3 integrins with affinities ranging from 15 nM to 780 pM. Furthermore, the engineered peptides were shown bind specifically to αvβ3 integrins, and had only minimal or no binding to αvβ5, α5β1, and αiibβ3 integrins. The engineered AgRP peptides were also shown to inhibit cell adhesion to the extracellular matrix protein vitronectin, which is a naturally-occurring ligand for αvβ3 and other integrins. Next, to evaluate whether the other three loops of AgRP could modulate integrin specificity, we made second generation libraries by individually randomizing these loops in one of the high affinity integrin-binding variants. Screening of these loop-randomized libraries against αvβ3 integrins resulted in peptides that retained high affinities for αvβ3 and had increased specificities for αvβ3 over αiibβ3 integrins. Collectively, these data

  20. MHC/Peptide-Specific Interaction of the Humoral Immune System: A New Category of Antibodies.

    PubMed

    Held, Gerhard; Luescher, Immanuel F; Neumann, Frank; Papaioannou, Chrysostomos; Schirrmann, Thomas; Sester, Martina; Smola, Sigrun; Pfreundschuh, Michael

    2015-11-01

    Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide(58-66) displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP(58-66) complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP(58-66)-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP(58-66), but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP(58-66) Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP(58-66) Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system. PMID:26416277

  1. Bioactivation of water-soluble peptidic quantum dot through biotin-streptavidin binding

    NASA Astrophysics Data System (ADS)

    Dif, A.; Touchet, S.; Nagarajan, S.; Baudy-Floc'h, M.; Dahan, M.; Piehler, J.; Marchi-Artzner, V.

    2008-02-01

    This paper describes the preparation of bioactive water-soluble fluorescent CdSe/ZnS semi-conductor quantum dots with a small hydrodynamic diameter of 10 nm. These quantum dots are functionalized with a biotinylated peptide that can be introduced at different ratios onto the surface of the quantum dots. Their ability to bind to streptavidin in solution is tested by using gel electrophoresis and fluorescence resonance energy transfer with a fluorescent labeled-streptavidin. The binding of these quantum dots to Agarose micrometric beads coated with streptavidin is also analyzed by fluorescent optical microscopy. A synthetic pegylated peptide is successfully used to prevent the non specific adsorption of streptavidin onto the quantum dots. A specific binding to the streptavidin results in the formation of a very stable streptavidin-quantum dot complex without any significant aggregation. The average number of streptavidin per quantum dot is found to be to 4 at the most. Such bioactivate quantum dots can be further conjugated to any biotinylated biomolecule and used in biological medium.

  2. The Recognition Specificity of the CHD1 Chromodomain with Modified Histone H3 Peptides

    PubMed Central

    Stein, Richard S. L.; Wang, Wei

    2011-01-01

    Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of CHD1 chromodomain complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and individual residues within the protein and peptides were computed with MM-GBSA. The simulation results agree well with experimental data and identify several CHD1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes, and a second class of residues that bind only to particular H3 modifications. Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis. PMID:21195088

  3. A Prevalent Peptide-Binding Domain Guides Ribosomal Natural Product Biosynthesis

    PubMed Central

    Burkhart, Brandon J.; Hudson, Graham A.; Dunbar, Kyle L.; Mitchell, Douglas A.

    2015-01-01

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a rapidly growing natural product class. RiPP precursor peptides can undergo extensive enzymatic tailoring, yielding structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP modifying enzymes contain structurally similar precursor peptide-binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes; thus, we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies, we verify the role of the RRE for three distinct RiPP classes: linear azole-containing peptides, thiopeptides, and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities. PMID:26167873

  4. Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial.

    PubMed

    Bishop-Hurley, Sharon L; Rea, Philippa J; McSweeney, Christopher S

    2010-10-01

    In developed countries, Campylobacter jejuni is a leading cause of zoonotic bacterial gastroenteritis in humans with chicken meat implicated as a source of infection. Campylobacter jejuni colonises the lower gastrointestinal tract of poultry and during processing is spread from the gastrointestinal tract onto the surface of dressed carcasses. Controlling or eliminating C.jejuni on-farm is considered to be one of the best strategies for reducing human infection. Molecules on the cell surface of C.jejuni interact with the host to facilitate its colonisation and persistence in the gastrointestinal tract of poultry. We used a subtractive phage-display protocol to affinity select for peptides binding to the cell surface of a poultry isolate of C.jejuni with the aim of finding peptides that could be used to control this microorganism in chickens. In total, 27 phage peptides, representing 11 unique clones, were found to inhibit the growth of C.jejuni by up to 99.9% in vitro. One clone was bactericidal, reducing the viability of C.jejuni by 87% in vitro. The phage peptides were highly specific. They completely inhibited the growth of two of the four poultry isolates of C.jejuni tested with no activity detected towards other Gram-negative and Gram-positive bacteria.

  5. Substrate specificity of papain dynamic structures for peptides consisting of 8-10 GLY residues

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2011-01-01

    We investigated the substrate specificity of papain dynamic structures for peptides of 8-10 glycine residues (8-10GLY) via molecular dynamics and docking simulations. The substrate specificity of papain for 8-10GLY fluctuated considerably with time. There were several residues that were different among those that had a significant impact on binding (RESIDUES_IMPACT) with 10GLY, 9GLY, and 8GLY. Modification of these different residues should allow for control of substrate specificity, providing a framework for modifying substrate specificity in papain and other enzymes.

  6. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides

    PubMed Central

    Yahashiri, Atsushi; Jorgenson, Matthew A.; Weiss, David S.

    2015-01-01

    Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division. PMID:26305949

  7. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.

    PubMed

    Winstone, Tara M L; Tran, Vy A; Turner, Raymond J

    2013-10-29

    The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the thermodynamics of binding between synthetic peptides composed of different portions of the DmsA leader peptide and DmsD. Only those peptides that included the complete and contiguous hydrophobic region of the DmsA leader sequence were able to bind DmsD with a 1:1 stoichiometry. Each of the peptides that were able to bind DmsD also showed some α-helical structure as indicated by circular dichroism spectroscopy. Differential scanning calorimetry revealed that DmsD gained very little thermal stability upon binding any of the DmsA leader peptides tested. Together, these results suggest that a portion of the hydrophobic region of the DmsA leader peptide determines the specificity of binding and may produce helical properties upon binding to DmsD. Overall, this study demonstrates that the recognition of the DmsA twin-arginine leader sequence by the DmsD chaperone shows unexpected rules and confirms further that the biochemistry of the interaction of the chaperone with their leaders demonstrates differences in their molecular interactions.

  8. SIRT3 substrate specificity determined by peptide arrays and machine learning.

    PubMed

    Smith, Brian C; Settles, Burr; Hallows, William C; Craven, Mark W; Denu, John M

    2011-02-18

    Accumulating evidence suggests that reversible protein acetylation may be a major regulatory mechanism that rivals phosphorylation. With the recent cataloging of thousands of acetylation sites on hundreds of proteins comes the challenge of identifying the acetyltransferases and deacetylases that regulate acetylation levels. Sirtuins are a conserved family of NAD(+)-dependent protein deacetylases that are implicated in genome maintenance, metabolism, cell survival, and lifespan. SIRT3 is the dominant protein deacetylase in mitochondria, and emerging evidence suggests that SIRT3 may control major pathways by deacetylation of central metabolic enzymes. Here, to identify potential SIRT3 substrates, we have developed an unbiased screening strategy that involves a novel acetyl-lysine analogue (thiotrifluoroacetyl-lysine), SPOT-peptide libraries, machine learning, and kinetic validation. SPOT peptide libraries based on known and potential mitochondrial acetyl-lysine sites were screened for SIRT3 binding and then analyzed using machine learning to establish binding trends. These trends were then applied to the mitochondrial proteome as a whole to predict binding affinity of all lysine sites within human mitochondria. Machine learning prediction of SIRT3 binding correlated with steady-state kinetic k(cat)/K(m) values for 24 acetyl-lysine peptides that possessed a broad range of predicted binding. Thus, SPOT peptide-binding screens and machine learning prediction provides an accurate and efficient method to evaluate sirtuin substrate specificity from a relatively small learning set. These analyses suggest potential SIRT3 substrates involved in several metabolic pathways such as the urea cycle, ATP synthesis, and fatty acid oxidation. PMID:20945913

  9. Vasoactive intestinal peptide (VIP) binds to guinea pig peritoneal eosinophils: A single class of binding sites with low affinity and high capacity

    SciTech Connect

    Sakakibara, H.; Shima, K. Takamatsu, J.; Said, S.I. )

    1990-02-26

    VIP binds to specific receptors on lymphocytes and mononuclear cells and exhibits antiinflammatory properties. Eosinophils (Eos) contribute to inflammatory reactions but the regulation of Eos function is incompletely understood. The authors examined the binding of monoradioiodinated VIP, (Tyr({sup 125}I){sup 10}) VIP ({sup 125}I-VIP), to Eos in guinea pigs. The interaction of {sup 125}i-VIP with Eos was rapid, reversible, saturable and linearly dependent on the number of cells. At equilibrium the binding was competitively inhibited by native peptide or by the related peptide helodermin. Scatchard analysis suggested the presence of a single class of VIP binding sites with a low affinity and a high capacity. In the presence of isobutyl-methylxanthine, VIP, PHI or helodermin did not stimulate cyclic AMP accumulation in intact Eos, while PGE{sub 2} or 1-isoproterenol did. VIP also did not inhibit superoxide anion generation from Eos stimulated by phorbol myristate acetate. The authors conclude that: (1) VIP binds to low-affinity, specific sites on guinea pig peritoneal eosinophils; (2) this binding is not coupled to stimulation of adenylate cyclase; and (3) the possible function of these binding sites is at present unknown.

  10. Improved affinity at the cost of decreased specificity: a recurring theme in PDZ-peptide interactions

    PubMed Central

    Karlsson, O. Andreas; Sundell, Gustav N.; Andersson, Eva; Ivarsson, Ylva; Jemth, Per

    2016-01-01

    The E6 protein from human papillomavirus (HPV) plays an important role during productive infection and is a potential drug target. We have previously designed a high affinity bivalent protein binder for the E6 protein, a fusion between a helix from the E6 associated protein and PDZØ9, an engineered variant (L391F/K392M) of the second PDZ domain from synapse associated protein 97 (SAP97 PDZ2). How the substitutions improve the affinity of SAP97 PDZ2 for HPV E6 is not clear and it is not known to what extent they affect the specificity for cellular targets. Here, we explore the specificity of wild type SAP97 PDZ2 and PDZØ9 through proteomic peptide phage display. In addition, we employ a double mutant cycle of SAP97 PDZ2 in which the binding kinetics for nine identified potential cellular peptide ligands are measured and compared with those for the C-terminal E6 peptide. The results demonstrate that PDZØ9 has an increased affinity for all peptides, but at the cost of specificity. Furthermore, there is a peptide dependent coupling free energy between the side chains at positions 391 and 392. This corroborates our previous allosteric model for PDZ domains, involving sampling of intramolecular energetic pathways. PMID:27694853

  11. The estimation of affinity constants for the binding of model peptides to DNA by equilibrium dialysis.

    PubMed Central

    Standke, K C; Brunnert, H

    1975-01-01

    The binding of lysine model peptides of the type Lys-X-Lys, Lys-X-X-Lys and Lys-X-X-X-Lys (X = different aliphatic and aromatic amino acids) has been studied by equilibrium dialysis. It was shown that the strong electrostatic binding forces generated by protonated amino groups of lysine can be distinguished from the weak forces stemming from neutral and aromatic spacer amino acids. The overall binding strength of the lysine model peptides is modified by these weak binding forces and the apparent binding constants are influenced more by the hydrophobic character of the spacer amino acid side chains than by the chainlength of the spacers. PMID:1187347

  12. The Development and Application of a Quantitative Peptide Microarray Based Approach to Protein Interaction Domain Specificity Space*

    PubMed Central

    Engelmann, Brett W.; Kim, Yohan; Wang, Miaoyan; Peters, Bjoern; Rock, Ronald S.; Nash, Piers D.

    2014-01-01

    Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology. PMID:25135669

  13. Direct measurement of agonist binding to genetically engineered peptides of the acetylcholine receptor by selective T sub 1 NMR relaxation

    SciTech Connect

    Fraenkel, Y.; Navon, G. ); Aronheim, A.; Gershoni, J.M. )

    1990-03-13

    Interactions of four ligands of the nicotinic acetylcholine receptor with genetically engineered peptides have been studied by NMR. A recombinant cholinergic binding site was prepared as a fusion protein between a truncated form of the bacterial protein trpE and a peptide corresponding to the sequence {alpha}184-200 from the Torpedo californica receptor. This construct binds {alpha}-bungarotoxin while the trpE protein alone does not, and thus serves as a negative control. In this study agonist binding to {alpha}184-200 is demonstrated by monitoring the T{sub 1} relaxation of the ligand's protons in the presence and absence of the recombinant binding site. This binding is specific as it can be competed with {alpha}-bungarotoxin. Quantitative analyses of such competitions yielded the concentration of binding sites, which corresponded to 3.3% and 16.5% of the total protein, for partially purified and affinity-purified {alpha}184-200 constructs, respectively. The K{sub D} values for the binding of acetylcholine, nicotine, d-tubocurarine, and gallamine to the affinity-purified construct were 1.4, 1.4, 0.20, and 0.21 mM, respectively, while K{sub D}'s with the nontoxin binding protein were all above 10 mM. Thus, this is a direct demonstration that the toxin binding domain {alpha}184-200 may comprise a major component of the cholinergic agonist site.

  14. Thiazole orange-peptide conjugates: sensitivity of DNA binding to chemical structure.

    PubMed

    Carreon, Jay R; Mahon, Kerry P; Kelley, Shana O

    2004-02-19

    [structure: see text] Derivatives of the highly fluorescent and DNA-binding dye thiazole orange (TO) are described that feature appended peptides. Functionalization of TO can be achieved at either of the endocyclic nitrogens, and the photophysical properties and DNA-binding modes are sensitive to the position of the tethered peptide. A series of TO-peptide conjugates are described, demonstrating the utility of a solid-phase synthesis approach to their preparation and illustrating how the photophysical and DNA-binding properties of the compounds are influenced by chemical structure.

  15. Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology.

    PubMed

    Colombo, Monica; Mizzotti, Chiara; Masiero, Simona; Kater, Martin M; Pesaresi, Paolo

    2015-11-01

    In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization.

  16. PEGylation enables the specific tumor accumulation of a peptide identified by phage display.

    PubMed

    Mier, Walter; Krämer, Susanne; Zitzmann, Sabine; Altmann, Annette; Leotta, Karin; Schierbaum, Ursula; Schnölzer, Martina; Eisenhut, Michael; Haberkorn, Uwe

    2013-04-28

    Peptides are excellent alternatives to small molecules and proteinaceous drugs. Their high medicinal potential for diagnostic and therapeutic applications has prompted the development of tumor targeting peptides. Despite its excellent tumor binding capacity, FROP-DOTA (H-Glu-Asn-Tyr-Glu-Leu-Met-Asp-Leu-Leu-Ala-Tyr-Leu-Lys(DOTA)-NH2), a peptide that we had identified in phage display libraries, revealed slow binding kinetics. Consequently, biodistribution studies showed that its excretion forestalled a significant tumor accumulation. The aim of this study was to investigate whether the conjugation of PEG to FROP-DOTA resulted in a derivative with a prolonged residence time in the blood. A synthetic method for the PEGylation of the tumor specific peptide FROP-DOTA was developed. Thereafter, binding studies were done in vitro and a biodistribution was performed in tumor bearing animals. These were compared to the data obtained with FROP-DOTA. The binding kinetics of the PEGylated FROP-DOTA was even slower than that of FROP-DOTA. Biodistribution studies of the labeled conjugate in mice bearing human FRO82-2 tumors showed a time dependent increased uptake of the PEGylated peptide with a high retention (at 24 h p.i. 76% of the maximal activity concentration persisted in the tumor). The highest uptake values were determined at 120 min p.i. reaching 2.3%ID/g tumor as compared to 0.06%ID/g observed for the non-PEGylated derivative at 135 min p.i. Apparently, PEGylation provides a substantially improved stabilization in the circulation which allowed a stable tumor accumulation. PMID:23474823

  17. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA.

    PubMed

    Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F

    2011-11-01

    Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.

  18. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells.

    PubMed

    Polo, Jose M; Dell'Oso, Tania; Ranuncolo, Stella Maris; Cerchietti, Leandro; Beck, David; Da Silva, Gustavo F; Prive, Gilbert G; Licht, Jonathan D; Melnick, Ari

    2004-12-01

    The BTB/POZ transcriptional repressor and candidate oncogene BCL6 is frequently misregulated in B-cell lymphomas. The interface through which the BCL6 BTB domain mediates recruitment of the SMRT, NCoR and BCoR corepressors was recently identified. To determine the contribution of this interface to BCL6 transcriptional and biological properties, we generated a peptide that specifically binds BCL6 and blocks corepressor recruitment in vivo. This inhibitor disrupts BCL6-mediated repression and establishment of silenced chromatin, reactivates natural BCL6 target genes, and abrogates BCL6 biological function in B cells. In BCL6-positive lymphoma cells, peptide blockade caused apoptosis and cell cycle arrest. BTB domain peptide inhibitors may constitute a novel therapeutic agent for B-cell lymphomas. PMID:15531890

  19. Changing the peptide specificity of a human T cell receptor by directed evolution

    PubMed Central

    Smith, Sheena N.; Wang, Yuhang; Baylon, Javier L.; Singh, Nishant K.; Baker, Brian M.; Tajkhorshid, Emad; Kranz, David M.

    2014-01-01

    Binding of a T cell receptor (TCR) to a peptide/major histocompatibility complex is the key interaction involved in antigen specificity of T cells. The recognition involves up to six complementarity determining regions (CDR) of the TCR. Efforts to examine the structural basis of these interactions and to exploit them in adoptive T cell therapies has required the isolation of specific T cell clones and their clonotypic TCRs. Here we describe a strategy using in vitro, directed evolution of a single TCR to change its peptide specificity, thereby avoiding the need to isolate T cell clones. The human TCR A6, which recognizes the viral peptide Tax/HLA-A2, was converted to TCR variants that recognized the cancer peptide MART1/HLA-A2. Mutational studies and molecular dynamics simulations identified CDR residues that were predicted to be important in the specificity switch. Thus, in vitro engineering strategies alone can be used to discover TCRs with desired specificities. PMID:25376839

  20. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred). PMID:15534705

  1. Rat MHC-linked peptide transporter alleles strongly influence peptide binding by HLA-B27 but not B27-associated inflammatory disease.

    PubMed

    Simmons, W A; Leong, L Y; Satumtira, N; Butcher, G W; Howard, J C; Richardson, J A; Slaughter, C A; Hammer, R E; Taurog, J D

    1996-02-15

    Rats transgenic for the human MHC molecule HLA-B27 were used to study the effect of two alleles, cima and cimb, which are associated with peptide transport by the MHC-encoded Tap2 transporter, on the function of HLA-B27 as a restriction element for CTL recognition of the male H-Y minor H Ag and on the multisystem inflammatory disease characteristic of B27 transgenic rats. Anti-H-Y CTL generated in cima B27 transgenic rats lysed male B27 cimb/b targets significantly less well than cima/a or cima/b targets. Addition of exogenous H-Y peptides to male B27 cimb/b targets increased susceptibility to lysis to the level of cima/a targets. Male B27 cimb/b cells were less efficient than cima/a cells in competitively inhibiting CTL lysis of female B27 cima/a targets sensitized with exogenous H-Y peptides. 3H-Labeled peptides eluted from B27 molecules of lymphoblasts from rats of two cimb and three cima RT1 haplotypes showed that the cimb peptide pool favors comparatively longer and/or more hydrophobic peptides. These results indicate that RT1-linked Tap2 polymorphism in the rat strongly influences peptide loading of HLA-B27. Nonetheless, the prevalence and severity of multisystem inflammatory lesions were comparable in backcross rats bearing either cima/b or cimb/b. It thus appears either that binding of specific peptides to B27 is unimportant in the pathogenesis of B27-associated disease or that the critical peptides, unlike H-Y and many others, are not influenced by Tap transporter polymorphism. PMID:8568273

  2. Rat MHC-linked peptide transporter alleles strongly influence peptide binding by HLA-B27 but not B27-associated inflammatory disease.

    PubMed

    Simmons, W A; Leong, L Y; Satumtira, N; Butcher, G W; Howard, J C; Richardson, J A; Slaughter, C A; Hammer, R E; Taurog, J D

    1996-02-15

    Rats transgenic for the human MHC molecule HLA-B27 were used to study the effect of two alleles, cima and cimb, which are associated with peptide transport by the MHC-encoded Tap2 transporter, on the function of HLA-B27 as a restriction element for CTL recognition of the male H-Y minor H Ag and on the multisystem inflammatory disease characteristic of B27 transgenic rats. Anti-H-Y CTL generated in cima B27 transgenic rats lysed male B27 cimb/b targets significantly less well than cima/a or cima/b targets. Addition of exogenous H-Y peptides to male B27 cimb/b targets increased susceptibility to lysis to the level of cima/a targets. Male B27 cimb/b cells were less efficient than cima/a cells in competitively inhibiting CTL lysis of female B27 cima/a targets sensitized with exogenous H-Y peptides. 3H-Labeled peptides eluted from B27 molecules of lymphoblasts from rats of two cimb and three cima RT1 haplotypes showed that the cimb peptide pool favors comparatively longer and/or more hydrophobic peptides. These results indicate that RT1-linked Tap2 polymorphism in the rat strongly influences peptide loading of HLA-B27. Nonetheless, the prevalence and severity of multisystem inflammatory lesions were comparable in backcross rats bearing either cima/b or cimb/b. It thus appears either that binding of specific peptides to B27 is unimportant in the pathogenesis of B27-associated disease or that the critical peptides, unlike H-Y and many others, are not influenced by Tap transporter polymorphism.

  3. Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses

    PubMed Central

    Bachman, Haylee; Nicosia, John; Dysart, Marilyn; Barker, Thomas H.

    2015-01-01

    Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin–Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis. PMID:26244106

  4. Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization.

    PubMed

    Schafroth, Heather D; Floudas, Christodoulos A

    2004-02-15

    Development of a computational prediction method based on molecular modeling, global optimization, and implicit solvation has produced accurate structure and relative binding affinity predictions for peptide amino acids binding to five pockets of the MHC molecule HLA-DRB1*0101. Because peptide binding to MHC molecules is essential to many immune responses, development of such a method for understanding and predicting the forces that drive binding is crucial for pharmaceutical design and disease treatment. Underlying the development of this prediction method are two hypotheses. The first is that pockets formed by the peptide binding groove of MHC molecules are independent, separating the prediction of peptide amino acids that bind within individual pockets from those that bind between pockets. The second hypothesis is that the native state of a system composed of an amino acid bound to a protein pocket corresponds to the system's lowest free energy. The prediction method developed from these hypotheses uses atomistic-level modeling, deterministic global optimization, and three methods of implicit solvation: solvent-accessible area, solvent-accessible volume, and Poisson-Boltzmann electrostatics. The method predicts relative binding affinities of peptide amino acids for pockets of HLA-DRB1*0101 by determining computationally an amino acid's global minimum energy conformation. Prediction results from the method are in agreement with X-ray crystallography data and experimental binding assays.

  5. Identification of an Orthogonal Peptide Binding Motif for Biarsenical Multiuse Affinity Probes

    SciTech Connect

    Chen, Baowei; Cao, Haishi; Yan, Ping; Mayer, M. Uljana; Squier, Thomas C.

    2007-07-01

    Biarsenical multiuse affinity probes (MAPs) complexed with ethanedithiol (EDT) permit the selective cellular labeling of proteins engineered with tetracysteine motifs, but are limited by the availability of a single binding motif (i.e., CCPGCC or PG tag) that prevents the differential labeling of co-expressed proteins. To overcome this problem, we have used a high-throughput peptide screen to identify an alternate binding motif (i.e., CCKACC or KA tag), which has a similar brightness to the classical sequence upon MAP binding, but displays altered rates and affinities of association that permit the differential labeling of these peptide sequences by the red probe 4,5-bis(1,3,2-dithiarsolan-2-yl)-resorufin (ReAsH-EDT2) or its green cognate 4’,5’-bis(1,3,2-dithoarsolan-2-yl)fluorescein-(1,2-ethanedithiol)2 (FLAsH-EDT2). The utility of this labeling strategy was demonstrated following the expression of PG- and KA-tagged subunits of RNA polymerase expressed in E. coli. Specific labeling of two subunits of RNA polymerase in cellular lysates was achieved, whereby ReAsH-EDT2 is shown to selectively label the PG-tag on RNA polymerase alpha subunit prior to the labeling of the KA-tag sequence of the beta subunit of RNA polymerase with FlAsH-EDT2. These results demonstrate the ability to selectively label multiple individual proteins with orthogonal sequence tags in complex cellular lystates with spectroscopically distinct MAPs, and indicate the absolute specificity of ReAsH to target expressed proteins with essentially no nonspecific binding interactions.

  6. Biocompatible silicon surfaces through orthogonal click chemistries and a high affinity silicon oxide binding peptide.

    PubMed

    Hassert, Rayk; Pagel, Mareen; Ming, Zhou; Häupl, Tilmann; Abel, Bernd; Braun, Klaus; Wiessler, Manfred; Beck-Sickinger, Annette G

    2012-10-17

    Multifunctionality is gaining more and more importance in the field of improved biomaterials. Especially peptides feature a broad chemical variability and are versatile mediators between inorganic surfaces and living cells. Here, we synthesized a unique peptide that binds to SiO(2) with nM affinity. We equipped the peptide with the bioactive integrin binding c[RGDfK]-ligand and a fluorescent probe by stepwise Diels-Alder reaction with inverse electron demand and copper(I) catalyzed azide-alkyne cycloaddition. For the first time, we report the generation of a multifunctional peptide by combining these innovative coupling reactions. The resulting peptide displayed an outstanding binding to silicon oxide and induced a significant increase in cell spreading and cell viability of osteoblasts on the oxidized silicon surface.

  7. Investigating the Binding of Peptides to Graphene Surfaces for Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Garley, Amanda; Saikia, Nabanita; Barr, Stephen; Leuty, Gary; Berry, Rajiv; Heinz, Hendrik

    The Air Force Research Lab is focused on developing highly selective and sensitive graphene-based sensors functionalized with peptides for biomolecule detection. To achieve this there is a need to model interfacial binding interactions between the organic and inorganic components to complement ongoing experimental investigations. It is important to characterize the binding behavior of individual amino acids, with the goal of predicting binding of large peptides. Since polarization is important in graphene systems, a new force field which includes polarizability is used. This allows for an in depth exploration of pi-pi interactions, electrostatics and van der Waals forces involved with binding. The binding strength is determined via enthalpy and free energy calculations. Additionally, structural quantities are computed, such as how aromatic rings align with the graphene surface and the arrangement of various residue substituents in relation to the surface and water layers. Computational results are useful in guiding experimental methods focused on rapidly screening optimal peptide sequence for binding.

  8. Binding of Hemagglutinin and Influenza Virus to a Peptide-Conjugated Lipid Membrane

    PubMed Central

    Matsubara, Teruhiko; Shibata, Rabi; Sato, Toshinori

    2016-01-01

    Hemagglutinin (HA) plays an important role in the first step of influenza virus (IFV) infection because it initiates the binding of the virus to the sialylgalactose linkages of the receptors on the host cells. We herein demonstrate that a HA-binding peptide immobilized on a solid support is available to bind to HA and IFV. We previously obtained a HA-binding pentapeptide (Ala-Arg-Leu-Pro-Arg), which was identified by phage-display selection against HAs from random peptide libraries. This peptide binds to the receptor-binding site of HA by mimicking sialic acid. A peptide-conjugated lipid (pep-PE) was chemically synthesized from the peptide and a saturated phospholipid. A lipid bilayer composed of pep-PE and an unsaturated phospholipid (DOPC) was immobilized on a mica plate; and the interaction between HA and the pep-PE/DOPC membrane was investigated using atomic force microscopy. The binding of IFV to the pep-PE/DOPC membrane was detected by an enzyme-linked immunosorbent assay and real-time reverse transcription PCR. Our results indicate that peptide-conjugated lipids are a useful molecular device for the detection of HA and IFV. PMID:27092124

  9. Roles of the six peptide-binding pockets of the HLA-A2 molecule in allorecognition by human cytotoxic T-cell clones.

    PubMed

    Matsui, M; Hioe, C E; Frelinger, J A

    1993-01-15

    To evaluate the contribution of the major histocompatibility complex class I pockets to the binding of self-peptides recognized by alloreactive cytotoxic T-lymphocyte (CTL) clones, we have constructed an extensive library of HLA-A2 mutants with different amino acid substitutions in each of the six pockets. When these mutants were tested in cytotoxicity assays with a panel of HLA-A2-specific alloreactive CTL clones, each CTL clone showed a unique pattern of reactivity, implying the different contributions of each pocket to binding individual peptides. We noted that the majority of the mutants in pocket B significantly affect recognition by the CTL clones. Unexpectedly, the mutations influencing allorecognition are found in all other pockets as well. Overall, this study demonstrates that each of the six peptide-binding pockets plays an important and distinct role in binding of self-peptides required for recognition of the HLA-A2 molecule by alloreactive CTLs. PMID:7678462

  10. A novel Chk1-binding peptide that enhances genotoxic sensitivity through the cellular redistribution of nuclear Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2016-01-01

    Since checkpoint kinase 1 (Chk1) is an essential factor for cell viability following DNA damage, the inhibition of Chk1 has been a major focus of pharmaceutical development to enhance the sensitivity of tumor cells to chemo- and radiotherapy that damage DNA. However, due to the off-target effects of conventional Chk1-targeting strategies and the toxicity of Chk1 inhibitors, alternative strategies are required to target Chk1. To facilitate such efforts, in this study, we identified a specific Chk1-binding 12-mer peptide from the screening of a phage display library and characterized the peptide in terms of cellular cytotoxicity, and in terms of its effect on Chk1 activity and sensitivity to genotoxic agents. This peptide, named N-terminal Chk1-binding peptide (Chk1-NP), bound the kinase domain of Chk1. Simulation of the binding revealed that the very N-terminus of the Chk1 kinase domain is the potential peptide binding site. Of note, the polyarginine-mediated internalization of Chk1-NP redistributed nuclear Chk1 with a prominent decrease in the nucleus in the absence of DNA damage. Treatment with Chk1-NP peptide alone decreased the viability of p53-defective HeLa cells, but not that of p53-functional NCI-H460 cells under normal conditions. The treatment of HeLa or NCI-H460 cells with the peptide significantly enhanced radiation sensitivity following ionizing radiation (IR) with a greater enhancement observed in HeLa cells. Moreover, the IR-induced destabilization of Chk1 was aggravated by treatment with Chk1-NP. Therefore, the decreased nuclear localization and protein levels of Chk1 seem to be responsible for the enhanced cancer cell killing following combined treatment with IR and Chk1-NP. The approach using the specific Chk1-binding peptide may facilitate the mechanistic understanding and potential modulation of Chk1 activities and may provide a novel rationale for the development of specific Chk1-targeting agents.

  11. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  12. Tissue specificity of endothelin binding sites

    SciTech Connect

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. )

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  13. Proline-rich sequences that bind to Src homology 3 domains with individual specificities.

    PubMed Central

    Alexandropoulos, K; Cheng, G; Baltimore, D

    1995-01-01

    To study the binding specificity of Src homology 3 (SH3) domains, we have screened a mouse embryonic expression library for peptide fragments that interact with them. Several clones were identified that express fragments of proteins which, through proline-rich binding sites, exhibit differential binding specificity to various SH3 domains. Src-SH3-specific binding uses a sequence of 7 aa of the consensus RPLPXXP, in which the N-terminal arginine is very important. The SH3 domains of the Src-related kinases Fyn, Lyn, and Hck bind to this sequence with the same affinity as that of the Src SH3. In contrast, a quite different proline-rich sequence from the Btk protein kinase binds to the Fyn, Lyn, and Hck SH3 domains, but not to the Src SH3. Specific binding of the Abl SH3 requires a longer, more proline-rich sequence but no arginine. One clone that binds to both Src and Abl SH3 domains through a common site exhibits reversed binding orientation, in that an arginine indispensable for binding to all tested SH3 domains occurs at the C terminus. Another clone contains overlapping yet distinct Src and Abl SH3 binding sites. Binding to the SH3 domains is mediated by a common PXXP amino acid sequence motif present on all ligands, and specificity comes about from other interactions, often ones involving arginine. The rules governing in vivo usage of particular sites by particular SH3 domains are not clear, but one binding orientation may be more specific than another. Images Fig. 1 Fig. 2 Fig. 3 PMID:7536925

  14. Identification of a putative motif for binding of peptides to HLA-DQ2.

    PubMed

    Johansen, B H; Vartdal, F; Eriksen, J A; Thorsby, E; Sollid, L M

    1996-02-01

    To understand the rules determining peptide binding to the celiac disease and type 1 diabetes mellitus associated HLA-DQ2 molecule, we have studies in detail the binding of a peptide OVA 258-276Y (IINFEKLTEWTSSNVMEERY) which exhibits strong binding to DQ2. First we tested a set of N- and C-terminal truncated variants, and found the core binding region to comprise residues 267-276Y. Single alanine substitution analysis of the OVA 267-276Y peptide revealed that replacements of V272, E275 and the C-terminal Y had negative effects whereas the substitution of N271 had a positive effect. A polyalanine analogue of the OVA 267-276Y peptide with V272, E275 and a C-terminal Y bound at least as well as the original peptide. A variant peptide with a deletion of R276 displayed decreased binding, suggesting that the anchor residues were out of frame in this analogue. To further characterize the residues playing a role in the binding of the OVA 267-276Y peptide to DQ2 we tested the binding of several analogues with substitutions for V272, E275 and the C-terminal Y residue. Our results indicate that peptides binding to DQ2 have anchor residues in relative positions 4, 7 and (P4, P7 and P9). Residues with negatively charged or hydrophobic aliphatic but not positively charged side chains are preferred in P4 and P7, whereas residues with bulky hydrophobic side chains are preferred in P9. PMID:8671602

  15. Conformational Contribution to Thermodynamics of Binding in Protein-Peptide Complexes through Microscopic Simulation

    PubMed Central

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-01-01

    We extract the thermodynamics of conformational changes in biomacromolecular complexes from the distributions of the dihedral angles of the macromolecules. These distributions are obtained from the equilibrium configurations generated via all-atom molecular dynamics simulations. The conformational thermodynamics data we obtained for calmodulin-peptide complexes using our methodology corroborate well with the experimentally observed conformational and binding entropies. The conformational free-energy changes and their contributions for different peptide-binding regions of calmodulin are evaluated microscopically. PMID:23528087

  16. A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro.

    PubMed

    Suarez, J E; Urquiza, M; Curtidor, H; Rodriguez, L E; Ocampo, M; Torres, E; Guzman, F; Patarroyo, M E

    2000-01-01

    The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes. PMID:10904405

  17. An Engineered Switch in T Cell Receptor Specificity Leads to an Unusual but Functional Binding Geometry.

    PubMed

    Harris, Daniel T; Singh, Nishant K; Cai, Qi; Smith, Sheena N; Vander Kooi, Craig W; Procko, Erik; Kranz, David M; Baker, Brian M

    2016-07-01

    Utilizing a diverse binding site, T cell receptors (TCRs) specifically recognize a composite ligand comprised of a foreign peptide and a major histocompatibility complex protein (MHC). To help understand the determinants of TCR specificity, we studied a parental and engineered receptor whose peptide specificity had been switched via molecular evolution. Altered specificity was associated with a significant change in TCR-binding geometry, but this did not impact the ability of the TCR to signal in an antigen-specific manner. The determinants of binding and specificity were distributed among contact and non-contact residues in germline and hypervariable loops, and included disruption of key TCR-MHC interactions that bias αβ TCRs toward particular binding modes. Sequence-fitness landscapes identified additional mutations that further enhanced specificity. Our results demonstrate that TCR specificity arises from the distributed action of numerous sites throughout the interface, with significant implications for engineering therapeutic TCRs with novel and functional recognition properties. PMID:27238970

  18. Caseins from bovine colostrum and milk strongly bind piscidin-1, an antimicrobial peptide from fish.

    PubMed

    Kütt, Mary-Liis; Stagsted, Jan

    2014-09-01

    A model system of bovine colostrum and piscidin, a fish-derived antimicrobial peptide, was developed to study potential interactions of antimicrobial peptides in colostrum. We did not detect any antimicrobial activity of colostrum using the radial plate diffusion assay; in fact colostrum completely abrogated activity of added piscidin. This could not be explained by degradation of piscidin by colostrum, which was less than ten percent. We found that colostrum even protected piscidin against degradation by added proteases. We further observed that colostrum and milk rapidly quenched the fluorescence of fluorescein-piscidin but not that of fluorescein. This effect was not seen with BSA and the specific quenching of fluorescein-piscidin by colostrum was saturably inhibited with unlabeled piscidin. Size exclusion chromatography indicated that fluorescein-piscidin bound to casein micelles with no apparent binding to IgG or whey proteins. Further, addition of pure caseins was able to quench fluorescence of fluorescein-piscidin and to inhibit the antimicrobial activity of piscidin. The interaction between caseins and piscidin could be dissociated by guanidine hydrochloride and recovered piscidin had antimicrobial activity against bacteria. Based on our results we propose that caseins could be carriers for antimicrobial peptides in colostrum and milk. PMID:25036607

  19. A high throughput MHC II binding assay for quantitative analysis of peptide epitopes.

    PubMed

    Salvat, Regina; Moise, Leonard; Bailey-Kellogg, Chris; Griswold, Karl E

    2014-03-25

    Biochemical assays with recombinant human MHC II molecules can provide rapid, quantitative insights into immunogenic epitope identification, deletion, or design(1,2). Here, a peptide-MHC II binding assay is scaled to 384-well format. The scaled down protocol reduces reagent costs by 75% and is higher throughput than previously described 96-well protocols(1,3-5). Specifically, the experimental design permits robust and reproducible analysis of up to 15 peptides against one MHC II allele per 384-well ELISA plate. Using a single liquid handling robot, this method allows one researcher to analyze approximately ninety test peptides in triplicate over a range of eight concentrations and four MHC II allele types in less than 48 hr. Others working in the fields of protein deimmunization or vaccine design and development may find the protocol to be useful in facilitating their own work. In particular, the step-by-step instructions and the visual format of JoVE should allow other users to quickly and easily establish this methodology in their own labs.

  20. A High Throughput MHC II Binding Assay for Quantitative Analysis of Peptide Epitopes

    PubMed Central

    Salvat, Regina; Moise, Leonard; Bailey-Kellogg, Chris; Griswold, Karl E.

    2014-01-01

    Biochemical assays with recombinant human MHC II molecules can provide rapid, quantitative insights into immunogenic epitope identification, deletion, or design1,2. Here, a peptide-MHC II binding assay is scaled to 384-well format. The scaled down protocol reduces reagent costs by 75% and is higher throughput than previously described 96-well protocols1,3-5. Specifically, the experimental design permits robust and reproducible analysis of up to 15 peptides against one MHC II allele per 384-well ELISA plate. Using a single liquid handling robot, this method allows one researcher to analyze approximately ninety test peptides in triplicate over a range of eight concentrations and four MHC II allele types in less than 48 hr. Others working in the fields of protein deimmunization or vaccine design and development may find the protocol to be useful in facilitating their own work. In particular, the step-by-step instructions and the visual format of JoVE should allow other users to quickly and easily establish this methodology in their own labs. PMID:24686319

  1. Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries

    PubMed Central

    Wavreille, Anne-Sophie; Garaud, Mathieu; Zhang, Yanyan; Pei, Dehua

    2007-01-01

    Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A “one-bead-one-compound” pY peptide library is synthesized on 90-μm TenteGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B. PMID:17532507

  2. Cyclic peptide ligand with high binding capacity for affinity purification of immunoglobulin G.

    PubMed

    Kang, Hyo Jin; Choe, Weonu; Min, Jeong-Ki; Lee, Young-Mi; Kim, B Moon; Chung, Sang J

    2016-09-30

    The rapidly increasing implementation of antibodies in therapeutic and diagnostic applications has necessitated the development of antibody production and purification technologies for both academic and industrial usage. Bacterial Protein A and Protein G are known to bind antibodies with high affinity and have facilitated the isolation and purification thereof. Recently, small peptide ligands (i.e. IgG Fc domain-binding peptides, FcBP) that specifically bind to the Fc-domain of antibodies were reported. In the present study we describe the development of a reusable high affinity column for antibody purification utilizing immobilized FcBP, comprising 13 amino acids residues, on a sepharose resin. In addition to FcBP, Cys to Ser substituted FcBP (FcBP-Ser), reduced FcBP (FcBP-Red), commercial Protein A and Protein G resins, packed into columns, were evaluated for antibody purification. All these columns except the FcBP-Ser one showed good binding capacity for a humanized IgG (trastuzumab) and a chimeric IgG (cetuximab). The column packed with FcBP-Red allowed antibody purification at a less acidic pH (pH 4.8) than was required for the other ligand affinity columns used in our experiments (i.e., pH 3.2 for Protein G and FcBP columns, and pH 3.5 for Protein A column, respectively). Utilizing the FcBP column, antibodies from swine human sera were isolated with a purity of 95%. Interestingly, the FcBP column could be easily regenerated and operated without loss of efficiency for up to 60 runs, the maximum number of runs performed in the present study.

  3. In vitro selection of state-specific peptide modulators of G protein signaling using mRNA display.

    PubMed

    Ja, William W; Roberts, Richard W

    2004-07-20

    The G protein regulatory (GPR) motif is a approximately 20-residue conserved domain that acts as a guanine dissociation inhibitor (GDI) for G(i/o)(alpha) subunits. Here, we describe the isolation of peptides derived from a GPR consensus sequence using mRNA display selection libraries. Biotinylated G(i)(alpha)(1), modified at either the N or C terminus, serves as a high-affinity binding target for mRNA-displayed GPR peptides. In vitro selection using mRNA display libraries based on the C terminus of the GPR motif revealed novel peptide sequences with conserved residues. Surprisingly, selected peptides contain mutations to a highly conserved Arg in the GPR motif, previously shown to be crucial for binding and inhibition activities. The dominant peptide from the selection, R6A, and a minimal 9-mer peptide, R6A-1, do not contain Arg residues yet retain high affinity (K(D) = 60 and 200 nM, respectively) and specificity for the GDP-bound state of G(i)(alpha)(1), as measured by surface plasmon resonance. The selected peptides also maintain GDI activity for G(i)(alpha)(1), inhibiting both the exchange of GDP in GTPgammaS binding assays and the AlF(4)(-)-stimulated enhancement of intrinsic tryptophan fluorescence. The kinetics of GDI activity, however, are different for the selected peptides and demonstrate biphasic kinetics, suggesting a complex mechanism for inhibition. Like the GPR motif, the R6A and R6A-1 peptides compete with G(betagamma) subunits for binding to G(i)(alpha)(1), suggesting their use as activators of G(betagamma) signaling. PMID:15248784

  4. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent.

    PubMed

    Whelan, J A; Dunbar, P R; Price, D A; Purbhoo, M A; Lechner, F; Ogg, G S; Griffiths, G; Phillips, R E; Cerundolo, V; Sewell, A K

    1999-10-15

    Tetrameric peptide-MHC class I complexes ("tetramers") are proving invaluable as reagents for characterizing immune responses involving CTLs. However, because the TCR can exhibit a degree of promiscuity for binding peptide-MHC class I ligands, there is potential for cross-reactivity. Recent reports showing that the TCR/peptide-MHC interaction is dramatically dependent upon temperature led us to investigate the effects of incubation temperature on tetramer staining. We find that tetramers rapidly stain CTLs with high intensity at 37 degrees C. We examine the fine specificity of tetramer staining using a well-characterized set of natural epitope variants. Peptide variants that elicit little or no functional cellular response from CTLs can stain these cells at 4 degrees C but not at 37 degrees C when incorporated into tetramers. These results suggest that some studies reporting tetramer incubations at 4 degrees C could detect cross-reactive populations of CTLs with minimal avidity for the tetramer peptide, especially in the tetramer-low population. For identifying specific CTLs among polyclonal cell populations such as PBLs, incubation with tetramers at 37 degrees C improves the staining intensity of specific CTLs, resulting in improved separation of tetramer-high CD8+ cells. Confocal microscopy reveals that tetramers incubated at 37 degrees C can be rapidly internalized by specific CTLs into vesicles that overlap with the early endocytic compartment. This TCR-specific internalization suggests that coupling of tetramers or analogues with toxins, which are activated only after receptor internalization, may create immunotoxins capable of killing CTLs of single specificities.

  5. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  6. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.

    PubMed

    Li, Zhao; Tang, Jijun; Guo, Fei

    2016-01-01

    The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N-terminal sublibrary, and 0.77 and 269.13 for C-terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research. PMID:26828594

  7. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions. PMID:27108675

  8. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  9. Molecular mechanisms that govern the specificity of Sushi peptides for Gram-negative bacterial membrane lipids.

    PubMed

    Li, Peng; Sun, Miao; Wohland, Thorsten; Yang, Daiwen; Ho, Bow; Ding, Jeak Ling

    2006-09-01

    Factor C-derived Sushi peptides (S1 and S3) have been shown to bind lipopolysaccharide (LPS) and inhibit the growth of Gram-negative bacteria but do not affect mammalian cells. On the premise that the composition of membrane phospholipids differs between the microbial and human cells, we studied the modes of interaction between S1 and S3 and the bacterial membrane phospholipids, POPG, in comparison to that with the mammalian cell membrane phospholipids, POPC and POPE. S1 exhibits specificity against POPG, suggesting its preference for bacterial anionic phospholipids, regardless of whether the phospholipids form vesicles in a solution or a monolayer on a solid surface. The specificity of the Sushi peptides for POPG is a consequence of the electrostatic and hydrophobic forces. The unsaturated nature of POPG confers fluidity to the lipid layer, and being in the proximity of LPS in the microenvironmental milieu, POPG probably enhances the insertion of the peptide-LPS complex into the bacterial inner membrane. Furthermore, during its interaction with POPG, the S1 peptide underwent a transition from random to alpha-helical coil, while S3 became a mixture of beta-sheet and alpha-helical structures. This differential structural change in the peptides could be responsible for their different modes of disruption of POPG vesicles. Conceivably, the selectivity for POPG spares the mammalian membranes from undesirable effects of antimicrobial peptides, which could be helpful in designing and developing a new generation of antibiotics and in offering some clues about the specific function of Factor C, a LPS biosensor.

  10. EWGWS insert in Plasmodium falciparum ookinete surface enolase is involved in binding of PWWP containing peptides: Implications to mosquito midgut invasion by the parasite.

    PubMed

    Mukherjee, Debanjan; Mishra, Pushpa; Joshi, Mamata; Thakur, Prasoon Kumar; Hosur, R V; Jarori, Gotam K

    2016-01-01

    There are multiple stages in the life cycle of Plasmodium that invade host cells. Molecular machinery involved is such host-pathogen interactions constitute excellent drug targets and/or vaccine candidates. A screen using a phage display library has previously demonstrated presence of enolase on the surface of the Plasmodium ookinete. Phage-displayed peptides that bound to the ookinete contained a conserved motif (PWWP) in their sequence. Here, direct binding of these peptides with recombinant Plasmodium falciparum enolase (rPfeno) was investigated. These peptides showed specific binding to rPfeno, but failed to bind to other enolases. Plasmodium spp enolases are distinct in having an insert of five amino acids ((104)EWGWS(108)) that is not found in host enolases. The possibility of this insert being the recognition motif for the PWWP containing peptides was examined, (i) by comparing the binding of the peptides with rPfeno and a deletion variant Δ-rPfeno lacking (104)EWGWS(108), (ii) by measuring the changes in proton chemical shifts of PWWP peptides on binding to different enolases and (iii) by inter-molecular docking experiment to locate the peptide binding site. Results from these studies showed that the pentapeptide insert of Pfeno indeed constitutes the binding site for the PWWP domain containing peptide ligands. Search for sequences homologous to phage displayed peptides among peritrophic matrix proteins resulted in identification of perlecan, laminin, peritrophin and spacran. The possibility of these PWWP domain-containing proteins in the peritrophic matrix of insect gut to interact with ookinete cell surface enolase and facilitate the invasion of mosquito midgut epithelium is discussed. PMID:26592350

  11. On the ion selectivity in Ca-binding proteins: the cyclo(-L-Pro-Gly-)3 peptide as a model.

    PubMed Central

    Sussman, F; Weinstein, H

    1989-01-01

    Calcium plays a crucial role in many cellular processes. Its functions are directly dependent on the high specificity for Ca2+ exhibited by the proteins and ion carriers that bind divalent ions. To elucidate the basis for this specificity we have calculated the relative energies of solvation of calcium and magnesium ions in complexes with cyclo(-L-Pro-Gly-)3, a small synthetic peptide that binds Ca2+ with an affinity comparable to those of the naturally occurring proteins. The results show that the ion selectivity of the peptide resides in the difference in the solvation energies of the competing ions in water. Although the peptide is able to complex Mg2+ better than Ca2+ in the stoichiometries in which cyclo(-L-Pro-Gly-)3 binds divalent ions, it is not always able to provide as much stabilization for Mg2+ as water does. These results also explain why cyclo(-L-Pro-Gly-)3 binds Ca2+ and Mg2+ with different stoichiometries and indicate the source for expected differences in the structures of complexes of the two ions. Images PMID:2813364

  12. A novel peptide can mimic extracellular fibrinogen-binding protein to block the activation of complement system.

    PubMed

    Gao, Ya-ping; Dong, Jie; Zhang, Xin; Liu, Yu; Lu, Qiang; Feng, Jian-nan; Tan, Xiao-rong; Yang, Guang

    2013-07-01

    Extracellular fibrinogen-binding protein (Efb) of Staphylococcus aureus (S. aureus) is a bi-functional protein, which can specifically bind fibrinogen with its N terminus and inhibit deposition of C3b on the surface of S. aureus with its C terminus. Here, we screened the epitopes of Efb using phage display. Four peptides with consensus motif were screened. This consensus motif was identical to C terminus (161-164) of Efb. In the further investigation, it was found the synthesized peptide EC1 (154-165aa of Efb) could specifically bind C3/C3b and subsequently to block the activation of complement. Meanwhile, EC1 could inhibit the interaction between Efb and C3/C3b. Moreover, the interaction between the mutant protein of EmC1 (Efb without EC1) and C3 was decreased. And, the effect on the complement system of the mutant protein was dramatically declined compared with Efb. Our finding suggested that the peptide EC1 could mimic Efb to block complement system activation via binding C3.

  13. Widening and diversifying the proteome capture by combinatorial peptide ligand libraries via Alcian Blue dye binding.

    PubMed

    Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories. PMID:25856057

  14. Gel Scaffolds of BMP-2-binding Peptide Amphiphile Nanofibers for Spinal Arthrodesis

    PubMed Central

    Mendoza, Marco; Ghodasra, Jason; Nickoli, Michael S.; Ashtekar, Amruta; Polavarapu, Mahesh; Babu, Jacob; Riaz, Rehan M.; Nicolas, Joseph D.; Nelson, David; Hashmi, Sohaib Z.; Kaltz, Start R.; Earhart, Jeffrey S.; Merk, Bradley R.; McKee, Jeff S.; Bairstow, Shawn F.; Shah, Ramille N.; Hsu, Wellington K.; Stupp, Samuel I.

    2014-01-01

    Peptide amphiphile (PA) nanofibers formed by self-assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. We report here on the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP-2 to create a gel scaffold for osteogenesis. With the objective of reducing the amount of BMP-2 used clinically for successful arthrodesis in the spine, we used amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds. The efficacy of the bioactive PA system to promote BMP-2-induced osteogenesis in vivo was investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP-2-binding segments exhibited superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP-2 by ten-fold. Interestingly, a 42% fusion rate was observed for gels containing the bioactive nanofibers without the use of exogenous BMP-2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine. PMID:24753455

  15. Identification of the sAPRIL Binding Peptide and Its Growth Inhibition Effects in the Colorectal Cancer Cells

    PubMed Central

    Liu, Fang; Li, Jing; He, Mei-rong

    2015-01-01

    Background A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) super family. It binds to its specific receptors and is involved in multiple processes during tumorigenesis and tumor cells proliferation. High levels of APRIL expression are closely correlated to the growth, metastasis, and 5-FU drug resistance of colorectal cancer. The aim of this study was to identify a specific APRIL binding peptide (BP) able to block APRIL activity that could be used as a potential treatment for colorectal cancer. Methods A phage display library was used to identify peptides that bound selectively to soluble recombinant human APRIL (sAPRIL). The peptides with the highest binding affinity for sAPRIL were identified using ELISA. The effects of sAPRIL-BP on cell proliferation and cell cycle/apoptosis in vitro were evaluated using the CCK-8 assay and flow cytometry, respectively. An in vivo mouse model of colorectal cancer was used to determine the anti-tumor efficacy of the sAPRIL-BP. Results Three candidate peptides were characterized from eight phage clones with high binding affinity for sAPRIL. The peptide with the highest affinity was selected for further characterization. The identified sAPRIL-BP suppressed tumor cell proliferation and cell cycle progression in LOVO cells in a dose-dependent manner. In vivo in a mouse colorectal challenge model, the sAPRIL-BP reduced the growth of tumor xenografts in nude mice by inhibiting proliferation and inducing apoptosis intratumorally. Moreover, in an in vivo metastasis model, sAPRIL-BP reduced liver metastasis of colorectal cancer cells. Conclusions sAPRIL-BP significantly suppressed tumor growth in vitro and in vivo and might be a candidate for treating colorectal cancers that express high levels of APRIL. PMID:25826583

  16. Residues outside of the HLA-A2 peptide-binding groove can abrogate or enhance recognition of influenza virus matrix peptide pulsed cells by cytotoxic T lymphocytes.

    PubMed

    Teng, J M; Hogan, K T

    1994-04-01

    An examination of the crystal structure of HLA-A2.1 reveals two classes of residues on the class I MHC molecule that could affect CTL recognition: (1) those predicted to interact with the TCR directly; and (2) those that interact with bound peptides. To examine the role of individual TCR contacting residues, as well as residues not predicted to interact with bound peptide or the TCR, a panel of 28 HLA-A2 variants that differ from each other by a single amino acid substitution in either the alpha 1- or alpha 2-domain was utilized. Peptide titration, time course and cold target inhibition analysis of these targets showed that only the substitution of position 62 in the alpha 1-domain had a significant effect on recognition of the MHC-peptide complex by influenza matrix protein M1 (57-68) peptide-specific, HLA-A2.1-restricted CTL. In contrast, substitutions at positions 154, 162 and 163 in the alpha 2-domain abolished recognition by the same CTL. Additionally, substitutions at position 138 in the alpha 2-domain and positions 107 and 127 on the loops connecting the beta-strand in the alpha 2-domain were recognized in a more efficient, heteroclitic fashion. Overall, there was no direct correlation between the level of peptide binding to the variants and the level of T cell recognition of the variants. These results indicate that residues in the alpha 2-domain may be more important than residues in the alpha 1-domain in controlling TCR binding to the class I MHC molecule and suggest that the "footprint" of the TCR may be more extensive than previously predicted and encompass a broad region that extends beyond the alpha 2-helix. These findings also imply that the class I MHC molecule may exist in a "tipped" orientation on the cell surface during T cell recognition.

  17. Molecular level studies on binding modes of labeling molecules with polyalanine peptides

    NASA Astrophysics Data System (ADS)

    Mao, Xiaobo; Wang, Chenxuan; Ma, Xiaojing; Zhang, Min; Liu, Lei; Zhang, Lan; Niu, Lin; Zeng, Qindao; Yang, Yanlian; Wang, Chen

    2011-04-01

    In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides. Electronic

  18. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  19. The Use ofa Hydrophobic Binding Peptide Modified Lipid Nanocarrier Improving Tumor Distribution and Antitumor Efficacy.

    PubMed

    Gao, Wei; Yang, Xiucong; Lin, Zhiqiang; Gao, Shanyun; He, Bing; Mei, Bong; Wang, Dan; Yuan, Lan; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2016-06-01

    In addition to showing the specific interaction between a generalized ligand and its receptor and the electrostatic effect between positive cell-penetrating peptides and negative cell membranes, our last study demonstrated the hydrophobic interactivity between a hydrophobic binding peptide (HBP) and biomembranes to be favorable in drug delivery. To yield more evidence for this new strategy and to find more effective HBPs, here we designed and established a novel nanomedicine associated with cyclosporin A (CsA) because this peptide is electrically neutral, highly hydrophobic, very stable in vivo and safe at the given dose. First, isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) studies showed a strong hydrophobic interaction between the CsA molecules and the lipid membrane. The lactate dehydrogenase release assay proved that CsA exhibited low toxicity to cell membranes. These facts encouraged us to explore the potential application of CsA as an HBP to actualize intracellular delivery of nanomedicines for tumor therapy. When conjugated to lipid nanocarriers, CsA significantly enhanced their binding with cells and,. consequently, increased the internalization of recoded nanomedicines into cells. The in vivo experiments further showed that the CsA-associated nanocarriers could achieve better delivery to tumor tissues and improve the tumor therapy of doxorubicin (DOX) compared to the nonmodified control; these findings were identical to the observations-in cell studies. In conclusion, CsA, a readily obtainable molecule with favorable characteristics, is indeed a good candidate for an HBP, and this study provides solid, novel evidence for the use of HBP-based nanocarriers as effective antitumor drug delivery systems.

  20. The Use ofa Hydrophobic Binding Peptide Modified Lipid Nanocarrier Improving Tumor Distribution and Antitumor Efficacy.

    PubMed

    Gao, Wei; Yang, Xiucong; Lin, Zhiqiang; Gao, Shanyun; He, Bing; Mei, Bong; Wang, Dan; Yuan, Lan; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2016-06-01

    In addition to showing the specific interaction between a generalized ligand and its receptor and the electrostatic effect between positive cell-penetrating peptides and negative cell membranes, our last study demonstrated the hydrophobic interactivity between a hydrophobic binding peptide (HBP) and biomembranes to be favorable in drug delivery. To yield more evidence for this new strategy and to find more effective HBPs, here we designed and established a novel nanomedicine associated with cyclosporin A (CsA) because this peptide is electrically neutral, highly hydrophobic, very stable in vivo and safe at the given dose. First, isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) studies showed a strong hydrophobic interaction between the CsA molecules and the lipid membrane. The lactate dehydrogenase release assay proved that CsA exhibited low toxicity to cell membranes. These facts encouraged us to explore the potential application of CsA as an HBP to actualize intracellular delivery of nanomedicines for tumor therapy. When conjugated to lipid nanocarriers, CsA significantly enhanced their binding with cells and,. consequently, increased the internalization of recoded nanomedicines into cells. The in vivo experiments further showed that the CsA-associated nanocarriers could achieve better delivery to tumor tissues and improve the tumor therapy of doxorubicin (DOX) compared to the nonmodified control; these findings were identical to the observations-in cell studies. In conclusion, CsA, a readily obtainable molecule with favorable characteristics, is indeed a good candidate for an HBP, and this study provides solid, novel evidence for the use of HBP-based nanocarriers as effective antitumor drug delivery systems. PMID:27319213

  1. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    PubMed

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-01

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development. PMID:21877690

  2. High affinity binding of an engineered, modular peptide to bone tissue.

    PubMed

    Brounts, Sabrina H; Lee, Jae Sung; Weinberg, Sean; Lan Levengood, Sheeny K; Smith, Everett L; Murphy, William L

    2013-05-01

    Bone grafting procedures have become common due in part to a global trend of population aging. Native bone graft is a popular choice when compared to various synthetic bone graft substitutes, owing to superior biological activity. Nonetheless, the insufficient ability of bone allograft to induce new bone formation and the insufficient remodeling of native bone grafts call for osteoinductive factors during bone repair, exemplified by recombinant human bone morphogenetic protein 2 (rhBMP2). We previously developed a modular bone morphogenetic peptide (mBMP) to address complications associated with the clinical use of rhBMP2 as a bone graft substitute. The mBMP is designed to strongly bind to hydroxyapatite, the main inorganic component of bone and teeth, and to provide pro-osteogenic properties analogous to rhBMP2. Our previous in vivo animal studies showed that mBMP bound to hydroxyapatite-coated orthopedic implants with high affinity and stimulated new bone formation. In this study, we demonstrate specific binding of mBMP to native bone grafts. The results show that mBMP binds with high affinity to both cortical and trabecular bones, and that the binding is dependent on the mBMP concentration and incubation time. Importantly, efficient mBMP binding is also achieved in an ex vivo bone bioreactor where bone tissue is maintained viable for several weeks. In addition, mBMP binding can be localized with spatial control on native bone tissue via simple methods, such as dip-coating, spotting, and direct writing. Taken together with the pro-osteogenic activity of mBMP established in previous bone repair models, these results suggest that mBMP may promote bone healing when coated on native bone grafts in a clinically compatible manner.

  3. A Peptide Mimetic of 5-Acetylneuraminic Acid-Galactose Binds with High Avidity to Siglecs and NKG2D

    PubMed Central

    Eggink, Laura L.; Spyroulias, Georgios A.; Jones, Norman G.; Hanson, Carl V.; Hoober, J. Kenneth

    2015-01-01

    We previously identified several peptide sequences that mimicked the terminal sugars of complex glycans. Using plant lectins as analogs of lectin-type cell-surface receptors, a tetravalent form of a peptide with the sequence NPSHPLSG, designated svH1C, bound with high avidity to lectins specific for glycans with terminal 5-acetylneuraminic acid (Neu5Ac)-galactose (Gal)/N-acetylgalactosamine (GalNAc) sequences. In this report, we show by circular dichroism and NMR spectra that svH1C lacks an ordered structure and thus interacts with binding sites from a flexible conformation. The peptide binds with high avidity to several recombinant human siglec receptors that bind preferentially to Neu5Ac(α2,3)Gal, Neu5Ac(α2,6)GalNAc or Neu5Ac(α2,8)Neu5Ac ligands. In addition, the peptide bound the receptor NKG2D, which contains a lectin-like domain that binds Neu5Ac(α2,3)Gal. The peptide bound to these receptors with a KD in the range of 0.6 to 1 μM. Binding to these receptors was inhibited by the glycoprotein fetuin, which contains multiple glycans that terminate in Neu5Ac(α2,3)Gal or Neu5Ac(α2,6)Gal, and by sialyllactose. Binding of svH1C was not detected with CLEC9a, CLEC10a or DC-SIGN, which are lectin-type receptors specific for other sugars. Incubation of neuraminidase-treated human peripheral blood mononuclear cells with svH1C resulted in binding of the peptide to a subset of the CD14+ monocyte population. Tyrosine phosphorylation of siglecs decreased dramatically when peripheral blood mononuclear cells were treated with 100 nM svH1C. Subcutaneous, alternate-day injections of svH1C into mice induced several-fold increases in populations of several types of immune cells in the peritoneal cavity. These results support the conclusion that svH1C mimics Neu5Ac-containing sequences and interacts with cell-surface receptors with avidities sufficient to induce biological responses at low concentrations. The attenuation of inhibitory receptors suggests that svH1C has

  4. Altered Specificity of DNA-Binding Proteins with Transition Metal Dimerization Domains

    NASA Astrophysics Data System (ADS)

    Cuenoud, Bernard; Schepartz, Alanna

    1993-01-01

    The bZIP motif is characterized by a leucine zipper domain that mediates dimerization and a basic domain that contacts DNA. A series of transition metal dimerization domains were used to alter systematically the relative orientation of basic domain peptides. Both the affinity and the specificity of the peptide-DNA interaction depend on domain orientation. These results indicate that the precise configuration linking the domains is important; dimerization is not always sufficient for DNA binding. This approach to studying the effect of orientation on protein function complements mutagenesis and could be used in many systems.

  5. Interaction with amyloid beta peptide compromises the lipid binding function of apolipoprotein E.

    PubMed

    Tamamizu-Kato, Shiori; Cohen, Jenny K; Drake, Carolyn B; Kosaraju, Malathi G; Drury, Jessica; Narayanaswami, Vasanthy

    2008-05-01

    Apolipoprotein (apo) E is an exchangeable apolipoprotein that plays an integral role in cholesterol transport in the plasma and the brain. It is also associated with protein misfolding or amyloid proteopathy of the beta amyloid peptide (Abeta) in Alzheimer's disease (AD) and cerebral amyloid angiopathy. The C-terminal domain (CT) of apoE encompasses two types of amphipathic alpha helices: a class A helix (residues 216-266) and a class G* helix (residues 273-299). This domain also harbors high-affinity lipoprotein binding and apoE self-association sites that possibly overlap. The objective of this study is to examine if the neurotoxic oligomeric Abeta interacts with apoE CT and if this association affects the lipoprotein binding function of recombinant human apoE CT. Site-specific fluorescence labeling of single cysteine-containing apoE CT variants with donor probes were employed to identify the binding of Abeta bearing an acceptor probe by intermolecular fluorescence resonance energy-transfer analysis. A higher efficiency of energy transfer was noted with probes located in the class A helix than with those located in the class G* helix of apoE CT. In addition, incubation of apoE CT with Abeta severely impaired the lipid binding ability and the overall amount of lipid-associated apoE CT. However, when apoE CT is present in a lipid-bound state, Abeta appears to be localized within the lipid milieu of the lipoprotein particle and not associated with any specific segments of the protein. When our data are taken together, they suggest that Abeta association compromises the fundamental lipoprotein binding function of apoE, which may have implications not only in terms of amyloid buildup but also in terms of the accumulation of cholesterol at extracellular sites.

  6. Novel Interactions of the TRTK12 Peptide with S100 Protein Family Members: Specificity and Thermodynamic Characterization

    PubMed Central

    Wafer, Lucas N.; Tzul, Franco O.; Pandharipande, Pranav P.; Makhatadze, George I.

    2013-01-01

    The S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best studied member and has been shown to interact with over 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family. To test this hypothesis and gain a better understanding of the specificity of binding for the S100 proteins sixteen members of the human S100 family were screened against this peptide and its alanine variants. Novel interactions were only found with two family members: S100P and S100A2, indicating that TRTK12 selectively interacts with a small subset of the S100 proteins. Substantial promiscuity was observed in the binding site of S100B to accommodate variations in the peptide sequence, while S100A1, S100A2, and S100P exhibited larger differences in the binding constants for the TRTK12 alanine variants. This suggests that single-point substitutions can be used to selectively modulate the affinity of TRTK12 peptides for individual S100 proteins. This study has important implications for the rational drug design of inhibitors for the S100 proteins, which are involved in a variety of cancers and neurodegenerative diseases. PMID:23899389

  7. Identification of a peptide binding protein that plays a role in antigen presentation

    SciTech Connect

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-03-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from (/sup 35/S)methionine-labeled cells, appears as two discrete bands of approx. =72 and 74 kDa after NaDodSO/sub 4//PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation.

  8. Peptide Ligands That Bind Selectively to Spores of Bacillus subtilis and Closely Related Species

    PubMed Central

    Knurr, Jordan; Benedek, Orsolya; Heslop, Jennifer; Vinson, Robert B.; Boydston, Jeremy A.; McAndrew, Joanne; Kearney, John F.; Turnbough, Charles L.

    2003-01-01

    As part of an effort to develop detectors for selected species of bacterial spores, we screened phage display peptide libraries for 7- and 12-mer peptides that bind tightly to spores of Bacillus subtilis. All of the peptides isolated contained the sequence Asn-His-Phe-Leu at the amino terminus and exhibited clear preferences for other amino acids, especially Pro, at positions 5 to 7. We demonstrated that the sequence Asn-His-Phe-Leu-Pro (but not Asn-His-Phe-Leu) was sufficient for tight spore binding. We observed equal 7-mer peptide binding to spores of B. subtilis and its most closely related species, Bacillus amyloliquefaciens, and slightly weaker binding to spores of the closely related species Bacillus globigii. These three species comprise one branch on the Bacillus phylogenetic tree. We did not detect peptide binding to spores of several Bacillus species located on adjacent and nearby branches of the phylogenetic tree nor to vegetative cells of B. subtilis. The sequence Asn-His-Phe-Leu-Pro was used to identify B. subtilis proteins that may employ this peptide for docking to the outer surface of the forespore during spore coat assembly and/or maturation. One such protein, SpsC, appears to be involved in the synthesis of polysaccharide on the spore coat. SpsC contains the Asn-His-Phe-Leu-Pro sequence at positions 6 to 10, and the first five residues of SpsC apparently must be removed to allow spore binding. Finally, we discuss the use of peptide ligands for bacterial detection and the use of short peptide sequences for targeting proteins during spore formation. PMID:14602648

  9. [Application of aspartic acid as a non-specific binding inhibitor in the enrichment of phosphopeptides with titanium dioxide].

    PubMed

    Chi, Ming; Bi, Wei; Lu, Zhuang; Song, Lina; Jia, Wei; Zhang, Yangjun; Qian, Xiaohong; Cai, Yun

    2010-02-01

    Titanium dioxide (TiO2) is one of metal oxides widely used for phosphopeptide enrichment in phosphoproteomic research nowadays. However it can bind to some non-phosphorylated peptides containing one or more aspartic acid residues and/or glutamic acid residues. These non-phosphorylated peptides can be eluted along with phosphorylated peptides and cause the reduction of the selectivity. Conventional inhibitors for the non-specific binding of non-phosphorylated peptides can often contaminate the ion source of mass spectrometry and therefore their applications are limited in liquid chromatography-mass spectrometry (LC-MS). In this study, aspartic acid was reported as a novel non-specific binding inhibitor for phosphopeptide enrichment by titanium dioxide. Firstly, the tryptic peptide mixtures of 3 and 9 standard proteins were used for the comparison of the enrichment efficiency of titanium dioxide. The effects with the presence of aspartic acid, glutamic acid and no-inhibitor in the enrichment systems were compared separately. The results showed that aspartic acid can greatly improve the selectivity of titanium dioxide for phosphopeptide enrichment. Then, aspartic acid was used for the enrichment of tryptic peptide mixture of C57BL/6J mouse liver lysate and good results were also obtained which demonstrated that aspartic acid was a promising non-specific binding inhibitor for complex biological samples. Besides, no contamination in the ion source occurred during the mass spectrometric analysis.

  10. Vaccination using peptides spanning the SYT–SSX tumor-specific translocation

    PubMed Central

    Bloom, Jordan E; McNeel, Douglas G; Olson, Brian M

    2013-01-01

    The identification of genetic translocations as key tumor-initiating events has led to the development of novel antigen-specific vaccines targeting these tumor-specific breakpoint regions. Previous studies have evaluated vaccines targeting the breakpoints in the BCR-ABL translocation in patients with chronic myelogenous leukemia and EWS-FLI1 in patients with Ewing sarcoma. In the article under evaluation, the authors evaluated a peptide vaccine targeting the breakpoint in the SYT–SSX translocation, the genetic translocation essentially pathognomonic for synovial sarcoma. This is the second small clinical trial reported by this group using HLA-A24-binding peptides as vaccine antigens. In this four-arm trial, using a native or HLA-A24-optimized SYT–SSX peptide with or without adjuvant plus IFN-α, they immunized patients with metastatic synovial sarcoma. Immune responses were evaluated by delayed-type hypersensitivity testing and tetramer analysis. No robust evidence of immune response to the target epitope was detected. Some patients treated with peptide in adjuvant plus IFN-α had stable disease. These results suggest that future similar studies might best evaluate patients with a lower burden of disease, consider alternative immunization approaches to the SYT–SSX target antigen and consider the efficacy of IFN-α alone for the treatment of synovial sarcoma. PMID:23252384

  11. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄.

    PubMed

    Macháň, Radek; Jurkiewicz, Piotr; Olżyńska, Agnieszka; Olšinová, Marie; Cebecauer, Marek; Marquette, Arnaud; Bechinger, Burkhard; Hof, Martin

    2014-06-01

    Positioning of peptides with respect to membranes is an important parameter for biological and biophysical studies using model systems. Our experiments using five different membrane peptides suggest that the time-dependent fluorescence shift (TDFS) of Laurdan can help when distinguishing between peripheral and integral membrane binding and can be a useful, novel tool for studying the impact of transmembrane peptides (TMP) on membrane organization under near-physiological conditions. This article focuses on LAH4, a model α-helical peptide with high antimicrobial and nucleic acid transfection efficiencies. The predominantly helical peptide has been shown to orient in supported model membranes parallel to the membrane surface at acidic and, in a transmembrane manner, at basic pH. Here we investigate its interaction with fully hydrated large unilamellar vesicles (LUVs) by TDFS and fluorescence correlation spectroscopy (FCS). TDFS shows that at acidic pH LAH4 does not influence the glycerol region while at basic pH it makes acyl groups at the glycerol level of the membrane less mobile. TDFS experiments with antimicrobial peptides alamethicin and magainin 2, which are known to assume transmembrane and peripheral orientations, respectively, prove that changes in acyl group mobility at the glycerol level correlate with the orientation of membrane-associated peptide molecules. Analogous experiments with the TMPs LW21 and LAT show similar effects on the mobility of those acyl groups as alamethicin and LAH4 at basic pH. FCS, on the same neutral lipid bilayer vesicles, shows that the peripheral binding mode of LAH4 is more efficient in bilayer permeation than the transmembrane mode. In both cases, the addition of LAH4 does not lead to vesicle disintegration. The influence of negatively charged lipids on the bilayer permeation is also addressed.

  12. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.

    PubMed

    Doytchinova, Irini A; Walshe, Valerie A; Jones, Nicola A; Gloster, Simone E; Borrow, Persephone; Flower, Darren R

    2004-06-15

    The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.

  13. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.

    PubMed

    Doytchinova, Irini A; Walshe, Valerie A; Jones, Nicola A; Gloster, Simone E; Borrow, Persephone; Flower, Darren R

    2004-06-15

    The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions. PMID:15187128

  14. Peptide Ligand Structure and I-Aq Binding Avidity Influence T Cell Signaling Pathway Utilization

    PubMed Central

    Myers, Linda K; Cullins, David L; Park, Jeoung-Eun; Yi, Ae-Kyung; Brand, David D; Rosloniec, Edward F; Stuart, John M; Kang, Andrew H

    2015-01-01

    Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-Aq using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokine and attenuation of arthritis. PMID:25982319

  15. Peptide vaccines and peptidomimetics of EGFR (HER-1) ligand binding domain inhibit cancer cell growth in vitro and in vivo.

    PubMed

    Foy, Kevin Chu; Wygle, Ruthie M; Miller, Megan J; Overholser, Jay P; Bekaii-Saab, Tanios; Kaumaya, Pravin T P

    2013-07-01

    Epidermal growth factor receptor (EGFR) is a validated target for several cancers including lung, colorectal, and certain subtypes of breast cancer. Cetuximab targets ligand binding of EGFR, but major problems like high cost, short t1/2, toxicity, and emergence of resistance are associated with the drug. Immunization with EGFR B cell epitopes will train the immune system to produce specific Abs that can kill cancer cells. Also, therapy with stable, less-expensive, and nontoxic EGFR peptide mimics will block EGFR signaling and inhibit cancer growth. We designed three peptides based on the contact sites between EGF and EGFR. The B cell epitopes were synthesized alone and also linked with the measles virus T cell epitope to produce a chimeric peptide vaccine. The peptide vaccines were immunogenic in both mice and rabbits and Abs raised against the vaccine specifically bound EGFR-expressing cells and recombinant human EGFR protein. The peptide mimics and the anti-peptide Abs were able to inhibit EGFR signaling pathways. Immunization with the peptide vaccine or treatment with the B cell epitopes significantly reduced tumor growth in both transplantable breast and lung cancer models. Immunohistochemical analysis also showed significant reductions in microvascular density and actively dividing cells in the tumor sections after treatment in the FVB/n breast cancer model. The 418-435 B cell epitope was the best candidate both as a vaccine or peptide mimic because it caused significant inhibition in the two mouse models. Our results show that this novel EGFR B cell epitope has great potential to be used as a vaccine or treatment option for EGFR-expressing cancers.

  16. Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion.

    PubMed Central

    Guo, N H; Krutzsch, H C; Nègre, E; Vogel, T; Blake, D A; Roberts, D D

    1992-01-01

    Peptides from the three type I repeats of human endothelial cell thrombospondin, containing the consensus sequence-Trp-Ser-Xaa-Trp-, bind to sulfated glycoconjugates including heparin and sulfatide. The peptides are potent inhibitors for the binding of thrombospondin, laminin, or apolipoprotein E to these ligands. The thrombospondin peptides that inhibit heparin binding, but not adjacent peptides from the thrombospondin sequence containing the previously identified adhesive motif Val-Thr-Cys-Gly, promote melanoma cell adhesion when immobilized on plastic. Melanoma cell adhesion to the immobilized peptides is inhibited by soluble recombinant heparin-binding fragment of thrombospondin. The peptides also inhibit heparin-dependent binding of thrombospondin or laminin to human melanoma cells. The active peptides lack any previously identified heparin-binding consensus sequences and most do not contain any basic amino acids. Studies with homologous peptides showed that the tryptophan residues are required for binding. Adjacent basic residues in the second type I repeat enhance binding to heparin but not to sulfatide. Thus the type I peptides of thrombospondin define a distinct class of heparin-binding peptides. Images PMID:1557410

  17. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb.

    PubMed

    McGaughey, G B; Citron, M; Danzeisen, R C; Freidinger, R M; Garsky, V M; Hurni, W M; Joyce, J G; Liang, X; Miller, M; Shiver, J; Bogusky, M J

    2003-03-25

    The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response. PMID:12641452

  18. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.

    PubMed Central

    Ben-Tal, N; Honig, B; Peitzsch, R M; Denisov, G; McLaughlin, S

    1996-01-01

    We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues. Images FIGURE 2 FIGURE 3 PMID:8842196

  19. Computation of the binding free energy of peptides to graphene in explicit water.

    PubMed

    Welch, Corrinne M; Camden, Aerial N; Barr, Stephen A; Leuty, Gary M; Kedziora, Gary S; Berry, Rajiv J

    2015-07-28

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application--the use of graphene in biosensors--requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems. PMID:26233167

  20. Computation of the binding free energy of peptides to graphene in explicit water

    NASA Astrophysics Data System (ADS)

    Welch, Corrinne M.; Camden, Aerial N.; Barr, Stephen A.; Leuty, Gary M.; Kedziora, Gary S.; Berry, Rajiv J.

    2015-07-01

    The characteristic properties of graphene make it useful in an assortment of applications. One particular application—the use of graphene in biosensors—requires a thorough understanding of graphene-peptide interactions. In this study, the binding of glycine (G) capped amino acid residues (termed GXG tripeptides) to trilayer graphene surfaces in aqueous solution was examined and compared to results previously obtained for peptide binding to single-layer free-standing graphene [A. N. Camden, S. A. Barr, and R. J. Berry, J. Phys. Chem. B 117, 10691-10697 (2013)]. In order to understand the interactions between the peptides and the surface, binding enthalpy and free energy values were calculated for each GXG system, where X cycled through the typical 20 amino acids. When the GXG tripeptides were bound to the surface, distinct conformations were observed, each with a different binding enthalpy. Analysis of the binding energy showed the binding of peptides to trilayer graphene was dominated by van der Waals interactions, unlike the free-standing graphene systems, where the binding was predominantly electrostatic in nature. These results demonstrate the utility of computational materials science in the mechanistic explanation of surface-biomolecule interactions which could be applied to a wide range of systems.

  1. Identificaiton of Shc Src Homology 2 Domain-Binding Peptoid – Peptide Hybrids

    PubMed Central

    Choi, Won Jun; Kim, Sung Eun; Stephen, Andrew G.; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M.; Bindu, Lakshman; Fivash, Matthew J.; Nicklaus, Marc C.; Bottaro, Donald P.; Fisher, Robert J.; Burke, Terrence R.

    2009-01-01

    A fluorescence anisotropy (FA) competition – based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC)-containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 μM). Examination of a series of open – chain bis-alkenylamide containing peptides, prepared as ring – closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with Nα-substituted Gly (NSG) “peptoid” residues. This provided peptoid-peptide hybrids of the form, “Ac-pY-Q-[NSG]-L-amide.” Depending on the NSG substituent, certain of these hybrids exhibited up to 40 – fold higher Shc SH2 domain binding affinity than the parent Gly-containing peptide (IC50 = 248 μM), (for example, N-homo-allyl analogue 50; IC50 = 6 μM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics. PMID:19226165

  2. Identification of Shc Src homology 2 domain-binding peptoid-peptide hybrids.

    PubMed

    Choi, Won Jun; Kim, Sung-Eun; Stephen, Andrew G; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M; Bindu, Lakshman; Fivash, Matthew J; Nicklaus, Marc C; Bottaro, Donald P; Fisher, Robert J; Burke, Terrence R

    2009-03-26

    A fluorescence anisotropy (FA) competition-based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC) containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 microM). Examination of a series of open-chain bis-alkenylamide containing peptides, prepared as ring-closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with N alpha-substituted Gly (NSG) "peptoid" residues. This provided peptoid-peptide hybrids of the form "Ac-pY-Q-[NSG]-L-amide." Depending on the NSG substituent, certain of these hybrids exhibited up to 40-fold higher Shc SH2 domain-binding affinity than the parent Gly-containing peptide (IC50 = 248 microM) (for example, for N-homoallyl analogue 50, IC50 = 6 microM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics. PMID:19226165

  3. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition.

  4. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition. PMID:26435515

  5. Characterization of the vasoactive intestinal peptide receptor in rat submandibular gland: radioligand binding assay in membrane preparations

    SciTech Connect

    Turner, J.T.; Bylund, D.B.

    1987-09-01

    The vasoactive intestinal peptide (VIP) receptor in membranes from rat submandibular gland was studied using radioligand binding assays with /sup 125/I-VIP and various unlabeled competing ligands. In addition to the necessity of working within the parameters under which all radioligand binding assays should be performed, binding studies with /sup 125/I-VIP, as with other peptide hormones and neurotransmitters, are subject to additional technical difficulties. Specific problems that were addressed included radioligand proteolysis, the identification of an effective protease inhibitor (leupeptin) and the deleterious effects of a commonly used inhibitor (bacitracin); avid radioligand absorption to incubation tubes that was eliminated by precoating of the tubes with a combination of polyethylenimine and an organosilane; and a disproportionate effect of increasing membrane protein concentration on affinity estimates. Under optimized conditions, the affinity (Kd) and density Bmax values for /sup 125/I-VIP obtained from saturation assays (76 pM, 2.0 pmol/mg) were in excellent agreement. Membrane protein (or receptor) levels beyond the linear portion of the receptor concentration curve are often used in radioligand binding assays. Results from /sup 125/I-VIP binding studies at elevated receptor concentrations revealed the predicted marked decrease in receptor affinity. In addition, the rank order potency of unlabeled ligands in inhibition binding assays was changed. The optimization of the assay for measuring VIP receptors in submandibular gland membrane provides a reliable method for studying the role of receptor regulation in stimulus-secretion coupling for this neuropeptide.

  6. Reassociation with beta 2-microglobulin is necessary for Kb class I major histocompatibility complex binding of exogenous peptides.

    PubMed Central

    Rock, K L; Rothstein, L E; Gamble, S R; Benacerraf, B

    1990-01-01

    T lymphocytes recognize endogenously produced antigenic peptides in association with major histocompatibility complex (MHC)-encoded molecules. Peptides from the extracellular fluid can be displayed in association with class I and class II MHC molecules. Here we report that mature Kb class I MHC molecules bind peptides upon dissociation and reassociation of their light chain. Intact Kb heterodimers, unlike class II MHC molecules, are relatively unreceptive to binding peptides. This property may maintain segregation of class I and class II MHC-restricted peptides and has implications for the use of peptides as vaccines. Images PMID:2217182

  7. Aberrant Glycosylation of Anchor-Optimized MUC1 Peptides Can Enhance Antigen Binding Affinity and Reverse Tolerance to Cytotoxic T Lymphocytes

    PubMed Central

    Pathangey, Latha B.; Lakshminarayanan, Vani; Suman, Vera J.; Pockaj, Barbara A.; Mukherjee, Pinku; Gendler, Sandra J.

    2016-01-01

    Cancer vaccines have often failed to live up to their promise, although recent results with checkpoint inhibitors are reviving hopes that they will soon fulfill their promise. Although mutation-specific vaccines are under development, there is still high interest in an off-the-shelf vaccine to a ubiquitous antigen, such as MUC1, which is aberrantly expressed on most solid and many hematological tumors, including more than 90% of breast carcinomas. Clinical trials for MUC1 have shown variable success, likely because of immunological tolerance to a self-antigen and to poor immunogenicity of tandem repeat peptides. We hypothesized that MUC1 peptides could be optimized, relying on heteroclitic optimizations of potential anchor amino acids with and without tumor-specific glycosylation of the peptides. We have identified novel MUC1 class I peptides that bind to HLA-A*0201 molecules with significantly higher affinity and function than the native MUC1 peptides. These peptides elicited CTLs from normal donors, as well as breast cancer patients, which were highly effective in killing MUC1-expressing MCF-7 breast cancer cells. Each peptide elicited lytic responses in greater than 6/8 of normal individuals and 3/3 breast cancer patients. The CTLs generated against the glycosylated-anchor modified peptides cross reacted with the native MUC1 peptide, STAPPVHNV, suggesting these analog peptides may offer substantial improvement in the design of epitope-based vaccines. PMID:27367740

  8. Identification and Characterization of Peptides That Interact with Hepatitis B Virus via the Putative Receptor Binding Site▿

    PubMed Central

    Deng, Qiang; Zhai, Jian-wei; Michel, Marie-Louise; Zhang, Jun; Qin, Jun; Kong, Yu-ying; Zhang, Xin-xin; Budkowska, Agata; Tiollais, Pierre; Wang, Yuan; Xie, You-hua

    2007-01-01

    A direct involvement of the PreS domain of the hepatitis B virus (HBV) large envelope protein, and in particular amino acid residues 21 to 47, in virus attachment to hepatocytes has been suggested by many previous studies. Several PreS-interacting proteins have been identified. However, they share few common sequence motifs, and a bona fide cellular receptor for HBV remains elusive. In this study, we aimed to identify PreS-interacting motifs and to search for novel HBV-interacting proteins and the long-sought receptor. PreS fusion proteins were used as baits to screen a phage display library of random peptides. A group of PreS-binding peptides were obtained. These peptides could bind to amino acids 21 to 47 of PreS1 and shared a linear motif (W1T2X3W4W5) sufficient for binding specifically to PreS and viral particles. Several human proteins with such a motif were identified through BLAST search. Analysis of their biochemical and structural properties suggested that lipoprotein lipase (LPL), a key enzyme in lipoprotein metabolism, might interact with PreS and HBV particles. The interaction of HBV with LPL was demonstrated by in vitro binding, virus capture, and cell attachment assays. These findings suggest that LPL may play a role in the initiation of HBV infection. Identification of peptides and protein ligands corresponding to LPL that bind to the HBV envelope will offer new therapeutic strategies against HBV infection. PMID:17192308

  9. Experimental autoimmune insulitis. Induction by T lymphocytes specific for a peptide of proinsulin.

    PubMed Central

    Griffin, A. C.; Zhao, W.; Wegmann, K. W.; Hickley, W. F.

    1995-01-01

    Type I diabetes, an autoimmune disease that occurs in humans and animals, is characterized by the destruction of insulin-secreting islet beta-cells of the pancreas. Antibodies directed toward multiple islet protein can be detected before diagnosis of type I diabetes; however, the identity of the inciting autoantigen(s) that targets beta-cells for destruction has not been defined. Autorecognition of many self-proteins by CD4+ T lymphocytes is restricted by the products of class II immune response genes of the major histocompatibility complex (MHC), and in human type I diabetes such a MHC association has been described. The present study uses a rat MHC class II (RT1.Bl) peptide binding motif to predict potentially autoreactive CD4+ T cell epitopes in two key islet beta-cell constituents: the enzyme glutamic acid decarboxylase (GAD) and the insulin precursor hormone proinsulin (PI). Seventeen-amino-acid-long peptide fragments of GAD and PI containing the binding motif were synthesized and used to generate peptide-specific, MHC class II-restricted, CD4+ T cell lines. Once established, the T cell lines specific for rat islet GAD and PI were adoptively transferred to naive, MHC-compatible rats. At 10 days after transfer, insulitis had developed in rats receiving PI-specific T cells, whereas no insulitis was observed in pancreata of rats receiving GAD-specific T cells. Of particular interest is the finding that the pathogenic T cell epitope identified in PI spans the endogenous cleavage site between the B-chain and C-peptide of insulin. Moreover, the PI-specific T cells were able to react specifically with material produced in vitro by a rat insulinoma cell line. These results demonstrate that pathogenic T cell epitopes can be located in portions of molecules that are subsequently degraded during normal enzymatic processing. As PI is found highest concentrations in the beta-cells of pancreatic islets, it is possible that this molecule and not its individual degradation

  10. Deciphering the Glycolipid Code of Alzheimer's and Parkinson's Amyloid Proteins Allowed the Creation of a Universal Ganglioside-Binding Peptide

    PubMed Central

    Yahi, Nouara; Fantini, Jacques

    2014-01-01

    A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal

  11. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  12. Conformation of the ATP binding peptide in actin revealed by proton NMR spectroscopy

    SciTech Connect

    Barden, J.A.

    1987-09-22

    The actin peptide 106-124 exists in a completely conserved region of the sequence and binds strongly to both ATP and tripolyphosphate. Binding particularly affects residues 116 and 118 and generally affects the two segments 115-118 and 121-124. One-dimensional nuclear Overhauser enhancement difference spectroscopy was used to detect molecular interactions between both adjacent and nonadjacent residues. The N-terminal segment 106-112 was found to be largely extended. A sharp bend was detected between Pro-112 and Lys-113. The triphosphate moiety binds to the strongly hydrophilic central segment of the peptide. Evidence was obtained for a reverse turn involving residues 121-124. Amide proton temperature coefficients and coupling constants provide evidence for a type I ..beta..-turn. A model of the ATP binding site is proposed together with its relationship to other parts of the actin structure and to the phalloidin binding site.

  13. Reversal of the hofmeister series: specific ion effects on peptides.

    PubMed

    Paterová, Jana; Rembert, Kelvin B; Heyda, Jan; Kurra, Yadagiri; Okur, Halil I; Liu, Wenshe R; Hilty, Christian; Cremer, Paul S; Jungwirth, Pavel

    2013-07-11

    Ion-specific effects on salting-in and salting-out of proteins, protein denaturation, as well as enzymatic activity are typically rationalized in terms of the Hofmeister series. Here, we demonstrate by means of NMR spectroscopy and molecular dynamics simulations that the traditional explanation of the Hofmeister ordering of ions in terms of their bulk hydration properties is inadequate. Using triglycine as a model system, we show that the Hofmeister series for anions changes from a direct to a reversed series upon uncapping the N-terminus. Weakly hydrated anions, such as iodide and thiocyanate, interact with the peptide bond, while strongly hydrated anions like sulfate are repelled from it. In contrast, reversed order in interactions of anions is observed at the positively charged, uncapped N-terminus, and by analogy, this should also be the case at side chains of positively charged amino acids. These results demonstrate that the specific chemical and physical properties of peptides and proteins play a fundamental role in ion-specific effects. The present study thus provides a molecular rationalization of Hofmeister ordering for the anions. It also provides a route for tuning these interactions by titration or mutation of basic amino acid residues on the protein surface.

  14. High throughput peptide mapping method for analysis of site specific monoclonal antibody oxidation.

    PubMed

    Li, Xiaojuan; Xu, Wei; Wang, Yi; Zhao, Jia; Liu, Yan-Hui; Richardson, Daisy; Li, Huijuan; Shameem, Mohammed; Yang, Xiaoyu

    2016-08-19

    Oxidation of therapeutic monoclonal antibodies (mAbs) often occurs on surface exposed methionine and tryptophan residues during their production in cell culture, purification, and storage, and can potentially impact the binding to their targets. Characterization of site specific oxidation is critical for antibody quality control. Antibody oxidation is commonly determined by peptide mapping/LC-MS methods, which normally require a long (up to 24h) digestion step. The prolonged sample preparation procedure could result in oxidation artifacts of susceptible methionine and tryptophan residues. In this paper, we developed a rapid and simple UV based peptide mapping method that incorporates an 8-min trypsin in-solution digestion protocol for analysis of oxidation. This method is able to determine oxidation levels at specific residues of a mAb based on the peptide UV traces within <1h, from either TBHP treated or UV light stressed samples. This is the simplest and fastest method reported thus far for site specific oxidation analysis, and can be applied for routine or high throughput analysis of mAb oxidation during various stability and degradation studies. By using the UV trace, the method allows more accurate measurement than mass spectrometry and can be potentially implemented as a release assay. It has been successfully used to monitor antibody oxidation in real time stability studies.

  15. High throughput peptide mapping method for analysis of site specific monoclonal antibody oxidation.

    PubMed

    Li, Xiaojuan; Xu, Wei; Wang, Yi; Zhao, Jia; Liu, Yan-Hui; Richardson, Daisy; Li, Huijuan; Shameem, Mohammed; Yang, Xiaoyu

    2016-08-19

    Oxidation of therapeutic monoclonal antibodies (mAbs) often occurs on surface exposed methionine and tryptophan residues during their production in cell culture, purification, and storage, and can potentially impact the binding to their targets. Characterization of site specific oxidation is critical for antibody quality control. Antibody oxidation is commonly determined by peptide mapping/LC-MS methods, which normally require a long (up to 24h) digestion step. The prolonged sample preparation procedure could result in oxidation artifacts of susceptible methionine and tryptophan residues. In this paper, we developed a rapid and simple UV based peptide mapping method that incorporates an 8-min trypsin in-solution digestion protocol for analysis of oxidation. This method is able to determine oxidation levels at specific residues of a mAb based on the peptide UV traces within <1h, from either TBHP treated or UV light stressed samples. This is the simplest and fastest method reported thus far for site specific oxidation analysis, and can be applied for routine or high throughput analysis of mAb oxidation during various stability and degradation studies. By using the UV trace, the method allows more accurate measurement than mass spectrometry and can be potentially implemented as a release assay. It has been successfully used to monitor antibody oxidation in real time stability studies. PMID:27432793

  16. Retention of Conformational Entropy upon Calmodulin Binding to Target Peptides is Driven by Transient Salt Bridges

    SciTech Connect

    Smith, Dayle MA; Straatsma, TP; Squier, Thomas C.

    2012-10-03

    Calmodulin (CaM) is a highly flexible calcium-binding protein that mediates signal transduction through an ability to differentially bind to highly variable binding sequences in target proteins. To identify how binding affects CaM motions, and its relationship to conformational entropy and target peptide sequence, we have employed fully atomistic, explicit solvent molecular dynamics simulations of unbound CaM and CaM bound to five different target peptides. The calculated CaM conformational binding entropies correlate with experimentally derived conformational entropies with a correlation coefficient R2 of 0.95. Selected side-chain interactions with target peptides restrain interhelical loop motions, acting to tune the conformational entropy of the bound complex via widely distributed CaM motions. In the complex with the most conformational entropy retention (CaM in complex with the neuronal nitric oxide synthase binding sequence), Lys-148 at the C-terminus of CaM forms transient salt bridges alternating between Glu side chains in the N-domain, the central linker, and the binding target. Additional analyses of CaM structures, fluctuations, and CaM-target interactions illuminate the interplay between electrostatic, side chain, and backbone properties in the ability of CaM to recognize and discriminate against targets by tuning its conformational entropy, and suggest a need to consider conformational dynamics in optimizing binding affinities.

  17. Chronic beryllium disease, HLA-DPB1, and the DP peptide binding groove.

    PubMed

    Silveira, Lori J; McCanlies, Erin C; Fingerlin, Tasha E; Van Dyke, Michael V; Mroz, Margaret M; Strand, Matthew; Fontenot, Andrew P; Bowerman, Natalie; Dabelea, Dana M; Schuler, Christine R; Weston, Ainsley; Maier, Lisa A

    2012-10-15

    Multiple epidemiologic studies demonstrate associations between chronic beryllium disease (CBD), beryllium sensitization (BeS), and HLA-DPB1 alleles with a glutamic acid residue at position 69 (E69). Results suggest that the less-frequent E69 variants (non-*0201/*0202 alleles) might be associated with greater risk of CBD. In this study, we sought to define specific E69-carrying alleles and their amino acid sequences in the DP peptide binding groove, as well as their relationship to CBD and BeS risk, using the largest case control study to date. We enrolled 502 BeS/CBD subjects and 653 beryllium-exposed controls from three beryllium industries who gave informed consent for participation. Non-Hispanic white cases and controls were frequency-matched by industry. HLA-DPB1 genotypes were determined using sequence-specific primer PCR. The E69 alleles were tested for association with disease individually and grouped by amino acid structure using logistic regression. The results show that CBD cases were more likely than controls to carry a non-*02 E69 allele than an *02 E69, with odds ratios (95% confidence interval) ranging from 3.1 (2.1-4.5) to 3.9 (2.6-5.9) (p < 0.0001). Polymorphic amino acids at positions 84 and 11 were associated with CBD: DD versus GG, 2.8 (1.8-4.6), p < 0.0001; GD versus GG, 2.1 (1.5-2.8), p < 0.0001; LL versus GG, 3.2 (1.8-5.6), p < 0.0001; GL versus GG, 2.8 (2.1-3.8), p < 0.0001. Similar results were found within the BeS group and CBD/BeS combined group. We conclude that the less frequent E69 alleles confer more risk for CBD than does *0201. Recent studies examining how the composition and structure of the binding pockets influence peptide binding in MHC genes, as well of studies showing the topology of the TCR to likely bind DPB1 preferentially, give plausible biological rationale for these findings.

  18. Identification of a peptide specifically targeting ovarian cancer by the screening of a phage display peptide library

    PubMed Central

    WANG, LEDAN; HU, YUE; LI, WENJU; WANG, FAN; LU, XIAOSHENG; HAN, XUEYING; LV, JIEQIANG; CHEN, JIE

    2016-01-01

    Ovarian cancer is the most common cause of cancer-associated mortality in terms of gynecological malignancies, and is difficult to diagnose due to the absence of reliable biomarkers. To identify ovarian cancer-specific biomarkers, the present study used a Ph.D.-7™ Phage Display Peptide Library to screen for ligands that selectively target HO-8910 ovarian cancer cells. Following 5 rounds of biopanning, the phage clone P2 was selected by enzyme-linked immunosorbent assay and DNA sequencing, and its characteristics were additionally validated by immunofluorescence and immunohistochemical assays. The results revealed the positive phage were enriched 92-fold following 5 rounds of biopanning, and the DNA sequence AAC CCG ATG ATT CGC CGC CAG (amino acid sequence, NPMIRRQ) was repeated most frequently (phage clones, P2, P3, P15, P30 and P54). Immunofluorescence and immunohistochemical assays revealed that the phage clone P2 was able to bind to ovarian cancer cells and tissues, and not those of cervical cancer. In conclusion, the peptide NPMIRRQ may be a potential agent for the diagnosis of ovarian cancer. PMID:27313733

  19. The Periplasmic Bacterial Molecular Chaperone SurA Adapts Its Structure to Bind Peptides in Different Conformations to Assert a Sequence Preference for Aromatic Residues

    SciTech Connect

    Xu, X.; Wang, S.; Hu, Y.-X.; McKay, D.B.

    2009-06-04

    The periplasmic molecular chaperone protein SurA facilitates correct folding and maturation of outer membrane proteins in Gram-negative bacteria. It preferentially binds peptides that have a high fraction of aromatic amino acids. Phage display selections, isothermal titration calorimetry and crystallographic structure determination have been used to elucidate the basis of the binding specificity. The peptide recognition is imparted by the first peptidyl-prolyl isomerase (PPIase) domain of SurA. Crystal structures of complexes between peptides of sequence WEYIPNV and NFTLKFWDIFRK with the first PPIase domain of the Escherichia coli SurA protein at 1.3 A resolution, and of a complex between the dodecapeptide and a SurA fragment lacking the second PPIase domain at 3.4 A resolution, have been solved. SurA binds as a monomer to the heptapeptide in an extended conformation. It binds as a dimer to the dodecapeptide in an alpha-helical conformation, predicated on a substantial structural rearrangement of the SurA protein. In both cases, side-chains of aromatic residues of the peptides contribute a large fraction of the binding interactions. SurA therefore asserts a recognition preference for aromatic amino acids in a variety of sequence configurations by adopting alternative tertiary and quaternary structures to bind peptides in different conformations.

  20. Identification and grafting of a unique peptide-binding site in the Fab framework of monoclonal antibodies

    DOE PAGESBeta

    Donaldson, Joshua M.; Zer, Cindy; Avery, Kendra N.; Bzymek, Krzysztof P.; Horne, David A.; Williams, John C.

    2013-10-07

    Capitalizing on their extraordinary specificity, monoclonal antibodies (mAbs) have become one of the most reengineered classes of biological molecules. A major goal in many of these engineering efforts is to add new functionality to the parental mAb, including the addition of cytotoxins and imaging agents for medical applications. Herein, we present a unique peptide-binding site within the central cavity of the fragment antigen binding framework region of the chimeric, anti-epidermal growth factor receptor mAb cetuximab. We demonstrate through diffraction methods, biophysical studies, and sequence analysis that this peptide, a meditope, has moderate affinity for the Fab, is specific to cetuximabmore » (i.e., does not bind to human IgGs), and has no significant effect on antigen binding. We further demonstrate by diffraction studies and biophysical methods that the meditope binding site can be grafted onto the anti-human epidermal growth factor receptor 2 mAb trastuzumab, and that the antigen binding affinity of the grafted trastuzumab is indistinguishable from the parental mAb. Lastly, we demonstrate a bivalent meditope variant binds specifically and stably to antigen-bearing cells only in the presence of the meditope-enabled mAbs. Collectively, this finding and the subsequent characterization and engineering efforts indicate that this unique interface could serve as a noncovalent “linker” for any meditope-enabled mAb with applications in multiple mAb-based technologies including diagnostics, imaging, and therapeutic delivery.« less

  1. Preliminary characterization of a light-rare-earth-element-binding peptide of a natural perennial fern Dicranopteris dichotoma.

    PubMed

    Wang, Haiou; Shan, Xiao-Quan; Zhang, Shuzhen; Wen, Bei

    2003-05-01

    A light-rare-earth-element (LREE)-binding peptide was isolated from LREE hyperaccumulator Dicranopteris dichotomaleaves and characterized in terms of molecular weight and ultraviolet absorption spectrum. The molecular weight of the LREE-binding peptide was determined to be 2208 Da by matrix-assisted laser-desorption ionization-time of flight mass spectrometry (MALDI-TOFMS). The characteristic ultraviolet absorption spectrum of the peptide was observed at 220-300 nm, suggesting that the peptide chain contained aromatic amino acids. Compared to the unique features of the phytochelatins with a low absorption at 280 nm, the LREE-binding peptide is unlikely to be a typical phytochelatin. The present study suggests that the LREE-binding peptide is probably a natural peptide in D. dichotoma, and it may play an important role in hyperaccumulation of LREEs. PMID:12734617

  2. Structural constraints for the binding of short peptides to claudin-4 revealed by surface plasmon resonance.

    PubMed

    Ling, Jun; Liao, Hailing; Clark, Robin; Wong, Mandy Sze Man; Lo, David D

    2008-11-01

    Claudin family transmembrane proteins play an important role in tight junction structure and function in epithelial cells. Among the 24 isoforms identified in mice and humans, claudin-4 and -3 serve as the receptor for Clostridium perfringens enterotoxin (Cpe). The second extracellular loop (Ecl2) of claudin-4 is responsible for the binding to the C-terminal 30 amino acids of Cpe (Cpe30). To define the structural constraints for the claudin-4/Cpe30 interaction, a surface plasmon resonance (SPR) method was developed. GST fusions with claudin-4 revealed that Ecl2 with the downstream transmembrane domain of claudin-4 reconstituted the basic structural requirement for optimal binding activity to Cpe30, with affinity in the nanomolar range. Two 12-mer peptides selected by phage display against claudin-4-transfected CHO cells and a 12-mer Cpe mutant peptide also showed significant affinity for claudin-4 with this SPR assay, suggesting that a short peptide can establish stable contact with Ecl2 with nanomolar affinity. Alignment of these short peptides unveiled a common Ecl2 binding motif: . Whereas the short peptides bound native claudin-4 on transfected CHO cells in pull-down assays, only the larger Cpe30 peptide affected trans-epithelial electrical resistance (TER) in peptide-treated Caco-2BBe monolayers. Importantly, Cpe30 retained its binding to claudin-4 when fused to the C terminus of influenza hemagglutinin, demonstrating that its binding activity can be maintained in a different biochemical context. These studies may help in the design of assays for membrane receptor interactions with soluble ligands, and in applying new targeting ligands to delivering attached "cargo" proteins. PMID:18782762

  3. A set of robust fluorescent peptide probes for quantification of Cu(ii) binding affinities in the micromolar to femtomolar range.

    PubMed

    Young, Tessa R; Wijekoon, Chathuri J K; Spyrou, Benjamin; Donnelly, Paul S; Wedd, Anthony G; Xiao, Zhiguang

    2015-03-01

    Reliable quantification of copper binding affinities and identification of the binding sites provide a molecular basis for an understanding of the nutritional roles and toxic effects of copper ions. Sets of chromophoric probes are now available that can quantify Cu(i) binding affinities from nanomolar to attomolar concentrations on a unified scale under in vitro conditions. Equivalent probes for Cu(ii) are lacking. This work reports development of a set of four fluorescent dansyl peptide probes (DP1-4) that can quantify Cu(ii) binding affinities from micromolar to femtomolar concentrations, also on a unified scale. The probes were constructed by conjugation of a dansyl group to four short peptides of specific design. Each was characterised by its dissociation constant KD, its pH dependence and the nature of its binding site. One equivalent of Cu(ii) is bound by the individual probes that display different and well-separated affinities at pH 7.4 (log KD = -8.1, -10.1, -12.3 and -14.1, respectively). Intense fluorescence is emitted at λmax ∼ 550 nm upon excitation at ∼330 nm. Binding of Cu(ii) quenches the fluorescence intensity linearly until one equivalent of Cu(ii) is bound. Multiple approaches and multiple affinity standards were employed to ensure reliability. Selected examples of application to well-characterised Cu(ii) binding peptides and proteins are presented. These include Aβ16 peptides, two naturally occurring Cu(ii)-chelating motifs in human serum and cerebrospinal fluid with sequences GHK and DAHK and two copper binding proteins, CopC from Pseudomonas syringae and PcoC from Escherichia coli. Previously reported affinities are reproduced, demonstrating that peptides DP1-4 form a set of robust and reliable probes for Cu(ii) binding to peptides and protein targets. PMID:25715324

  4. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    PubMed

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.

  5. A set of robust fluorescent peptide probes for quantification of Cu(ii) binding affinities in the micromolar to femtomolar range.

    PubMed

    Young, Tessa R; Wijekoon, Chathuri J K; Spyrou, Benjamin; Donnelly, Paul S; Wedd, Anthony G; Xiao, Zhiguang

    2015-03-01

    Reliable quantification of copper binding affinities and identification of the binding sites provide a molecular basis for an understanding of the nutritional roles and toxic effects of copper ions. Sets of chromophoric probes are now available that can quantify Cu(i) binding affinities from nanomolar to attomolar concentrations on a unified scale under in vitro conditions. Equivalent probes for Cu(ii) are lacking. This work reports development of a set of four fluorescent dansyl peptide probes (DP1-4) that can quantify Cu(ii) binding affinities from micromolar to femtomolar concentrations, also on a unified scale. The probes were constructed by conjugation of a dansyl group to four short peptides of specific design. Each was characterised by its dissociation constant KD, its pH dependence and the nature of its binding site. One equivalent of Cu(ii) is bound by the individual probes that display different and well-separated affinities at pH 7.4 (log KD = -8.1, -10.1, -12.3 and -14.1, respectively). Intense fluorescence is emitted at λmax ∼ 550 nm upon excitation at ∼330 nm. Binding of Cu(ii) quenches the fluorescence intensity linearly until one equivalent of Cu(ii) is bound. Multiple approaches and multiple affinity standards were employed to ensure reliability. Selected examples of application to well-characterised Cu(ii) binding peptides and proteins are presented. These include Aβ16 peptides, two naturally occurring Cu(ii)-chelating motifs in human serum and cerebrospinal fluid with sequences GHK and DAHK and two copper binding proteins, CopC from Pseudomonas syringae and PcoC from Escherichia coli. Previously reported affinities are reproduced, demonstrating that peptides DP1-4 form a set of robust and reliable probes for Cu(ii) binding to peptides and protein targets.

  6. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    PubMed

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333

  7. Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    PubMed Central

    Hine, Nicholas D. M.; Mostofi, Arash A.; Yarovsky, Irene

    2013-01-01

    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth. PMID:24339760

  8. Binding specificities of the GYF domains from two Saccharomyces cerevisiae paralogs.

    PubMed

    Georgiev, Alexander; Sjöström, Michael; Wieslander, Ake

    2007-09-01

    We have used multivariate statistics and z-scales to represent peptide sequences in a PLS-QSAR model of previously studied binding affinities [Kofler,M., Motzny,K. and Freund,C. (2005b) Mol. Cell. Proteomics, 4, 1797-1811.] of two GYF domains to an array of immobilized synthetic peptides. As a result, we established structural determinants of the binding specificities of the two proteins. Our model was used to define new sets of yeast proteins potentially interacting with Syh1 (YPL105C) and Smy2 (YBR172C). These sets were subsequently examined for co-occurrence of Gene Ontology terms, leading to suggest a group of likely interacting proteins with a common function in mRNA catabolism. Finally, subcellular localization of a GFP-fused Syh1 and Smy2 reinforced the possibility that these proteins reside in cytoplasmic sites of mRNA degradation, thereby providing experimental confirmation to the predictions from the model.

  9. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    SciTech Connect

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocyte ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.

  10. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2016-11-01

    Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.

  11. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin.

    PubMed

    Cao, Hui; Zhao, Ying; Zhu, Yu Bing; Xu, Fei; Yu, Jing Song; Yuan, Min

    2016-03-01

    A novel "hyperactive" ice-binding peptide from porcine collagen was prepared by alkaline protease hydrolysis and a series of column chromatography separations, and then its antifreeze and cryoprotective properties were reported. Using differential scanning calorimetry (DSC), the thermal hysteresis (TH) of ice-binding collagen peptides was closely related to their concentration and crystal fraction. Collagen hydrolysates with maximal TH were obtained by hydrolysis at pH 8.0, DH 15.0%, and 5% alkaline protease at 55°C. After purification by column chromatography, the AP-3 ice-binding collagen peptide (GLLGPLGPRGLL) with 1162.8Da molecular weights exhibited the highest TH (5.28°C), which can be classified as "hyperactive". Recrystallisation and melt-resistance of ice cream were improved by AP-3 ice-binding collagen peptide at 0.2% (w/v) in a similar manner to natural antifreeze proteins. Moreover, the addition of AP-3 collagen peptides in ice cream greatly elevated the glass transition temperature (Tg) to -17.64°C.

  12. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.

    PubMed

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2016-11-01

    Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase. PMID:27555439

  13. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin.

    PubMed

    Cao, Hui; Zhao, Ying; Zhu, Yu Bing; Xu, Fei; Yu, Jing Song; Yuan, Min

    2016-03-01

    A novel "hyperactive" ice-binding peptide from porcine collagen was prepared by alkaline protease hydrolysis and a series of column chromatography separations, and then its antifreeze and cryoprotective properties were reported. Using differential scanning calorimetry (DSC), the thermal hysteresis (TH) of ice-binding collagen peptides was closely related to their concentration and crystal fraction. Collagen hydrolysates with maximal TH were obtained by hydrolysis at pH 8.0, DH 15.0%, and 5% alkaline protease at 55°C. After purification by column chromatography, the AP-3 ice-binding collagen peptide (GLLGPLGPRGLL) with 1162.8Da molecular weights exhibited the highest TH (5.28°C), which can be classified as "hyperactive". Recrystallisation and melt-resistance of ice cream were improved by AP-3 ice-binding collagen peptide at 0.2% (w/v) in a similar manner to natural antifreeze proteins. Moreover, the addition of AP-3 collagen peptides in ice cream greatly elevated the glass transition temperature (Tg) to -17.64°C. PMID:26471678

  14. Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling

    PubMed Central

    Dong, Maoqing; Miller, Laurence J.

    2013-01-01

    Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analogue probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogues that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe120 in the first extracellular loop. This was in contrast to its covalent attachment to Glu345 in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors. PMID:23770253

  15. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    NASA Astrophysics Data System (ADS)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown

  16. Computational Design of the Sequence and Structure of a Protein-Binding Peptide

    SciTech Connect

    Sammond, Deanne W.; Bosch, Dustin E.; Butterfoss, Glenn L.; Purbeck, Carrie; Machius, Mischa; Siderovski, David P.; Kuhlman, Brian

    2012-08-10

    The de novo design of protein-binding peptides is challenging because it requires the identification of both a sequence and a backbone conformation favorable for binding. We used a computational strategy that iterates between structure and sequence optimization to redesign the C-terminal portion of the RGS14 GoLoco motif peptide so that it adopts a new conformation when bound to G{alpha}{sub i1}. An X-ray crystal structure of the redesigned complex closely matches the computational model, with a backbone root-mean-square deviation of 1.1 {angstrom}.

  17. Specific binding of beta-endorphin to normal human erythrocytes

    SciTech Connect

    Chenet, B.; Hollis, V. Jr.; Kang, Y.; Simpkins, C.

    1986-03-05

    Beta-endorphin (BE) exhibits peripheral functions which may not be mediated by interactions with receptors in the brain. Recent studies have demonstrated binding of BE to both opioid and non-opioid receptors on lymphocytes and monocytes. Abood has reported specific binding of /sup 3/H-dihydromorphine in erythrocytes. Using 5 x 10/sup -11/M /sup 125/I-beta-endorphin and 10/sup -5/M unlabeled BE, they have detected 50% specific binding to human erythrocytes. This finding is supported by results from immunoelectron microscopy using rabbit anti-BE antibody and biotinylated secondary antibody with avidin-biotin complexes horseradish peroxidase. Binding is clearly observed and is confined to only one side of the cells. Conclusions: (1) BE binding to human erythrocytes was demonstrated by radioreceptor assay and immunoelectron microscopy, and (2) BE binding sites exist on only one side of the cells.

  18. Studies on adenosine triphosphate transphosphorylases. XVIII. Synthesis and preparation of peptides and peptide fragments of rabbit muscle ATP-AMP transphosphorylase (adenylate kinase) and their nucleotide-binding properties.

    PubMed

    Kuby, S A; Hamada, M; Johnson, M S; Russell, G A; Manship, M; Palmieri, R H; Fleming, G; Bredt, D S; Mildvan, A S

    1989-08-01

    Two peptide fragments, derived from the head and tail of rabbit muscle myokinase, were found to possess remarkable and specific ligand-binding properties (Hamada et al., 1979). By initiating systematic syntheses and measurements of equilibrium substrate-binding properties of these two sets of peptides, or portions thereof, which encompass the binding sites for (a) the magnesium complexes of the nucleotide substrates (MgATP2- and MgADP-) and (b) the uncomplexed nucleotide substrates (ADP3- and AMP2-) of rabbit muscle myokinase, some of the requirements for binding of the substrates to ATP-AMP transphosphorylase are being deduced and chemically outlined. One requirement for tight nucleotide binding appears to be a minimum peptide length of 15-25 residues. In addition, Lys-172 and/or Lys-194 may be involved in the binding of epsilon AMP. The syntheses are described as a set of peptides corresponding to residues 31-45, 20-45, 5-45, and 1-45, and a set of peptides corresponding to residues 178-192, 178-194, and 172-194 of rabbit muscle adenylate kinase. The ligand-binding properties of the first set of synthetic peptides to the fluorescent ligands: epsilon MgATP/epsilon ATP and epsilon MgADP/epsilon ADP are quantitatively presented in terms of their intrinsic dissociation constants (K'd) and values of N (maximal number of moles bound per mole of peptide); and compared with the peptide fragment MT-I (1-44) obtained from rabbit muscle myokinase (Kuby et al., 1984) and with the native enzyme (Hamada et al., 1979). In addition, the values of N and K'd are given for the second set of synthetic peptides to the fluorescent ligands epsilon AMP and epsilon ADP as well as for the peptide fragments MT-XII(172-194) and CB-VI(126-194) (Kuby et al., 1984) and, in turn, compared with the native enzyme. A few miscellaneous dissociation constants which had been derived kinetically are also given for comparison (e.g., the Ki for epsilon AMP and the value of KMg epsilon ATP obtained for

  19. Novel method for identifying sequence-specific DNA-binding proteins.

    PubMed Central

    Levens, D; Howley, P M

    1985-01-01

    We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene. Images PMID:3016526

  20. Lasso Peptide Biosynthetic Protein LarB1 Binds Both Leader and Core Peptide Regions of the Precursor Protein LarA

    PubMed Central

    2016-01-01

    Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins. One such gene cluster is found in the organism Rhodococcus jostii, which produces the antimicrobial lasso peptide lariatin. The B enzyme in R. jostii is split between two open reading frames, larB1 and larB2, both of which are required for lariatin biosynthesis. While the cysteine catalytic triad is found within the LarB2 protein, LarB1 is a PqqD homologue expected to bind to the lariatin precursor LarA based on its structural homology to other RiPP leader peptide binding domains. We show that LarB1 binds to the leader peptide of the lariatin precursor protein LarA with a sub-micromolar affinity. We used photocrosslinking with the noncanonical amino acid p-azidophenylalanine and mass spectrometry to map the interaction of LarA and LarB1. This analysis shows that the LarA leader peptide interacts with a conserved motif within LarB1 and, unexpectedly, the core peptide of LarA also binds to LarB1 in several positions. A Rosetta model built from distance restraints from the photocrosslinking experiments shows that the scissile bond between the leader peptide and core peptide in LarA is in a solvent-exposed loop. PMID:27800552

  1. Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation.

    PubMed

    Doytchinova, Irini; Hemsley, Shelley; Flower, Darren R

    2004-12-01

    TAP is responsible for the transit of peptides from the cytosol to the lumen of the endoplasmic reticulum. In an immunological context, this event is followed by the binding of peptides to MHC molecules before export to the cell surface and recognition by T cells. Because TAP transport precedes MHC binding, TAP preferences may make a significant contribution to epitope selection. To assess the impact of this preselection, we have developed a scoring function for TAP affinity prediction using the additive method, have used it to analyze and extend the TAP binding motif, and have evaluated how well this model acts as a preselection step in predicting MHC binding peptides. To distinguish between MHC alleles that are exclusively dependent on TAP and those exhibiting only a partial dependence on TAP, two sets of MHC binding peptides were examined: HLA-A*0201 was selected as a representative of partially TAP-dependent HLA alleles, and HLA-A*0301 represented fully TAP-dependent HLA alleles. TAP preselection has a greater impact on TAP-dependent alleles than on TAP-independent alleles. The reduction in the number of nonbinders varied from 10% (TAP-independent) to 33% (TAP-dependent), suggesting that TAP preselection is an important component in the successful in silico prediction of T cell epitopes. PMID:15557175

  2. Targeting Cell Membrane Lipid Rafts by Stoichiometric Functionalization of Gold Nanoparticles With a Sphingolipid-Binding Domain Peptide.

    PubMed

    Paramelle, David; Nieves, Daniel; Brun, Benjamin; Kraut, Rachel S; Fernig, David G

    2015-04-22

    A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.

  3. Discovery and structural characterization of a phospholamban-binding cyclic peptide and design of novel inhibitors of phospholamban.

    PubMed

    Tilgmann, Carola; Pollesello, Piero; Ovaska, Martti; Kaivola, Juha; Pystynen, Jarmo; Tiainen, Eija; Yliperttula, Marjo; Annila, Arto; Levijoki, Jouko

    2013-04-01

    The interplay between cardiac sarcoplasmic Ca(2+)ATPase and phospholamban is a key regulating factor of contraction and relaxation in the cardiac muscle. In heart failure, aberrations in the inhibition of sarcoplasmic Ca(2+)ATPase by phospholamban are associated with anomalies in cardiac functions. In experimental heart failure models, modulation of the interaction between these two proteins has been shown to be a potential therapeutic approach. The aim of our research was to find molecules able to interfere with the inhibitory activity of phospholamban on sarcoplasmic Ca(2+)ATPase. For this purpose, a portion of phospholamban was synthesized and used as target for a phage-display peptide library screening. The cyclic peptide C-Y-W-E-L-E-W-L-P-C-A was found to bind to phospholamban (1-36) with high specificity. Its functional activity was tested in Ca(2+)uptake assays utilizing preparations from cardiac sarcoplasmic reticulum. By synthesizing and testing a series of alanine point-mutated cyclic peptides, we identified which amino acid was important for the inhibition of the phospholamban function. The structures of active and inactive alanine-mutated cyclic peptides, and of phospholamban (1-36), were determined by NMR. This structure-activity analysis allowed building a model of phospholamban -cyclic peptide complex. Thereafter, a simple pharmacophore was defined and used for the design of small molecules. Finally, examples of such molecules were synthesized and characterized as phospholamban inhibitors.

  4. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5.

    PubMed

    Nemmara, Venkatesh V; Nicholas, Robert A; Pratt, R F

    2016-07-26

    Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5. PMID:27420403

  5. Peptide-conjugated hapten groups are the major antigenic determinants for trinitrophenyl-specific cytotoxic T cells.

    PubMed

    von Bonin, A; Ortmann, B; Martin, S; Weltzien, H U

    1992-08-01

    Several trinitrophenyl (TNP)-specific mouse cytotoxic T cell (CTL) clones recognize TNP-conjugated peptides in association with class I MHC molecules ('hapten-peptide determinants'). However, cell modification with trinitrobenzene sulfonic acid (TNBS) also leads to the formation of TNP determinants covalently attached to MHC molecules ('altered self'). To determine the importance of 'peptide' versus 'altered self' determinants, we used the mutant cell line RMA-S which expresses peptide-free ('empty') Kb and Db molecules at 26 degrees C. Additionally, we stabilized Kb molecules on RMA-S cells at 37 degrees C using the Kb binding heptapeptide N53-59 derived from the vesicular stomatitis virus nucleoprotein. Lacking lysine, this peptide remains unmodified by TNBS and, therefore, only allows the formation of 'altered self' TNP determinants on occupied Kb molecules. RMA-S targets, pretreated or untreated with N53-59, upon TNBS modification were only lysed poorly or not at all by four different TNP-specific CTL. In contrast, all of these clones efficiently lysed TNBS-treated, unmutated RMA cells, and three of them strongly reacted with RMA or RMA-S cells in the presence of tryptic TNP-BSA peptides. Moreover, the clone unreactive for TNP-BSA peptides also recognized TNP self-peptides extracted from TNBS-treated syngeneic spleen cells. Taken together, these data clearly show that TNP residues linked to MHC via associated peptides but not by covalent bondage represent the dominant antigenic epitopes for class I MHC-restricted, hapten-specific T cells. PMID:1384686

  6. Signal Peptide-Binding Drug as a Selective Inhibitor of Co-Translational Protein Translocation

    PubMed Central

    Vermeire, Kurt; Bell, Thomas W.; Van Puyenbroeck, Victor; Giraut, Anne; Noppen, Sam; Liekens, Sandra; Schols, Dominique; Hartmann, Enno

    2014-01-01

    In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins. PMID:25460167

  7. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay.

  8. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. PMID:27463849

  9. A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity. Sugar-binding and crystallographic studies.

    PubMed

    Vermersch, P S; Tesmer, J J; Lemon, D D; Quiocho, F A

    1990-09-25

    The L-arabinose-binding protein (ABP) of Escherichia coli consists structurally of two distinct globular domains connected by a hinge of three separate peptide segments. Arabinose is bound and completely sequestered within the deep cleft between the two domains. With reduced affinity, ABP also binds D-galactose (approximately 2-fold reduction) and D-fucose (approximately 40-fold reduction). Experiments have been conducted to explore the role in sugar binding of the hinge connecting the two domains of ABP. To increase the flexibility of the hinge region, a glycine was substituted for a proline at position 254 by site-directed mutagenesis. Unexpectedly, this mutation resulted in the dramatic enhancement of galactose binding over that of arabinose. The affinity of the mutant ABP for galactose increased by over 20-fold, while that for arabinose and fucose remained relatively unchanged. We have measured association and dissociation rates of the Gly-254 ABP with L-arabinose, D-galactose, and D-fucose and have determined the crystallographic structure of the protein complexed with each of the three sugars. Both the ligand-binding kinetic measurements and structure analysis indicate that the altered specificity is due to an effective increase in the rigidity of the hinge in the closed conformation which is induced upon galactose binding. Stabilizing contacts are formed between the strands of the hinge in the Gly-254 ABP when galactose is bound which are not found in complexes with the other sugars or the liganded wild-type protein.

  10. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  11. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    SciTech Connect

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  12. Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity.

    PubMed

    Sato, Akira; Yamanaka, Hikaru; Oe, Keitaro; Yamazaki, Yoji; Ebina, Keiichi

    2014-10-01

    The probes for specific detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to be useful for the identification, diagnosis, prevention, and treatment for atherosclerosis. In this study, to develop a fluorescent peptide probe for specific detection of ox-LDL, we investigated the interaction of fluorescein isothiocyanate (FITC)-labeled peptides with ox-LDL using polyacrylamide gel electrophoresis. Two heptapeptides (KWYKDGD and KP6) coupled through the ε-amino group of K at the N-terminus to FITC in the presence/absence of 6-amino-n-caproic acid (AC) linker to FITC--(FITC-AC)KP6 and (FITC)KP6--both bound with high specificity to ox-LDL in a dose-dependent manner. In contrast, a tetrapeptide (YKDG) labeled with FITC at the N-terminus and a pentapeptide (YKDGK) coupled through the ε-amino group of K at the C-terminus to FITC did not bind selectively to ox-LDL. Furthermore, (FITC)KP6 and (FITC-AC)KP6 bound with high specificity to the protein in mouse plasma (probably ox-LDL fraction). These findings strongly suggest that (FITC)KP6 and (FITC-AC)KP6 may be effective novel fluorescent probes for specific detection of ox-LDL.

  13. PeptiSite: a structural database of peptide binding sites in 4D.

    PubMed

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V; Abagyan, Ruben

    2014-03-21

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include: (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a multimeric protein assembly with cofactors and metal ions and (3) analysis of consensus interaction motifs within the ensembles and identification of conserved determinants of these interactions. Currently the database contains 585 proteins with 650 peptide-binding sites. http://peptisite.ucsd.edu/ link allows searching for the sites of interest and interactive visualization of the ensembles using the ActiveICM web-browser plugin. This structural database for protein-peptide interactions enables understanding of structural principles of these interactions and may assist the development of an efficient peptide docking benchmark. PMID:24406170

  14. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    PubMed Central

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  15. The specificity of peptides bound to human histocompatibility leukocyte antigen (HLA)-B27 influences the prevalence of arthritis in HLA-B27 transgenic rats.

    PubMed

    Zhou, M; Sayad, A; Simmons, W A; Jones, R C; Maika, S D; Satumtira, N; Dorris, M L; Gaskell, S J; Bordoli, R S; Sartor, R B; Slaughter, C A; Richardson, J A; Hammer, R E; Taurog, J D

    1998-09-01

    Human histocompatibility leukocyte antigen B27 is highly associated with the rheumatic diseases termed spondyloarthropathies, but the mechanism is not known. B27 transgenic rats develop a spontaneous disease resembling the human spondyloarthropathies that includes arthritis and colitis. To investigate whether this disease requires the binding of specific peptides to B27, we made a minigene construct in which a peptide from influenza nucleoprotein, NP383-391 (SRYWAIRTR), which binds B27 with high affinity, is targeted directly to the ER by the signal peptide of the adenovirus E3/gp19 protein. Rats transgenic for this minigene, NP1, were made and bred with B27 rats. The production of the NP383-391 peptide in B27(+)NP1(+) rats was confirmed immunologically and by mass spectrometry. The NP1 product displaced approximately 90% of the 3H-Arg-labeled endogenous peptide fraction in B27(+)NP1(+) spleen cells. Male B27(+)NP1(+) rats had a significantly reduced prevalence of arthritis, compared with B27(+)NP- males or B27(+) males with a control construct, NP2, whereas colitis was not significantly affected by the NP1 transgene. These findings support the hypothesis that B27-related arthritis requires binding of a specific peptide or set of peptides to B27, and they demonstrate a method for efficient transgenic targeting of peptides to the ER. PMID:9730889

  16. Binding sites of atrial natriuretic peptide in tree shrew adrenal gland

    SciTech Connect

    Fuchs, E.; Shigematsu, K.; Saavedra, J.M.

    1986-09-01

    Adrenal gland binding sites for atrial natriuretic peptide-(99-126) (ANP) were quantitated in tree shrew (Tupaia belangeri) by incubation of adrenal sections with (3-(/sup 125/I)-iodotyrosyl28) atrial natriuretic peptide-(99-126), followed by autoradiography with computerized microdensitometry. In the adrenal glands, there are three types of ANP binding sites. One is located in the zona glomerulosa (BMax 84 +/- 6 fmol/mg protein; Kd 122 +/- 9 pM); the second in the zona fasciculata and reticularis (BMax 29 +/- 2 fmol/mg protein; Kd 153 +/- 6 pM) and the third in the adrenal medulla (BMax 179 +/- 1 fmol/mg protein; Kd 70 +/- 2 pM). Besides the influence of ANP on the regulation of adrenocortical mineralcorticoid and glucocorticoid secretion our findings raise the possibility for a local site of action of atrial natriuretic peptide in the regulation of adrenomedullary catecholamines in the tree shrew, primates and man.

  17. Investigating the binding interactions of galantamine with β-amyloid peptide.

    PubMed

    Rao, Praveen P N; Mohamed, Tarek; Osman, Wesseem

    2013-01-01

    The anti-Alzheimer's agent galantamine is known to possess anti-amyloid properties. However the exact mechanisms are not clear. We studied the binding interactions of galantamine with amyloid peptide dimer (Aβ(1-40)) through molecular docking and molecular dynamics simulations. Galantamine's binding site within the amyloid peptide dimer was identified by docking experiments and the most stable complex was analyzed by molecular dynamics simulation. These studies show that galantamine was interacting with the central region of the amyloid dimer (Lys16-Ala21) and the C-terminal region (Ile31-Val36) with minimum structural drift of Cα atom in those regions. Strikingly, a significant drift was observed at the turn region from Asp23-Gly29 (Cα atom RMSD=9.2 Å and 11.6 Å at 50 fs and 100 fs respectively). Furthermore, galantamine's binding mode disrupts the key pi-pi stacking interaction between aromatic rings of Phe19 (chain A) and Phe19 (chain B) and intermolecular hydrogen bonds seen in unbound peptide dimer. Noticeably, the azepine tertiary nitrogen of galantamine was in close proximity to backbone CO of Leu34 (distance <3.5 Å) to stabilize the dimer conformation. In summary, the results indicate that galantamine binding to amyloid peptide dimer leads to a significant conformational change at the turn region (Asp23-Gly29) that disrupts interactions between individual β-strands and promotes a nontoxic conformation of Aβ(1-40) to prevent the formation of neurotoxic oligomers.

  18. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    EPA Science Inventory

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  19. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers

    SciTech Connect

    Shibata, Kenji . E-mail: kshibata@kyowa.co.jp; Maruyama-Takahashi, Kumiko; Yamasaki, Motoo; Hirayama, Noriaki . E-mail: hirayama@is.icc.u-tokai.ac.jp

    2006-03-10

    Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with {beta}-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay.

  20. Stapling monomeric GCN4 peptides allows for DNA binding and enhanced cellular uptake.

    PubMed

    Iyer, Abhishek; Van Lysebetten, Dorien; Ruiz García, Yara; Louage, Benoit; De Geest, Bruno G; Madder, Annemieke

    2015-04-01

    The basic DNA recognition region of the GCN4 protein comprising 23 amino acids has been modified to contain two optimally positioned cysteines which have been linked and stapled using cross-linkers of suitable lengths. This results in stapled peptides with a stabilized α-helical conformation which allows for DNA binding and concurrent enhancement of cellular uptake.

  1. Molecular cloning of a small DNA binding protein with specificity for a tissue-specific negative element within the rps1 promoter.

    PubMed Central

    Zhou, D X; Bisanz-Seyer, C; Mache, R

    1995-01-01

    A cDNA encoding a specific binding activity for the tissue-specific negative cis-element S1F binding site of spinach rps1 was isolated from a spinach cDNA expression library. This cDNA of 0.7 kb encodes an unusual small peptide of only 70 amino acids, with a basic domain which contains a nuclear localization signal and a putative DNA binding helix. This protein, named S1Fa, is highly conserved between dicotyledonous and monocotyledonous plants and may represent a novel class of DNA binding proteins. The corresponding mRNA is accumulated more in roots and in etiolated seedlings than in green leaves. This expression pattern is correlated with the tissue-specific function of the S1F binding site which represses the rps1 promoter preferentially in roots and in etiolated plants. Images PMID:7739894

  2. Cytotoxic T lymphocyte response to hepatitis C virus-derived peptides containing the HLA A2.1 binding motif.

    PubMed Central

    Cerny, A; McHutchison, J G; Pasquinelli, C; Brown, M E; Brothers, M A; Grabscheid, B; Fowler, P; Houghton, M; Chisari, F V

    1995-01-01

    The HLA class I-restricted cytotoxic T lymphocyte (CTL) response is a major defense mechanism in viral infections. It has been suggested that the CTL response may contribute to viral clearance and liver cell injury during hepatitis C virus (HCV) infection. To test this hypothesis requires an understanding of the characteristics of HCV-specific cytotoxic effector cells and identification of the target antigens to which they respond. To begin this process we stimulated peripheral blood mononuclear cells (PBMC) from a group of HLA-A2 positive patients with chronic hepatitis C with a panel of 130 HCV-derived peptides containing the HLA-A2 binding motif. Effector cells were tested for their capacity to lyse HLA-A2-matched target cells that were either sensitized with peptide or infected with a vaccinia virus construct containing HCV sequences. Using this approach we have identified nine immunogenic peptides in HCV, three of which are derived from the putative core protein, three from the nonstructural (NS) 3 domain, two from NS4 and one from NS5. Selected responses were shown to be HLA-A2 restricted, mediated by CD8+ T cells and to recognize endogenously synthesized viral antigen. Unexpectedly, peptide-specific CTL responses could also be induced in sero-negative individuals, suggesting in vitro activation of naive CTL precursors. The precursor frequency of peptide-specific CTL was 10 to 100-fold higher in infected patients compared to uninfected controls, and the responses were greatly diminished by removal of CD45 RO+ (memory) T cells. Further quantitative studies are clearly required to establish whether a correlation exists between the HCV-specific CTL response and the clinical course of this disease. Definition of the molecular targets of the human CTL response to HCV creates this opportunity, and may also contribute to the development of a T cell-based HCV vaccine. PMID:7860734

  3. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    PubMed

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. PMID:25111069

  4. M13 phage peptide ZL4 exerts its targeted binding effect on schistosoma japonicum via alkaline phosphatase.

    PubMed

    Liu, Yan; Yang, Shenghui; Xiao, Jianhua; Yu, Liang; Chen, Li; Zou, Ju; Wang, Kegeng; Tan, Sijie; Yu, Zhengyang; Zeng, Qingren

    2015-01-01

    The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies.

  5. M13 phage peptide ZL4 exerts its targeted binding effect on schistosoma japonicum via alkaline phosphatase

    PubMed Central

    Liu, Yan; Yang, Shenghui; Xiao, Jianhua; Yu, Liang; Chen, Li; Zou, Ju; Wang, Kegeng; Tan, Sijie; Yu, Zhengyang; Zeng, Qingren

    2015-01-01

    The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies. PMID:25973009

  6. Preorganized Peptide Scaffolds as Mimics of Phosphorylated Proteins Binding Sites with a High Affinity for Uranyl.

    PubMed

    Starck, Matthieu; Sisommay, Nathalie; Laporte, Fanny A; Oros, Stéphane; Lebrun, Colette; Delangle, Pascale

    2015-12-01

    Cyclic peptides with two phosphoserines and two glutamic acids were developed to mimic high-affinity binding sites for uranyl found in proteins such as osteopontin, which is believed to be a privileged target of this ion in vivo. These peptides adopt a β-sheet structure that allows the coordination of the latter amino acid side chains in the equatorial plane of the dioxo uranyl cation. Complementary spectroscopic and analytical methods revealed that these cyclic peptides are efficient uranyl chelating peptides with a large contribution from the phosphorylated residues. The conditional affinity constants were measured by following fluorescence tryptophan quenching and are larger than 10(10) at physiological pH. These compounds are therefore promising models for understanding uranyl chelation by proteins, which is relevant to this actinide ion toxicity. PMID:26583259

  7. Small Retinoprotective Peptides Reveal a Receptor-binding Region on Pigment Epithelium-derived Factor*

    PubMed Central

    Kenealey, Jason; Subramanian, Preeti; Comitato, Antonella; Bullock, Jeanee; Keehan, Laura; Polato, Federica; Hoover, David; Marigo, Valeria; Becerra, S. Patricia

    2015-01-01

    The cytoprotective effects of pigment epithelium-derived factor (PEDF) require interactions between an as of a yet undefined region with a distinct ectodomain on the PEDF receptor (PEDF-R). Here we characterized the area in PEDF that interacts with PEDF-R to promote photoreceptor survival. Molecular docking studies suggested that the ligand binding site of PEDF-R interacts with the neurotrophic region of PEDF (44-mer, positions 78–121). Binding assays demonstrated that PEDF-R bound the 44-mer peptide. Moreover, peptide P1 from the PEDF-R ectodomain had affinity for the 44-mer and a shorter fragment within it, 17-mer (positions 98–114). Single residue substitutions to alanine along the 17-mer sequence were designed and tested for binding and biological activity. Altered 17-mer[R99A] did not bind to the P1 peptide, whereas 17-mer[H105A] had higher affinity than the unmodified 17-mer. Peptides 17-mer, 17-mer[H105A], and 44-mer exhibited cytoprotective effects in cultured retina R28 cells. Intravitreal injections of these peptides and PEDF in the rd1 mouse model of retinal degeneration decreased the numbers of dying photoreceptors, 17-mer[H105A] being most effective. The blocking peptide P1 hindered their protective effects both in retina cells and in vivo. Thus, in addition to demonstrating that the region composed of positions 98–114 of PEDF contains critical residues for PEDF-R interaction that mediates survival effects, the findings reveal distinct small PEDF fragments with neurotrophic effects on photoreceptors. PMID:26304116

  8. Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia: An autoradiographic and immunohistochemical study

    SciTech Connect

    Hof, P.R.; Dietl, M.M.; Charnay, Y.; Martin, J.L.; Bouras, C.; Palacios, J.M.; Magistretti, P.J. )

    1991-03-15

    The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.

  9. Bivalent cation binding effect on formation of the peptide bond

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Rode, Bernd Michael

    2000-01-01

    The reactions between formic acid (or glycine) and ammonia, without and with Mg 2+, Ni 2+ and Cu 2+ cations as catalysts, have been studied as model reactions for peptide bond formation using the Becke3LYP functional and 6-311+G(d,p) basis set of DFT theory. Enthalpies and free energies for the stationary points of each reaction have been calculated to determine the thermodynamics of reactions investigated. A substantial decrease in reaction enthalpies and free energies was found for formic acid-ammonia and glycine-ammonia reactions catalysed by Mg 2+, Ni 2+ and Cu 2+ ions compared with those of the uncatalysed amide bond formation. The catalytic effect of the transition metal ions Ni 2+ and Cu 2+ is of similar strength and more pronounced than that of the Mg 2+ cation.

  10. Rapid Generation of a Nanocrystal-Labeled Peptide Library for Specific Identification of the Bacterium Clostrium Botulinum

    SciTech Connect

    Tok, J B

    2004-11-11

    Several peptide libraries containing up to 2 million unique peptide ligands have been synthesized. The peptides are attached onto a 80 micron resin and the length of these peptide ligands ranges from 5 to 9 amino acid residues. Using a novel calorimetric assay, the libraries were screened for binding to the ganglioside-binding domain of Clostridium Tetanus Toxin, a structural similar analog of the Clostridium Botulinum toxin. Several binding peptide sequences were identified, in which the detailed binding kinetics are currently underway using the Surface Plasmon Resonance (SPR) technique.

  11. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    SciTech Connect

    Kuroki, Y.; Akino, T. )

    1991-02-15

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed.

  12. Peptide nucleic acid (PNA) binding-mediated induction of human gamma-globin gene expression.

    PubMed

    Wang, G; Xu, X; Pace, B; Dean, D A; Glazer, P M; Chan, P; Goodman, S R; Shokolenko, I

    1999-07-01

    Peptide nucleic acids (PNAs) can bind to homopurine/homopyrimidine sequences of double-stranded DNA targets in a sequence-specific manner and form [PNA]2/DNA triplexes with single-stranded DNA D-loop structures at the PNA binding sites. These D-loop structures have been found to have a capacity to initiate transcription in vitro. If this strategy can be used to induce transcription of endogenous genes, it may provide a novel approach for gene therapy of many human diseases. Human [beta] globin disorders such as sickle cell anemia and beta-thalassemia are very common genetic diseases that are caused by mutations in the beta-globin gene. When gamma-globin genes are highly expressed in sickle cell patients, the presence of high levels of fetal hemoglobin (HbF, alpha2gamma2) can compensate for the defective beta-globin gene product and such patients have much improved symptoms or are free of disease. However, the gamma-globin genes are developmentally regulated and normally expressed at very low levels (>1%) in adult blood cells. We have investigated the possibility of inducing gamma-globin gene expression with PNAs. Using PNAs designed to bind to the 5' flanking region of the gamma-globin gene, induction of expression of a reporter gene construct was demonstrated both in vitro and in vivo. More importantly, PNA-mediated induction of endogenous gamma-globin gene expression was also demonstrated in K562 human erythroleukemia cells. This result suggests that induction of gamma-globin gene expression with PNAs might provide a new approach for the treatment of sickle cell disease. PNA-induced gene expression strategy also may have implications in gene therapy of other diseases such as genetic diseases, cancer and infectious diseases.

  13. Organic solvents identify specific ligand binding sites on protein surfaces.

    PubMed

    Liepinsh, E; Otting, G

    1997-03-01

    Enzymes frequently recognize substrates and pharmaceutical drugs through specific binding interactions in deep pockets on the protein surface. We show how the specificity-determining substrate binding site of hen egg-white lysozyme (HEWL) can be readily identified in aqueous solution by nuclear magnetic resonance spectroscopy using small organic solvent molecules as detection probes. Exchange of magnetization between the 1H nuclei of the protein and the ligands through dipole-dipole interactions is observed which allows the modeling of their position and orientation at the binding site. Combined with site-specific binding constants measured by titration experiments with different organic solvents, the method can provide important information for rational drug design. In addition, the lifetime of nonspecific interactions of HEWL with organic solvents is shown to be in the sub-nanosecond time range. PMID:9062927

  14. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use. PMID:26443210

  15. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.

  16. Norwalk Virus–specific Binding to Oyster Digestive Tissues

    PubMed Central

    Loisy, Fabienne; Atmar, Robert L.; Hutson, Anne M.; Estes, Mary K.; Ruvoën-Clouet, Nathalie; Pommepuy, Monique; Le Pendu, Jacques

    2006-01-01

    The primary pathogens related to shellfishborne gastroenteritis outbreaks are noroviruses. These viruses show persistence in oysters, which suggests an active mechanism of virus concentration. We investigated whether Norwalk virus or viruslike particles bind specifically to oyster tissues after bioaccumulation or addition to tissue sections. Since noroviruses attach to carbohydrates of the histo-blood group family, tests using immunohistochemical analysis were performed to evaluate specific binding of virus or viruslike particles to oyster tissues through these ligands. Viral particles bind specifically to digestive ducts (midgut, main and secondary ducts, and tubules) by carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage (same binding site used for recognition of human histo-blood group antigens). These data show that the oyster can selectively concentrate a human pathogen and that conventional depuration will not eliminate noroviruses from oyster tissue. PMID:16707048

  17. The specificity of Sushi peptides for endotoxin and anionic phospholipids: potential application of POPG as an adjuvant for anti-LPS strategies.

    PubMed

    Li, P; Sun, M; Ho, B; Ding, J L

    2006-04-01

    Sushi peptides [S1 (Sushi 1 peptide) and S3] are derived from the LPS (lipopolysaccharide; also known as endotoxin)-binding domains of an LPS-sensitive serine protease, Factor C, from the horseshoe crab (Carcinoscorpius rotundicauda). S1 and S3 interact at high affinity with LPS. The intermolecular disulphide bonding in the S3 dimer is indispensable for its LPS binding, disruption and consequent neutralization. Simultaneously, the specific interaction between the Sushi peptides and bacterial membrane phospholipids further explains the selective propensity of these peptides for the gram-negative bacteria. Our findings yield insights into a complex molecular paradigm in which the juxtaposition of LPS molecules and the anionic phospholipid POPG (1-palmitoyl-2-oleoyl phosphatidylglycerol) on the bacterial outer membrane confers such interfacial properties which create the optimal environment for the interaction between the peptides and bacterial membrane lipids.

  18. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.

    SciTech Connect

    Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.

    2009-03-31

    Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

  19. Thermodynamic Study of Interactions Between ZnO and ZnO Binding Peptides Using Isothermal Titration Calorimetry.

    PubMed

    Limo, Marion J; Perry, Carole C

    2015-06-23

    While material-specific peptide binding sequences have been identified using a combination of combinatorial methods and computational modeling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering control over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC), and alanine mutants of G-12 (G-12A6, G-12A11, and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endothermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different peptides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol, and high adsorption affinity values indicated the occurrence of favorable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions, and with continued development, the knowledge gained may be instrumental for simplification of selection processes of organic molecules for the advancement of material synthesis and design.

  20. Peptides from the variable region of specific antibodies are shared among lung cancer patients.

    PubMed

    de Costa, Dominique; Broodman, Ingrid; Calame, Wim; Stingl, Christoph; Dekker, Lennard J M; Vernhout, René M; de Koning, Harry J; Hoogsteden, Henk C; Sillevis Smitt, Peter A E; van Klaveren, Rob J; Luider, Theo M; Vanduijn, Martijn M

    2014-01-01

    Late diagnosis of lung cancer is still the main reason for high mortality rates in lung cancer. Lung cancer is a heterogeneous disease which induces an immune response to different tumor antigens. Several methods for searching autoantibodies have been described that are based on known purified antigen panels. The aim of our study is to find evidence that parts of the antigen-binding-domain of antibodies are shared among lung cancer patients. This was investigated by a novel approach based on sequencing antigen-binding-fragments (Fab) of immunoglobulins using proteomic techniques without the need of previously known antigen panels. From serum of 93 participants of the NELSON trial IgG was isolated and subsequently digested into Fab and Fc. Fab was purified from the digested mixture by SDS-PAGE. The Fab containing gel-bands were excised, tryptic digested and measured on a nano-LC-Orbitrap-Mass-spectrometry system. Multivariate analysis of the mass spectrometry data by linear canonical discriminant analysis combined with stepwise logistic regression resulted in a 12-antibody-peptide model which was able to distinguish lung cancer patients from controls in a high risk population with a sensitivity of 84% and specificity of 90%. With our Fab-purification combined Orbitrap-mass-spectrometry approach, we found peptides from the variable-parts of antibodies which are shared among lung cancer patients. PMID:24787687

  1. Pentamidine is a specific, non-peptide, GPIIb/IIIa antagonist.

    PubMed

    Cox, D; Aoki, T; Seki, J; Motoyama, Y; Yoshida, K

    1996-03-01

    Pentamidine was previously shown to act on glycoprotein (GP) IIb/IIIa (Cox et al., Thromb Haemost 1992; 68: 731). In this paper we study the effect of pentamidine on other RGD-dependent receptors. In a cell adhesion assay, pentamidine was 500 times more potent than RGDS at inhibiting platelet adhesion to fibrinogen. While RGDS inhibited platelet adhesion to fibronectin, endothelial cell adhesion to vitronectin or fibronectin, 293 cell adhesion to vitronectin, IMR 32 cell adhesion to fibronectin and C32 cell adhesion to vitronectin; pentamidine failed to inhibit these interactions at doses as high as 1 mM. Resting platelets fixed in the presence of 1 mM RGDS had increased binding of fibrinogen, i.e., RGDS activated GPIIb/IIIa, while pentamidine at 100 microM had no effect. Similarly, RGDS induced the binding of an anti-LIBS monoclonal antibody, while pentamidine had no effect. Pentamidine partially, but significantly, inhibited lysosome and alpha-granule release induced by the thrombin agonist peptide, while RGDS had no effect. Neither pentamidine nor RGDS affected ADP-induced Ca2+ influx. Pentamidine had no effect on ADP-induced intracellular pH changes while RGDS prevented the pH from returning to normal. Thus, pentamidine is a non-peptide GPIIb/IIIa antagonist that is non-activating and is specific for GPIIb/IIIa.

  2. Identification and characterization of polydimethylsiloxane-binding peptides (PDMS-tag) for oriented immobilization of functional protein on a PDMS surface.

    PubMed

    Kumada, Yoichi; Otsuki, Ryoko; Sakoda, Yumiko; Akai, Ryota; Matoba, Kazutaka; Katayama, Junko; Kishimoto, Michimasa; Horiuchi, Jun-Ichi

    2016-10-20

    In this study we focused on identifying and characterizing polydimethylsiloxane-binding peptides (PDMS-tags) that show a strong binding affinity towards a PDMS surface. Three kinds of E. coli host proteins (ELN, OMC and TPA) that were preferentially adsorbed onto a PDMS surface were identified from the E. coli cell lysate via 2-D electrophoresis and MALDI TOF MS. Digestion of these PDMS-binding proteins by 3 types of proteases (trypsin, chymotrypsin and V8 protease) resulted in the production of a wide variety of peptide fragments with different amino acid biases. Nine types of peptide fragments showing binding affinities to a PDMS surface were identified, and they were genetically fused at the C-terminal region of glutathione S-transferase (GST). The adsorption kinetics of peptide-fused GSTs to a PDMS surface were evaluated using a quartz crystal microbalance (QCM) sensor equipped with a sensor chip coated with a PDMS thin film. Consequently, all GSTs fused with the peptides adsorbed at a level higher than that of wild-type GST. In particular, the adsorption levels of GSTs fused with ELN-V81, TPA-V81, and OMC-V81 peptides were 8- to 10-fold higher than that of the wild-type GST. These results indicated that the selected peptides possessed a strong binding affinity towards a PDMS surface even in cases where they were introduced to the C-terminal region of a model protein. The remaining activities of GSTs with PDMS-binding peptides were also greater than that of the wild-type GST. Almost a third (30%) of enzymatic activity was maintained by genetic fusion of the peptide ELN-V81, compared with only 1.5% of wild-type GST in the adsorption state. Thus, the PDMS-binding peptides (PDMS-tags) identified in this study will be considerably useful for the site-specific immobilization of functional proteins to a PDMS surface, which will be a powerful tool in the fabrication of protein-based micro-reactors and biosearation chips. PMID:27497760

  3. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  4. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    NASA Astrophysics Data System (ADS)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  5. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  6. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  7. An apoA-I mimetic peptide containing a proline residue has greater in vivo HDL binding and anti-inflammatory ability than the 4F peptide.

    PubMed

    Wool, Geoffrey D; Vaisar, Tomas; Reardon, Catherine A; Getz, Godfrey S

    2009-09-01

    Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated alpha-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE(-/-) mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic alpha-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo. PMID:19433476

  8. An apoA-I mimetic peptide containing a proline residue has greater in vivo HDL binding and anti-inflammatory ability than the 4F peptide

    PubMed Central

    Wool, Geoffrey D.; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.

    2009-01-01

    Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated α-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE−/− mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic α-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo. PMID:19433476

  9. The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires.

    PubMed

    Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F; Sette, Alessandro

    2015-11-01

    Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif.

  10. The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires

    PubMed Central

    Bergmann, Tobias; Moore, Carrie; Sidney, John; Miller, Donald; Tallmadge, Rebecca; Harman, Rebecca M.; Oseroff, Carla; Wriston, Amanda; Shabanowitz, Jeffrey; Hunt, Donald F.; Osterrieder, Nikolaus; Peters, Bjoern; Antczak, Douglas F.; Sette, Alessandro

    2016-01-01

    Here we describe a detailed quantitative peptide-binding motif for the common equine leukocyte antigen (ELA) class I allele Eqca-1*00101, present in roughly 25 % of Thoroughbred horses. We determined a preliminary binding motif by sequencing endogenously bound ligands. Subsequently, a positional scanning combinatorial library (PSCL) was used to further characterize binding specificity and derive a quantitative motif involving aspartic acid in position 2 and hydrophobic residues at the C-terminus. Using this motif, we selected and tested 9- and 10-mer peptides derived from the equine herpesvirus type 1 (EHV-1) proteome for their capacity to bind Eqca-1*00101. PSCL predictions were very efficient, with an receiver operating characteristic (ROC) curve performance of 0.877, and 87 peptides derived from 40 different EHV-1 proteins were identified with affinities of 500 nM or higher. Quantitative analysis revealed that Eqca-1*00101 has a narrow peptide-binding repertoire, in comparison to those of most human, non-human primate, and mouse class I alleles. Peripheral blood mononuclear cells from six EHV-1-infected, or vaccinated but uninfected, Eqca-1*00101-positive horses were used in IFN-γ enzyme-linked immunospot (ELISPOT) assays. When we screened the 87 Eqca-1*00101-binding peptides for T cell reactivity, only one Eqca-1*00101 epitope, derived from the intermediate-early protein ICP4, was identified. Thus, despite its common occurrence in several horse breeds, Eqca-1*00101 is associated with a narrow binding repertoire and a similarly narrow T cell response to an important equine viral pathogen. Intriguingly, these features are shared with other human and macaque major histocompatibility complex (MHC) molecules with a similar specificity for D in position 2 or 3 in their main anchor motif. PMID:26399241

  11. Computational Analysis of the Binding Specificities of PH Domains

    PubMed Central

    Jiang, Zhi; Liang, Zhongjie; Shen, Bairong; Hu, Guang

    2015-01-01

    Pleckstrin homology (PH) domains share low sequence identities but extremely conserved structures. They have been found in many proteins for cellular signal-dependent membrane targeting by binding inositol phosphates to perform different physiological functions. In order to understand the sequence-structure relationship and binding specificities of PH domains, quantum mechanical (QM) calculations and sequence-based combined with structure-based binding analysis were employed in our research. In the structural aspect, the binding specificities were shown to correlate with the hydropathy characteristics of PH domains and electrostatic properties of the bound inositol phosphates. By comparing these structure properties with sequence-based profiles of physicochemical properties, PH domains can be classified into four functional subgroups according to their binding specificities and affinities to inositol phosphates. The method not only provides a simple and practical paradigm to predict binding specificities for functional genomic research but also gives new insight into the understanding of the basis of diseases with respect to PH domain structures. PMID:26881206

  12. Lysis of MYCN-amplified neuroblastoma cells by MYCN peptide-specific cytotoxic T lymphocytes.

    PubMed

    Sarkar, A K; Nuchtern, J G

    2000-04-01

    The effectiveness of cell-mediated immunotherapy for cancer can be limited by loss-of-antigen mutations that occur during tumor growth. In neuroblastoma, amplification of the MYCN oncogene correlates with rapid tumor progression and a poor prognosis overall. We propose that the MYCN protein, the high-level expression of which is required for maintenance of the malignant phenotype, would be an ideal target for vaccine therapy. The MYCN-derived S9K peptide (amino acids 7-15; STMPGMICK), which contains an HLA-A1 binding motif, was used to generate CTLs from the peripheral blood lymphocytes of an HLA-A1+ healthy donor and an HLA-A1+ patient with MYCN-amplified neuroblastoma These CTL lines specifically lysed HLA-matched, MYCN-amplified neuroblastoma tumor cells. They did not lyse either HLA-mismatched, MYCN-amplified, or matched/nonmatched, non-MYCN-amplified tumor cells. The CTL activity was inhibited by a monoclonal antibody to a class I HLA monomorphic determinant but not by one specific for HLA class II, consistent with a class I-restricted mechanism of cytotoxicity. Antibodies to CD8, but not those to CD4, also inhibited CTL activity, identifying CD8+ lymphocytes as the effector cell population. These results show that MYCN-derived peptides can serve as tumor-specific antigens and suggest a rational approach to cell-mediated immunotherapy for MYCN-amplified neuroblastoma.

  13. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  14. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  15. A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination.

    PubMed

    Yin, Liusong; Stern, Lawrence J

    2014-04-01

    HLA-DM (DM) functions as a peptide editor that mediates the exchange of peptides loaded onto MHCII molecules by accelerating peptide dissociation and association kinetics. The relative DM-susceptibility of peptides bound to MHCII molecules correlates with antigen presentation and immunodominance hierarchy, and measurement of DM-susceptibility has been a key effort in this field. Current assays of DM-susceptibility, based on differential peptide dissociation rates measured for individually labeled peptides over a long time base, are difficult and cumbersome. Here, we present a novel method to measure DM-susceptibility based on peptide binding competition assays performed in the presence and absence of DM, reported as a delta-IC(50) (change in 50% inhibition concentration) value. We simulated binding competition reactions of peptides with various intrinsic and DM-catalyzed kinetic parameters and found that under a wide range of conditions the delta-IC(50) value is highly correlated with DM-susceptibility as measured in off-rate assay. We confirmed experimentally that DM-susceptibility measured by delta-IC(50) is comparable to that measured by traditional off-rate assay for peptides with known DM-susceptibility hierarchy. The major advantage of this method is that it allows simple, fast and high throughput measurement of DM-susceptibility for a large set of unlabeled peptides in studies of the mechanism of DM action and for identification of CD4+ T cell epitopes.

  16. Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers.

    PubMed

    Heo, Lim; Lee, Hasup; Baek, Minkyung; Seok, Chaok

    2016-01-01

    We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein complex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that may bind the input protein and generates complex structures of the protein with the predicted ligands from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a protein structure and a peptide sequence as input and predicts structures for the protein-peptide complex. Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein-ligand complexes evolutionarily related to the target. With the continuously increasing size of the protein structure database, the probability of finding related proteins in the database is increasing. The servers further relax the complex structures to refine the structural aspects that are missing in the available structures or that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock allows conformational change of the protein receptor induced by peptide binding. The atomistic interactions with ligands predicted by the GALAXY servers may offer important clues for designing new molecules or proteins with desired binding properties. PMID:27094284

  17. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata

    SciTech Connect

    Leslie, R.A.; McDonald, T.J.; Robertson, H.A.

    1988-09-01

    Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared (/sup 125/I)PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of (/sup 125/I)PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of (/sup 125/I)PYY binding sites throughout the rat brain was seen to be similar to the distribution of (/sup 125/I)NPY binding sites.

  18. Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation.

    PubMed

    Khazanov, Netaly; Iline-Vul, Taly; Noy, Efrat; Goobes, Gil; Senderowitz, Hanoch

    2016-01-21

    The conversion of biomass into biofuels can reduce the strategic vulnerability of petroleum-based systems and at the same time have a positive effect on global climate issues. Lignocellulose is the cheapest and most abundant source of biomass and consequently has been widely considered as a source for liquid fuel. However, despite ongoing efforts, cellulosic biofuels are still far from commercial realization, one of the major bottlenecks being the hydrolysis of cellulose into simpler sugars. Inspired by the structural and functional modularity of cellulases used by many organisms for the breakdown of cellulose, we propose to mimic the cellulose binding domain (CBD) and the catalytic domain of these proteins by small molecular entities. Multiple copies of these mimics could subsequently be tethered together to enhance hydrolytic activity. In this work, we take the first step toward achieving this goal by applying computational approaches to the design of efficient, cost-effective mimetics of the CBD. The design is based on low molecular weight peptides that are amenable to large-scale production. We provide an optimized design of four short (i.e., ∼18 residues) peptide mimetics based on the three-dimensional structure of a known CBD and demonstrate that some of these peptides bind cellulose as well as or better than the full CBD. The structures of these peptides were studied by circular dichroism and their interactions with cellulose by solid phase NMR. Finally, we present a computational strategy for predicting CBD/peptide-cellulose binding free energies and demonstrate its ability to provide values in good agreement with experimental data. Using this computational model, we have also studied the dissociation pathway of the CBDs/peptides from the surface of cellulose. PMID:26691055

  19. Chronic Beryllium Disease: revealing the role of beryllium ion and small peptides binding to HLA-DP2.

    PubMed

    Petukh, Marharyta; Wu, Bohua; Stefl, Shannon; Smith, Nick; Hyde-Volpe, David; Wang, Li; Alexov, Emil

    2014-01-01

    Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.

  20. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    PubMed Central

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  1. Specific serum binding of morphine, levorphanol and heroin

    PubMed Central

    Herndon, B. L.; Baeder, D. H.; Ringle, D. A.

    1976-01-01

    Effects of repeated subcutaneous pellet implantation of a series of narcotic drugs on the serum binding of [14C]morphine was studied in rabbits. Three of the compounds, morphine, heroin and levorphanol, elicited production of a morphine-binding globulin in the implanted rabbits. This serum response did not occur with several other compounds tested, including the potent analgesic methadone, and the narcotic antagonist naloxone. The time course of production of this globulin response, as well as the specificity of the binding for the drug that induced the response are both characteristic of an immunological reaction.

  2. Characterization of the secondary structure of calmodulin in complex with a calmodulin-binding domain peptide

    SciTech Connect

    Roth, S.M.; Schneider, D.M.; Strobel, L.A.; Wand, A.J. Univ. of Illinois, Urbana ); Van Berkum, M.F.A.; Means, A.R. )

    1992-02-11

    The interaction between calcium-saturated chicken calmodulin and a peptide corresponding to the calmodulin-binding domain of the chicken smooth muscle myosin light chain kinase has been studied by multinuclear and multidimensional nuclear magnetic resonance methods. Extensive {sup 1}H and {sup 15}N resonance assignments of calmodulin in the complex have been obtained from the analysis of two- and three-dimensional nuclear magnetic resonance spectra. The assignment of calmodulin in the complex was facilitated by the use of selective labeling of the protein with {alpha}-{sup 15}N-labeled valine, alanine, lysine, leucine, and glycine. These provided reference points during the main-chain-directed analysis of three-dimensional spectra of complexes prepared with uniformly {sup 15}N-labeled calmodulin. The pattern of nuclear Overhauser effects (NOE) seen among main-chain amide NH, C{sub {alpha}}H, and C{sub {beta}}H hydrogens indicates that the secondary structure of the globular domains of calmodulin in the complex closely corresponds to that observed in the calcium-saturated state of the protein in the absence of bound peptide. However, the backbone conformation of residues 76-84 adopts an extended chain conformation upon binding of the peptide in contrast to its helical conformation in the absence of peptide. A sufficient number of NOEs between the globular domains of calmodulin and the bound peptide have been found to indicate that the N- and C-terminal regions of the peptide interact with the C- and N-terminal domains of calmodulin, respectively. The significance of these results are discussed in terms of recently proposed models for the structure of calmodulin-peptide complexes.

  3. High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations.

    PubMed Central

    Hammer, J; Belunis, C; Bolin, D; Papadopoulos, J; Walsky, R; Higelin, J; Danho, W; Sinigaglia, F; Nagy, Z A

    1994-01-01

    We have previously identified four anchor positions in HLA-DRB1*0101-binding peptides, and three anchors involved in peptide binding to DRB1*0401 and DRB1*1101 molecules, by screening of an M13 peptide display library (approximately 20 million independent nonapeptides) for DR-binding activity. In this study, high stringency screening of the M13 library for DRB1*0401 binding has resulted in identification of three further anchor positions. Taken together, a peptide-binding motif has been obtained, in which six of seven positions show enrichment of certain residues. We have demonstrated an additive effect of anchors in two different ways: (i) the addition of more anchors is shown to compensate for progressive truncation of designer peptides; (ii) the incorporation of an increasing number of anchors into 6- or 7-residue-long designer peptides is shown to result in a gradual increase of binding affinity to the level of 13-residue-long high-affinity epitopes. The anchor at relative position 1 seems to be obligatory, in that its substitution abrogates binding completely, whereas the elimination of other anchors results only in partial loss of binding affinity. The spacing between anchors is critical, since their effect is lost by shifting them one position toward the N or C terminus. The information born out of this study has been successfully used to identify DR-binding sequences from natural proteins. PMID:8183931

  4. Hydrophobic Peptides Affect Binding of Calmodulin and Ca2+ as Explored by H/D Amide Exchange and Mass Spectrometry

    PubMed Central

    Sperry, Justin B.; Huang, Richard Y-C.; Zhu, Mei M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    Calmodulin (CaM), a ubiquitous intracellular sensor protein, binds Ca2+ and interacts with various targets as part of signal transduction. Using hydrogen/deuterium exchange (H/DX) and a high resolution PLIMSTEX (Protein-Ligand Interactions by Mass Spectrometry, Titration, and H/D Exchange) protocol, we examined five different states of calmodulin: calcium-free, calcium-loaded, and three states of calcium-loaded in the presence of either melittin, mastoparan, or skeletal myosin light-chain kinase (MLCK). When CaM binds Ca2+, the extent of HDX decreased, consistent with the protein becoming stabilized upon binding. Furthermore, Ca2+-saturated calmodulin exhibits increased protection when bound to the peptides, forming high affinity complexes. The protocol reveals significant changes in EF hands 1, 3, and 4 with saturating levels of Ca2+. Titration of the protein using PLIMSTEX provides the binding affinity of Ca2+ to calmodulin within previously reported values. The affinities of calmodulin to Ca2+ increase by factors of 300 and 1000 in the presence of melittin and mastoparan, respectively. A modified PLIMSTEX protocol whereby the protein is digested to component peptides gives a region-specific titration. The titration data taken in this way show a decrease in the root mean square fit of the residuals, indicating a better fit of the data. The global H/D exchange results and those obtained in a region-specific way provide new insight into the Ca2+-binding properties of this well-studied protein. PMID:21765646

  5. Effects of water molecules on binding kinetics of peptide receptor on a piezoelectric microcantilever

    NASA Astrophysics Data System (ADS)

    Hui Kim, Sang; Kyoung Yoo, Yong; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo; Hoon Lee, Jeong

    2012-12-01

    The use of highly selective reversible peptide receptors is essential for cantilever-based electronic nose systems. Here, we present the effects of water molecules on the binding kinetics of 2,4-dinitrotoluene (DNT) molecules with DNT selective peptide receptors linked with a tri(ethylene glycol)-based (TEG) self-assembled monolayer (SAM) in a gas phase in a piezoelectric microcantilever sensor. We observed 1.5-times faster reaction kinetics in wet conditions compared with dry conditions. In a dissociation step, distinctive differences in the recovery time were observed in wet conditions, which could be attributed to water retention efficiency of TEG-linkers for the conformation of biomolecules.

  6. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  7. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.

    PubMed

    Mardirossian, Mario; Grzela, Renata; Giglione, Carmela; Meinnel, Thierry; Gennaro, Renato; Mergaert, Peter; Scocchi, Marco

    2014-12-18

    Antimicrobial peptides (AMPs) are molecules from innate immunity with high potential as novel anti-infective agents. Most of them inactivate bacteria through pore formation or membrane barrier disruption, but others cross the membrane without damages and act inside the cells, affecting vital processes. However, little is known about their intracellular bacterial targets. Here we report that Bac71-35, a proline-rich AMP belonging to the cathelicidin family, can reach high concentrations (up to 340 μM) inside the E. coli cytoplasm. The peptide specifically and completely inhibits in vitro translation in the micromolar concentration range. Experiments of incorporation of radioactive precursors in macromolecules with E. coli cells confirmed that Bac71-35 affects specifically protein synthesis. Ribosome coprecipitation and crosslinking assays showed that the peptide interacts with ribosomes, binding to a limited subset of ribosomal proteins. Overall, these results indicate that the killing mechanism of Bac71-35 is based on a specific block of protein synthesis.

  8. In vitro proliferative responses and antibody titers specific to human acetylcholine receptor synthetic peptides in patients with myasthenia gravis and relation to HLA class II genes.

    PubMed Central

    Brocke, S; Brautbar, C; Steinman, L; Abramsky, O; Rothbard, J; Neumann, D; Fuchs, S; Mozes, E

    1988-01-01

    To investigate which parts of the acetylcholine receptor are involved in the initiation and development of myasthenia gravis (MG), peptides representing different sequences of the human acetylcholine receptor alpha-subunit were synthesized. These peptides were tested for their ability to stimulate T cells of myasthenic patients and healthy control patients in proliferation assays and to bind to sera antibodies. Three of eight peptides discriminated significantly between the two groups in the proliferation assay, as well as in their ability to bind to serum antibodies. HLA-DR3 and DR5 were associated with proliferative responses to specific AChR peptides in the group of myasthenics. Acetylcholine receptor epitopes that might play a specific role in myasthenia gravis thus were demonstrated. PMID:2461962

  9. Minimal antizyme peptide fully functioning in the binding and inhibition of ornithine decarboxylase and antizyme inhibitor.

    PubMed

    Hsieh, Ju-Yi; Yang, Jung-Yen; Lin, Chih-Li; Liu, Guang-Yaw; Hung, Hui-Chih

    2011-01-01

    Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC(50): 0.20 µM) similar to that of AZ-95-228 (IC(50): 0.16 µM), even though a large segment spanning residues 177-228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC(50) values of 0.43 and 0.37 µM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC(50) values comparable to that of AZ_WT and formed AZ-ODC complexes with K(d,AZ-ODC) values of 1.5, 5.3 and 5.6 µM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function. PMID:21931692

  10. Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions.

    PubMed

    Puentes, Alvaro; Ocampo, Marisol; Rodríguez, Luis Eduardo; Vera, Ricardo; Valbuena, John; Curtidor, Hernando; García, Javier; López, Ramsés; Tovar, Diana; Cortes, Jimena; Rivera, Zuly; Patarroyo, Manuel Elkin

    2005-05-01

    Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine P. falciparum merozoite surface protein-10 (MSP-10) regions specifically binding to membrane surface receptors on human erythrocytes. Three MSP-10 protein High Activity Binding Peptides (HABPs) were identified, whose binding to erythrocytes became saturable and sensitive on being treated with neuraminidase, trypsin and chymotrypsin. Some of them specifically recognised a 50 kDa erythrocyte membrane protein. Some HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by 70%, suggesting that MSP-10 protein's possible role in the invasion process probably functions by using similar mechanisms to those described for other MSP family antigens. In addition to above results, the high homology in amino-acid sequence and superimposition of both MSP-10, MSP-8 and MSP-1 EGF-like domains and HABPs 31132, 26373 and 5501 suggest that tridimensional structure could be playing an important role in the invasion process and in designing synthetic multi-stage anti-malarial vaccines.

  11. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex.

    PubMed

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-12-06

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel 'recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4-Met28-Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity.

  12. Rational Optimization of Conformational Effects Induced By Hydrocarbon Staples in Peptides and their Binding Interfaces

    NASA Astrophysics Data System (ADS)

    Lama, Dilraj; Quah, Soo T.; Verma, Chandra S.; Lakshminarayanan, Rajamani; Beuerman, Roger W.; Lane, David P.; Brown, Christopher J.

    2013-12-01

    eIF4E is frequently over-expressed in different cancers and causes increased translation of oncogenic proteins via deregulated cap-dependent translation. Inhibitors of the eIF4E:eIF4G interactions represent an approach that would normalize cap-dependent translation. Stapled peptides represent an emerging class of therapeutics that can target protein: protein interactions. We present here molecular dynamics simulations for a set of rationally designed stapled peptides in solution and in complex with eIF4E, supported with biophysical and crystallographic data. Clustering of the simulated structures revealed the favoured conformational states of the stapled peptides in their bound or free forms in solution. Identifying these populations has allowed us to design peptides with improved affinities by introducing mutations into the peptide sequence to alter their conformational distributions. These studies emphasise the effects that engineered mutations have on the conformations of free and bound peptides, and illustrate that both states must be considered in efforts to attain high affinity binding.

  13. Structural analysis of leader peptide binding enables leader-free cyanobactin processing.

    PubMed

    Koehnke, Jesko; Mann, Greg; Bent, Andrew F; Ludewig, Hannes; Shirran, Sally; Botting, Catherine; Lebl, Tomas; Houssen, Wael E; Jaspars, Marcel; Naismith, James H

    2015-08-01

    Regioselective modification of amino acids within the context of a peptide is common to a number of biosynthetic pathways, and many of the resulting products have potential as therapeutics. The ATP-dependent enzyme LynD heterocyclizes multiple cysteine residues to thiazolines within a peptide substrate. The enzyme requires the substrate to have a conserved N-terminal leader for full activity. Catalysis is almost insensitive to immediately flanking residues in the substrate, suggesting that recognition occurs distant from the active site. Nucleotide and peptide substrate co-complex structures of LynD reveal that the substrate leader peptide binds to and extends the β-sheet of a conserved domain of LynD, whereas catalysis is accomplished in another conserved domain. The spatial segregation of catalysis from recognition combines seemingly contradictory properties of regioselectivity and promiscuity, and it appears to be a conserved strategy in other peptide-modifying enzymes. A variant of LynD that efficiently processes substrates without a leader peptide has been engineered.

  14. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  15. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin.

    PubMed

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units.

  16. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption

    SciTech Connect

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2011-01-01

    The dynamics of a single tripeptide Arg-Gly-Asp (RGD) adsorbing onto negatively charged hydroxylated rutile (110) surface in aqueous solution was studied using molecular dynamics (MD) simulations. The results indicate that the adsorbed Na{sup +} ions play an important role in determining the binding geometry of RGD. With an initial 'horseshoe' configuration, the charged side groups (COO{sup -} and NH{sub 2}) of the peptide are able to interact with the surface through direct hydrogen bonds (H bonds) in the very early stage of adsorption. The Na{sup +} ions approach the positively charged Arg side chain, competing with the Arg side chain for adsorption to the negatively charged hydroxyl oxygen. In coordination with the structural adjustment of the peptide, the Arg residue is driven to detach from the rutile surface. In contrast, the Na+ ions in close proximity to the negatively charged Asp side chain contribute to the binding of the COO{sup -} group on the surface, helping the carboxyl oxygen not involved in COO{sup -}-surface H bonds to orientate toward the hydroxyl hydrogens. Once both carboxyl oxygens form enough H bonds with the hydroxyl hydrogens, the redundant ions move toward a more favorable adsorption site.

  17. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins.

    PubMed

    Peitzsch, R M; McLaughlin, S

    1993-10-01

    We studied the binding of fatty acids and acylated peptides to phospholipid vesicles by making electrophoretic mobility and equilibrium dialysis measurements. The binding energies of the anionic form of the fatty acids and the corresponding acylated glycines were identical; the energies increased by 0.8 kcal/mol per number of carbons in the acyl chain (Ncarbon = 10, 12, 14, 16), a value identical to that for the classical entropy-driven hydrophobic effect discussed by Tanford [The Hydrophobic Effect (1980) Wiley, New York]. The unitary Gibbs free binding energy, delta Gou, of myristoylated glycine, 8 kcal/mol, is independent of the nature of the electrically neutral lipids used to form the vesicles. Similar binding energies were obtained with other myristoylated peptides (e.g., Gly-Ala, Gly-Ala-Ala). The 8 kcal/mol, which corresponds to an effective dissociation constant of 10(-4) M for myristoylated peptides with lipids, provides barely enough energy to attach a myristoylated protein in the cytoplasm to the plasma membrane. Thus, other factors that reduce (e.g., hydrophobic interaction of myristate with the covalently attached protein) or enhance (e.g., electrostatic interactions of basic residues with acidic lipids; protein-protein interactions with intrinsic receptor proteins) the interaction of myristoylated proteins with membranes are likely to be important and may cause reversible translocation of these proteins to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  19. Metal-binding peptides: Their role in responses to metal stress

    SciTech Connect

    Rauser, W.E. )

    1989-04-01

    Excess metals are one stress that plants may encounter. The metals Cd, Cu, Ni, and Zn are considered because of concern for their entry into the foodchain of animals and man. Studies of metal tolerant plants and cell cultures suggest three types of responses: exclusion of metal from protoplasts by binding to cell walls, differential membrane transport reducing metal exposure of enzymes, and intracellular chelation of metal in innocuous forms. One group of compounds involved in the latter response are metal-binding peptides designated phytochelatins. They are a family of small peptides composed of five kinds of amino acids, including 2 to 11 cysteines which provide thiols for selective binding of metal. Metals induce the synthesis of phytochelatins through unknown enzymes involving glutathione. In plant cell cultures the peptides bind about 90% of the intracellular Cd. In roots of young plants up to half of the metal is bound by phytochelatins. Intact plants probably use a combination of responses to deal with excess metals, phytochelatins may dominate in certain cases.

  20. High affinity binding of /sup 125/I-labeled mouse interferon to a specific cell surface receptor. II. Analysis of binding properties

    SciTech Connect

    Aguet, M.; Blanchard, B.

    1981-12-01

    Direct ligand-binding studies with highly purified /sup 125/I-labeled virus-induced mouse interferon on mouse lymphoma L 1210 cells revealed a direct correlation of specific high-affinity binding with the biologic response to interferon. Neutralization of the antiviral effect by anti-interferon gamma globulin occurred at the same antibody concentration as the inhibition of specific binding. These results suggest that specific high-affinity binding of /sup 125/I-interferon occurred at a biologically functional interferon receptor. Competitive inhibition experiments using /sup 125/I- and /sup 127/I-labeled interferon provided strong evidence that the fraction of /sup 125/I-interferon inactivated upon labeling did not bind specifically. Scatchard analysis of the binding data yielded linear plots and thus suggested that interferon binds to homogeneous noncooperative receptor sites. In contrast to a characteristic property of several peptide hormone systems, binding of /sup 125/I-interferon to its specific receptor did not induce subsequent ligand degradation. At 37/sup o/ bound interferon was rapidly released in a biologically active form without evidence for molecular degradation. The expression of interferon receptors was not modified by treatment with interferon. Trypsin treatment of target cells and inhibition of protein synthesis abolished the specific binding of /sup 125/I-interferon. Three major molecular weight species of Newcastle disease virus-induced mouse C 243 cell interferon were isolated, separated, and identified as mouse ..cap alpha.. and ..beta.. interferons. These interferons were shown to inhibit competitively the specific binding of the highly purified labeled starting material thus providing evidence for a common receptor site for mouse interferon.

  1. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  2. Division of Labor: ER-Resident BiP Co-Chaperones Match Substrates to Fates Based on Specific Binding Sequences.

    PubMed

    Hebert, Daniel N; Clerico, Eugenia M; Gierasch, Lila M

    2016-09-01

    In this issue of Molecular Cell, Behnke et al. (2016) describe a novel cell-based peptide-binding assay and use it to analyze the binding specificities of the endoplasmic reticulum Hsp70 chaperone and its co-chaperones and to probe their different roles in protein quality control. PMID:27588598

  3. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.

    PubMed

    Nguyen, Giang K T; Wang, Shujing; Qiu, Yibo; Hemu, Xinya; Lian, Yilong; Tam, James P

    2014-09-01

    Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations. PMID:25038786

  4. RNA binding specificity of Ebola virus transcription factor VP30.

    PubMed

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30